
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Developing a microservice solution for
automated investment monitoring in

Wealth Management

Supervisors

Prof. Alessandro Fiori

Company tutors

Luigi D’Onofrio

Fabio Crucini

Candidate

Rafael Lapetina

Ribeiro Gomes

March 2025

Summary

The thesis focuses on the development of a backend software application built
during an internship at Alpian Technologies, to work as a back-office solution for a
specialized team at Fideuram Asset Management. The main aim of the application
is to automate and optimize the periodic monitoring of discretionary mandates,
which denotes an investing strategy whereby a client delegates to a bank the
management of their portfolio. This monitoring ensures that investment strategies
applied to the customers at the bank remain aligned with the agreed-upon risk
profiles.

The important contributions of the project include the automation of a critical
monitoring procedure once done manually and subject to inefficiencies and a greater
potential for errors. By bringing in cutting-edge technologies like Spring Boot
for REST services, gRPC for efficient service communication, Kotlin for reliable
backend development, and Docker for containerized deployments, the project
improved the accuracy and efficiency of investment compliance processes.

The implementation of the microservices structure, in addition to the CI/CD
pipelines guarantees the scalability, maintainability, and continuous improvement
of the platform. It should also be noted that the monitoring and management of
investment data in one place make for much more ease of access to and use by
the working part of this software, thus substantially enhancing the workflow and
possibility to maintain investments compliant.

This thesis provides evidence of the successful application of modern software
technologies to the financial sector, making the case for the possibilities of automa-
tion, the digital transformation and enhancement of the monitoring of investment
portfolios. Results reflect the impact of this work, which includes lowering oper-
ational workload, enhanced compliance efficiency, high level of testing employed,
and ultimately providing a scalable solution for further expanding into other ar-
eas of investment management. The project has laid the groundwork for future
improvements involving real-time monitoring, further automation, and enhanced
data integration capabilities.

ii

iii

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background concepts 3

2.1 Overview of the Domain . 3
2.2 Monolithic vs. Microservices Architectures 4

2.2.1 Overview of Monolithic Architecture 5
2.2.2 Microservices Architecture 5

2.3 Communication Between Microservices 8
2.3.1 REST APIs . 8
2.3.2 gRPC APIs . 8

2.4 Cloud Computing . 9
2.4.1 Cloud Service Models . 9
2.4.2 Benefits and Challenges of Cloud Computing 10

2.5 Containerization and Docker . 11
2.6 Technological Choices . 12

2.6.1 Spring Boot . 13
2.6.2 Kotlin . 14
2.6.3 PostgreSQL . 14

v

2.6.4 Splunk . 15
2.7 Scrum and CI/CD . 16

2.7.1 CI/CD Pipelines . 18

3 System Architecture 20

3.1 Understanding the old process . 20
3.2 Understanding the monitoring process 21
3.3 Project description and objectives 23
3.4 Software design . 25

3.4.1 Entities . 28
3.5 Back-end Architecture . 34

3.5.1 Communication between services 36
3.5.2 External databases . 37
3.5.3 Security mechanisms . 38
3.5.4 Project Structure . 40
3.5.5 Dependency management with Maven 42
3.5.6 Endpoints and protobuf file 45

4 User stories flows 48

4.1 Search investment lines . 49
4.2 Import of investments data . 55
4.3 Validation of a monitoring and spools 61

5 Testing, Deployment and Monitoring 70

5.1 Testing . 70
5.1.1 Unit testing . 71
5.1.2 Functional Testing . 74
5.1.3 Quality Assurance (QA) test 75

5.2 Deployment . 76
5.3 Monitoring . 77

vi

6 Conclusion 79

Bibliography 82

vii

List of Tables

3.1 List of packages in the project . 40
3.2 List of other gRPC methods and endpoints. 47

4.1 List of allowed filter operations . 52

viii

List of Figures

2.1 Monolith vs microservice architecture visualization 6

3.1 Entity-relationship diagram for MiaGP system 29
3.2 System architecture for MiaGP . 34
3.3 Typical flow of data within system 41

4.1 Filters in investment line page . 50
4.2 Search lines sequence diagram . 51
4.3 Ingestion of data sequence diagram 58
4.4 Validation of a monitoring sequence diagram 63

5.1 Code coverage of the application . 73
5.2 Backstage tool for deployment . 76
5.3 Dashboard in Splunk . 78

ix

Chapter 1

Introduction

In the world of banking and wealth management, many institutions have a long
history that frequently predates the age of technology. These traditional companies,
while offering decades of experience and trust, frequently employ legacy systems
and outdated processes. This poses challenges in an increasingly digital world,
where agility, compliance, and traceability are critical. For big financial institutions
handling substantial client investment amounts, modernizing these systems has
become both necessary and a competitive benefit.

In particular, wealth management processes are highly sensitive and mission-
critical. Banks must ensure that client investments are not only profitable but also
aligned with the client’s risk preference, as defined through thorough assessments.
Failing to do so may lead to possible financial losses as well as regulatory violations.

In the context of the bank Fideuram, discretionary mandates (Gestioni Pat-
rimoniali) have periodic checks, where clients’ portfolios are checked in order to
ensure that their investments adhere to the agreed risk profiles. This monitoring,
performed every 45 days, involves a detailed analysis of the investment portfolios.
When discrepancies are identified, such as when a portfolio is found to be misaligned
with the customer’s risk profile, the necessary adjustments are made manually,
sometimes taking days to complete. As the volume of client portfolios grows, so
does the complexity of ensuring compliance with such risk mandates.

In this context, the back-office system developed for Fideuram Asset Manage-
ment’s team is one further step toward digital transformation in a traditional
financial setting. It proposes an integrated automated solution to facilitate the
monitoring of discretionary mandates with adequacy checks, improving compliance
and operational efficiency.

1

Introduction

This thesis first studies the fundamentals and moves on to concepts, implementa-
tions, and evaluations. Chapter 2 introduces the key groundwork topics: monolithic
and microservices architectures, cloud computing, REST and gRPC APIs, and the
tech decisions taken that altogether influenced the project. Chapter 3 describes the
architecture of the system, providing a detailed view of legacy processes, monitoring
workflows, and the design and development of a new back-end system. Chapter
4 shows a selection of user story flows that demonstrate the capabilities of the
system, specifying some features developed personally. Chapter 5 relates the testing,
deployment, and monitoring strategies employed to ensure quality assurance and
reliability concerning the system. Chapter 6 concludes the thesis by summarizing
both the results from this project and the overall process of personal development.

2

Chapter 2

Background concepts

This chapter establishes the fundamental knowledge needed to understand the
technical and business context of the project. It starts by explaining key financial
concepts, such as wealth management and fiduciary mandates, to apply them
when the problem is being addressed. The discussion then shifts to architectural
frameworks, communication protocols, cloud computing, and the critical techno-
logical decisions that guided the creation of the proposed solution. These core
concepts provide the necessary knowledge for the system’s design, development,
and deployment, which are examined in greater detail in the chapters that follow.

2.1 Overview of the Domain

Firstly, to fully understand the scope of this project, it is crucial to have a grasp
of the financial domain in which this work is situated. Below are some key
financial concepts that will be referenced throughout this thesis, which will provide
context and background for understanding how they are used in the software
implementation.

• Wealth Management: Wealth management is a financial service that pro-
vides clients with advice and investment strategies to manage and grow their
wealth. It includes financial planning, investment management, tax plan-
ning, and retirement planning. In this thesis, wealth management forms the
core domain where the development of automated solutions for discretionary
mandates plays a significant role. [1]

• Fiduciary Mandates: Also known as discretionary mandates, they are
agreements where a financial institution manages an investment portfolio

3

Background concepts

on behalf of a client. The financial institution has the authority to make
investment decisions that align with the client’s goals and risk tolerance.
Monitoring these mandates is crucial to ensure compliance with regulatory
standards and the agreed-upon risk profile. [2]

• MiFID II (Markets in Financial Instruments Directive II): MiFID
II is a European Union regulation that aims to increase transparency and
standardize practices within financial markets. It requires investment firms to
provide greater disclosure, protect investors, and ensure that financial services
align with clients’ risk profiles. Compliance with MiFID II is an essential
aspect of the project, as it directly influences how discretionary mandates are
managed and monitored. [3] [4]

• Risk Profile: A risk profile defines the level of risk an investor is willing
to take, considering their financial goals, investment experience, and overall
comfort with risk. Risk profiles are typically determined through a detailed
questionnaire, where the bank or other institutions will assign a risk profile to
a client, which will determine suitable investment strategies for clients. [1]

• Compliance: Covered in partially in previous points, compliance refers to the
adherence to laws, regulations, and industry standards that govern financial
activities. This includes ensuring investments are suitable for clients according
to their risk profiles. One of the main goals of the system discussed in this
thesis is to assure exactly that. [1]

With the main domain topics covered, we can now move on to the technical
principles underlying the implementation. In the following sections, we will explore
the architectural choices, technologies, and methodologies that form the foundation
of the solution, providing a detailed look at the technical components and their
roles in achieving the project’s objectives.

2.2 Monolithic vs. Microservices Architectures

We are going to start by examining two popular software development architectural
paradigms: microservices and monolithic systems. With their own advantages
and disadvantages, these architectures offer opposing methods for creating and
executing software systems. Since the back-office system’s design and development
were directly impacted by the choice between these paradigms, understanding them
is crucial to understanding the architectural choices taken in this project.

4

Background concepts

2.2.1 Overview of Monolithic Architecture

A classic method in software development, monolithic architecture is typically
used for early-stage projects and small-scale applications where initial complexity
is reduced. All of an application’s components are merged into a single unit
using this software design pattern. A monolithic application usually consists of a
single codebase with tighly coupled features and services. Since everything is in
one location, this kind of design is frequently simpler to develop at first, making
deployment and testing simple. Having all features and logic in one place makes
the flow of execution easier to follow and understand. In terms of efficiency, there
is no delay or overhead from inter-service communication.

However, monolithic architectures can become difficult to scale and manage
as applications get bigger and more sophisticated. Even minor adjustments are
complicated and dangerous since updates frequently need redeploying the entire
system. Furthermore, scalability is typically vertical, which means that rather
than adding more servers, improvements frequently need for hardware upgrades.
Because changes made to one part of the system may have unexpected effects on
other parts, the close coupling of components leads to a lack of flexibility and
makes it more difficult to embrace new technologies.

2.2.2 Microservices Architecture

The microservices architecture can be thought of as an evolution from monolithic
systems, breaking an application down into a collection of small, independently
deployable, and loosely coupled services. Such an evolution addresses many of the
limitations in monolithic systems, from challenges in scaling, through issues of
maintaining large codebases, to issues of inflexibility in development cycles. Scaling
is usually problematic for most monolithic systems because they depend on vertical
scaling, which is expensive and inefficient. Also, in a monolithic architecture,
management of a big codebase tends to take more time in development because
changes made in one part of the system cascade throughout the application, thus
demanding longer test and deployment cycles. [5]

This shift was driven by several factors, including the need to support present-
day business requirements for constant changes, updates, and deployments, as
well as the desire for improved scalability, flexibility, and efficiency in software
development. Microservices are typically divided by business function, with each
service responsible for operations related to its specific purpose. We can see a
visualization of the difference between microservices and monolith in the figure 2.1.

5

Background concepts

Figure 2.1: Monolith vs microservice
architecture visualization

For example, let’s consider a complex banking system in which one microser-
vice operates independently from others, managing card payments, while another
independently handles all notification processes. Fault tolerance means that if a
notification service fails, the card payment service can still be executed without
failure. Another pattern here is data autonomy: every microservice has its own
database, which means there are no dependencies across services.

The microservices are based upon the key principles such as decentralization
of data management, independently deployable units of the architecture, and
loose coupling of the different modules. By decomposing any application into
smaller modules that can closely interact with each other, microservices do provide
enormous benefits in terms of scalability, fault isolation, and flexibility. Some of
the key benefits of microservices can be:

• Scalability: This makes it possible to scale services autonomously depending
on demand, i.e. if a service gets a higher workload, then more computing
power or memory can be directed to that service without impacting the rest
of the system.

• Flexibility: Depending upon the specific needs of each service, other tech-
nologies and frameworks can also be used because of the modular design of
microservices. That is why new technologies could now be used more easily
without disrupting the system as a whole.

• Agility: The ability of development teams to work on multiple services at the
same time speeds up development time. Less specialized teams of a certain
size will be able to design, test and deploy their services on their own, leading
to continuous delivery and more rapid iterations.

6

Background concepts

• Resilience: Fault isolation ensures that failure of only part of the system does
not bring the entire application down. For example, failure of the payment
service would not affect any other service, e.g., for user authentication, and
hence the remaining portions of the system are able to function properly. [6]

Although microservices provide clear advantages over monolithic systems, there
are still challenges when adopting this approach:

• Complexity in System Management: Because microservices are distributed
and running in separate processes, it increases the complexity to assure
that the system functions cooperatively. Maintaining control over multiple
services, each of which has its own underlying infrastructure, database, and
dependencies, is challenging and may necessitate complex orchestration tools
such as Kubernetes.

• Transaction Management: Operations where transactionality is involved turn
out to be difficult to manage, due to the lack of consistency and concurrency
between different services. As each service can fail in isolation, it is necessary
to provide a special structure for each step in a transaction to succeed, either
through the Saga pattern or eventual consistency.

• Inter-Service Communication Overhead: Microservices involve a lot of inter-
service messages which contribute to extra overhead as opposed to functions
in monoliths in which function calls are direct. Communication between
services may be accomplished via protocols (eg., HTTP or gRPC), however,
this introduces network latency and complexity.

• Infrastructure Management: Individual microservices could have its own de-
ployment environment, computational resources, and configurations, which
results in higher overhead for managing the infrastructure. There are many
tools such as Kubernetes, which are commonly employed for the container or-
chestration, auto scaling, load balancing, and failover, however, they introduce
additional levels of complexity. [6]

For large and complicated systems, scalability, flexibility and fault isolation are
essential, which makes microservices an appropriate answer. They perform well in
a cloud-deployed configuration because in the cloud one obtains the infrastructure
to support scalability and distributed service management. However, there are also
serious downsides of microservices that cannot be ignored, including infrastructure
orchestration, transaction management, and system complexity. For the smaller
projects, the microservice paradigm can generate some overhead, which in turn can
impact the development significantly, and may justify the extra effort.

7

Background concepts

2.3 Communication Between Microservices

Usually, when microservices are being employed, they often need to interact with
one another in order to perform their specific operations. Communication between
these services is critical in order to ensure the system remains scalable, maintainable,
efficient and create a seamless integration. This section explores two most used
approaches for microservices communication: REST APIs and gRPC APIs.

2.3.1 REST APIs

REST (Representational State Transfer) is a resource-based architecture for building
networked applications. RESTful APIs are set with a definition of principles,
including statelessness, uniform resource naming and a unified interface. REST
makes use of HTTP as the transport protocol and is stateless in nature, i.e., in each
communication of a client interaction all relevant information for understanding
and processing the communication is included, irrespective from the history of
communication. This makes REST excellent for scalability because it makes server
management comparatively easy since server state is not required. [7]

HTTP is the existing transport protocol for REST APIs, creating a wide
applicability and ease of connectivity between clients and servers. HTTP’s verbs
GET, POST, PUT and DELETE all correspond well to CRUD operations and
make REST a natural choice for the implementation of client-server applications.
Simplicity of HTTP, one other strong point of HTTP, also has the consequence
that developers are able to debug and work with REST APIs with little to no need
for additional tools.

Typical applications of REST are implementing web applications, housing
endpoints in mobile applications, and establishing web services with a simple and
scalable interface for data exchange.

2.3.2 gRPC APIs

A rather recent solution for inter-process communication is gRPC which implements
the Remote Procedure Call model. It is an open-source framework designed with
the intention to support high performance and low latency communication. As
opposed to REST, gRPC employs a binary serialization method, made possible by
using Protocol Buffers (Protobuf) as the interface specification language, which
produces the more efficient serialization. Client-server communication is based
on HTTP/2, which decreases latency and allows multiplexing, which is perfectly

8

Background concepts

suitable for microservices that require a reliable, fast communication.
Among gRPC’s advantages is performance optimization through binary commu-

nication, leading to faster serialization and deserialization than JSON. It also offers
type safety, in that client and server have the same "contract" (names of operations,
messages, and properties that have been declared explicitly, etc) that are strictly
defined in Protocol Buffers preventing the occurrence of runtime error. Through
its support of HTTP/2, it facilitates bidirectional streaming in that gRPC can
use to carry out client and server streaming, which will enable more sophisticated
communication patterns than traditional constituent REST APIs. [8]

Typical applications of gRPC are inter-service communication in distributed
systems, real-time streaming capabilities, and applications where response time is
important.

2.4 Cloud Computing

Cloud computing refers to delivery of computing resources over the internet. This
architectural approach is more popular than ever due to the increasing demand
for computing power for specialized tasks. With remote servers managed by cloud
providers, such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud
Platform, users can leave the responsibility of owning and managing hardware to
the providers, while still able to scale out or scale up their systems.

A model called pay-as-you-go, as the name suggests, allows users to only be
charged of the computing power they used. This becomes attractive when comparing
to traditional data-centers, where upfront payments for infrastructure need to be
done. Cloud computing usually offers high availability of resources, fault-tolerant
platforms, and reduced overhead when it comes to maintenance. Due to this,
hosting resources in the cloud is highly beneficial for individuals, developers, and
enterprises as a whole. Recently, ideas like hybrid cloud infrastructure and edge
computing have expanded cloud solutions.

2.4.1 Cloud Service Models

Cloud computing is generally categorized into three main service models: Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS):

• Infrastructure as a Service (IaaS): Provides users with computing infrastructure,
such as virtual machines, storage, and networking. Popular IaaS providers

9

Background concepts

include AWS EC2 and Google Compute Engine. IaaS allows users to focus on
their applications while outsourcing hardware management.

• Platform as a Service (PaaS): Offers a comprehensive platform for developers
to build, deploy, and manage applications without worrying about underlying
infrastructure. Services like Google App Engine and Microsoft Azure App
Services enable rapid development and integration.

• Software as a Service (SaaS): Delivers functional applications over the internet,
eliminating the need for local installation or maintenance. Common SaaS
examples include Salesforce, Google Workspace, and Microsoft 365, which
streamline user access to software. [9]

2.4.2 Benefits and Challenges of Cloud Computing

With respect to other commercial solutions available in the market, cloud computing
has found widespread adoption by companies and individuals as a result of its
merits. The ability to flexibly increase or decrease capacity available on demand
thanks to cloud services allows users to efficiently accommodate transient increases
in work load demand. There is also a scaling down of total cost and no need to buy
additional hardware in peak hours. Another significant benefit is cost efficiency.
In a pay-as-you-go model, the cost paid by the users is only the cost of the used
resources, thereby reducing the entry costs and installing IT infrastructure.

Reliability and availability are further strengths of cloud computing. Cloud
providers exploit high availability by redundantly replicating information at mul-
tiple data center locations, thus reducing the probability that services would be
unavailable. Furthermore, flexibility is one of the properties with greatest value, as
organizations are able to choose between different service models and deployment
options tailored to their own requirements. [10]

However, there are some challenges associated to cloud computing. Security
and privacy can be a serious matter of concern since sensitive data is stored and
processed on third-party servers, which require adequate encryption and compliance
with regulations. Downtime and availability constitute another area of concern
which users rely completely upon the integrity of their cloud provider, that the
infrastructure of their cloud provider is sufficiently stable on the network level.
While there are high hopes for uptime guarantees from the cloud vendors, outages
still happen, causing facility delivery failure.

In spite of some difficulties that cloud computing presents, it is still a crucial part
of the current IT strategy and provides a highly flexible, scalable, and economical
framework for provisioning computing resources.

10

Background concepts

2.5 Containerization and Docker

Before the advent of containerization, software deployment typically relied on
setting up applications on physical servers or using virtual machines. In this case
software deployment involved the configuration of the environment on each of the
servers manually, ensuring that all dependencies, libraries and configuration existed.
Nowadays, the empirical process is typically error-prone, time-consuming, and
resulted in non-homogeneous environments, creating the infamous "it works on my
machine" phenomenon.

Since the introduction of virtual machines (VMs), it was now possible to encap-
sulate an entire OS plus an application into a single, portable unit, with the benefit
of increased isolation and addressing compatibility problems. Nevertheless, VMs
are a resource-eater, because each VM needs a complete OS (and consequently
high overhead and low efficiency).

As an alternative to these traditional approaches the containerized approach
provides us with a lightweight, mobile tool to develop applications. Containers
exploit the host operating system kernel to consume less system resources than
VMs while providing a suitable isolation and a stable environment.

Containerization is the process of bundling and compressing an application and
all of its dependencies (e.g., libraries, settings, files) into a portable, lightweight
container. Containers guarantee that an application is always running under
any kind of computing environment with all necessary dependencies provided.
Compared to Virtual Machines, in which the hardware is virtualized and a complete
operating system is included, the containers share the host OS kernel and are
containerized only for the application and its dependencies. This results in lighter,
faster, and more resource-efficient deployments. [11]

Docker is one of the well-known tools for containerization that gives the de-
velopers and system administrators the possibility to create, deploy, and manage
containers with ease. While working with Docker, a developer writes code locally,
packages it into a container with all its dependencies, and trusts that it will run on
every system running Docker.

Moreover, the container environment is defined in Dockerfiles, including the
base image, application code, dependencies, and configurations needed to create
the container image that can be run as a container on any compatible Docker host.
In addition, it has tools such as Docker Compose for defining and running multi-
container Docker applications to make the management of complex deployments of
multiple interconnected services much easier. [12]

Some of the most important benefits of containerization, especially with Docker,

11

Background concepts

make it attractive as a solution for the modern software development and deployment
domain.

• Portability: With the fact that Docker supports containers, they can run
on any system that supports Docker, making them highly portable across
different cloud providers, on-premises servers, or developer machines.

• Scalability: With its lightweight properties, multiple instances of a container
could be deployed to deal with cases of high load to scale an application
horizontally.

• Consistency Across Environments: By having all dependencies bundled inside
a container, developers can be sure the application will behave consistently
in that environment, ending the chances of encountering the "it works on my
machine" problem.

• Resource Efficiency: Containers share the host OS kernel, which means that
overhead is lowered compared with traditional VMs; hence, it provides an
environment where you get density for applications on the same physical
hardware.

However, containerization also presents challenges:

• Security Concerns: Since containers share the host OS kernel, the vulnera-
bilities of that kernel can compromise every container running on that host.
Proper isolation and application of security patches are needed. [11]

• Complex Orchestration: While Docker simplifies the creation and management
of individual containers, deploying and managing containers at scale can be
challenging. This is where container orchestration tools like Kubernetes come
into play, taking care of scaling, load balancing, and failover.

Containerization with Docker has become a fundamental element of modern
DevOps practices, providing an efficient and scalable way to manage applica-
tions. Despite some challenges, its benefits make it a valuable technology for
ensuring smooth deployments and reliable software performance across different
environments.

2.6 Technological Choices

In this section, we will go over each of the technologies used in this project, discussing
the reasons behind their selection and how they contribute to the final solution,

12

Background concepts

while also exploring possible alternatives, evaluating their potential benefits and
explaining why they were not chosen for this specific implementation. This analysis
provides insights into the decision-making process and the trade-offs considered
during the development of the system.

2.6.1 Spring Boot

Spring Boot was selected as a key component to work on the backend of this
project. Spring Boot provides an efficient and simplified approach for creating
production-ready applications, making it really attractive for rapid prototyping
and development. Unlike classic frameworks that often require a lot of boilerplate
configuration code, Spring Boot uses auto-configuration and embedded servers
that help developers get going quickly, not slowed down by the common setup
complexities.

One of the main features here with Spring Boot is how it brings together the
best of Spring architecture. It follows a layered architecture, separating concerns
between the Presentation, Business, Persistence, and Integration layers. Such an
approach makes the application more organized in nature and easy to maintain,
especially when they grow with more lines of code and complexity. Nevertheless,
with embedded servers such as Tomcat and Jetty, Spring Boot manages to simplify
further the deployability of applications that become entirely self-contained and
easily usable.

Another major feature is how Spring Boot employs some core concepts from
the broader Spring Framework. For instance, Dependency Injection (DI) loosely
couples components by injecting their dependencies instead of hard-coding them.
This makes the code more modular and, hence, highly testable. Inversion of Control
gives the lifecycle and dependencies of such objects to the Spring container, this
way reducing the complexity faced by the developer. To address cross-cutting
concerns like logging and security, Spring AOP works in conjunction with the
aspect-oriented programming, which keeps the main business logic clean. [13]

Spring Boot’s seamless integration of Spring MVC provides one extra layer
of abstraction above the servlet API, thus allowing for easier building of web
applications and REST APIs. This permits the developer to concentrate on the
definition of routes/handlers without much concern over all the internal complexities
that it encompasses. These features may justify Spring Boot’s claim to being the
future in building scalable applications that are more easy to maintain.

Node.js would be an example of some alternatives to this technology. That said,
Spring might be a better choice because it works great when it comes to CPU-bound
operations, along with the other enterprise-level guarantees coming from its rich

13

Background concepts

ecosystem. Things like transactional management, security, and scaling all sit
comfortably in the built-in feature set of Spring Boot, making it a more attractive
proposal for complex project requirements.

2.6.2 Kotlin

Kotlin was selected as the programming language to operate alongside Spring Boot,
as it has modern syntax and utilizes capabilities of the JVM, making it appealing
for back end development. Out of the box, Kotlin is somewhat less verbose than
Java, allowing exposition of clearer and more readable code. This should increase
productivity and diminish the incidence of errors.

Null safety features in Kotlin are a general way around NullPointerExceptions—a
pain point for Java developers. With Kotlin, null references are checked statically
at compile time, helping to avoid runtime crashes and making the codebase more
resilient. Kotlin also supports functional programming to allow developers to write
very expressive and efficient code with higher-order functions, and lambdas being
two of the many functional constructs. [14]

Another reason to choose Kotlin over Java or Go is that it’s fully interoperable
with Java, meaning you can use all kinds of things from the vast Java libraries and
toolset without question. While Golang allows for a few things with simplicity and
does concurrency really well, it lacks a few object-oriented and functional features
that Kotlin provides. For an enterprise project that will benefit from JVM tooling,
Kotlin’s extensive feature set, along with its integrative capability, provided a
better fit.

2.6.3 PostgreSQL

PostgreSQL was selected due to its overall compatibility with the requirements
of this project, such as consistency, reliability, and scalability. The system is
open-source and is a relational database meant to provide strong consistency and
availability, fitting statuses for those requiring ACID transactions and integrity of
information. This adherence to consistency leads to an excellent fit for applications
that need accurate data.

It also integrates well with Spring Boot through Spring Data JPA, presenting
an easy way to perform database operations. It uses object-relational mapping
(ORM), allowing the developers to create, read, update, and delete entities without
having to create large SQL statements. This adds to more efficient data handling
and reduction of boilerplate code for these operations.

14

Background concepts

Another reason for selecting PostgreSQL is its versatility. It helps incorporate
sophisticated features like indexing, JSONB data types, and SQL standard compli-
ance, which offers great flexibility for varied use cases. Summarily, it is an efficient
option with reliable results when it comes to executing more complex queries for
data requirements of this project. Also, being open-source has quite a lot of support
from the community, which sporadically makes for timely solving of issues and
keeping operational costs low.

Choosing the right database depends on specific needs of projects, and there
are many possible alternatives available in the market to PostgreSQL, such as
MySQL and MongoDB. MySQL is easy to use, fast, along with easy installations
and simpler transactional needs. However, PostgreSQL outmatches MySQL with
some relatively richer features, making it the obvious choice and advantageous for
handling advanced queries with JSON data, for example. On the contrary, being a
NoSQL database, MongoDB offers a great deal of flexibility in managing schema-
less data and doing justice to large volumes of unstructured data, however where
clear-structured relations exist and are required by the data with ACID-compliant
transactions is where it is opined the strengths of PostgreSQL arise.

2.6.4 Splunk

Monitoring the performance of applications is essential in today’s complex techno-
logical environment. By gathering, analyzing logs, and metrics, teams can observe
in real-time how apps function. This anticipatory approach allows issue identifica-
tion and resolution before escalation into major issues. In this area, one could not
ask for a more powerful software than Splunk, which allows in depth search into
how the system behaves.

A centralized repository for logging and metric-tracking is invaluable when some
unusual event occurs. Aggregating data from different sources permits Splunk
troubleshooting to be highly streamlined. Instead of manually going through pages
of logs, teams can easily search and filter for the information they need to identify
the root cause of win issues more efficiently.

Furthermore, Splunk offers custom dashboards to enable the conversion of raw
data into structured actionable intelligence. Important information can now be
represented in a format that is very easy to read with trends, anomalies, and
key performance indicators saving precious time in accessing repetitive sets of
information. It not only helps the technical teams in diagnosing issues, but it also
allows all the stakeholders to gain a comprehensive view of the general health of
the whole system.

15

Background concepts

2.7 Scrum and CI/CD

To provide support for the constantly evolving environment of software and require-
ments engineering, flexible contracts, changes in technologies, and the complexity
of products, new work methodologies also need to evolve together. The traditional
project management methodologies have started to significantly fail. Let’s take
Waterfall for example, a methodology that assumes that there must be a well
defined start-to-finish plan, where each phase can be completed without coming
back to the previous one. That is perhaps an indication that this approach is not
well suited for today’s constant change of requirements.

Scrum emerged in response to traditional methodologies like Waterfall, that
struggles to survive the test of time on the basis of constant requirements changing.
Scrum, a framework within the Agile methodology, is used to manage complex
projects and software development. This particular process supports changing
requirements utilizing iterative development, wherein the product is built in a series
of cycles called sprints. In this process, teams can respond to the changes quickly
while incrementally adding value. Scrum’s visibility began to grow from the 2010s
as organizations sought independence and flexibility to adapt to shifting goals in
their development pipeline.

Today, Scrum is one of the most widely used methodologies in the Software
Engineering field, as it creates a defined yet adaptable structure for teamwork that
supports constant development. For example, during the retrospective held at the
end of each sprint, teams reflect on their processes and identify opportunities for
improvements; thus, they support a culture of continuous improvement. Since
Scrum fosters visibility, examination, and flexibility throughout the development
cycle, it has become a preferred choice by many development teams.

As described in the official scrum guide[15], scrum framework is built around
three key components: Sprint Team, Sprint Events, and Sprint Artifacts. These
components create a complete and coherent way of working that provide not only
a dynamic and constant collaboration between team members, but also efficiency
in processes and delivering value in a fast and iterative way.

Sprint Team

The Scrum Team is composed of three main roles:

• Product Owner : The Product Owner is responsible for maximizing the value of
the product and for the management of the product backlog. On the product
owner’s side, everything is done to ensure that the scrum team spends time

16

Background concepts

delivering things that offer the maximum value to stakeholders and help the
team organize product objectives and priorities.

• Scrum Master : The Scrum Master is the facilitator of the Scrum process and
that the team adheres to Scrum practices and principles. He delivers remove
impediments to progress, creates a conducive environment for working, and
trains team members in self-management and cross-functionality.

• Developers: The developers are all the people giving their contributions to
deliver projects with potential increments in each of the sprints; they plan the
work for the sprint while the onus is on them to satisfy the definition of done.

Sprint Events

Scrum makes use of a number of events to provide regular opportunities for
inspection and adaptation. Each event is a formal opportunity for reviewing
progress and making changes if necessary:

• The Sprint: It is the base, time-bound unit of development, generally lasting
from one to four weeks. It is a container for the other Scrum events and
creates a stable rhythm for the team. During the sprint, changes are not to
be made that will hinder the delivery of the sprint goal.

• Sprint Planning: Each sprint begins with Sprint Planning. In this event, the
team together decides what work is to be possessed and how it is to be done.
The Sprint Goal is defined in this meeting, which provides a shared goal for
the sprint.

• Daily Scrum: It is a brief daily meeting, usually held at a fixed time, which is
usually called the daily stand-up. The developers discuss what they did the
previous day, what they plan to do today, and what obstacles they might face.
It allows the team to synchronize their activities and be transparent.

• Sprint Review: At the end of any sprint, a sprint review is held by the whole
team to inspect the Increment and obtain feedback from the stakeholders.
This meeting serves as an opportunity to inspect what was done in the sprint
and adapt the Product Backlog as necessary.

• Sprint Retrospective: Following the sprint review, the retrospective is done to
reflect on the sprint process. This is an opportunity to evaluate what went
well, what did not and examine ways for gradual improvements for the team
in the next sprints.

17

Background concepts

Sprint Artifacts

Scrum defines three main artifacts that represent work or value:

• Product Backlog: The Product Backlog is a product artifact that is an ordered
list of the necessary features that are still to be developed for preparing a
product. The customer and the development team both contribute and agree
on this list since it is the foundation of any activity. It acts as the team’s
work plan in a way, since the team uses this plan as the basis for their Scrum
tools. It is the single source of requirements and is constantly updated as new
insights are gained.

• Sprint Backlog: The Sprint Backlog is a list of tasks drawn from the product
backlog and selected for a sprint. To break down the tasks, the team first
estimate the amount of work in a relative unit of time. In the middle stage of
the sprint they are visually emptied and enables the team to focus more on
achieving the sprint goal and completing their activities. It is owned by the
developers and communicates the team’s work during the sprint.

• Increment: An Increment is developed by adding all the Product Backlog
items completed during a sprint combined with the value that is obtained
from the previous increments, where each of them must meet the definition of
done.

2.7.1 CI/CD Pipelines

To achieve a fast and automated workflow, the project makes use of Continuous
Integration (CI) and Continuous Deployment/Delivery (CD) pipelines using tools
like Jenkins and GitHub CI. These pipelines streamlined the development process
from code commits to deployment. These are important steps of delivering products
fast, which usually are overlooked because these processes are running on the
background.

Continuous Integration (CI) is the practice of frequent integration of changes
into the main branch of the codebase. Each change is automatically built and
tested to catch the errors and conflicts early. Use of Jenkins and GitHub CIs
made automated builds, unit and integration tests easier, and Sonar’s analysis, run
whenever a pull request hits our main branch. This method of doing things made
it easier for us to keep the most recent copy of the codebase in a stable state and
thus be able to work on further development.

Continuous Deployment/Delivery (CD) deploys the changes that passed
CI and the decision is made automatically, the changes are deployed to either the

18

Background concepts

staging or production environments, whichever is the deployment strategy. Jenkins
and GitHub Infrastructure were used for automated deployments, which not only
minimized manual mistakes but also sped up the release of new features. It was
through Continuous Delivery that we assured the automatic insertion of the code
into the production environment was viable, from which it was then just a matter
of selecting the right time for the updates to be released.

Implementing CI/CD pipelines provided several advantages:

• Reduced Manual Effort: Automating testing, building, and deployment mini-
mizes manual intervention and the chance of human error and saves time.

• Faster Feedback Loop: Automated processes provides quick feedback to devel-
opers, allowing them to identify and fix issues promptly.

• Improved Software Quality: Continuous testing and integration helps detecting
regressions or potential issues early, leading to more reliable releases.

19

Chapter 3

System Architecture

This chapter provides an in-depth study of the design and structure that has been
evolved for this project. It discusses the current process and monitoring workflow
and identifies major issues and inefficiencies that have been addressed in the new
system. It describes the objectives of the project, then presents architecture of the
system and explains constituent parts and the way they relate to each other. Back-
end design is discussed thoroughly, including how it communicates, its integration
with external databases, security, and the structure. Understanding the system
architecture clarifies how technology selection and design decisions were made to
make compliance easier and operations more efficient.

3.1 Understanding the old process

The project itself presented across this work is a complete revamp and modernization
of a legacy process where investments were monitored through running manual
procedures requested on demand, with the use of email for official communication
and tracing of activities and excel spreadsheets for analysis of investments. Before
the implementation of the system described in this thesis, the constant manual
labor, semi-automatized processes and the lack of a centralized way to manage these
investment lines made the old process error prone, which asked for the creation a
dedicated application.

The old process relied on several manually triggered SQL Server procedures
which would update support tables to reflect the updated picture of the customers
investments. After aligning with recent data, the investment monitoring would then
be generated, which is a static picture of clients investments that are inadequate.

20

System Architecture

Following the availability of the data present in the generated report, it was
communicated to the wealth management (WM) team that the data was ready.
The WM team is responsible of analyzing the data, managing investment lines
and requesting the communication of other dedicated teams that take actions
on these investments. The majority of communication and interaction between
different parties associated with this process was made via email, which although
is convenient and effective, it lacks on traceability and auditing.

The way the WM team would analyze the data and manage the investment
lines was through excel files. With around 10 to 15 thousand lines in each excel,
examining thoroughly the data was not straightforward. Excel itself is a very
complete tool and its uses widespread, filters, advanced formulas and mature data
handling can definitely create a useful tool. However, this application was used
more like a database, which stored the investment lines in a structured data, leading
to inefficiencies in deeper analysis.

3.2 Understanding the monitoring process

The newly implemented system, known as MiaGP (Integrated Adequacy Monitoring
for Wealth Management, or in Italian Monitoraggio Integrato di Adeguatezza per le
Gestioni Patrimoniali), as developed with the purpose to address some of the most
basic gaps that existed in the previous system in place for slightly less than one
decade. MiaGP aggregates all the investment line data into a single repository where
the WM team and other stakeholders can then thoroughly analyze this information
and manage it satisfactorily. The benefit of this centralized improvement is both
on availability and accuracy, which is critical in decision-making. Scheduling the
transmission of official notices triggered by defined conditions will also automate
decision communication and ensure uniform and timely communication among all
concerned parties.

Before going into detail about architecture, implementation, and system compo-
nents, background and system needs must be understood.

MiaGP incorporates all the logic of the previous process, as the end goal remains
the same: to perform periodic monitoring of inadequate investment lines. The new
system, however, introduces convenience and enriches the process with yet more
features. But what in the first place is meant by the "inadequate investment line"
and how does the system know about it?

In wealth management, a private banker (PB) is responsible for making invest-
ment decisions on behalf of clients, who in turn decide the investment strategy
they want the PB to follow. When there is a misalignment between the client’s risk

21

System Architecture

expectations and the actual risk of the investments, the investment is considered
inadequate. This misalignment can happen under several conditions: the client’s
MiFID questionnaire may be expired, the client may lack a defined risk profile, or
the PB may have chosen products that carry a higher risk than the client prefers.
Such situations can have significant financial implications, making the correct
identification of inadequate lines essential.

These are what we call inadequate investment lines, named as such because there
is a snapshot of the client’s respective investment instead of an actual investment;
these get captured into the monitoring process. Monitoring is done roughly every
45 days, giving a snapshot of pooled investments on all clients, to gauge if they
comply and what actions ought to be taken. Also, different from this monitoring,
MiaGP routinely watches these inadequate lines every week and assesses investment
lines that seem inadequate between monitoring dates so that teams can take a first
look for possible flaws in coming records.

New investments that appear during monitoring are tracked by associating each
investment with its contract, which enables the system to assign it a status. This
way, repeated instances of inadequacy from previous monitoring cycles can be
clearly identified. These statuses are called cycle statuses and can take values of R1,
R2, R3, R4, RX, or FC. When an investment line first appears as inadequate, it is
typically assigned the status R1, and the status progresses to R4 if the inadequacy
persists in subsequent monitoring cycles. The status FC (which stands for "out-of-
cycle" or fuori ciclo in Italian) indicates lines that, for specific reasons, are excluded
from the regular R cycle.

The out-of-cycle status is generally applied when exceptions are made to the usual
logic that would consider an investment inadequate and require corrective actions.
Examples of such exceptions might include minor deviations in the percentage of
risk that would classify a line as inadequate, or investments that do not meet the
minimum required investment threshold.

As investment lines progress through the R statuses, specific actions and com-
munications are undertaken. Initially, the PB is notified of the inadequacy and
given an opportunity to take corrective action (R1). Subsequently, the client
receives an official notification regarding the situation (R2), followed by further
communications as needed. When a line reaches R4, a crucial action is triggered:
a notification is sent to an automated system that forcefully change the client’s
investment to a more conservative option. This procedure is known as CLU (office
line change or cambio linea d’ufficio).

22

System Architecture

3.3 Project description and objectives

Now that we have the general information of the system in place, we can discuss
the detailed requirements of the system and the implementation aspects. It is
important that the transition is perfectly transparent and barely noticeable in case
we want to improve the existing process, so ensuring the change is done smoothly
and with the least disturbance is crucial. One very important requirement is that
the system be auto-adapting, which will make it capable of seamlessly integrating
with the operations that are already ongoing. Such benefits may also include the
anticipated outcomes like a fully-automated data processing system, an improvement
in communication patterns, and a higher level of analysis efficiency as well as the
addition of new elements that will be useful for the teams using the application.

The project’s aims are not only about copy-pasting the current legacy process’
functions, the main idea of the project is to create a more robust and sustainable
infrastructure that leads to better decision-making. The following high-level
requirements have been established to meet the above-mentioned goals: effective
data acquisition, proper monitoring, and validation and enabling the user to exercise
control over the calendar management operation.

In greater detail, the three different categories that the functionalities can be
split are:

• Calendar Management: This is the most intuitive part of MiaGP, since it is the
final user interacting with the front-end to manage monitoring runs. Amongst
these are creation and deletion of monitoring runs, validation or invalidation
of particular monitoring sessions, view of investment lines, analyzing trends
as well as updating the status of investment lines. This calendar management
function has a key role in overseeing the investment adequacy process and
offers a fair amount of flexibility for adapting to changing scheduling needs.
For example, invalidating or re-running a monitoring session allows the team
to respond to data quality issues.

• Data Ingestion: Data ingestion is at the center of the application. It is
responsible for collecting and processing data on the investments of the clients.
This module’s primary responsibility is the combination of data from disparate
data sources and their transformation and consolidation into a single dataset
that can be analyzed for inadequacies. We are dealing with sensitive personal
data of clients, therefore, accuracy and precision are of utmost importance.

• Validation and Spools: Validation is the end result of an official monitoring run.
When the WM team validates the monitoring, it indicates that the data has
proven to be accurate, and the system is ready for further actions, notification

23

System Architecture

delivery, or CLU communication. The term "spools" which was adopted during
development, is used here to refer to the automation workflows that handle
such actions. Spools guarantee that, once the data is validated, the required
actions are undertaken immediately and precisely with no manual intervention
whatsoever. The relevant level of automation improves operational efficiency
significantly and reduces chances of human errors.

The back-end system has been built using the Spring Boot framework, with
Kotlin as the programming language. In this chapter, we will detail the design
choices made, including the identification of entities and the construction of the
relational model for the PostgreSQL database.

Learning Objectives

The project’s learning objectives are closely linked to gaining practical experience
in the design and implementation of a sophisticated software system. The specific
learning outcomes are as follows:

• Designing a microservice: This project includes the design of one microservice
following best practices and established design patterns. The application was
not designed with the thought of being used by other microservices, since it
focuses on a very specific task. However, that said, it mainly relies on the
microservice architecture to be able to communicate with other services in a
robust way while performing its tasks.
Deepening technological skills with Spring Boot and Kotlin: The combination
of Spring Boot and Kotlin is expected to afford this opportunity for deepening
technological skills that are being applied well in the current tech world.
The ultimate goal is to be able to fully extract the capacities of both the
technologies by developing clean, performant, and high-quality services.

• Using State-of-the-Art Tools and Libraries: During the development period,
several new tools and libraries are used to extend the functionality of the
system. Use of these tools not only improves technical skills but also helps
build a more flexible and robust system.

• Working within a Scrum team: The project is developed within a Scrum-like
environment, therefore underscoring continuous delivery and collaboration.
Experience is gained in iterative development, backlog prioritizing, and stake-
holder involvement, which are all essential to accomplishing what is required
for successful completion of this project. A major objective is to learn how
to break down complex requirements into manageable tasks, prioritize work

24

System Architecture

based on business value, and consistently deliver incremental improvements to
stakeholders.

3.4 Software design

To provide the level of trust in any application through which client investment
may be handled, there were many individuals involved, more so towards the bigger
projects. At the beginning of the project, the responsibilities of the products
manager and the software architect included finding out high-level business and
product requirements for the legacy system, as well as defining new functionalities.
For smaller projects, it may not be unusual to have software engineers take an active
part in gathering requirements; in this case, it became quite an efficient way to let
developers focus on user stories and the actual implementation of functionalities
that had been agreed upon with the stakeholders.

Once functional requirements are collected and broken down into manageable
parts, they are translated into user stories. User stories define smaller, actionable
bits of the entire system that can be separately worked on, with criteria of ac-
ceptance determining what is expected to result. While initial requirements can
frequently be determined through early discussions with stakeholders, putting the
final user story together is often a process that can take some considerable time.
As mentioned in the section 2.7, the product owner is responsible for breaking
down the larger features into different user stories, and this process is improved
with time during the refinement sessions, where the technical team collaborates in
discussing the implementation process in order to ensure that both business and
technical objectives are aligned.

From the three categories defined in the previous section, the final user stories
below are organized and assigned accordingly. This follows the traditional user
story format: "AS a ... I WANT to ... SO THAT ...," which helps identify the
actor, the action, and the business value.

According to the three types of user stories in the previous section, the final
user stories are organized and assigned as follows. This follows the traditional user
story format: "AS a ... I WANT to ... SO THAT ...," which helps identify the
actor, the action, and the business value.

• Calendar management:

1. AS a WM team user

25

System Architecture

I WANT to create a new official monitoring 1

SO THAT I can create a picture of clients inadequate investment data on
the chosen date

2. AS a user
I WANT to see all the official monitoring runs
SO THAT I can see have a complete list of them

3. AS the system 2

I WANT to create automatically a weekly monitoring
SO THAT users can have it consistently generated on the same day each
week.

4. AS a user
I WANT to see the past four weekly monitoring runs
SO THAT I can review previous weeks’ monitoring results.

5. AS a user
I WANT to filter the official monitoring runs by date or year
SO THAT I can obtain precise results.

6. AS a user
I WANT to check all the investment lines in a monitoring
SO THAT I have a complete picture of the inadequate lines

7. AS a user
I WANT to see the monitoring trends
SO THAT I can compare the number of inadequate lines across previous
runs

8. AS a user
I WANT to download in an excel all the investment lines of a monitoring
SO THAT I can share it with others or conduct my own analysis

9. AS a user
I WANT to filter lines with errors
SO THAT I can understand the reasons behind their inadequacy

10. AS a user
I WANT to apply multiple filters to investment lines
SO THAT I can refine my search and find relevant data

1We are using the word monitoring as the process conducted at a specific date to review client
investment lines for compliance with predefined adequacy criteria

2Although using the system as an actor is an open debate, there are situations where the
system itself has to act as an agent, which ultimately has to result in business value added to the
end user

26

System Architecture

11. AS a WM team user
I WANT to delete an official monitoring set for the future
SO THAT no data will be imported on that specified date

12. AS a user
I WANT to validate a monitoring SO THAT spools can be generated by
the system for automated actions

• Data Ingestion:

1. AS the system
I WANT to import client investment lines that do not meet adequacy
criteria
SO THAT appropriate actions can be initiated to fix the inadequacies

2. AS the system
I WANT to send an email to users when the data is available SO THAT
they can proceed with the analysis

• Validation and Spools:

1. AS the system
I WANT to communicate with private bankers
SO THAT they are informed about their clients’ inadequate lines and can
take corrective action

2. AS the system
I WANT to send a communication to customers about their reoccurring
inadequate investment lines
SO THAT they are aware of the issue

3. AS the system
I WANT to create and upload the CLU (forced change of investment) file
to Google Cloud Store
SO THAT clients’ investments can be regularized

4. AS the system
I WANT to send communications to another office specifically about
investment lines of deceased clients
SO THAT the heirs of the clients can be communicated about the inade-
quate investments

5. AS the system
I WANT to send communication to the compliance office
SO THAT they can be updated about inadequate investments

27

System Architecture

6. AS the system
I WANT to send to a another office all personalized lines 3

SO THAT appropriate specialized management can be undertaken

7. AS the system
I WANT to send communication to another office for inadequate lines
where the client is a minor
SO THAT communication can be directed to the parents or responsible
guardians

As evident from the detailed user stories, the number of user stories for calendar
management is greater compared to the other categories. However, taking a deeper
look of the tasks within each category, it becomes clear that the complexity of data
ingestion and validation is higher than that of calendar management. While the
calendar management mostly concentrates on CRUD operations, the data ingestion
and validation require completing tasks that are risk-prone, such as importing
data accurately, coordinating communication among different parties, creating
customized files based on recipients, creating fail-safe mechanisms that provide
reliability, etc.

3.4.1 Entities

The entity-relationship diagram (ERD) presented below provides a visual repre-
sentation of the core tables and relationships that define the system’s data model.
Thinking of entities and how they connect together will establish a good picture of
the structure of the database so that every relevant data point is represented, and
relationships are right. The ERD allows a better understanding of how data flows
through the system. As the relations are mapped, the design of the database can
be made properly aligned with the functional requirements of a system, eventually
paving the way for design efficiency and easy maintenance.

3a personalized line in this context refers to a special investment solution due to its high value
or unique nature

28

System Architecture

Figure 3.1: Entity-relationship diagram for MiaGP system

As seen in figure 3.1, the tables and relationships in this project are relatively
straightforward. Nevertheless, to achieve this clarity, the data several times had to
be refined to focus on what was absolutely necessary, with discussions and sessions
with the team architect and backend developers to create alignment with system
specification and scalability targets.

The first step is to create a representation for the MONITORING entity, as it
is central to the system’s primary functionality. For each of the entities mentioned
in this case, the one that possessed certain significant characteristics or attributes
representing it has been highlighted. Now let us discuss the main fields and the
information they possess:

• scheduledDate: Defines the date when the official monitoring should occur

29

System Architecture

or when data for inadequate investment lines should be imported.

• type: Enumerated field used to distinguish between official and weekly moni-
torings, as they are handled differently.

• validationStatus: Indicates whether a monitoring has been validated; upon
validation, the spools are generated.

• cluStatus: Represents the status of the CLU process, which is arguably the
most critical step involving forced changes in investments.

The INVESTMENT_LINE entity holds information about inadequate invest-
ments. Most fields from this entity are excluded from the diagram as they are
specific to the wealth management context and mainly informational. These fields
may include details about the private banker, investment product, capital invested,
etc. Key fields include:

• gpCodLink: Serves as a unique identifier for investment lines recurring in
monitoring cycles. It is generated from contract details and is used to identify
specific investments a client holds.

• contractGp: Serves as the basis for constructing gpCodLink.

• fiscalCode: Represents the customer’s fiscal code (codice fiscale).

• profile: A value between 0 and 4 that describes the client’s risk profile. A
value of 0 indicates an expired profile (expired MiFID questionnaire), while 1
represents the lowest risk and 4 indicates the highest risk.

• varMax: Represents the maximum allowable percentage of risk associated
with the client’s risk profile.

• varPtf : Indicates the percentage of risk present in the client’s current portfo-
lio.

• exclusionOrException: As detailed in section 3.2, certain investments are
placed out-of-cycle due to exceptions, meaning they are excluded from the
regular monitoring cycle.

• cycleStatus: Describes the recurrence status of a line, taking values from R0
to R4, RX, and FC, as explained in section 3.2

The INGESTION_RUN entity has a one-to-one relationship with MONITOR-
ING, as it represents the ingestion or import of data on a given date. The ingestion

30

System Architecture

process is managed through a scheduled Spring job that runs at specific times of
the day to import monitoring data. The ingestion process must be reliable and
capable of recovering from failures, such as unexpected errors or pod crashes. The
fields in this entity are:

• lastRunDateTime: Records the last date and time when ingestion was
performed. It is a field used to ensure reliability, as it is used in a fail recovery
logic.

• status: Indicates whether the ingestion was successful or encountered an
issue. Possible values include READY_FOR_INGESTION, IN_PROGRESS,
ERROR, and COMPLETED.

• ingestionError : Provides debugging information to help determine the
cause of any errors during ingestion.

The ON_BREACH_LINE_STAGING table serves as a support table similar to
INVESTMENT_LINE and will carry temporary data during the ingestion process.
Interim results obtained from data import queries use this table, which will in turn
be manipulated to populate the INVESTMENT_LINE table.

The CUSTOMIZED_LINE_STAGING and DESTINATION_LINE_STAGING
tables store information about investment products used by specific processing
flows.

Having established a basic understanding of the entities and how their relation-
ships, we now get into detailing how those entities are represented and treated in
the system via the Spring Framework and Spring Data JPA.

Spring Data JPA offers a powerful abstraction layer development framework for
dealing with PostgreSQL databases. This means that, with simple annotations,
we get a good representation of the entities in the system and their relationship
definitions. The abstraction layers that Spring Data creates have an additional
advantage of simplifying the connection to the database so that one doesn’t have to
deal with much boilerplate coding traditionally entailed in persistence solutions. Be
it PostgreSQL in this case or any other RDBMS, most of the complexities associated
with this are abstracted away by Spring, allowing the developer to concentrate
more on a fluent, Kotlin-style of development. Features such as entity relationships,
cascading, and automatic auditing (to keep track of the creation/modification
dates) can be easily configured with annotations so as to promote the cleanliness
and consistency of a domain model while ensuring data persistence and integrity.

In order to not repeat ourselves by showing how all the entities are implemented,
let’s look at how the monitoring is done.

31

System Architecture

Listing 3.1: Example of an implemented entity
1 @EntityListeners(AuditingEntityListener::class)
2 @Entity(name = "mme_monitoring")
3 @SQLDelete(sql = "UPDATE mme_monitoring SET status = '$DELETED' WHERE id=?"

)
4 @Where(clause = "status <> '$DELETED' OR status IS NULL")
5 class MonitoringEntity(
6 @Id @GeneratedValue val id: UUID? = null,
7 @Column(name = "type") @Enumerated(EnumType.STRING) var type:

MonitoringType? = null,
8 @Column(name = "status") @Enumerated(EnumType.STRING) var status:

MonitoringStatus? = null,
9 @Column(name = "validation_status") @Enumerated(EnumType.STRING) var

validationStatus: ValidationStatus? = null,
10 @Column(name = "clu_status") @Enumerated(EnumType.STRING) var cluStatus

: CLUStatus? = null,
11 @Column(name = "scheduled_date") var scheduledDate: LocalDate? = null,
12 @Column(name = "latest_data_avail_on") var latestDataAvailableOn:

LocalDate? = null,
13 @OneToOne(cascade = [CascadeType.PERSIST, CascadeType.MERGE])

@JoinColumn(
14 name = "ingestion_run_id",
15 nullable = true
16) var ingestionRun: IngestionRunEntity? = null,
17 @Column(name = "created_date") @CreatedDate var createdDate: Instant? =

null,
18 @Column(name = "last_modified_date") @LastModifiedDate var

lastModifiedDate: Instant? = null,
19)

We can see some recurring patterns in this code as well as in the declaration
of entities in general. The main feature here is the use of annotations to declare
particular behaviors and configurations, recognized, and then processed by Spring.
These annotations enable short and readable entity definitions, allowing Spring
to manage complex tasks such as database mappings, auditing, cascading, and
custom behaviors. Below is a detailed explanation of each annotation used.

• @EntityListeners: This annotation is used to attach one or more entity listeners
to an entity. Here, we use AuditingEntityListener to automatically update
auditing fields, such as createdDate and lastModifiedDate.

• @Entity: Marks the class as an entity to be mapped to a table in the database.
The optional parameter name is used to specify the name of the table if it is
different from the class name.

• @SQLDelete: This annotation adds some more customization to the deletion
operations. Instead of deleting records from the table, we execute an SQL

32

System Architecture

query to set the status field to ’DELETED’. This mechanism implemented
allows soft deletes whereby deleted rows still remain in the table. When
querying, these deleted rows may be filtered out.

• @Where: The annotation specifies an SQL where clause that is automatically
added to every query involving the annotated entity. Here the @Where clause
ensures that records with a status of anything other than ’DELETED’ are
returned in results-excluding soft deleted records.

• @Id: Marks the field as the primary key of the entity. Each instance of the
entity will have a unique identifier.

• @GeneratedValue: Specifies that the primary key value is automatically gener-
ated. In this example, a UUID is generated to ensure that each record has a
globally unique identifier.

• @Column: Used to map a field to a column in the table. The optional
parameter name allows us to explicitly define the column name in the database,
which may differ from the entity’s field name.

• @Enumerated: This annotation is used for fields that are enumerations. It
specifies how the enumeration should be persisted. Here, EnumType.STRING
is used, which means that the enum values are stored as their corresponding
string representations, ensuring better readability of the database values.

• @OneToOne: Defines a one-to-one relationship between entities. In this case,
MonitoringEntity has a one-to-one association with IngestionRunEntity.
The cascade attribute defines the cascade behavior, which allows the asso-
ciated IngestionRunEntity to be created or updated automatically when
changes are made to MonitoringEntity.

• @JoinColumn: This annotation is used to specify the foreign key column that
maps the relationship. In this case, the column ingestion_run_id serves
as the link to the IngestionRunEntity associated with each monitoring
entity. The nullable = true parameter indicates that the relationship can
be optional.

• @CreatedDate: This annotation marks the field as the creation timestamp of
the entity. Spring Data JPA will automatically populate this field with the
current timestamp when the entity is first persisted.

• @LastModifiedDate: Similar to @CreatedDate, this annotation is used to track
modifications to the entity. Whenever the entity is updated, Spring Data JPA
automatically updates this field with the current timestamp.

33

System Architecture

With an understanding of how the entities and tables were designed in this
application, we now turn toward the architectural design. The use of Spring Data
JPA became a major contributor in simplifying data persistence implementation
which gave us ample space to concentrate on core business logic with little regard
to boilerplate database operations.

3.5 Back-end Architecture

Also discussed in the prior sections is the microservice architecture on which the
back-end system is developed. The core microservice used to manage and import
investment lines is dependent on many other services to provide functionalities
such as authorization and sending notifications. This section will describe the
various designs, dependencies, and external connectivity of the system. User stories
will be converted into sequence diagrams and a brief review of the code of the
system will occur, highlighting important design patterns and allowing for diverse
functionalities to meet various system requirements.

Let us take a look into the system architecture and its components with the
help of figure 3.2:

Figure 3.2: System architecture for MiaGP

At first glance, the architecture may seem to contain a few microservices.

34

System Architecture

However, this has become increasingly difficult due to multiple external dependencies
that may add considerable complexity. Using external services can soon become
problematic in the performance of certain reliable systems if that issue is not entirely
managed. The architecture demonstrates two microservices that use gRPC for
communication, as well as two external databases, which the MiaGP microservice
accesses directly for importing data on the inadequate investment lines. We’ll
discuss those in-depth in subsequent paragraphs.

The MiaGP system is developed upon making full use of the Spring Boot and
Kotlin stack to provide a complete back-end solution. It exposes gRPC methods
while defining associated HTTP verbs and URIs for each endpoint. The front-
end application uses HTTP to communicate with the back-end, first with the
general-purpose gateway that will, in turn, forward the requests to the respective
application gateway. The application API gateway and the specific gateway were
both written in Go, where the first is responsible for acting as a single point of
entry for all applications and the second for translating HTTP requests to gRPC
binary objects and then the gRPC responses to HTTP4.

The use of Google Cloud Storage (GCS) is a core part of the internal functioning
of the entire system. The system must upload a custom file to a GCS bucket
through an automated process, particularly the spool responsible for sending the
CLU. An external service picks this custom file up to process investment lines that
need to be forcefully switched to a more conservative option.

Besides using SaaS cloud computating services such as Google Cloud Storage
(GCS), we also use Platform as a Service (PaaS) to deploy our microservices on
Google Cloud Platform (GCP). This CI/CD process is quite efficient, applying
progressive CI/CD (continuous integration and delivery) best practices. Integration
with GCP is easily achieved by means of tools such as GitHub Actions which
execute pipelines in pull requests and merges in order to enforce quality of the
code, build the project, run tests and set up automated deployments to GCP.

In order to maintain code quality metrics, SonarQube scans are inserted into
pipelines, which officially share feedback on code quality. Moreover, Backstage,
an open-source platform for developer portal development, plays a critical role in
keeping track of the various environments, versioning, and allowing for one-click
deployment. This centralized visibility greatly simplifies the deployment process.

All these processes are supported by a dedicated platform team that ensures
the infrastructure is stable and efficient, allowing developers to focus on building

4The gateways are out-of-scope for this thesis and will not be covered, since they are already
implemented and widely used by the company

35

System Architecture

features and delivering value quickly.

3.5.1 Communication between services

Among the many things dealing with interconnected systems is information flow.
Well, gRPC would usually be the right way for communication between microservices
because it combines efficiency and low latency with the benefits of automatic object
generation. We will see, since it’s implemented using gRPC, developers benefit
from using Protocol Buffers (protobuf), which allow them to encapsulate the data
definition structures, automatically generating the objects used as Data Transfer
Objects (DTOs) and used by the application. This saves lots of boilerplate code
while speeding up development time since the same protobuf definitions are used
in different services.

True, this introduces some degree of coupling between the API layer and the
service layer, but ultimately it reduces redundancy and helps to keep services
consistent. Debated among developers, this style is used in this project. The
strongly typed aspect of gRPC means that any discrepancies between the expected
message structure and the actual data that gets sent will raise compile-time issues
that make it far less likely for there to be issues at runtime, with far less edge-case
handling in the code.

In addition, the outputs generated can be easily incorporated in any other service
making use of the same gRPC endpoints, thereby providing a unified, efficient data
workflow throughout the system. This reusability is particularly helpful when the
additional functionality is offered, as it makes both the development and integration
of new services (i.e., the notification and employee services) easily achievable while
the message formats are maintained as similar across microservices.

While gRPC is efficient inter-microservice communication, REST remains the
better choice for client-facing APIs, especially web clients, due to its simplicity
and wide compatibility. Built on top of HTTP, REST allows integration with any
front-end systems and external applications. Here, we have an architecture that
uses gateways to bridge REST and gRPC, effectively translating RESTful requests
into gRPC calls.

The use of gateway allows us to keep client interactions simple, simultaneously
hiding the complexity of the workings of gRPC from the clients. This approach
decouples the client API from the underlying microservice implementation which
makes it easier to change; switching the internal services doesn’t involve altering
the external interface. It centralizes security, rate limiting, and authentication
behind a single access point while keeping internal services protected.

36

System Architecture

Using the gateway pattern allows us to achieve a kind of balance where we still
enjoy the simplicity of REST, even though we sacrifice some performance in order
to gain type safety for inter-microservice communications through gRPC. Achieving
this level of setup can indeed offer better efficiency, scalability, and separation
between the concerned parties.

3.5.2 External databases

If we were to strictly adhering to the microservice architecture principles, one might
argue that relying on external databases as direct data sources is violating the
separation of concerns-and in this case they would be right. However, real-world
system design often involves making trade-offs to balance practicality, complexity,
and performance needs. In our system, we have two external database connections,
one SQLServer and another DB2 instance, and they are crucial for ingesting the
approximately 10,000 to 15,000 investment lines for every monitoring. By accessing
these databases directly, we are able to query tables that hold client, investments,
risk profile and products information and aggregate all this data to filter out the
results we are looking for: identifying inadequate investments.

Integrating these external connections directly in the service makes for some
advantages. The first is that the entire ingestion and aggregation logic can be held
in one unified place, easing integration, and hence minimizing over-complexity in
dealing with the architecture. One might have to dedicate two new microservices,
for instance, to each external database. Having the logic tied to one service will
cut down on the need to distribute transactions across different services, which can
be challenging to manage, especially when massive sums of data are involved. This
means that we will not impose the extra burden of managing multiple services for
retrieval and duplication of code and data, making the whole process more efficient
and manageable.

That said, there are some drawbacks to this approach. The major problem here
is the lack of proper separation of concerns-directly accessing external databases
means we lose control over those databases. Therefore, any changes to the structure
of these databases could have a direct impact on our system. In this case, since we
are talking about main databases of a vital service like a bank, we would not expect
unannounced sudden changes that do not give us an opportunity for appropriately
planned actions. Nevertheless, the aforementioned adds a sense of fragility to the
architecture, as any external databases on which our service relies may evolve
independently of our application. Tight coupling to these data sources limits our
flexibility, therefore decreasing our ability to respond to change.

Ultimately, in answering the question of: why to directly query external

37

System Architecture

databases-it became a simpler solution with fewer moving parts, although retaining
its efficiency during data ingestion. While this does not closely adhere to the
recommended microservice principles, it remains a genuine real-world compromise
between architectural purity and practical need.

3.5.3 Security mechanisms

When building applications that handle sensitive data, security must be a priority.
Banking information, such as client personal data, investment details and portfolio
information are protected under GDPR, which emphasizes the critical importance
of securing it. Since the application is deployed in the bank’s environments and
MiaGP is a back-office tool, employees have to use VPN to access it. This is an
indirect security procedure that adds an extra layer of protection, and it comes for
free since there is no direct implementation being done.

Although the front-end is beyond the scope of this thesis, discussing its login
procedures helps us have a better end to end understanding. The login procedure
done on the FE relies on the bank’s authentication system. During this process, the
FE receives a JWT token generated by the authentication server and stores it as a
cookie. This JWT token contains information about the user, for example their user
id, authorizations and roles, and is included in all requests sent to the back-end. As
shown previously in the 3.5, all the front-end requests first pass through a general
API gateway, that already is capable of performing authentication checks. In this
way, unauthenticated requests attempting to reach protected back-end resources
are intercepted, and an error is returned.

This is a widely recognized architectural pattern where the gateway filters out
requests that do not meet the required security levels. Having this centralizes the
authentication logic in one single place, which allows for considerable one-time effort
when implementing microservices architecture. However, authorization checks are
required at the back end. Since MiaGP is a backend application, employees from
different departments log in through the bank’s authentication system, but only
certain users should possess the required administrative privileges to carry out
certain actions. Granular validation is carried out on an endpoint-by-endpoint
basis to have this level of security achieved.

This process of verification can be supplied by Spring via the use of @PreAuthorize
and @Secured annotations, which intercept method calls and enforce security rules
in accordance with Aspect-Oriented Programming within Kotlin. However, in
addition to checking the user’s role from the JWT, it is necessary to invoke a
request to the employee microservice for further confirmation. This is done by

38

System Architecture

having a custom annotation pointing out a join point5 and having custom logic to
coincide with it.

Listing 3.2: Annotation declaration
1 @Target(AnnotationTarget.FUNCTION)
2 annotation class Authorize(val value: Array<String>)

Using the annotation class keywords, we define the custom annotation. After
that, we create an aspect that applies the authorization logic to any method
annotated with @Authorize, as outlined in the listing 3.2:

Listing 3.3: Annotation declaration
1 @Aspect
2 @Component
3 internal class AuthorizationAspect(
4 private val jwtExtractor: JwtExtractor,
5 private val authorizationService: AuthorizationService
6) {
7

8 @Around("@annotation(authorize)")
9 fun authorize(joinPoint: ProceedingJoinPoint, authorize: Authorize): Any? =

AuthorizationContextHolder.use {
10 val roles = authorize.value.toList()
11

12 val claims = jwtExtractor.getJwtClaim() ?: throw unauthorizedException("JWT
not found in Context")

13 authorizationService.authorize(roles, claims)
14

15 joinPoint.proceed()
16 }
17 }

In this example 3.3, the AuthorizationAspect class defines an aspect that
intercepts any method annotated with @Authorize. It extracts the roles specified
by the annotation, validates the JWT claims, and invokes the authorization service
to confirm the user’s permissions before allowing the original method execution to
proceed.

In summary, a strong security strategy is required to have multiple layers of
verification and authentication at the gateway level and granular authorization
checks for each action within the back-end. Although some of these security

5According to (https://docs.spring.io/springframework/docs/2.0.x/reference/aop.html), a join
point is a point during the execution of a program, such as the execution of a method or the
handling of an exception. In Spring AOP, a join point always represents a method execution.

39

System Architecture

measures implement company-provided libraries or the gateway handles them, it is
important to highlight how the microservice achieves security and guarantees data
integrity and compliance.

3.5.4 Project Structure

When implementing the project requirements and actually writing the code, ad-
hering to patterns and design choices when starting the project is important to
have a clean code-base, create less tech debt and ultimately deliver a better quality
product. To understand how the project is structured, listed below is the table
3.1 containing all the packages under src/main. There are also the tests packages
functional and test that replicate the structure under main.

Package name Description
channel Contains outbound and inbound communication points, such as the

gRPC server, REST controller, outgoing gRPC clients, and
scheduled jobs.

config Spring Bean declarations, such as configurations for the databases,
GCP bucket, exception handlers, access to application properties,
and others.

exceptions Declaration of custom exceptions that override general ones.
extensions Custom handlers, gRPC to entity mappers, and vice versa.
filtering Dedicated folder for dynamic and general filtering support.
mappers Used to map DTO objects to outgoing objects.
persistence Organized in sub-packages, the entities and repositories for each

database are declared.
service Custom handlers, gRPC to entity mappers, and vice versa.
util Utility classes and objects reused across the code.
validation Custom classes used to validate gRPC requests against constraints.

Table 3.1: List of packages in the project

After the small description of the package structure of the project, and what
each module does, the next step will be to look at how data travels through the
system, both for REST and gRPC requests. Knowing the flow that information
takes inside the system is essential so that every component can make sure it
communicates to one another correctly, keeping a maximum separation between
layers in a clean way.

The steps involved in this interaction often follow the structure of the Model-
View-Controller pattern, which has a well-defined structured approach in handling
incoming requests, processing data returned, and returning appropriate responses.
Whether through a REST endpoint or through a gRPC server, data usually takes

40

System Architecture

the same path. It starts with receiving a request at the controller or channel layer
down to the final interaction with the persistence layer. Each layer of the system
plays a specific role in this process, always trying to keep a separation of concern,
in order to create a cleaner code and less complex architecture.

Let’s look now at how the system is designed to handle these flows—so, from
the path which data takes from its point of entry right through to storage and back
again if needed, as visualized in Figure 3.3.

Figure 3.3: Typical flow of data within system

In this architecture, the request flows through different layers, each fulfilling a
specific role:

• gRPC Server: This serves as an entry point of incoming client requests. Its
main function is to delegate the gRPC generated object to the service layer.

• Service Layer: First, it performs validation on the request object. The
service layer executes the business logic and orchestrates all actions required

41

System Architecture

in order to satisfy the request. In this layer, data persistence is agnostic and
the emphasis is on processing business use cases without caring about the way
data is stored and retrieved.

• Other Services: In some cases, the service layer may need to communicate
with other services (most of the time within the same microservice) to complete
its operations.

• Repo Service: The repository service is in front of the service layer and of
the repository. Its prime function is to separate the service layer from the
implementation of the repository to be used. That is, the service layer is not
required to manage the data persistence, so that the service layer remains
more readily adaptable in the face of changes in the way data are accessed or
stored.

• Repository: This layer is responsible for database interactions. These with
the help of tools such as JPA (Java Persistence API) abstract data operations,
specifically enabling the creation, reading, update, and deletion of data records.
It guarantees that the communication with the database is always standard
and properly contained.

• Database: Finally, queries are performed on the PostgreSQL database by
Spring JPA.

Organizing in this way, the main objective is to maintain the separation of
concerns principles. Each layer will be used to deal with a different one of the
application concerns. The Repo Service is actually the bridge needed in order to
keep the service layer decoupled from the actual data access implementation.

This modularity is quite useful in the microservice architecture, because the
adjustment or change of such modules becomes easy. If the change requires database
technology changes or data access logic modifications, then only the Repo Service
or Repository Layer needs to change and not the business logic of the Services
Layer, for instance. This flexibility makes the system easier to maintain and scale
over time.

3.5.5 Dependency management with Maven

As a popular build automation tool in Java-based applications, Maven is often used
in managing the code dependencies or libraries in Java-based projects, and there
is an important role played by Maven in synchronizing builds and standardizing
modules. With an XML-based project object model definition (POM) a notion

42

System Architecture

of Maven manages development processes in a consistent and predictable manner
by providing a definition for both dependency and plugin management, as well as
build process steps.

Relative to Gradle, one of the most widely used build tools, Maven features
a more simple type of build tool that is based on convention over configuration.
While Gradle is powerful, offering flexible scripting with Groovy or Kotlin DSL and
faster build speeds, Maven’s more declarative nature makes it a preferred choice for
projects that value simplicity and a clear standard. With the enterprise-class nature
of this project, Maven was the preference as its standard, established workflow
provides a consistent, inherently predictable, configuration especially in the context
of a multi-person team, where reproducible design is paramount.

The architecture of the project is built on multi-module POM files. A project
POM, like the one located in the root directory of the project, acts as the main
configuration node by managing several modules, each having its own POM. This
enables each module to have its own, separate dependencies and configurations,
without losing the controlled influence of the project-level POM. Architecture with
this type of modularity also makes dependence management easier and enables
a more appropriate separation of concerns. For example, in the project, the api,
bom, service modules shall have a clearly defined role with specific/independent
dependencies.

Using Maven repositories is an effective way of integrating external utility code
in your own project. It starts by downloading libraries from Maven Central, a public
repository where thousands of open-source Java libraries are hosted. However, often
within a corporate context, companies may not wish to use a public repository
for distributing libraries for internal projects., but rather find a way to manage
proprietary libraries securely and privately. In such cases, companies can host their
own Maven repositories using services like GitHub Packages for example, which
ensures that sensitive libraries are kept private and not exposed on the internet.

In this project, internal libraries, such as the gRPC authorization library shown
in the subsection 3.5.3, are hosted on a private GitHub repository. This setup
allows us to add internal dependencies directly to the POM files, just like we would
with any public library, making the integration seamless across multiple projects.

The following code 3.4 is an example of the project-level POM of the system,
showing how we define properties, modules, and repository configurations. Notice
how each module (api, bom, and service) is included under the section, so their POM
files are linked under the same parent. Starting with <profiles> tag we define
specific repository configurations for hosting dependencies privately on GitHub:

Listing 3.4: Project level POM

43

System Architecture

1 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance"

2 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.
org/xsd/maven-4.0.0.xsd">

3 <modelVersion>4.0.0</modelVersion>
4

5 <groupId>com.fid.financial.be.miagp.monitoring.engine</groupId>
6 <artifactId>fidit-be-miagp-monitoring-engine</artifactId>
7 <version>1.0.38-SNAPSHOT</version>
8 <packaging>pom</packaging>
9

10 <name>MiaGP Monitoring Engine</name>
11 <description>MiaGP Monitoring Engine</description>
12

13 <modules>
14 <module>api</module>
15 <module>bom</module>
16 <module>service</module>
17 </modules>
18

19 <profiles>
20 <profile>
21 <id>alpian</id>
22 <distributionManagement>
23 <repository>
24 <id>alpian-github</id>
25 <name>GitHub Alpian Apache Maven Packages</name>
26 <url>https://maven.pkg.github.com/alpian-technologies/alpian-packages

</url>
27 </repository>
28 <snapshotRepository>
29 <id>alpian-github</id>
30 <name>GitHub Alpian Apache Maven Packages</name>
31 <url>https://maven.pkg.github.com/alpian-technologies/alpian-packages

</url>
32 </snapshotRepository>
33 </distributionManagement>
34 </profile>
35 </profiles>
36 </project>

This project POM provides a centralized management point for dependencies
and plugins. It provides very competent workflows in building, integration, and
upload or download of libraries, hence allowing the smooth functioning between
different environments. The repository configurations under allow easy and se-
cure management of company-specific packages, thus providing flexibility during
development and deployment phases.

44

System Architecture

3.5.6 Endpoints and protobuf file

For each user story collected from section 3.4, we can identify the endpoints that
need to be defined. A user story and an endpoint are not always in a direct one-to-
one relationship; however, we can figure out which user stories should create new
endpoints and which can be grouped together into one single endpoint. For example,
here is a user story: "I want to create a new official monitoring." This automatically
calls for a POST endpoint which will create the relevant data. Another example is:
a story "I want to get all investment lines" together with, "I want to apply multiple
filters to investment lines," suggests that a single endpoint that can receive the
filtering options can return the investment lines.

While these are referred to as endpoints and the front-end sends HTTP requests,
it is important to remember that there is a middleware layer in between. The
gateway will act as the one which takes the HTTP request that it gets, translate it
into the corresponding gRPC method, and forward that to the Spring Boot app.
In the API module of the project, we have a protobuf file with methods, requests,
and response objects defined. The dependencies have to be added for this file to
work and be capable of generating objects that can be used in Kotlin code, and
these are included in the POM file of the API module.

So, we go in and take a look at the protobuf file to get a detailed understanding
of how the API is structured and how communication works, as shown in 3.5. Here,
definitions of methods that are working for gRPC, along with the request and
response messages, are defined as DTO objects through the service.

Listing 3.5: Protobuf file
1 service MiagpMonitoringService {
2

3 rpc GetMonitoring(GetMonitoringRequest) returns (Monitoring) {
4 option (google.api.http) = {
5 get: "/investments-monitoring/monitorings/{monitoring_id}"
6 };
7 }
8

9 message GetMonitoringRequest {
10 string monitoring_id = 1;
11 }
12

13 message Monitoring {
14 string id = 1;
15 string scheduled_date = 2;
16 MonitoringStatus status = 3;
17 int32 notes_count = 4;
18 string latest_data_available_on = 5;
19 MonitoringType type = 6;

45

System Architecture

20 optional int32 trends_warnings_count = 7;
21 ValidationStatus validation_status = 8;
22 CluStatus clu_status = 9; /* aka Office Line Change */
23 }
24 }

First, we declare the service MiagpMonitoringService, which includes all gRPC
methods related to the monitoring functionality. The declaration of RPC methods
is straightforward and begins with the keyword rpc followed by the method name,
in this case, GetMonitoring. Following the method name, the request object, or
message, GetMonitoringRequest is specified in parentheses. Conventionally, the
word "request" is included in the request object and "response" in the return object
to make identification clearer. After the request object, the returns keyword is
used, followed by the response message, in this case, Monitoring.

The GetMonitoring method also has an option for HTTP mapping, speci-
fied with (google.api.http). This facilitates calling the gRPC method as a REST
endpoint, making it callable directly from the Spring boot application. Specif-
ically, this situation maps the GetMonitoring method to an HTTP GET on
the endpoint /investments-monitoring/monitorings/{monitoring_id}, where
{monitoring_id} is a path parameter corresponding to the ID of the monitoring
entity.

One might wonder: why do we need a gateway at all as a middle layer if we can
just declare the HTTP endpoints for our gRPC methods? The HTTP endpoint is
primarily for debugging and it is not designed to be an interface you would directly
work on while in production. For heavy lifting, we still rely on gRPC because it’s
more efficient with a binary protocol that means better performance and lower
latency than traditional REST APIs.

Using Google’s protobuf library or any other similar library, the same gRPC
method is available via both an HTTP endpoint and the gRPC protocol through
the use of HTTP annotations. Examples of these annotations are (google.api.http),
which define mapping between HTTP endpoint and the gRPC method. The
gateway basically listens for HTTP requests and translates them to gRPC calls to
service the related service method. This way, the service can keep the core backend
logic in one place but at the same time allow flexibility in clients to interact with it.

In order to stay concise and still have visibility for all endpoints, below the table
3.2 lists all gRPC methods and endpoints. The (prefix) represents
/investments-monitoring/monitorings.

46

System Architecture

Table 3.2: List of other gRPC methods and endpoints.
gRPC Method HTTP Verb Endpoint
GetMonitoringTrends GET (prefix)/{monitoring_id}/trends
SearchMonitorings POST (prefix):search
SearchInvestmentLines POST (prefix)/{monitoring_id}/investment-lines:search
CreateMonitoring POST /investments-monitoring/monitorings
DeleteMonitoring DELETE (prefix)/{monitoring_id}
UpdateInvestmentLinesStatus PUT (prefix)/{monitoring_id}/investment-lines/status
ValidateMonitoring PUT (prefix):validate
CancelMonitoring PUT (prefix):cancel
SearchInvestmentLinesOption GET (prefix)/{monitoring_id}/investment-lines/search-options
UpdateMonitoringValidateLinesOption PUT (prefix)/{monitoring_id}/investment-lines/validation-options

47

Chapter 4

User stories flows

Up to this point, we covered the business requirements, followed by high-level
exploration of the software architecture, identification of the main entities, discussion
about how the microservice communicates to other services, and addressing security
features, dependency management, and endpoint declaration. Now we will discuss
the operation of bringing together all the components in a coherent manner by
walking through the complete implementation of a few user stories.

The first step consists of sequence diagrams, which always provide an overview
of how different components of a system interact with each other. This would
assist us in visualizing the moving parts and flow of data across systems. Following
that, we would go through the code logic addressing the user stories. Furthermore,
the screenshots will aid in bridging the gap between the backend logic and end-
user experience as they would depict what the user experience with the system’s
functions looks like, thus making it easier to understand how the user experience is
facilitated by the backend implementations.

The user stories covered will include one from each of the identified categories:
calendar management, data ingestion, and validation and spools. We will start off
with different flows concerning investment line search, loading investment line data,
then validation, and finally will finish with emailing the Personal Bankers. These
flows were selected based on their importance and degree of impact within the
overall system in comparison to CRUD operations, such as creating and deleting
monitoring runs. Also, these particular user stories represent cases where I was
present for the entire procedure from those conversations first held with the product
team to the technical implementation. The level of detail presented in these
user stories reflects the depth of my involvement in their implementation and my
comprehensive understanding of the system.

48

User stories flows

4.1 Search investment lines

That gives us a user story within the calendar management domain: the users use
a front-end interface to search for investment lines, using various filters to allow
users to analyze the current monitoring data and action on individual investment
lines as required. The filters allows users to specify what they want to look for,
meaning they can focus on specific aspects of investment lines most relevant to
their current analysis.

Table 3.2 indicates that the corresponding gRPC method is SearchInvestmentLines
with a POST request done from the front end, unlike the standard GET request.
This design is done so that different filter and sorting details may exist within
the body of the request. A POST request thus enables a more defined type of
data transmission, with complexity arising in further filter requirements potentially
needing more fields and possibly more queries.

Let’s take a look at the following JSON example of the request object to see
how dynamic filtering with paginated results is supported.

Listing 4.1: Example JSON request

1 {
2 "monitoring_id": "1d6a6fc9-5291-4e18-b287-69f83f10fd58",
3 "page": 0,
4 "page_size": 20,
5 "filters": [
6 {
7 "field": "fiscal_code",
8 "operation": "LIKE",
9 "value": "PDMR"

10 },
11 {
12 "field": "profile",
13 "operation": "EQUAL",
14 "value": "0"
15 }
16],
17 "sort": [
18 {
19 "field": "var_max",
20 "direction": "DESC"
21 }
22]
23 "custom_search": "John"

49

User stories flows

24 }

The search investment lines endpoint is used as soon as the user enters the
investment lines page, initially filtering by monitoring ID to present only relevant
data. The user can then add additional filters, which support a set of predefined
columns and operations. These additional filters might include attributes such as
cycle status, profile, customer type and product, allowing for a granular view of
the investment lines. Users can also sort by specific columns to bring the most
critical information to the top. Also users have the option to adjust the page size,
which means they can decide how much data they want to view at a time.

In order to have a better picture of how the filter may be employed by the users,
below in figure 4.1 is a screenshot of the web application with the filters tab open,
where there are the supported filters listed.

Figure 4.1: Filters in investment line page

The fields and their possible values are provided by the front-end, allowing
requests to be constructed based on the user’s selections. It is important to note
that the customer data displayed is mocked (i.e. fake) and used strictly within the
development environment. Another filtering option available to users is the search
bar on the left side of the screenshot, which allows searching by customer name,

50

User stories flows

fiscal code, contract number or mandate. By leveraging this search the value the
user types in the search bar is sent in the custom_search field.

With this clearer understanding of how the filters function from the end user’s
perspective, the following sequence diagram 4.2 illustrates the end-to-end flow when
a user applies filtering on the investment line page.

Figure 4.2: Search lines sequence diagram

Although this POST endpoint allows for more dynamic filtering, such as accept-
ing the field, operation, and value from the request, extra care must be taken with
request validation to avoid exposing unwanted database operations or attempts to
exploit the filtering functionality.

First, when the request arrives at the Spring application, basic valida-
tion is performed on several fields. The monitoring_id is verified to be a
valid UUID, while the page number and page size are checked to ensure they
are positive integers. This validation is managed using a custom annotation
@ValidSearchInvestmentLinesRequest that uses jakarta/javax ContraintValida-
tor.

Next, we proceed to validate the filters with a more thorough check. Specif-
ically, we verify if the field provided by the client is a valid property of the
InvestmentLine entity and confirm that it is declared as a valid filter column.
Only explicitly defined columns can be filtered, which adds an important layer of
security between the client and the database, this way preventing the client from
having full control over query parameters.

51

User stories flows

Following this, we validate whether the provided operation is also an approved
type. Each column is restricted to a specific set of operations, as outlined in table
4.1. Then, we have to parse the value, which is declared as a string in the proto
file. This means that for whatever data type is the column we want to filter, the
request always arrives as string, therefore these values need to be converted into
the appropriate type.

Table 4.1: List of allowed filter operations

Operation String in operation field
Equals EQUAL

Not Equals NOT_EQUAL
In IN

Greater Than GT
Greater Than Or Equals GTE

Less Than LT
Less Than Or Equals LTE

Is Null IS_NULL
Is Not Null NOT_NULL

The sorting functionality follows a similar strategy as filtering. The direction
field is straightforward, users can sort by either ascending (ASC) or descending
(DESC) order. The validation for the sort field works in the same manner as the
filter field, comparing against a set of pre-approved columns to ensure only allowed
columns are sorted.

Now, let’s examine the code in 4.2 to see how this logic is implemented in
practice. We’ll begin with the gRPC Server layer, which will only be shown for
this user story, as the logic is essentially the same across similar implementations.

Listing 4.2: gRPC Server class
1 @GrpcService
2 class GrpcServer(
3 private val investmentLineService: InvestmentLineService,
4 /* ... other services */
5) :
6 MiagpMonitoringServiceGrpc.MiagpMonitoringServiceImplBase() {
7

8 /* ... other fuctions */
9

10 @Authorize(["SO", "SA", "COM", "AR"])
11 override fun searchInvestmentLines(
12 request: SearchInvestmentLinesRequest,
13 responseObserver: StreamObserver<SearchInvestmentLinesResponse>
14) {

52

User stories flows

15 responseObserver.onNext(investmentLineService.searchInvestmentLines(request
))

16 responseObserver.onCompleted()
17 }
18

19 }

A number of elements compounded the given group and plan to be discussed
further. First, the @GrpcService annotation would come from gRPC-starter
dependency, responsible for the gRPC server’s setup or installation. The derived
class MiagpMonitoringServiceGrpc is an auto-generated interface that contains
all the defined methods in the proto file so that there is no ambiguity between the
implementation of the service and the definition. We note that the methods in this
class are marked with the override annotation-which means that these implement
methods declared in the base interface.

Here, the @Authorize annotation is for role-based authorization, allowing given
roles-SO, SA, COM, AR-to access this endpoint. Thus, it serves to provide a layer of
security, as explained in Section 3.5.3.

The onNext method is used to send the response generated by the
investmentLineService.searchInvestmentLines(request) call back to the
client. After the response is successfully sent, onCompleted is called to indicate
that no more responses will be sent, completing the gRPC call lifecycle.

Now, in the listing 4.3, we will move into the Investment Line Service, which
the grpc server delegates to.

Listing 4.3: Search investment lines service
1 @Service
2 @Validated
3 class InvestmentLineService(
4 private val monitoringRepoService: MonitoringRepoService,
5 private val investmentLineRepoService: InvestmentLineRepoService,
6 private val querySpecConverter: LinesQuerySpecConverter,
7) {
8

9 @Transactional(readOnly = true)
10 fun searchInvestmentLines(@ValidSearchInvestmentLinesRequest request:

SearchInvestmentLinesRequest): SearchInvestmentLinesResponse {
11 val monitoringId = request.monitoringId
12 logger.info { "searching investment lines for monitoring identified by

$monitoringId" }
13

14 val monitoring = monitoringRepoService.findByIdOrThrow(UUID.fromString(
monitoringId))

53

User stories flows

15 val customSearchFilterSpec = querySpecConverter.handleCustomSearch(request.
searchValue)

16 val filterSpec: List<FilterSpec> =
17 listOf(FilterSpec(InvestmentLineEntity_.MONITORING, EqualOp, monitoring))
18 .plus(querySpecConverter.toFilterSpecs(request.filtersList))
19 .plus(customSearchFilterSpec?.let { listOf(it) } ?: emptyList())
20

21 val typeSort = when (monitoring.type) {
22 MonitoringType.UNOFFICIAL_WEEKLY -> SortSpec(
23 InvestmentLineEntity_.LATEST_OM_STATUS_ENTITY + "." +

CycleStatusEntity_.ORDINAL,
24 Direction.ASC
25)
26 else -> SortSpec(InvestmentLineEntity_.CYCLE_STATUS_ENTITY + "." +

CycleStatusEntity_.ORDINAL, Direction.ASC)
27 }
28

29 val sortSpec = listOf(typeSort, SortSpec(InvestmentLineEntity_.CONTRACT_GP,
Direction.ASC))

30 .plus(querySpecConverter.toSortSpecs(request.sortList))
31

32 val pageResult = investmentLineRepoService.search(request.page, request.
pageSize, filterSpec, sortSpec)

33

34 logger.info { "found ${pageResult.totalElements} matching the provided
filter" }

35 return pageResult.toGrpc()
36 }

The InvestmentLineService class annotated with @Service is responsible for
executing the core business functionalities associated with the search of investment
lines. The annotation indicates that the class can be said to provide the service
functionality within the Spring context, and therefore it is eligible for component
scanning, as well as dependency injection.

The @Validated annotation, when applied, allows for method-level vali-
dation of the parameters. The service checks the request parameter when
searchInvestmentLines gets invoked by the application, in order to ensure the
incoming request towards that method meets the respective constraints.

While behind the scenes all the validation logic, creation of JPA specifications,
and repository methods are invoked, the use of this service gives a glimpse into
how the service delegates work down to specialized components. Here follows a
step-by-step explanation of what is being done in this service method.

1. Validate the Request: The request object is annotated with

54

User stories flows

@ValidSearchInvestmentLinesRequest, which automatically applies vali-
dation logic for the incoming request before entering the actual method.

2. Throw exception if monitoring does not exist: The service
calls monitoringRepoService.findByIdOrThrow() to fetch the monitoring.
This line checks out whether in the repository the monitoring entity with the
provided ID exists. If it does not, an exception is thrown, ensuring no further
operations are performed on an invalid or nonexistent entity.

3. Handle custom search filter: The method handleCustomSearch() is used
to create a FilterSpec object for the custom_search value coming from the
request. This FilterSpec is a custom object that will be used to construct
the JPA specification to be used in the query. This is handled independently
because this search is an OR in the fields and regular filters are being joined
with an AND condition.

4. Convert query specifications: The methods toFilterSpecs() and
toSortSpecs() act to convert the filter and sort lists from the request to JPA
specifications that may be interpreted by the corresponding repository.

5. Default filter and sorting logic: The service sets the default filter by ID
and allows for the scoping of the result set to only those ones related to the
specific monitoring query. The other part is that there are some default sorting
mechanisms one of which will be based on the cycle status by ascending
order. In fact, for a weekly monitoring process cycle status does not exist,
and consequently another field that illustrates the latest official monitoring
status is used for ordering.

6. Performing query and return paged results: The
investmentLineRepoService.search() method performs the actual
query, using the provided filter and sorting specifications. This query returns
a pageResult containing the results of the search, along with pagination
information (e.g., page size and number). The method then returns these
results in the gRPC response format using pageResult.toGrpc().

4.2 Import of investments data

The ingestion of investment line data for each official monitoring, as well as for
weekly runs, is essential for the correct functioning of the system. As previously
mentioned, the system relies on external database connections to import the
necessary data.

55

User stories flows

To automate this process, Spring schedulers are used. They allow for the
execution of recurring tasks based on predefined rules. The @Scheduled annotation,
allows us to configure methods to run at fixed intervals, by defining cron expressions.
These schedulers provide several conveniences of Spring in creating, configuration,
managing easily scheduled tasks.

The data ingestion process begins with an external database query, and obtaining
all relevant investment data for the client with respect to risk will be initiated
with a first-level query against the SQL Server database. This query will look for
investment lines on whatever are termed inadequate lines based on client risk profile
and portfolio risk level. The actual information retrieved concerning the client’s
current investments will identify those that no longer satisfy the risk expectations
set forth by the client. The specific query is not presented here, given the highly
specific nature to that domain and the nonproprietary nature of the database being
used.

The staging table is that table where data extracted from the initial query are
loaded before an additional process takes place. The purpose of a staging table
is essentially allowing to import data into another one place. In this case, after
running through a series of transformations and processes, this would be the table
representing the InvestmentLine entity. To assist in managing application pod
memory load and to avoid spikes in resource utilization, processing is done in
batches of 500 records at a time.

Next, additional information about each investment, such as the product details
and its destination line (a comparable and lower-risk investment option that may
be used in cases where forced changes are required), is gathered by querying the
other external database, the DB2 instance.

Shedlock is employed as a kind of lock to ensure that only one instance of
the ingestion process is executed at a time in the scheduling of this scheduler.
Shedlock is used to ensure that duplicate processing is not done across the different
running instances with regard to scheduled jobs and that overlapping executions
are avoided, thus working toward making sure that conflicts or inconsistencies do
not arise in cloud environments where multiple instances of the service may be
being run. Shedlock can also auto-reboot itself in the event a lock runs for more
than a specified period of time, and auto-reboot the application in the case that a
pod crashes during an ingestion process.

Listing 4.4: Search investment lines service
1 @Component
2 class IngestionScheduler(val scheduledIngestionRunner: ScheduledIngestionRunner

) {
3

56

User stories flows

4 @Scheduled(cron = "\${custom.scheduler.ingestion.cron}")
5 @SchedulerLock(name = "ingestion-trigger", lockAtMostFor = "\${custom.

shedlock.ingestion.lock-at-most-for}")
6 fun scheduleIngestion() {
7 logger.info { "IngestionScheduler: scheduleIngestion" }
8 scheduledIngestionRunner.runIngestion()
9 logger.info { "IngestionScheduler: scheduleIngestion - done" }

10 }
11 }

The above piece of code 4.4 declares the scheduler component along with the
Shedlock lock, in order to take full benefit from its mechanisms. A custom cron
expression and the lock time limit are defined in the application.yml and are
accessed at runtime. This approach of declaring in a properties file is advantageous,
especially when dealing with different environments or when behavior needs to
be adjusted based on certain conditions. For instance, the cron expression in
production is specified as 0 0 8,15 * * MON-FRI, meaning the job runs at 8:00
and 15:00 on weekdays. This scheduler class is solely responsible for declaring
the scheduling mechanism, which subsequently delegates the actual processing to
another method containing the logic.

Before the data is imported for any run, several preparatory steps need to be
undertaken. Although periodic triggers are set for multiple days every week, the
ingestion process is best if it happens only once per monitoring. What follows is
the list of steps taken before reaching this ingestion service:

• Fetch monitoring: First, an official monitoring record with the status
SCHEDULED is searched for in the database. If none are found, a weekly
monitoring is created.

• Check Monitoring date: The scheduler is triggered at various times throughout
the week, but it should only be able to handle ingestion if the monitoring
scheduled date’s day is the same or before the current day. For example, if
the scheduler is triggered on Monday, it sees that the scheduled date is on
Wednesday, and it exits early so that ingestion is not started.

• Check IngestionRun Status: If the monitoring has an IngestionRun status set
to COMPLETED, the function exits early to avoid redundant ingestion. Otherwise,
the execution continues as expected.

• Data Ready Flag: Before starting with the import of data from an external
database, a check is made to ensure that the data ingestion is ready. This is
done through a "data ready" flag confirming that the automatic procedures
have already gone through, and the data is currently up-to-date.

57

User stories flows

To provide a clearer visualization of the information discussed above and how
this part of the system operates, Figure 4.3 illustrates the various components
involved and their interactions in importing customers’ inadequate investment lines.

Figure 4.3: Ingestion of data sequence diagram

Once these preliminary steps are complete, the process proceeds to the
IngestionService. The triggerIngestion method, as its name suggests, han-
dles the querying of the external database, gathering data, and processing it to
create the appropriate entities in the system’s database.

58

User stories flows

Listing 4.5: Search investment lines service
1 @Service
2 class IngestionService(
3 private val localDateNowSupplier: () -> LocalDate,
4 private val onBreachLinesLoader: OnBreachLoaderService,
5 private val napDataLoader: NapDataLoaderService,
6 private val monitoringRepoService: MonitoringRepoService,
7 private val onBreachStagingTransformer: OnBreachStagingTransformer,
8 private val notificationService: NotificationService,
9 private val ingestionDoneEmailMapper: IngestionDoneEmailMapper,

10 private val investmentLineRepoService: InvestmentLineRepoService,
11) {
12

13 fun triggerIngestion(currentMonitoring: MonitoringEntity) {
14

15 // 1. Read all the lines which are on breach.
16 onBreachLinesLoader.loadInStaging()
17

18 // 2. Update destination and custom lines (from NAP).
19 val now = localDateNowSupplier()
20 napDataLoader.loadInStaging(now)
21

22 // 3. Find previous monitoring
23 val previousMonitoring = monitoringRepoService.

findPreviousOfficialMonitoring(currentMonitoring).also {
24 it?.also { logger.info { "$LOG_PREFIX Previous monitoring is ${it.id} -

with scheduled date ${it.scheduledDate}" } }
25 ?: logger.info { "$LOG_PREFIX Previous monitoring cannot be found" }
26 }
27

28 // 4. Read all lines on breach from a staging table and store them as
investment lines.

29 onBreachStagingTransformer.toInvestmentLines(currentMonitoring,
previousMonitoring)

30

31 // 5. Setting the status of the monitoring to READY.
32 currentMonitoring.status = MonitoringStatus.READY
33 currentMonitoring.latestDataAvailableOn = now
34 monitoringRepoService.save(currentMonitoring)
35

36 // 6. Apply automatic R4 exclusions if applicable
37 markLinesAsR4OfficeChangeAutomaticExcluded(currentMonitoring,

previousMonitoring)
38

39 // 7. Notify SO team by e-mail.
40 notifyIngestionCompleted(currentMonitoring)
41

42 logger.info("$LOG_PREFIX Ingestion completed")
43 }

59

User stories flows

44 }

Analyzing 4.5, the triggerIngestion function contains comments to provide
an overview of each step being executed, allowing us to understand what each call
to a service or method accomplishes. Let’s investigate these steps in greater detail:

1. Access external database and import lines: This step consists of the accessing
of the external SQL Server database utilizing a custom-built JPA reposi-
tory OnBreachLinesRepository. A native query is executed through that
repository to retrieve investment lines that would be tagged as improper and
imported into a staging table. This will allow replacing the old data from the
previous monitoring with the new data.

2. Update DB2 database: Inputs from an external database, specifically a DB2
instancem that retrieves other sorts of information, such as product information
and destination lines for a secondary external DB2 instance, will be gathered
in the next step. This information will subsequently reside in the PostgreSQL
database for use in pending ingestion steps.

3. Find previous monitoring: The previous monitoring is retrieved in order to
check the recurrence of inadequate investments and track the progression to
subsequent cycle statuses.

4. Create investment line entities: The data previously loaded into staging tables
is now transformed and mapped to the InvestmentLine entity. At this stage,
specific attributes, such as cycle status and custom validation options, are
generated for each investment line.

5. Adjust monitoring status: This step involves updating information related
to the current monitoring run. The status is updated to reflect that data
ingestion is complete and that the monitoring is ready for the next steps.
Additionally, the latest ingestion date is set to the current date.

6. Mark lines as R4 excluded: This logic pertains to the Office Line Change
(CLU) process. If an investment line reaches cycle status R4—which indicates
that it has been flagged as inadequate for four consecutive times—automatic
corrective action is taken through the spool. However, if a line marked with
R4 status during an official monitoring disappears during a subsequent weekly
monitoring, it is marked as "excluded from forced change." This ensures that
lines no longer considered inadequate are not subject to forced modification.

7. Notify ingestion completion: Once all data has been processed, the monitoring
is finalized with the investment line data fully loaded. At this point, if it is

60

User stories flows

an official monitoring, an email is sent to the relevant team to notify them
of the successful ingestion. The email is sent using a separate microservice
responsible for managing email communications.

After all the steps in the function are completed, the process concludes, and no
further code is executed. The imported data becomes immediately available in the
web application, with the monitoring status set to READY. The investment lines
page is populated with the newly ingested data, making it ready for analysis and
further actions.

4.3 Validation of a monitoring and spools

As briefly introduced in section 3.3, the validation marks the culmination of the
official monitoring process. This action is explicitly triggered by a user after the
investment lines have been imported, analyzed, and necessary actions have been
performed—such as adjusting the cycle status of specific lines. Validation signifies
that no further manual analysis is required, and all automated actions are executed.

The most difficult issue to address with this approach concerned the design of
a system, not only capable of processing spools as a generic class of objects with
common characteristics like lifecycle management, execution status, and scheduling,
and capable of delivering the specialized behavior needed for every single spool
class.Since the spools are clearly defined and follow distinct logic, a factory-based
approach was chosen. By defining a general interface that encapsulates the core
operations of a spool, it became possible to create specialized implementations
for the needs of each type. This approach will be explained more in depth as we
advance in this section.

In order to understand better what are exactly the spools and what they do,
below is a detailed breakdown of the spools and their respective functions:

• R2 Letter : Investment lines with a cycle status of R2 are grouped into an
txt file and sent to a designated office. This office processes the data to
generate physical letters, which are dispatched to customers. The letters
inform customers that their investments are deemed inadequate and encourage
them to contact their private banker to address and resolve the issue.

• Email to PB (Private Banker): Investment lines that are "in cycle"—specifically
those with statuses R1, R2, R3, or R4—are aggregated into an Excel file and
sent directly to the responsible private banker. This ensures that the key
stakeholder, who has the authority to take corrective actions, is notified and
can intervene to resolve the inadequacies.

61

User stories flows

• Build Office Line Change file (CLU): Theoretically, investment lines that have
appeared for four continuous cycles (R4) will trigger a forced change to a more
conservative investment option. Unlike other spools, this process does not run
after the monitoring finished checks. Instead, it waits until the next weekly
monitoring run has been completed. This allows the system sufficient time
to exclude any lines that the private banker might have resolved meanwhile.
So at this point, the remaining lines not yet resolved are tagged as R4, and a
custom file containing the required investment data is created and uploaded
to a Google Cloud Storage bucket for further action.

Send email to specific offices within the bank:
Apart from the key spools already discussed, there are five more email spools,

designed for the different departments or offices. Each spool is customized to fit
distinct departmental requirements, creating targeted filters for what goes into the
reports. This ensures that the reports will only contain data that is relevant to the
office’s mandate.

For instance, one spool contains investment lines related to investors who have
passed away, with such investments being blocked through unique block codes to
prevent further transactions. The department receives an Excel file containing
those lines flagged for action. The flagged lines are then worked upon, and
the department can communicate with the heirs of the investors to manage the
investments appropriately.

Before going in the code, the image 4.4 gives us a high level understanding of
how the validation of a monitoring was be done. It aligns with the factory-based
implementation as earlier mentioned, with a "loop" that processes each spool type
differently. When outside of this loop we are at an upper level of the code.

The sequence diagram 4.4 illustrates the structured approach used in the moni-
toring validation process, aligning with the factory-based implementation mentioned
earlier. The validation follows a uniform sequence, where the system identifies
pending tasks (spools) and processes them in a loop. Each spool type is handled
differently, and the overall flow remains consistent, this way we benefit from the
factory approach that dynamically selects the appropriate processing logic based
on the spool category.

The sequence diagram 4.4 for monitoring validation shows a structured approach
to the process of validation in tune with the factored implementation already
exposed. The validation, therefore, follows a uniform sequence, whereby the system
senses its pending work (spools) and treats those spools in a loop. Each spool
type is treated individually; the overall flow, however, remains consistent, therefore,
offering a virtue of the factory approach, dynamically selecting the appropriate

62

User stories flows

processing logic based on the spool category.

Figure 4.4: Validation of a monitoring sequence diagram

Similar to the ingestion process, validation also uses Spring’s scheduler to ensure
a retryable mechanism. A job is scheduled to run every 30 minutes to check for
any official monitoring runs with a status of VALIDATED. Once identified, the job
triggers the processing of these runs. Along this process, the ValidationStatus

63

User stories flows

field inside the monitoring entity keeps track of the state of the validation process.
It will allow both reliability and automatic retries for transient failures, assuring
good unto the integrity and completeness nature of the validation workflow.

Listing 4.6: Validation run service
1 @Service
2 class ScheduledValidationRunner(
3 private val monitoringRepoService: MonitoringRepoService,
4 private val validationRunHandler: ValidationRunHandler
5) {
6 fun runValidation() {
7 // get latest monitoring with type OFFICIAL_CONSULTANCY
8 val monitoring = monitoringRepoService.findLatestMonitoringByTypeAndStatus(
9 MonitoringType.OFFICIAL_CONSULTANCY,

10 MonitoringStatus.VALIDATED
11)
12

13 if (monitoring == null) {
14 logger.info { "No monitoring to run the validation on" }
15 return
16 }
17

18 when (monitoring.validationStatus) {
19

20 // proceed with the monitoring validation
21 ValidationStatus.STARTED,
22 ValidationStatus.ERROR,
23 ValidationStatus.IN_PROGRESS -> {
24 validationRunHandler.handleValidationRun(monitoring)
25 }
26

27 // skip the validation for the following status
28 ValidationStatus.NOT_STARTED,
29 ValidationStatus.COMPLETED -> {
30 return
31 }
32

33 // unexpected scenario
34 null -> logger.warn("Unexpected value for ValidationStatus")
35 }
36

37 }
38 }

The runValidation function presented above in 4.6 is called when the scheduler
runs every 30 minutes and is responsible of finding the current week’s official
monitoring with VALIDATED status and check if it needs to run the validation
process based on the ValidationStatus. As seen in the when branch, there are

64

User stories flows

three statuses that allow the validation to proceed, otherwise the validation process
stops. This is followed by another call to another function handleValidationRun
that either creates the spools in the database if the validation is running for the
first time and then continues to the code below that processes the individual spools.

Since all spools are treated the same and just have different implementations, the
SpoolProcessorService uses a factory approach, that decides which component
to use based on the SpoolType. The components are all classes that implement the
same abstract class, this way they can be treated as the same and call the same
method for all the classes that have different implementations. (explain better the
factory approach).

Since all spools share the same processing flow but differ in their specific logic,
the SpoolProcessorService leverages a factory design pattern to decouple the
decision-making process for selecting the correct implementation. This approach
allows the service to remain agnostic of the underlying spool logic, creating a cleaner
and more maintainable code. The factory determines which component to use
based on the SpoolType, retrieving a specific strategy that implements the abstract
class or interface SpoolProcessingStrategy. Each concrete class encapsulates
the logic required for a particular spool type and implements the common method
from the inherited class. As a result, all components can be treated uniformly,
enabling the same methods to be called regardless of the spool implementation.

Listing 4.7: Process spools service
1 @Service
2 class SpoolProcessorService(
3 private val spoolRepoService: SpoolRepoService,
4 private val monitoringRepoService: MonitoringRepoService,
5 private val spoolProcessingStrategyFactory: SpoolProcessingStrategyFactory,
6) {
7

8 @Loggable
9 fun processSpools(monitoring: MonitoringEntity) {

10 // retrieve spools for the given monitoring ID that are not in COMPLETED
status

11 val spools = monitoring.id?.let { spoolRepoService.
findByMonitoringIdAndStatusNotCompleted(it) }

12

13 val completedSpools = spools?.map { spool ->
14 // get the processing strategy for the spool type
15 val strategy = spoolProcessingStrategyFactory.getStrategyForSpoolType(

spool.type)
16

17 strategy.evaluateAndProcessAbort(spool)
18

19 if (spool.status != SpoolStatus.ABORTED) {

65

User stories flows

20 // run the processing strategy, handling success and failure cases
21 processSingleSpool(spool, monitoring, strategy)
22 }
23

24 spoolRepoService.save(spool)
25 } ?: emptyList()
26

27 // determine the validation status based on the status of completed spools
28 val validationStatus = if (completedSpools.any { it.status == SpoolStatus.

ERROR }) {
29 ValidationStatus.ERROR
30 } else if (completedSpools.any { it.status == SpoolStatus.NOT_STARTED }) {
31 ValidationStatus.IN_PROGRESS
32 } else {
33 ValidationStatus.COMPLETED
34 }
35

36 // Spools may update the monitoring, therefore we retrieve the latest
version from DB

37 val updatedMonitoring = monitoringRepoService.findByIdOrThrow(monitoring.id
!!)

38 updatedMonitoring.validationStatus = validationStatus
39 monitoringRepoService.save(updatedMonitoring)
40 }
41

42 private fun processSingleSpool(
43 spool: SpoolEntity,
44 monitoring: MonitoringEntity,
45 strategy: SpoolProcessingStrategy
46) {
47 runCatching {
48 strategy.process(spool)
49 }.onSuccess {
50 spool.status = SpoolStatus.COMPLETED
51 }.onFailure { ex ->
52 spool.status = when (ex) {
53 // CLU expected to be run only after one week, so handle custom

exception
54 is PostponeSpoolException -> {
55 SpoolStatus.NOT_STARTED
56 }
57

58 else -> {
59 SpoolStatus.ERROR
60 }
61 }
62 spool.errorLog = ex.message
63 }
64 }

66

User stories flows

65

66 }

The process, presented above in the listing 4.7, begins by querying the database
for spool entities related to the current monitoring entity. Only spools that are
not yet marked as COMPLETED are retrieved for further processing. The SpoolType
determines which strategy will be selected through the factory. The factory works
as follows:

1. It exposes a method getStrategyForSpoolType, which accepts the spool
type as input.

2. Internally, it maps each spool type to its corresponding implementation of
SpoolProcessingStrategy, which contains the specific processing logic for
that type.

3. The components implementing the strategy are Spring beans, making it easier
for the factory to inject and manage them automatically.

The status of the monitoring’s validation is recalculated again and based on the
spools status after the spool processing. If errors occurred on any spool, validation
will be set to ERROR. If any spool is in a NOT_STARTED status, validation will get
IN_PROGRESS status. Otherwise, this will be marked as COMPLETED. The overall
assessment of the monitoring thus indicates a successful running of the spool
process.

Now, we may take up one of the implementations of the strategy, which is the
Send R2 Letter spool, as shown in listing 4.8 below. This implementation is much
simpler in comparison to other spools that may encounter a far more complicated
set of rules such as Send Email to PB or CLU spools and shares some similarities
with other spools that are responsible for sending emails to certain departments.
The major actions undertaken by this spool are as follows.

• Query the investment lines: The implementation leverages the specification-
based function discussed in the Search Investment Lines story. This ap-
proach allows the creation of dynamic and flexible queries without having to
manually declare each one in the JPA repository. By reusing this functionality,
the spool retrieves only the lines marked as R2 for the current monitoring.

• Generate the TXT file: A dedicated service is responsible for generating a
structured TXT file that contains the filtered investment lines. This service
ensures that the file format adheres to the requirements of the receiving

67

User stories flows

department, including details such as line identifiers, client information, and
investment statuses.

• Send notification: The system then uses the Notification microservice to
send an email to the relevant parties, attaching the generated file. This ensures
that the lines are delivered to the appropriate department for further action,
such as notifying customers about their inadequate investments.

Listing 4.8: R2 letter spool strategy
1 @Component
2 class ProcessR2LetterStrategy(
3 val investmentLineRepoService: InvestmentLineRepoService,
4 val rowTextGeneratorService: RowTextGeneratorService,
5 val notificationService: NotificationService,
6 val notificationMapper: R2LetterNotificationMapper
7) : SpoolProcessingStrategy() {
8

9

10 override fun process(spool: SpoolEntity) {
11 // Retrieve the investment lines to be included in the message.
12 val lines = investmentLineRepoService.search(
13 pageSize = Int.MAX_VALUE,
14 filterSpecs = listOf(
15 FilterSpec(InvestmentLineEntity_.MONITORING, EqualOp, spool.monitoring

!!),
16 FilterSpec(InvestmentLineEntity_.CYCLE_STATUS, EqualOp, CycleStatus.R2)

,
17 FilterSpec(InvestmentLineEntity_.VALIDATE_OPTION, NotEqualOp,

R2_LETTER_EXCLUDED_AUTO),
18 FilterSpec(InvestmentLineEntity_.VALIDATE_OPTION, NotEqualOp,

R2_LETTER_EXCLUDED_MANUAL),
19),
20 sortSpecs = listOf(
21

22 SortSpec(InvestmentLineEntity_.NETWORK, Direction.DESC),
23 SortSpec(InvestmentLineEntity_.PB_CODE, Direction.DESC),
24)
25).toList()
26

27 // Generate the attachment.
28 val attachment = rowTextGeneratorService.generate(lines,

R2LetterFieldExtractors.allFields).toByteArray()
29

30 // Send notification.
31 notificationService.sendNotification(notificationMapper.map(spool.

monitoring, attachments = arrayOf(attachment)))
32 }

68

User stories flows

33

34 }

In this section, we discussed the stories from among the three main categories:
calendar management, data ingestion, and validation processing. By conducting
an in-depth examination of each of the user stories beginning from the requirement
to implementation in code, we were able to understand the system architecture
comprehensively, along with the rationale for some key design decisions made and
the use of various design patterns. These were insights into patterns that included
aspects of factory design, modular service orchestration, and specification-based
query.

Even though we could not cover all the functions, these selected stories offered a
representative overview of the core operations within the system. These examples
showed how the API endpoints are structured, and also combined validation into
the workflow, as well as how reusable components are utilized to avoid redundancy
while enhancing application-wide consistency. This overview indirectly breaks down
how a similar process is applied otherwise to other functionalities-for example,
other API endpoints and validation jobs.

69

Chapter 5

Testing, Deployment and
Monitoring

This chapter discusses practices and processes that ensure the reliability, scalability,
and maintainability of the system and starts with discussions of the testing strategies
adopted, how they validate the correctness and performance of the system by unit
testing, functional testing, and quality assurance (QA). The deployment process
describes the next chapter in which the transition of the system from development
into production is performed with a high level of minimal downtime and robustness.
Towards the end of the chapter, the discussion of monitoring strategies will be
applied with a sense of how the health, performance, and compliance of the system
are observed constantly to ensure that things stayed in position for long-term
stability and operational excellence. Together, these will provide a full view of how
the system is verified, deployed, and maintained in a production environment.

5.1 Testing

In any software development lifecycle, testing plays an essential role in ensuring the
reliability, performance, and correctness of the application. For MiaGP, a robust
testing strategy was employed, covering unit testing, functional testing, and Quality
Assurance (QA) testing, each serving specific objectives in validating the system’s
behavior.

70

Testing, Deployment and Monitoring

5.1.1 Unit testing

Unit testing emphasizes testing the components in isolation, which are typically the
smallest pieces of the application, generally one function or method. The primary
concern is thus to test every significant edge case wherein some code outcomes
may be potentially incorrect. These tests aim for 100% code coverage, meaning all
branches, conditions, and statements are executed during testing.

Mocking of any interaction with dependencies is done to allow the test to focus
on the logic contained only within the unit under investigation. Mocking libraries,
such as Mockito, are widely used to simulate external calls or to stream in any
mock data to keep the unit test as limited in scope as possible. Unit tests are fast,
lightweight, and live in the Continuous Integration pipeline.

Here, the example below 5.1 demonstrates a unit test for the searchInvestment-
Lines method from the service class introduced in searchInvestmentLines. The
test mocks the dependencies, calls the method to be tested, and asserts the expected
result.

Listing 5.1: Search investment lines success unit test
1 @ExtendWith(MockitoExtension::class)
2 class InvestmentLineServiceTest {
3

4 @Mock lateinit var monitoringRepoService: MonitoringRepoService
5 @Mock lateinit var investmentLineRepoService: InvestmentLineRepoService
6 @Mock lateinit var querySpecConverter: LinesQuerySpecConverter
7

8 @InjectMocks lateinit var underTest: InvestmentLineService
9

10 @Nested
11 inner class SearchInvestmentLines {
12

13 @Test
14 fun `should succeed`() {
15 // given
16 val monitoringId = UUID.randomUUID().toString()
17 val page = 111
18 val pageSize = 222
19 val filter = FilterInfo.newBuilder().setField("product").setOperation("

EQUAL").setValue("XY")
20 val sort = SortingInfo.newBuilder().setField("var_max").setDirection("ASC

")
21 val request =
22 SearchInvestmentLinesRequest.newBuilder()
23 .setPage(page)
24 .setPageSize(pageSize)
25 .setMonitoringId(monitoringId)

71

Testing, Deployment and Monitoring

26 .addFilters(filter)
27 .addSort(sort)
28 .build()
29 val foundMonitoring = MonitoringEntity(
30 id = UUID.fromString(monitoringId),
31 type = MonitoringType.UNOFFICIAL_WEEKLY
32)
33

34 // some hidden variables
35

36 given { monitoringRepoService.findByIdOrThrow(any()) } willReturn {
foundMonitoring }

37

38 val pageMock = mock<Page<InvestmentLineEntity>>()
39 given { pageMock.number } willReturn { page }
40

41 // some hidden mocks
42

43 given { investmentLineRepoService.search(any(), any(), any(), any()) }
willReturn { pageMock }

44

45 // when
46 val actual = underTest.searchInvestmentLines(request)
47

48 // then
49 then(monitoringRepoService).should().findByIdOrThrow(UUID.fromString(

monitoringId))
50

51 // some hidden checks
52

53 assertThat(actual.page).isEqualTo(page)
54 assertThat(actual.pageSize).isEqualTo(pageSize)
55 assertThat(actual.totalCount).isEqualTo(0)
56 assertThat(actual.resultsList).isEmpty()
57 }
58 }
59 }

There are some aspects of this unit test worth highlighting, since it follows this
pattern across all project:

• Dependency Mocking: All dependencies declared in the service are mocked
using Mockito’s @Mock annotation. This ensures the unit test remains focused
on the service logic itself, isolating it from external dependencies such as
repositories or converters.

• Test Structure: The test follows the standard “given-when-then” pattern

72

Testing, Deployment and Monitoring

– Given: Mocks return specific values to simulate external dependencies.
– When: The function under test is called.
– Then: Assertions are made to validate the expected results and ensure

external methods were called as intended.

• Assertions: the test includes both:

– Assertions on the return values to ensure the service produces the expected
output.

– Verifications that external methods were called with the correct arguments,
ensuring proper interactions between components.

Although unit testing are important for catching edge cases and ensuring
consistency and reliability of the code, achieving a high level of coverage may
be time-consuming to implement because it requires careful accounting for every
conceivable branch and scenario within the code.

Figure 5.1: Code coverage of the application

The figure 5.1 above showcases the test coverage for MiaGP, demonstrating
an 87% coverage for classes, which is a strong indicator of comprehensive testing.
However, the method coverage appears lower at 38%, primarily due to the inclusion
of auto-generated gRPC code in the analysis by Jacoco, the test coverage tool.
These auto-generated files contain minimal tests, decreasing the results. When
excluding this folder from the analysis, we observe that out of 1256 methods,
853 are covered by tests, increasing the method coverage to a more accurate and
satisfactory 67%. Similarly, for lines and branches, excluding the generated code
adjusts the coverage to 65% and 53% respectively. These numbers reflect a more
realistic assessment and indicate the test coverage for the project was considerably
complete.

73

Testing, Deployment and Monitoring

5.1.2 Functional Testing

Functional testing evaluates the complete application by testing whole functionali-
ties from end to end. Unlike unit tests, these consider the underlying in a black
box and call and validate the outcomes over inputs and expected output. Tests
of this type for MiaGP may confirm that any data ingested into an instance of
the application set up in a controlled fashion will be correct within the resulting
database.

Functional testing usually relies on the usage of test containers, which execute a
full Spring application for each test class, together with an initialized database and
make sure that everything behaves as it should in a near-to-production environment.
Because of the higher computational costs and execution time, there are usually
fewer functional tests compared to unit tests. Such tests are most useful when the
assurance of proper work of some complex workflow—under realistic conditions, for
instance—should be provided. A good example is data ingestion combined with its
validation.

For the gRPC functional tests, the gRPC methods are tested as if they were
being invoked by an external client. This is achieved by starting the application
in a test container and using the generated gRPC stubs to create a client-like
interaction. Using these stubs, the test function can build and send requests to the
gRPC server and read responses, thus creating an effect of real usage. The method
guarantees that the methods under test can operate closely to the production
environment.

The dependencies may also be mocked during functional tests to ensure control
over the behavior of these components that could impact the test reliability. Let us
consider this example, where the clock bean is being mocked to return a fixed value.
With this technique, time-sensitive logic methods are insulated from arguments
concerning time apart from example-based testing. After invoking the gRPC
method, the outcome is guaranteed to be checked against the expectations.

Beans can also be mocked during functional tests so that dependencies can
be controlled in case they might affect the reliability of the test. Let us consider
the code below 5.2, where the clock bean is being mocked to return a fixed value.
This technique is useful for methods that depend on time-sensitive logic because it
ensures consistent and repeatable test outcomes. After invoking the gRPC method,
the outcome is guaranteed to be checked against the expectations.

Listing 5.2: Search investment lines success unit test
1 @SpringBootTest
2 @Testcontainers
3 class MonitoringServiceIT(

74

Testing, Deployment and Monitoring

4 @Autowired private val underTest: MonitoringService,
5 @Autowired private val repoService: MonitoringRepoService,
6) {
7

8 @Nested
9 inner class CreateMonitoring {

10 @Sql("/db/data/delete_all.sql")
11 @Test
12 fun `should succeed`() {
13 // given
14 val now = Instant.parse("2023-11-23T14:00:00.0000Z")
15 Mockito.`when`(clockCET.instant()).thenReturn(now)
16 Mockito.`when`(clockCET.zone).thenReturn(ZoneId.of("CET"))
17 val requestDate = "2024-12-06"
18

19 val request = CreateMonitoringRequest
20 .newBuilder()
21 .setMonitoringType(MonitoringType.MONITORING_TYPE_OFFICIAL_ADEQUACY)
22 .setScheduledDate(requestDate)
23 .build()
24

25 // when
26 val actual = underTest.createMonitoring(request)
27 assertThrows<ApplicationException> { underTest.createMonitoring(request)

}
28

29 // then
30 assertThat(actual).isNotNull
31 assertThat(actual.id).isNotNull
32 assertThat(actual.type).isEqualTo(MonitoringType.

MONITORING_TYPE_OFFICIAL_ADEQUACY)
33 assertThat(actual.scheduledDate).isEqualTo(requestDate)
34 assertThat(actual.validationStatus).isEqualTo(ValidationStatus.

VALIDATION_STATUS_NOT_STARTED)
35 }
36 }

5.1.3 Quality Assurance (QA) test

QA testing is the last stage before deployment to further environments and is
usually done by project managers or a dedicated QA team. This is where true
end-to-end testing is done, involving the whole application, including the web
application and how it talks with the backend. Unlike functional tests, QA testing
checks the user experience, ensuring the behavior of the frontend is proper and
easy to use, along with the correctness of the backend responses.

75

Testing, Deployment and Monitoring

QA testing is highly instrumental in the identification of issues that may not
come to the surface in isolated or automated test environments, such as inconsistent
user interfaces, performance bottlenecks, or unexpected edge cases in the applica-
tion’s workflow. This phase mostly includes user acceptance testing, whereby the
stakeholders act like real users in order to validate the application against business
requirements.

5.2 Deployment

The primary purpose of each deployment is to provide seamless transitions from
various environments relating to quality, stability, and reliability. The CI/CD
pipeline supported by GitHub Actions is at the basis of that transition. Such
pipelines have automated features that run builds and tests while publishing Docker
images into Artifactory in order to ensure that the whole deployment flow remains
steady and functional.

On top of it, deployments between the different environments are further simpli-
fied by using open-source framework called Backstage. This tool, set up by the
platform team, provides a centralized way to manage services that simplify deploy-
ment processes. More importantly, by making it easy to deal with this component,
the visibility of the versions and various deployment statuses to upgrade to the
next level becomes effortless with only a click away.

Meanwhile, versioning plays a significant role in this workflow. Each build
becomes versioned for traceability, so if something goes wrong during or after
deployment, rollbacks could be made easy. Version control organizes the history of
the deployments and guarantees that only a specific version of the application runs
in the various environments.

Figure 5.2: Backstage tool for deployment

76

Testing, Deployment and Monitoring

From the image 5.2, we can see the entire process of deployment divided into
three stages: development, staging normally referred to as UAT, and production.
Each stage has a different purpose that guarantees features are well tested before
they go to production.

• Development: This is the first stage at which new features and bug fixes are
integrated into the application. It serves as a first interaction point with the
frontend and gives quick feedback on how changes made in the backend align
with the needs of the frontend. Automated unit tests and functional tests will
also be run to catch any regressions early.

• Staging-UAT : The staging environment is a small version of the produc-
tion environment. It is mainly used for User Acceptance Testing. Different
stakeholders, like project managers or clients, interact with an application
to validate that new features cover business requirements. A great deal of
functional and QA testing is performed in this environment because the system
should behave as expected.

• Production: This is the final stage where the application is made to face the
real world. No feature makes it to production without being put through a
series of unforgiving tests in the stages described above. The focus of this
stage is stability, scalability, and availability, as any issues here directly impact
the end users.

5.3 Monitoring

Monitoring the application while it is in production is critical in order track the
health of the application. Issues can also be resolved much faster with the help of
performance insights-based real-time data on system performance, user behavior,
and potential issues.

When properly implemented, monitoring can ensure that any failures associated
either with slow speeds, lost transactions, or misbehavior in the system are quickly
identified and rectified. This would also help in determining usage patterns of a
system, which could be useful in making informed decisions regarding scaling or
the enhancement of features.

Specific custom logs declared in the code of MiaGP feed into a fully featured
monitoring dashboard in Splunk. Such logs capture important events and metrics,
like the statuses of data ingestion, validation processes, or spool executions. All this
information, after rolling up, gets visualized in the dashboard for easy access to the

77

Testing, Deployment and Monitoring

activity overview of the application and, thus, enables developers and stakeholders
to track its performance or diagnose issues efficiently.

Figure 5.3: Dashboard in Splunk

From the figure 5.3, some critical information about the current status and
operation of the system is shown: The dashboard summarizes the status and
availability of the databases, with metrics related to the ingestion process, such as
the count of investment lines ingested for both the weekly and official monitoring
runs. Also present is the execution history of the last schedulers executed, showing
their timestamps, and a status display of spools, including their type, time and
outcome. The comprehensive visualization thus provides an intuitive interface from
which key aspects of the system can be monitored and quickly troubleshot when
required.

78

Chapter 6

Conclusion

In conclusion, this project shows a great deal of improvement over its predecessor
legacy systems and already proved to greatly increase the productivity of the
dedicated teams currently using this tool. By understanding the old processes
and their limitations, it was possible to design and implement an application that
not only kept all previously existing critical functionalities-such as the automated
identification of thousands of inadequate investment lines based on client risk
profiles-but, even better, to improve them by way of automation, scalability, and
user experience.

User feedback confirms the impact of these improvements. Automating email
communication and developing the automatic investment line change (CLU) feature
has eliminated repetitive manual tasks which used consumable time, improving
time savings of approximately 80% in the data ingestion process and 90% during
line changes. The wealth management team has also improved in efficiency thanks
to advanced filtering, automatic data ingestion, and validation functionalities in
the workflows. The system has become so central to all daily activity that team
members would have to reschedule monitoring activities altogether in case the
system was down, indicative of its essential role.

The adoption of modern technologies such as Kotlin, Spring Boot, microservice
architecture, gRPC APIs, and CI/CD pipelines has enabled it to build a strong,
scalable, and efficient application. The system has been tested to be reliable and
effective in production, processing millions of investment lines of all the clients
from outside databases and fetching, on average, 15,000 inadequate investment
lines within approximately two minutes. This is achievable through parsing,
converting, and enriching raw data into valuable, structured information for users.
In comparison with the previous manual process that used to take about two full
working days due to data dependencies and manual updates, this is a significant

79

Conclusion

improvement in terms of efficiency and speed. The first live monitoring cycle was
completed following extensive testing in UAT, validating the system’s ability to
enable critical compliance processes.

According to user feedback, the new system has a number of notable advantages.
First, the users appreciated the automatic validation phase, which allows the system
to send relevant email notifications to the respective responsible offices in the bank.
This feature reduces the burden of manual communication by the user. Second,
the users appreciated the automatic submission of CLU files, which allow changes
on investment lines to be implemented more efficiently than before. Users rated
the ease of only using the new system compared to the old process an average of 9
out of 10, which indicates an improvement in overall usability.

Also, users reported increased confidence in the accuracy of the output data and
reliability of the data, especially found it easy to extract subsets of R4 cases and
exclude R4 cases for certain approvals. The underlying external databases have
not changed, but automating the processes of data extraction and automatically
excluding some investment lines with cycle status R4 from the CLU has decreased
the possibility of human error and inconsistencies when working manually.

The system has become essential itself in daily work, as users noted that if the
system stopped being available they would be disrupted, with one user commenting
that if the system was unavailable for a short time, monitoring activities would be
postponed until the issue was addressed. If the system was unavailable for a long
time, the previous manual processes would need to be resumed, but this would
require careful consideration to revisit all tasks that the automated the system
could handle.

One possible shortcoming that can be thought of the system, that does not
have to do with its design or the application itself, is relying on multiple external
components, such as the SQL Server database or the DB2 instance, that are not
controlled directly by who implemented it. Instead, these are databases used
organization wide that can evolve by themselves, such as column or table names
changing, discontinued automatic procedures, etc. Usually this is done with previous
communication where it allows systems that rely on them to adapt. However, this
means that the system requires possibly some attention in order to remain working
with no occurrences or faults.

However, from a user perspective, MiaGP allows them to work with greater
agility and confidence. Features such as advanced filtering, sorting, automatic
ingestion of data and validation mechanisms simplify complex workflows, while
automated communication spools ensure prompt dispatch of messages to clients
and stakeholders such as private bankers.

80

Conclusion

The project and internship, in terms of personal development, are invaluable
opportunities for applying the concepts learned in the university under real-world
situations. Getting the technical skills in software engineering practices and
microservice architecture, and coding ability is something very significant, but
even more valuable are the lessons in understanding the corporate environment.
The exposure to value delivery, deadlines, and working with diverse teams and
stakeholders was very rewarding and excellent preparation for future professional
challenges.

81

Bibliography

[1] Michael Hudson. Fund Managers: The Complete Guide. XYZ Publishing,
2019, pp. 209–216. isbn: 978-1-119-51534-0 (cit. on pp. 3, 4).

[2] Paul B. Miller and Andrew S. Gold. «Fiduciary Governance». In: William
Mary Law Review 57.2 (2015). Accessed: October 22, 2024, pp. 513–585. url:
https://scholarship.law.wm.edu/wmlr/vol57/iss2/4 (cit. on p. 4).

[3] Will Kenton. Markets in Financial Instruments Directive (MiFID) Definition.
Accessed: October 21, 2024. 2023. url: https://www.investopedia.com/
terms/m/mifid.asp (cit. on p. 4).

[4] Investment services and regulated markets. Accessed: October 16, 2024. 2024.
url: https://finance.ec.europa.eu/capital-markets-union-and-fin
ancial-markets/financial-markets/securities-markets/investment-
services-and-regulated-markets_en (cit. on p. 4).

[5] Martin Fowler and James Lewis. Microservices: A Definition of This New
Architectural Term. Accessed: Novermber 1, 2024. 2014. url: https: //
martinfowler.com/articles/microservices.html (cit. on p. 5).

[6] Sam Newman. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, 2021. isbn: 1492034029 (cit. on p. 7).

[7] Roy T. Fielding. «Architectural Styles and the Design of Network-based
Software Architectures». PhD thesis. University of California, Irvine, 2000
(cit. on p. 8).

[8] Nithin Pawar and Suraj Pitre. gRPC: Up and Running: Building Cloud Native
Applications with Go and Java for Microservices and the Cloud. O’Reilly
Media, 2020 (cit. on p. 9).

[9] Amazon Web Services. What is cloud computing? Accessed: November 14,
2024. url: https://aws.amazon.com/what-is-cloud-computing/?nc2=
h_ql_le_int_cc (cit. on p. 10).

82

https://scholarship.law.wm.edu/wmlr/vol57/iss2/4
https://www.investopedia.com/terms/m/mifid.asp
https://www.investopedia.com/terms/m/mifid.asp
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/financial-markets/securities-markets/investment-services-and-regulated-markets_en
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/financial-markets/securities-markets/investment-services-and-regulated-markets_en
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/financial-markets/securities-markets/investment-services-and-regulated-markets_en
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://aws.amazon.com/what-is-cloud-computing/?nc2=h_ql_le_int_cc
https://aws.amazon.com/what-is-cloud-computing/?nc2=h_ql_le_int_cc

BIBLIOGRAPHY

[10] Vincent Ugwueze. «Cloud Native Application Development: Best Practices
and Challenges». In: International Journal of Research Publication and Re-
views 5 (Dec. 2024), pp. 2399–2412. doi: 10.55248/gengpi.5.1224.3533
(cit. on p. 10).

[11] Junzo Watada, Arunava Roy, Ruturaj Kadikar, Hoang Pham, and Bing
Xu. «Emerging Trends, Techniques and Open Issues of Containerization:
A Review». In: IEEE Access 7 (2019), pp. 152443–152472. doi: 10.1109/
ACCESS.2019.2945930 (cit. on pp. 11, 12).

[12] Docker Documentation. What is docker? Accessed: November 23, 2024. url:
https://docs.docker.com/get- started/docker- overview/ (cit. on
p. 11).

[13] Adam L. Davis. Spring Quick Reference Guide: A Pocket Handbook for Spring
Framework, Spring Boot, and More. Accessed: November 29, 2024. Apress,
2021. isbn: 978-1-4842-6143-9. doi: 10.1007/978-1-4842-6144-6 (cit. on
p. 13).

[14] Kotlin Documentation. Kotlin Overview. Accessed: November 29, 2024. url:
https://kotlinlang.org/spec/introduction.html (cit. on p. 14).

[15] Ken Schwaber and Jeff Sutherland. The Scrum Guide: The Definitive Guide
to Scrum: The Rules of the Game. Accessed: January 23, 2025. 2020. url:
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-
US.pdf (cit. on p. 16).

83

https://doi.org/10.55248/gengpi.5.1224.3533
https://doi.org/10.1109/ACCESS.2019.2945930
https://doi.org/10.1109/ACCESS.2019.2945930
https://docs.docker.com/get-started/docker-overview/
https://doi.org/10.1007/978-1-4842-6144-6
https://kotlinlang.org/spec/introduction.html
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

	List of Tables
	List of Figures
	Introduction
	Background concepts
	Overview of the Domain
	Monolithic vs. Microservices Architectures
	Overview of Monolithic Architecture
	Microservices Architecture

	Communication Between Microservices
	REST APIs
	gRPC APIs

	Cloud Computing
	Cloud Service Models
	Benefits and Challenges of Cloud Computing

	Containerization and Docker
	Technological Choices
	Spring Boot
	Kotlin
	PostgreSQL
	Splunk

	Scrum and CI/CD
	CI/CD Pipelines

	System Architecture
	Understanding the old process
	Understanding the monitoring process
	Project description and objectives
	Software design
	Entities

	Back-end Architecture
	Communication between services
	External databases
	Security mechanisms
	Project Structure
	Dependency management with Maven
	Endpoints and protobuf file

	User stories flows
	Search investment lines
	Import of investments data
	Validation of a monitoring and spools

	Testing, Deployment and Monitoring
	Testing
	Unit testing
	Functional Testing
	Quality Assurance (QA) test

	Deployment
	Monitoring

	Conclusion
	Bibliography

