
POLITECNICO DI TORINO

MASTER’s Degree in INGEGNERIA

INFORMATICA (COMPUTER ENGINEERING)

MASTER’s Degree Thesis

eREG: Tokenization of Financial Instruments on a Public

Blockchain

Supervisors

Prof.ssa Valentina GATTESCHI

Dr. Enrico TALIN

Candidate

Serigne Cheikh Tidiane Sy FALL

APRIL 2025

eREG: Tokenization of Financial Instruments on a Public Blockchain

Serigne Cheikh Tidiane Sy Fall

Abstract

This thesis aims to explore the process of tokenizing financial instruments, an

innovation made possible by the recent Fintech decree and blockchain technologies.

The research will focus on the preliminary analysis of the regulatory framework and

the architectural technology choices that led to the selection of a public blockchain

for the issuance of security tokens, the design of a customized smart contract and

the development of a digital platform dedicated to financial instrument registry

administrators. The advantages and challenges of implementing a decentralized

financial management system will be examined, highlighting the role of regulatory

compliance and security in system design.

Table of Contents

1 Introduction 1

1.1 Thesis structure . 1

2 Context & Background 3

2.1 Introduction . 3

2.2 Regulatory Framework . 4

2.2.1 Regulation (EU) 2022/858 . 4

2.2.1.1 Overall Scopes and Goals 5

2.2.1.2 Structure of the Regulation 5

2.2.2 Fintech Decree-Law 2023 . 6

2.2.2.1 Structure . 6

2.3 Blockchain and Tokenization . 10

2.3.1 Blockchains . 11

2.3.2 Tokens and tokenization . 19

3 The technologies 23

3.1 Commercio.network . 23

3.1.1 Smart contract lifecycle management 26

3.2 Platform Backend . 33

3.2.1 Structure . 34

4 CW858 Smart Contract & eREG implementation 41

4.0.1 Smart contract overview . 41

4.0.2 How to write smart contracts 43

4.0.3 CW858 implementation . 46

4.0.4 Events . 59

4.0.5 eREG Backend . 61

5 Tests and Results 66

5.1 Tests . 66

5.1.1 CW858 tests . 66

5.1.2 Backend tests . 67

5.2 Results . 67

6 Conclusions 72

II

TABLE OF CONTENTS

Bibliography 74

III

List of Figures

2.1 Regulatory Framework . 4

2.2 Public blockchain . 13

2.3 Private blockchain . 14

2.4 Hybrid blockchain [6] . 15

2.5 Federated blockchain . 16

2.6 Permissionless and Permissioned blockchains [6] 17

2.7 CryptoKitties [9] . 19

2.8 Classification of Tokens . 21

3.1 Blockchain’s modules . 24

3.2 WASM module interactions . 33

3.3 Backend infrastructure . 34

3.4 Sequence diagram . 36

3.5 Infrastructure sequence flow . 38

4.1 Hybrid Tokens [20] . 47

4.2 Layered Architecture [22] . 62

4.3 APIs . 63

4.4 Controller flow . 64

5.1 Type of financial instrument to issue 68

5.2 Main informations . 69

5.3 Official documentation to attach . 70

5.4 Initial token holders . 70

5.5 Final business rules . 71

IV

Chapter 1

Introduction

The increasing digitalization of financial markets, along with the adoption of Dis-

tributed Ledger Technology (DLT), has created new forms of investment and asset

management. The 2023 Fintech Decree together with EU Regulation 858/2022, has

established and defined the regulatory framework for the issuance and management

of digitized financial instruments, also known as security tokens.

This thesis aims to illustrate how these regulations have been applied in the

development of the eREG platform, a system designed for the tokenization of financial

instruments, supported by a secure and transparent blockchain infrastructure.

The objectives of this project include:

• the analysis of the integration of fintech regulations in the development process

of a blockchain-based platform and its application.

• the selection of a public blockchain, with a particular focus on security, trans-

parency, and decentralization against the other types of blockchain.

• the study and development of a customized smart contract for the management

of transactions and investor rights regarding financial instruments.

• the description of the creation of a dedicated platform for registry administrators,

enabling the management and supervision of issued financial instruments.

1.1 Thesis structure

The goal of this document is to walk the reader through all the phases and provide an

overall understanding of the work that has been done. In particular, an overview of

the needs, the state of art and the requirements is supplied and also a comprehensive

and exhaustive explanation of the implementation of the project.

1

Introduction

Furthermore, to achieve what we just stated, the document has been divided into

the following chapters.

• Context & Background

In this chapter a context will be given to the reader and the necessary back-

ground to be able to understand the upcoming chapters.

In particular, a description of the regulatory framework will be given, explaining

the Regulation EU 2022/858 then the Fintech Decree and their relation. Addi-

tionally, since the thesis is discussing the tokenization of financial instruments,

an overview of the main types of blockchain will be provided and we will discuss

also the main types of tokens, from the NFTs to the fungible tokens.

• The technologies

This chapter instead, will describe in detail the employed technologies. Starting

from the Commercio.network blockchain, an overview of its module composition

and the imported modules, in particular the Wasmd module, will be provided.

Specifically, the chapter will focus also on the smart contract life management,

describing all 3 phases.

Furthermore, we will dig into the structure of the backend infrastructure,

explaining each component and their implication in this project.

• CW858 Smart Contract & eREG implementation

Here, the actual implementation of the project is described. As for the tech-

nologies, also in this chapter, we describe the implementation of the CW858

smart contract developed in Rust and then the implementation of the Golang

Backend.

Specifically, an overview of what is a smart contract and its main entry point

will be provided to the reader. As well as how to write a smart contract within

this scope. Successively, the implemented smart contract will be explained.

However, the attention will be on the messages, their structures and what they

actually represent.

At the this stage, the chapter will introduce and describe the architecture

design of the Backend and the implemented APIs to support a user to interact

with the smart contract. Additionally, the focus will be on the business logic of

the software application.

• Tests and Results

Finally, in this chapter, an overview of how the tests were conduced within the

different environments will be provided for both the smart contract and the

backend.

Ultimately, the attended results will be described to the reader and some

representation of the Frontend will be provided for better insight.

2

Chapter 2

Context & Background

2.1 Introduction

The rapid advancement of blockchain technology has initiated an evolutionary era

in the financial sector, introducing new concepts that challenge traditional financial

paradigms. Central to this evolution is the process of tokenization, which converts

rights or assets into digital tokens on a blockchain, thereby enhancing their liquidity,

transparency and accessibility.

This chapter provides an in-depth examination of the regulatory framework

governing tokenization, in particular the Regulation (EU) 2022/858 and Italy’s

Fintech Decree No. 25 of March 17, 2023. These legislative measures represent

significant steps towards integrating distributed ledger technology (DLT) within the

European and Italian financial systems, aiming to foster innovation while ensuring

robust investor protection and market integrity.

Understanding the underlying technology is crucial for appreciating the impli-

cations of these regulatory developments. Therefore, this chapter discusses the

fundamentals of blockchain technology, beginning with its definition and key

properties. The core characteristics of blockchain: decentralization, immutability

and distribution are explained in detail. Decentralization eliminates the need for

central authorities, immutability ensures data integrity, and distribution enhances

the security of the network.

The chapter also examines the various types of blockchains and their respective

applications. Public blockchains, such as Bitcoin and Ethereum, are open and

permissionless, while private blockchains restrict participation to specific users. On

the other hand, hybrid blockchains integrate properties from both public and private

blockchains; meanwhile, consortium blockchains operate under the governance of a

group of companies.

3

Context & Background

Furthermore, this chapter discusses also the variety of tokens that blockchain

technology supports and the process of tokenization, detailing how assets are

transformed into digital tokens on a blockchain.

Through this exploration of regulatory frameworks, blockchain fundamentals,

token classifications and the tokenization process, this chapter seeks to offer a

comprehensive understanding of how blockchain technology is changing the financial

landscape.

2.2 Regulatory Framework

Figure 2.1: Regulatory Framework

About the regulatory framework, the European Union introduced a key decree to

address the integration of Distributed Ledger Technology (DLT) in financial markets.

This decree aims to establish a pilot regime for the issuance, trading, and settlement

of financial instruments across all the EU members in a harmonized and compliant

manner. However, in Italy, upon the proposal of the Minister of Economy and

Finance, the Fintech Decree was issued by the Italian Council of Ministers and

later signed by the President of the Republic for its promulgation. This decree is

part of the Government’s policies aimed at promoting technological innovation and

regulating the use of blockchain and DLT technologies in the financial sector, in line

with the country’s digitalization and competitiveness goals. Hereafter, we’ll go for a

deeper observation of these two key decrees that have defined, among other things,

the skeleton of our project.

2.2.1 Regulation (EU) 2022/858

As previously introduced, Regulation (EU) 2022/858 was enacted by the European

Union to establish a pilot regime for regulating financial market infrastructures

4

Context & Background

based on DLT. This regulation provides a controlled environment that enables

financial institutions to experiment with blockchain-based issuance and settlement of

financial instruments. The main goal is to ensure the safe and effective integration

of blockchains and DLTs into financial markets while addressing potential risks and

challenges.

2.2.1.1 Overall Scopes and Goals

In general, the main purposes of the Regulation (EU) 2022/858 are:

• Easing innovation: by encouraging the adoption of solutions based on DLT

technology inside the financial sector by building a legal framework sandbox.

• Ensuring market integrity and stability: by preventing market abuse

establishing appropriate measures and ensuring the stability of financial markets

during the transition to systems based on DLT.

• Enhancing harmonization among EU members: by providing a unified

set of rules across EU member to ensure consistency.

• Protecting investors: by establishing measures to safeguard the rights and

interests of investors within the DLT ecosystem.

• Regulatory flexibility: by allowing national authorities, like CONSOB, to

promote the experimentation by granting exemptions from certain EU financial

regulations but providing adequate limitations in the same time.

2.2.1.2 Structure of the Regulation

However, the Regulation (EU) 2022/858 is structured into various key components,

in particular:

• Definitions and scope: this component defines the key terms and systems,

the scope of application and the concerned types of financial instruments.

• Pilot regime requirements: this component instead, provides the conditions

under which the financial institutions must handle market infrastructures based

on DLT including the requirements for obtaining authorization.

• Exemptions and safeguards: it outlines the specific exemptions that may

be granted to participants from the existing EU financial regulations, while

defining the safeguards required to mitigate associated risks.

5

Context & Background

• Oversight and supervision: specifies the obligation of national and EU-level

regulatory authorities in monitoring the adherence to the regulation, ensuring

compliance and addressing potential violations.

• Reporting and evaluation: it outlines the requirements for participants to

submit reports on their activities and performance within the pilot regime. It

also establishes a process for evaluating the pilot’s success in achieving its goals,

enabling the regulators to identify possible improvements and make decisions

about the regime’s future.

2.2.2 Fintech Decree-Law 2023

Following the European framework, the Italian Council of Ministers issued the Fintech

Decree to provide a tailored regulatory framework for the integration of Distributed

Ledger Technology (DLT) within the national financial sector. This decree aims

to address the specific operational, legal and technological needs of the national

market by establishing guidelines for the use of blockchain-based systems. Moreover,

according to Italia Fintech:

“the decree seems to be aimed at addressing, among other things, the following objec-

tives: i. Adjusting financial regulation in order to allow the use of new technologies,

in line with the principle of technology neutrality; ii. Making DLT market infrastruc-

tures interoperable with those of the traditional financial system; iii. Allowing SMEs

to issue debt instruments directly on the blockchain.” [1]

Going more into details, the Fintech Decree consists of several key chapters

(Capitoli), each addressing fundamental aspects such as the authorization procedures,

the operational requirements, the investor protection measures, the transition strategy

and finally the description of the roles of the supervisory authorities. These chapters

together aim to create an exhaustive and transparent framework that makes easier

the experimentation from companies, ensures market integrity and grows investor

confidence.

The upcoming section will break down the structure of the decree, providing an

overview of each chapter and its specific focus areas.

2.2.2.1 Structure

The decree is structured into IX chapters including a total of 35 articles. Each

chapter is dedicated to a specific regulatory theme providing detailed provisions and

guidelines tailored to address key aspects as outlined below.

• Chapter I: Definitions and Scope of Application

This chapter provides the definitions of key terms used throughout the decree

6

Context & Background

and specifies the scope of its application, including the entities and the digital

financial instruments covered.

Some key definitions are, for instance, the individuation of three different

categories of DLT market infrastructures, specifically:

i. DLT Multilateral Trading Facilities (“DLT MTFs”) 1

ii. DLT Settlement Systems (“DLT SS”) 2

iii. DLT Trading and Settlement Systems (“DLT TSS”) 3

Two additional key definitions are referred to Digital Financial Instru-

ments and Register Administrator. The following categories of financial

instruments fall under the definition of digital financial instruments [1]:

a) shares referred to in Book Five, Title V, Chapter V, Section V of the

Italian Civil Code;

b) bonds referred to in Book Five, Title V, Chapter V, Section VII of the

Italian Civil Code;

c) debt securities issued by limited liability companies pursuant to Article

2483 of the Italian Civil Code;

d) additional debt securities whose issuance is permitted under Italian

law ((as well as debt securities governed by Italian law issued by issuers

other than Italian issuers));

e) depositary receipts related to bonds and other debt securities of non-

domiciled issuers issued by Italian issuers;

f) money market instruments governed by Italian law;

g) shares or units of Italian collective investment undertakings

referred to in Article 1, paragraph 1, letter l), of the TUF (Italian Consol-

idated Law on Finance).

While these categories outline the financial instruments described in Article

2, the Register Administrator is defined as either the issuer or a third party

designated by the issuer, which is listed in the register referred to in Article 19,

paragraph 1 of this decree.

• Chapter II: Common Provisions for the Issuance and Circulation of

Digital Instruments

This chapter outlines the general rules for the issuance and transfer of digital

financial instruments. Here are some key aspects and references to the main

articles that are involved in this project:

1DLT MTF is a multilateral trading facility operated by an investment firm or by an authorized
market operator

2DLT SS is a settlement system that establishes transactions including DLT financial instruments
against payment or delivery of these financial instruments

3DLT TSS is a DLT MTF or DLT SS that merges services performed by a DLT MTF and a DLT
SS

7

Context & Background

– Article 3: Issuance and Transfer of Digital Financial Instru-

ments

This article outlines the general rules for issuing and transferring digital

financial instruments. It specifies the requirements for the issuance pro-

cess and the conditions under which these instruments can be transferred

between parties.

– Article 4: Requirements of the Registers for Digital Circulation

This article details the requirements for registers that manage the circula-

tion of digital financial instruments. It includes the necessary information

that must be recorded in these registers and the standards for maintaining

the records accurate and up-to-date.

– Article 5: Effects of Entry in the Register

This article explains the legal effects of entering a digital financial instru-

ment into the register. It clarifies the rights and obligations that arise

once an instrument is officially recorded.

– Article 9: Establishment of constraints

This article discusses the creation of constraints on digital financial instru-

ments. It describes the conditions under which these constraints can be

established and their legal implications.

– Article 12: Issuance Information in the Register

This article details the information that must be included in the register

when issuing digital financial instruments. It ensures transparency and

accuracy in the issuance process.

• Chapter III: Digital Financial Instruments Not Registered with a

DLT TSS or DLT SS

This chapter focuses on digital financial instruments not registered with a DLT

trading and settlement system (DLT TSS) or DLT settlement system (DLT

SS). Some provisions that it includes are:

a) Article 18: Issuance of Digital Financial Instruments Not Reg-

istered with a DLT TSS or DLT SS

This article defines the procedures for issuing digital financial instruments

that are not registered with a DLT TSS or DLT SS. It specifies the re-

quirements and conditions that have be met to issue financial instruments.

b) Article 19: List of Register Administrators for Digital Circula-

tion

This article establishes a list of register administrators for maintaining

the registers of digital financial instruments. It also describes the criteria

for selecting and approving these administrators.

c) Article 23: Obligations of a Register Administrator

This article sets for the register administrator a series of obligations

relating, among other things, to the general conduct, to the need to

8

Context & Background

ensure security, to the operational continuity and to the recovery of the

register and also the obligations to inform the public about the operational

procedures of the register itself.

• Chapter IV: Supervision of the Issuance and Circulation of Digital

Financial Instruments

This chapter assigns supervisory responsibilities to CONSOB and the Bank

of Italy, specifying their respective roles and the obligations and requirements

under the decree. It also defines the specific powers granted to them over the

register administrators. Specifically, Article 28 grants to CONSOB the power

to dictate the implementation of the provisions, detailing their content and

scope.

• Chapter V: Provisions Related to the Application of Regulation (EU)

2022/858

This chapter focuses on the provisions related to the application of Regulation

(EU) 2022/858. It addresses the authorizations, powers and roles of CONSOB

and the Bank of Italy in enforcing and managing the regulation.

• Chapter VI: Sanctions

This chapter focuses on sanctions and enforcement mechanisms to ensure the

observance of the regulation. It specifies that the fines for the violations range

from a minimum of €5000 to a maximum of €5 million. The chapter also

describes the roles of the supervisory authorities in investigating breaches and

imposing sanctions.

• Chapter VII: Amendments to the Consolidated Law on Finance4 and

Final Provisions

This chapter includes modifications to the Italian Consolidated Law on Finance

to incorporate digital financial instruments issued using DLTs. It also provides

transitional provisions, specifying temporary measures for enrolling register

administrators and detailing the roles of CONSOB and the Bank of Italy.

However, within three years, these authorities must produce a report on the

market impact and on the regulatory effectiveness to the FinTech Committee

and Parliament.

• Chapter VIII: Simplified Procedures for FinTech Experiments

This chapter specifies in Article 33 that activities carried out as part of Fintech

experimentation, within the limits set by the admission measures, are not

considered as habitual performance of reserved activities under the definition

of investment services and activities. Consequently, they benefit from an

exemption from the requirement to obtain authorization.

• Chapter IX: Final Provisions

This chapter covers the financial and procedural aspects related to the decree.

4as known as Testo Unico della Finanza (TUF)

9

Context & Background

In particular Article 34 regulates the potential revenues generated from the

sanctions outlined in Article 30 and includes a financial invariance clause to

ensure no additional load on public finances. Lastly, Article 35 specifies the

date on which the decree takes effect.

In general, Regulation (EU) 2022/858 and the Fintech Decree of March 17, 2023

are closely correlated since the Fintech decree was issued to adapt the European

regulation to the Italian framework. The table below outlines the key differences

between the two regulations to provide a clearer view of the regulatory framework.

Aspect
Regulation EU

2022/858
FinTech Decree of March

17, 2023

Objective

Establish a pilot regime
for market

infrastructures based on
DLT

Implement urgent provisions
on the issuance and

circulation of digital financial
instruments

Scope
Covers DLT market
infrastructures for

financial instruments

Focuses on digital financial
instruments and simplification
of FinTech experimentation

Regulatory
Framework

Provides a temporary
common EU pilot regime

Aligns with EU regulations
and introduces national rules

for digital financial
instruments

Supervision

Supervised by national
authorities and the

European Securities and
Markets Authority

(ESMA)

Supervised by CONSOB and
the Bank of Italy

Reporting
Requires reporting on

market phenomena and
regulatory effectiveness

Requires reporting to the
FinTech Committee and

Parliament

Table 2.1: Comparison of Regulation EU 2022/858 and the FinTech Decree

2.3 Blockchain and Tokenization

Given that our project focuses on the tokenization of financial instruments, this

section will provide a comprehensive overview of blockchain technology, highlighting

its key properties and the various types of blockchains. Additionally, it will discuss

the different categories of tokens, with particular attention to security tokens.

10

Context & Background

2.3.1 Blockchains

A blockchain is a decentralized digital ledger that securely records transactions across

a network of computers called nodes. Each transaction is processed by the nodes

and registered into a block. These blocks form a chain of data as an asset moves

from place to place or ownership changes. The blocks embed the exact time and

sequence of transactions, and they link securely together to prevent any block from

being altered or a block being inserted between two existing blocks.[2]. Some key

properties of a blockchain include that it’s decentralized, immutable and distributed.

• Decentralized:

the control, in a blockchain, is not centralized under a single entity. Instead,

the network operates on a distributed group of computers, called nodes, each of

them carrying a copy of the ledger. This removes the need for intermediaries,

such as banks or governments, and allows transactions to occur directly between

participants. Decentralization makes blockchain more resilient to failures and

attacks, since there is no single point of control in the system. This approach

enhances trust among participants as decisions are made collectively through

the consensus network. [3]

• Immutable:

blockchains are designed to be tamper-proof. Once a transaction is recorded

and added to the chain, it cannot be changed or removed. This is achieved

through cryptographic hashing. In a blockchain, each block contains its own

hash and the hash of the previous block, forming a cryptographically linked

chain. For instance, if the content of a block is altered, the hash of that block

changes, invalidating the hash reference stored in the subsequent block. This

chain behaviour affects the entire blockchain, compromising its integrity. To

restore the chain, the attacker would need to recalculate the hashes for all

the subsequent blocks and gain control over the majority of the network’s

computational power, that is computationally and practically unfeasible in well

established networks. This process guarantees the immutability and reliability

of the data stored in the blockchain.[4]

• Distributed:

a blockchain operates as a shared ledger that is distributed across all participants

in the network. Each node(computer), depending on the type, maintains a full

copy of the blockchain and independently validates every new transaction. This

guarantees that is not a single entity controlling the data but all participants

have equal access to the same information and power. Even if some nodes

fail or are compromised, the blockchain continues to operate smoothly. Hence,

the distributed nature of blockchain not only ensures high availability but also

reduces the risk of data manipulation or loss. [2]

11

Context & Background

Apart from these fundamental characteristics of blockchain technology, there are

several different types of blockchains. They mainly differ in terms of permissions,

structure, and governance. Specifically, the main categories of blockchains are:

Public blockchains, private blockchains, Federated and Hybrid blockchains.

Public blockchains as known as permissionless

This type of blockchain allows anyone to participate because, as the category name

suggests, it’s public. A public blockchain is fully decentralized, meaning that the

control over the network is not in the hands of a single entity. In addition, anyone

with an internet connection can join, participate, and interact by reading, writing, or

auditing data. As a result, all the transactions and the records are publicly accessible,

allowing users to review blockchain activity at any time.

Public blockchains are also referred to as permissionless blockchains since they

enable any user to generate a personal address and become a node within the network

without requiring approval or any kind of permissions. Furthermore, all nodes have

equal access rights, which allows them to fully participate in creating and validating

blocks. To achieve this last operation, in the case of a consensus 5 based on Proof-

of-Work (PoW), they have to solve complex computations to validate a transaction.

There are also other main consensus mechanisms like Proof-of-Stake (PoS) that is

based on the amount of tokens staked by the node and the Proof-of-Authority (PoA)

that is based on authorizations and is usually adopted in private blockchains.

One of the key advantages of public blockchains is their high level of transparency

and security. Since a large number of nodes validate transactions, it becomes

significantly more difficult for hackers to manipulate the system. Additionally, once

a transaction is confirmed and recorded on the blockchain, it cannot be altered or

modified, ensuring data integrity and immutability. In the other hand, the main

disadvantages are that the network being this large, processing a block becomes

slower and as it grows the speed rate decreases. Another negative side of this type of

blockchain is that being completely decentralized, transparent and having anonymous

transactions, it’s very challenging to track frauds which results in limited protection

for non-expert users.

5“A consensus mechanism is the programming and process used in blockchain systems to achieve
distributed agreement about the ledger’s state or the state of a data set. Cryptocurrencies, blockchains,
and distributed ledgers benefit from their use because consensus mechanisms replace much slower
and sometimes inaccurate or untrustworthy human verifiers and auditors.” [5]

12

Context & Background

Figure 2.2: Public blockchain

Private blockchains

In this category of blockchain, only authorized nodes can participate in the consensus

mechanism. In fact, a private blockchain is not open to the public, as the name

suggests, but it’s close to a private network of companies or organisations with a

central entity that regulates its functions. Different from a public blockchain, in this

type of blockchain, the nodes don’t have all the same level of permissions and level

of participation and each one of them is attached to a verified identity. Furthermore,

private blockchains are by definition a lot smaller than public blockchains because of

their closure to a few verified participants resulting into a faster blockchain that can

process copious transactions per second.

Key advantages of a private blockchain are the speed, as just mentioned, because

of its size and also the scalability of the network. The companies or organisations

that use private blockchains can easily define the size of the network by adding or

removing nodes. Another advantage is that since the credentials of the nodes are

stored on the chain and since the identities of the nodes are verified, it makes easy

to track frauds and therefore permits businesses to leverage blockchain technology

while maintaining the desired level of transparency and privacy.

However, there are some disadvantages to face in private blockchains. From the

small size of the blockchain we gain speed but we pay in the measure of security

since it’s easier for an attacker to gain control over the network and manipulate the

transactions, action that is unfeasible on public blockchains. Another pain point is

13

Context & Background

that since the number of nodes is limited, the disruption of one of them can expose

the whole network. Additionally, private blockchains are built breaking one of the

main feature of blockchain: decentralisation. In fact, in this type of network, there is

a central entity regulating the activities, thus breaking a fundamental principle.

Figure 2.3: Private blockchain

Hybrid blockchains

The third type of blockchain is a combination between public blockchains and

private blockchains, merging the best features from each side. In particular, hybrid

blockchains are private networks within public blockchains, allowing companies to

leverage both privacy and freedom simultaneously. In hybrid blockchains there is a

central authority, like in private networks, that controls what data are meant to be

kept private and what data can be shared in the public network. This central entity

still cannot manipulate the transactions but only can define the level of privacy,

hence the immutability property of a blockchain is still valid.

One key advantage of this type of blockchains is its structure, since it combines

the best of public blockchains and private blockchains, being tempting for companies

that want privacy on some transactions while having the possibility to work on a

public blockchain. Usually this kind of blockchain suits highly regulated organisations

like banks and companies that need to operate with a large public while keeping

private some transactions, like real estate. In the other hand, a hybrid blockchain

14

Context & Background

can be very complex to maintain and to manage compared to the previous categories.

Figure 2.4: Hybrid blockchain [6]

Federated or Consortium blockchains

This last type of blockchain differentiates mostly from the private blockchain for the

fact that there is not only a single entity that governs and controls the network but a

set of companies. Indeed, consortium blockchains are built by a group of companies

that reunite and operate on a blockchain to solve real world problems in the interest

of the whole network. In a federated blockchain, the number of nodes is defined a

priori and usually each company in the consortium controls a pre-defined subset of

these nodes. In particular, these nodes participate in the governance of the network

and have to vote for every block.

Moreover, the main advantages from this type of blockchain are that the blocks

are verified by a consortium and at the same time hidden to the public, hence only

the participants of the network can view them. Additionally, federated blockchains

are scalable and fast, properties given by their contained size. Finally, having several

companies that govern this network keeps it decentralized, maintaining the native

property of a blockchain.

On the other hand, the drawbacks of this type of blockchain include limited

transparency, as it is not accessible to the public, and governance challenges, as

companies may face disagreements in decision-making.

15

Context & Background

In our project, we rely on Commercio.network, the company’s blockchain.

Commercio.network was born as a federated blockchain open to 250 million of

companies that can, each of them, manage a node. There are also 100+ companies

that manage a validator node that have to sign every block to make it valid. [7].

Furthermore, Commercio.network is decentralized, has a governance of 100+ com-

panies and private transactions between network’s participants. During the years,

Commercio.network became a public blockchain open to every subject with an

internet connection.

Figure 2.5: Federated blockchain

Finally, all four types of blockchains can be grouped into two main classes:

Permissionless and Permissioned. Public blockchains belong to the first class

while private and federated blockchains belong to the permissioned world. Hybrid

blockchains belong to both classes since they combine both public and private

blockchain properties, as we know.

16

Context & Background

Figure 2.6: Permissionless and Permissioned blockchains [6]

In conclusion, here is a table to confront the main features from each type of

blockchain and the main disadvantages, all together. It also includes some example

blockchains for each type, to better visualize the general view.

17

Context & Background

Feature
Public

Blockchain

Private

Blockchain

Consortium

Blockchain

Hybrid

Blockchain

Permission Permissionless Permissioned Permissioned

Permissioned

and

Permissionless

Access

control

Open to

everyone

Restricted to

authorized

participants

Restricted to

consortium

members

Combination of

private and

public

Transparency

All

transactions

are publicly

viewable

Transactions

are private

Limited

transparency,

depends on

consortium

rules

Can have both

public and

private data

Security

Highly secure

due to

complete de-

centralization

Secure due to

limited access

Secure, but less

decentralized

than public

blockchains

Security

depends on

design

Efficiency &

Speed

Slower due to

large network

size

Faster due to

limited

participants

Faster than

public

blockchains

Speed and

scalability

depend on

design

Governance
No central

authority

Controlled by a

single entity or

authority

Controlled by a

consortium of

organizations

Can have

centralized and

decentralized

elements

Drawbacks

High energy

consumption,

slower

transactions

Less

decentralized,

potential

security risks

Requires trust

between

consortium

members

Complexity in

maintenance

and design

Examples
Bitcoin,

Ethereum

Hyperledger

Fabric, Quorum
R3 Corda Komodo

Table 2.2: Key features of the 4 types of blockchain

18

Context & Background

2.3.2 Tokens and tokenization

As we know in blockchain, there are some objects called Tokens. A token is a digital

representation of value, ownership, or access rights that can be traded, exchanged, or

utilized within a specific blockchain ecosystem [8]. In general, we can distinguish two

main categories of tokens: Fungible tokens and Non fungible tokens (NFTs).

The first category includes all kinds of tokens that are interchangeable and for

instance, one Bitcoin token is perfectly equal to another Bitcoin token, they have

the same value and utilization. Meanwhile, Non-Fungible tokens (NFTs) are unique

tokens and cannot be replicated or exchanged for other tokens on a one-to-one basis.

Each token is singular and different from the others. This fundamental characteristic

makes them suitable for use in fields like Art, Collectibles and Real estate. One

of the most famous use cases of NFTs is that of CryptoKitties. These NFTs are

representations of unique digital cats on Ethereum’s blockchain. Each Kitty has a

different set of characteristics and a different price from the others. Users could buy

them, collect them and breed them. In a short time, this game generated a fan base

that spent millions of dollars on it.

Figure 2.7: CryptoKitties [9]

Coming back to the Fungible tokens, we can extrapolate four main types of tokens:

Utility tokens, Payment Tokens, Stablecoins and Security Tokens. However,

it is important to notice that this types are not mutually exclusive, hence a token

can belongs to more types since they can be used in different ways.

1. Utility Tokens

These tokens are made to allow users to interact with specific applications

and access specific products and services. They are not meant for trading

19

Context & Background

or used for investments. Their frequent use as a mean of transaction or as

a mechanism to access premium features helps to demonstrate the general

viability and sustainability of a blockchain platform. Usually, companies issue

these tokens during Initial Coin Offerings (ICOs) 6 or Token Generation Events

(TGEs) 7 as a way to raise capital, while simultaneously providing token holders

with the ability to use or interact with the project’s offerings. For instance,

Commercio.network has a utility token called Commercio Token (COM)

that is native. It has a limited capability of 60 millions tokens and this number

can not be changed like BITCOIN [10].

2. Payment Tokens

The second type of tokens are also referred to as cryptocurrencies of digital

currencies since they are intended to facilitate the transfer of value within a

decentralized network. They are used as a medium of exchange, enabling users

to conduct transactions and settle payments without the need for intermediaries,

such as banks or payment processors. Payment tokens are so useful because

they provide quicker, safer and less expensive monetary transactions than more

traditional means.

The most famous and well-known payment token is Bitcoin (BTC).

3. Stablecoins

This token is designed to minimize price volatility and so meet the needs of some

users. In fact, stablecoins are usually pegged to assets such as Fiat currencies,

for example the US dollar, gold or a collection of currencies. These tokens aim

to combine the stability of traditional assets with the benefits of blockchain

technology, such as speed, security, and global accessibility.

Some of the popular stablecoins available in the market are for instance, the

USD Coin (USDC), Binance USD (BUSD) and Tether (USDT).

4. Security Tokens

These tokens are investment tokens and represent ownership of real-world

assets and they are subject to the same financial regulation. These tokens

are the intersection of the blockchain technology with the traditional financial

instruments, such as bonds, stocks and real estate. This means that security

tokens offer to investors various financial rights, such as ownership, profit-

sharing, dividends, or voting rights in a company. Security tokens are important

because they carry many advantages for both investors and companies. One key

6ICO is a fundraising mechanism in blockchain where new projects sell their underlying utiliy
tokens in exchange for capital.

7TGE is a process by which a blockchain project creates and distributes its native tokens. Similar
to an Initial Coin Offering (ICO), TGEs are often used to raise funds, but the primary focus is on
the technical process of token creation. TGEs involve the minting of new tokens on a blockchain
platform, which are then allocated to investors, contributors, or other participants as outlined in the
project’s roadmap. This term emphasizes the technological aspect of token issuance rather than the
fundraising angle.

20

Context & Background

advantage, is that security tokens remove the need of financial intermediaries

as they allow companies to directly issue their products on the public market

and investors to directly access the securities. Additionally, since there are less

entities in the process, numerous fees that were paid to the intermediaries are

no more due, the process of managing securities is faster and the complexity

is lower. Moreover, security tokens allow companies to fractionate high-value

assets giving the possibility of small investors to access the market, resulting

into a bigger market. Smart contracts, make the exchange faster, automated

and more safe for investors.

Since security tokens must comply with the regulatory framework of the assets

they represent, until recently, no specific framework existed in Europe or Italy

to regulate them. However, the introduction of Regulation (EU) 2022/858 and

the Fintech Decree has provided European and Italian companies with the

opportunity to experiment with this technology, as previously discussed. In

this context, our project aims to tokenize financial instruments through the

development of the CW858 smart contract, designed to issue securities in full

compliance with the regulatory framework and we will discuss it in details later.

Additionally, the associated platform will facilitate the interaction between

issuers, register administrators and the smart contract on the blockchain

ensuring seamless compliance and operational efficiency.

Tokens

Fungible Tokens

Utility Tokens Payment Tokens Stablecoins Security Tokens

Non-Fungible

Tokens (NFTs)

Figure 2.8: Classification of Tokens

In this context, we will briefly introduce the concept of tokenization. This

process involves the conversion of rights or assets into digital tokens recorded and

managed on a blockchain. This mechanism enhances the liquidity, transparency, and

accessibility of various assets, facilitating more efficient and inclusive financial markets.

Moreover, tokenization can be defined as: the process of converting ownership rights

or interests in an asset into a digital token on a blockchain. Each token represents a

21

Context & Background

fraction or the entirety of the asset, allowing it to be traded and managed digitally.

This process involves several technical and legal steps to ensure that the digital token

represents the underlying asset and complies with the relevant regulations. These

steps typically include:

• Asset Identification: Identifying the asset to be tokenized, such as real estate,

commodities, securities, or intellectual property.

• Smart Contract Creation: Developing a smart contract that defines the

terms and conditions of the token, including ownership rights, transfer rules

and compliance requirements.

• Token Issuance: Minting the digital tokens based on the smart contract’s

specifications and recording them on the blockchain.

• Distribution and Trading: Distributing the tokens to investors or partici-

pants and enabling their trading on secondary markets or exchanges.

Furthermore, tokenization leverages the transparency property of blockchain

technology and every transaction and change in ownership is recorded on an immutable

block ensuring that all records are clear, traceable and secure. Additionally, this

transparency not only reduces the risk of fraud but also enhances the trust among

market participants. Moreover, tokenization with the use of smart contracts, that

simplify operations and reduce dependency on third parties, enhances efficiency by

automating processes.

With this general background established, the following chapters will delve deeper

into the technologies utilized and the implementation of our smart contract, ensuring

compliance with previously discussed the regulatory framework.

22

Chapter 3

The technologies

3.1 Commercio.network

As previously mentioned, our project relies on the company’s blockchain, Commer-

cio.network, also known as the "Documents Blockchain" and as the simplest way

for companies to manage their documents leveraging blockchain technology.

In this section, I will briefly describe its structure, main components and its usage

in this context.

Commercio.network is built upon Cosmos SDK, the world’s most popular

framework for building application-specific blockchains. This versatile framework

offers a modular architecture that allows developers to create customized blockchain

applications tailored to specific needs. It supports various programming languages

and consensus algorithms, making it a flexible tool for blockchain development [11].

Key features of the framework include its modular design, the support for multiple

programming languages and compatibility with various consensus mechanisms. For

instance, Commercio.network is programmed in Golang and the actual version of

the Cosmos SDK it’s using relies on Comet BFT as consensus engine.

23

The technologies

COMMERCIOMINT COMMERCIOKYC

DID DOCUMENTS VBR

GOVERNMENT

AUTH

BANK
STAKING

GOVERNANCE

IBC WASM

Figure 3.1: Blockchain’s modules

Cosmos SDK’s modular architecture enables us to compose different modules

to build our custom blockchain applications. The main modules of the framework

include:

• the Auth Module: for authentication

• the Bank Module: for token management

• the Staking Module: for the Proof-of-Stake mechanisms

• the Governance Module: for the community proposals and the voting

mechanism

However, the foundation of blockchain applications lies in modules which encap-

sulate the business logic and in general, we can create and integrate these modules to

define custom functionalities and composing them like building blocks to customize

our business applications.

Specifically, at the core of the Cosmos SDK lies a robust infrastructure designed to

support the key blockchain functionalities. This infrastructure includes a boilerplate

24

The technologies

ABCI 1 implementation to interface with the consensus engine, a multistore for state

persistence, a full-node server and query-handling interfaces. This core acts as the

backbone of the SDK, wiring together various modules while maintaining efficiency

and consistency.

Returning to our blockchain, Commercio.network is composed of a total of 6

custom modules besides the imported cosmos modules. These modules include:

• Government module: for handling the government address of the chain

• Did module: to allow the management of decentralized identities

• Documents module: to allow users to share documents to other users and

receive receipts documents through the chain

• CommercioMint module: to allow the creation of Exchange Trade Position

(ETPs) using COM tokens in order to obtain CCC tokens

• CommercioKYC module: a system to make sure to have a network of

trusted participants, indeed KYC means "Know Your Customer"

• Vbr module: for allowing validators to get a recurrent reward each time a

new block is proposed, even if such block does not contain any transaction.

It is straightforward to see that every single module serves a single purpose

and business logic designed by the company. However, the modular architecture

of the blockchain not only permits to include the Cosmos SDK’s base modules or

to implement custom modules but it also allows developers to import modules

from other projects. This characteristic is very important, as it prevents us from

reinventing the wheel. In this sense, Commercio.network, beyond others, imports

two important modules: the Inter-Blockchain Communication (IBC) module

and the Wasm module.

The Inter-Blockchain Communication (IBC) module is an interoperability

protocol to allow different types of blockchain to communicate among themselves.

In fact, IBC facilitates the transfer of assets, data and messages across independent

blockchains, allowing them to interact without centralized intermediaries. This is

essential for realizing the Internet of Blockchains where heterogeneous blockchains

coexist and collaborate [12].

At its core, IBC operates through a structured architecture that includes these four

main components: clients, connections, channels and packets. The clients track

the state of other blockchains, ensuring data accuracy. The connection component

1ABCI Application Blockchain Interface, is the interface between CometBFT (a state-machine
replication engine) and the actual state machine being replicated (i.e., the Application). The API
consists of a set of methods, each with a corresponding Request and Response message type.

25

The technologies

manages the communication lifecycle, establishing and maintaining channels with

other blockchains for data transfer. The channels act as paths for specific types of

data or assets and lastly the packets carry the actual data or assets being exchanged.

The protocol relies on cryptographic proofs to authenticate and verify transactions,

ensuring security and integrity in cross-chain communication.

Moreover, the primary advantages of IBC include enhanced scalability and security

across blockchain networks. It allows for cross-chain asset transfers and data sharing,

fostering greater liquidity and utility. Additionally, the robust security measures

ensure trustworthy interactions.

After this brief introduction to IBC, more focus must be committed to the Wasm

module.

The Wasm module is an extension of the Cosmos SDK that enables the execution

of WebAssembly (Wasm) smart contracts within Cosmos-based blockchains. It

provides a robust framework for deploying, executing and managing Wasm-based

contracts while ensuring security, flexibility and interoperability across the Cosmos

ecosystem. One of the core components of this module is the Wasm Runtime

Environment. This component provides the execution environment for Wasm smart

contracts and it ensures that the smart contracts are executed securely and efficiently

within the blockchain.

Furthermore, the wasm module integrates with the Cosmos SDK’s Auth Module

to handle authentication and authorization for smart contract interactions ensuring

that only authorized users can execute the smart contract functions. For instance,

this is useful when we want to limit who can deploy smart contracts on the chain,

who can instantiate smart contracts and so on. The module has also integrated the

Cosmos SDK’s Bank Module to be able to manage token transfers and balances

within smart contracts allowing them to handle financial transactions.

3.1.1 Smart contract lifecycle management

The key feature of the wasm module is the smart contract lifecycle management. In

particular, this lifecycle management includes 3 main stages: deployment, execution

and contract management.

• Deployment:

Upon the development of a smart contract, a developer may need to deploy it

on the blockchain to ensure it can fulfill its intended purpose.

This module provides the necessary API that permits to deploy a smart contract

26

The technologies

on blockchains that support it. There are few steps to follow for deploying a

smart contract, that are:

1. compilation of the smart contract

2. generation of the .wasm binary

3. deployment of the contract using the wasm module’s API

However, it is essential to generate a compact .wasm binary file for deployment,

as the size of the binary directly impacts the GAS fees 2. The larger the binary

file is, the more GAS will be required to deploy it, leading to higher costs.

Therefore, minimizing the file size is crucial to keep expenses as low as possible.

For instance in our project, we have 2 ways to produce the optimized binary

file.

The first way to produce the binary code is by running the following command:

RUSTFLAGS="-C link-arg=-s" cargo build \

--release --lib --target wasm32-unknown-unknown

In particular this command will build the Rust smart contract in release mode,

targeting the WebAssembly platform (wasm32-unknown-unknown) and it will

optimize the binary size by stripping unnecessary data (-C link-arg=-s).

The second method used for building a minimized binary code is by using a

script on the Cargo.toml file that runs a docker container to optime the code.

[package.metadata.scripts]

optimize = """docker run --rm -v "$(pwd)":/code \

--mount type=volume,source="$(basename "$(pwd)")_cache",target

=/target \

--mount type=volume,source=registry_cache,target=/usr/local/

cargo/registry \

cosmwasm/rust-optimizer:0.14.0

"""

To run it

cargo run --optimize

This script runs a docker container using the cosmwasm/rust-optimizer:0.14.0

Docker image to optimize Rust code for WebAssembly. Moreover, this image

2GAS fees are transaction fees required to perform operations on blockchain networks and it
represents the computational work needed to process and validate transactions or execute smart
contract operations.

27

The technologies

contains tools specifically designed to reduce the size of WebAssembly binaries,

often by stripping debug symbols and performing other optimizations.

As previously mentioned, the integration of the Auth module in the Cosmos

SDK enables the module to manage authorizations. Specifically, in this initial

phase, it allows to define a set of addresses within the module’s parameters

that are authorized to deploy contracts on the blockchain. This mechanism

empowers the blockchain governance to restrict the deployment of malicious

contracts, offering an additional layer of protection for users.

However, this is not the only restriction that can be enforced. At this stage, it

is also possible to define execution constraints for contracts, using the following

flags:

– instantiate-anyof-addresses −→ Any of a set of addresses can instantiate

a contract from the deployed code

– instantiate-everybody −→ Everybody can instantiate a contract from

the deployed code

– instantiate-nobody −→ Nobody except the governance process can in-

stantiate a contract from the deployed code

This stage of the deployment produces as output what is called codeID. A

unique code that identifies on the blockchain the just uploaded smart contract.

• Execution:

At this stage, the smart contract has already been deployed on the target

blockchain, such as Commercio.network. This state represents the core phase of

its lifecycle management. Once deployed, interactions with the newly uploaded

code can occur in three ways: Instantiation, actual Execution and Querying

its internal state.

– Instantiation

After the deployment, the Instantiation of the contract is compulsory to

be able to execute it’s functions afterwards. Moreover, this phase is when

we actually create an instance of the uploaded code on the blockchain.

As result, the instantiation will produce a unique address identifying

the contract’s instance and we will use this address to interact with it.

Essentially, this process requires 2 mandatory parameters: the code id

previously produced to identify which contract to instantiate and a JSON-

encoded message.

The second parameter is strictly related to the contract being instantiated,

28

The technologies

in other words, the message must be formatted as defined inside the

contract.

As a practical example of instantiation, consider the scenario where the

CW203 smart contract has been deployed on our blockchain.

Assuming the code id is 8, the instantiation process on our blockchain

would be as follows:

set code_id var

CW20_CODE_ID=8

set instantiation msg var

INIT_MSG='{"name":"CW20 token","symbol":"CWT","decimals":

6,"initial_balances":[],"mint":{"minter":"did:com:1

cjnpack2jqngdhj9cap23h4n3dmxcvqswgyrlc","cap":"250000"}}

'

commercionetworkd tx wasm instantiate \

$CW20_CODE_ID "$INIT_MSG" \

--label "Init Cw20 token" --from $WALLET_CREATOR \

--keyring-backend $KEYRING_BACKEND \

--fees 10000ucommercio --admin $WALLET_CREATOR \

--chain-id $CHAINID -o json -y

For convenience, we have defined two environment variables to store the

two parameters. The $INIT_MSG variable represents the instantiation

message specified during the contract’s implementation, containing both

mandatory and optional fields. Each smart contract defines a unique

instantiation message within its code to meet its underlying objectives.

Also, within this context there are two flags used for the instantiation:

∗ label −→ to attach a human-readable name for this contract in lists

∗ admin −→ address or key name of an admin that will be able to

exclusivly perform some management actions on the contract

– Execution

From this stage onward, users have full capability to interact with the

smart contract through its instance. In particular, they can execute

all publicly defined functions provided by the contract. However, these

3CW20 is the standard smart contract for fungible tokens within the CosmWasm ecosystem.
Designed with various modifications, it derives its name and core functionality from Ethereum’s
ERC20 standard contract.

29

The technologies

interactions remain subject to the internal permission mechanisms and

authorization constraints embedded within the contract’s logic.

Similar to the instantiation process, the execution phase also requires two

mandatory parameters: the contract address, which is generated upon

instantiation and is used to target a specific contract instance and a JSON-

encoded message. As you might expect, this JSON-encoded message

must adhere to the format defined within the contract’s implementation

to ensure proper execution. In particular, the mandatory fields, the types

of the values and their structures must be respected.

As example, we might want to execute a CW20 token mint. The execution

command on Commercio.network should look like:

set contractAddress var

CW20_ADDR="did:com:1w27ekqvvtzfanfxnkw4jx2f8gdfeqwd3drkee3

e64xat6phwjg0sf3y3ja"

set mint message

MINT='{"mint":{"amount": "250000", "recipient": "did:com:18

h03de6awcjk4u9gaz8s5l0xxl8ulxjctzsytd"}}'

commercionetworkd tx wasm execute \

$CW20_ADDR "$MINT" \

--from $WALLET_CREATOR \

--keyring-backend $KEYRING_BACKEND \

--fees 10000ucommercio \

--chain-id $CHAINID -y

As previously mentioned, this message serves also as an example of autho-

rization constraints embedded within the smart contract. Specifically, this

message is used to issue new fungible tokens and only a predefined wallet

address, marked as "minter" during the instantiation process, is authorized

to invoke and execute this function. Every attempt of execution from not

authorized wallets will result into an unauthorized error.

– Querying

Naturally, every smart contract maintains an internal storage system

to preserve its state. The specific information stored depends on the

contract’s design and the data that may be relevant for users to retrieve

at any time. To facilitate this, the wasm module provides the necessary

endpoint to interrogate the internal state of a smart contract instance.

30

The technologies

Also in this step, to query the internal state of a contract, the user needs

to provide two mandatory data: the contract address of the instance to

query and the JSON-encoded query data.

In the case of the CW20 contract, a basic query would involve retrieving the

stored information about the token. Specifically, some detail informations

provided during the instantiation phase.

set contractAddress var

CW20_ADDR="did:com:1w27ekqvvtzfanfxnkw4jx2f8gdfeqwd3drkee3

e64xat6phwjg0sf3y3ja"

set the query data

TOKEN_INFO='{"token_info":{}}'

commercionetworkd query wasm contract-state smart \

$CW20_ADDR $TOKEN_INFO

This query will return the following informations:

data:

decimals: 6

name: CW20 token

symbol: CWT

total_supply: "250000"

• Management

The WASM module not only provides endpoints for deploying and executing

smart contracts, it also exposes functionalities for their management. In particu-

lar, it enables actions related to the contract usage and to the administration of

the contract itself. Additionally, the module offers endpoints to query essential

information about deployed smart contracts on the blockchain, such as their

state and configuration, as well as to retrieve the module’s parameters.

For instance, the permitted management actions are as follow:

– clear-contract-admin −→ Clears admin address for a contract to prevent

further migrations

– set-contract-admin −→ Sets a new admin address for a contract

– grant −→ Grants particular authorizations to an address

– update-instantiate-config −→ Updates instantiate configurations for a

specific codeID

31

The technologies

– migrate −→ Migrate a wasm contract to a new code version

On the other hand, the management informations that can be retrieved are

more extensive. The available queries include:

– code −→ Downloads wasm bytecode for a given code id providing also a

destination file.

– code-info −→ Returns metadata of a code id. Specifically, it returns the

code id itself, the creator of the code, the hash and the instantiation

permissions.

– contract −→ Returns metadata of a contract given its address. He re

the returned informations are both the code id and the contract address,

the creator address and the label specified during the instantiation. In

addition, this endpoint returns also the block height where this contract

instance was created and it’s ibc port id if any.

– contract-history −→ Prints out the code history for a contract given

its address. In particular, it returns all the performed operations on the

contract and the executed message.

– list-code −→ List all the uploaded wasm bytecode on the chain

– list-contract-by-code −→ List the contract address of all the contracts

instantiated from a specific code id

– list-contracts-by-creator −→ List the contract address of all the contracts

instantiated by a certain wallet address.

– params −→ Returns the current wasm module parameters. In particular,

the upload code and default instantiation permissions.

32

The technologies

Smart contract

Commercio.network

Deploy

WASM
module

Imports

Code_id

User

Instantiate

Contract address

User

Execute

Results

Admin

Set management
permissions

Results

User

Query management
informations

Results

Figure 3.2: WASM module interactions

3.2 Platform Backend

Although our blockchain occupies a central role in this project, to provide users with

an easy way to interact with it and the related smart contracts, a dedicated platform

is required. To address this need, we introduce the Hosted Wallet On-Premises

Backend. Specifically, this backend is developed in Golang and it is designed to

facilitate direct interaction with our blockchain, Commercio.network.

However, the backend is not a standalone component; it is integrated inside

a larger infrastructure that, among other things, handles user authentication and

authorization, as well as the management of user wallets and private keys.

33

The technologies

3.2.1 Structure

Frontend

Keycloak

Backend

Commercio.network

Internal VPN

Bastion

HSM Software

HSM Hardware

Figure 3.3: Backend infrastructure

As you can notice from figure 3.3 the infrastructure can be divided into several layers.

Starting from the bottom, there are three components: Bastion, HSM Software

and HSM Hardware that are accessible only from inside the internal VPN as an

additional protection for sensible data. Furthermore, any interaction from outside

this layer must pass through the Bastion. This bastion host acts as a secure gateway,

controlling access to the underlying network by being the only entry and exit point

for the traffic. It functions as a checkpoint for external connections, reducing the

risk of attacks and keeping the internal components protected from direct exposure.

34

The technologies

This is essential for maintaining security, as it ensures that only authorized users

can access the system. Also, the bastion permits to manage users key pairs via JWT

tokens, the only authentication mechanism provided by the upper Keycloak.

Hardware Security Module (HSM)

Through the Bastion we access the replicated Hardware Security Module (HSM).

This module ensures certified security for managing private keys and encryption

in the Commercio.network blockchain. The private keys, representing user wallets,

remain securely stored inside the HSM and they are never exposed, while signatures

are generated and executed within the HSM. Interaction with these modules requires

the PKCS #11 specification and only public keys are exposed, which are also used

to derive Bech32 wallet addresses via the HSM software.

Moreover, the HSM software service provides key management and signing

functionalities via REST endpoints as follow:

• POST /raw_sign −→ Signs transaction messages using the user’s private key

and returns the signed bytes.

• POST /generate-keys −→ Creates a new wallet for a newly registered user.

• GET /user_details −→ Retrieves user wallet information using a JWT bearer

token.

Frontend

As shown in Figure 3.3, the Frontend is the interface with which users interact directly.

It allows them to issue security tokens, manage their balances and perform other

actions depending on their permissions. Furthermore, the Frontend communicates

only with the Backend, using the JWT bearer token provided by Keycloak to ensure

secure access.

Backend services

As previously highlighted, Keycloak is our chosen open-source identity and access

management provider, designed to handle both authentication and authorisation

efficiently. By offering a centralized authentication endpoint, it simplifies the user

identity management. Also, Keycloak supports widely used authentication protocols

such as OAuth 2.0 and OpenID Connect (OIDC), enabling secure and flexible

access control mechanisms[13].

35

The technologies

OpenID Connect (OIDC) is built on top of the OAuth 2.0 framework as

an identity layer. It allows client applications to verify user identities through an

authorization server, standardizing the retrieval of authentication-related information.

This facilitates Single Sign-On (SSO), allowing users to access multiple applications

with a single authentication process, improving both security and user experience[14].

A key component of OIDC is JSON Web Tokens (JWTs), which provide

a secure and efficient method of transmitting authentication-related data. JWTs

are digitally signed and contain structured claims about the authenticated user and

session details. Each JWT consists of three parts:

• the header, which defines the token type and signing algorithm

• the payload, which includes user claims and session metadata

• the signature, which ensures the token’s integrity and authenticity

The architecture enables secure, scalable and stateless authentication, establishing

JWTs as an essential element in identity management and access control systems[15].

Furthermore, the following is an example of the sequence flow in which a user is

redirected to Keycloak for authentication before gaining access to the protected API.

Figure 3.4: Sequence diagram

However, in the context of this project, the main component of our interest in the

36

The technologies

entire infrastructure, a part of the blockchain, is the Backend server itself. This

server acts as a middleware between the frontend and the blockchain.

In fact, the backend has been designed to expose protected endpoints to run

transactions and execute smart contracts on the blockchain. Specifically, it interacts

in two ways:

• Frontend <–> Backend side:

During this phase of interaction, the backend exposes a set of API endpoints

to the frontend, enabling users to perform various actions. These endpoints

support the fundamental CRUD operations on the underlying resources, such

as retrieving user information and issuing security tokens.

Prior to processing any request, the backend first verifies the user’s authenti-

cation. Once authentication is confirmed, it proceeds to handle and execute

the corresponding logic. Additionally, the backend performs permission and

authorization checks as required by the application logic before interfacing with

the blockchain.

In the following chapter, we will provide a detailed analysis of all endpoints

and their underlying logic.

• Backend <–> blockchain side:

In this context, the actions performed are straightforward and follow a sequen-

tial flow. For instance, when executing a transaction on the blockchain, the

procedure should be structured as follows:

1. build and prepare the transaction’s message

2. send the raw bytes transaction to the HSM to be signed

3. HSM returns the signed transaction with the user’s private key

4. broadcast the transaction to the blockchain

5. return the transaction response received from the blockchain to the client

Unlike transactions, information retrieval requires fewer steps, as it does not

involve signing with the HSM. Specifically, the process occurs as follows:

1. prepare the query message

2. execute the query on the blockchain

3. parse the returned data from the blockchain

4. return the queried informations to the client

37

The technologies

Finally, to provide a comprehensive understanding of the infrastructure, the

following global sequence flow illustrates the overall process, as depicted in Figure

3.3.

Figure 3.5: Infrastructure sequence flow

In particular:

1. User Attempts to Access Protected Resource

2. Frontend Redirects to Keycloak −→ The Frontend catches that the user is

not authenticated and redirects the user to Keycloak for authentication.

38

The technologies

3. User Authenticates with Keycloak −→ The user enters his credentials on

Keycloak’s login page. Keycloak validates the credentials and authenticates

the user.

4. Keycloak issues authorization code −→ Upon successful authentication,

Keycloak redirects the user back to the Frontend with an authorization code.

5. Frontend Exchanges auth code for Tokens −→ The Frontend makes a

POST request to Keycloak’s token endpoint to exchange the authorization code

to receive an ID token, access token and optionally a refresh token.

6. Keycloak Returns Tokens −→ Keycloak responds with the tokens.

7. Frontend Requests Protected Resource −→ The Frontend uses the just

received access token to request the protected resource from the backend server.

8. Backend Server Validates Token with Keycloak −→ The backend server

validates the user access token with Keycloak to ensure its authenticity and

validity.

9. Keycloak confirms the token validity

10. Backend Server Signs Transaction with HSM −→ Upon validation, the

backend server sends transaction raw bytes to the HSM for tx signing.

11. The HSM sign the transaction −→ Using user’s private key, the HSM sign

the transaction and returns it to the backend server.

12. Backend Server Broadcasts Transaction to Blockchain −→ The backend

server broadcasts the signed transaction to the blockchain.

13. The blockchain executes the transaction and returns the response to

the backend server

14. Backend Server Returns Data to Frontend −→ The backend server parse

the received transaction response and upon success returns tx hash. Otherwise

it will return the tx error.

It is important to note also, that this sequence represents the use case of a non

logged-in user attempting to access a protected endpoint that executes a transaction

on the blockchain. Naturally, there are scenarios in which not all the entities involved

in this process are required.

In conclusion, this chapter has provided a detailed overview of the fundamental

technologies underlying this project, highlighting the main components and their

roles.

In the next chapter, we will dive into the implementation of financial instrument

tokenization, leveraging on our blockchain to enhance security and transparency. This

39

The technologies

will involve deploying the CW858 smart contract and integrating our backend

server to simplify interactions, ensuring smooth and efficient communication between

users and the blockchain.

40

Chapter 4

CW858 Smart Contract & eREG

implementation

Following to the background and technologies overview chapters, we are now able to

proceed with the implementation of our CW858 smart contract. However, before

delving into the technical details, a brief overview about smart contracts is required.

4.0.1 Smart contract overview

An American computer scientist who conceptualized a virtual currency called "Bit

Gold" in 1998, Nick Szabo, first proposed the smart contract concept in 1994. He

defined smart contracts as "a computerized transaction protocol that executes

the terms of a contract" and that "the general objectives of smart contract

design are to satisfy common contractual conditions (such as payment

terms, liens, confidentiality, and even enforcement), minimize exceptions

both malicious and accidental, and minimize the need for trusted inter-

mediaries" [16]. This concept didn’t gain much popularity until 2015 after the

introduction of the Ethereum blockchain which provided a platform for creating and

executing smart contracts using the Solidity programming language.

Smart contracts permit to automatically execute agreements between parties

without the need for external authorities or third parties. They use simple statements

to ensure the validity of the pre-defined conditions and execute actions accordingly

[17].

However, smart contracts can sometimes be challenging to understand, but a

figurative example can help to provide clarity. A useful example can be the vending

machine workflow: when a user inserts the correct amount of money and selects a

product (input), the machine verifies that the right amount of money is provided

41

CW858 Smart Contract & eREG implementation

and the product availability before supplying the selected item (output). Essentially,

under normal conditions, the same input will always generate the same output,

regardless of which user initiates the transaction or any external conditions. This

deterministic and automated execution can be seen also as the core functionality of

a smart contract.

Once a smart contract is deployed on a blockchain, it becomes immutable and all

the executed actions are tracked on the blockchain, enforcing transparency, security

and agreement execution efficiency.

Furthermore, smart contracts permit us to establish agreements with other parties,

formalize them into our preferred programming language and deploy them on the

blockchain. This ensures that the contract cannot be altered due to its immutability

property. In addition, they minimize the risk of human error in execution, thus

guaranteeing an efficient execution [17].

In addition to the properties discussed in the previous chapter, the WASM module

allows a contract to invoke other contracts synchronously. Since this framework

adheres to the actor model, messages are executed sequentially and deterministically.

Consequently, if a contract X needs to call another contract Y, it must first complete

its own computation, save its state and only then dispatch the message to invoke

Contract Y. This structured execution flow effectively eliminates the risk of reentrancy

attacks, a known vulnerability that haunts smart contracts written in Solidity [18].

Basically, this kind of attack takes advantage of the victim contract not persisting

its internal state before calling another contract and suspending its execution.

Moreover, in WASM the top level message (meaning the initial message in the

presence of sub-messages) is executed within an atomic transaction context for

error handling. This means that if any sub-message returns an error, the top-level

message also fails and returns an error triggering a rollback of all previously executed

state changes.

For example, if the contract X first applies local modifications and successively

invokes the contract Y which then performs additional changes, a failure in this last

contract’s execution will lead to the revert of the entire transaction.

Finally, all these considerations have guided us to our choice of relying on a

smart contract written in Rust and managed through the WASM module for the

tokenization of financial instruments.

42

CW858 Smart Contract & eREG implementation

4.0.2 How to write smart contracts

In Cosmwasm, in general, smart contracts have a specific structure. Fundamentally,

they have 3 main entry points: Instantiate, Execute and Query.

The entry points are defined using an attribute macro that indicates to the

underlying VM that the annotated function is an actual entry point. Specifically,

the attribute macro is:

#[cfg_attr(not(feature = "library"), entry_point)]

pub fn foo(

deps: DepsMut,

env: Env,

info: MessageInfo,

msg: MyCustomMsg,

) -> Result<Response, ContractError> {...}

Actually, in this macro, in addition to defining foo as an entry point, the first

part allows us to use the contract as a library later on [19].

• Instantiate entry point:

This entry point is unique for every contract and it is called only once during

the whole lifetime of a contract instance since every successful call produces a

unique contract address that refers to an instance of the contract. For analogy,

this entry point can be seen in OOP as a constructor function of our class, that

in this case is the contract itself [19].

The entry point definition is as follows:

#[cfg_attr(not(feature = "library"), entry_point)]

pub fn instantiate(

deps: DepsMut,

env: Env,

info: MessageInfo,

msg: InstantiateMsg,

) -> Result<Response, ContractError> {

// instantiation logic

}

The entry point fundamentally has two types of parameters, the one predefined

by cosmwasm-std and the one defined by the developer itself.

Beginning with the predefined parameter type:

43

CW858 Smart Contract & eREG implementation

– DepsMut:

This struct type provides us a mutable access to the storage, the Virtual

Machine API and the Querier.

In particular, the storage is a trait that provide access to the contract’s

persistent storage. Also the persistent storage can be accessed in read or

write mode, depending on the parameters.

The API instead, are callbacks to system functions implemented outside of

the wasm modules and currently the trait just supports address validation

and conversion.

The Querier is a wrapper around raw_query that allows us to pass through

binary queries from one level to another without knowing the custom

format of the query.

– Env:

This struct parameter supplies the function with the environment state

information within which the contracting is executing.

The provided informations are:

∗ Blockinfo: this includes the block height, the absolute time of the

block creation and the chain_id.

∗ TransactionInfo: this information is set only when the contract execu-

tion is part of a transaction. The actual information it contains when

it is set, is the index of the transaction inside the block.

∗ ContractInfo: that should contains the contract address

– MessageInfo:

This struct type provides some fundamental informations for authorizations

and payments of an instantiation. In particular, it contains the sender’s

address of the transaction, in other words, the address who signed the

transaction. It also contains the funds sent to the contract along with the

transaction. The funds are an array of coins that the user might need to

send to the contract depending on the instantiation’s logic.

The last parameter is the actual parameter struct that the developer defines

itself and according to the instantiation logic.

InstantiateMsg usually contains the default data of the contract and the

initial values to store in the contract.

For instance, the InstantiateMsg struct of the CW20 contract we instantiated

in the previous chapters includes the following:

– "name" −→ the name to associate to the CW20 token

– "symbol" −→ a specific symbol for listings

– "decimals" −→ accepted decimals for the token

44

CW858 Smart Contract & eREG implementation

– "initial_balances" −→ array of addresses and amount of token to send to

them during the instantiation

– "mint" −→ optional struct that contains the token minter and optionally

the token’s total capability

– "marketing" −→ optional struct that contains marketing information such

as project, description and logo.

• Execute entry point:

This entry point differently from the previous one, it can be executed multiple

times. Usually, in a smart contract, there are multiple execute messages for

the entry point and there is a handler that based on the ExecuteMsg sent by

the user, it triggers the correct function.

Essentially, the function is similar to the instantiate entry point with the

difference of the msg field.

#[cfg_attr(not(feature = "library"), entry_point)]

pub fn execute(

deps: DepsMut,

env: Env,

info: MessageInfo,

msg: ExecuteMsg,

) -> Result<Response, ContractError> {

// match the msg

// call the right execute function

}

As mentioned before, contracts usually have multiple execution functions and

one single entry point for execution. Consequently, to be able to handle all

possible messages ExecuteMsg is an Enum of messages instead of a simple

struct message. Each message in the Enum is a struct that defines its own

fields for better handling its related function logic.

For example, the CW20 contract has multiple execution messages and in the

previous chapter, we chose the mint message as an example of a contract

execution. In particular, this message has two fields:

– "amount" −→ the amount of tokens to issue

– "recipient" −→ the address to send the just minted tokens

Supplying this struct message to the entry point, the contract will match it

and call the related mint function to execute its logic.

• Query entry point: This entry point is for querying the internal state of a

contract. Its function signature is as follows:

45

CW858 Smart Contract & eREG implementation

pub fn query(

deps: Deps,

_env: Env,

msg: QueryMsg,

) -> StdResult<Binary> {

// match the msg

// call the right query function

}

Unlike the previous entry points, the query entry point is not provided with the

MessageInfo struct parameter since there is not a transaction to sign or funds

to send to the function. In addition, the entry point receives Deps instead of

DepsMut since the storage can only be accessed immutably. In fact, here we

just need to retrieve data from the internal storage of the contract and not to

perform changes.

As for the Execute entry point, there are usually multiple query functions to

retrieve different resources with only one entry point, thus QueryMsg is an

Enum of query struct messages. Each struct defines the needed parameters to

retrieve the desired resources.

For instance, in the previous chapter we used the token_info query message to

retrieve default data stored during the instantiation process.

Essentially, defined these three main entry points, their messages, and their

functions, we have a fully deployable smart contract.

4.0.3 CW858 implementation

This project focuses on the tokenization of financial instruments. Thus, for the

tokenization process, we need to implement a smart contract that will represent our

security token.

As mentioned multiple times, our work is within the Cosmos ecosystem, where

no standardized contracts for security tokens currently exist. Specifically, we have

CW20 for fungible tokens and CW721 for NFTs as the two main smart contract

standards for tokens. Additionally, these two contracts were implemented following

two main standard contracts from Ethereum, respectively ERC20 and ERC721.

In our context, we followed the same logic implementing our security token

CW858 from an Ethereum’s standard contract, the ERC1400.

46

CW858 Smart Contract & eREG implementation

Figure 4.1: Hybrid Tokens [20]

Actually, the ERC1400 is a Hybrid token. A type of token that has not been

mentioned until this point. Specifically, this type of token is a combination of fungible

tokens and non-fungible tokens. Each token belongs to a specific partition and

the tokens of the same partition are fungible; meanwhile, the tokens belonging to

different partitions are distinguishable from each other.

Furthermore, for the implementation of our CW858 smart contract, we first

implemented the basic security token following the ERC1400, applied the Fintech

decree requirements and then implemented the constraints.

In the following sections, we will outline the implemented functions, their under-

lying logic and their essential role in achieving tokenization. Additionally, since the

entry point signatures have already been described, the focus will be on the messages

and the underlying logic.

Before analysing the messages in detail, it is important to introduce some roles.

Following the Fintech requirements, we defined 3 major roles: Register Adminis-

trator (R), Issuer (E) and Token Owner (T).

Each role has different privileges and permissions from the others. In particular,

the Register Administrator has full access and it is the contract owner, the issuer

instead, has some limitations on the contract management and some administration

features and it can be a controller and/or a minter. Meanwhile, the token owner

has only the possibility to operate on its own tokens.

Instantiate message

As you already know from the previous section, this message is fundamental and

requires the default data that are crucial for the contract to initialize its storage.

47

CW858 Smart Contract & eREG implementation

pub struct InstantiateMsg {

pub name: String,

pub symbol: String,

pub decimals: u8,

pub granularity: Uint128,

pub initial_controllers: Vec<String>,

pub default_partitions: Vec<[u8; 32]>,

pub mint: Option<MinterResponse>,

pub marketing: Option<InstantiateMarketingInfo>,

}

At first observation, you may notice some similarities with the instantiation

message of the CW20 contract, this is due to the fact that the CW858 indeed

implements all the messages that are implemented in the CW20 contract.

In particular, the message fields are as follows:

• name −→ the name of the security token

• symbol −→ its associated symbol

• decimals −→ the maximum accepted decimals for the token

• granularity −→ its maximum granularity. For example: token amount when

doing a transfer must be a multiple of the granularity.

• initial_controllers −→ list of addresses to set as controllers during instantiation.

• default_partitions −→ list of default partitions of the token. It also can be left

empty, but this will lead to some limitations later on.

• mint −→ optional struct that contains the token minter and optionally the

token’s total capability

• marketing −→ optional struct that contains marketing information such as

project, description and logo.

Furthermore, this message permits us to set the basic data of a security token, set

the initial controllers known as issuers and set the default partitions. The owner of

the contract, the Register Administrator, is the address that instantiates the security

token.

As the Register Administrator must be listed as in Art. 19: List of Register

Administrators for Digital Circula- tion of the Fintech Decree and have specific

characteristics, we permit the instantiation of a new security token only to one

address that we set through the backend (we will see it later).

48

CW858 Smart Contract & eREG implementation

Additionally, in the related instantiation function, the contract’s internal storage

is initialized with the supplied values and the controllers are automatically added to

a whitelist.

Execute messages

As previously mentioned, the CW858 contract implements, besides others, all the

CW20 messages. Hereafter, the actual main execute function in this context.

Mint

This execute message serves to issue new tokens and it is defined as follows:

pub enum Cw20Msg {

....

Mint {

recipient: String,

amount: Uint128,

},

....

}

Essentially, it includes two fields: the recipient which is the address that will

receive the newly minted tokens and the amount that indicates the quantity of tokens

to be minted.

Logically, the related function can be executed only by authorized users. In

particular, only the minter (Issuer) and the contract owner (Register Administrator)

can call and execute it. Any other sender 1 will encounter an unauthorized error.

Burn

The Burn message is the opposite of Mint. However, it removes the tokens from

the wallet of the sender and also from the total supply, which indicates the amount

of circulating tokens.

pub enum Cw20Msg {

....

Burn {

amount: Uint128,

},

1Sender refers to the user that signed the transaction and so the address that is effectively
executing the contract.

49

CW858 Smart Contract & eREG implementation

....

}

Differently from what happens in Ethereum, where the tokens are sent to an

inaccessible address, here the tokens are simply erased from the sender’s wallet.

Burn From

From the management point of view, the simple Burn message can represent a

limitation. As an register administrator, I may need to burn tokens from a wallet as

a consequence of an error during mint or other operations or even for legal purposes.

The message structure is as follow:

pub enum Cw20Msg {

....

BurnFrom {

owner: String,

amount: Uint128,

},

....

}

In fact, in addition to the amount field, there is also the owner field which

indicates the address of the owner of the tokens to be burnt.

As you might expect, only authorized users, like the Register Administrator, can

execute this function.

Transfer

This message, instead, is for transferring tokens from the sender’s wallet to

another wallet.

pub enum Cw20Msg {

....

Transfer {

recipient: String,

amount: Uint128,

},

....

}

50

CW858 Smart Contract & eREG implementation

Also in this case, in addition to the amount field, there is the recipient field which

is used to indicate the wallet where to move the tokens. This command will succeed

only if the sender has sufficient balance in his wallet.

Moreover, this execute message will not trigger any other actions even if the

recipient address is another contract.

Transfer From

In the management of financial instruments, the authorities must have the

possibility to execute forced actions in some cases. We have to provide these

authorities, such as the Register Administrator, the capability to coercively move

tokens from a specific wallet to another for various reasons.

pub enum Cw20Msg {

....

TransferFrom {

token_holder: String,

recipient: String,

amount: Uint128,

},

....

}

In fact, the message has the same fields as the basic Transfer except for the

additional token_holder field. This extra field effectively specifies the wallet from

which to transfer the tokens.

Clearly, it can be executed only by the Register Administrator and the Issuer.

Update minter

As only one minter can be established at a time, this message enables the

assignment of a new minter when necessary.

The conditions are that: there must be an actual minter and only this minter

can execute this message.

pub enum Cw20Msg {

....

UpdateMinter {

new_minter: Option<String>,

},

....

51

CW858 Smart Contract & eREG implementation

}

Additionally, setting a new minter is not mandatory, as indicated by the optional

field. Therefore, removing the minter will permanently delete the contract’s minter,

preventing any further token issuance.

Furthermore, beyond this CW20 related main execute messages, there are the

following messages that are specific to the security token.

Controllers management

Controllers are subjects that have more privileges than normal users. As men-

tioned before, issuers can also act as controllers. In particular, controllers can perform

actions on other wallets different from their own wallets.

These special users are stored inside an array in the internal storage of the

contract and the following messages allow us to manage that array.

pub enum ExecuteMsg {

....

SetControllers{

controllers: Vec<String>,

},

RevokeController{

controller: String

},

....

}

In particular, the SetControllers message is employed to set a new list of controllers.

In fact, it completely replaces the previous list. It can also be left empty, meaning

that only the Owner will have the privilege to operate within the other users’ wallets.

While SetControllers sets a new list of controllers, RevokeController removes a

controller from this list.

Both these messages can be executed only by the Owner, meaning that only

the Register Administrator has the authority of upgrading one to controller or

downgrading one from it.

Whitelist management

A key restriction measure employed in the security token is the whitelist. In

fact, a user is able to move tokens from his wallet or to receive tokens only if he is

52

CW858 Smart Contract & eREG implementation

whitelisted. For example, the mint message to succeed, both the recipient address

and the sender must be whitelisted. The same behaviour is implemented by all the

other execute messages that need to perform some token movement.

Furthermore, the following messages are used to manage the whitelist.

pub enum ExecuteMsg {

....

AddWhitelist{

account: String

},

RemoveFromWhitelist{

account: String

},

....

}

AddWhitelist adds an address to the whitelist while RemoveFromWhitelist removes

an address from it.

This message can be triggered only by the Register Administrator or by the

Issuer.

However, the whitelist is connected with the KYC (Know Your Customer)

module of the blockchain. Whenever there is an attempt to add an address to the

whitelist, the contract calls the KYC module to validate the user’s KYC membership.

This ensures that every token owner is well known and all the necessary in-

formation to identify the physical person connected to that address is valid and

available.

Contract administration

Besides these execute messages, there are also some "utility" messages that serve

for the token management.

• Renounce Control

This message in particular, when triggered all the privileges related to the

controllers are lost permanently. No controller will be able to perform privileged

functions thereafter.

• Renounce Issuance

This message instead, disables permanently the token issuance. Once executed,

no more tokens can be minted neither from the Register Administrator neither

53

CW858 Smart Contract & eREG implementation

from the minter.

• Transfer Ownership

Since the Register Administrator is nominated according to specific rules from

the Fintech Decree, there may be the need to change it from one address to

another. This message serves this need, it permits to the actual Owner to set a

new one and transfer all the privileges to this new Owner.

• Renounce Ownership

As for the previous renounce messages, this message also deletes permanently

the ownership of the contract.

pub enum ExecuteMsg {

....

RenounceControl{},

RenounceIssuance{},

TransferOwnership{

new_owner: String,

},

RenounceOwnership{},

....

}

All these execute messages can only be executed by the Register Administrator.

Finally, we have the execute functions related to the management of constraints

as stated in Art. 9: Establishment of constraints.

Add Constraint

In particular, this message helps us to add a constraint to a financial instrument

indicating some critical data.

pub enum ExecuteMsg {

....

AddConstraint{

id: String,

token_holder: String,

recipient: String,

beneficiary: String,

amount: Uint128,

ctype: String,

is_blocking: bool,

54

CW858 Smart Contract & eREG implementation

meta: String,

expiration: Expiration,

},

....

}

Specifically, the message’s fields are intended as follows:

• id −→ a unique identifier of the constraint

• token_holder −→ the owner of the tokens the constraint is about to be applied

on

• recipient −→ the address of the recipient of the constraint

• beneficiary −→ the constraint beneficiary that, in some cases, can differ from

the recipient

• amount −→ the amount of tokens to constraint

• ctype −→ the type of constraint. For instance, a constraint can be a "pledge" or

an "usufruct" and so on.

• is_blocking −→ this field is a boolean that state if the constraint is blocking or

not. If the constraint is blocking, the constrained tokens are locked and cannot

be transferred or sent to other wallets.

• meta −→ used to attach metadata to the constraint. It can also store a URI

instead of storing directly the metadata.

• expiration −→ indicates an eventual expiration time of the constraint. The

expiration time must be in the future.

Remove Constraint

This execute message, instead, is removing a constraint from the financial instru-

ments.

pub enum ExecuteMsg {

....

RemoveConstraint{

token_holder: String,

id: String,

},

....

}

55

CW858 Smart Contract & eREG implementation

In particular, the sender must indicate the unique id of the constraint and the

owner of the tokens.

update Constraint

To update a constraint, we need to indicate the unique id of the constraint and

the owner of the tokens.

pub enum ExecuteMsg {

....

UpdateConstraint{

id: String,

token_holder: String,

recipient: Option<String>,

beneficiary: Option<String>,

amount: Uint128,

is_blocking: bool,

meta: String,

expiration: Expiration

},

....

}

Furthermore, the update message has the same structure as the add message

except for the optional recipient and beneficiary fields. In addition, once set, the

nature of a constraint can no longer be changed, which explains the absence of the

ctype field.

Also in this group of execute messages, only the Register Administrator and the

Issuer have the privileges to execute them.

Essentially, these are the main execute messages implemented to provide a security

token for the tokenization of financial instruments and compliant with the regulatory

framework described in the first chapters.

Query messages

As stated in Art. 4: Requirements of the Registers for Digital Circulation, all the

information stored in the contract must be available. Thus, the following queries are

meant to return, each of them, a specific set of data.

As mentioned before, a query does not change or delete data, it only retrieves

them if available; therefore, there are no privileges and every connected user can

56

CW858 Smart Contract & eREG implementation

query and view this data.

#[cfg_attr(not(feature = "library"), entry_point)]

pub fn query(deps: Deps, _env: Env, msg: QueryMsg) -> StdResult<Binary> {

match msg {

QueryMsg::TokenInfo{} => to_json_binary(&query_token_info(deps)?),

QueryMsg::Controllers {} =>

to_json_binary(&query_controllers(deps)?),

QueryMsg::DefaultPartitions{} =>

to_json_binary(&query_default_partitions(deps)?),

QueryMsg::IsControllable{} =>

to_json_binary(&query_is_controllable(deps)?),

QueryMsg::IsIssuable{} => to_json_binary(&query_is_issuable(deps)?),

QueryMsg::Balance { address } =>

to_json_binary(&query_balance(deps, address)?),

QueryMsg::BalanceOfByPartition { address, partition } =>

to_json_binary(&query_balance_of_by_partition(

deps,

address,

partition,

)?),

QueryMsg::BalanceOfByAllPartitions { address } =>

to_json_binary(&query_balance_of_by_all_partitions(

deps,

address,

)?),

QueryMsg::Minter {} => to_json_binary(&query_minter(deps)?),

QueryMsg::MarketingInfo {} =>

to_json_binary(&query_marketing_info(deps)?),

QueryMsg::Owner {} => to_json_binary(&query_owner(deps)?),

QueryMsg::Whitelist {} => to_json_binary(&query_whitelist(deps)?),

QueryMsg::IsWhitelisted { account } =>

to_json_binary(&query_is_whitelisted(deps, account)?),

QueryMsg::Constraints {account, start_after, limit } =>

to_json_binary(&query_constraints(

deps,

account,

start_after,

limit,

)?

),

}

}

57

CW858 Smart Contract & eREG implementation

Every query refers to an execute message described previously or to the instantiate

message. In particular, each of them returns the following:

• TokenInfo −→ it returns basic informations about the token itself. If not modified,

the returned data were supplied during the instantiation process.

• MarketingInfo −→ it returns the marketing informations of the token if previously

provided.

• DefaultPartitions −→ this query instead, returns the list of default partitions

set during contract instantiation.

• Balance −→ the token balance of the specified user address. It returns how many

tokens it actually owns.

• BalanceOfByPartition −→ it returns the balance of the specified user for a

specific partition. For instance, if the user has only one partition, this will

coincide with the result of Balance.

• BalanceOfByAllPartitions −→ It returns the balance of the user for each par-

tition it owns. For example if the user has partition A, B and C, this query

will return: [Partition: A, Balance: 3780, Partition: B, Balance:

400, Partition: C, Balance: 0]

• Owner −→ returns the actual owner of the security token. It is worth noting

that the owner is intended as the role of the Register Administrator.

• Minter −→ returns the contract minter address if set. Also here, it is important

to remind you that the minter assumes the role of Issuer.

• Controllers −→ returns the list of controllers of the contract. It can also return

an empty list.

• Whitelist −→ this query instead, returns the list of the whitelisted address.

• IsWhitelisted −→ returns a boolean that states if the specified account is

whitelisted or not.

• IsControllable −→ returns a boolean that indicates if the contract is controllable.

In particular, when we execute the RenounceControl message, this query will

return false.

• IsIssuable −→ same as the previous query, it returns if it is possible to mint new

tokens or not.

• Constraints −→ it returns all the constraints of the security token with the

possibility to filter by a specific account address, limiting the number of

returned constraints and/or starting listing after a specific bound.

58

CW858 Smart Contract & eREG implementation

4.0.4 Events

A key requirement by the Fintech decree for the management of financial instruments

is the transparency. In the Cosmos ecosystem, there are what are called Events.

They allow a blockchain to attach key-value pairs to a transaction. These events can

be used later to search for a transaction or to retrieve the attached information [21].

The events in the cosmos ecosystem are dispatched by both the modules and the

smart contracts and they have a specific format. Basically, each event has a string

type and a list of attributes.

{

"type": "wasm",

"attributes": [

{

"key": "_contract_address",

"value": "did:com:1rsrefjc7xnl6d6fm6avl706nu5y6nkpxaa9

qnpqpzs67pk7vzjdqcup0hc",

},

{

"key": "transferred",

"value": "987654",

}

]

}

Usually, the type field corresponds to the module name, the action performed or

to the general "message" key.

As previously mentioned, smart contracts also can emit events. The events

are defined in the code and dispatched as the last action in the execution flow.

Additionally, in the case where the contract dispatches sub-messages and these

sub-messages issue some events, they will be attached to the events of the top-level

message.

Furthermore, the wasm module emits standard events for each message it processes.

Basically, the module emits a "message" event and then the specific event for the

executed message. For instance, in the case of a contract instantiation, this should

be the emitted events from the wasm module:

sdk.NewEvent(

"message",

sdk.NewAttribute("module", "wasm"),

59

CW858 Smart Contract & eREG implementation

sdk.NewAttribute("action", "/cosmwasm.wasm.v1.MsgInstantiateContract"),

sdk.NewAttribute("sender", msg.Sender),

),

// Instantiate Contract

sdk.NewEvent(

"instantiate",

sdk.NewAttribute("code_id", fmt.Sprintf("%d", msg.CodeID)),

sdk.NewAttribute("_contract_address", contractAddr.String()),

)

Concerning the custom events issued by our CW858 contract, we followed the

same logic and format. Each function emits an event with the related list of attributes

and the type of the event is the action being performed. So for instance, if the

execution is about a transfer of tokens, the event type will be transfer. Additionally,

every event contains the sender attribute in order to always track the user that

executed a certain action. Finally, additional attributes, if any, are specific to each

function.

In the following, some events that are issued by the contract as examples.

Event Attribute Value

action transfer

sender {senderAddress}

to {recipientAddress}

amount {amount}

Table 4.1: Transfer Message Event

Event Attribute Value

action mint

sender {senderAddress}

to {recipientAddress}

amount {amount}

Table 4.2: Mint Message Event

60

CW858 Smart Contract & eREG implementation

Event Attribute Value

action add_whitelist

sender {senderAddress}

account {walletAddress}

Table 4.3: AddWhitelist Event

4.0.5 eREG Backend

In the second chapter we went through the structure of the eReg platform giving an

overview of the main components and also describing the interaction between the

components.

After initial configuration, our main focus is on the Backend of eRreg.

As introduced previously, the backend is the entity between the user and the

blockchain. Its main objective is to facilitate the interaction with the blockchain where

our CW858 is deployed. Additionally, it also represents a fundamental component for

the implementation of a platform compliant with the Fintech decree since it enforces

various statements before interfacing with the blockchain.

Essentially, the backend is implemented in Golang and designed to follow the

Layered Architecture pattern, also known as the N-tier Architecture.

This architecture design divides the application into several distinct layers where

each layer has a specific task. The layers are independent of each other and can

directly interact but only with the adjacent layers.

Furthermore, in the N-tier architecture, there are four layers. Specifically:

• Presentation Layer:

This layer is responsible for interfacing with the user. It handles user inputs,

calls the business layer for computation and format data to return to the user.

• Business logic layer:

The Business logic or application layer instead, is core component of the

architecture and is responsible for processing the user requests and executing

business rules.

• Persistence Layer:

This layer is used by the business layer to handle data on the database. It

contains functions to facilitate data update or data retrieval to or from the

61

CW858 Smart Contract & eREG implementation

database allowing more abstraction. However, in some layered application this

layer may be embedded inside the business logic layer.

• Database layer:

Finally, this last layer is were the application actually stores its data.

Figure 4.2: Layered Architecture [22]

Furthermore, there are several advantages of following this design pattern. The

main advantage is the separation of concerns, having each layer responsible for differ-

ent tasks makes the application easier to maintain and modify. Another advantage is

the testability, since each layer can be tested separately mocking the adjacent layers.

Additionally, the ease of development is another point of benefit of this pattern.

However, the high coupling of the layers makes the application difficult to change

and time-consuming. Also, having multiple layers can lead to low performance since

we must go through many layers to process and return the data back to the user.

REST API

In our backend application, the REST handler represents our presentation layer since

it handles all the HTTP requests and responses. In particular, we defined a set of

APIs to enable a user to interact with the blockchain and thus, the deployed smart

contract.

62

CW858 Smart Contract & eREG implementation

Figure 4.3: APIs

The fig 4.3 is generated with the help of Swagger and besides describing all the

implemented endpoints of the backend, it gives us the possibility to test them with

the "try out" feature.

Furthermore, as the figure 4.3 shows, the endpoints are self-describing in respect

to the CW858 messages introduced earlier.

Essentially, the body of these endpoints includes all the necessary data that

needs to be provided to successfully set the related CW858 message. Additionally, in

some endpoints there are extra fields to be included, for instance: the address of the

CW858 instance to execute.

Business logic

As described previously, this is the core layer of our backend application. In fact, all

the HTTP requests handled by the previous layer are processed in this component

where all the business logic is applied.

63

CW858 Smart Contract & eREG implementation

Essentially, every request is processed following a quite general sequence of

operations.

Figure 4.4: Controller flow

64

CW858 Smart Contract & eREG implementation

As shown in the flow chart 4.4, the first action is to validate the request body

forwarded from the REST handler, this to ensure that all the mandatory data are

provided and in the right data type. Successively, we retrieve the user’s wallet address

using its access token. The next step concerns the business logic to be applied for

the called function.

At this stage, if all the previous steps were successful, the CW858 message is built,

signed with the user’s private key and broadcasted to the blockchain. Once the

contract is executed on the blockchain, the transaction response is returned and from

the successful response we return the transaction hash to the handler.

Persistent and Database Layer

These two layers are strictly related since the persistent layer can be seen as a function

wrapper of the database layer. In our eReg application, these two layers are almost

absent because the blockchain is our database.

Thanks to all the properties of the blockchain described in the previous chapter,

it allows us to store all the necessary informations related to the management of

financial instruments in it.

In conclusion, both the contract and the backend play the core function of this

project and only when combined together they can fulfil the regulatory framework

requirements and the desired usability of the system.

65

Chapter 5

Tests and Results

5.1 Tests

During the implementation of this project, the tests were conduced in different phases

and with different scopes.

Initially, the CW858 smart contract has been implemented and tested along with

its development, then the backend has been implemented and tested. Finally, the

whole system has been connected and tested all together.

In general, the tests are executed within two different environments. I have

configured a local chain of the Commercio.network on my computer where I deploy

the smart contract, interact with the chain’s functions and execute all the tests. Then

on the Devnet, the Commercio blockchain we use for functionality testing during

development, more tests are executed from other members of the company.

5.1.1 CW858 tests

Furthermore, for the tests of the smart contract, the consequent steps were followed:

• Deploy on the local chain the new version of the smart contract

• Test the functionalities and the business rules

• Merge request to the develop branch

• release the new code and deploy the new smart contract on the Devnet

• Further tests from the chain’s users

66

Tests and Results

The whole procedure is performed for each singular message implementation, so

for instance, it is performed for the instantiate message and mint message.

5.1.2 Backend tests

Since the Backend interacts directly with the blockchain, HSM and the Keycloak, it

is tested differently from the smart contract.

In particular, a Docker stack is set with the following containers:

• Keycloak

• Postgres Db for Keycloak

• Postgres Db for the backend

• Foxhsm

• Backend

Each time a new functionality is implemented in the backend, a new image is

built and the stack is updated with the new container. On the other side, the local

commercio.netwrok chain is run and the final version of the smart contract is deployed

in it.

Locally the tests are run interacting with the backend through Postman where

we actually set the API URL to request, the Bearer Token for authorization and

eventually the Body of the request.

Also in this phase, the tests are run on remote by the other developer of Com-

mercio.network. In particular, on a specific virtual machine the same Docker stack is

run and communicates directly with the Devnet.

During the testing of the Backend, the CW858 smart contract is tested again

both locally and remotely.

5.2 Results

With the implementation of our CW858 smart contract and the implementation of

our eREG Backend, we have achieved the goal of building one of the first, if not the

only, platforms for the tokenization of financial instruments and compliant with the

regulatory framework.

67

Tests and Results

With the support of our blockchain, many of the properties required by the

regulatory are satisfied by design. The CW858 is built from a standard smart contract

for security tokens, specifically the ERC1400 from Ethereum and the Backend is based

on secure frameworks for Authentication and Authorization while handling specific

business rules before interfacing with the other components of the infrastructure.

Furthermore, our platform enables a Register Administrator or an Issuer to

fully operate with the financial instruments without having to worry about how a

blockchain or a smart contract works while leveraging their advantageous properties.

In detail, one is able to tokenize a financial instrument by instantiating a new

CW858 contract with the required information. The Issuer is also able to issue new

financial instruments or remove them from the circulation. Additionally, one can

transfer the financial instruments or add a constraint to their circulation.

In the following, some screenshots of the implemented Frontend that interfaces

with the Backend to add more flexibility and usability to the system.

Figure 5.1: Type of financial instrument to issue

68

Tests and Results

Figure 5.2: Main informations

69

Tests and Results

Figure 5.3: Official documentation to attach

Figure 5.4: Initial token holders

70

Tests and Results

Figure 5.5: Final business rules

The figures 5.1, 5.2, 5.3, 5.4 and 5.5 represent the 5 established steps for financial

instrument issuance.

Moreover, similar steps and procedures are provided for the remaining functional-

ities offered by the Backend.

71

Chapter 6

Conclusions

In conclusion, this project was the intersection of three worlds: the regulatory world,

the finance world and the tech world. As a Software engineer, it was challenging to

face and actually understand the regulatory framework and the financial instruments

functioning to be able to correctly interpret the requirements and implement a

compliant system.

The project was born with the continuous integration of the blockchain in software

applications and with the come into effect of the Fintech Decree that opens new

opportunities for all kinds of companies. There are several advantages in tokenizing

financial instruments, as described along the thesis, that foster companies like

Commercio.network to undertake this path with all the annexed challenges.

Supported by a team of lawyers, we extracted the key information from the

Fintech Decree and modelled it for the implementation of the CW858 smart contract

in the first place and then the eREG Backend.

Moreover, before all the work, there was a study and research time where we

dug into the ERC1400 standard, the EU regulation and the Backend infrastructure

design.

Finally, the just overviewed project is our MVP1 to submit to CONSOB for the

permission request to be able to legally operate within the regulatory Sandbox.

Engaged future works include the following:

• obtain an authorization from CONSOB

• after authorization proceed to the next steps of testing the infrastructure by

deploying to Testnet and then finally release to the Mainnet.

1MVP stands for Minimum Viable Product

72

Conclusions

• automate action execution on constrained tokens based on the type of constraint.

For instance, we suppose that Alice has x tokens with a pledge constraint and

Bob is the beneficiary, we should automate that when certain required conditions

are met, the contract automatically transfers these tokens from Alice to Bob.

• study the requirements and implement a marketplace to buy and sell financial

instruments. Actually, the users are able to transfer tokens to each other after

an agreement out of the platform.

• study the requirements and implement the Burn of tokens in the Backend side

Overall, the system is ready to be tested in a real world scenario and successively be

released as the first tokenization platform of financial instruments in Italy. Finally, the

project is implemented to grow and evolve based on the outcomes of this sandbox.

73

Bibliography

[1] Italia Fintech. “Decreto Fintech n. 25 del 17 marzo 2023”. In: (Apr. 2023)

(cit. on pp. 6, 7).

[2] IBM. Blockchain. Jan. 2025. url: https://www.ibm.com/think/topics/

blockchain (cit. on p. 11).

[3] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. url:

https://bitcoin.org/bitcoin.pdf (cit. on p. 11).

[4] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends. 2017. url: https:

//arxiv.org/abs/1708.04873 (cit. on p. 11).

[5] Investopedia. Consensus Mechanism (Cryptocurrency). Accessed: 2025-02-10.

n.d. url: https://www.investopedia.com/terms/c/consensus-mechanism-

cryptocurrency.asp (cit. on p. 12).

[6] Techskill Brew. Types of Blockchain - Part 4: Blockchain Basics. n.d. url:

https://medium.com/techskill-brew/types-of-blockchain-part-4-

blockchain-basics-c0b2e40c1780 (cit. on pp. 15, 17).

[7] Enrico Talin. Fare business con la blockchain. First Edition. Schio (VI): Tradenet

Services Srl Editore (IT), 2019 (cit. on p. 16).

[8] Mayuko Kondo. EMURGO Africa 2023 Q1 Report Ch. 2.1: Types of Tokens

on Blockchain. 2023. url: https://medium.com/@mayuko.kondo/emurgo-

africa- 2023- q1- report- ch- 2- 1- types- of- tokens- on- blockchain-

998e0ad4a979 (cit. on p. 19).

[9] Dapper Labs. Dapper Labs Official Website. n.d. url: https://www.dapperla

bs.com (cit. on p. 19).

[10] Commercio Network. The White Paper. 2023. url: https : / / commercio .

network/it/progetto/ (cit. on p. 20).

[11] Cosmos Network. Cosmos SDK Overview. [Accessed: 15-02-2025]. 2024. url:

https://docs.cosmos.network/v0.45/intro/overview.html (cit. on

p. 23).

[12] IBC Protocol. IBC Protocol Documentation. Accessed: February 2025. 2024.

url: https://ibcprotocol.dev (cit. on p. 25).

74

BIBLIOGRAPHY

[13] Red Hat. Keycloak Documentation. 2024. url: https://www.keycloak.org/

documentation (cit. on p. 35).

[14] OpenID Foundation. OpenID Connect Core Specification. 2021. url: https:

//openid.net/specs/openid-connect-core-1_0.html (cit. on p. 36).

[15] Internet Engineering Task Force (IETF). JSON Web Token (JWT) Profile

for OAuth 2.0. 2015. url: https://tools.ietf.org/html/rfc7519 (cit. on

p. 36).

[16] Nick Szabo. Smart Contracts: Building Blocks for Digital Markets. Available

at: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/

CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.

contracts.html. 1996 (cit. on p. 41).

[17] Investopedia. Smart Contracts Definition and Overview. [Accessed: 17-Feb-

2025]. June 2024. url: https://www.investopedia.com/terms/s/smart-

contracts.asp (cit. on pp. 41, 42).

[18] Ethan Frey. CosmWasm for CTOs I: The Architecture. [Accessed: 26-02-2025].

Oct. 2021. url: https://medium.com/cosmwasm/cosmwasm-for-ctos-i-

the-architecture-59a3e52d9b9c (cit. on p. 42).

[19] CosmWasm Team. CosmWasm Entry Points. [Accessed: 17-Feb-2025]. 2024.

url: https://cosmwasm.cosmos.network/core/entrypoints (cit. on p. 43).

[20] World Federation of Exchanges & ConsenSys. Introduction to Tokenization.

[Accessed: 17-Feb-2025]. 2024. url: https://focus.world-exchanges.org/

articles/introduction-tokenization-consensys (cit. on p. 47).

[21] CosmWasm. WasmD Events Documentation. [Accessed: 03-Mar-2025]. 2025.

url: https://github.com/CosmWasm/wasmd/blob/main/EVENTS.md (cit. on

p. 59).

[22] Mark Richards. Software Architecture Patterns. First Edition. Sebastopol,

CA: O’Reilly Media, Inc., 2015. url: https://isip.piconepress.com/

courses/temple/ece_1111/resources/articles/20211201_software_

architecture_patterns.pdf (cit. on p. 62).

75

	Introduction
	Thesis structure

	Context & Background
	Introduction
	Regulatory Framework
	Regulation (EU) 2022/858
	Overall Scopes and Goals
	Structure of the Regulation

	Fintech Decree-Law 2023
	Structure

	Blockchain and Tokenization
	Blockchains
	Tokens and tokenization

	The technologies
	Commercio.network
	Smart contract lifecycle management

	Platform Backend
	Structure

	CW858 Smart Contract & eREG implementation
	Smart contract overview
	How to write smart contracts
	CW858 implementation
	Events
	eREG Backend

	Tests and Results
	Tests
	CW858 tests
	Backend tests

	Results
	Conclusions
	Bibliography

