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Abstract

In recent years, the rising concerns about climate change have increasingly driven
automotive companies to invest in electric vehicle (EV) development. While EVs
stand as a promising solution to enable a more sustainable form of transportation,
they still present inherent limitations compared to traditional ones, particularly in
terms of driving range. To address these challenges, this thesis develops a novel non-
linear Economic Model Predictive Control (EMPC) strategy based on a Constant
Time Gap (CTG) approach for adaptive cruise control, aiming to simultaneously
achieve optimal control performance and energy e!ciency.

The main challenge in designing the EMPC control strategy lies in managing
multiple concurrent control objectives. This thesis approaches such a challenge
by employing a carefully structured cost function for the optimal control problem,
encompassing various aspects among which the temporal evolution of the battery
state of charge, the ego vehicle energy consumption, and the ahead vehicle behavior.
These objectives typically concur with each other: aggressive following behavior
might lead to higher energy consumption and faster battery depletion, while strict
energy saving could compromise the cruise control performance.

Using experimental data collected from a real vehicle (a “Fiat 500e”), di"erent
cost functions are designed and compared to evaluate their e"ectiveness in carrying
out the cruse control task while preserving energy e!ciency. The main goal is to
find an optimal balance between these two crucial metrics.

The cost functions are tested in increasingly complex scenarios. First, validation
is carried out considering constant and sinusoidal velocity profiles. Then, standard
driving cycles – based on real-world vehicle operation – are employed, among which
the WLTP class 3 cycle.

Simulation results show that the CTG-based EMPC strategy achieves better
energy e!ciency that traditional MPC approaches while proficiently attaining the
cruise control task. The research work carried out in this thesis demonstrates how
CTG principles can be successfully integrated within economic objectives for EVs
control. While the immediate focus of this study are EVs, the general formulation
of the EMPC framework makes it adaptable to several other power management
scenarios. The cost function structure, which balances energy consumption and
control performance, could find potential application in other domains, like di"erent
hybrid powertrain configurations (e.g., fuel cell hybrid electric vehicles), smart grids,
and HVAC systems. Each of these scenarios presents similar trade-o"s between
resource utilization and system performance, suggesting that the proposed EMPC
approach could have a wider application beyond EVs.
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Chapter 1

Introduction

The way we think about cars has change a lot. Before, speed was everything, we

want to move from point A to point B as quickly as possible. Now, it’s di"erent.

We don’t care only about the speed but also taking into account the environmental

impact. This shift happened because climate change e"ects are becoming visible in

our daily lives. Floods, higher than average temperatures and melting glaciers are

the order of the day.

For this reason, climate change has emerged as a defining challenge for our era,

with the transportation sector contributing significantly to global emissions [18].

Reduce the use of fossil fuels has therefore become essential. For this reason,

politicians are taking action, such as the European Union, with regulation 2023/851

[5]. This regulation sets clear targets. The goal is zero emissions by 2035, through

a progressive reduction of emissions.

Research Context and Problem Statement

My thesis addresses a critical challenge in electric vehicle technology: energy opti-

mization. While EVs o"er a cleaner alternative to traditional combustion engines,
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Introduction

they still face practical limitations. Early models struggled with three main prob-

lems: they could not drive far, took too long to charge and cost too much. To

help solve these problems, policy makers are actively supporting the transition to

sustainable mobility and in particular to electric mobility, through various incen-

tives. These include support for the use of public transport like Mobility as a

Service (MaaS), and incentives for electric vehicles like direct purchase incentives,

exemption from property tax, free parking in paid areas and restrictions on high-

emission vehicle. Modern EVs show significant improvements. Battery technology

has advanced, allowing for greater energy storage and the power management have

become more sophisticated, thanks to smarter control systems ensure that power is

used e!ciently. Charging stations have become common and driving ranges have

been extended. Despite these advances, the quest for e!ciency continues to drive

innovation. My thesis address this challenge and i focus on improve how electric

vehicle (EVs) use their power during Adaptive Cruise Control (ACC) scenario. I

will use Economic Model Predictive Control (EMPC) in order to try to maximize

the e!ciency of power usage for extending vehicle range, improving overall perfor-

mance, while following in best manner the vehicle in front.

Research Contribution

My main contribution is the development of a nonlinear economic model predictive

control (EMPC) for the EV powertrain system using CasADi [1]. This controller

aims to:

• Optimize battery consumption patterns

• Follow the vehicle in front as best as possible, avoiding sudden accelerations

2



Introduction

Methodology

My methodology focuses on EV control optimization. Instead of using complex

models, I focused on approach that prioritizes control system development. My

methodological approach emerged directly from my background in mechatronic-

s/computer engineering, which give me a distinct perspective on approaching EV

control optimization challenges. While vehicle dynamics present intricate complex-

ity, my academic background led me to prioritize control system innovation over the

vehicle modeling. For this reason, i decide to employ in my work a two-axle vehicle

model, a choice that takes into account my academic background and my research

priorities. The two-axle model, which is a simple version of multi- body dynamics

representation often used in automotive engineering, provides me the ideal basis

for this problem. This model captures the essential longitudinal dynamics needed

to develop the control system without considering the complexity of full vehicle

dynamics, like suspension dynamics, the road-tire interface phenomena, inertial

e"ects, etc. Using data from Politecnico di Torino’s Fiat 500e, this provide me a

real-world parameters, grounding the theoretical work in practical application. The

methodology developed along three main threads:

• The vehicle modeling phase focused on extracting the most relevant dynamics

for control purposes deliberately abstracting away complexities that wouldn’t

substantially impact controller performance.

• System analysis examined the interplay between mechanical and electrical

subsystems, with particular attention to aspects most relevant to control de-

sign.

• The simulation phase, where I implemented and tested the control strategy

using MATLAB [12] and Simulink. I followed a progressive approach: first, I

tested the controller with a constant speed reference to verify basic function-

ality. Once that worked correctly, I moved to a sinusoidal velocity reference.

3
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In the end I tested the controller with the WLTP3 cycle, which represents

realistic driving condition, that presents various acceleration phase, di"erent

steady-state speed and multiple deceleration.

Thesis Organization

The thesis follows a logical flow starting with basic concepts. First, I explain how

EVs work and their structure, then I develop a model. After that, I show the

implementation of my controller and discuss what I found. I organize my chapters

like this:

• Chapter II - Fundamentals of Electric Vehicles: This chapter intro-

duces the most important component of EV, provides a general understanding

of electric vehicle and how these elements works together to give readers a

foundation of how electric vehicles works.

• Chapter III - System Model: In this section, I develop the mathematical

framework for vehicle dynamics and battery behavior. I focus on creating a

practical model that balances accuracy with computational e!ciency, using

data from the Fiat 500e as reference.

• Chapter IV - Model Predictive Control: From Traditional to Eco-

nomic Frameworks: Here, I explore MPC theory and its evolution toward

economic objectives. I explain the shift from traditional tracking formulations

to economic approaches that optimize operational costs.

• Chapter V - Economic MPC Implementation: The core of my contribu-

tion. Here, I detail the design process, cost function development, constraint

formulation and practical implementation challenges encountered during con-

troller development.

4
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• Chapter VI - Simulation Results and Conclusion:The final chapter

presents simulation results across di"erent driving scenarios. I analyze per-

formance di"erences between control strategies, discuss parameter selection

trade-o"s, and draw conclusions about the e"ectiveness of Economic MPC for

electric vehicles.

Literature Review

Recent years have seen significant advantages in EV technology and control sys-

tems. The research landscape spans di"erent areas, from powertrain optimization

to energy management strategies.

A key focus has been the development of model predictive control (MPC) strate-

gies. For example, Borhan et al. explored MPC for power management in hybrid

vehicles, demonstrating how MPC can e"ectively manage power split between dif-

ferent energy sources [3]. In this work, they proposed two distinct MPC approaches.

A first strategy that consider a linear time-varying MPC (LTV-MPC), which proved

comparable to existing control methods. But this approach present a limitations of

linearization in capturing complex powertrain dynamics, so taking into account this

consideration, they develop a nonlinear MPC (NMPC). This approach that show

an improvement in fuel economy. However, their NMPC approach required approx-

imately double the computational time of LTV-MPC. Building on this foundation,

Pereira et al. demonstrated the potential of nonlinear MPC for real-time applica-

tions [14]. This research address practical implementation challenges, particularly

in computational e!ciency, because they run the NMPC on low-cost hardware, like

the hardware that is inside the vehicles. Their work provided a valuable insight

into making complex control strategies feasible for real-world application.

Another crucial research direction is the energy management. Di"erent teams

of researcher have tried di"erent approach. He et al. developed a fuzzy-logic based

5
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system for energy management [11]. While, for example Zhang et al. in their

research explored the e"ectiveness of equivalent consumption minimization strategy

in a hybrid tram system [22].

Adaptive control is also another exciting area of research. Here, Xin and their

propose an innovative approach. In their research, they proposed an MPC approach

that includes online mass estimator [21]. The idea on the basis is the following,

as passengers get in and out or cargo is loaded, the vehicle’s mass changes. This

changes a"ect how much energy is used by the vehicle. By detecting the real-time

change in mass, the controller can modify its strategy. Following this idea, they

are able to achieve better energy e!ciency compared to traditional controllers that

assume a fixed mass.

The evolution of alternative power sources has added another dimension to EV

research. Of particular interest is fuel cell technology. In this area, Qiu et al.

conduced an analysis of multi-stack fuel cell systems [15]. Their work revealed

crucial insights about system architecture and highlighted how optimization at the

system level significantly impacts overall e!ciency.

My research builds on these foundation. I focus on developing an Economic

MPC strategy [10] that handles both energy optimization and ACC behavior [20].

For simulation and validation, I use the World Harmonized Light-duty Test Cycle

(WLTC) [17], specifically the WLTP class 3 cycle, which is the appropriate class

for my vehicle, the Fiat 500e. This cycle o"ers a comprehensive speed profile that

spans di"erent driving conditions from urban to highway cruising. This type of

variousness into cycle, makes it particularly well-suited for evaluating controller

performance across realistic driving scenarios. Its structure thoughtfully combines

gentle acceleration phases with more demanding high-speed segments followed by

deceleration phase. This varied profile creates an ideal testbench for the proposed

control strategy and energy optimization scheme. During high-speed segments,

the cycle demands significant power from the motor, while the deceleration phases

6
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enable regenerative braking to replenish battery charge. This natural alternation

between power consumption and regeneration allows for thorough testing of the

energy management capabilities of the control system.

7
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Chapter 2

Fundamentals of electric

vehicles

In this chapter, I present the main components of an electric vehicle powertrain

interact with each other. My focus is on understanding how these elements works

together and give to the reader a basis of EVs.

The shift towards sustainable transportation is transforming the automotive

industry, much more vehicles now use alternative power sources. This a"ects not

only private transport but also public transportation, such as buses.

The demand for sustainable transportation has grown rapidly. This growth has

led to more vehicles with lower emission [19]. These vehicles use alternative fuel

types, such as hybrid and electric powertrain. This shift a"ects both private and

public transportation and, the growing market for electric and hybrid vehicles has

prompted automotive companies to direct significant investments toward electric

powertrain development.
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Fundamentals of electric vehicles

2.1 Battery System

Battery Management Systems (BMS) constantly monitors various parameters of the

battery cells. It tracks the State of Charge (SOC) and the State of Health (SOH).

This task of monitoring the general health of the battery is fundamental. This

control allows the system to always operate in the optimal condition. Temperature

represents a crucial element for optimal battery functioning, as extreme values (both

too high and low) can significantly a"ect the battery life. Moreover, excessive

battery temperatures pose significant safety risks, potentially leading to thermal

runaway events. In addition, the BMS performs another crucial task. Lithium-

ion batteries are made up of several cells connected in series or in parallel with

each other. Each cell charges or discharges at di"erent speeds. This variation

can cause cell overcharging, leading to degradation, temperature increases, and

potential swelling. The BMS maintains balanced cell charges to avoid these issues.

2.2 Power conversion

The EV powertrain contains two key power conversion devices: an inverter and a

converter. The inverter transforms DC power from the battery pack into AC power

needed by the electric motor. During this conversion, some part of energy is lost

as heat.

When the vehicle brakes, the system can recover energy through regenerative

braking . In this case, the motor acts as generator. It produces AC power, which

the inverter converts back to DC to recharge the battery pack. This energy recovery,

improves the overall e!ciency.

The power converter e!ciency shows up in the battery current equation (eq. (3.17))

through the parameter ϖb. In my model, I keep ϖb constant to simplify things. But

even small changes in e!ciency can a"ect the range of the vehicle.

Another task performed by the power conversion systems is to step down the

10



2.3 – Motor Control Unit and Vehicle Control Unit

DC voltage of the battery pack, which usually ranges from 100 to 400 V to much

lower values 12-24 V, this is performed by a DC/DC converter. This lower voltage

is used by the services inside the car, such as air conditioning, radio, screens, etc.

I kept this setup simple in my study. But in real cars, managing these voltage

conversion e!ciently is crucial for the whole system.

2.3 Motor Control Unit and Vehicle Control Unit

The Vehicle Control Unit (VCU) works in synergy with the Motor Control Unit

(MCU) in the electric vehicle. The VCU acts as the brain of the car. It manages

the overall operations and monitors the status of the vehicle systems. The VCU

has three main tasks. First, it handles powertrain management by sending power

request to the MCU. Second, it controls the vehicle dynamics, stability, through

real-time sensors. This includes managing traction control and brake force distri-

bution. Third, it runs diagnostic operations to ensure that vehicle works in safety

conditions. It does this by using fault detection algorithms to monitor all subsys-

tems.

On the other hand, the MCU focuses on motor operation. It receives power

request from VCU and convert them into specific torque commands. This process

determines how much battery power should go to the electric motor. This is done

through the control of the inverter.

These two units form a critical control hierarchy. The VCU makes high-level de-

cisions about vehicle operation. The MCU then implements these decision through

precise motor control.

2.4 Thermal Management

Temperature control is a fundamental feature for electric vehicles, with particular

emphasis on two key areas: the battery pack and the electric motor. The Fiat 500e
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Fundamentals of electric vehicles

model that I’m considering in this thesis, uses a liquid cooling system [16].

The coolant circulates through the battery pack, dissipating heat generated dur-

ing operation. According to the vehicle’s user manual [16],the battery’s operating

range is between →30
→C to 50

→C. Temperatures that are too high or too low could

ruin the cell. The cooling system maintains optimal operating conditions. This

a"ects both performance and battery life.

Beyond battery management, the thermal system also regulates the tempera-

ture of the electric motor. Heat generation becomes particularly pronounced during

high-power demands. Without adequate cooling, motor e!ciency would deterio-

rate, a"ecting overall vehicle performance.

The power electronics, specifically the inverter and converter, also require ther-

mal management. Although their cooling demands are less intensive than the bat-

tery pack’s requirements, these components generate heat during operation that

must be dissipated.

Temperature sensors are placed inside these components and provide real-time

data for thermal management. This monitoring becomes crucial during rapid charg-

ing phases, where heat generation intensifies significantly. During these periods, the

cooling system operates at higher capacity to prevent thermal stress on the battery

cells.

This comprehensive approach to thermal management directly impacts vehicle

e!ciency and component longevity. By maintaining optimal operating temper-

atures across all systems, the thermal management system plays a vital role in

ensuring reliable vehicle performance.

2.5 Electric Motor and Transmission

The electric motor acts as the core component in EVs. It transforms electrical

energy from the battery into mechanical power. Tn my thesis, I focus on the Fiat

12



2.6 – On-Board Charger

500e’s Permanent Magnet Synchronous Motor (PMSM). This type of motor is very

common in electric cars, because it is very e!cient and provide good torque even

at low speeds. Which is very useful in urban scenarios.

The transmission in EVs di"ers significantly from traditional combustion en-

gines. Electric motors can deliver maximum torque at zero speed [7]. My study

of the Fiat 500e reveals a fixed gear ratio of 9.6:1 with 97% gearbox e!ciency

(Table 3.1). These parameters determine how motor power transfers to the wheels.

Motor e!ciency varies with operating conditions. Figure 3.1 demonstrates how

speed and torque a"ect e!ciency levels. This relationship significantly influences

energy consumption. In my controller design, I implemented a practical simplifi-

cation: I treat e!ciency as constant during the prediction horizon. This approach

uses current e!ciency values to determine subsequent torque commands, reducing

computational complexity while maintaining reliability.

During normal driving, it provides propulsion. During braking, it becomes a

generator. This generative braking process recovers kinetic energy, converting it

back to electrical form for battery charging. However, that energy recovery remains

partial due to system losses, primarily through heat dissipation.

These insights into motor and transmission behavior form a crucial foundation

for my control system design work in later chapters.

2.6 On-Board Charger

The On-Board Charger (OBC) is a fundamental component in EVs. It converts AC

power from the electrical grid to DC power that the battery can use. In the Fiat

500e, like in the modern EVs, the OBC manages both standard home charging and

faster charging stations. The OBC work closely with Battery Management System.

Together, they ensure safe and e!cient charging. While the OBC is crucial for EV

operation, I don’t focus on it in my control system design. My work centers on

13



Fundamentals of electric vehicles

energy management during vehicle operation rather than charging processes.

The interactions between these components form a complex but organized sys-

tem. Figure 2.1 shows how these elements work together. This diagram helps us

understand the flow of power, control signals, and thermal management in an EV.

Figure 2.1: Block diagram illustrating the key components and interactions within
an electric vehicle powertrain system. The diagram shows the flow of power, control
signals, and thermal management between major subsystems
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Chapter 3

System model

Electric vehicles require sophisticated control strategies, which in turn need ac-

curate models for their development. This chapter introduces the fundamental

concepts I use throughout my work, aiming to build a clear understanding of the

interactions between mechanical and electrical systems in the vehicle.

The organization of this chapter reflects the natural progression of my analyti-

cal framework. I begin with the mechanical aspects of the test vehicle, a Fiat 500e

owned by Politecnico di Torino. After analyzing several modeling approaches, I

chose to use a simplified dynamics model - the "two-axle vehicle body representa-

tion". This choice stems from a practical consideration: since my thesis focuses on

controller development rather than advanced vehicle dynamics,I needed a model

that balances realistic behavior with manageable complexity.

This simplified approach proved particularly useful because:

• It captures essential vehicle dynamics without excessive computational over-

head.

• It provides su!cient accuracy for control design purposes.

• It allows me to focus more resources on the control aspects of my work

15



System model

Following my analysis of the vehicle’s longitudinal dynamics, I turned my at-

tention to the electrical system. Understanding the complex relationship between

battery charge-discharge cycles and vehicle performance.

3.1 Vehicle Parameters

The vehicle parameters used in this thesis are derived from the Fiat 500e model,

as provided by Professor Pagone, and are shown in Table 3.1 .

Parameter Symbol Value Unit
Vehicle Mass Mv 1400 kg
Wheel radius rw 0.3 m
Frontal area Af 2.15 m2

Static rolling coe!cient f0 4.5 N/kN
Drag coe!cient Cd 0.33 -
Gear ratio εgb 9.6 -
Gearbox e!ciency ϖgb 0.97 -

Table 3.1: Vehicle parameters of the Fiat 500e

3.2 Longitudinal Dynamics Model

The longitudinal vehicle dynamics can be described using a backward approach.

The model is based on a two-axle vehicle body representation, where all forces are

assumed to be applied at the center of gravity (CoG).This approach allows me

to simplify the dynamic analysis while maintaining model accuracy for longitudi-

nal motion studies. Starting from a desired reference acceleration,I calculate the

required wheel torque by considering all forces acting on the vehicle during motion.

The main forces a"ecting longitudinal dynamics are: inertial force (Mvaref),

grade force (Fgrade) due to road inclination, aerodynamic resistance (Fvis) which has

a quadratic relationship with velocity and rolling resistance (Froll) mainly dependent

on vehicle weight. The required wheel torque Tw is calculated by multiplying the
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3.2 – Longitudinal Dynamics Model

sum of these forces by the radius of the wheel:

Tw = (Mvaref + Fgrade + Froll + Fvis)rw (3.1)

where:

• The grade force is given by:

Fgrade = Mv g sinϱ (3.2)

• The rolling resistance is expressed as:

Froll = Mv g f0 sgn v (3.3)

• The aerodynamic resistance force is:

Fvis =
1

2
↼Af Cd v

2 (3.4)

where ↼ = 1.25 kg/m3 is the air density

In my analysis, I simplify the model by setting Fgrade = 0 throughout the analytical

development. To obtain the velocity of the vehicle, the dynamic equation can be

arranged in the following form,where the acceleration of the vehicle is obtained as

a consequence of interaction between powertrain forces and resistive e"ects:

av =
dvv
dt

=
1

Mv

)︄
Tw

rw
→ Froll → Fvis

[︄
(3.5)

The relationship between wheel force and torque is:

Fw =
Tw

rw
(3.6)
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The wheel’s angular velocity under ideal conditions without slip, is given by:

ωw =
vref
rw

(3.7)

Tw represents the torque that must be applied to the wheel to allow movement

and follow the reference velocity,while taking into account all resistive forces.

3.3 Forward Vehicle Model

The longitudinal dynamical model is implemented in Simulink using a forward

approach. This methodology simulates the physical causality of the vehicle motion,

where the electric motor force generates vehicle acceleration and velocity. Unlike the

backward approach, the actual vehicle response is computed starting from applied

Torque. The main equation for the forward model is the eq.(3.5), and the velocity

of the vehicle is obtained through integration of this equation

vv(t) = vv(0) +

]︄ t

0

av(ε) dε (3.8)

3.4 Gearbox model

The gearbox allows torque and angular speed conversion between the electric motor

and the wheels through a fixed-ratio transmission system. The transmission system

is characterized by two main relationships:

1) The angular velocity relationship:

ωem = εgb ωw (3.9)
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3.5 – Electric Motor Power and E!ciency model

2) The torque relationship:

Tem =
Tw

εgb ϖ
sgn Tw

gb

(3.10)

where Tem is the electric motor torque, ϖgb the gearbox e!ciency and εgb is the

gearbox ratio and the sign function in the e!ciency exponent accounts for the

direction of the torque.

From eq.(3.10),I can express the wheel torque as:

Tw = Tem εgb ϖ
sgn Tem

gb (3.11)

3.5 Electric Motor Power and E!ciency model

The electric motor power (Pem) is defined by the product of angular velocity (ωem)

and the torque(Tem):

Pem = ωem Tm (3.12)

The battery power (Pb) links to motor power Pem via:

Pb =
Pem

(ϖem(ωem, Tem) ϖinv)
sgn Pem

(3.13)

where ϖinv represents inverter e!ciency, which I assume to be ideal (ϖinv = 1) in

my study. Given that ωem ↑ 0 the eq. (3.13) can be simplified to:

Pb =
Pem

ϖem(ωem, Tem)
sgn Tem

(3.14)

The motor e!ciency, denoted by ϖem(ωem, Tem) is determined through an e!-

ciency map that yields the corresponding e!ciency value based on the input torque

Tem and the angular velocity ωem. For simulation purposes,I use a generic motor
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e!ciency map,because the specific e!ciency map of the Fiat 500e’s motor is not

publicly available. This map provides a representative characterization of the typ-

ical performance of electric motors in BEV vehicle. The e!ciency map utilized in

my study is shown in Figure 3.1

Figure 3.1: E!ciency motor map

3.6 Battery

The battery pack of a Fiat 500e consists of lithium-ion cells connected in series con-

figurations. The most important battery parameters are summarized in Table 3.2.

Using the battery modeling approach presented in [4], the State of Charge
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3.6 – Battery

Parameter Symbol Value Unit
Cells in series Ns 108 -
Parallel strings Np 1 -
Nominal capacity Qnom 60 Ah
Coulomb e!ciency ϖc 0.95 -
Battery power converters ϖb 0.95 -

Table 3.2: Battery system specifications for the Fiat 500e
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(SOC), which is the remaining charge inside a battery, is defined in eq.(3.15),

SOC ↓ ϑ =
Qb

Qnom
(3.15)

and the variation of the SOC is defined as

ϑ̇ = →
Ib

Qnom ϖsgn (Pb)
c

(3.16)

where the ϖc is the Coulomb e!ciency and Ib, is the battery current that flow out

from battery,and it is defined as:

Ib =

V oc
b →

⌊︄
V oc
b

2
→ 4Ro

b ϖ
↑ sgn Pb
b Pb

2Ro
b

(3.17)

where ϖb is the battery power converters and V oc
b , Ro

b represent, respectively the

open circuit voltage and internal resistance of the battery pack,and it is defined as:

V oc
b = Ns V

oc
c (3.18)

Ro
b = Ns R

o
c (3.19)

where V oc
c is the ideal open circuit voltage source, that modelled the single cell of

the battery, Ro
c is the output resistance of the single cell and Ns is the number of

cell in series.

The characteristics of single cells V oc
c and Ro

c depends on their SOC. These

crucial pararameters were obtained in laboratory by Professor Novara’s doctoral

research teal, who provided me the experimental data.

Given that the experimental data consisted of dicrete measurements, it was nec-

essary to develop a continuous representation for implementation within the model
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3.6 – Battery

framework. The objective was to establish a continuous function that could accu-

rately describe the behavior of the cell throughout the operational range, defined

as ϑ ↔ (0,1).

To address this requirement,I employed MATLAB’s [12] interp function. The

choice of spline interpolation proved particularly advantageous, as it generated

smooth transition that captured the variations in cell behavior. The resulting func-

tions accurately represented V oc
c and Ro

c across all SOC values, while maintaining

the physical behavior of the battery system. Figure 3.2 shows both the experimen-

tal data points and the corresponding interpolated curves, allowing a comparison

between the discrete measurements and the continuous function obtained by spline

interpolation.

Figure 3.2: Battery cell characteristic parameters as functions of SOC. The upper
plot shows the open circuit voltage (V oc

c ) exhibiting a monotonic increase with
SOC, while the lower plot illustrates the internal resistance (Ro

c) displaying an
overall decreasing trend.
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3.7 CTG

In the context of Adaptive Cruise Control (ACC), the Costant Time Gap (CTG)

method is widely used for maintaining a safe distance from the vehicle ahead.

Unlike fixed distance strategies, CTG adapts the safe following distance based on

the vehicle’s current speed. This method aims to hold a constant time interval

between vehicles, rather than a constant distance gap.

In my implementation, the CTG controller calculates a target distance between

the ego vehicle and the lead vehicle according to the following equation:

ddes = dmin + h · vcurrent (3.20)

where ddes is the desired distance, dmin represents the minimum safety gap when

stopped, I set this distance to 0.5m, h is the desired time gap and vcurrent is the

ego vehicle’s current velocity. To regulate this distance, the controller computes a

corrective acceleration based on a PD controller.

acommand = kd · (dactual → ddes) + kv · (vlead → vcurrent) (3.21)

Here, kd and kv represent the proportional and derivative gains respectively, where

kd addresses position error, and kv regulates the relative velocity di"erence. After

trying several values, I settled on kd = 2 ·
1
h and kv =

1
h for my experiment setup.

The first term corrects distance deviations, while the second one penalizes the

di"erence between vehicles.

The detailed procedure for translating the desired acceleration command into

motor torque and the corresponding velocity calculations for the CTG controller

are presented in section 5.3.
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3.8 – State Space Representation

3.8 State Space Representation

The dynamic of our system can be described through a nonlinear function that

characterizes its temporal evolution:

ẋ = f(x, u) (3.22)

This formulation enables us to derive a state-space representation for my continuous-

time dynamical system. To formulate this model, let me consider a state vector

comprising three variables that characterize our system’s behavior:

x =

⌋︄

⌈︄⌈︄⌈︄⌉︄

p

v

ϑ

{︄

}︄}︄}︄⟨︄
(3.23)

where each component represents a physical quantity:

• x1 = p represent the longitudinal displacement of the vehicle, measured in

meters.

• x2 = v is the instantaneous velocity of the vehicle in meters per second.

• x3 = ϑ is the battery’s state of charge(SOC), which is dimensionless and

represents the vehicle’s energetic state.

The system’s behavior is influenced through a single control input:

u = Tem (3.24)

which represents the electric motor torque in Newton-meters.

The state-space representation of our system emerges through a careful deriva-

tion process.
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The first state equation represents position dynamics, and its derivation is

straightforward:

ẋ1 = ṗ = v = x2 (3.25)

The second state equation requires a more detailed derivation process. Starting

with eq. (3.5), which describes the vehicle’s acceleration:

ẋ2 = v̇ =
1

Mv

)︄
Tw

rw
→ Froll → Fvis

[︄
(3.26)

By substituting the expression for forces from eq. (3.4) expressing Tw through equa-

tion (3.11) and replacing v with my state variable x2, noting that that Tem represents

the control input u:

ẋ2 =
1

Mv

)︄
εgbϖugb
rw

u→Mvgf0 sgn x2 →
1

2
↼AfCdx

2
2

[︄
(3.27)

The third state equation involves battery dynamics. Starting from the SOC equa-

tion (3.16):

ẋ3 = ϑ̇ = →
Ib

Qnomϖ
sgn u
c

(3.28)

Here Ib from eq. (3.17), can be rewritten as a function of ϑ and Pb:

Ib =
1

2Ro
b(ϑ)

)︄
V oc
b (ϑ)→

⌊︄
V oc
b

2
(ϑ)→ 4Ro

b(ϑ)ϖ
↑ sgn Pb
b Pb

[︄
(3.29)

The battery power Pb inside equation (3.29) derives from equation (3.14):

Pb =
ωemu

ϖem(ωem, u)sgn u
(3.30)
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The motor angular velocity ωem relates to vehicle velocity through equation (3.9):

ωem =
εgb
rw

x2 (3.31)

This state-space model capture the complete system dynamics. It incorporates

mechanical behavior and battery dynamics in a unified mathematical framework.

The complete set of di"erential equations that describe the system evolution can

be written as:

ẋ =

⌋︄

⌈︄⌈︄⌈︄⌉︄

ẋ1

ẋ2

ẋ3

{︄

}︄}︄}︄⟨︄
=

⌋︄

⌈︄⌈︄⌈︄⌉︄

x2

1
Mv

⟩︄
ωgbεugb
rw

u→Mvgf0 sgn x2 →
1
2↼AfCdx2

2

/︄

→
Ib

Qnomεsgn u
c

{︄

}︄}︄}︄⟨︄
(3.32)

This formulation explicitly showing how the control input a"ects each state variable.
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Chapter 4

Model Predictive Control:

From Traditional to

Economic Frameworks

Model Predictive Control (MPC) has gained significant attention across various

industries in recent years. While it first found widespread use in petrochemical

applications, where it remains the dominant control strategy, my interest focuses

on its emerging role in automotive systems. What distinguishes MPC from con-

ventional control approaches is its fundamental operating principle: rather than

simply reacting to current errors like traditional controllers, MPC actively antici-

pates system behavior and plans optimal control actions over a prediction horizon.

Unlike classical control methods, widely used in the industrial branch, such

as PID or pole placement, which use fixed control laws. MPC takes a di"erent

approach. It solves an optimization problem in order to decide the best possible

control action. But that’s not all, MPC, unlike the methods mentioned above, is

able to be more flexible in the control of multiple input multiple output (MIMO)

systems, and under certain conditions it guarantees asymptotic stability.
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At every time step k, when the system is in state xk, MPC employs its system

dynamics knowledge to analyze possible future trajectories. The controller calculate

how the system would change under various input sequences during the next N

Steps, where N is the prediction horizon. Upon examination of all solutions. The

MPC chooses the best input sequence that best meets our specified optimization

criteria within the limits of system constraints.

After computing the optimal input sequence, MPC applies only first input to

the system. This single input drive the system to evolve to state xk+1. The process

then repeat at the next time step, with the prediction window shifting forward,

hence the term "receding horizon control". Figure 4.1 shows how it works.

reference

past future

predicted outputs

predicted outputs

predicted inputs

predicted inputs

u(k)
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Figure 4.1: Receding Horizon Idea: upper panel shows optimization at time k with
implementation of u(k); lower panel illustrates horizon shift to k+1 with new input
u(k + 1). Blue curves track reference trajectory, red steps represent control inputs
across horizon N .

This rolling horizon strategy has proven to be remarkably e"ective in my im-

plementation work. While the controller plans several steps ahead, it maintains

flexibility by only committing to immediate actions.

The receding horizon approach o"ers significant benefits for real world imple-

mentation. By only applying the first input of the computed sequence, MPC creates
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a closed-loop control system. This allows it to adapt to system changes, distur-

bances and modeling errors.

This step-by-step implementation is crucial. Real systems do not usually per-

form precisely according to mathematical models. As an example, in following

another car, driving at a perfectly constant speed is nearly impossible under real

tra!c conditions. The lead car may slow down suddenly for a pedestrian, speed up

to clear a yellow light, or change its speed due to changing road grades. These nat-

ural variations create a dynamic environment that static control strategies struggle

to handle. As the system evolves to state xk+1, new measurements provide update

information. The controller then recalculates the optimal trajectory based on this

fresh information. This helps correct for any deviations from expected behavior.

In my implementation work, I’ve found this adaptability valuable. The closed-

loop nature of MPC means that it continuously re-optimize based on current con-

ditions. It doesn’t blindly follow a pre-calculated path. This provides robustness

against various uncertainties:

• Model inaccuracies: No mathematical model is perfect.

• Unmeasured disturbances: External factors a"ect the system.

• Variations in parameters: The characteristics of the system change over time.

• Measurement noise: State information is imperfect.

MPC combines prediction-based planning with continuous feedback correction.

This creates a control strategy balancing optimization with adaptability. This

makes it suitable for electric vehicles, where conditions constantly change.

The MPC family contains several variants of the algorithm. All the variants

share the same fundamental principle of prediction and receding horizon control

but di"er in the implementation details and capabilities. Nonlinear MPC (NMPC)

is the most capable and general class in this family. Unlike simpler linear variants,

NMPC can handle complex MIMO systems with nonlinear dynamics.
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Note 4.1

In the following sections, I always consider discrete-time systems. This choice

stems from the fact that computers, even when operating with very small time

steps, work in discrete times. The programs that solve optimization problems

require this type of systems (CasaDi,YALMIP,...). For this reason, continuous

time systems must be discretized. These discretizations aren’t always "good"

and don’t always faithfully represent the systems. As we’ll see later, they some-

times need little tricks to be implemented properly

4.1 Mathematical Basis of NMPC

The most general NMPC framework can be formulated as a finite-horizon optimal

control problem. Consider the nonlinear discrete-time system:

xk+1 = f(xk,uk,dk) (4.1)

where x ↔ Rn represents the system state vector, u ↔ Rm are the system inputs,

and dk ↔ Rp is the disturbance term.

In my implementation, I focused on deterministic systems where disturbances

could be neglected during prediction (though they would naturally occur during

actual operation). This simplification leads to the prediction model:

xk+1 = f(xk,uk) (4.2)

We assume the generic nonlinear function f(x,u) is continuous and di"eren-

tiable almost everywhere, which proves su!cient for most practical applications

I’ve encountered. This requirements, while seemingly restrictive, encompass the

great majority of systems that are of interest to us while allowing robust numerical

solution methods.
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4.2 Types of Model Predictive Control

In developing control strategies for electric vehicle, I encountered several MPC

variants with distinct characteristics. Each approach o"ers unique advantages de-

pending on the specific control objectives.

4.2.1 Traditional Nonlinear MPC

Traditional NMPC frameworks typically prioritize reference tracking or regulation

problems. These controllers minimize the deviations between system outputs and

predefined reference trajectories through cost functions that often take quadratic

forms:

J =

N↑1\︄

i=0

↗xi → xref↗
2
Q + ↗ui → uref↗

2
R + ↗xN → xref↗

2
P (4.3)

where Q,R, and P are weighting matrices that penalize deviations from reference

states, inputs and terminal states respectively.

4.2.2 Economic MPC

Economic MPC (EMPC) di"ers from standard MPC. Basic MPC is built to ensure

asymptotic tracking of the reference point (xref , uref ), without taking into account

the costs during the transient phase. The behavior of the closed-loop depends only

on the choice of Q and R matrices. A choice of Q ↘ R leads to fast tracking. On

the other hand a choice of R ≃ Q leads to slow tracking.

EMPC takes a di"erent approach. It considers the cost during the transient

phase. It doesn’t only consider convergence to our reference point, economic opti-

mality is not linked only to convergence. For example, in chemical systems, eco-

nomic optimality is often characterized by periodic behaviors where the system

never converges to a single reference point.

For this reason, EMPC explicitly incorporates economic performance indicators
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into the cost function. The EMPC cost function takes this form:

J =

N↑1\︄

i=0

↽(xi, ui) + Vo(xN) (4.4)

where ↽(xi, ui) quantifies the actual economic cost of the system operation at state

xi with input ui and Vo is an o"set cost. The terminal cost Vo helps make the

system stable by adding extra penalties when system deviates from where we want

to end up.

This change from quadratic penalties to economic metrics transforms the con-

troller’s behavior. Standard MPC just chases the reference path, in order to arrive

at the steady state. In Economic MPC, the controller optimizes the economic cost

of the process without referring exclusively to steady state, taking the transient

phase into account.This makes it useful not just for following a reference, but also

for considering energy usage, which is essential for this thesis. I need to care about

vehicle range, not just tracking accuracy.

Note 4.2

Since Economic MPC is a subclass of the more general Nonlinear MPC fam-

ily, and since I developed my economic cost function step by step (starting

from simple reference tracking), I’ll present the general MPC formulation in

the following sections. I’ll point out the specific di"erences for EMPC when

needed - especially concerning things like equilibrium points and the fact that

in EMPC we don’t have ↽ as positive definite around the equilibrium point.

This progression was necessary because the MPC tracking is used as a com-

parison model for the final formulation of the economic cost function. This

developmental approach provided clearer insights into the relative advantages

of economic considerations when applied to vehicle control strategies.
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4.3 Creating the Mathematical Model for MPC

After examining the di"erent control approaches, I needed to formulate my opti-

mization problem. I structured it in three main components: optimization vari-

ables, cost function, and constraints.

4.3.1 Optimization variables

When solving the MPC problem, the controller has to predict the system states for

every possible input sequence. That means equations (4.2), that represents how

states evolve over time, needs to be embedded into the optimization problem for

each step of the prediction horizon.

These state dynamics can be included in two ways: explicit prediction form and

implicit prediction form or explicit form.

• Explicit prediction form: This approach computes future state o#ine for

a set of possible xk states. The computed predicted states are expressed as

functions of the initial state and predicted input. In this case the optimiza-

tion variables are only the predicted inputs. This solution is very useful for

processors with limited resources, but loses degrees of freedom in finding the

optimal solution.

• Implicit prediction form: This method considers both predicted inputs and

states as optimization variables. The states enter the optimization problem

through equality constraints at each time step in the prediction horizon. In-

cluding states as optimization variables gives the controller more direct control

over system behavior.

For my use case, I chose the implicit prediction form, which means that my

predicted vehicle dynamics states - position, velocity and battery state of charge

(SOC) - are incorporated into my optimization problem as equality constraints.
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The optimization variables will therefore include both the predicted states and

inputs. For a generic time instant k, I denote them as follows:

{xi|k}
N
i=0, {ui|k}

N↑1
i=0 (4.5)

where N is the prediction horizon.

The notation "t|k" has the following meaning: i represents the time instant

of the optimization variable along the prediction horizon i ↔ [0,1, ..., N ], while k

indicates the time instant where the prediction starts. To understand better, More

specifically, at time k when my system is at state xk, I begin predicting future states

to calculate the input uk, needed to progress to state xk+1.

Note 4.3

At the beginning of each prediction window, x0|k = xk.

The predicted states and predicted inputs sets are defined as follows:

Xk = {x0|k, x1|k, ..., xN |k} (4.6a)

Uk = {u0|k, u1|k, ..., uN↑1|k} (4.6b)

4.3.2 Cost Function

The general expression of the cost function for a nonlinear MPC takes this form:

JNMPC(Xk,Uk) = J[0,N↑1](Xk,Uk) + V (xN |k) ↓

N↑1\︄

i=0

↽(xi|k, ui|k) + V (xN |k) (4.7)

Here, JNMPC represent the cost function, ↽ is the stage cost function, that captures

the performance at each prediction step, while and V is the terminal cost function

that penalizes the deviations at the end of the prediction horizon. The term J[0,N↑1]
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represents the nonlinear MPC cost function without terminal cost.

Note 4.4

V, the terminal cost, is not required in the cost function definition. However,

it is request to ensure asymptotic stability( 4.4.2)

My first cost function, described in equation (4.23b), aims to follow the preced-

ing vehicle. This means the optimization problem must provide me with an input

sequence that reaches the desired state, potentially as k →⇐ ⇒

For the NMPC to perform tracking e"ectively, certain initial conditions must

be met:

• There must exist an input ur such that the pair (xr, ur) is an equilibrium point

for the open-loop system. This means there must be a ur that maintains the

system at the equilibrium point. If this input does not exist, keeping the

system at that point would be impossible. In mathematical terms:

xr = f(xr, ur) (4.8)

• The cost function must penalize the distance between the current system state

x and the equilibrium point xr Adding a penalty on input u is not required

to prove stability but can help to limit control signal e"ort by seeking the

smallest possible u. In case the input doesn’t have a reference, or when the

input at equilibrium state isn’t easily determined, the penalization can be

done with respect to the point (xr,0). In this scenario, the stage function

↽ must be positive definite in a a neighborhood of (xr,0). This approach

penalizes the distance of U from the origin while still ensuring state tracking

to xr. This method is used, for example, when dealing with systems where

the steady-state input is di!cault to compute analytically.

To ensure our stage cost function ↽ penalizes the distance from our equilibrium
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point for all x ↔ Rn, ↽ must be positive definite in a neighborhood of the

equilibrium point (xr,ur):

↽(x,u) =

/︂
\︂⎛

\︂⎞

0 if (x,u) = (xr,ur)

> 0 ⇑(x,u) ↔ Rn
⇓ Rm

\ {(xr,ur)}

(4.9)

The theoretical considerations established for the constant equilibrium point

(xr,ur) can be extended, with appropriate reformulations, to the tracking of time-

varying trajectories xr(k), which represent our reference trajectory. This extension

allows us to address more dynamic control scenarios where the target state evolves

over time, as in the case of sinusoidal reference velocity or WLTP cycle.

A typical choice for the cost function in NMPC formulation, which also corre-

sponds to my first cost function implementation without terminal cost, takes the

following form:

J(Xk,Uk) =

N↑1\︄

i=0

↽(xi|k, ui|k) + V (xN |k) =

N↑1\︄

i=0

(xi|k → xr)
TQ(xi|k → xr) + uT

i|kRui|k

(4.10)

where Q and R are positive definite diagonal matrices.

Note 4.5

Q can be positive semi-definite if the pair (Q1/2, A) is observable.

Def. (Observability): is the property of a system that enables the esti-

mation of its initial state through the measurement of output y(·) and input

u(·) over a specified time interval.

In other words, the initial state of the system x(0) can be determined if we

know the input-output behavior over a finite time horizon.

This cost function satisfies the condition in eq. (4.9). The diagonal matrices Q
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and R represent our weights, which allow us to adjust the trade-o" between the rate

of convergence to the equilibrium point and how much e"ort is required to achieve

this equilibrium state. Larger values of Q, giving us a faster system response to

reach xr. Instead, larger values of R, penalize the amplitude of the control signal,

resulting in slower convergence to the equilibrium point.

Note 4.6

For the economic MPC, we need to move away from the positive definiteness

around a predefined equilibrium (xr, ur). The a-priori assumption of equilib-

rium loses meaning in this context. Instead, equilibrium takes on a di"erent

interpretation. The equilibrium sought by the MPC balances the stage cost

and system dynamics. Typically, ↽ is not positive definite in this context. This

necessitates a di"erent definition:

Def. (Optimal equilibrium): An equilibrium (xe, ue
) is called an

optimal equilibrium if it yields the lowest value of the cost function among

all admissible equilibria [9]

↽(xe, ue
) ⇔ ↽(x, u) ⇑(x, u) ↔ X ⇓ U with f(x, u) = x (4.11)

Unlike traditional MPC where the stage cost penalizes distance from a known

equilibrium point, Economic MPC uses a stage cost containing economic perfor-

mance metrics that might not reach their minimum at the desired equilibrium

state. This fundamental di"erence shifts focus to optimizing operational cost

during both steady state and transient phases. But losing positive definite-

ness of ↽ creates the need to introduce dissipativity concepts, as we’ll see in the

asymptotic stability section. Dissipativity provides a more general energy-based

framework for analyzing system behavior.
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4.3.3 Constraints

As previously stated, one of the characteristics that make MPC advantageous com-

pared to other types of control is the ability to incorporate constraints directly into

the calculation of optimal solution.

According to Goodwin et al. [8], there exist four fundamental approaches to

constraint handling in control problems:

• Cautious approach: This strategy is implemented by ensuring that con-

straint are never violated under any circumstances. The controller behaves

conservatively, maintaining a significant margin from constraint boundaries.

This a"ects the performance of the controllers, typically resulting in extremely

slow convergence to equilibrium states.

• Serendipitous approach: This method initially ignores constraints in the

construction of the controller, developing the controller as if constraints did

not exist. Constraints are subsequently imposed on the completed design.

For instance, with input constraints, the controller is first designed without

restrictions, then the input is limited according to constraint. This type of

approach allow occasional constraint violation.

• Evolutionary approach: This strategy employs an iterative trial-and-error

methodology. The controller is initially constructed without constraint im-

plementation, then progressively modified based on observed constraint vio-

lations during operation.

• Tactical approach: this is the most sophisticated strategy, as well as the

strategy adopted by MPC, where constraints are incorporated directly into

the controller formulation. They are taken into account from the beginning.

By considering constraints from the outset, the optimizer that minimizes the

cost function seeks the best solution while inherently respecting the imposed

constraints.
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MPC constraints get added to the minimization problem in this format:

xi|k ↔ X , i = 0,1, . . . , N (4.12a)

ui|k ↔ U , i = 0, 1, . . . , N → 1 (4.12b)

xN |k ↔ XF (4.12c)

The first equations restricts the predicted states to remain within an admissible

region, X ↖ Rn, the second one restrict control input into feasible set U ↖ Rm.

The third equation represents the terminal constraint applied to the final prediction

state, XF ↖ Rn.

MPC constraints can be insert inside minimization problem can be categorized

into two main types: equality constraint and inequality constraint.

Equality Constraint

Equality constraints enforce exact relationship and typically take the form of:

c(xi|k,ui|k) = 0 (4.13)

When dealing with a constant and we want to set c(xi|k, ui|k) equal to cref , we

prefer to write it as c(xi|k, ui|k)→cref = 0. This reformulation makes implementation

inside solvers easier, helping us write constraints in matrix form. So usually, we

write:

0 ⇔ c(xi|k, ui|k)→ cref ⇔ 0 (4.14)

The most important equality constraints used in MPC are the equations de-

scribing system dynamics. They ensure the system evolves according to the system

model. Also the terminal constraint is usually in this form.
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In my implementation, I use a terminal equality constraint:

x2,N |k → xref = 0 (4.15)

This makes the vehicle velocity at the prediction horizon’s end match exactly

the reference value. The terminal constraint is important for asymptotic stability

and recursive feasibility, but not mandatory in MPC problem formulation.

Inequality constraints

Inequality constraints define boundaries rather than exact values, typically repre-

sented as:

c(xi|k) ⇔ 0, i = 0, 1, . . . , N (4.16a)

c(ui|k) ⇔ 0, i = 0, 1, . . . , N → 1 (4.16b)

For my application, I constraint the motor torque, my control input, between

minimum and maximum allowable values:

Tem,min ⇔ ui|k ⇔ Tem,max, i = 0, 1, . . . , N → 1 (4.17)

For the state, I constraint velocity and SOC, respectively x2 and x3 such that:

vveh,min ⇔ x2,i|k ⇔ vveh,max, i = 0, 1, . . . , N (4.18a)

ϑmin ⇔ x3,i|k ⇔ ϑmax, i = 0, 1, . . . , N (4.18b)

For clarity, I listed the specific numerical values of the constraints used in my

implementation in Table 4.1.

The negative value for minimum velocity allows the vehicle to move in reverse
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Parameter Symbol Value Unit
Maximum motor torque T em,max 280 N ·m
Minimum motor torque T em,min -280 N ·m
Maximum vehicle velocity vveh,max 50 m/s
Minimum vehicle velocity vveh,min -5 m/s
Maximum battery SOC ϑmax 1 -
Minimum battery SOC ϑmin 0.01 -

Table 4.1: Constraint parameter values used in the MPC formulation
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when necessary, through in typical driving scenarios this capability is not utilized.

Regarding the battery SOC, I put 0.01 to minimum value to avoid numerical prob-

lem around 0.

Having these two classes of constraints, I can rewrite them in the following form:

lbdj ⇔ cineq,j(xi|k,ui|k) ⇔ ubdj, j = 1, . . . , p (4.19a)

ceq,l(xi|k,ui|k) = 0, l = 1, . . . , q (4.19b)

lbdj ⇔cineq,j(xi|k,ui|k) ⇔ ubdj, j = 1, . . . , p (4.20a)

0 ⇔ceq,l(xi|k,ui|k) ⇔ 0, l = 1, . . . , q (4.20b)

⌋︄

⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌉︄

lbd1
...

lbdp

0

...

0

{︄

}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄⟨︄

⇔

⌋︄

⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌉︄

cineq,1(xi|k,ui|k)
...

cineq,p(xi|k,ui|k)

ceq,1(xi|k,ui|k)
...

ceq,q(xi|k,ui|k)

{︄

}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄⟨︄

⇔

⌋︄

⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌈︄⌉︄

ubd1
...

ubdp

0

...

0

{︄

}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄}︄⟨︄

(4.21)

LBD ⇔ G ⇔ UBD (4.22)

where :

• LBD = [lbd1, · · · , lbdp,0q]
T is the vector of lower bounds.

• UBD = [ubd1, · · · , ubdp,0q]
T is the vector of upper bounds.

• G represents the composite vector of inequality and equality constraints.
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4.3.4 Full Mathematical Formulation of MPC

Collecting all information from the previous sections, I can write the MPC problem

formulation as an optimization problem, specifically a "finite horizon constrained

optimal control problem". For the cost function, I’ll include the most complete

version, which is also my first cost function used in simulations. As mentioned

earlier, this cost function contains both a stage cost term h and a terminal cost V .

MPC optimization problem

(X↓
k ,U

↓
k ) = arg min

Xk,Uk

J(Xk,Uk) (4.23a)

J(Xk,Uk) = J[0,N↑1](Xk,Uk) + V (xN |k)

=

N↑1\︄

i=0

↽(xi|k,ui|k) + V (xN |k)

=

N↑1\︄

i=0

(xi|k → xr)
TQ(xi|k → xr) + uT

i|kRui|k + (xN|k → xr)
TP (xN|k → xr)

(4.23b)

subject to:

xi+1|k = f(xi|k, ui|k), i = 0,1, . . . , N → 1 (4.23c)

x0|k = xk (4.23d)

xi|k ↔ X i = 0,1, . . . , N (4.23e)

ui|k ↔ U i = 0,1, . . . , N → 1 (4.23f)

xN |k ↔ XF (4.23g)

(↙) (4.23h)
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Where the optimization variables are the same as defined in section 4.3.1, namely

Xk = {x0|k,x1|k, . . . ,xN |k} (4.24)

Uk = {u0|k,u1|k, . . . ,uN↑1|k} (4.25)

These sets represent, respectively, the predicted state trajectory and the pre-

dicted input sequence over the optimization horizon. The asterisk present in the

problem at (4.23h) indicates additional constraints that can be placed there for

supplementary conditions that might be incorporated according to specific control

objectives or system requirements. The basic version of the problem, as previ-

ously mentioned, does not include the terminal cost function V and the terminal

constraint (4.23g), and does not contain additional constraints:

(X↓
k ,U

↓
k ) = arg min

Xk,Uk

J(Xk,Uk)

J(Xk,Uk) = J[0,N↑1](Xk,Uk) =

N↑1\︄

i=0

↽(xi|k,ui|k) (4.26a)

subject to:

xi+1|k = f(xi|k, ui|k), i = 0,1, . . . , N → 1 (4.26b)

x0|k = xk (4.26c)

xi|k ↔ X i = 0,1, . . . , N (4.26d)

ui|k ↔ U i = 0,1, . . . , N → 1 (4.26e)

X↓
k and U ↓

k represent the optimal predicted trajectory and the optimal predicted

input sequence, respectively, obtained from solving the minimization problem:
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X↓
k = {x↓

0|k, . . . , x
↓
N |k} (4.27a)

U ↓
k = {u↓

0|k, . . . , u
↓
N↑1|k} (4.27b)

The optimal value of the cost function is denoted as J↓
k or, expressed as a

function of the initial state, J↓
(xk).

Returning to the receding horizon principle of model predictive control, as ex-

plained at the beginning of this chapter and illustrated in Figure 4.1, only the first

input of the optimal control sequence is applied to the system. At the k-th instant

of our closed-loop cycle, we can therefore write:

X = {x0, x1, . . . , xk} (4.28a)

U = {u↓
0|0, u

↓
0|1, . . . , u

↓
0|k} (4.28b)

The state xk is calculated by applying the input u↓
0|k↑1. In an ideal case where

there are no discrepancies between the first predicted state x↓
1|k↑1 and the actual

state xk, we could write the equality xk = x↓
1|k↑1. However, this relationship gener-

ally does not hold due to measurement errors, model-system discrepancies, etc.

For notational simplicity, we denote uk = u↓
0|k. Thus, the set of inputs at the

k-th instant becomes:

U = {u0, u1, . . . , uk} (4.29)
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Note 4.7

In practical applications, rather than in idealized scenarios, the control cycle

has a finite temporal duration Ttot, which corresponds to the time instant at

which the cycle terminates. Consequently, the previously defined sets become:

X = {x0, x1, . . . , xk, . . . , xTtot} (4.30a)

U = {u0, u1, . . . , uk, . . . , uTtot↑1} (4.30b)

4.4 Asymptotic Stability and Recursive Feasibil-

ity

After presenting the complete mathematical formulation of general MPC, I will now

introduce fundamental theorems useful for proving the stability of Economic MPC

controller. While recursive feasibility analysis applies broadly across the nonlinear

MPC family, the asymptotic stability properties demand distinct treatment for

economic formulations. The absence of positive definiteness in the stage cost ↽

precludes conventional Lyapunov-based stability analysis typically employed for

standard nonlinear MPC. Instead, we must introduce the concept of dissipativity

For our controller to be stable, it must be recursively feasible.

4.4.1 Recursive Feasibility

A MPC optimization problem is called recursively feasible if, for every initial

state x0 where a feasible solution exists at time k = 0, the optimization problem

remains feasible for all subsequent time instants k ↑ 1 under the application of the

control law obtained from MPC into the closed-loop trajectory.

Sometimes, even if the problem is feasible for k = 0, it becomes infeasible

for other time instants k /= 0. This property makes sure the controller doesn’t
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enter a region where satisfying constraints becomes impossible, thus preventing the

controller from calculating a valid control action for state xk.

It is important to note that the set of solutions that guarantee a feasible closed-

loop trajectory is a subset of the states for which there exists at least one feasible

open-loop solution [13].Open-loop feasibility only ensures that a solution exists for

the current prediction horizon, without guaranteeing that the problem remains

feasible in subsequent steps under MPC control law application.

Note 4.8

Recursive feasibility does not imply stability of the closed-loop systems

In order to prove recursive feasibility I need to introduce the concept of invariant

set:

Def. (Invariant Set): A set O is called positively invariant for system

xk+1 = fϑ(x(k)), if

x(k) ↔ O ∝ fϑ(x(k)) ↔ O, ⇑k ↔ N

This means, that if I start from a point inside the set O, my trajectory remains

inside O for all future instants of time.

Ensuring recursive feasibility means that the set of initial states is a control

invariant set for the system described by the equation (4.2). This set coincides

with the set of states that lead to a feasible close-loop trajectory.

Assumption 4.4.1

The terminal set XF of (4.23g) is a control invariant set for the system (4.2) if,

for xk ↔ XF , it always exist an input u↔ such that:

xk+1 = f(xk,u
↔
) ↔ XF (4.31)
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Initially, in eq. (4.8) we set as initial conditions for our MPC that xr is an

equilibrium point for our system. From this fact, we can determine that the smallest

control invariant set containing xr is simply the singleton set:

XF = {xr} (4.32)

This makes sense because having u↔
= ur ensures that f(xr, u↔

) = xr ↔ XF . In

other words, the system stays at the equilibrium point when the corresponding

equilibrium input is applied.
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Theorem: Recursive Feasibility of MPC

Consider the following general MPC problem:

(X↓
k ,U

↓
k ) = arg min

Xk,Uk

J(Xk,Uk)

subject to:

xi+1|k = f(xi|k, ui|k), i = 0,1, . . . , N → 1 (4.33a)

x0|k = xk (4.33b)

xi|k ↔ X i = 0,1, . . . , N (4.33c)

ui|k ↔ U i = 0,1, . . . , N → 1 (4.33d)

xN ↔ XF (4.33e)

with a terminal constraint set XF = {xr} where xr is the equilibrium point of

the system. If:

• X and U are compact sets containing xr and ur, respectively

• The function f(x, u) is continuous

• The optimization problem is feasible for the initial state x0

Then the MPC optimization problem remains feasible for all subsequent time

steps, ensuring recursive feasibility of the closed-loop system [9] [13]

Proof of Recursive Feasibility for MPC with Terminal Constraint

Consider the MPC problem formulated in (4.33) with a terminal constraint set

XF = {xr} where xr is the equilibrium point of the system.

To establish recursive feasibility, i use an inductive approach, demonstrating

that feasibility at any time step k ensures feasibility at the subsequent time step
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k+1.

Starting from the third assumption, the MPC optimization problem is feasi-

ble at time k = 0. Therefore, there exists an optimal control sequence and the

corresponding trajectory of the predicted states.

U↓
0 = (u↓

0|0, u
↓
1|0, . . . , u

↓
N↑1|0)

X↓
0 = (x↓

0|0, x
↓
1|0, . . . , x

↓
N |0)

(4.34)

where x↓
0|0 = x0 and x↓

N |0 = xr due to the terminal constraint (4.33e).

Suppose that at an arbitrary step k ↑ 0, the MPC problem admits a feasible

solution, this means that there exists an optimal control sequence and the corre-

sponding state trajectory :

U↓
k = (u↓

0|k, u
↓
1|k, . . . , u

↓
N↑1|k)

X↓
k = (x↓

0|k, x
↓
1|k, . . . , x

↓
N |k)

(4.35)

The terminal constraint (4.33e) ensures that x↓
N |k = xr. Since xr is an equilib-

rium point, by definition( as established in equation (4.8)), there exists an input ur

such that:

f(xr, ur) = xr (4.36)

According to the receding horizon principle, presented at the begin of this chap-

ter 4, only the first control input uk = u↓
0|k is applied to the system. Consequently,

the state at time k + 1 becomes:

xk+1 = f(xk, uk) = f(x↓
0|k, u

↓
0|k) = x↓

1|k (4.37)

At time k + 1, i can construct a candidate control sequence:

Ûk+1 = (u↓
1|k, u

↓
2|k, . . . , u

↓
N↑1|k, ur) (4.38)
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This sequence, when applied to the system starting from the state xk+1 = x↓
1|k,

produces the predicted state trajectory:

X̂k+1 = (x↓
1|k, x

↓
2|k, . . . , x

↓
N |k, f(x

↓
N |k, ur)) (4.39)

Given that x↓
N |k = xr and f(xr, ur) = xr, this trajectory simplifies to:

X̂k+1 = (x↓
1|k, x

↓
2|k, . . . , xr, xr) (4.40)

Checking if the candidate solution satisfy all the constraint in the optimization

problem, i have:

• Dynamic constraint: By construction the state trajectory X̂k+1 follow the

system dynamics under the input sequence Ûk+1, satisfying the equation:

xi+1|k+1 = f(xi|k+1, ui|k+1), ⇑i = 0,1, . . . , N → 1

• Initial state constraint: The first element of the candidate trajectory is

x0|k+1 = x↓
1|k = xk+1.

• State constraints: Since the original solution (X↓
k , U

↓
k ) is feasible, i have

that x↓
i|k ↔ X for i = 1, 2, . . . , N . Therefore, xi|k+1 = x↓

i+1|k ↔ X for i =

0, 1, . . . , N → 1. Additionally, xN |k+1 = xr ↔ X by my assumption that X is a

compact set containing xr. Thus, all state constraints are satisfied.

• Input constraints: Similarly, since (X↓
k , U

↓
k ) was feasible, u↓

i|k ↔ U for i =

1, 2, . . . , N→1. Therefore, ui|k+1 = u↓
i+1|k ↔ U for i = 0, 1, . . . , N→2. Moreover,

uN↑1|k+1 = ur ↔ U by assumption. Hence, all input constraints are also

satisfied.

• Terminal constraint: The final state in the candidate trajectory is xN |k+1 =

xr, which belongs to XF = {xr}, thus satisfying the terminal constraint
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(4.33e).

Having verified that all constraints are satisfied, we conclude that the candi-

date solution (X̂k+1, Ûk+1) is feasible for the MPC problem at time k + 1. While

this solution may not be optimal, its existence guarantees the feasibility of the

optimization problem at time k + 1.

In conclusion, starting from the assumption that the MPC is feasible at the

initial time and as previously demonstrated, it is feasible at time k, by induction it

is feasible at time k+1. I can conclude that my problem with the terminal constraint

remains feasible for all subsequences k>= 0, this guarantees the Recursive feasibility

of the close-loop system.

The compactness of X and U and the continuity of f(x, u) serve as foundational

theoretical conditions that, although not directly employed in our proof, ensure

the well-posedness of the optimization problem at each step. These mathematical

properties, even if not used within the proof, guarantee that the set of solutions is

bounded and non-empty throughout the process.

4.4.2 Asymptotic stability

Standard MPC, like the reference tracking approach used in my first cost function

can prove stability through Lyapunov theory. Lyapunov proposed a method to

show system stability without finding the actual system trajectory. Instead, it uses

a generalized energy function.

The basic idea behind Lyapunov stability analysis is simple: if we can find a

positive definite function that decrease along the system trajectories, the system

will reach the equilibrium.

However the assumption of monotonically decreasing cost function isn’t valid

for all nonlinear systems and for all cost function, and in particular is not valid for

the cost function related to the general economic MPC.

54



4.4 – Asymptotic Stability and Recursive Feasibility

In order to prove the stability of Economic MPC , i need to introduce the concept

of dissipativity:

Def. (Dissipativity [2]): A control system f(x, u) is dissipative with respect

to a supply rate s: X ⇓ U ⇐ R if there exist a function ⇀: X ⇐ R such that

⇀(f(x, u))→ ⇀(x) ⇔ s(x, u), ⇑(x, u) ↔ X ⇓ U

If in addition ↼ : X ⇐ R↗0 positive definite exists such that

⇀(f(x, u))→ ⇀(x) ⇔ →↼(x) + s(x, u),

then the system is said to be strictly dissipative

Interpreting this definition in physical terms, the element can be viewed as:

• ⇀(f(x, u)): energy stored at time k+1.

• ⇀(x): energy stored at time k

• s(x, u): externally supplied energy

A physical system cannot create energy, it can only dissipate it. And only a

system capable of dissipating energy can converge to a stable equilibrium point.

If we define the externally supplied energy as:

s(x, u) = ↽(x, u)→ ↽(xe, ue
)

where ↽(x, u) is the stage cost function and ↽(xe, ue
) is the value of this cost function

in the equilibrium point, we can interpret dissipation as the system’s tendency to

dissipate excess energy relative to the minimum equilibrium cost.

This mathematical definition corresponds to the intuitive idea that physical

systems naturally tend toward states of minimum energy.
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Knowing the definition of dissipativity, we can look up the function ⇀ : X ⇐ R

such that:

min
x↘X ,u↘U

↽(x, u) + ⇀(x)→ ⇀(f(x, u)) ↑ ↽(xe, ue
)

If we define the rotated stage cost function as:

L(x, u) = ↽(x, u) + ⇀(x)→ ⇀(f(x, u))

we obtain:

min
x↘X ,u↘U

L(x, u) ↑ ↽(xe, ue
) = L(xe, ue

)

This reformulation possesses interesting properties: the rotated cost function

L(x, u) reaches its minimum values under the same constraints as the economic

MPC at the equilibrium point (xe, ue
), just like ↽(x, u). Thus, even though we use

di"erent cost functions, we obtain the same minimum.

This function has properties that make it more suitable for stability analysis.

To proceed, we need to define also the rotated terminal cost

Ṽ f (x) = Vf (x) + ⇀(x)→ Vf (x
e
)→ ⇀(xe

) (4.41)
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Theorem: Asymptotic Stability of

EMPC with Terminal Constraints

Consider the following Economic MPC [6] [9]:

min
u

J[0,N↑1](Xk,Uk) + Vf (xN |k) =

N↑1\︄

i=0

↽(x(i|k), u(i|k)) + Vf (xN |k)

subject to

xi+1|k = f(xi|k, ui|k), i = 0,1, . . . , N → 1

x0|k = xk

xi|k ↔ X i = 0,1, . . . , N

ui|k ↔ U i = 0,1, . . . , N → 1

xN |k ↔ Xf

Assume that

1. The system is strictly dissipative at the equilibrium point (xe, ue
) ↔ X ⇓U

with a storage function: ⇀ : X ⇐ R bounded from below with ⇀(xe
) = 0

i.e, there exist ↼ ↔ K≃ such that:

↽(x, u)→ ↽(xe, ue
) + ⇀(x)→ ⇀(f(x, u)) ↑ ↼(||x→ xe

||), ⇑(x, u) ↔ X ⇓ U

2. The terminal region Xf ′ X is compact and contains xe in its interior;

3. There exists a control law ⇁f : Xf ⇐ U such that:

Vf (f(x,⇁f (x))) = Vf (x)→ ↽(x,⇁f (x)) + ↽(xe, ue
), ⇑x ↔ Xf

with Vf (xe
) = 0;

4. The optimization problem is recursively feasible.

Then, the equilibrium point xe is asymptotically stable for the closed-loop sys-

tem under the economic MPC control law.
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Proof: We construct a rotated terminal cost corresponding to our rotated stage

cost:

Ṽ f (x) = Vf (x) + ⇀(x)

since Vf (xe
) = ⇀(xe

) = 0

If the pair (Vf (·), ↽(·)) satisfies Assumption 3, then the pair (Ṽ f (·), L(·)) satisfies

the following property:

Ṽ f (f(x,⇁f (x)))→ Ṽ f (x) = →L(x,⇁f (x)) ⇑x ↔ Xf

Ṽ f (f(x,⇁f (x)))→ Ṽ f (x) = Vf (f(x,⇁f (x))) + ⇀(f(x,⇁f (x)))→ Vf (x)→ ⇀(x)

= Vf (x)→ ↽(x,⇁f (x)) + ↽(xe, ue
) + ⇀(f(x,⇁f (x)))→ Vf (x)→ ⇀(x)

= →↽(x,⇁f (x)) + ↽(xe, ue
) + ⇀(f(x,⇁f (x)))→ ⇀(x)

= →[↽(x,⇁f (x))→ ↽(xe, ue
) + ⇀(x)→ ⇀(f(x,⇁f (x)))]

= →L(x,⇁f (x))

To establish asymptotic stability, we must verify that Ṽ f (x) serves as a Lya-

punov function for the closed-loop system:

1. Ṽ f (x) ↑ ϱ1(↗x→ xe
↗) for some ϱ1 ↔ K≃

• This holds because strict dissipativity ensures that L(x, u) ↑ ↼(↗x→xe↗)

for some ↼ ↔ K≃

• Since Vf is continuous with Vf (xe
) = 0, and ⇀(x) satisfies the strict

dissipativity condition, their sum Ṽ f is positive definite with respect to

xe

2. Ṽ f (x) ⇔ ϱ2(↗x→ xe
↗) for some ϱ2 ↔ K≃

• This follows from the continuity of Vf and ⇀ on the compact set Xf
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• Both functions cancel at xe, so their sum can be upper-bounded by an

appropriate K≃ function

3. Ṽ f (f(x,⇁N(x)))→ Ṽ f (x) ⇔ →ϱ3(↗x→ xe
↗) for some ϱ3 ↔ K≃

•

Ṽ f (f(x,⇁N(x)))→ Ṽ f (x) ⇔ →L(x,⇁N(x))

and L(x,⇁N(x)) ↑ ↼(|x→ xe|)

Therefore we can take ϱ3 = ↼ to satisfy this condition.

To complete the proof of asymptotic stability, we must establish attractivity

that the state trajectory convergesto the equilibrium point xe for k ⇐ ⇒.

Consider the sequence of states {x(k)}≃k=0 generated by the closed-loop system

x(k + 1) = f(x(k),⇁N(x)) where ⇁N is the first element of the optimal control

sequence computed at time x(k). The initial state x(0) ↔ X The descent property

of Lyapunov function becomes:

Ṽ f (k + 1)→ Ṽ f (k) ⇔ →ϱ3(↗x(k)→ xe
↗)

Since ϱ3(↗x(k) → xe
↗) ↑ 0 with equality if and only if x(k) = xe. I have that

{Ṽ f (k)}≃k=0 is a non-increasing sequence bounded below. Consequently, the se-

quence converges to some limit value Ṽ
≃
f ↑ 0.

Summing the inequality over all time steps, i have:

≃\︄

k=0

[Ṽ f (k + 1)→ Ṽ f (k)] ⇔ →

≃\︄

k=0

ϱ3(↗x(k)→ xe
↗)

Developing to infinity and changing the sense of the inequality, I obtain:

≃\︄

k=0

ϱ3(↗x(k)→ xe
↗) ⇔ Ṽ f (0)→ Ṽ

≃
f < ⇒
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For this series to converge, we must have ϱ3(↗x(k) → xe
↗) ⇐ 0 when k ⇐ ⇒.

Since ϱ3 ↔ K≃ this implies ↗x(k)→ xe
↗ ⇐ 0 for k ⇐ ⇒.

Thus, for any initial state within the feasible region X , the state trajectory

asymptotically converges to the equilibrium point xe, establishing the attractivity

property. Combined with the previously demonstrated Lyapunov stability, we con-

clusively establish that the equilibrium point xe is asymptotically stable under the

Economic MPC control law within the domain of attraction defined by the feasible

region X .
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Chapter 5

Economic MPC

Implementation: Design,

Development, and Practical

Considerations

After presenting the theoretical basis of Economic MPC and the description of the

system, in this chapter, I introduce which cost functions and which constraints I

used and how I implemented everything, using CasADi [1], a symbolic framework

used to solve nonlinear optimization problems.

The implementation of the controller was done through Matlab, using 4 cost

functions.
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5.1 Cost Function

In selecting cost functions for this thesis, I aimed to develop formulations that

would test di"erent approaches to electric vehicle control. Starting from a function

for simple tracking, I modified the cost function by adding economic parameters

and removing tracking parameters which only remained inside the terminal cost.

The 5 cost functions are the following:

5.1.1 Cost function 1: Reference Tracking

↽1(xi, ui) = ↗xi → xr↗
2
Q + ↗ui↗

2
R

Vf,1(xN) = ↗xN → xr↗
2
P

(5.1)

where ↽1 represents a standard tracking cost function with quadratic penalty on

state error and control e"ort. The matrix Q = diag(0,⇀1,0) weights state deviation

from reference xr = [0, vr,0]T , R penalizes control input magnitude, and P =

diag(0, φ1,0) define the terminal state cost weighting. This approach focuses on

following the reference trajectory as closely as possible while minimizing the control

input value. The terminal cost Vf,1(xN) ensures that the final state approaches the

reference I use this cost function, together with the CTG controller, as a basis to be

able to make comparisons for cost functions with a more economical formulation.

5.1.2 Cost function 2: Power-Based Approach

↽2(xi, ui) = ↗xi → xr↗
2
Q + µ2 ·

⎡⎡⎡⎡
Pem,i

Pref

⎡⎡⎡⎡
2

Vf,2(xN) = ↗xN → xr↗
2
P

(5.2)

For the second cost function, I replaced the control e"ort penalty with a term

that penalizes motor power consumption. The electric motor power was defined

in chapter 3 and here Pem,i represents the electric motor power at prediction step

i, normalized with a reference value Pref . This modification shifts focus toward
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energy e!ciency while maintaining tracking performance through the state error

term. The power term creates a more direct relationship with battery consumption,

encouraging the controller to find trajectories that achieve reference tracking with

reduced energy usage. The terminal cost is equal at cost function 1.

5.1.3 Cost function 3: Economic Battery Focus

↽3(xi, ui) = ⇀3 · ϑi˙
2
+ µ3 ·

⎡⎡⎡⎡
Pem,i

Pref

⎡⎡⎡⎡
2

Vf,3(xN) = ↗xN → xr↗
2
P

(5.3)

The third cost function represents my first true economic formulation. I removed

all tracking terms from the stage cost, replacing them with terms that directly

penalize battery discharge rate ϑ̇
2

i and normalized motor power. The term ⇀3 · ϑ̇
2

i

penalizes rapid changes in the State of Charge (SOC), while the power term, as

in the previously cost function, discourages excessive energy consumption. The

terminal cost is the same as before, like in the cost function 1 and 2.

5.1.4 Cost function 4: CTG-Enhanced Economic Approach

↽4(xi, ui) = ⇀4 · ϑ̇
2

i + µ4 ·

)︄
Pem,i

Pref

[︄2

+ φ4 · (ui → uCTG,i)
2

Vf,4(xN) = ↗xN → xr↗
2
P

(5.4)

The fourth cost function is the same of the third cost function with additional

Constant Time Gap (CTG) control term. This new term is obtained starting

from the CTG policy illustrated on the paragraph 3.7. At each prediction step,

the controller calculates a reference control input uCTG,i based on CTG logic, and

penalizes deviations from this value. The CTG controller provides a reference input

designed to maintain a safety distance that depend that adapts proportionally

with the vehicle’s speed. This choice of hybrid cost function attempts to balance

economic benefits of energy conservation with the good following behavior inherent
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to CTG-based control.

5.1.5 Cost function 5: CTG Terminal Economic MPC

↽5(xi, ui) = ⇀5 · ϑ̇
2

i + µ5 ·

)︄
Pem,i

Pref

[︄2

Vf,5(xN) = ↗xN → xCTG↗
2
M

(5.5)

where xCTG = [0, vCTG,0]T and M = diag(0, φ5,0). The final cost function uses

the same economic stage cost of ↽3 but replace the terminal velocity reference

with a velocity delivered from the CTG algorithm. This formulation allows energy

optimization during transient phase while ensuring the terminal behavior conforms

to the CTG velocity profile.

These cost functions represent a gradual transition from the simple tracking of

a vehicle to the economic cost function, thus taking into account the transient and

economic cost of tracking the previous vehicle.

5.2 Constraint formulation for the implementa-

tion

After describing all the cost functions I implemented, it is now necessary to present

all the constraints placed within my problem, some of which have already been

anticipated in the previous chapter, during the general formulation.
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5.2.1 State Constraints

In order to limit the solutions of the minimization problem in the feasible set, I

decided to impose the following bounds:

posmin ⇔ x1 ⇔ posmax for i = 1, . . . , N (5.6)

vmin ⇔ x2 ⇔ vmax for i = 1, . . . , N (5.7)

ϑmin ⇔ x2 ⇔ ϑmax for i = 1, . . . , N (5.8)

where :

• xmin = 0 m all my cycles are made to have a positive final displacement, my

car cannot arrive at a negative point;

• xmax = 25000 m while running the CTG, I noticed that regardless of the

reference signal input, my vehicle never moved more than 24000 meters, so I

decided to set the upper limit to 24000 plus a safety value;

• vmin = →5 m/s this allows for small backward movements if needed;

• vmax = 50 m/s which corresponds to 180 km/h, the maximum speed tha car

can reach;

• ϑmin = 0.01 to avoid numerical problems when SOC approaches zero

• ϑmax = 1 representing a fully charged battery

5.2.2 Input Constraints

The input constraints represent the physical limitations of the motor, with values

derived from the e!ciency map I analyzed in Chapter 3. These constraints ensure

the optimization remains within the motor’s operational capabilities:
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Tem,min ⇔ ui ⇔ Tem,max for i = 0, . . . , N → 1 (5.9)

Looking the e!ciency map data, I determined that Tem,min = →Tem,max =

→280Nm represent torque limits for the electric motor in the Fiat 500e. During

early testing phases, I noticed that unconstrained optimization sometimes suggest

torque values that exceed these physical limits during acceleration scenarios. Such

solutions, while mathematically optimal, would be physically unrealizable. Im-

plementing these constraints ensures the controller generates commands that the

actual vehicle can execute.

5.2.3 Vehicle Following Constraints

To ensure proper vehicle following behavior, I needed constraints that would pre-

vent both dangerous tailgating and excessive delays. Safety demands maintaining

su!cient distance from the lead vehicle, while practical following behavior requires

staying within a reasonable working range of the sensor.

First, I implemented a minimum distance constraint to avoid potential collisions:

x1,i → xref +min_gap ⇔ 0 for i = 1, . . . , N (5.10)

where min_gap = 0.5m meters provides a small safety bu"er. This constraint

prevents my vehicle from collision the lead vehicle.

Then I added a maximum distance constraint to ensure the vehicle remains

within sensor range:

xref → x1,i →max_gap(x2,i) ⇔ 0; for; i = 1, . . . , N (5.11)

66



5.2 – Constraint formulation for the implementation

For this constraint, I defined the maximum allowed gap as velocity-dependent:

max_gap(x2,i) = base_gap+ time_factor · x2,i (5.12)

where base_gap = 5m represent the maximum allowable distance at zero speed,

and time_factor = 6 s determines additional distance permitted per unit velocity.

This creates an adaptive following distance increasing with speed. I found that a

time factor of 6 seconds o"ers good balance between energy e!ciency and following

behavior. Higher speeds with greater following distances allow more flexibility in

energy management through smoother acceleration/deceleration profiles.

5.2.4 Terminal Constraint

For asymptotic stability, I added a terminal constraint that forces the final velocity

at the end of prediction horizon with the reference velocity. This constraint is added

with the following equality constraints:

x2,N → vref = 0 (5.13)

This constraint is equal for all the cost function.

The terminal constraint proved essential during the initial test phases. Without

it, the controller exhibited energy e!cient but impractical behavior, like stay in the

starting position, or maintaining excessive distances that would eventually lead to

complete separation from the lead vehicle.
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5.2.5 Dynamics Constraints

The most important constraints are the dynamics constraints that ensure the sys-

tem follows the vehicle model derived in Chapter 3:

xi+1 = f(xi, ui); for; i = 0, . . . , N → 1 x0 = xcurrent (5.14)

These constraints are implemented following the same equations, used to simulate

a step forward of the system. But unlike them, it was necessary to use the native

interpolation functions of casadi and not those of Matlab, since those of CasADi

allowed the use of symbolic variables, while those native to Matlab did not. Another

problem beyond this change of interpolator, arose for the interpolation of e!ciency,

after several attempts to use a multi-variable interpolation within CasADi, I did not

find any acceptable solution. For this reason, I have, in agreement with Professor

Pagone, kept the value of e!ciency constant during the prediction horizon, since it

is short-lived.

5.3 Implementation of CTG Controller

The Constant Time Gap (CTG) approach forms a key part of my control strategy,

especially for cost functions 4 and 5. Unlike my EMPC implementation which

does optimization over a prediction horizon, the CTG controller provides a direct

control law based on current state. The CTG is implemented following the equation

presented in the section 3.7

For equation 4, it is used in the form of the output torque required to reach

the CTG speed, inside the stage cost. The acceleration required to reach the CTG
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speed has been converted into torque, also taking into account the resistive forces:

Frequired = Mvehicle · acommand + Fresistive (5.15)

Twheel = Frequired · rwheel (5.16)

uCTG =
Twheel

εgearbox · ϖ
sign(Twheel)
gearbox

(5.17)

where acommand is the acceleration necessarily to maintain the desired time gap.

The computation of the CTG torque is performed taking into account the predicted

position and velocity at time i with respect to the reference position and velocity.

For cost function 5, instead, the CTG is included through the terminal cost.

Here the equation of the necessary acceleration written inside the CTG section is

converted into speed through the simple formula:

vCTG = vcurrent + acommand · Ts (5.18)

where vcurrent is the actual velocity of the vehicle and Ts is the sampling time of the

system. In this case, in order to calculate vCTG I consider the velocity and position

at the prediction instant N.

5.4 Practical Implementation and problem in MAT-

LAB

To implement my controller design, I developed a di"erent Matlab files organized

according to their functional roles. This modular approach facilitated development

and debugging while maintaining separation between simulation environment and

controller implementation.
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5.4.1 Evolution of Implementation Strategy

My initial implementation strategy envisioned a hybrid approach: controller logic is

implemented within a Matlab function while the plant dynamics would be simulated

through Simulink environment. This approach seemed promising in the initial

stage of my thesis because Simulink o"ering a visual environment to implement the

dynamic of the system.

However, this plant encountered significant obstacles. The "MATLAB Func-

tion" block within Simulink, while theoretically suitable for embedding complex

controller logic, proved remarkably ine!cient when handling the computational

demands of nonlinear optimization. Early tests revealed simulation times that

were prohibitively long extending to hours even for relatively short driving cycles.

This computational bottleneck primarily stemmed from Simulink handling of the

CasADi symbolic framework within the MATLAB Function block, which created

significant overhead with each function call.

After thorough testing and performance analysis, I opted to abandon the Simulink

implementation in favor of a pure MATLAB approach. I faced a decision between

two alternatives: either replacing the problematic "MATLAB Function" block with

another Simulink block (which created its own complications with certain opera-

tions, particularly the interpolation functions needed for battery voltage and re-

sistance calculations), or migrating the entire implementation to MATLAB script

files. The latter option proved substantially more e!cient, decreasing simulation

times significantly while providing better control over memory management, more

straightforward integration with the CasADi framework, and enhanced capabilities

for troubleshooting the optimization solver’s behavior during execution.

5.4.2 System Architecture

The implementation consists of two primary components:
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• A main simulation file that orchestrates the entire process.

• A controller function file that encapsulates the optimization problem.

The main file simulates vehicle behavior through a time-stepping approach,

iterating from t = 0 to t = Tfin (representing the total duration of the driving

cycle). At each time step Ts = 0.5 s the controller function is called to formulate

and solve the optimization problem based on current conditions. The controller

returns the optimal control input, which is then applied to advance the system state.

This updated state becomes the initial condition for the subsequent optimization

problem.

5.4.3 Numerical Challenges in Battery Model Implementa-

tion

Another significant challenge I encountered emerged when implementing the equa-

tion for battery current calculation (3.17) within the MATLAB environment. Dur-

ing several simulation runs, CasADi repeatedly failed to converge to a solution for

the optimization problem, generating error messages that initially appeared cryptic.

After meticulously stepping through the code during debugging sessions, I identi-

fied the root cause: mathematical instability occurring when the discriminant in

the quadratic formula approached zero, causing the entire optimization to collapse.

The solution required a subtle but e"ective numerical workaround that preserved

the mathematical integrity of the model:

discriminant = VB^2 - 4 * RB * PBattery;

discriminant_safe = max(discriminant, 0.01);

IB_k = (VB - sqrt(discriminant_safe)) / (2 * RB);

SOC_dot = -(IB_k / (params.Q_nom * 3600 * params.eta_c^sign(IB_k)));

This small modification establishing a minimal threshold for the discriminant
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proved remarkably e"ective at preventing numerical singularities without signifi-

cantly a"ecting the physical accuracy of the model.

This experience highlighted a crucial aspect of implementing controllers inside

computers: theoretical mathematical formulations often require subtle adjustments

to function robustly in computational environments. The idealized assumptions

of continuous mathematics must sometimes be reconciled with the discrete, finite

precision reality of numerical computing systems.

5.4.4 Selection of Prediction Horizon

During my implementation, choosing a good prediction horizon (N) was a key factor

for balancing how fast the calculations would run and how well the controller would

work. I did some tests with di"erent horizon lengths to see their e"ects.

The results in Table 5.1 shows clearly what happens when i change the prediction

horizon across di"erent cost functions.

N
J1 J2 J3 J4 J5

CTG

SOC Time[s] SOC Time[s] SOC Time[s] SOC Time[s] SOC Time[s]

2 0.6926 93 0.6926 93 0.6926 94 0.6926 112 0.6926 102 0.6934

3 0.6934 120 0.6934 117 0.6924 114 0.6926 193 0.6934 131 ⇐

4 0.6931 133 0.6930 138 0.6932 136 0.6845 235 0.6945 142 ⇐

5 0.6938 152 0.6932 156 0.6938 154 0.6523 265 0.6951 161 ⇐

6 0.6941 174 0.6936 175 0.6940 173 0.6919 241 0.6953 185 ⇐

7 0.6949 186 0.6940 196 0.6948 195 0.6942 341 Error Error 0.6934

Table 5.1: Comparison of final SOC values and computation times for di"erent cost
functions and prediction horizons using the WLTP driving cycle

As expected, computation time gets longer with bigger prediction horizon. For

example, with cost function J1, the computation time increases from about 93

seconds with N=2 to around 186 seconds with N=7. This makes sense because

larger N values mean the optimizer needs to solve a bigger problem with more

variables.
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Looking at the SOC values, I notice some interesting patterns. For most cost

function, the final SOC value improves slightly as the prediction horizon gets longer.

This shows that when the controller can "see" further ahead, it makes better deci-

sions about energy use.

Cost function J4 shows the most dramatic impact from prediction horizon

changes. With N=5, it achieves the lowest SOC value of 0.6523, which is much

lower than any value achieved by MPC tracking or CTG.

For cost function J5, I encountered numerical issues when trying to use N=7,

resulting in solver errors. This highlights that very long prediction horizons can

sometimes create convergence problems.

After analyzing these results, I decided to use N=5 for my main experiments.

This value o"ers a good compromise between:

• Computation time (still reasonable at 151-265 seconds depending on cost func-

tion)

• Control performance (SOC values generally better than shorter horizons)

• Numerical stability (no convergence issues observed)

Also, with N=5 and sampling time Ts = 0.5 s, the controller looks ahead 2.5

seconds, which matches well with typical driver reaction times in tra!c following

scenarios.

5.4.5 Solver Configuration

The final implementation aspect involved configuring the optimization solver. I

used IPOPT through the CasADi interface with the following key settings:

opts = struct;

opts.ipopt.max_iter = 300;

opts.ipopt.tol = 1e-3;
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I set the maximum iteration count to 300 proved su!cient convergence in most

cases, while the tolerance of 1 · 10↑3 balanced solution accuracy against computa-

tion time. I experimented with tighter tolerances (10
↑4, 10↑5

) but found minimal

improvement in control performance despite significantly increased computation

times. Similarly, reducing max iterations below 300 occasionally led to premature

termination without finding optimal solutions.

5.5 Simulation Testing Methodology

In order to evaluate the performance of the various controllers, I designed a pro-

gressive testing methodology. Before attempting to analyze the controllers with

complex real-world driving profiles, I needed to verify their basic functionality with

simpler reference trajectories.

As previously mentioned, I tested my controllers through progressively complex

scenarios. This approach let me debug basic functionality before tackling realistic

driving conditions.

• Step 1 - Constant Velocity reference: I first tested the controller with a

simple constant velocity of 11.11m/s (approximately 40 km/h). This initial

test checked steady-state stability and basic tracking ability of my implemen-

tation. During these tests I observed how each cost function approached the

reference speed and maintained it over time.

• Step 2 - Sinusoidal velocity reference:Next I introduced predictable but

continuous changes to test controller response to transitions. This pattern

helped me understand how each formulation handles periodic accelerations

and decelerations.

• Step 3 - WLTP cycle testing: Only after confirming proper operation

with simpler tests did I move to the standardized WLTP driving cycle. This
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cycle represents realistic driving with varied accelerations, steady speeds and

multiple deceleration phases. During the first two implementation phases, I

mainly adjusted cost function parameters to verify their impact on reference

tracking behavior. In this final step, I performed a general analysis to optimize

parameters for the final cost functions based on energy e!ciency metrics.

This stepwise approach proved critical for my implementation. Instead of di-

rectly testing with the complex WLTP cycle, I used this gradual method to fix

issues at each level. Starting with the WLTP cycle immediately would have cre-

ated overwhelming debugging problems, making it impossible to know if errors

came from basic controller design, constraints, or cycle features. Working through

simpler tests first saved time and reduced frustration, especially when tuning the

economic cost functions that reacted strongly to changes in prediction horizon and

constraints. This approach let me solve basic issues with simple references first,

avoiding many hours of debugging in the more complex scenarios.
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Chapter 6

Simulation Results,

Parameter Selection, and

Conclusions

After presenting the theoretical framework and MPC setup with their respective

cost functions in previous chapters, I now focus on simulation results from all three

testing phases. This chapter explains my parameter value selection process and

analyzes performance di"erences between control strategies

6.1 Phase 1: Constant Velocity Reference

As mentioned in the last section of the previous chapter, the first testing phase eval-

uated controller performance with a constant reference velocity of 11.11m/s (40 km/h).

This simplified scenario allowed me to observe the basic characteristics of each con-

trol approach, particularly how they converge to steady-state velocity values.
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Figure 6.1: Control input comparison for di"erent controllers during constant ve-
locity reference test
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6.1.1 Control Input Analysis

The Figure 6.1 shows the torque commands generated by di"erent controllers during

the first 50 seconds of simulation. All controllers initially generate high torque to

reach the target speed. Only at a single instant of time do some of the cost functions

reach 280Nm, the physical limit of torque delivered by the motor. In the remaining

time, they remain within the acceptable torque range.

In steady state, all controllers maintain similar small oscillations in torque com-

mands. These oscillations remain minimal for most cost functions, with J4 exhibit-

ing slightly larger variations (about ±5Nm ). Despite these minor fluctuations,

passenger comfort and energy consumption are not significantly a"ected.

Figure 6.2: Distance from reference position for di"erent control strategies

6.1.2 Distance Management Strategies

Figure 6.2 shows di"erences in following distance strategies. The CTG controller

maintains the smallest gap (22m), while the cost function J5 (Economic MPC with

CTG terminal constraint) allows the larges separation, approaching 45 meters at
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steady state. The remaining controllers settle at intermediate distances between

these extremes.

These steady-state distances stem directly from each controller’s optimization

priorities. J5 maximizes energy conservation by maintaining a larger gap, allow-

ing more flexibility to optimize acceleration profiles. The CTG controller prioritizes

close following without considering energy implications. The di"erences reflect fun-

damental trade-o"s between e!cient vehicle operation and tight following behavior.

Figure 6.3: Velocity evolution during constant velocity test

6.1.3 Velocity Tracking performance

Figure 6.3 displays the velocity profile of all controllers, which as can be seen reach

the target velocity of 11.11m/s. The main di"erences appear in the transient

approach. J4 (SOC velocity + power + CTG input tracking) shows an overshoot.

The second cost function J2 (power + velocity tracking) reaches the target velocity

the fastest, while J5 (Economic MPC with CTG) shows the slowest approach, taking

about 20 s to reach the steady state.

6.2 Phase 2: Sinusoidal Velocity Reference

After validating the controllers with constant velocity, I moved to test their response

to a sinusoidal velocity profile that oscillated between 40 km/h (11.11m/s) and

60 km/h (16.67m/s). This pattern creates a more demanding scenario that better

reveals the di"erences between control strategies when handling the acceleration

and deceleration phases.
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Figure 6.4: Control input comparison for di"erent controllers during sinusoidal
velocity reference test
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6.2.1 Control Input Analysis

Figure 6.4 shows torque commands from the di"erent cost functions during the

sinusoidal reference test. Unlike the constant velocity test, this test reveals more

distinct behaviors between controllers.

From the graph we can see how all cost functions reach an initial peak of 280Nm

to approach the reference velocity. Only J4 shows a spiking behavior, reaching about

250Nm at several points during the simulation. Throughout the entire simulation,

it exhibits a pattern with both positive and negative peaks. I’ve attributed this

behavior to computational artifacts, since when I modified parameters within the

cost function , these spikes would shift position, reduce in amplitude, or disappear

entirely.

The other cost functions show similar behavior to each other. They typically

have a single peak at 280Nm and then maintain smoother torque profiles that

closely resemble each other. This suggests that despite their di"erent formulations,

most controllers converge to similar steady-state control strategies when following

a sinusoidal pattern.

6.2.2 Distance Management Performance

The distance plot in Figure 6.5 reveals significant di"erences in following behavior.

Each controller maintains a consistent pattern relative to the reference vehicle, but

with varying average distances and amplitude variations.

J5 (Economic MPC with CTG terminal constraint) maintains the largest aver-

age gap, with distances oscillating between 45 → 62 meters. This large separation

provides maximum flexibility for energy optimization, allowing the vehicle to adapt

its speed profile with minimal torque adjustments.

The other cost functions maintain intermediate distances between the J5 and

the CTG controller, with cost function J4 showing behavior closer to the CTG

with slightly larger distances. The consistent oscillation patterns indicate that all
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Figure 6.5: Distance from reference position for di"erent control strategies

83



Simulation Results, Parameter Selection, and Conclusions

controllers have found stable following behaviors that match their optimization

priorities.

An interesting observation is how the distances change during acceleration vs.

deceleration phases. During acceleration, the gaps typically increase as controllers

balance energy use against closing the distance. During deceleration, the controllers

allow the gaps to naturally reduce.

Figure 6.6: Velocity evolution during sinusoidal velocity test

6.2.3 Velocity Tracking Performance

The velocity profiles in Figure 6.6 show that all controllers tracking the sinusoidal

velocity profile, but with di"erent tracking characteristics.

J4 exhibits several speed peaks, consistent with its aggressive torque approach.

These overshoots reach about 2 m/s above the reference maximum speed reached

by the reference, which can potentially causing passenger discomfort. This behav-

ior aligns with the torque spikes observed earlier, suggesting that this controller

prioritizes gap control at the expense of smooth velocity transitions.

The J5 function never quite reaches the maximum reference speed, peaking at

approximately 16,1m/s compared to the reference 16.67m/s. On the descending

portions of the cycle, it maintains a smoother profile by consistently keeping a

higher speed, which helps maintain an acceptable distance from the reference ve-

hicle. This behavior reflects its economic optimization priority, sacrificing exact

tracking to achieve smoother, more e!cient operation.

The other cost functions follow the reference in remarkably similar ways, show-

ing behaviors that are slightly out of phase with the reference. This phase di"erence
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represents the natural delay in response as the controllers balance tracking perfor-

mance against their other objectives.

6.2.4 Initial Observation on Energy E!ciency

While a detailed energy analysis will be covered in the WLTP cycle tests, some

preliminary observations can be made from the sinusoidal tests.

The approach used by cost function J4 is aggressive and requires more energy due

to its abrupt torque commands and velocity overshoots. On the other hand, cost

function J5 appears more energy-conscious, maintaining greater following distances

and smoother speed profiles which should translate to lower energy consumption.

This more conservative approach avoids unnecessary acceleration and deceleration

cycles, potentially preserving battery charge through more gradual power demands.

These initial findings indicate a clear trade-o" between tight following behavior

and energy optimization. Controllers that maintain larger following distances gen-

erally exhibit smoother operation and likely better energy e!ciency, while those

prioritizing close following behavior show more aggressive control inputs.

6.3 Parameter Tuning and Optimization Analy-

sis

Before presenting the WLTP cycle results, I want to discuss the parameter tuning

process I conducted to minimize battery consumption while satisfying the con-

straints.

The process of finding the best parameters for my cost functions required nu-

merous simulations with WLTP cycle, to see what changed. I started from a neutral

cost function with all parameters set to 1, then increased one parameter at a time

until I reached the final cost function values.
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6.3.1 Parameter Analysis for Cost Function 1

Recalling that cost function J1 is defined as:

J1 =
N↑1\︄

i=0

ϱ1(vi → vref )
2
+ ς1u

2
i + φ1(vN → vref )

2

ϱ1 ς1 φ1 SOC
1 1 1 0.6935
1 5 1 0.6935
5 1 1 0.6935
1 1 5 0.6935
1 5 5 0.6935
5 1 5 0.6935
10 1 10 0.6935
1 10 10 0.6936

Table 6.1: Parameter values and corresponding SOC for cost function J1

Table 6.1 shows my testing results for various parameter combinations in cost

function J1. During this analysis, I observed minimal variation in final SOC values

despite changes in weighting parameters. Most configurations yielded identical SOC

values of 0.6935, with only marginal improvement to 0.6936 in the final selected

configuration. When increasing ϱ1 while keeping other parameters constant, the

controller becomes more aggressive in tracking velocity, but this aggressiveness in

reaching the tracking velocity doesn’t translate to a change in SOC. Modifying φ1

also doesn’t lead to changes regarding the SOC. Meanwhile, modifying parameter

ς1 led to a minimal change in SOC. The higher torque penalty likely encourages

smoother control actions, reducing unnecessary acceleration and deceleration cycles.
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6.3.2 Parameter Analysis for Cost Function 2

The cost function J2 is defined as:

J2 =
N↑1\︄

i=0

ϱ2(vi → vref )
2
+ ς2

)︄
Pem

Pref

[︄2

+ φ2(vN → vref )
2

Table 6.2 shows how di"erent parameters a"ect the final SOC when using cost

function J2. This function replaces the torque penalty from J1 with a term that

directly penalizes motor power.

ϱ2 ς2 φ2 SOC
1 1 1 0.6935
1 5 1 0.6936
5 1 1 0.6934
1 1 5 0.6935
1 5 5 0.6936
5 1 5 0.6934
1 10 10 0.6936
10 1 10 0.6932

Table 6.2: Parameter values and corresponding SOC for cost function J2

The parameter ς2 directly weights the power term. When increasing this value

from 1 to 5, I observed a small improvement in final SOC. This makes sense because

higher values of ς2 more aggressively penalize power usage. I also noticed that

increasing ϱ2 (the velocity tracking weight) actually worsened the final SOC slightly.

With ϱ2 = 10, the final SOC dropped to 0.6932, showing that aggressive velocity

tracking can reduce energy e!ciency. This happens because the controller forces

the vehicle to match reference speed exactly, even when a small deviation might

save energy. The terminal weight φ2 showed minimal impact on final SOC, similar

to what I observed with J1. Since my goal is to minimize the energy consumed to

follow the reference, one of the cost functions that minimizes the SOC consumption

is fine.

87



Simulation Results, Parameter Selection, and Conclusions

6.3.3 Parameter Analysis for Cost Function 3

The cost function J3 represents my transition to a true economic formulation. Un-

like the previous cost functions, it removes direct velocity tracking from the stage

cost and focuses on energy-related terms:

J3 =
N↑1\︄

i=0

ϱ3ϑ̇
2
+ ς3

)︄
Pem

Pref

[︄2

+ φ3(vN → vref )
2

Table 6.3 shows the impact of di"erent parameter combinations on final battery

state.

ϱ3 ς3 φ3 SOC
1 1 1 0.6924
5 1 1 0.6923
1 5 1 0.6937
1 1 5 0.6922
5 1 5 0.6924
1 5 5 0.6937
1 10 10 0.6937
10 1 10 0.6923

Table 6.3: Parameter values and corresponding SOC for cost function J3

With this cost function, the parameter ϱ3 weights the squared rate of change of

SOC (ϑ̇
2
). Increasing this value from 1 to 5 actually decreased SOC slightly, from

0.6924 to 0.6923. This was unexpected since I thought penalizing SOC change

would improve e!ciency. After analyzing the results, I realized that this might

be due to the MPC’s receding horizon nature where only the first control input

is applied. The optimization balances the entire predicted trajectory, but since

we implement just the first step before recalculating at the next time instant, the

controller thought to consume more in the initial states, and then consume less in

the subsequent instants.

Parameter ς3 had the most significant impact. Increasing this value from 1 to

5 improved final SOC from 0.6924 to 0.6937, a larger improvement than seen in
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previous cost functions. This makes sense as ς3 directly penalizes motor power con-

sumption. The controller becomes more reluctant to use power, finding trajectories

that maintain adequate following while minimizing energy use.

The terminal cost weight φ3 showed an unexpected e"ect. When increased from

1 to 5, the SOC decreased from 0.6924 to 0.6922. This suggests that enforcing

stricter terminal tracking might sometimes require more energy near the end of the

prediction horizon.

Overall, J3 showed better energy conservation than both J1 and J2, confirming

that an economic-focused formulation outperforms traditional tracking approaches

for this application.

6.3.4 Parameter Analysis for Cost Function 4

The cost function J4 represents a hybrid approach that combines economic objec-

tives with the CTG control strategy. The cost function is:

J4 =
N↑1\︄

i=0

ϱ4ϑ̇
2
+ ς4

)︄
Pem

Pref

[︄2

+ φ4(ui → uCTG,i)
2

+ ϖ4(vN → vCTG)
2

ϱ4 ς4 φ4 ϖ4 SOC
1 1 1 1 0.6846
5 1 1 1 0.6644
1 5 1 1 0.6838
1 1 5 1 0.6547
1 1 1 5 0.6876
5 1 1 5 0.6645
1 5 1 5 0.6861
1 1 5 5 0.6548
10 1 10 20 0.6523
1 10 1 10 0.6918

Table 6.4: Parameter values and corresponding SOC for cost function J4
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The table 6.4 showed that the function J4 have the most dramatic impact on

energy consumption among all tested approaches. With appropriate parameter

tuning, i have reach the final SOC value of 0.6918. Which is still lower than all the

other functions and the CTG.

The parameter φ4, which weights the deviation from CTG control input, proved

most influential. Increasing the parameter from 1 to 5 involves a lowering of the

SOC from 0.6846 to 0.6547, a significant loss. Interestingly, increasing ϱ4 (SOC

rate penalty) from 1 to 5 reduced SOC from 0.6846 to 0.6644, showing that ag-

gressive penalization of SOC changes doesn’t always improve e!ciency. Similarly,

increasing ς4 (power penalty) from 1 to 5 slightly worsened SOC to 0.6838, contrary

to what I observed in cost function J3. This unexpected behavior illustrates the

complex interactions between energy-focused terms and CTG-following objectives.

The terminal constraint weight ϖ4 showed a positive impact. Increasing it from 1 to

5 improved SOC from 0.6846 to 0.6876, indicating that driving the system toward

CTG-derived terminal conditions benefits overall energy economy. The best per-

formance came from the configuration with ϱ4 = 1, ς4 = 10, φ4 = 1, and ϖ4 = 10.

This cost function is the worst in terms of SOC performance. It’s worth noting

that this cost function was also the most sensitive to parameter changes, with SOC

ranging from 0.6523 to 0.6918 across di"erent configurations. This sensitivity in-

dicates both the potential and the challenge of hybrid approaches that attempt to

balance multiple control objectives.

6.3.5 Parameter Analysis for Cost Function 5

The cost function J5 represents the culmination of my economic MPC approach,

using a formulation that blends economic considerations with CTG-based terminal

constraints:

J5 =
N↑1\︄

i=0

ϱ5ϑ̇
2
+ ς5

)︄
Pem

Pref

[︄2

+ φ5(vN → vCTG)
2

90



6.3 – Parameter Tuning and Optimization Analysis

This function maintains economic terms in the stage cost while incorporating CTG

concepts only in the terminal constraint.

ϱ5 ς5 φ5 SOC
1 1 1 0.6944
5 1 1 0.6940
1 5 5 0.6938
1 1 5 0.6942
5 1 5 0.6942
1 5 5 0.6940
1 10 10 0.6939
1 1 20 0.6951

Table 6.5: Parameter values and corresponding SOC for cost function J5

Table 6.5 shows the impact of di"erent parameter combinations on the final SOC

when using cost function J5. Even with the initial version where all parameters are

set to 1, this cost function shows better performance than any other I tested. The

parameter ϱ5, which penalizes SOC rate changes, when increased from 1 to 5 leads

to a decrease of 0.0004 in the final SOC. This reduction shows similar behavior

to what I observed in cost function J3. I notice di"erent behavior with ς5, where

increasing it from 1 to 10 doesn’t bring improvement as it did in cost function J3.

This behavior suggests that increasing the stage cost weights causes me to lose

emphasis on the terminal cost, which is the term that helps me conserve SOC.

The terminal cost weight φ5 shows the most influential impact on final SOC, as I

expected. When increased from 1 to 5, the SOC slightly worsened to 0.6942. But

when increased further to 20, it achieved the best performance with SOC = 0.6951.

This value represents the highest SOC among all my tested controllers, indicating

superior energy e!ciency. What’s particularly noteworthy about cost function J5

is that it achieves excellent energy performance while maintaining good following

behavior.
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6.4 Phase 3: WLTP Cycle Test

After completing simulations on constant and sinusoidal signals and selecting the

parameters for all cost functions based on final SOC and constraint satisfaction,

I now present the results from the WLTP cycle test. This test is the most com-

prehensive evaluation as it divides into three phases representing typical car usage

scenarios. With various speeds, accelerations, and decelerations, it allows assess-

ment of controllers in a more practical setting.

Comparison of Control Approaches

The WLTP cycle tests revealed substantial di"erences in controller performance un-

der realistic driving conditions. When examining the final SOC values across di"er-

ent approaches, cost function J5 demonstrated the best energy e!ciency, achieving

a final SOC of 0.6951. This represents a measurable improvement over the direct

CTG controller’s 0.6934.

While the di"erence might appear modest, it translates to meaningful energy

savings over longer trips. For the Fiat 500e with its 60Ah battery, this improvement

represents approximately 0.102Ah saved during just one driving cycle of 1800s.

Such e!ciency gains become increasingly significant during daily use or longer

journeys.

The most surprising observation from these tests was the poor performance of

the J4 cost function, which produced a final SOC of only 0.6918. This unexpected

result suggests that attempting to directly track the CTG controller inputs within

an economic framework creates counterproductive behavior, even worse than the

classical CTG.

Conventional tracking such as cost function 1 and cost function 2, compared to

CTG, show minimal improvements, with final SOC values, for both cost functions,

of 0.6936. This is 0.02% higher than CTG. This mid-level performance confirms
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that, although traditional MPC formulations work adequately, they do not reach

the e!ciency potential that economic approaches can o"er.

Figure 6.7: Control input comparison for di"erent controllers during WLTP cycle
test

6.4.1 Control Input Analysis

Analyzing control inputs in the Figure 6.7 across di"erent strategies during the

WLTP cycle, I noticed that this realistic driving scenario rarely pushes most cost

functions to maximum torque limits.

The J4 cost function exhibits noticeably erratic behavior, with torque commands

fluctuating between 200Nm and →200Nm. These abrupt transitions between pos-

itive and negative torque values typically increase energy consumption through me-

chanical ine!ciencies. This explains why J4’s final SOC value is the worst among

all tested cost functions.

J5 demonstrates the most e"ective control strategy from an energy perspective.

It achieves a good balance between following behavior and energy optimization.

Zooming into the graph reveals that during deceleration phases, J5 maintains a

smoother braking profile, extending the braking duration to recover more energy.

This nuanced approach to regenerative braking contributes significantly to its su-

perior energy conservation.

The traditional tracking approaches (J1 and J2) display similar characteristics to

each other, prioritizing reference following without much consideration for battery
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consumption. These functions perform similarly to the standard CTG controller.

Their nearly identical final SOC values reflect this shared approach despite di"er-

ences in their mathematical formulations.

Analysis of these temporal separation profiles provides additional insight into

J5’s superior energy e!ciency. By permitting more generous time bu"ers, this

controller implements smoother acceleration and deceleration profiles, thereby re-

ducing energy-intensive torque fluctuations. The economic focus of J5 prioritizes

energy conservation within safety-acceptable temporal margins, whereas the CTG

controller rigidly maintains shorter time separations regardless of energy implica-

tions.

Figure 6.8: Distance from reference position for di"erent control strategies

6.4.2 Distance Management Performance

The distance graph 6.8 in the WLTP cycle reveals significant di"erences, as already

seen in the graphs of the previous phases, regarding the tracking strategies. Each
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controller has characteristic distance profiles, which were already visible in phase

2.

Cost function J5 consistently maintains the largest following distance through-

out the entire cycle, reaching a peak of 136m during high-speed segments when

vehicle travel at approximately 130 km/h. this greater gap, as previously men-

tioned, allows for better management of transitions. On the other end, the CTG

controllers maintains the smallest distance, reaching a maximum of only 75m. In

fact, the CTG prioritizes maintaining a standard time gap from the preceding ve-

hicle without considering energy consumption.

Cost function J4 exhibits the least clean distance profile. Zooming into the graph

reveals that instead of maintaining smoothly increasing or decreasing distances, J4
produces sharp peaks corresponding to torque spikes, causing distance variations of

up to 2 meters within a single sampling period. This unstable behavior contributes

to its poor energy performance, as the controller makes frequent corrections rather

than maintaining smooth, energy-e!cient operation.

The traditional tracking approaches (J1 and J2) show similar distance patterns

to each other, maintaining intermediate gaps generally falling between the extremes

of CTG and J5. Their distance profiles demonstrate moderate responses to speed

changes, maintaining gaps of 88→ 96 meters during high-speed segments.

Another interesting section of the graph shows vehicle stopping and restarting

behaviors. During these portions, CTG and J5 reach the minimum distance of 0.5m

while stopped, while other cost functions prefer maintaining greater distances, up

to a maximum of 1.5m for J1. When vehicles restart moving, the gap increases

more rapidly with function J5, indicating that this cost function doesn’t simply

try to catch up with the preceding vehicle but also considers energy costs in its

calculations.
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Figure 6.9: Temporal separation from reference position for di"erent control strate-
gies during WLTP cycle test. This parameter indicates how many seconds it would
take for the following vehicle to reach the lead vehicle’s position at current velocity.
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6.4.3 Temporal Separation Analysis

Temporal Separation Analysis The distance graph provides information regarding

the spatial separation between following and lead vehicles. However, temporal sep-

aration constitutes another critical parameter in vehicle-following dynamics. Fig-

ure 6.9 illustrates this parameter for all controllers throughout the WLTP cycle.

This metric quantifies how many seconds it would take the following vehicle to

reach the lead vehicle’s position if continuing at its current velocity.

Examining temporal separation profiles reveals substantial di"erences between

control strategies. The CTG controller maintains the most consistent temporal sep-

aration, approximately 2 seconds, which aligns precisely with its design parameters.

This behavior emerges naturally from the CTG algorithm’s fundamental objective

of maintaining constant time gaps rather than fixed distances.

Cost function J5 exhibits the greatest temporal separation throughout the cycle,

with values averaging around 4.5 seconds, ranging from minimums of 2 seconds to

maximums approaching 8 seconds. During high-speed segments, J5 deliberately

allows this temporal gap to increase slightly, reaching approximately 5 seconds.

This behavior corroborates observations made in the spatial distance analysis. The

extended time bu"er enables J5 to approach velocity transitions more gradually,

which explains its superior energy e!ciency performance.

J4 exhibits an unstable temporal separation with abrupt changes that corre-

spond to its erratic torque commands. These peaks in temporal separation some-

times reach 8 seconds before quickly falling back to 3 seconds, showing a lack of

smooth control that leads to its poor power performance.

The traditional tracking controllers (J1 and J2) maintain intermediate temporal

gaps, usually between 2.5-3 seconds. They show similar patterns to each other,

which matches their similar SOC performance.

I notice also that all controllers show increased variations in temporal separation

during low-speed phases of WLTP cycle. This happens because at low speeds, small
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changes in distance create bigger changes in time gap. When velocity term appears

in denominator, calculation becomes more sensitive at low speeds.

Figure 6.10: Velocity tracking performance across the entire WLTP cycle for all
control strategies

6.4.4 Velocity Tracking Performance

Examining the velocity profiles in the Figure 6.10, we can observe that all con-

trollers follow the reference velocity remarkably well throughout the entire cycle.

This strong tracking performance occurs despite their di"erent formulations and op-

timization priorities. The terminal velocity constraint likely plays a key role here,

ensuring all controllers meet the reference velocity at the end of each prediction

horizon regardless of their stage cost formulations.

Zooming into the graph reveals better di"erences in how controllers handle

velocity. During acceleration phases, J4 tends to have a more aggressive acceleration

profile, with variations that explain the peaks in torque. On the other hand,J5 shows

a more moderate approach, managing accelerations and decelerations better, which

explains its superior energy usage.

6.5 Conclusion

This thesis has explored the application of Economic Model Predictive Control

to electric vehicle energy optimization during Adaptive Cruise Control scenarios.

Through methodical testing across progressively complex driving conditions, I’ve
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identified meaningful di"erences between traditional tracking approaches and eco-

nomic formulations.

My results demonstrate that Economic MPC with CTG terminal constraints

(J5) achieves measurably better energy e!ciency while maintaining good following

behavior. The final SOC value of 0.6951 represents a noticeable improvement over

both traditional tracking approaches (0.6936) and the direct CTG implementation

(0.6934). This e!ciency gain comes mainly from how J5 manages vehicle following

distances and creates smoother acceleration and deceleration profiles.

Surprisingly, trying to directly incorporate CTG control inputs within the cost

function (J4) produced unexpectedly poor results. Despite seeming theoretically

sound, this hybrid approach created erratic control behavior and actually worsened

energy consumption compared to simpler strategies.

The parameter analysis showed that di"erent cost functions respond di"erently

to weight adjustments. Traditional tracking approaches showed little sensitivity

to parameter changes, while economic formulations especially J5. This suggests

there’s more optimization potential within economic frameworks.

While this study focused on the Fiat 500e model, the approach should work well

for other electric vehicles. The basic tradeo"s between close following behavior and

energy optimization remain relevant across di"erent vehicle types, though specific

parameter values would need adjustment.

Future work could explore more complex tra!c scenarios involving multiple pre-

ceding vehicles or lane changes. Additionally, incorporating road grade information

and more detailed battery models might further enhance energy optimization. In-

teresting extensions might include analyzing vehicles with dual energy sources, such

as hybrid electric vehicles or fuel cell hybrid electric vehicles, where power man-

agement becomes even more nuanced due to multiple energy conversion pathways.

Another promising direction would be studying platoon scenarios with multiple
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vehicles in series, where the energy dynamics of the entire system could be col-

lectively optimized, potentially unlocking greater e!ciency through coordinated

control strategies.

Overall, my research shows that economic MPC o"ers a promising approach to

extend the range of EVs during daily driving while maintaining appropriate driving

behavior. The energy savings, although modest in percentage terms, could have

a significant impact on the vehicle’s range in normal use, and not on a single 30-

minute simulation. The work done in this thesis shows how CTG principles can be

successfully integrated into economic objectives for EV control, potentially finding

applications in other domains such as hybrid powertrain configurations, smart grids,

and HVAC systems.
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