
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

From Gated-SSA to
Out-of-Order Dataflow Circuits

Supervisors
Prof. Mariagrazia Graziano
Prof. Paolo Ienne
Ayatallah Elakhras

Candidate
Giacomo SANSONE

Academic Year 2024-2025

Abstract

High Level Synthesis (HLS) is the process of generating hardware from a programming
language. This can help during the circuit’s prototyping phase or allow engineers who
are not specialized in hardware to develop circuits that will run on FPGAs. In the
past few years, a new trend in the HLS world arose, allowing hardware components to
communicate through a handshake. This approach, called dynamic HLS, removes the
need of a controller in the circuit, allowing for better runtime (up to 5× faster) at the
expense of increased area utilization (2× ∼ 10×).

This thesis starts from this context, focusing on Dynamatic, an open-source dynamic
HLS tool developed at the Processor Architecture Laboratory in EPFL.

Recently, a new synthesis strategy has been developed which aims to reduce the
resulting circuit’s complexity by interconnecting hardware components according to their
producer-consumer relationships. The implementation of these algorithms is not available
in Dynamatic, thus the first goal of this thesis is to fill this gap. The result provides an
average 0.7× the execution time of the baseline and 0.87× area utilization.

In 2024, the problem of out-of-order execution was addressed in the context of Dyna-
matic. The result was a framework which allows execution to go out-of-order in specific
areas of the circuit, while maintaining functional correctness through tagging and align-
ing. However, such work does not provide a way to determine when it is worth going
out-of-order, or when timing improvements are possible. This thesis also aims at fill-
ing this research gap. Through analytical study of the circuit structure, it is possible
to obtain a static analysis of the expected improvement when applying the out-of-order
execution to the problem of loop pipelining. The algorithm which has been developed
shows an average error of 5% when compared to the simulated circuit, whose values are
used as a reference.

Contents

1 Introduction 5
1.1 Background . 5
1.2 Problem Statement . 6
1.3 Goals . 7
1.4 Implementation and Research Methodology 7
1.5 Delimitations . 7
1.6 Structure of the Work . 8

2 Background 9
2.1 Compilers Background . 9

2.1.1 Compiler Structure . 9
2.1.2 Intermediate Representations and Data Structures 11

2.2 Gated Static Single Assignment . 17
2.2.1 The Idea . 17
2.2.2 How to Implement GSA . 18
2.2.3 A Recent Comeback . 18

2.3 MLIR . 19
2.3.1 The Purpose of the Framework . 19
2.3.2 MLIR Jargon . 20
2.3.3 Main Dialects . 21

2.4 Dynamatic . 22
2.4.1 Static HLS vs. Dynamic HLS . 22
2.4.2 Dataflow Circuits . 24
2.4.3 A Dataflow Circuit Example . 28
2.4.4 Dynamatic Flow . 28

3 The Fast Token Delivery Methodology 33
3.1 Motivations . 33
3.2 The Algorithm . 35

3.2.1 cf to handshake Conversion . 35
3.2.2 Token Delivery With Loops . 41

3.3 GSA Implementation . 42
3.3.1 Algorithm for Constructing MU Functions from PHI Functions . . 44
3.3.2 Algorithm for Constructing GAMMA Functions from PHI Inputs . 44

2

3.4 Implementation Details . 48
3.4.1 Add Regeneration to a Pair of Producer and Consumer 49
3.4.2 Add Suppression to a Pair of Producer and Consumer 50
3.4.3 GSA Transformation . 51
3.4.4 Conversion Pass . 51
3.4.5 Peephole Optimizations . 52

4 The Straight To The Queue Methodology 55
4.1 Memory Interconnection in Dynamatic . 55
4.2 Motivations for a Faster Memory Allocation 56
4.3 Straight To The Queue Algorithm . 57

4.3.1 A Minimal Group Allocation . 57
4.3.2 Sequentialize Group Allocation . 58
4.3.3 Constructing the Allocation Network 60
4.3.4 Handling Alternative Incoming Activation Tokens 62

4.4 The PHI Insertion Mechanism . 62
4.4.1 Problem Statement . 63
4.4.2 The Algorithm . 63

4.5 Implementation Details . 65

5 Experimental Results 67
5.1 Experimental Setup . 67

5.1.1 Methodology . 67
5.1.2 Heuristic Buffering Algorithm . 68

5.2 Functional Results . 68
5.3 Performance Results . 70

5.3.1 Timing Results . 71
5.3.2 Area Results . 73

5.4 Conclusions . 77

6 Thread-Level Parallelism in Dataflow Circuits 79
6.1 What is Thread-Level Parallelism? . 79

6.1.1 Issues with Thread-Level Parallelism 80
6.2 TLP in Dataflow Circuits . 81

6.2.1 Dataflow Circuits in a Streaming Environment 81
6.2.2 Performance Consequences . 81
6.2.3 The Contribution of This Thesis 84

6.3 Previous Works . 85

7 Static Analysis for Thread-Level Parallelism in Dataflow Circuits 87
7.1 The Occupancy of a Channel . 87
7.2 Assumptions and Context . 88

7.2.1 The GSA Benefit . 89
7.3 Throughput Analysis Without Loops . 89

7.3.1 An Example of Throughput Analysis Without Loops 92

3

7.4 Throughput Analysis With Loops . 93
7.4.1 MUXes as Loop Headers . 93
7.4.2 MERGE as Loop Headers with Operations Having II = 1 95
7.4.3 MERGE as Loop Header with Operations Having II > 1 95
7.4.4 Multiple MU in One Loop . 97
7.4.5 Nested Loops . 98

7.5 Combining All Together . 99
7.6 Validation . 100

7.6.1 Circuit Modifications . 101
7.6.2 Results . 101

7.7 What is Missing and Future Work . 106

8 Conclusions 107

Bibliography 109

4

Chapter 1

Introduction

1.1 Background
High-level synthesis (HLS) [1] allows one to generate hardware from a programming
language, such as C, C++, or Python. For instance, having a C function that computes
a multiplication between two matrices stored in memory, it is possible to translate it to
a circuit - defined using a Hardware Description Language - that implements the same
functionalities. The ease of obtaining hardware with this approach fits well with FPGAs,
reconfigurable hardware that allows fast development and time-to-market compared to
the full ASIC process.

This kind of compiler has two main benefits:

1. It allows people who are into software development but not into hardware to obtain
an FPGA accelerator without a deep understanding of the underlying system. In
this way, FPGAs can be adopted by a wider audience, providing better execution
time than software while being cheaper than ASIC.

2. FPGA prototyping goes way faster with an HLS tool. A hardware engineer has to
ensure that the algorithm is fully working before moving it into a piece of hardware:
by using such a compiler, a rough prototype of the system can be obtained, and
then further optimized using the engineer’s knowledge and insights.

In general, HLS cannot replace a hardware engineer, but it is a valuable tool in the
design flow. The current market has many examples of such tools. Vitis™ HLS [2] by
AMD is probably the most known example, due to its integration with the Vivado design
suite. Other examples of such tools are Stratus™ HLS [3] by Cadence and Catapult HLS
[4] by Siemens. The trivial way of implementing a circuit out of a sequential piece of code
consists of the following flow: operations are translated into circuits components, where
components corresponding to data-dependent operations are interconnected, forming a
datapath; following this, a controller is needed to determine the schedule of execution of
components, honoring the program’s control flow decisions.

Such a high-level view of the flow cannot address all the issues that might arise;
however, it depicts the fact that the resulting circuit is made of a datapath and a controller.
The controller is said to be static whenever the timing of each operation is scheduled at

5

Introduction

compile time. This is a conservative approach since it does not take into account the
possible alternatives in the flow that only arise at runtime. For instance, let’s suppose
that a multiplication is executed only if a value read by the memory is 0. As the compiler
cannot know the value itself, it is forced to allocate some clock cycles for the arithmetic
operation; if this is the case, those clock cycles are lost.

Although such naïve implementation can be improved, it always results in a more com-
plicated controller, difficult to debug and understand. A recent HLS approach replaced
the centralized controller with dynamically scheduled circuits, and has proven effective in
irregular and control-dominated applications over its statically scheduled counterpart [5].

The idea behind such HLS is to implement an elastic/dataflow circuit made of syn-
chronous components that interact with each other through a handshake. An operation
can run as soon as its operands are valid, without relying on a static timing imposed by a
controller; an operation can provide a result as soon as the successor is ready to receive.
Components exchange tokens this way. Such a system leads to major benefits in terms
of execution time and loop initialization intervals (up to 5×), while requiring more LUTs
and FFs (2× ∼ 10×) with respect to a static approach [5].

This methodology revives the idea of dataflow circuits (also known as elastic or
latency-insensitive circuits), which implement a distributed control mechanism through
handshake signals [6].

Since the initial publications on the topic, many authors worked on such a compiler,
implementing analysis and functionalities which further reduced both the required area
and the execution time of the final circuit [7–14]. This effort led to Dynamatic, an open-
source C-to-dataflow circuits compiler [15, 16]. Such a compiler was first developed and
maintained in LLVM. Most of the works cited so far are based on this LLVM version.
Recently, MLIR (Section 2.3) has been adopted as the framework for the compiler.

This thesis starts from such a context to investigate new possibilities to improve the
resulting circuit of Dynamatic. In particular, a recent proposal in the dynamic HLS
community defined a new dataflow circuit generation strategy that delivers data directly
between the data-dependent components, skipping irrelevant control decisions [10,12]. It
achieves tangible improvements in execution time, by an average value of 27% [10].

1.2 Problem Statement

Dynamatic has been open-source since its first release, in its LLVM version [5]. The
switch to MLIR [17] was a logical step for the growth of the compiler in the open-source
world: this framework allows for better maintainability together with ease in development
(Section 2.3). Yet, the MLIR-based tool is still in its early stage, and it misses many of the
advances done in research including efficient dataflow circuit generation strategies [10,12]
and out-of-order execution [14].

Although there has been a lot of research advances towards improving the performance
of dataflow circuits by adding support for speculation and multithreading [8, 10, 14, 18,
19], at the cost of increased overhead, little is known about analysis to identify when
such techniques are useful. Specifically, recent research proposed analysis to determine
when speculation is useful in HLS [20]; yet, the question of where and when out-of-order

6

1.3 – Goals

execution is useful in HLS remains open.

1.3 Goals

The goal of the thesis is thus double: on the one hand, it aims to provide a clear and
reliable implementation of Fast Token Delivery [12] and Straight to the Queue [10] in the
MLIR-based Dynamatic; on the other hand, on top of these new features, it wants to
provide a way to determine if it is worth introducing out-of-order execution in a circuit,
considering the trade-off between the area overhead and the timing improvement.

1.4 Implementation and Research Methodology

The implementation side is mostly dependent on the daily updates of the main compiler’s
codebase. The project is handled by 2 research groups at EPFL and ETHZ, involving
more than 20 full-time contributors. All the intended additions must be discussed and
approved by the underlying community, in order not to compromise negatively someone
else’s work.

The implementation will provide numerical results that can be used to compare the
features with the stable version of the compiler. The results should be reasonably com-
parable to the ones presented in the original papers - with some minor changes due
to implementation details and the fast development of the tool in the years since the
publications.

Once the implementation is completed, the research part starts. This consists in
extracting relevant features from the circuit which can point out regions of the circuit
where to apply out-of-order techniques from [14]. This should consist of a compile-time
static analysis, relying both on the abstract behavior of the components in the circuit
and the context in which the circuit is planned to be inserted.

All the results will be open-source and reproducibile.

1.5 Delimitations

The implementations of Fast Token Delivery [10] and Straight to the Queue [12] do not
consider the full integration with the rest of Dynamatic flow. Some of the other passes
should be modified and adapted to work with the circuits obtained through these methods.
Due to the size of the codebase, this task is not feasible during the time of the thesis.

In the research part, an algorithm will be developed to perform static analysis. This
methodology proves the feasibility of the project, but it is still premature and it does
not allow for the analysis of any dataflow circuit. In a later stage, the work should
be integrated with a structured mathematical framework for network analysis, such as
Network Calculus [21].

7

Introduction

1.6 Structure of the Work
The thesis is organized as follows:

• Chapter 2 provides a background to the thesis, referencing all the studies that
needed to be done before starting the project. In particular, it starts with a discus-
sion on compilers, data structures, and tools that are fundamental to later discus-
sions; then it provides an overview of Dynamatic.

• Chapter 3 is about the implementation of Fast Token Delivery [10], considering the
algorithm first and some technical details later.

• Chapter 4 is about the implementation of Straight to the Queue [12], considering
the algorithm first and some technical details later.

• Chapter 5 compares the implemented work with the simple dataflow circuit gen-
eration strategy in Dynamatic, giving insights into the numerical results of the
analysis.

• Chapter 6 is an introduction to the problem of Thread-Level Parallelism in dataflow
circuits, which should be solved using the aforementioned out-of-order techniques.

• Chapter 7 provides the research contribution of this thesis, a technique that stat-
ically analyzes the circuit to provide insights about the applicability of [14]. This
comes together with an experimental validation of the proposed technique.

• Chapter 8 summarizes the scope and results of this thesis.

8

Chapter 2

Background

This chapter is organized as follows. In Section 2.1, an overview of compilers is provided;
readers with a background in electronics engineering might not know about the topic,
since this is considered a pure computer science matter. In Section 2.2, the gated-static
single assignment (GSA) is explained, being the main theoretical technique adopted for
the thesis. In Section 2.3, an introduction to MLIR is provided, being the framework
adopted to build Dyanamtic. In Section 2.4, an overview of Dyanamtic is provided,
highlighting the main steps in the process of converting a piece of software into hardware
using the dynamic HLS methodology.

2.1 Compilers Background

This section is inspired by [22], which has been the main compiler reference for this thesis.

2.1.1 Compiler Structure

A compiler is a piece of software to translate a source program written in language X into
a program written in Y , while maintaining the same functionalities. The term transpiler
is used when Y is another high-level programming language (for instance, to move from
Typescript to JavaScript); a compiler usually targets the ISA of a processor, so that,
having Assembly as the target output, the initial program can be executed on a CPU.

Since a compiler is the central tool of any software development process, it is fun-
damental to guarantee its correctness; programmers rely on such a tool to execute their
software, and they take for granted that an issue at run-time is only due to their faults,
not on the underlying system. This is expressed through the following principle: «a
compiler must preserve the meaning of the program being compiled» [22]. If such a rule
is not fulfilled, paradoxical consequences can be reached. For instance, inserting a bug
in the translation is equivalent to translating the whole program into a nop, which is a
conversion that does not require a compiler in the first place.

It is reasonable to divide a compiler into three main successive elements: the frontend,
the optimizer/middle end, and the backend (Figure 2.1). This distinction comes from a
recent belief according to which a compiler should be designed using many single-scoped

9

Background

passes, with each of them targeting a single problem at one time.

Figure 2.1: Representation of the structure of a compiler, inspired from [22].

Frontend

The first step for a compiler is to understand the syntax of the source, trying to figure out
as many faults on the programmer’s side as possible (sometimes also about the semantics).
In this context, the compiler is fully aware of the rules - grammar - to say when a source
program is well-formed. The more accurate this part of the compiler is, the easier the job
of the programmer: by providing some useful insights into the errors found in the source
program, it will be faster to fix them. On the contrary, by only stating that there is an
error somewhere the programmer has no clue where to start debugging.

The lexer or tokenizer is in charge of distinguishing the different tokens as they are
sequentially listed in the program; the parser puts them together, moving them to a form
that is interpretable by the following stages. Let’s consider this C assignment: int a =
10 * b - 20 * c;. The tokenizer provides a list of the tokens found in the source code,
following a set of rules for the way tokens can be formed. int is recognized as a keyword,
a b, and c as names of variables, 10 and 20 as numbers, = - and * as operators; ; is
a delimiter, to inform that the statement is concluded. The parser can use the list of
tokens to associate a specific rule. In this case, it finds a sequence made of a variable
type, a variable name, an assignment operator, a (well-formed) numerical expression, and
a delimiter: this is how variable declarations are described in C grammar. While parsing,
a type check and a context-sensitive analysis are performed too: not only b and c must
exist before their usage, but their type must be coherent with the expression - you cannot
multiply int and int* according to C’s rules.

Once this phase is concluded, it is possible to state the syntactical correctness of the
input program. This does not imply semantic correctness either.

Middle end

The frontend keeps the structure of the program as it was delivered by the program-
mer, without any modification. This is usually suboptimal due to many reasons. The
programmer might make mistakes in the first place: redundant code has no impact on
functionalities, but it might lead to larger target programs; some loops might be sup-
pressed and substituted with direct expressions; some code might be dead, thus worth

10

2.1 – Compilers Background

removing. However, some optimizations might also be related to the target itself, exploit-
ing some characteristics the programmer is not aware of (what if the programmer relied
on a routine to compute a multiplication between a and b, while the target ISA has an
ad hoc operation?).

The middle end usually targets one optimization at a time, by first analyzing the input
and possibly applying the semantics-invariant transformation. Each transformation is
applied based on a definition of efficiency which must be improved. This might be about
an estimation of the resulting execution time or the resulting code size.

Backend

Once the source code has been parsed and optimized, it can be lowered to the target
language. This can be either an ISA of a CPU (which is what is going to be used as a
reference) or some HDL in the case of an HLS compiler.

Each operation has to be translated into one or more assembly instructions. This is
straightforward when it comes to simple arithmetic operations, but what if the target
does not support the operation directly? You might want to divide two numbers on a
RISC-V architecture without the M extension: in this case, the compiler should provide
a sort of sub-routine to functionally have the same output.

Not only do instructions have to be properly selected, but they also have to be sched-
uled according to the target CPU architecture: an accurate knowledge of the underlying
hardware can reduce the execution time by reducing the number of hazards in the pipeline.

While performing the above two phases - instruction selection and scheduling - it is
common to work as if the number of registers was infinite. Each CPU has a limited set
of general purpose registers in its ISA, and they have to be allocated to each instruction
without compromising their values. This can lead to some fill/spill operations to the
main memory, in case the amount of registers available is not enough to guarantee the
execution. Moving the content of registers back and forth in the memory has a huge cost,
and it should be limited: register allocation is a fundamental problem when it comes to
the resulting execution time.

2.1.2 Intermediate Representations and Data Structures

The source code in the textual format is humanly-readable but hard to be handled by the
compiler itself directly. This is why there are many different intermediate representations
which are used at different stages of the compilation flow. Next to different IRs that allow
simple transformations, there are also a set of data structures fundamental to properly
analyze the structure of the source code, and extract information out of it. This section
briefly covers some of these.

It is useful to visualize some of these data structures throughout this explanation.
The piece of code in Listing 2.1 is used as a reference.

1 int f(int upper_bound) {
2 int i = 0, sum = 0;
3 while(i < upper_bound) {
4 if(i % 2 == 0)

11

Background

5 sum = sum + upper_bound * 20;
6 else
7 sum -= upper_bound ;
8 }
9 i++;

10 return sum;
11 }

Listing 2.1: Reference code for IR explanation.

Abstract Syntax Tree

As a program is parsed and the different grammar rules are matched over the source
code structure, the obtained knowledge is maintained in a tree structure called abstract
syntax tree. This tree contains everything that comes out of the parsing stage, keeping
only what is useful in the first place and removing anything else (such as the semicolon
delimiter in C).

Let’s consider the if-then-else statement in Listing 2.1 from lines 4 to 7. The result
of the parsing stage is shown as an abstract syntax tree in Figure 2.2. The if statement
requires three components: an expression, a then statement, and an (optional) else
statement. Each statement is a variable assignment, thus having a left value on the
left side and an expression on the right side. Notice how the tree also incorporates the
information on the operators’ relationship: since the multiplication has higher priority
than the addition, it is at a lower level of the tree. If the tree is traversed in a depth
first fashion, this makes sure that the multiplication is handled before the sum, as the
associativity rules of the system want.

It is worth noting that this is only a frontend matter, with no implications in the two
subsequent compiling stage; since the HLS flow mostly involves these latter two parts,
no more details will be given (usually, different compilers share the same frontend and
design the rest of the flow; as long as the syntax of the language is the same, it is not
worth to reinvent the wheel).

Control Flow Graph

A Basic Block (BB) in the source code is a maximal length sequence of branch-free code.
The operations in a BB are always executed together because, as the definition implies,
no branch impacts the flow. Depending on some conditions in the code, some BBs can be
executed or not. For instance, referring to the example code, if the value of upper_bound
is negative, none of the operations within the while loop are executed. Such a flow of
execution among BBs according to some conditions is encoded in the Control-Flow Graph
(CFG).

A CFG is a directed graph G = (N, E); each node n ∈ N is a BB; each edge e =
(ni, nj) ∈ E is a possible transfer of control from ni to nj .

It is reasonable to say that a node in the CFG can have either 0 successor (the last
node of the execution), 1 successor (it terminates with an unconditional branch so that
nj is always executed after ni) or 2 successors (nj if a condition is true, ni if it is false).

12

2.1 – Compilers Background

Figure 2.2: This shows an example of an Abstract Syntax Tree parsing an if-then-else
statement.

With some boolean manipulation, the N > 2 successors case can be moved to a cascade
of nodes having two successors each.

The CFG of Listing 2.1 is shown in Figure 2.3. Black arrows correspond to uncon-
ditional branches, green (red) arrows to branches taken if the corresponding condition
is true (false). Block 0 refers to the initialization of the variables; block 1 is in charge
of checking the while condition, while block 2 is for the if condition; block 3 contains
the then case, block 4 is the else case; block 5 is a merging node for the end of the if
statement in which i is incremented, while block 6 contains the return statement.

In this context, each CFG has an entry node (without predecessors) and an exit node
(without successors).

Dominator/Postdominator Tree

Starting from the CFG, many insights on the execution of the code can be obtained.
Depending on the specific required analysis, some information might be useful or not.

The domination theory (also summarized in [23]) is often useful. A node v dominates
another node w if every path from the entry node of the CFG to w contains v. A node u
post-dominates w if every path from w to the exit node of the CFG contains u. u properly
dominates w is u dominates w but u /= w; the same goes for a proper post-domination.

A node v is an immediate dominator of w if v dominates w and every other dominator
of w also dominates v; a node u is an immediate post-dominator of w is u post-dominates
w and every other post-dominator of w also post-dominates u.

13

Background

Figure 2.3: This CFG is made of 7 BBs, with 2 conditional branches depending on the
corresponding conditions; BB1 is the entry node, BB6 is the end node.

Except for the entry node in the CFG, each node has a unique immediate (post)-
dominator. This allows to build both a dominator and a post-dominator tree, in which
there is an edge between u and v if u is the immediate (post)-dominator of v.

The dominator tree of Listing 2.1 is shown in Figure 2.4, while the post-dominator
tree is shown in Figure 2.5.

Some optimizations between BBs can only be performed if certain domination rela-
tionships hold. As an example with respect to Figure 2.3: if the same variable is set both
in the BBs 1 and 2, it is guaranteed that the value used in the BBs 3, 4, and 5 are the
ones set by BB 2 since 2 is an immediate dominator of these nodes; on the contrary, if
the same variable is set both in BB 2 and 4, it is not possible to state for sure which
value will be used in BB 5, since 4 does not dominate 5.

The concept of domination is also useful to define the control dependency analysis [24].
Given two nodes u and v, v is control dependent on u if the following two conditions hold:
there exists a directed path from u to v with any node n in the path (excluding u and v)
post-dominated by v; u is not post-dominated by v.

14

2.1 – Compilers Background

Figure 2.4: The dominatore tree in the picture refers to the example from Figure 2.3.

Figure 2.5: The post-dominatore tree in the picture refers to the example from Figure 2.3.

When u is control dependent on v, v has two exits, and u gets executed only by going
through one of them. As [24] states, this analysis is fundamental to detect areas of the
code that can be run in parallel, fused in the same loop, or moved without affecting final
semantics.

Linear IRs

So far only graphical representations of the source program have been considered. How-
ever, since both the source and target code are linear, it is useful to conceive some
standard linear representations too. This is also useful to further manipulate the code

15

Background

during the optimization phases.
Assembly is an example of a linear representation, as there is a clear sequential or-

dering of the instructions. While having this characteristic, it also allows to represent
control flows, through branches and labels. For this reason, it is simple to come up with
an algorithm to rebuild the original CFG out of an assembly code (it is a matter of iden-
tifying the BBs terminated by a branch and inserting an edge for each possible branch
successor).

However, a linear IR can also be expressed at a higher level of abstraction than
the well-known assembly. MLIR (Section 2.3) would represent Listing 2.1 as shown in
Listing 2.2. The meaning of each operation and its mapping to the original code should
be simple to understand. Each operation defines a typed value (starting with %); cf.br
represents an unconditional branch; cf.cond_br is a conditional branch.

1 module {
2 func.func @f(% arg0: i32 { arg_name = " upper_bound "}) -> i32 {
3 %c1 = arith. constant 1: index
4 %c2 = arith. constant 2: index
5 %c0 = arith. constant 0 index
6 % c20_i32 = arith. constant 20: i32
7 % c0_i32 = arith. constant 0: i32
8 cf.br ^bb1 (%c0 , % c0_i32 : index , i32)
9 ^bb1 (%2: index , %3: i32): // 2 preds: ^bb0 , ^bb6

10 %0 = arith. index_cast %arg0 : i32 to index
11 %4 = arith.cmpi ult , %2, %0 : index
12 cf. cond_br %4, ^bb2 , ^bb6
13 ^bb2: // pred: ^bb1
14 %5 = arith.remsi %2, %c2 : index
15 %6 = arith.cmpi slt , %5, %c0 : index
16 %7 = arith.addi %5, %c2 : index
17 %8 = arith. select %6, %7, %5 : index
18 %9 = arith.cmpi eq , %8, %c0 : index
19 cf. cond_br %9, ^bb3 , ^bb4
20 ^bb3: // pred: ^bb2
21 %1 = arith.muli %arg0 , % c20_i32 : i32
22 %10 = arith.addi %3, %1 : i32
23 cf.br ^bb5 (%10 : i32)
24 ^bb4: // pred: ^bb2
25 %11 = arith.subi %3, %arg0 : i32
26 cf.br ^bb5 (%11 : i32)
27 ^bb5 (%12: i32): // 2 preds: ^bb3 , ^bb4
28 %13 = arith.addi %2, %c1 : index
29 cf.br ^bb1 (%13 , %12 : index , i32)
30 ^bb6: // pred: ^bb1
31 return %3 : i32
32 }
33 }

Listing 2.2: Reference code for linear IR explanation.

The level of abstraction chosen also implies which optimizations can be performed by

16

2.2 – Gated Static Single Assignment

the compiler. Also, the naming scheme chosen for the representation can show or hide
some optimization opportunities. The most adopted way of naming values in a linear
intermediate representation is called static single assignment (SSA).

Static Single Assignment

As the name suggests, within SSA [25] each value can be assigned only once and used
multiple times. As a consequence, when a name is used, it is possible to understand
uniquely where the value was set.

However, these requirements clash with the usual programming convention for which
the value of a variable changes over time. Concerning Listing 2.1, the variable i is first
set and then incremented multiple times, thus it represents different values at different
instants of time. This is a consequence of control flow: which is the correct value to be
used for i?

This problem is solved by adding new elements in the linear code, the ϕ functions,
which merge into a single definition values defined in multiple places. A wide discussion
on ϕ functions can be found in [26]. Through a ϕ function or gates, it is possible to
merge the value of the loop-variable i from its initialization value and its increment. The
same holds for the variable sum which is updated in two different BBs. At this level of
abstraction, ϕ works as an oracle, always providing the correct value to be used for the
usage of that variable.

ϕ functions can be both implicit and explicit. Listing 2.2 shows an example of implicit
ϕ functions, in which different values of the same variable are merged through some block
arguments. When the control flow moves from one block to another, the values of the
arguments for the ϕ nodes of the destination block must be provided. In that example,
%2 is the name for i, while %3 is the name for sum. Explicit ϕ functions automatically
gather the correct value each time they are executed. For instance, instead of the block
argument %2 there would be: phi(%c0, %13). Each time BB1 runs, it automatically
understands which is the correct value to be used, thanks to the edge which led to it.

2.2 Gated Static Single Assignment

2.2.1 The Idea

In Section 2.1.2 it was stated both the importance of the SSA representation and its
oddities when it comes to implementation. In many contexts, there are no limitations to
such an approach, and a wide literature [27] is available on how to exploit SSA to build
a compiler’s middle end.

However, it should be clear from a computer science perspective that encoding in-
formation in different ways always leads to different functionalities and results, each of
them with a different level of efficiency. For instance, SSA is not the best existing way to
implement a fast interpreter out of a linear code. Such a system needs to know precisely
which definition of a variable is to be used, and tracking down the preceding BB starting
from the CFG can be time consuming.

17

Background

Ottenstein et. al. [28] invented an alternative form to SSA, which was called gated
static single assignment (GSA). Rather than having only one merging function, ϕ, the
authors defined multiple of them, each with a specific deterministic meaning.

• µ is a gate with three arguments: a predicate P , an initialization value v0, and an
update value viter. This gate is used for loop headers, to determine which value
is to be used at each loop iteration. The predicate P is true when the loop is to
be executed - thus a batch of iterations is launched; for the first iteration of the
loop, the value v0 is used; in all the other iterations until P gets false, viter is used.
In this way, each time a loop is run, the value to be used can be deterministically
provided.

• γ is a gate with three arguments: a predicate P , a true value vtrue, and a false
value vfalse. The result of the gamma function gets vtrue when P is evaluated as
true, vfalse otherwise. This gate is used to merge values coming from if-then-else
statements.

Not only the conditions to pick one of the available values are now made explicit, thus
leading to a clearer view of the data flow (together with a full independence from the
control-flow decisions); but also having some explicit boolean conditions might result in
more opportunities for later optimizations. While GSA has been used for much research
since its invention, the availability of more advanced techniques based on SSA led to its
underestimation. However, some recent results in the context of HLS compilers [10, 19]
show that its features are still to be fully exploited.

2.2.2 How to Implement GSA

The aforementioned GSA definition does not automatically explain how to obtain the gate
functions together with their relative predicates. In particular, two alternative methods
can be adopted: either the gates are constructed out of the CFG only, without relying on
previous dataflow analysis [23], or the SSA version is built first, and then the ϕ functions
are translated either into µ or γ functions [29,30].

Since this thesis is based on GSA, a custom MLIR analysis pass was built to obtain
such an analysis. The starting point of the pass is the unstructured control flow dialect,
with its implicit SSA encoding. As the information about ϕ placement is already available,
the second approach was adopted, with a custom algorithm that will be explained in
Section 3.3.

2.2.3 A Recent Comeback

Recently, many research papers on the topic of GSA were published. In particular:

• In [31], the authors highlight the fact that many different definitions of the GSA
gates were provided in different papers, without a clear agreement. For this reason,
formal semantics for GSA is provided and mechanised in Coq, together with a way
to translate SSA into GSA.

18

2.3 – MLIR

• In [19], GSA is the starting point to implement speculation in circuits resulting
from an HLS compiler. Let’s suppose that two alternative execution branches can
run because of the availability of data, while the control information is still to be
produced. A form of speculation can be implemented by starting the execution of
the branches (whose results will be then merged through a γ function) and then
flushing one of the two as the predicate for the final gate was produced. While being
similar to other speculative approaches (such as [8]) the explicit usage of GSA makes
the analysis immediate, as the predicate information to state the correctness of the
speculation is already available.

2.3 MLIR

Dynamatic was first developed in the context of LLVM and then moved to MLIR. Since
this is the framework of the thesis from a development perspective, it is worth giving
a general overview of it. The information provided in this section refers to the original
MLIR publication [17].

2.3.1 The Purpose of the Framework

LLVM is one of the main infrastructure adopted to build compilers. While providing
an enormous set of classes, functions, and operators to implement the result, one of its
main ideas is to rely on one single intermediate representation, the LLVM IR. This is an
abstraction level that aims at fulfilling all the different purposes a compiler design might
have.

However, as was mentioned in Section 2.1, different problems require different models,
either at a higher or lower level of abstraction. This is why many programming languages
require their own IR, without relying directly on the LLVM’s one. The addition of an IR
requires an integration with the existing infrastructure (a conversion mechanism), which
might be an excessive overhead.

MLIR aims to «make it cheap to define and introduce new abstraction levels, and
provide in the box infrastructure to solve common compiler engineering problems» [17].
You can define an IR by introducing a new dialect, and integrating it with all the available
operations; all the IRs are also SSA-based.

According to the authors, the following principles were followed while defining MLIR:

• Parsimony. The number of available components is limited, making most of the
environment customizable according to different needs. This makes the infrastruc-
ture great both for software compilers and HLS compilers. For the same reasons,
to be as versatile as possible, canonicalization is left to the IR definition, so that
no rules have to be followed a priori.

• Progressivity. Each structure and information is retained in the IR for as long as it
is required, rather than building it from scratch each time. Moreover, progressive
lowering is strongly suggested. Rather than moving from the source to the target in
a couple of transformations, the adoption of many different steps is suggested. This

19

Background

is a direct consequence of a philosophy followed by compiler designers for years:
using a fixed amount of steps, and inserting each analysis/optimization within one
of them.

• Traceability. Each operation should be traced back easily to the source code, for
the compilation process to always be transparent. This is something required in
the context of safety-critical or cryptographic applications, to obtain certifications
stating that no security issue has been introduced by the compilation process. This
problem is usually referred to as What You See Is Not What You eXecute [32].

2.3.2 MLIR Jargon

MLIR provides a textual representation for each extension; by keeping things coherent
with standard formatting, parsing gets simplified.

The basic element of an IR is an Operation; this can be either an instruction, a
function, or a module. Each user can define its operations in a declarative way, through a
TableGen approach. Each operation is identified through a string stating both the name
of the operation (add, load...) and its dialect (a collection of similar operations, such
as affine, std...). An operation requires N ≥ 0 operands and provides M ≥ 0 results;
each of these values is maintained in an SSA format. Every value also has a type, to be
defined at compile time.

An example of an MLIR snippet, as reported in [17], is shown in Listing 2.3, imple-
menting a polynomial multiplication with the affine and std dialect.

1 // Attribute aliases can be forward - declared .
2 #map1 = (d0 , d1) -> (d0 + d1)
3 #map3 = ()[s0] -> (s0)
4 // Ops may have regions attached .
5 " affine .for"(% arg0) ({
6 // Regions consist of a CFG of blocks with arguments .
7 ^bb0 (% arg4: index):
8 // Blocks are lists of operations .
9 " affine .for"(% arg0) ({

10 ^bb0 (% arg5: index):
11 // Ops use and define typed values , which obey SSA.
12 %0 = " affine .load"(%arg1 , %arg4) {map = (d0) -> (d0)}
13 : (memref <?xf32 >, index) -> f32
14 %1 = " affine .load"(%arg2 , %arg5) {map = (d0) -> (d0)}
15 : (memref <?xf32 >, index) -> f32
16 %2 = "std.mulf"(%0, %1) : (f32 , f32) -> f32
17 %3 = " affine .load"(%arg3 , %arg4 , %arg5) {map = #map1}
18 : (memref <?xf32 >, index , index) -> f32
19 %4 = "std.addf"(%3, %2) : (f32 , f32) -> f32
20 " affine .store"(%4, %arg3 , %arg4 , %arg5) {map = #map1}
21 : (f32 , memref <?xf32 >, index , index) -> ()
22 // Blocks end with a terminator Op.
23 " affine . terminator "() : () -> ()
24 // Ops have a list of attributes .

20

2.3 – MLIR

25 }) { lower_bound = () -> (0) , step = 1 : index , upper_bound = #
map3} : (index) -> ()

26 " affine . terminator "() : () -> ()
27 }) { lower_bound = () -> (0) , step = 1 : index , upper_bound = #map3}
28 : (index) -> ()

Listing 2.3: Example of MLIR representation.

Each operation also has some attributes, regions, successor blocks, and location infor-
mation; some verifiers are attached as well, to guarantee the IR validation.

An attribute is compile-time information about operations, other than the name itself.
Attributes are typed, and encoded in a dictionary. In Listing 2.3, attributes are used to
express the lower bound, step and upper bound of the for loop. As it happens for
operations, attributes can be defined by the users.

The location information is how the traceability principle is implemented, by moving
information throughout conversions.

An instance of an operation can have a list of regions attached: a region provides
the nesting mechanism of MLIR, as it contains many blocks, each of them containing
operations (and so on, recursively). In each region, the blocks form a control flow graph,
while the semantics of a region are defined by the contained operation - for instance, in
affine.for, the block bb0 is executed N times according to the boundaries.

Each block terminates with a terminator, which is a way to transfer the control
flow to another block. ϕ-SSA values are encoded through block arguments rather than
explicit operations so that a terminator is also in charge of providing these values for the
successors.

The type system can be extended as well, while still requiring strict type equality
checking; MLIR is structured into functions and modules. To simplify their implementa-
tion, they both are operations in the builtin dialect.

A dialect is a logical grouping of operations, attributes, and types under a single
namespace. Through dialects, one can organize the ecosystem of a language and domain-
specific semantics. In this way, it is possible to design modular libraries, integrating more
than one dialect at a time depending on the required semantics.

Rather than putting too many different concepts into a single dialect, having many
of them allows to limit the scope of the verifiers and new functionalities.

2.3.3 Main Dialects

While the users are free to define their dialects for their purposes, some of them are already
provided by MLIR, especially to handle the first steps of the lowering process. What
follows is a list of those involved in Dynamatic, as depicted in MLIR documentation [33].

• affine is the target of the frontend process; some control flow structures are not
lowered completely, so that memory analysis can still be handled properly. Also, at
this stage, polyhedral and loop transformations are still available.

• scf (structured control flow) contains operations that represent control flow con-
structs such as if or for. This is the logical successor of the affine dialect, and

21

Background

it is usually lowered down to the cf dialect. Being structured, no goto is present.

• cf (control flow) contains non-region-based control flow constructs, so that flow
moves from one BB to another only through conditional (cf.br) and unconditional
(cf.cond_br) branches.

• arith holds basic integer and floating point operations; this can also work with
vectors and tensors.

• func contains the operations surrounding high-order function abstractions, such as
call and return statements.

2.4 Dynamatic

Dynamatic is a research project initiated at the Processor Architecture Lab (LAP), at
EPFL, in 2018, with a series of publications related to the idea of doing Dynamic High-
Level Synthesis. This is opposite to the standard approach of doing static HLS, such as
in Vitis™ by AMD. Before diving into the structure of the compiler, let’s focus on the
difference between the two approaches.

2.4.1 Static HLS vs. Dynamic HLS

An HLS tool is called static when the scheduling of the operations in the system is
performed statically at compile time, without using the runtime information to improve
the timing of the system.

This approach has the main advantage of ensuring predictability in the circuit while
keeping the compile process as simple as possible. As reported in [5], this approach looks
close to the VLIW way of composing long instructions at compile time, skipping anything
that could resort to a hazard or lead to run-time problems.

It is not impossible to take into account the run-time information, implementing
pipelining and parallelization of operations. This does not come, however, automatically:
it requires some huge tweaks to the original controller of the circuit, possibly leading to
a significant increase in area and power consumption.

To have an idea of how a static HLS works, let’s consider the example in Listing 2.4,
which is the same as reported in the official Dynamatic webpage [15].

1 float d = 0.0;
2 int i;
3 for(i = 0; i < 100; i++){
4 d = A[i] - B[i];
5 if(d >= 0)
6 s += d;
7 }
8 return s;

Listing 2.4: Dynamic scheduling example.

22

2.4 – Dynamatic

Let’s suppose the following inputs are provided: A[0] = 1, A[1] = 4, A[2] = 2,
A[3] = 4 and B[0] = 3, B[1] = 3, B[2] = 2, B[3] = 5. This means that the addi-
tion at line 6 should be done only for the second and third iterations.

In a static scheduling of the operations, the window to perform the sum should always
be allocated. If no sum is done, the corresponding time slot is just wasted rather than
replaced with the following operations.

On the contrary, the strength of dynamic scheduling is to let the components them-
selves decide when to run (in jargon, fire) depending on the provided inputs. In the above
case, as soon as the comparator from line 5 fires false, no operands will be provided to
the adder from line 6, thus the operation will not run. On the contrary, a new iteration
can immediately start.

Together with this, since the computation of s is independent of the memory accesses
and the subtraction in line 4, it is possible to access the memories in A and B before
current s is computed.

Figure 2.6, which is inspired by [15], shows the behavior with respect to timing. The
static approach requires 17 cycles to provide a result, while the dynamic one only 12; this
is almost a 30% improvement.

Figure 2.6: The diagram shows the differences between static (top) and dynamic (bottom)
scheduling for Listing 2.4, inspired by the figure in [15].

23

Background

2.4.2 Dataflow Circuits

The basic mechanism behind the construction of a dynamic scheduled circuit was first
explained in [5] and [34]. The following section is inspired by a tutorial given by the
authors in 2020 [35].

As explained above, the point of such circuits is to let the components communicate
between themselves using a handshake protocol, without a controller which handles them.
Such components are generally called elastic. This approach can be defined as latency-
insensitive, and it is the usual foundation of dataflow circuits. The exchanged data is
referred to as token.

The handshake is called valid/ready: the source component indicates token availability
with 1-bit valid, the target component indicates the readiness to receive with 1-bit ready.
Having this handshake logic with the associated circuits is the reason why, in general,
dynamic scheduling requires more area than static scheduling. Usually, a component with
N inputs (such as an adder) can run only when all the inputs are available at once. The
inputs cannot be ready until the last computation is finished.

A token is said to stall when the source is valid but the destination is not ready; when
both the signals are 1, then the exchange can happen; if the target is ready but no token
is available, then it waits until the computation can start. It is quite common for a token
to stall. For instance, imagine the operands of a non-pipelined divisor: no execution can
start before the previous one is terminated, thus the inputs of the divisor are not ready.

The existence of this protocol between components justifies the lack of a controller,
with the outcome of having a sort of pure dataflow circuit. It is convenient to also have
some control-only signals, lacking data (they are only made of the two handshake bits).
In this way, one can represent an abstract token for control reasons (for example, to notify
a component of the fact that something happened in the circuit).

To guarantee correctness, two rules must be followed:

1. Each token produced must be used;

2. Each token produced must be used once and only once.

By default, the result of an adder cannot be used in multiple locations, since it would
violate the second rule. The algorithms inside the compiler make sure that such restriction
is always valid.

Each standard hardware component (registers, arithmetic units, memory controllers,
logic gates...) has now a dataflow counterpart, which behaves identically to the original
component while exchanging tokens (both on the receiving side and the sending side) with
a valid/ready protocol. In addition to these standard components, specialized elements
manage the correctness of the circuit, as shown in Figure 2.7:

• Eager Fork (FORK): Duplicates incoming tokens to multiple outputs. Tokens are
sent as soon as any successor is ready; however, a new token can only be accepted
after all successors consume the previous one. This component allows the re-usage
of a token in multiple locations, since the producer has only one consumer (the FORK
itself) while each of the N consumers is connected to one of the N FORK outputs.

24

2.4 – Dynamatic

Figure 2.7: This list shows the main dataflow components, inspired from [35].

• Lazy Fork (LFORK): Similar to the eager fork but distributes tokens only when
all successors are ready at the same time. This allows a form of synchronization
between the successors so that they can run only at the same time.

• Join (JOIN): The output is provided only when all the inputs are valid. This is
usually used with control-only tokens so that a valid signal is provided downstream
only when all the inputs are valid too. It works as a synchronization mechanism,
and it is in charge of synchronizing tokens in arithmetic units (an adder can provide
a result only when its two inputs are available).

• Merge (MERGE): A component that forwards a token received from any input to
its output. This can be seen as non-deterministic since it cannot be stated which
input it is going to accept at any time, and it only depends on their availability at
run-time.

• Multiplexer (MUX): A deterministic variant of merge, which forwards tokens based
on a control input (choosing either the left or the right side of the multiplexer).

• Control Merge (CMERGE): Combines merge functionality with an additional out-
put indicating which input was selected. It is useful to communicate to another
component whether the left or right source was used.

25

Background

• Branch (BRANCH): Routes tokens to different outputs based on a condition, im-
plementing program control flow. As the condition is a 1-bit value, the available
outputs are true or false.

• Source (SOURCE): Always valid to generate tokens for its successor. It works as an
endless source of tokens, for instance, to have constants available.

• Sink (SINK): Always ready to consume tokens from its predecessor. This component
is in charge of suppressing a token if it is not necessary, making sure that, as stated
in the previous conditions, every token is consumed.

• Buffer (BUFFER): It works as a delay generator, accepting a token and providing it
to the output after N cycles. This can also work as a queue made of M locations.

Since what was shown so far resembles the area of asynchronous circuits, it should be
noted that it is fundamental to guarantee that no combinational cycle is present in the
circuit. Buffers in dataflow circuits function similarly to registers in synchronous designs,
ensuring that all combinational cycles are interrupted. Unlike standard registers, buffers
can be placed on any circuit channel without affecting functionality (as a consequence of
a timing-insensitive structure). The more buffers, the higher the area and the execution
time. However, there are two points to consider:

1. Critical Path: Buffers can reduce the critical path by breaking long combinational
delays. While the throughput might decrease this way (as a consequence of a higher
latency), one might obtain a lower clock period during synthesis, leading to a lower
execution time.

2. Throughput: Larger buffers, such as FIFOs, mitigate backpressure by storing
tokens and enabling higher throughput whenever multiple paths have different pro-
cessing time. This is a problem that usually arises in dataflow circuits, as shown
in Figure 2.8. The FORK requires that all the tokens are delivered to the targets
before a new token can be accepted at the input uphill. On the left figure, the first
component can receive a token and start using it, while the component on the right
cannot. For this reason, the right output of the fork remains valid, and its input
is not ready. The component above the fork thus will not be able to fire at all,
propagating the backpressure (not ready signal) uphill again. On the contrary, if
a buffer is present, a token can be stored inside waiting to be used by the second
component. In this way, the components above the fork are not backpressured.

Buffers should be put across the appropriate channels to increase performance while
reducing the required number of buffers. Dynamatic optimizes buffer placement and sizing
using a performance model that maximizes throughput at a given clock frequency [9].
Buffers are characterized by two properties:

1. Transparency: Indicates whether the buffer introduces sequential delay. Non-
transparent buffers add a one-cycle latency, while transparent buffers act as pass-
through elements. To simplify: in a transparent buffer, if no back-pressure comes

26

2.4 – Dynamatic

Figure 2.8: Backpressure happens each time the component downstream being not ready
forces the previous components to stall. On the left, a situation without buffers is shown;
on the right, the way buffers can solve the problem.

from the target, then the buffer is non-existent, otherwise, it stores the token. In
general, non-transparent buffers (also called opaque) are used as little as possible
to break sequential delays, while throughput (as shown in Figure 2.8) is optimized
using transparent buffers.

2. Capacity: Refers to the number of slots available in the buffer for regulating
throughput (the more tokens a buffer can accommodate, the less backpressure will
be in the circuit and the higher the throughput).

Dataflow circuits interact with memories through load and store operations. This
introduces the same kind of memory dependencies required by a CPU. In particular, if a
load is after a write in the original sequence of the program, such a relationship needs to
be respected at run-time as well.

When memory dependencies cannot be resolved at compile time, load-store queues
(LSQs) [34] dynamically manage memory access, similar to their role in out-of-order
CPUs. LSQs require explicit information about the original program order of memory
accesses, provided through control-only paths.

This is also referred to as cmerge network: the components operate in the dataflow
circuit in relation to their original CFG structure, and there is a control merge per BB
firing when that same BB runs.

These paths ensure that tokens follow the correct execution sequence of BBs, allowing
LSQs to resolve dependencies even with out-of-order accesses (more details will be pro-
vided in Subsection 2.4.4). Dynamatic simplifies LSQ design through compiler analysis,
grouping non-conflicting memory accesses into separate queues (to reduce area overhead)

27

Background

and connecting conflict-free accesses to simpler interfaces. The main contributions to the
area of the LSQ in dynamic HLS are [34] and [7]; with these techniques, area and critical
path are enormously optimized with respect to a naïve approach having all the memory
accesses handled by an LSQ.

2.4.3 A Dataflow Circuit Example

The best way to understand the functionalities and correctness of a dataflow circuit is by
going through an example. In particular, the example in Listing 2.4 becomes the circuit
in Figure 2.9.

This picture omits some details; however, it is complete enough to address the main
characteristics of the method. The top-right MERGE is in charge of picking either the
initial value of i or the updated value. The top-left MERGE is, on the contrary, in charge
of handling the updated value of s.

Each time there is a MERGE, there is always a combinational cycle to handle. In this
case, one cycle is made by MERGE, BUFFER, ADDER, FORK, and BRANCH. BUFFER (of type
opaque, made of one slot) is then in charge of breaking such a loop.

Since i will be used in many locations, a FORK is required; on the left, it works as an
index to access the memory locations A and B, while on the right it is incremented for
the next iterations.

d is computed by subtracting the two loaded values; s is always computed as the sum
of d and the previous s. The new value of s is selected depending on the comparator
output.

Once i is computed, the same value is used to determine whether the iterations are
done or not. In case the loop is finished, BRANCH is in charge of notifying this.

2.4.4 Dynamatic Flow

As described in Figure 2.1, a compiler is made of subsequent stages aimed at targeting
different transformations; the same pipeline holds for Dynamatic. It is implemented in
MLIR (Section 2.3), using both standard dialects and custom dialects (inspired by the
CIRCT project [36]). A transformation pass modifies the IR while maintaining the same
dialect; a conversion pass modifies the dialect too. This section lists all the passes involved
in the main version of Dyanamtic as provided in [16] in December 2024.

• Frontend. Dynamatic utilizes Polygeist [37] as its frontend for processing C code.
In the HLS context, Polygeist is in charge of performing memory analysis, disam-
biguating memory accesses that are considered safe (no Read-After-Write depen-
dencies). This capability is crucial for optimizing dataflow circuits since, as stated
before, having fewer conflicts implies fewer (or none) LSQs, thus decreasing their
area overhead. The result of such a transformation is an IR in the affine dialect, as
explained in Subsection 2.3.3.

• Conversion and Transformation of scf dialect. The –lower-affine-to-scf
pass converts affine loops and operations into the scf dialect, which represents
loops and conditionals in a more general form, closer to the CFG representation.

28

2.4 – Dynamatic

Figure 2.9: Example of dynamic scheduled circuit obtained from Listing 2.4.

The –flatten-memref-row-major pass reorganizes memory references into a row-
major layout, simplifying memory access patterns, and ensuring compatibility with

29

Background

standard hardware memory models. The –scf-simple-if-to-select pass replaces
simple conditional branches in scf with a select operation, which simplifies the
control flow by avoiding explicit branching, improving efficiency and readability
(this is the reason why Figure 2.9 shows a MUX). Lastly, the –scf-rotate-for-loops
is in charge of transforming loops that are provably executed at least once into do-
while loops. This last optimization reduces the number of BBs in the CFG, thus
improving the overall area.

• cf conversion. When moving down to the cf dialect, some more control flow
simplifications are performed, mainly getting rid of useless control flows. While
many of these transformations are standard MLIR’s, some are introduced for Dyna-
matic’s objectives: –arith-reduce-strength is in charge of simplifying arithmetic
operations whenever it is possible, for instance by substituting a multiplication
in a sequence of shifts, additions and subtractions (x · 5 = x · 4 + x = x <<
2 + x). –push-constants moves arith::ConstantOp operations to the block(s)
using them, so that fewer values have to be moved through SSA nodes.

• handshake conversion. The handshake dialect was designed in the context of
CIRCT [36] to represent a set of components interconnected via a valid/ready hand-
shake. At this level of abstraction, the control flow mechanisms are removed, and a
proper algorithm is used to obtain an IR that already resembles the final circuit in
terms of interconnections between hardware components. Dynamatic exploits the
algorithms presented in [5] and [35].

As a starting point, the cf dialect represents operations within BBs, explicating
both the control flow relationships and the SSA nodes for each BB.

1. SSA Maximization. The first step of the conversion is to modify the cf
structure so that each variable being a live-out for a BB can only be a live-in
for a successor BB. This is in line with the way the circuit is supposed to be
made, having a connection between two components only if these components
are in adjacent BBs. This can be expressed with two conditions: each BB must
send data only to the immediate successors; each BB must receive data only
from its immediate predecessor. Since each non-necessary ϕ gate introduces
an overhead in hardware resource and timing, this implementation choice can
be considered as suboptimal; Fast Token Delivery [10], with its simplified
connections depicted in Chapter 3, will get rid of this step.

2. Handling Control Flow. Each live-in of a BB corresponds to a ϕ node in
the SSA representation, and it is implemented as a MUX. If the BB has multiple
successors, then a branch is required to move a token to the correct destination
(i.e., the live-in of the subsequent block), otherwise, the connection is direct
since it is unconditional. This approach ensures that the tokens are correctly
moved between BBs according to the original CFG. Notice that, so far, the
MUX does not have a control input yet. The next step of the flow will find such
a value, and improved techniques will be provided in Chapter 3.

30

2.4 – Dynamatic

Figure 2.10: On the left, the same CFG from Figure 2.3 is reported; on the right, its
corresponding cmerge network, mimicking the way the BBs execute. Each BB has a
CMERGE with as many inputs as predecessor; if the branch is conditional, a BRANCH element
is inserted to switch the flow correctly.

3. In-Order Control Network. Some operations, such as constant generation,
do not require inputs but must still be triggered correctly: a constant, such as
N or 0 in Figure 2.9, is produced only whenever it needs to be used. The MUXes
obtained from the ϕ conversion also require a condition to know which BB
was the predecessor. To address this, an in-order control path is introduced,
representing a data-less signal that serves as a live-in and live-out for every BB.
This is the cmerge network, in charge of signaling the execution of a BB. This
network resembles the control flow graph, as Figure 2.10 shows. It is in charge
of feeding MUXes and triggering constants; also, it is used in the interaction
with the memories, as Chapter 4 will show. The cmerge network makes a
dataless token circulate, mimicking a program counter.

4. Building the Datapath. After establishing the control flow, constructing
the datapath becomes straightforward. Each instruction in the BB is mapped
to a corresponding dataflow component. At this stage, the token counting is
not handled yet, so no forks or sinks are instantiated. However, the memory
controllers and the LSQs are created to allow interactions with the memory.

31

Background

• handshake Transformation. The following transformations are applied in the
flow to optimize the generated dataflow circuit:

1. –handshake-replace-memory-interfaces. During the conversion process,
LSQs are instantiated to handle potential memory conflicts. However, as
shown in [7], not all conflicts need to be explicitly managed in a dataflow
circuit due to the inherent movement of tokens within the circuit. This pass
reduces the number of LSQs by removing unnecessary ones.

2. –handshake-minimize-cst-width. By default, constants in the circuit are
instantiated as 32-bit operands, even if their actual value requires far fewer
bits. For instance, the constant value 5 only requires 3 bits to be represented.
This pass is in charge of performing the bitwidth transformation.

3. –handshake-optimize-bitwidths. Similar bit-width optimizations can be
applied to arithmetic components. Initially, all arithmetic units are defined
as 32-bit wide. However, if an arithmetic operation is only used in a context
where smaller bit-widths suffice, this pass reduces the size of the components.
For example, consider a comparator that compares the output of an adder
with the constant value 5. If the constant only requires 3 bits, and the adder
is used solely in this context, both the adder and comparator can be resized
to 3 bits. This optimization significantly reduces area and improves timing
without compromising functionality.

4. –handshake-materialize. If a token is used in multiple places, it must be
duplicated using FORK components. Conversely, if a token is unused, it must
be discarded using SINK components. This pass is in charge of such transfor-
mation.

• Buffering. As explained in Subsection 2.4.2, the insertion of buffers is necessary
both for correctness and to enhance throughput. Many techniques have been stud-
ied to achieve optimal results. While the first approach to buffering consisted of
inserting buffers just to get rid of combinational cycles, [9] introduces a more clever
way of solving the issue by adopting an ILP formulation.

• hw Conversion. The hw dialect is again a custom dialect that is in charge of being
the last step towards the final circuit creation. Its components and connections
are exactly the elements that need to be created in VHDL/Verilog (Dynamatic
currently supports both), including also the corresponding entities and parameters.
From here, the creation of hardware is almost a one-to-one translation.

In the official GitHub repository of the project [16], all the instructions to compile
and run Dynamatic can be found.

32

Chapter 3

The Fast Token Delivery
Methodology

3.1 Motivations

The example proposed in Chapter 2 is designed to show the benefits of the dynamic HLS
approach over a static one. It is also valuable to consider which are the limitations of the
methodology exposed in Section 3.2. The example in Listing 3.1 is taken from [10].

1 int f(int* A, int* B, int size) {
2 int x = A[0];
3 int y = B[0];
4 int i = 1;
5 do {
6 if (cond) {
7 A[i] = x;
8 } else {
9 B[i] = y;

10 }
11 i += 1;
12 } while (i < size);
13 return x + y;
14 }

Listing 3.1: Kernel resulting in sub-optimal output in Dynamatic.

As it was stated before, although in a dataflow circuit the controller is distributed
among components, there is still a cmerge network in charge of driving the sequence of
BBs to execute according to the way they would work in the original flow.

The code in Listing 3.1 leads to the CFG and circuit in Figure 3.1. In the circuit,
the control network is highlighted in orange; BBs are drawn in gray. For simplicity, some
connections have been omitted (together with the content of BB3, which is specular to
BB2).

The examination of Figure 3.1 shows that most of the components are only in charge
of steering the flow, and not to perform computation. Such redundancy is a consequence

33

The Fast Token Delivery Methodology

Figure 3.1: On the left, the CFG from Listing 3.1 is shown; on the right, the circuit which
an be obtained using the standard Dynamatic approach.

of the way the circuit is built: all the BBs are maintained, all of them are triggered
sequentially and tokens are forced to pass only to their direct successors, without any
shortcut. In contrast, Figure 3.2 illustrates (with some omissions) a circuit that achieves
functional equivalence. At a first glance, it is obvious that x and y are never updated
after the first BB, thus their value can go directly to the sum in BB5. However, direct
delivery of x from BB0 to BB2 would lead to runtime errors, since it depends on cond being
true or false. As a consequence, x must traverse the branch to suppress the token if cond
evaluates to false. While the introduction of a branch makes sure that no unnecessary
token is delivered, it should be noted that only one token for x is normally created in BB0,
while many of them are necessary due to the number of loop iterations. The leftmost
part of the circuit in Figure 3.2 ensures that the x token is regenerated precisely as many
times as BB2 executes. The same holds for the right side, concerning y. The main point
overall is to get rid of any redundant control structure and any explicit relationship with
the CFG, to obtain a pure dataflow circuit (that is the reason why no BB is highlighted
in Figure 3.2).

In this way, the area gets reduced, and tokens reach their destination faster, allowing
for more parallelism. For instance, BB5 can start the execution almost immediately after
the circuit begins, well before the loop concludes, and thus all the components which
use the result of the sum. The work in [10], called Fast Token Delivery, shows how to
simplify the interconnection of components getting rid of the relationship with the BBs, as
depicted above. This chapter will present the methodology, highlighting all the technical

34

3.2 – The Algorithm

steps required to implement it in MLIR Dynamatic.

Figure 3.2: The circuit shown here results from Listing 3.1 when adopting an optimized
token delivery strategy, as presented in [10].

3.2 The Algorithm

With respect to the explanation in Subsection 2.4.4, this algorithm represents a way to
go from the cf MLIR dialect to the handshake dialect. This section explains from a
broad point of view the general methodology which allows to obtain a correct circuit,
while some more implementation details (related to the codebase itself) are provided in
Section 3.4. The content of this section is largely inspired by the original explanation
in [10].

3.2.1 cf to handshake Conversion

The depicted methodology starts without taking into account loops, thus having only
forward edges in the control flow graph. Later, Subsection 3.2.2 will reintroduce them.
This algorithm requires the GSA representation of the circuit as a prerequisite, so that
every ϕ node has a corresponding µ or γ gate (Section 2.2). This representation is now
given for granted; however, the full methodology to obtain such conversion is shown in
Section 3.3. Having only forward edges implies having no µ gates (loop headers).

35

The Fast Token Delivery Methodology

From Basic Blocks to Subcircuits

The first objective is to convert the operations of individual BBs into dataflow components
and to interconnect components within the block itself. As it is already one in the original
algorithm, [5] this stage is straightforward, since each instruction in the BB translates
directly into a dataflow component, and any data-dependent parts are directly connected.

The blocks also include some γ nodes. These are translated to MUXes having two
inputs and a one-bit condition. Multiple γs might be connected in a tree fashion, as it
will be explained later.

Connecting Subcircuits

As each BB has now been covered - together with its internal data dependencies - the
data dependencies across subcircuits must be handled. Notice that, according to Subsec-
tion 2.4.4, in standard Dynamatic, due to the SSA Maximization, two components can
exchange tokens across BBs only if their corresponding BBs are adjacent in the CFG.
The SSA Maximization is in charge of this process. In Fast Token Delivery, the final goal
is to get rid of this redundant step, thus a more general system should be utilized.

The methodology is to consider each pair of producer and consumer, and generate
some control logic to make sure that the token count is always matching. In particular,
it will be necessary to suppress a token if the producer fires while the consumer does
not (i.e., when the control flow suggests it will not execute). By considering each pair
independently, this might lead to some redundant components. A final peephole opti-
mization to run at the end of the conversion is in charge of simplifying the structure
(Subsection 3.4.5).

It might also happen, on the contrary, that a consumer requires a token from a
producer which did not fire. In this case, a dummy token is generated. This is almost
nonsensical for data components (an adder cannot use a random value to perform an
addition, otherwise the behavior of the circuit ends up being incorrect); however, it
might be useful when considering delivering control tokens (Figure 3.5).

For each pair of producer and consumer, two new components are possibly added, as
shown on the left of Figure 3.3.

After each producer, a SUPPRESS component is inserted to eliminate a token if its
correspondent control input is true. This is implemented, as shown on the top-right of
the picture, using a branch having the true output connected to a sink.

Before each consumer, a GENERATE component will inject a new token (arbitrarily
either 0 or 1) each time its control input receives a true token, while the original token
passes when the control input is false. This is a MUX which is connected to a source on the
left side. The suppression and generation condition (indicated through fsupp and fgen)
must behave in a way that the functionality of the circuit is always correct. Also, if fsupp

is computed as false, the SUPPRESS component can be omitted.
All producer-consumer pairs are treated generally, computing the control signal for

GENERATE, which, in data-dependent scenarios, remains always false. When the algorithm
perceives this situation, the GENERATE block can be directly omitted, or later optimized
away. The following subsection shows how to determine fsupp and fgen.

36

3.2 – The Algorithm

Figure 3.3: Suppress and Generator Components, as shown in [10].

Generating and Suppressing Tokens

The methodology will be explained both in a general way, and also by referring to Fig-
ure 3.4 as a real reference. This example is the same as used in [10]: the value of x must
be sent from possible producers in BB2 or BB3 to a consumer in BB4, taking care of the
conditions of each block.

1. Identify Control Dependencies. Using the control dependence graph (Sec-
tion 2.1), find Sprod and Scons, the BBs on which, respectively, the producer and
the consumer BBs are control-dependent. In the previous example:

• (Producer in BB2, Consumer in BB4) yields Sprod = {BB0} and Scons = {BB0, BB2, BB3}.
• (Producer in BB3, Consumer in BB4) yields Sprod = {BB0, BB2} and Scons =

{BB0, BB2, BB3}.

2. Eliminate Common Control Ancestors. Remove Sprod ∩ Scons from each set.
The execution of these common ancestors impacts both the producer and the con-
sumers, thus they should not be taken into account to know if only one of them
ends up executing. Thus:

• (Producer in BB2, Consumer in BB4) becomes Sprod = ∅ and Scons = {BB2, BB3}.
• (Producer in BB3, Consumer in BB4) becomes Sprod = ∅ and Scons = {BB3}.

3. Compute Conditions of Production and Consumption. fprod is defined
as the Boolean expression describing when the producer releases a token; fcons

depicts when the consumer receives a token. To find these expressions, the CFG is
traversed from each BB in Sprod toward the producer, and from each BB in Scons

37

The Fast Token Delivery Methodology

Figure 3.4: Delivery Problem as shown in [10]. The picture a shows he original code;
b shows its CFG; c shows the control dependency graph; d the suppress mechanism
obtained in the end of the algorithm.

to the consumer. Each path is a product of basic conditions, and those products
are summed over all paths. If a control dependence set is empty, the resulting
expression is true. In the example:

• (Producer in BB2, Consumer in BB4): fprod = 1. fcons = c2 + (c2 · c3).
• (Producer in BB3, Consumer in BB4): fprod = 1. fcons = c3.

38

3.2 – The Algorithm

4. Adjust for MUX Select Signals. If the consumer is a MUX, fcons is multiplied
by either fsel or its complement, so that consumption only takes place if the input
from this producer is chosen. Also, this additional step should be made only if
fcons · fsel can be nonzero and if the producer’s BB is not control-dependent on
the BB whose condition drives fsel. This should happen only if fcons · fsel can
be nonzero, and if the producer’s BB is not control-dependent on the BB whose
condition drives fsel. In the example, the consumer is a MUX, since it needs to choose
between the value from BB2 and BB3:

• (Producer in BB2, Consumer in BB4): fsel = c2, fprod = 1, fcons ·fsel = (c2 +c2 ·
c3) · c2 = c2 · c3, which is nonzero. So fcons is updated to c2 · (c2 + c2 · c3) = c2.

• (Producer in BB3, Consumer in BB4): fsel = c3, fprod = 1 and fcons = c3. As
BB3 depends on BB2, fcons should not be modified.

5. Compute fsupp and fgen. Given the aforementioned definition, a token is sup-
pressed if the producer executes but the consumer does not; a token is generated if
the producer does not execute but the producer does. This leads to the following
definitions: fsupp = fprod · fcons and fgen = fprod · fcons. Our example yields:

• (Producer in BB2, Consumer in BB4): fsupp = 1 · c2 = c2, fgen = 1 · c2 = 0.
• (Producer in BB3, Consumer in BB4): fsupp = 1 · c3 = c3, fgen = 1 · c3 = 0.

The boolean tokens that drive SUPPRESS and GENERATE must have values fsupp and
fgen, respectively. For relatively simple cases, as in the example, this already leads to a
valid circuit shown in Figure 3.4.d. In general, there are some additional points needed
to correctly produce these tokens, covered in the next subsection.

Delivering Control Tokens

Consider the CFG in Figure 3.5, representing a nested if-then-else program. Tokens
for x and y generated in BB0 and consumed in BB2 result, by using the algorithm, in
fsupp = c0 · c1. One might try a direct dataflow circuit to compute c0 · c1 using a simple
gate (e.g., a dataflow NOR or NAND).

Although it appears logical to let fsupp be false if c0 or c1 is true, a hidden problem
emerges. Consider the following truth table:

c0 c1 fsupp
false false true
false true false
true token not produced ?

If c0 is true, BB1 does not run and so c1 never appears, causing deadlock since the
logic gate never sees both inputs and cannot generate the (expected) false token.

One naive workaround is to adopt fully dataflow logic gates to represent this Boolean
function while treating c0 and c1 as standard producers and consumers of tokens. In this
case, fgen would result in a nonzero Boolean variable, thus having a generate block that

39

The Fast Token Delivery Methodology

Figure 3.5: Example of problems in delivering control tokens, as shown in [10]. Picture a
shows the original control flow graph; b depicts a functional circuit that is not minimized
in area; the optimized version is shown in c.

inserts a dummy token (considering that, whichever the value of c1 is, the resulting value
will always be false). Although functionally sound, this method produces useless logic. A
simple method is about implementing the logic operation c0 · c1 in a way that the input
from BB1 is ignored in c0 is true.

Given fsupp = f(l0, ..., ln), with li being a literal in the Boolean expression, here are
the steps:

1. Partial Ordering of Literals. Build a graph Gord whose nodes are the literals
li of f , with edges from one literal to another if the corresponding BB in the
Control Dependency Graph indicates a control path from the first literal’s BB to
the second’s. For the example in Figure 3.5 there are two nodes, related to c0 and
c1, and an edge c0 → c1.

2. Ordering of Literals. Repeatedly take any literal l in Gord that has no incoming
edges, remove it, and add it to the ordered list Lord. Once the first literal is chosen,
the corresponding token is guaranteed to be present. For the example, the only
possibility is Lord = {c0, c1}.

3. Successive Shannon Expansions. Assume the literals in f(l0, . . . , ln) are in the
order of Lord (if not, rename them). Write

f = MUX
(︁
l0, fl0(l1, . . . , ln), fl0

(l1, . . . , ln)
)︁

= . . .

40

3.2 – The Algorithm

Then repeat for the remaining literals. This yields a chain of MUXes that implement
f . The main benefit of this implementation is that unselected MUXes do not con-
sume tokens, thus there is no deadlock. In the example, fsupp = c0 · c1 becomes
MUX(c0, c1, 0).

Without using the above methodology, the functional circuit is shown in the middle
of Figure 3.5; on the contrary, the approach leads to the simplified version on the right
of Figure 3.5.

3.2.2 Token Delivery With Loops

If the control flow graph has some loops, there are three new problems to handle:

1. Among the gating GSA functions, there are some µ gates in charge of handling
loop-carried dependencies;

2. A token might be produced once outside of a loop, but employed multiple times
within a loop;

3. A token might be produced multiple times in a loop, but employed only once outside
of the loop.

An example is in Listing 3.1, where x is read in various loop iterations.

Controlling MUXes Within Loops

A µ gate becomes a MUX; however, the problem is understanding which condition drives
such MUX. For the first iteration, the MUX should take x from outside the loop. In subse-
quent iterations, it should accept the local (updated) x until the loop completes. More
generally, for nested loops, each time the outer loop repeats, the MUX should switch to the
external value at the start and then continue with the local value for the inner loop. It
seems then simple to adopt, as a control signal, the loop exit condition, so that the right
input (regenerated) is picked only when it is known that a new iteration needs to run.
The first iteration is a special case: the loop exit condition has not yet been computed,
so the MUX must be forced to choose the external value.

To capture this behavior, an INIT component is adopted, that sends a token before
the stream of loop conditions arrives (Figure 3.6). This insertion ensures that the loop
selects external the first time and then, for each iteration, uses the loop condition to
decide whether to keep taking the internal value or exit to the external one. As shown in
Figure 3.6, a naive implementation with a MERGE can safely lead to the expected behavior.

Hence, for each µ-function, a simple graph analysis can determine the exit condition
of its corresponding loop; then, a INIT component is instantiated, fed by such condition,
and connected to a MUX.

41

The Fast Token Delivery Methodology

Figure 3.6: The INIT component and its behavior is shown on the left; on the right, a
reasonable implementation using dataflow components only.

Producers Inside Loops and Consumers Outside

By default, if a producer is located in a loop and a consumer outside, there is a mismatched
token count. Only the final token (from the last iteration) should be delivered to the
consumer. This is a normal producer and consumer relationship, in which the suppression
mechanism is driven by the loop exit condition: if the loop is finished, the token should
not be suppressed. An example can be seen in Figure 3.7

Producers Outside Loops and Consumers Inside

The reverse issue arises when the producer is outside a loop and the consumer is inside
it. In this scenario, a single token is generated, but it needs to be used repeatedly
across multiple iterations. Once this pattern is detected with a simple loop analysis,
the standard GSA loop-carried dependency transformation is employed, inserting x = x
right after its consumption. This leads to a second producer inside the loop, so there are
two definitions for the same variable, requiring MUX logic in the loop header, as previously
described. This arrangement then regenerates the token for as many iterations as needed.
SUPPRESS nodes will prevent further regeneration once the loop finishes. An example of
such an approach can be seen in Figure 3.8.

3.3 GSA Implementation

As previously mentioned, to run Fast Token Delivery it is necessary to have the GSA
representation of the CFG. The cf dialect in MLIR already provides the ϕ gates in the
SSA format; for this reason, a translation is required.

42

3.3 – GSA Implementation

Figure 3.7: Example of producer inside a loop and consumer outside the loop: the IR on
the left becomes the IR on the right once the SUPPRESS block is inserted.

Figure 3.8: Regeneration mechanism for producers outside of a loop and consumers inside.

In this process, every block argument must be converted into either a γ function or
a µ function. The γ function is a two-input MUX, each driven by a condition (a single ϕ
might require multiple γ in a tree shape); the µ function has a start input to initiate the

43

The Fast Token Delivery Methodology

loop and an update input.
Various methods for constructing such functions have been discussed in the literature,

including those presented in [29] and [23]. The method described by Havlak begins from a
pre-SSA construction, limiting its utility since the SSA representation is already available
in this context. The algorithm proposed by Tu [23], on the other hand, generalizes GSA
construction to handle any complex control flow graph structure. The algorithm presented
here is heuristic and tailored to achieve similar results. While formal correctness cannot
be guaranteed, it has been confirmed to produce functionally correct results across all
tested cases.

3.3.1 Algorithm for Constructing MU Functions from PHI Functions

The following conditions determine whether a ϕ function can be converted into a µ
function:

• The ϕ function must have exactly two inputs.

• The ϕ function must reside within a loop.

• The ϕ function must be located in a BB that serves as the loop header.

• One input to the ϕ function must originate from outside the loop.

If these conditions are satisfied, the ϕ function is converted into a µ function.
In the example of Figure 3.9, all the above conditions hold, so it will be picked as a

µ. This gate depends on the exit condition of the loop, c1 in the example.

3.3.2 Algorithm for Constructing GAMMA Functions from PHI Inputs

All remaining ϕ functions must be converted into γ functions. However, a single γ is just
a two-input MUX, which cannot express a multi-input ϕ. The strategy involves creating
a tree of γ functions, each driven by a simple condition. The following steps outline the
process for constructing such a tree for any ϕ function.

Initialization and Input Structure

Each ϕi, located in Bϕi
, is analyzed individually. The function ϕi receives N ≥ 2 inputs,

labeled as i0
ϕi

, i1
ϕi

, . . . , ij
ϕi

, . . . , iN−1
ϕi

. Each input originates from a BB Bj
ϕi

, indexed by j.
All these blocks share a common dominator ancestor in the control flow graph, referred
to as BCA.

Input Ordering

The inputs of the ϕi function are sorted based on the relationships of their originating
BBs. The indices are assigned such that if BB Bi properly dominates Bj , then i < j.
This order does not affect the semantics of this original ϕi, since this gate is, by definition,
order-less. However, it helps while moving on in the algorithm.

44

3.3 – GSA Implementation

Figure 3.9: Example of ϕ which will be translated to a µ.

Path Identification and Boolean Conditions

For each input ij
ϕi

, the path with the following characteristics are identified:

1. A path originates from BCA and terminates in Bϕi
.

2. Each path must pass through Bj
ϕi

but must avoid Bk
ϕi

if there exists an input of ϕi

in Bk
ϕi

such that k > j.

Each path Pi is associated with a set of M boolean conditions, c0
Pi

, c1
Pi

, . . . , cM−1
Pi

,
representing what needs to happen in the CFG for that path to be taken. The boolean
condition for a single path is expressed as:

cPi = c0
Pi

∧ c1
Pi

∧ · · · ∧ cM−1
Pi

.

45

The Fast Token Delivery Methodology

The boolean condition for the input ij
ϕi

is the disjunction of the conditions for all paths
associated with it:

cj
ϕi

=
⋁︂
i

cPi .

Constructing the GAMMA Function via Recursive Expansion

The γ functions for ϕi are constructed using a recursive expansion process, which considers
one literal at a time:

1. Begin with the literal with the lowest index. Use this condition as the selector for
the first γ function.

2. Divide the remaining boolean expressions into two sets:

• Expressions where the literal is true; replace the literal with a true; this will
become the true input of γ.

• Expressions where the literal is false; replace the literal with a false; this will
become the false input of γ.

3. Apply the expansion recursively to both sets, proceeding with conditions in increas-
ing order.

4. Each γ function has two inputs: one is the γ obtained by recusively expanding the
true input, while the other is the γ from the false input. If only one value remains
in a branch, it is used directly as the argument of the γ function without further
expansion.

Examples

Example 1: Simple Boolean Conditions Figure 3.10 shows a CFG with a value of
x modified in two points, both in BB1 and BB3. The algorithm from the previous example
will be used to obtain a tree of γs in place of ϕ.

The inputs of the ϕ are located in BB1 and BB3. Their common dominator ancestor is
BB1. The ordering of the indices is already correct, since BB1 dominates BB3 and 1 < 3.

There are two paths which allow to go from BB1 to BB4 without going through BB3:
BB1 - BB4 and BB1 - BB2 - BB4. The first path is covered with the conditions c1, while
the second is covered with c1 · c2. For this reason, the input from BB1 is used when
the following boolean expression is true: c1 + c1 · c2. For the other input, the boolean
condition is, on the contrary, c1 · c2.

Given the following input conditions:

V1 → c1 + c1 · c2,

V3 → c1 · c2.

46

3.3 – GSA Implementation

Figure 3.10: Example 1 of γ algorithm.

The γ tree is constructed as follows:

1. Start with c1. When c1 is true, only V1 remains, so it is the only available value,
connected to the true input of γ;

2. When c1 is false, expand using c2. If c2 is true, V1 remains; if c2 is false, V3 remains.

The resulting γ function is:

γ(c1, V1, γ(c2, V1, V3)).

Example 2: Nested Conditions The same algorithm can be used to expand the ϕ
in Figure 3.11. It should be simple to use the path between the common dominator of
each node which defines x (BB1) until the ϕ BB (BB8) to obtain the following conditions:

V4 → c1 · c2,

V5 → c1 · c2,

V6 → c1 · c3,

V7 → c1 · c3.

47

The Fast Token Delivery Methodology

Figure 3.11: Example 2 of γ algorithm.

The γ tree is constructed as follows:

1. Start with c1. When c1 is true, expand using c2. If c2 is true, V4 remains; if c2 is
false, V5 remains.

2. When c1 is false, expand using c3. If c3 is true, V6 remains; if c3 is false, V7 remains.

The resulting γ function is:

γ(c1, γ(c2, V4, V5), γ(c3, V6, V7)).

3.4 Implementation Details

One of the primary challenges in this work was integrating the requirements described
in previous sections into the existing Dynamatic codebase. The implementation not only
needed to ensure correctness but also had to maintain a high degree of readability and
maintainability, so that later refactoring and corrections could require the least possible
effort.

Another significant challenge arose from the nature of the algorithm discussed in ear-
lier sections. The methodology describes a one-way transformation from the cf dialect

48

3.4 – Implementation Details

to the handshake dialect. In essence, the algorithm applies transformations between
every pair of producer and consumer. Consider a scenario where the entire transfor-
mation process is complete. Later, a pass introduces a new component in BBx that is
connected to a component in BBy. This new connection must respect the Fast Token
Delivery methodology, with the appropriate suppression and regeneration mechanism,
to guarantee correctness. Therefore, the methodology should be adopted anywhere in
the flow, possibly on single new subsections of the circuit (making sure not to add any
unnecessary components).

Notice that, at this stage, it is not possible to get rid of the cmerge network, since it
is still required to activate the group allocations for the LSQ. This problem will be solved
in Chapter 4, with a circuit that interfaces with the LSQ while honoring the minimum
necessary control flow decisions.

This section provides a detailed bottom-up explanation of the implementation struc-
ture, addressing these challenges.

3.4.1 Add Regeneration to a Pair of Producer and Consumer

The goal of regeneration, as expressed in Subsection 3.2.2, is to ensure that a value is
available at each loop iteration for a given pair of producer and consumer. If multiple
nested loops exist between the production and usage, the value must be regenerated at
each loop level to maintain consistency. Figure 3.12 shows an example in which a value
must be regenerated many times since the consumer is in a nested-loop structure.

In the context of MLIR compliance, a producer and consumer are not treated as op-
erations. Instead, the methodology addresses each consumer and its associated operands.
This approach accounts for scenarios where a single producer provides multiple values to
the same consumer. Furthermore, a consumer might use the same value multiple times,
reflecting the distinction between a value and a use in MLIR. The former is a value in
the SSA format, while the latter is the specific usage of such a value.

Another consideration is that certain values might lack an explicit operation as their
producer: this is the case for function block arguments, which serve as implicit producers.

The function addRegenOperandConsumer manages the insertion of regeneration MUXes.
These MUXes are essential for maintaining the token count across loop iterations, thus all
the pairs of producers-consumers should be checked to see if there is a loop the consumer
is inside but the producer is not. However, within the circuit, the cmerge network already
has a valid token count, thus it does not need any regeneration; moreover, Dynamatic
models memory controllers as operations that are outside of any loop, so they do not
undergo this process.

Several optimizations can enhance the regeneration process. For instance, a set of
regeneration MUXes does not need to be created for each value individually. If a MUX is
placed at a particular loop level for a value x, it can be reused multiple times within that
loop. This reuse minimizes resource overhead while maintaining functionality.

49

The Fast Token Delivery Methodology

3.4.2 Add Suppression to a Pair of Producer and Consumer

What was done for regeneration must also be implemented for the suppression mecha-
nism. However, suppression introduces significantly more challenges due to the complex
conditions that need to be generated and applied. As stated in the context of regenera-
tion, suppression operates on a pair consisting of an operand and a consumer at a time,
through the function addSuppOperandConsumer.

Certain situations must be excluded from the suppression mechanism to ensure proper
functionality and avoid redundancy. In particular, all GSA gates, control merges, and
other conditional branches should be skipped. While the exclusion of GSA gates and
control merges is straightforward - as it was in the regeneration process - conditional
branches require more explanation. Conditional branches are introduced into circuits
only by the suppression mechanism itself, so suppressing something that has already
been suppressed is not only unnecessary, but also invalidating the correctness.

Furthermore, if the producer and the consumer are within the same block, suppression
is generally redundant. One exception exists: if the consumer is a MUX, suppression is
necessary to prevent a value from being regenerated at the end of the loop execution (see
Figure 3.12).

The relationships between a producer and a consumer can be categorized into four
distinct scenarios:

1. More producers than consumers. When a value is generated inside a loop and
used outside of it, suppression is required to discard all tokens except the final value
produced in the last iteration. The branch condition in this case corresponds to the
loop exit condition. The suppression mechanism connects the original operand to
the true output of the conditional branch, ensuring that tokens are suppressed as
long as the loop condition remains true.

2. The producer is also the consumer. This scenario involves a self-regenerating
MUX, as mentioned in Subsection 3.4.1, where the producer regenerates its value. It
is similar to the previous case, but the operand is connected to the false output of
the conditional branch. In this configuration, tokens are suppressed only when the
loop terminates, maintaining proper synchronization in the circuit.

3. Backward edge. This case occurs when there is an edge from BBx to BBy, where
BBy dominates BBx. The necessity of suppression depends on whether the loop uses
a while or do...while construct:

• For a while loop, suppression is unnecessary because the loop header executes
unconditionally every time the backward edge is traversed.

• For a do...while loop, suppression is essential since the backward edge may
not always execute. In this case, the value is connected to the false output of
the conditional branch to ensure proper token flow management.

4. Direct suppression. When the producer and consumer are at the same loop level,
direct suppression is applied using the algorithm described in Section 3.2. This

50

3.4 – Implementation Details

approach relies on a custom boolean logic library to handle the required conditions
efficiently. Direct suppression is simpler than the other cases as it does not need to
manage complex loop conditions or backward edges. An example of such method
is shown in Figure 3.13.

3.4.3 GSA Transformation

The GSA transformation described in Section 3.3 is implemented through two key com-
ponents: the GSA Analysis Pass and the addGsaGates function.

An analysis pass in MLIR is in charge of extracting and analyzing information about
the IR without modifying it. They are in charge of keeping some information shared
and consistent across multiple passes, so that consistency is maintained. For instance,
a control dependency analysis can generate all the information related to the control
dependency graph.

In the context of GSA, the analysis pass operates on the cf structure to extract GSA-
related information without altering the IR. This information is then used to replace block
arguments with MUX. A key advantage of this approach is that the extracted information
remains reusable at later stages of the compilation process. The analysis pass is designed
as a class capable of processing both the cf IR and MERGEs. Since a merge represents the
instantiation of a ϕ function (sharing the same non-deterministic behavior), it can also
be used to construct GSA gates.

Once the analysis has been completed and the required information is available, the
addGsaGates function removes block arguments from each block. This function replaces
them with either a single MUX (for µ gates) or a tree of MUXes (for γ gates), ensuring the
IR adheres to the GSA representation.

3.4.4 Conversion Pass

The conversion pass utilizing the Fast Token Delivery methodology builds upon the pre-
viously described functionalities. The following sequence outlines the conversion process:

1. All block arguments are converted into GSA gates.

2. Memory controllers, either a standard memory controller or a load-store queue, are
instantiated.

3. Constants and undefined values in the arith dialect are converted to their handshake
equivalents.

4. The regeneration mechanism is applied to all producer-consumer pairs in the IR.

5. The suppression mechanism is applied to all producer-consumer pairs in the IR.

6. Individual operations are converted to their handshake equivalents.

This structured process ensures that the IR is fully transformed to leverage the fast to-
ken delivery methodology while maintaining consistency and correctness across all stages.

51

The Fast Token Delivery Methodology

3.4.5 Peephole Optimizations

Although the flow described so far is capable of producing a correct circuit, it often intro-
duces redundant components. These redundant components must be removed to minimize
the resulting area while preserving both functionality and performance. This optimization
is achieved through an additional transformation pass, called Combine Steering Logic.

The transformation pass utilizes applyPatternsAndFoldGreedily [33], a utility func-
tion designed to apply a set of rewrite patterns to the IR in a greedy manner. This utility
iteratively traverses the operations in the IR, applying the provided patterns wherever
they match and making direct transformations to the IR. After a pattern is applied, the
utility revisits affected operations to determine if further patterns can be applied. This
process continues until no more patterns remain applicable.

Below is a list of the patterns applied during this pass:

1. RemoveSinkMuxes. If the output of a MUX is not used, the MUX itself can be safely
removed. This situation might seem counterintuitive—why would unused MUXes
exist? The issue arises from how MLIR operates. When an operation is removed, it
remains in the IR and can still be accessed through the API until the pass finishes.
Consequently, a consumer may still appear in the analysis, even if it has already
been deleted. To address this, the MUX is initially added but must be removed before
execution continues.

2. RemoveDoubleSinkBranches. Similar to the case of MUXes, branches with both
outputs unconnected can also be removed.

3. CombineBranchesSameSign and CombineBranchesOppositeSign. If two branches
share the same data input and a similar condition input, one of them can be
eliminated and replaced by the other. In this context, similar refers to conditions
differing only by a not gate feeding the branch. By removing the not gate and
swapping the branch outputs accordingly, the circuit remains functionally identical.

4. CombineInits. The only MERGE operations in the circuits are those created for
INIT components, as illustrated in Figure 3.6. If multiple merges have identical
inputs (e.g., a false constant and the same condition), one merge can be removed
and replaced by the other.

5. CombineMuxes. MUXes used to regenerate the same value at the same loop level can
be merged into a single MUX.

6. RemoveNotCondition. If the condition of a branch is fed by a not gate, the not
gate can be removed. In this case, the branch outputs are swapped to preserve
functionality.

These peephole optimizations are greedy, thus sub-optimal at the software level by
construction. However, the resulting circuits are optimized in accordance with the ex-
pectations.

52

3.4 – Implementation Details

Figure 3.12: Example of a value regenerated at multiple levels due to some nested loops.
Solid lines represent dataflow connections, while dashed lines represent control flow be-
tween BBs.

53

The Fast Token Delivery Methodology

Figure 3.13: Example of direct suppression between producer and consumer.

54

Chapter 4

The Straight To The Queue
Methodology

4.1 Memory Interconnection in Dynamatic

The discussion in Subsection 2.4.2 and Chapter 3 focuses on explicit data dependencies
without addressing the issue of memory accesses. The memory-subsystem works the same
way as explained in Subsection 2.4.4, with an LSQ to handle conflicting accesses and a
sequential network to activate these accesses.

Since it is the core of the current chapter, an overview of memory integration is
worthwhile.

Load and store operations are connected to specific memory regions; these regions
consist of BRAM inside an FPGA, but more generally it is just some IO pins for the
produced circuit (with data and address channel, some activation pins, and a ready/valid
signals to guarantee the same handshake protocol everywhere). However, since usually
multiple memory operations require the same memory region, a direct connection cannot
be adopted; A memory controller is connected to N ≥ 0 load operations and M ≥ 0 store
operations on the circuit side and interfaces with one memory region on the other side
(M + N > 0). It handles circuit requests and, in the case of load operations, provides
the corresponding data back.

In dataflow circuits, the execution order does not follow the original program sequence.
This may lead to a scenario where a memory operation later in the code executes before
an earlier one. Such reordering is acceptable as long as no hazards occur.

A common example of a hazard arises when one instruction performs a store to a
memory location, and a successive load uses the same memory region: this is a typical
Read-After-Write (RAW) scenario. If the load operation is issued before the store com-
pletes, the system may read outdated data, leading to incorrect results. An example of
such an issue is shown in Listing 4.1.

Notice that such a situation can also be found in out-of-order CPUs, having memory
instructions with some dependencies that force them to run in-order.

1 for (int i = 0; i < N; i++) {
2 int val = A[i];

55

The Straight To The Queue Methodology

3 if (val >= 0)
4 tmp += val;
5 A[i] = 0;
6 }

Listing 4.1: Kernel with memory dependencies that cannot be resolved without a load-
store queue.

Several mechanisms exist to address such situations. For instance, in many cases
relying on a static analysis can be enough to determine that a conflict cannot occur.
For example, [7] proposes a static method to get rid of a memory dependency whenever
there is also a data dependency involved (for instance, if the store operation from List-
ing 4.1 requires to use loaded data in line 2). However, static analysis has some obvious
limitations, and a dynamic management is still inevitable.

To address this problem, [38] introduced the aforementioned LSQ - similar to the one
used in modern CPUs, to guarantee that memory accesses are always handled in the
correct order despite the issuing order. However, the LSQ in a CPU works by relying on
the in-order instruction decode stage: dataflow circuits do not have an immediate way to
obtain the original program order. For the way Dynamatic works, however, a couple of
observations can be made:

• Within each BB of the CFG, the operations are sequential (due to the linear struc-
ture of the IR), and it is then possible at compile time to determine the order at
which operations should be performed to guarantee correctness.

• Although the program order is not strictly followed in a dataflow circuits, all the
BBs are activated in order according to the original control flow graph; for this
reason, it is still possible to build on the fly the order of the operations, thanks to
the cmerge network.

Putting together this two information, the LSQ is designed in a way that takes care
automatically of the order of the memory operations; it is also in charge of comparing
the address of a memory operation with all the received addresses of the operations to
be run. If a conflict exists, then the memory operation needs to stall, otherwise it can
safely run.

The approach instantiates one LSQ for each set of accesses, which might lead to a
conflict. This choice is mostly related to the area occupation, since the LSQ represents a
large part of the area of a dataflow circuit (up to 90%, according to [7]).

4.2 Motivations for a Faster Memory Allocation

This method guarantees a correct way to handle memory accesses, but it has a significant
overhead when it comes to maintaining the control signals. A major performance advan-
tage of Fast Token Delivery circuits, discussed in Chapter 3, arises from eliminating the
relationship between the dataflow and the control flow graph. However, the cmerge net-
work(that strictly mimics the sequential control flow) still exists to notify the LSQ of a BB

56

4.3 – Straight To The Queue Algorithm

Figure 4.1: Interaction between BBs in the circuit and the LSQ; the cmerge network in
red follows the program order, independently from performances.

allocation. How to get rid of such a network, and speed up the memory allocation? [12]
has this objective.

It should be noted that such an approach is in charge of speeding up the interaction
between the part of the circuit handling data and the LSQ; however, there might be
other ways of handling conflicting accesses. Naively, one could design more complicated
dataflow hardware within the circuit to detect address conflicts at runtime and to enforce
the correct ordering of memory accesses only when the addresses collide (that is, obtaining
the functionality of the load-store queue without using a load-store queue). Such a
strategy is currently under study in the Dynamatic community, due to the area and
timing overhead of an LSQ in the circuit.

4.3 Straight To The Queue Algorithm

4.3.1 A Minimal Group Allocation

The overall objective is to make sure that, for each memory operation connected to an
LSQ, an activation token is generated, following the exact order of the original sequential
program. This is the same objective of the original cmerge network, but avoiding to waste

57

The Straight To The Queue Methodology

time in BBs that are not concerned with the LSQ.
A simple way to reuse the Fast Token Delivery approach is to manually insert a data-

dependency between these operations, so that the allocation of a group of operations
(corresponding to some operations within the same BBs) cannot happen before all the
previous groups have been allocated. In the end, the objective is to obtain something sim-
ilar to the cmerge network but in a minimized format, capturing the minimum necessary
control flow decisions between memory dependencies.

Refer for instance to Figure 4.2; the first store operation from BB0 must be allocated
in the LSQ before the group for BB2 is allocated; however, once the allocation of the
former happens, it is guaranteed (because of dominator analysis) that BB2 will run, so
the activation can happen immediately, independently from the amount of times the
loop BB1 is executed. The original flow, on the contrary, relying on the cmerge network,
required the loop to finish before allocating (Figure 4.1).

Figure 4.2: Example of simplified network for memory allocation.

This is the key element: guarantee a sequentialization of the accesses in a minimal
format, without the need of relying on the entire CFG. Not only does this save components
(thus area) but it also speeds up the execution of memory operations. For each BB
connected to the same LSQ, a token needs to flow to guarantee correct allocation in the
Queue.

4.3.2 Sequentialize Group Allocation

A specialized component called the sequentializer (SEQ) manages the distribution of these
allocation tokens for a single BBs to the LSQ and subsequent circuit elements. The SEQ

58

4.3 – Straight To The Queue Algorithm

has multiple input ports which need to be joined before SEQ can fire. Each input token
indicates that prior memory operations, which belong to the same in-order chain, have
already been allocated. The way SEQs from different BBs are connected reflects a subset
of the original order of the program.

Once the SEQ fires, it sends one token to the LSQ, signaling that the set of memory
accesses associated with its BB should be reserved in the LSQ. Another token is output
to the downstream circuit elements to notify the allocation.

Figure 4.3: Exampe of SEQ circuit.

The internal design of the SEQ module utilizes three dataflow components (Subsec-
tion 2.4.2), as shown in Figure 4.3.

• A JOIN is used to merge incoming tokens from all predecessors. This step confirms
that all branches responsible for feeding the SEQ have delivered a token, so that the
allocations for the preceding groups have been done.

• A lazy fork (LFORK) replicates the token to two outputs: one directed to the LSQ
and the other to any successor SEQs. The LFORK distributes the incoming token only
when all the successors are ready at the same time; this makes sure that the next
successive SEQ is activated only after the memory allocation has been performed.

• A BUFFER introduces a single-cycle delay on the path to successor SEQs. This is
necessary to guarantee a delay between the allocation of two groups to the same

59

The Straight To The Queue Methodology

LSQ.

If the LSQ notifies (through backpressure) that it cannot accept any additional re-
quests, the LFORK stalls the mechanism until it becomes ready again. This system stops
successive allocations from bypassing earlier allocations, thus preserving the order seen
in the original code.

4.3.3 Constructing the Allocation Network

Previously, the allocation into the LSQ had the granularity of the BB. Since the final
objective is to get rid as much as possible of this concept, all the operations of an LSQ
in the same BB are collected into a group.

Before running the algorithm, the following setup is available: there are some memory
operations connected to some LSQ; Si is the set of operations that are connected to the
LSQ i. It is reasonable to say that Si is already in a minimal format, without the
possibility of further reduction through static analysis; otherwise, extra analysis can be
placed before this step in the compiler flow.

Grouping and Graph Representation

Once the memory operations are collected according to their original BBs, we end up with
a set of groups, S′

i. For each group in this set, a SEQ element needs to be instantiated.
Notice that the grouping terminology is just a way to detach from the BB concepts; in
reality, each SEQ has the same purpose of a CMERGE in the cmerge network.

A directed graph Gi is constructed where each node is an element of S′
i.

An edge from node u to node v in Gi highlights a potential memory dependency from
any operation within the BB represented by u to any operation in the BB represented by
v. Such edges indicate that v must wait for u to allocate its memory operations before v
does: the SEQ of v will wait for the token of u to be released. Figure 4.4 shows a kernel
and its corresponding graph. It is worth remembering that there is no hazard between
two load operations. This graph reflects the fact that:

1. ST cannot be allocated before both the load operations are performed; however,
after the first time it runs, the ST is also dependent on itself, since there might be
a conflict too.

2. LD1 has no incoming dependencies, so it can run whenever it is ready.

3. LD2 can initially run whenever it is ready, but later it needs to wait for ST.

In the same example, the LSQ is required only for the memory region named A; addr
and C are read-only, while B is guaranteed to have distinct accesses for each operation.

Inserting SEQs

Out of this graph, it is possible to insert and connect directly the sequentizers. Each
BB with a corresponding node in G has a LFORK fed by a JOIN. Such a component is
connected to all the predecessors of the node in the graph.

60

4.3 – Straight To The Queue Algorithm

Figure 4.4: Example of a memory dependence graph for memory allocation.

Some graph nodes may lack any predecessors, indicating that no potential dependency
precedes their operations. In this scenario, the start signal of the kernel is adopted for
activation. This ensures that at least one token will flow into the node’s SEQ, triggering
allocation of that group of memory operations. On the other hand, some nodes have no
successors, and in those cases, the SEQ output can terminate in a SINK, signifying the end
of a dependency chain.

While this is a straightforward implementation of what was described so far, there are
some clear problems when normal CFGs are used. Let’s consider the CFG in Figure 4.5,
in which dependent memory operations are shown in their corresponding BBs. LD can
only run when either ST1 or ST2 are done. However, only one of the two operations will
run, since BB2 and BB3 are mutually exclusive. If both the LFORKs of the two BBs are
connected to the JOIN of BB4, then it will never fire the activation token, since one token
will always be missing.

Figure 4.5: Example of a CFG with alternative memory operations.

61

The Straight To The Queue Methodology

4.3.4 Handling Alternative Incoming Activation Tokens

The main problem is that, for an IR with an underlying CFG structure, variables are
supposed to be in SSA format. This means that, when alternative inputs are available
due to alternative predecessors in the CFG, a ϕ node is supposed to exist.

As this is true for normal variables in the code, this should be true for the activations
tokens as well. Consider again the example if Figure 4.5. Instead of the two sequential-
izers in BB2 and BB3 to feed the one in BB4, a ϕ node should exist which merges them
accordingly to the control flow decision.

This scenario is to be handled also for Figure 4.4. Considering also the start signal,
the circuit in Figure 4.6 will be obtained. This shows that the first allocation of BB4 is
made by the start signal, while all the subsequent ones depend on ST itself; same goes
for LD2.

Figure 4.6: Example of a memory allocation graph with the correct ϕ nodes to guarantee
correctness.

4.4 The PHI Insertion Mechanism

As described in [12], the implementation of such allocation techniques relies on a standard
SSA mechanism to insert ϕ nodes.

In the context of MLIR with the handshake dialect, there is no optimal automated
way to insert these nodes. This process must be handled manually, referring to standard
algorithms.

62

4.4 – The PHI Insertion Mechanism

4.4.1 Problem Statement

A variable is defined multiple times across N different nodes: v1, v2, ..., vN . In this
context, v refers to the variable that generates the allocation token upon which the
sequentializer depends. The problem is to determine which value of the variable to be
used in each BB, possibly merge some of them with ϕ nodes.

4.4.2 The Algorithm

The following steps outline the process:

1. Collect all the operations which define the value and the corresponding BBs. In
general, a value can be defined multiple times within the same BB.

2. For each BB, sort the operations according to the dominance information and keep
only the last one. From a linear perspective, the last operation which defines a
value within the BB is the one determining the value to be used afterwards.

3. Use the Cryton algorithm [26] (described later) to identify the BBs where ϕ nodes
need to be inserted. In some cases, ϕ nodes may not be required, depending on the
dominance tree.

4. Each ϕ node requires values from every predecessor of that BB. These values can
originate from a definition within the predecessor, a ϕ from the predecessor itself
or a subsequent predecessor of a predecessor.

5. Instantiate the ϕ node in each BB with the appropriate connections.

The Cytron algorithm, as presented in [26], is shown in Listing 4.2.
It takes as input a region with an underlying CFG structure and a set of values defined

within specific blocks (inputBlocks). The first step involves computing the dominance
frontier [39] for each BB. Given a node d in a CFG, its dominance frontier is defined as
the set of nodes n such that:

d dominates a predecessor of n but does not strictly dominate n.

The Cytron algorithm uses a method to find the dominance frontier of each node and
three data structures:

• w: A set of nodes that still need to be analyzed.

• hasAlready: A map indicating whether a block has already been added to the list
of nodes requiring a ϕ node.

• work: A map of nodes that have already been processed.

63

The Straight To The Queue Methodology

1 /// Run the Cryton algorithm to determine , given a set of values ,
in which blocks

2 /// a merge is needed to ensure those values are correctly
propagated .

3 static DenseSet <Block *>
4 runCrytonAlgorithm (Region &funcRegion , DenseMap <Block *, Value > &

inputBlocks) {
5 // Get dominance frontier
6 auto dominanceFrontier = getDominanceFrontier (funcRegion);
7

8 // Temporary data structures to run the Cryton algorithm for phi
positioning

9 DenseMap <Block *, bool > work;
10 DenseMap <Block *, bool > hasAlready ;
11 SmallVector <Block *> w;
12

13 DenseSet <Block *> result ;
14

15 // Initialize data structures
16 for (auto &bb : funcRegion . getBlocks ()) {
17 work. insert ({&bb , false });
18 hasAlready . insert ({&bb , false });
19 }
20

21 for (auto &[bb , val] : inputBlocks)
22 w. push_back (bb), work[bb] = true;
23

24 // Process the list until `w` is empty
25 while (!w.empty ()) {
26

27 // Pop the top of `w`
28 auto *x = w.back ();
29 w. pop_back ();
30

31 // Get the dominance frontier of `x`
32 auto xFrontier = dominanceFrontier [x];
33

34 // Process each element in the frontier
35 for (auto &y : xFrontier) {
36

37 // Add the block in the dominance frontier to the result list
.

38 // If it was not analyzed yet , also add it to `w`
39 if (! hasAlready [y]) {
40 result . insert (y);
41 hasAlready [y] = true;
42 if (! work[y])
43 work[y] = true , w. push_back (y);
44 }
45 }

64

4.5 – Implementation Details

46 }
47

48 return result ;
49 }

Listing 4.2: Cryton Algorithm in MLIR.

Notice that the whole work of this thesis focuses on GSA rather than SSA. Once the
ϕ information is obtained, the method from Section 3.3 can be applied to convert each
of these nodes into a µ or a γ.

4.5 Implementation Details
The methodology described thus far is implemented in Dynamatic through an additional
pass that operates on the handshake dialect after its conversion from the cf dialect. Since
the components inserted during this stage must still undergo the Fast Token Delivery
methodology (specifically, the insertion of the suppression and regeneration mechanisms)
it was essential to design the algorithm in Chapter 3 in a modular and reusable way,
independent of the conversion pass.

This pass is optional. During the conversion process, the cmerge network is instan-
tiated and used. Later, this network can optionally be disconnected and replaced with
sequentializers. At this point, the original cmerge network can be removed, as its purpose
is terminated.

For the pass to function correctly, an underlying CFG structure must exist in the IR.
However, the handshake dialect is represented as a graph region with no BBs; everything
is flattened, as would be expected from the final circuit. To meet this requirement, the
following steps are employed:

1. Before the conversion from cf is finalized, each operation in the IR is annotated
with metadata identifying the BB to which it belongs.

2. The MLIR operation of the function is annotated with information about all edges
between BBs;

3. When the CFG is required, BBs are re-constructed and utilized using the edge
annotations and the block-specific metadata in each node. Although this reintro-
duction of BBs deviates somewhat from standard MLIR practices, it functions as
intended.

4. The resulting IR from the pass cannot include BBs due to the graph region require-
ments of the handshake dialect. Therefore, the recreated blocks are removed just
before the pass concludes.

This mechanism is encapsulated in a new class called CFGAnnotation.

65

66

Chapter 5

Experimental Results

This chapter highlights the results obtained from the techniques adopted from [12] and
[10], and whose implementation was described in Chapter 3 and Chapter 4.

5.1 Experimental Setup

5.1.1 Methodology

To perform a fair comparison of the baseline —referred to as legacy, commit 637df68
from [16] — and the implemented work — referred to as FTD — the following setup has
been adopted.

For both versions, all available optimizations have been turned on; in particular, they
both benefit from the reduction of the size of constants and operations, as described in
Subsection 2.4.4. The two resulting circuits are tested using the testing infrastructure that
is already integrated in the compiler. This consists of running the original C program,
then running an RTL simulation, and checking that the content of the memories and
the returned value of the function are identical. This methodology ensures the circuit is
always functionally correct.

The RTL simulations are run using Modelsim 20.1. Such simulations allow us to obtain
the simulation time with a clock period set at 4ns. From this, it is straightforward to
obtain the number of clock cycles for the simulation.

Results cannot be compared without considering area and critical path. To obtain
these metrics, both legacy and FTD are synthesized using Vivado 22.1, targeting a Kintex-
7 Xilinx FPGA with a constraint on the critical path of 4ns. The resource usage from
Vivado is obtained after place and route, and it consists of LUTs, FFs, and Slices.

Only the VHDL modules have been used, without relying on Verilog, whose imple-
mentation in Dynamatic still lacks many FPU components. FTD version adopts both Fast
Token Delivery and Straight To The Queue.

One could argue that testing the two algorithms at the same time is not a reliable
measure of performance. However, two points should be taken into account:

1. Straight To The Queue is only compliant with Fast Token Delivery, and the algo-
rithm cannot run without it.

67

Experimental Results

2. Without Straight To The Queue, Fast Token Delivery still relies on the cmerge
network to allocate memory groups to the LSQ.
This means having an implicit sequential execution of the BBs, which undermines
the benefits of FTD.

5.1.2 Heuristic Buffering Algorithm

As described in the introduction of this work, when discussing the performance of Dyna-
matic, it is not possible to obtain reliable circuits in terms of throughput without a clever
buffering algorithm. [9] and [11] are already implemented in the flow; by relying on an
MILP formulation of the problem, they both allow for optimal buffering of the standard
Dynamatic.

However, neither algorithm is compliant with Fast Token Delivery, due to the naive
way they are implemented. The main assumption of these works is that a connection
between two components can exist only if the components are located in two adjacent
BBs - with respect to the CFG of the program. This implicit coupling between dataflow
and control-flow is disrupted by Fast Token Delivery, which aims to build connections as
directly as possible.

Since this work was not about fully integrating Fast Token Delivery with all the
previous work on Dynamatic, these techniques could not be used. However, the so-called
naïve buffering, which consists of placing a fixed number of transparent buffers blindly
almost everywhere, could lead to enormous inefficiencies. The decision was then to build
a heuristic. To ensure fairness in the comparison, such a heuristic has been applied to
both legacy and FTD.

To guarantee that each combinational cycle is broken, an opaque buffer (introducing
one clock cycle of latency) is placed after each MUX. Then, for each output channel of a
fork component, five transparent buffers are inserted. The number adopted is completely
arbitrary, and no other value was tried in the process.

Not all the fork outputs require a transparent FIFO. The heuristic first simulates
with all the buffers present, then tries to remove each buffer one by one, launching the
simulation again. If the removal of the buffer does not increase the runtime of the kernel, it
means that the buffer was not affecting throughput and can be safely removed; otherwise,
the transparent buffer is kept. Figure 5.1 depicts the process.

As Section 5.3 will show, this process is sometimes sub-optimal, both for the result-
ing critical path and the area occupancy. For instance, if only a one-element FIFO was
necessary over a channel, this method would keep the five buffers anyway. Many im-
provements can be considered; however, running so many simulations is time-consuming
even for high-end server hardware, so these results are considered acceptable.

5.2 Functional Results

Dynamatic has 88 integration tests, consisting of various kernels used to verify different
system functionalities and trigger potential corner cases. Of these tests, 14 do not work

68

5.2 – Functional Results

Figure 5.1: Exemplification of the heuristic buffering method: first, 5 transparent buffers
are inserted at the output of each fork; then, only the buffers that affect throughput are
kept.

on the baseline either (as of December 2024). This is due to multiple reasons, including
failures in the LSQ functionalities and the lack of VHDL implementations for long-latency
operations required by the compiler (e.g., sqrt, cos). For this reason, only the remaining
74 tests are considered.

When running the compiler with the Fast Token Delivery, all 74 tests pass successfully.
This is a promising result, highlighting the reliability of the implementation and its ability
to handle a variety of scenarios present in the original CFG. This result is the consequence
of multiple ad-hoc tests, addressing one by one many situations; however, a comprehensive
unit test-suite is not available.

The implementation of Straight To The Queue fails in four tests: insertion_sort,
gemver, gemver_float (these two tests share the same CFG but use different types of
arithmetic units, making it reasonable that both fail), and test_memory_5. In all these
cases, the simulation stalls without terminating.

Particular attention was given to gemver. An analysis of the waveforms indicates that,
as expected, SQ can result in multiple requests for group allocation to the LSQ within
the same clock cycle. This situation occurs, for instance, with the graph allocation (see
Section 4.3.3) depicted in Figure 5.2, which mirrors the behavior of one of the LSQs in
gemver.

In this case, the group from BB1 requires a store operation, which conflicts with the
two load operations in BB2 and BB3. This means that the latter two operations cannot
start until all groups for BB1 have been allocated. However, once BB1 completes all the
iterations, LD1 and LD2 are no longer in conflict and can theoretically run in parallel.
When the LSQ was designed in [34], it assumed that BBs would execute sequentially
in program order, allowing only one group allocation per clock cycle. This limitation
compromises generality.

However, it is important to note that this issue falls outside the scope of the Straight
to the Queue algorithm, which is only responsible for delivering tokens to allocate groups
to the LSQ. Thus, the LSQ should be improved to optimize this use case.

If no modifications are made to the LSQ, alternative solutions can be considered:

69

Experimental Results

1. Introduce an arbiter for group allocations in front of the LSQ. This ap-
proach is inefficient in terms of area but allows a dynamic strategy to mitigate the
issue. Such arbiter receives all the allocation requests; if there is only one request
at a given clock cycle, this can bypass the arbiter and go directly to the LSQ; oth-
erwise, an arbitration over multiple requests (for instance, priority-based) can be
done.

2. Sequentialize group allocations at the graph level. No issue arises if there are
no two group allocations in the same clock cycle. This can be ensured by introducing
dummy dependencies. For example, in Figure 5.2, adding a dependency between
BB2 and BB3 would force BB3 to execute only after BB2 completes. This option
requires a formal definition of the characteristics of the allocation graph related to
a LSQ so that it is safe; no effort has been put in this direction.

3. Halt the algorithm when a stalling risk is detected. This scenario has not
been formally defined. However, the idea would be to identify graph conditions that
always lead to a stall and halt the algorithm beforehand, maintaining the cmerge
network in charge of allocating the groups.

Figure 5.2: Example of a Memory Allocation Graph that causes LSQ failure.

Overall, the functional results demonstrate success, showing that Fast Token Delivery
can be adopted for any kernel, while Straight To The Queue is safe in many situations.

5.3 Performance Results

A comprehensive scatter plot showing benchmark results using the setup from Section 5.1
can be found in Figure 5.4 (comparing timing and LUT usage) and Figure 5.3 (comparing
timing and FF usage). A more general result is shown in Figure 5.5, where area is
represented using slices in the FPGA. All numerical results are summarized in Table 5.1

70

5.3 – Performance Results

(number of clock cycles and clock period), Table 5.2 (execution time), Table 5.3 (flip-flop
usage), and Table 5.4 (LUT usage).

Execution time is estimated by multiplying the number of clock cycles obtained from
the simulation by the critical path after place and route, since that is a lower bound for
the clock period in the FPGA.

Here is a short description of each adopted kernel. Some of the tests are taken from
PolyBench [40].

• binary_search: implements a binary search of a number over an array;

• fir: computes the finite input response between two discrete signals;

• gcd: compute the greatest common denominator between two integers using Stein’s
algorithm;

• get_tanh: implements a kernel with a long latency loop carried dependency in the
loop body;

• jacobi_1d: from the PolyBench test-suite, it is the 1-D Jacobi stencil computation;

• kernel_2mm: from the PolyBench test-suite, it performs a 2 matrix multiplication
alpha · A · B · C + beta · D;

• kernel_3mm: from the PolyBench test-suite, it performs a 3 matrix multiplication
(A · B) · (C · D);

• matvec: multiplication between a matrix and a vector;

• sobel: computes the sobel filter between an input and two 3 × 3 kernels passed as
input;

• spmv: implements a sparse-matrix multiplication by a dense-vector;

• atax: from the PolyBench test-suite, it implements a sequence of loops both mem-
ory dependencies and loop-carried dependencies;

• bicg: implements the BiConjugate Gradient STABilized method method;

• stenci_2d: it implements a grid-based computation between an original input
matrix and a 3 × 3 kernel.

5.3.1 Timing Results

When discussing timing, it is possible to separately consider the simulation time (number
of clock cycles, shown in columns 2, 3, and 4 of Table 5.1) and the critical path (columns
5 and 6 of the same table).

FTD improves the simulation time for all benchmarks, with an average reduction
factor of 0.67. This indicates that simplifying the dataflow structure by decoupling it
from the control flow is beneficial.

71

Experimental Results

Figure 5.3: Plot showing execution time versus flip flop usage of FTD compared to the
baseline.

fir is the simplest kernel in Dynamatic’s test suite, where there is little to sim-
plify since the circuit generated by legacy is nearly equivalent to that produced by FTD.
Consequently, the number of clock cycles remains unchanged. Conversely, spmv and
binary_search, which have complex and redundant legacy implementations, benefit sig-
nificantly from the optimization. In Figure 5.5, these kernels are located in the bottom-left
portion of the plot.

It is important to note that the number of clock cycles alone does not provide a
complete insight into kernel execution time, as it also depends on the critical path after
place and route. For this reason, the last columns of Table 5.1 present this metric. The
results indicate that all kernels have a worse critical path, with the average ratio between
FTD and legacy being 1.06. The minimum ratio is 0.99 (for fir and bicg), while the
maximum is 1.22 (for matvec).

These results align with the conclusions from [10]. The reason might lie in the buffer-
ing algorithm from Subsection 5.1.2, which is not designed to optimize the critical path.
However, since the same algorithm is applied to both FTD and legacy benchmarks, this
is not a distinguishing factor. As it will be discussed in Subsection 5.3.2, FTD circuits
typically contain more buffers than legacy circuits after the heuristic. Since transparent
buffers do not introduce latency and thus do not break the critical path, their presence
plausibly results in longer critical paths.

72

5.3 – Performance Results

Figure 5.4: Plot showing execution time versus LUT usage of FTD compared to the
baseline.

Ultimately, an estimate of execution time can be obtained by multiplying, for each
kernel, the number of clock cycles by the critical path. These values are reported in
Table 5.2, and their relationships can be observed on the vertical axis of Figure 5.4,
Figure 5.5, and Figure 5.3.

With an average execution time ratio of approximately 0.7, the algorithm demon-
strates the potential for timing improvements. Although the reduction in clock cycles is
numerically greater, the increase in the critical path affects the overall results. Despite
this, matvec is the only kernel with a worsened execution time. This can be considered
a positive outcome, since this result is only due to the worst critical path. These results
serve as experimental validation that Fast Token Delivery is effectively a minimal version
of the simple legacy approach, generally leading to better results.

Potential strategies for further improvement are discussed in Section 5.4.

5.3.2 Area Results

The area results from this work are presented in Table 5.3 and Table 5.4.
On average, improvements are observed in both LUT and FF usage: LUTs are reduced

by a factor of 0.91, and FFs by 0.81. This is coherent with the intuition according to which

73

Experimental Results

Figure 5.5: Plot showing execution time versus Slice usage of FTD compared to the
baseline.

Fast Token Delivery removes steering components in the circuit, without introducing
anything spurious. Rather than analyzing these elements separately, slices are used as a
reference metric (considering both FFs and LUTs). In this case, the average improvement
is 0.87, as shown in Figure 5.5.

While many benchmarks exhibit reduced area (some achieving a 0.5 factor improve-
ment, such as gcd and sobel), others show an increase (right side of the plot). However,
the increase is often minimal, with the worst case being matvec, which has an area factor
of 1.12.

What causes this behavior?
As briefly mentioned in the previous section, the heuristic buffering algorithm intro-

duces more transparent buffers in FTD circuits compared to legacy. To focus on the
impact of transparent buffers, the worst-performing kernels have also been synthesized
with no transparent buffers. While this scenario is suboptimal in terms of throughput
(while leading to functional circuits anyways), it helps isolate the effect of transparent
buffers on FPGA area. The results are summarized in Table 5.5.

The table clearly shows that FTD also achieves better area utilization (or exhibits
only negligible increases) compared to legacy in all cases. This further supports the
conclusion that the algorithm effectively reduces the number of components required for

74

5.3 – Performance Results

Kernel Legacy CC FTD CC Ratio CC Legacy CP (ns) FTD CP (ns)

binary_search 371 162 0.44 3.995 4.173
fir 1015 1014 1.00 3.728 3.679
gcd 137 83 0.61 4.590 4.631
get_tanh 7333 4355 0.59 7.552 7.680
jacobi_1d 486 165 0.34 7.153 7.182
kernel_2mm 1945 1704 0.88 6.471 6.601
kernel_3mm 2562 1925 0.75 6.540 6.361
matvec 456 415 0.91 3.342 4.089
sobel 5351 2165 0.40 4.779 5.728
spmv 106 34 0.32 3.949 4.287
atax 1682 1059 0.63 7.841 7.546
bigc 318 301 0.95 6.053 6.004
stencil_2d 496 428 0.86 3.751 3.977

Table 5.1: Clock cycles during simulation and clock period for Legacy and FTD.

Kernel name Legacy Time (µs) FTD Time (µs) Ratio Time Improv. (%)

binary_search 1.48 0.68 0.46 54.39
fir 3.78 3.73 0.99 1.41
gcd 0.63 0.38 0.61 38.87
get_tanh 55.38 33.45 0.60 39.60
jacobi_1d 3.48 1.19 0.34 65.91
kernel_2mm 12.59 11.25 0.89 10.63
kernel_3mm 16.76 12.24 0.73 26.92
matvec 1.52 1.70 1.11 -11.35
sobel 25.57 12.40 0.48 51.51
spmv 0.42 0.15 0.35 65.18
atax 13.19 7.99 0.61 39.41
bigc 1.92 1.81 0.94 6.11
stencil_2d 1.86 1.70 0.91 8.51

Table 5.2: Execution time for Legacy and FTD.

functional dataflow circuits.

75

Experimental Results

Kernel name Legacy FFs FTD FFs Ratio FFs REG Improv. (%)

binary_search 2035 900 0.44 55.77
fir 449 378 0.84 15.81
gcd 2815 992 0.35 64.76
get_tanh 3374 3271 0.97 3.05
jacobi_1d 3783 3796 1.00 -0.34
kernel_2mm 6419 5745 0.89 10.50
kernel_3mm 7062 7297 1.03 -3.33
matvec 608 612 1.01 -0.66
sobel 3992 2082 0.52 47.85
spmv 2263 1293 0.57 42.86
atax 5041 5282 1.05 -4.78
bigc 3987 3994 1.00 -0.18
stencil_2d 1042 853 0.82 18.14

Table 5.3: Flip Flop Usage for FTD and Legacy.

Kernel name Legacy LUTs FTD LUTs Ratio LUTs LUT Improv. (%)

binary_search 1893 1164 0.61 38.51
fir 413 378 0.92 8.47
gcd 2545 1512 0.59 40.59
get_tanh 10600 10517 0.99 0.78
jacobi_1d 16750 17305 1.03 -3.31
kernel_2mm 20440 21287 1.04 -4.14
kernel_3mm 26421 28764 1.09 -8.87
matvec 581 683 1.18 -17.56
sobel 3659 2298 0.63 37.20
spmv 1659 1372 0.83 17.30
atax 18767 18822 1.00 -0.29
bigc 16655 16724 1.00 -0.41
stencil_2d 1036 976 0.94 5.79

Table 5.4: LUT Usage for FTD and Legacy.

76

5.4 – Conclusions

Kernel Name Legacy LUTs FTD LUTs Legacy FFs FTD FFs

get_tanh 10569 10452 3372 3221
jacobi_1d 17190 17224 3751 3751
kernel_2mm 20431 20078 5930 5134
kernel_3mm 26399 28168 6591 6741
matvec 578 492 588 433

Table 5.5: Results of synthesis for some benchmarks with no transparent buffers.

5.4 Conclusions
The results presented in this chapter demonstrate that Fast Token Delivery, combined
with Straight To The Queue, leads to an average execution time improvement of 30%, a
19% reduction in flip-flops, and a 9% improvement in LUT usage. Given the heuristic
buffering used for validation, these results should be considered successful.

There is, however, room for improvement. The following open issues should be ad-
dressed:

• Fast Token Delivery Reliability. As noted in Section 5.2, Fast Token Delivery
passes all available tests in Dynamatic. However, it currently lacks a comprehen-
sive set of unit tests that verify individual functionalities. The same applies to
the analysis pass from Section 3.3. Implementing these tests is a crucial software
engineering step for long-term maintainability of the compiler infrastructure.

• Straight To The Queue Integration. The interaction between the Straight To
The Queue algorithm and the LSQ remains problematic. Currently, the algorithm
fails in certain cases, which must be resolved. Among the proposed solutions in Sec-
tion 5.2, one should be selected and integrated into the workflow, despite potential
inefficiencies.

• Buffering Algorithm. Utilizing [11] or [9] is essential for a reliable comparison
between FTD and legacy. Moreover, this approach would result in better circuits,
reducing the need for transparent buffers and improving the critical path.

• Out-of-Order Framework. Once the above issues are addressed, Dynamatic’s
middle-end layer will be equipped to integrate the work from [14], a major advance-
ment in dataflow circuit optimization.

77

78

Chapter 6

Thread-Level Parallelism in
Dataflow Circuits

6.1 What is Thread-Level Parallelism?
Parallelization has always been a fundamental topic in computer architecture, since it
can improve the available resource usage in a system.

It is common to distinguish three different kinds of parallelism [41]:

• Data-Level Parallelism: due to the availability of hardware resources of the same
kind (vectorized processors or SIMD architectures) multiple data can be processed
at once. As an example, instead of summing two vectors of 64 elements by iterating
over each element, a vectorized adder can run all the additions in parallel.

• Instruction-Level Parallelism: multiple instructions are run in parallel and possibly
disordered, thanks to an appropriate hazard-detection mechanism which maintains
the original semantics of the program.

• Thread-Level Parallelism: multiple threads from a program execution can operate
in parallel thanks to the availability of resources.

In this thesis, the main focus is on the third category (TLP). This has to do with
MIMD (Multiple Instruction Multiple Data) systems, having multiple program counters
and multiple units which allow for a parallelized execution.

There are different ways to exploit this methodology, as reported in [41]. Parallel
processing is about «having multiple threads collaborating on a single task». On the
contrary, request-level parallelism tries to execute multiple independent requests of the
same kind at once.

TLP is exploited either by having many processors running in parallel, or by shar-
ing the same processor for multiple threads in an interleaved fashion. This technique
is called multithreading, and it will be the context of this research. In particular, the
accelerator designed using Dynamatic, if inserted on an FPGA on a server, might request
periodic activations, with multiple independent data to process. The possibility of han-
dling multiple requests at the same time improves the resource utilization, and finally the

79

Thread-Level Parallelism in Dataflow Circuits

throughput of the accelerator. This is almost equivalent to inserting the accelerator in
a streaming environment, which refers to a system that is activated regularly at a given
frequency. This is a standard assumption for a server, which gets a request to elaborate
almost periodically.

Multithreading has different variations [41]. Fine-grained multithreading interleaves
each of the available threads in each clock cycle. Coarse-grained multithreading, on the
contrary, switches to a different thread only when a long stall might arise, to minimize the
overhead due to the switching activity. However, Simultaneous multithreading (SMT) is
the current most common variation, and it consists in having multiple threads executing
in different stages of the pipeline of a dynamically scheduled CPU.

Since this work aims to introduce multiple tokens from different activations in the
same dataflow circuit, the approach resembles SMT.

6.1.1 Issues with Thread-Level Parallelism

While SMT is usually a good way to speed up some programs, its advantage depends on
the availability of resources and the structure of the program. Let’s consider the code in
Listing 6.1.

1 int div(int dividend , int divisor) {
2 return dividend / divisor ;
3 }

Listing 6.1: Example of TLP code.

This kernel implements a division between its two operands. Let’s imagine that the
hardware has an available divide unit in charge of the operations.

A long-latency unit is characterized by its latency L - the number of clock cycles
required to complete a request - and its initiation interval II - the number of clock cycles
to wait before another operand can be processed. Suppose the divisor mentioned above
has an II of 1, which implies the possibility of running one operation per clock cycle. In
that case, multiple instances of the function can run in parallel with the same underlying
hardware.

However, if II = L (thus only one division can be processed at one time) then no
parallelism through the same unit is available under this condition.

Another common scenario in which the TLP cannot be used in such an immediate
way is when, due to the execution speed, the results might be produced in a wrong order.
Let’s refer to Listing 6.2.

1 int sum(int n) {
2 int i = 0;
3 while(i < n)
4 i++;
5 return i;
6 }

Listing 6.2: Example of TLP code with reordering.

80

6.2 – TLP in Dataflow Circuits

Let’s suppose that, due to the available hardware, multiple instances of the thread/ ker-
nel sum can be parallelized. The user first calls sum(1000), then sum(5). The first
invocation of the function will require approximately 200 times the time of the second
invocation. For this reason, the second request will likely finish before the first is com-
pleted. A proper runtime environment, made of a tagging and ordering mechanism, needs
to be available to make sure that the correct result is delivered to the correct execution
unit, without assuming the results remain in order.

6.2 TLP in Dataflow Circuits

6.2.1 Dataflow Circuits in a Streaming Environment

Dataflow circuits are good candidates for running multiple threads simultaneously, in
SMT-fashion: due to their distributed nature, little should be done to allow multiple
threads to flow at runtime. In particular, the idea is to develop a circuit on FPGA, and
then insert such a circuit in a streaming environment. Referring again to Listing 6.1, the
way it works seems clear if II = 1: each set of inputs are tokens that flow inside the
divisor to produce a result. From an HLS perspective, it looks like inserting the body of
the kernel around a for loop (Listing 6.3) with large N .

1 int streaming_div (int* dividend , int* divisor , int* result) {
2 for(int i = 0; i < N; i++) {
3 notify dividend [i] / divisor [i];
4 }
5 }

Listing 6.3: Example of TLP code from an HLS perspective.

However, as the next section will demonstrate, dataflow circuits are not robust enough
to handle multiple activations of the kernels at the same time without affecting correct-
ness.

6.2.2 Performance Consequences

Let’s consider the loop in Figure 6.1: there is a long latency operation, with an II = 1
and latency L. This is a FIFO with L slots. The number of iterations in the loop is N .

Let’s say that both N and L are equal 2, and that, for each clock cycle, there is a
token which might initiate the loop body (left-side of the µ component). By default, the
µ is a MUX, allowing only one token to enter the loop body from outside, as long as there
is an iteration still running. All the other incoming tokens are blocked on the µ left input
(assuming, for instance, a large enough transparent buffer to store them).

A timeline of what happens in the loop is shown in Figure 6.2. Different loop bodies
(instances of execution of the loop) are represented in different colors. The first row
represents the token coming from the outside, accumulating in the FIFO; the second row
shows the token regenerated at each iteration; the third row shows the tokens going out
of the µ and entering the long-latency operation; the last row shows the tokens going out
of the loop.

81

Thread-Level Parallelism in Dataflow Circuits

Figure 6.1: Example of loop in a dataflow circuit. The labels refer to the same used in
Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5.

As it was reasonable to guess, there is one token exiting the loop every 4 clock cycles
(N · L = 2 · 2 = 4; in the real circuit, timing is also affected by the speed of the MUX
condition, but this aspect will be covered in the next chapter more in depth). However,
it is also clear that the long latency unit is under-utilized: out of the two available slots,
only one of them is full at each clock cycle.

A possibility to solve the problem of maximizing the throughput and increasing the
resource utilization is to implement the µ using a MERGE; this component accepts a token
either from the left or from the right input, as long as there is capacity to accept more
tokens in the loop body. The priority is given to the right side, so that previous instances
of the loop body are terminated before new instances can start.

The corresponding timeline is shown in Figure 6.3. It becomes clear that, after a
warm-up phase, not only the tokens are still provided to the outside with the correct
order, but the throughput of the loop is also increased (2 tokens every 4 clock cycles).

It is thus evident that a conversion from a MUX to a MERGE can have some benefits for
the throughput. However, this is not always the case. Let’s remain in the scenario of a
MERGE as loop header, but under the hypothesis of receiving a token from the left side of

82

6.2 – TLP in Dataflow Circuits

Figure 6.2: Timeline of loop body’s tokens using a MUX as loop header.

Figure 6.3: Timeline of loop body’s tokens using a MERGE as loop header.

the µ every 6 clock cycles.
As it’s evident from Figure 6.4, the MERGE is not able to improve the occupancy of

the internal pipeline on its own, since there are not available tokens to use as soon as
possible. In this case, the throughput of the loop is constrained by the speed at which it
receives an activation token.

However, one can argue: why can’t we use MERGEs only, since they provide benefits
without having consequences? The second point of the question is not correct. Let’s relax
the hypothesis over the fixed number of iterations in the loop. There are two consecutive
activations of the loop body, one which requires 4 iterations, one which requires 3 of
them. The timeline is shown in Figure 6.5.

While the order of incoming tokens is cyan first and red second, the tokens exit the
loop in the reverse order.

This is an out-of-order problem, which requires adequate infrastructure (provided
by [14]) to guarantee correctness. The results from that work show an increase of area
between ∼ 20% and ∼ 250%.

For this reason, having a MERGE rather than a MUX affects the area requirement of the
circuit, and should be carefully considered.

83

Thread-Level Parallelism in Dataflow Circuits

Figure 6.4: Timeline of loop body’s tokens using a MERGE as loop header, but slower
activations.

Figure 6.5: Timeline of loop body’s tokens using a MERGE as loop header, but different
number of iterations.

6.2.3 The Contribution of This Thesis

The decision of when to implement loop µs as MERGEs rather than MUXes should be taken
only when there is a guarantee that this change will tangibly improve the throughput of
the circuit in a given streaming environment, justifying any resource overhead associated
with this. While [14] shows how to go out-of-order, it does not answer the problem of
where to go out-of-order.

For this reason, the following chapter shows a methodology to adequately pick the
set of MUXes that can be safely transformed into a MERGE to improve the performances,
without adding resources if the throughput improvement is not guaranteed.

84

6.3 – Previous Works

6.3 Previous Works
Cheng et. al. worked on loop-pipelining in HLS [18], which is exactly the open-ended
question from the previous section: allowing multiple tokens to flow in the loop from
Figure 6.1 without affecting the visible effects of the computation. Such a project has
two objectives: on the one hand, lifting the C-slow pipelining technique, to introduce
additional latency in the loop body (in the form of buffering) to improve the critical path
while not altering the throughput; on the other hand, appropriately detect how many
loop bodies can run in parallel without having memory hazards.

It demonstrates that almost a 3× speed-up can be achieved with a minimal area
overhead (∼ 7%). The main focus is on the innermost loops of each loop-nest structure,
adding an hardware header which limits the number of tokens which can flow in the body
at once as long as it is safe to do so. To solve the ordering problem, a tag is associated with
each token flowing, guaranteeing the correct order once the tokens are produced. This
work, however, introduces the disordering mechanism to every innermost loop, without
taking into account the possibility of it being not useful, as Subsection 6.2.2 shows.

A more general methodology for loop-pipelining and out-of-order execution in dataflow
circuits is offered by [14]. It provides a framework to tag and reorder (or align in their
terms) tokens in different areas of the circuit, together with an algorithm to make sure
that functionalities are maintained. This framework allows better loop pipelining (or
simultaneous multithreading) in loops by appropriately tagging and untagging tokens in
exclusive local parts of the circuit, leaving the rest of the circuit untouched, keeping the
outside execution in-order. As previously mentioned, however, this does not provide for
a way to decide which areas of the circuit can benefit from it.

85

86

Chapter 7

Static Analysis for Thread-Level
Parallelism in Dataflow Circuits

7.1 The Occupancy of a Channel

A circuit placed in a streaming environment, receiving periodically an activation signal,
allows to consider the circuit as a network possibly reaching a steady state. This state
corresponds to an equilibrium of the network, in which there is a regularity in the way
tokens flow.

This is an ideal view of the network, possibly unreachable in the real-world. For
instance, due to backpressure, a buffer can have a rate of input tokens that is higher
than the rate at which tokens are released. This implies a moment in time in which the
buffer will be full, propagating the backpressure uphill. This problem will be handled in
Section 7.2.

At this stage, the focus is on a steady state, in which each channel in the circuit has a
fixed number of tokens flowing per unit of time. Figure 7.1 shows, for some clock cycles,
the value of the valid and ready signals of a channel. Due to the way the handshake
protocol works, a token (the third row) flows only when both the valid and ready signals
are active. As the figure shows, in this context there is one token flowing every three
clock cycles. Thus, the average number of tokens on the channel per unit of time is 1

3 .
This concept, in dataflow circuits is referred to as occupancy or throughput [9], repre-

sented through the symbol Θ.
In the steady state, each channel in the circuit will have a fixed-value throughput.

However, it should be noted that the throughput, being a single-value metric, cannot
completely express the dynamic behavior of the circuit. For instance Figure 7.2 shows
the throughput of a channel firing 3 tokens in three consecutive cycles and then waiting
for 6: the throughput is 1

3 , same as in Figure 7.1. Notice that the throughput is upper-
bounded by 1.

The objective of this chapter is to provide a model of the circuit which allows one
to extract, for every channel in the circuit, the throughput at the steady state. This is
coherent with the problem explained in the previous chapter: Having a way to estimate
the final throughput of the circuit allows you to determine whether a MERGE used as loop

87

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Figure 7.1: Graphical representation of the occupancy of a channel in the ideal case:
there is one token flowing every 3 clock cycles, leading to an occupation of 0.33.

Figure 7.2: Graphical representation of the occupancy of a channel in the real case: three
tokens flow every nine cycles, thus the occupancy is still 0.33.

header can improve the timing of the circuit, thus making the overhead of the out-of-order
infrastructure worth it.

7.2 Assumptions and Context

This thesis focuses on providing a mathematical framework for running throughput analy-
sis in dataflow circuits. In the future, a generalized framework will be developed, possibly
using relevant models from the domain of Network Calculus [21]. The analytical approach
that will be described has the advantage of showing that throughput analysis can be suc-
cessfully obtained; as a disadvantage, it cannot analyze every dataflow structure.

To simplify the analysis of the circuit, and to specify the scope of the work, the
following assumptions are taken into account:

• The kernel is inserted in a streaming environment, having a frequency of activation
Θexternal. This is equivalent to the throughput of the channels used as inputs of the
circuit (arguments of the compiled function and start signal).

• Each channel has an infinite number of transparent buffers; as a consequence, back-
pressure is (almost) never a factor. This is a very strong assumption over the system,
and it is not feasible in a real circuit. Even a very large buffer might end up get-
ting full in the long run, as explained in the previous section. However, the goal
is to finally provide an ideal estimation of the throughput. Having infinite buffers
corresponds to ideal buffering; then, a buffering algorithm should be in charge of

88

7.3 – Throughput Analysis Without Loops

understanding where to put buffers and how to size them to reach the expected
result, if possible.

• Memory dependencies are not considered. This means that the analysis gives for
granted that no memory conflict can exist between multiple tokens flowing contem-
poraneously in the same loop. This problem was also taken into account in [14],
by stating that such a memory conflict cannot be handled using the out-of-order
framework for dataflow circuits. However, [18] aims at solving exactly this problem:
at a later stage, this work can be adopted to guarantee correctness.

• Each loop has a fixed number of iterations N . This is a common assumption in
static analysis related to CFGs, since it allows to know how many times a backedge
is traversed. The value of N can be either known due to the loop structure (a for
loop from 0 to N −1) or estimated by taking an average or a worst case value. In the
circuits that are used to validate the system, a fixed number of iterations is always
used. This guarantees that the order of tokens flowing out of the loop is always
correct without the out-of-order infrastructure (refer to Figure 6.5). The main issue
here is that such an infrastructure is not available in Dynamatic yet, thus it cannot
be exploited for testing purposes. As a more general metric, it is possible to rely on
the probability of an edge to be traversed in the CFG. For instance, at a loop exit,
the probability of going back to the loop header will be N−1

N , while the probability
of continuing is 1

N .

7.2.1 The GSA Benefit

Fast Token Delivery allows to build a circuit which is way more optimized than the
original one. In particular, being based on the GSA representation, the µ loop headers
are well-distinct from the γ gates, and each of them already has the corresponding loop-
exit condition as driver, rather than being connected to the cmerge network.

This allows, at the handshake level, to easily cluster loops and their loop headers,
so that they can be handled separately without any inconvenience. Moreover, the out-
of-order infrastructure is only coherent with the Fast Token Delivery methodology, thus
TLP is not feasible without the work from Chapter 3 and Chapter 4.

7.3 Throughput Analysis Without Loops

In the assumption of having no loops in the kernel, the elastic circuit obtained from Dy-
namatic is an acyclic directed connected graph. In such a context, the output throughput
of a component is dependent only on the throughput of the inputs, using an expression
like Θout = f(Θin) (these are vectors, since there might be multiple inputs and multiple
outputs, each of them with its throughput).

If such a formula is provided for each component, the lack of cycles guarantees a
Breadth-First Search (BFS) to be a valid way to obtain all the throughputs, in a top-
down fashion.

The following data structures are required:

89

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

• T[channel] stores the throughput for each channel in case it is already known. All
the channels connected to the external inputs are initialized with Θexternal.

• R[component] contains all the components whose input throughput is known. This
means that the throughput of their output channels is ready to be computed. It is
initialized with the components whose input throughput is in T [channel].

• L[component] is the list of components that are left to be analyzed, due to the
unavailability of some input data. It is initialized with all the components in G,
except for those in R.

The BFS algorithm is detailed below.

1. Θexternal is given, together with the graph G representing the circuit: each node gi

is a component of a given type, while each edge cij is a channel from gi to gj . All
the aforementioned data structures are properly initialized.

2. As long as R is not empty, pop an element gi. The type of the component will
provide a function f in the format Θout = f(Θin). Since gi was in R, Θin is known.
Updated T with the values in Θout.

3. By having new throughput for new channels, some components might now become
ready. Update R by moving components out of L.

4. At the end of the algorithm, L should be empty. T will provide the throughput of
each channel.

As expressed in point 3 of the list above, each dataflow component is going to have
an expression to compute the output throughput given the input throughput. Since
the available dataflow components can all be seen as the list in Figure 2.7, providing a
function f for each of them is enough to determine the throughput in the circuit. What
follows is an analysis of these components. Notice that all these structures do not take
into account the possibility of having backpressure from downhill, due to the assumption
of infinite buffers.

• JOIN. This includes all the units which require the inputs to be synchronized to
fire. This could be an arithmetic unit or a join itself. The components will be
bottlenecked by the slowest of its N inputs, thus:

Θjoin = min(Θ1, Θ2, . . . , ΘN)

• BUFFER. Whichever buffer is considered, both opaque and transparent, will propa-
gate the token at the same frequency of the input Θin (at most, with a one-cycle
latency):

Θbuffer = Θin

90

7.3 – Throughput Analysis Without Loops

• LLC. This is a long-latency operation with an II ≥ 1. In this case, the backpressure
cannot be avoided, since it is due to unavailability of resources. Considering N
inputs (with possibly N = 1):

ΘLLC = min(Θ1, Θ2, . . . , ΘN)
II

For instance, consider a 10-cycle divisor unpipelined which receives activation tokens
at every clock cycle. Due to its nature, it will not be able to produce a token faster
than 10 cycles, thus the output throughput will be 1

10 = 0.1.

• MUX. A MUX merges two channels (true and false input) while synchronizing with the
condition token. This means that a token cannot move on if the condition is slow.
This is explicated by the following expression:

Θmux = fT · min(θC , θT) + fF · min(θC , θF)

Not only are the inputs synchronized, but they are weighted according to the prob-
ability of picking either the true or false side. For instance, if the left side is very
fast, but it is seldom picked, then it will not impact much on the output through-
put. Being the probabilities of picking the two sides, fT + fF = 1. This condition
guarantees Θmux ≤ 1, as the throughput should be. The probabilities involved
are related to the way the CFG is traversed, so they are known according to the
assumptions.

• MERGE. Since the MERGE can arbitrarily pick on the two sides, the output is just the
sum of the N input throughputs. However, in this case the sum could be higher
than 1 (if all the inputs are very fast), thus the upper-bound needs to be explicated.

Θmerge = min(1,
∑︂

i

Θi)

The same expression can be used for a CMERGE, considering also the index output.

• FORK. Each of the N outputs of a fork has the same throughput of the input, Θin:

Θi
fork = Θin ∀ output i

• BRANCH. The branch mirrors the MUX case. On one hand, it needs to synchronize
the input Θin with the condition token Θc; on the other hand, the outputs have
different probabilities to be picked:

ΘT = fT · min(Θc, Θin)
ΘF = fF · min(Θc, Θin)

91

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

While these expressions have been obtained analytically, they are meant to approxi-
mate the model of each dataflow component when no backpressure is involved. However,
it is reasonable to think that more formal methods can be found to obtain the same
results. While no further analysis has been done, being too advanced for the scope of
this thesis, [21] can be a reasonable tool.

7.3.1 An Example of Throughput Analysis Without Loops

Figure 7.3: Example for a throughput analysis without loops

Figure 7.3 shows a dataflow circuit without any loop in the dataflow graph. Out of
this circuit, the algorithm can be run by considering Θin = 1 and the expressions for each
component.

92

7.4 – Throughput Analysis With Loops

Θ1 = Θin = 1
Θ2 = Θin = 1
Θ3 = Θin = 1
Θ4 = Θ1/4 = 0.25
Θ5 = Θ4 = 0.25
Θ6 = Θ4 = 0.25
Θ7 = min(Θ5, Θ2) = min(0.25, 1) = 0.25
Θ8 = Θ7 = 0.25
Θ9 = min(1, Θ6 + Θ8) = min(1, 0.5) = 0.5

Θ10 = 1
Θ11 = fT · min(θ10, θ9) + fF · min(θ10, θ3) = 0.75 · 0.5 + 0.25 · 1 = 0.625

7.4 Throughput Analysis With Loops
The above approach can be utilized with sub-circuits having no backedges or loops.
However, when a loop is present, the same mechanism cannot be utilized, since the
behavior of a single component is not enough to determine the behavior of the loop.

Let’s refer to the simplified version of a loop as proposed in the previous chapter, also
shown in Figure 7.4. The current goal is to determine Θout. This value will depend on
the input throughput of the loop, Θin, but also on the latency of each iteration and the
number of iterations. To understand why this is the case, consider the MUX scenario: once
the activation token starts a loop batch, a new token will flow on the output of the µ after
L clock cycles, and then again for N times until another loop batch can be activated. For
this reason, the calculations presented in Section 7.3 are not enough and a more general
analytical analysis should be done. As Subsection 7.6.2 will show, such analysis is also
validated experimentally.

7.4.1 MUXes as Loop Headers

In the MUX scenario, one token can flow in the pipeline at one time. When a token goes
out of µ, then you have to wait at least L clock cycles to get a new token, being L the
latency of the pipeline. As a consequence, 1

L is a lower bound of the throughput of such
channel. However, this is the case if and only if the µ is always running: on the contrary,
if not enough tokens are available coming from outside the loop, the throughput will be
lower. Generally speaking, for each token coming from the left side, N tokens will flow
out of µ. For this reason, a first approximation of Θout for a loop header MUX is

Θmux
out = min(N · Θin,

1
L

)

However, this expression does not take into account the speed at which the exit loop
condition (which drives the MUX) is produced. If the condition takes little time to be

93

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Figure 7.4: Simplified view of a loop.

computed (ideally, one clock cycle) then the first iteration of the previous loop can start
one clock cycle after the last iteration of the previous loop. The result is also highlighted
by [18]. This implies having two tokens flowing in the loop body at the same clock cycle,
leading to a higher throughput. Since the condition is usually immediate to compute
(made of a combinatorial path of an adder and a comparator), in almost all the realistic
circuits an improved version of the formula is

94

7.4 – Throughput Analysis With Loops

Θmux
out = min(N · Θin,

N

L · (N − 1))

While the first part of the expression takes into account a slow loop activation, the
second part tells that N tokens flow in the circuit every L · (N − 1) clock cycles. Notice
that, if N ≫ 1, then the second part still depends only on L as a term, since N

N−1 ∼ 1.
Since, at most, one token can be present at one time, having pipelined or unpipelined

units (thus units with II > 1) does not impact the resulting throughput.

7.4.2 MERGE as Loop Headers with Operations Having II = 1

When a MERGE is present as loop header, many tokens can be accepted from the outside,
as long as they are available and there is space within the circuit. Let’s consider the case
of the loop body as a long pipeline (possibly made by many components in cascade) with
an II of 1 each.

Once all the s slots of the cascade of components are filled, then no more tokens can
be accepted: the s tokens already inside will iterate N times in the circuit until their
loop batches are completed. At that point, if available, s new tokens can enter.

To express Θout in this case, it should be noted that if the pipeline is full, then a
token will flow through the µ per clock cycle (either from the left or right side), and its
throughput will be one. However, if the left side is not fast enough to provide tokens to
fill the pipeline, the throughput will be bottlenecked by this limitation. As a consequence:

Θmerge
out = min(N · Θin, 1)

This is evident in Figure 6.3 from previous chapter: there is always a token flowing
through the µ if enough tokens are provided; on the contrary, Figure 6.4 depicts an µ
output throughput of 1

3 , as expected from the last expression.

7.4.3 MERGE as Loop Header with Operations Having II > 1

So far, there was no numerical distinction between the number of tokens which could flow
in the pipeline (s) and the latency of the pipeline (L), having no backpressure and II = 1
for all the components.

Having a component with an II > 1 and a latency L, it can accommodate at most
L
II tokens at the same time. For this reason, numerically speaking, s ≤ L.

While having infinite transparent buffers on each channel guarantees no backpressure
on fork-join paths, an operation with II > 1 will always generate backpressure, since
II clock cycles are to be waited before a token can proceed. Such backpressure is then
propagated upstream.

Consider Figure 7.5. Let’s say that the loop body is full (each component has a
token inside) and that the last component just terminated. The token from the second
component will flow down, and so will the token in the first component. Also, let’s say
there is a new token entering the first component (either from the outside or from the
backedge). After one clock cycle, the first component is done computing. However, due to
the second component having II = 2, it needs to wait with a valid signal on. After another

95

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Figure 7.5: Operations with II > 1 forcing backpressure in the loop body.

clock cycle, the second component gets valid as well; though, the bottom component needs
one clock cycle more. This way, tokens can move only every 3 clock cycles, bottlenecked
by the speed of the component with larger II. A graphical representation of the timeline
is shown in Figure 7.6

When the pipeline is full, a token entering the pipeline requires, for each iteration,
the time for the components themselves (L) and also the bottleneck time, expressed
by the difference between the maximum II of the loop body and the II of the other
components. This time is then L + ∑︁

i(IImax − IIi). Notice that, according to this
analytical reasoning, if all the components have the same II, then no backpressure needs
to be taken into account, which is coherent with what you would expect. When the
pipeline is full, s tokens will flow through µ by the time one iteration is done. For this

96

7.4 – Throughput Analysis With Loops

Figure 7.6: Example of bottleneck in loop bodies with components having II > 1. 6
clock cycles are represented; for each component in the loop, their respective valid (down
arrow) and ready (up arrow) signals are represented. Different tokens currently handled
are represented through different colors within the components.

reason, the expression of the MERGE becomes:

Θmerge
out = min(N · Θin,

s

L + ∑︁
i(IImax − IIi)

)

If II = 1 for each component, then s = L and the left part of the expression is 1
again, coherently with the previous result min(N · Θin, 1)

7.4.4 Multiple MU in One Loop

In general, the simplified view of the loop that has been proposed does not suit the reality
of a loop as it can appear in a circuit, due to the multiple µs in its loop header and the
numerous cycles within it.

Figure 7.7 shows an example of a loop which divides a number by a constant for N
times. Two µ have the purpose of regenerating a token as long as it is necessary; the

97

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Figure 7.7: Example of multiple µs in a loop. For the sake of simplicity, FORKs are
omitted.

other 2 are in charge of modifying the value of the divided token (right-most µ) and the
iteration variable (second µ from left).

In general, a definitive solution to solve the problem of the complex interaction be-
tween components was not found, especially in the context of II > 1, due to the forced
backpressure this produces. However, a correct approximation can be found if II = 1 for
all the components.

As Subsection 7.6.1 will show, all the µ of one loop header are going to be connected,
driven by the one with a slower iteration timing. For this reason, it is necessary to go
through every possible cycle starting from a µ of one loop header and ending into another
µ (possibly the starting one) of the same loop header. Out of these cycles, the one with
the highest latency is considered. If multiple cycles share the same value of L, the one
with less slots is taken, since Θout ∝ s. Using this path to compute the formula of the
MERGE case will provide the throughput of all the µ for the same loop header.

7.4.5 Nested Loops

One might ask why so far a lot of effort was put into considering components with II > 1.
It is interesting to note that Dynamatic has no such component among the available ones.
However, nested loops can be modeled as long latency components when computing the
throughput for µs: they require a fixed number of clock cycles to elaborate a token (the
latency L) and have a fixed number of tokens that can process at one time (s). In
particular, if the loop has MUXes as loop header, then there can be at most one token
(s = 1), otherwise there can be as many as the number of slots available.

The latency of a loop is given by the latency of the longest cycle in the loop itself, as

98

7.5 – Combining All Together

expressed in the previous section, multiplied by the number of iterations N minus one.
This is a consequence of being able to start a new loop batch at the beginning of the last
iteration from the previous batch, as stated before. The II of the loop is thus:

IIloop = (N − 1) · Llongest cycle
s

Taking into account such considerations, a loop can be seen as a black box with a
given latency and initiation interval. This is useful for applying the expressions from the
previous sections, to find the output throughput of a µ that feeds an inner loop.

7.5 Combining All Together
The previous section provided a way to study loops and µ gates in the handshake circuit,
to extract the throughput of most of the channels. Now, all the steps should be put
together to define an algorithm which is in charge of determining the throughput for each
channel given the input throughput and the circuit.

In particular, such an algorithm can solve the problem of determining when going
out-of-order is beneficial: by trying all the possible pairs of combinations between MUX
and MERGE as loop headers, the configuration having a better output throughput can be
obtained. This approach covers all the possible points in the design space, which are
exponential with respect to the number of loops N .

The following data structures are adopted:

• is_merge[loop]. For each loop, stores whether the loop has merges as loop headers
or not. This is an input of the algorithm.

• N[loop]. Stores, for each loop, the number of iterations it runs. This is an input
of the algorithm.

• Θexternal The activation frequency of the kernel. This is an input of the algorithm.

• loop_info[loop]. For each loop, stores the information related to the longest
cycle found by the algorithm. In particular, it stores the latency L of the path, the
number of available slots s and the IIi of all the elements in the path. If the path
has a nested loop inside, then the loop is considered as a black box with its latency,
number of elements, and II.

• Throughput[channel]. This stores, for each channel, the computed throughput.
It is initialized with all the channels connected to the inputs of the kernel with the
value Θexternal.

• Ready[component]. Queue of operations that are ready to be analyzed, since the
throughput of all the inputs is known.

The algorithm starts by filling, for each loop, the information related to the structure
loop_info. Since, with nested structures, the information depends on the characteristics
of the nested loops, the loops need to be covered in post-order traversal, prioritizing

99

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

innermost loops. This way, all the information related to the loops is extracted. Then, it
uses the same top-down methodology described in Section 7.3, by also incorporating the
µ expressions. The detailed algorithm can be found in Algorithm 1.

Algorithm 1 Complete algorithm for throughput analysis.
1: for each loop l in the circuit, in a post-order traversal do
2: for each cycle c starting from a µ of l and ending to a µ of l do
3: Count the total latency Ll,c by summing single latencies;
4: Count the total number of slots sl,c by summing the slots;
5: Count the initiation interval of each component in the cycle, IIl,c,i

6: if the path enters a nested loop l̂ then
7: The latency is is_loop[l̂][latency] · N[l̂];
8: The slots are is_merge[l̂]?loop_info[l̂][slot] : 1;
9: The initiation interval is loop_info[l̂][latency]·(N[l̂]−1)

is_merge[l̂]?loop_info[l̂][slot]:1 ;
10: end if
11: end for
12: Pick the path with the longest latency and smallest number of slots;
13: Update loop_info[l] accordingly.
14: end for
15: while Ready is not empty do
16: Pop an operation op from Ready.
17: Compute its output channel throughput using the methodologies expressed in the

previous sections and add it to Throughput.
18: for each operation connected to its output do
19: if all their input channels are in Throughput then
20: Add the operation to Ready.
21: end if
22: end for
23: end while
24: if there are values without computed throughput then
25: return Error
26: else
27: return Success(Throughput)
28: end if

7.6 Validation

It is important to stress again that the aim of this work is not to provide a reliable and
complete static throughput analysis, but to show that the task can be achieved. The
following experiments will show the validity of such methodology. Further research will
later expand the analysis.

100

7.6 – Validation

7.6.1 Circuit Modifications

As previously mentioned, since the out-of-order infrastructure is not available in MLIR
Dynamatic yet, the testing mechanism had to be done without it. To guarantee correct-
ness, having a fixed number of iterations is enough (the situation from Figure 6.5 cannot
be tested). Then, all the problems related to memory interconnections have been solved
by not having memories in the tested circuits, according to the initial assumption.

The streaming environment is also difficult to recreate, due to the current limitations
of the circuit interface of Dynamatic when it comes to integrating the generated hardware
into another system. For this reason, such an environment has been made by introduc-
ing a for-loop outside of the kernel itself, sending regularly some tokens to activate the
computation.

A large number of transparent buffers (10000) are inserted at the end of each fork
output and after each opaque buffer, to fulfill the assumption of having no backpressure.
In all the provided test cases, the number is high enough to be in the infinite buffer
scenario.

Another point consists in the conversion from MUX to MERGE. Since any loop has mul-
tiple µs in its loop header, an appropriate transformation should be done to guarantee
correctness and avoid deadlock. If all the MUXes were to be translated into a MERGE, then
one of them might pick a token from the right side in the same clock cycle in which
another MERGE picks a token from the left side. This ends up with some tokens that were
not supposed to be combined, leading to a wrong execution result.

This happens because, in general, different µs have different speeds in the single
iteration. Refer again to Figure 7.7: the first three µ from the left can handle an iteration
per clock cycle, while the right-most requires multiple clock cycles. When the out-of-order
infrastructure is missing, all the µ have to behave like the slowest one, so like the one
having a longer cycle to compute the token for the next iteration. This is the reason why
Subsection 7.4.4 states that the throughput of each µ is identical to the one of the slowest
µ.

From a dataflow circuit perspective, this can be done by picking the slowest MUX (the
one which is the ending point of the cycle stored in loop_info) and transform it into a
CMERGE. The index output of this component will drive the control of all the other MUXes.
An example of such transformation, applied to Figure 7.7, is shown in Figure 7.8 with
the blue arrows.

Once the circuit is simulated and the functionality is guaranteed, the metrics are
extracted from the waveforms, by checking how many clock cycles a channel has both
the valid and ready signal high together. Dynamatic already had a way to parse the
waveforms out of a wlf file; however, the exact semantics of the handshake channel (a
token flowing under those conditions) needed to be implemented.

7.6.2 Results

Experiment 1

The first kernel used to experimentally validate the technique is shown in Listing 7.1. It
is made of two consecutive loops: L2, having an internal pipeline with a latency of 3, and

101

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Figure 7.8: Transformation applied to a circuit to guarantee correctness while having a
MERGE as loop header.

L3, having a latency of 5. The first loop requires 12 iterations to run, while the second
loop requires 15. The outer loop, L1, just has the purpose of inserting the body into a
streaming environment (notice that there are no loop carried dependencies within it. It
injects in the kernel 200 tokens with II = 1 (Θexternal = 1).

Also, all the errors are computed as (Expected−Measure)/Expected, to quantify how
much the model is distant from the real value.

1 # define M 200
2 # define N 12
3 # define P 15
4

5 void experiment_1 () {
6

7 int sum;
8

9 L1: for (unsigned i = 0; i < M; i++) {
10 sum = 0;
11

12 // Delay iteration (addi1) : 3
13 // Number of iterations : 12
14 L2: for (unsigned j = 0; j < N; j++)
15 sum += (i + j);
16

17 // Delay iteration (addi4) : 5
18 // Number of iterations : 15

102

7.6 – Validation

19 L3: for (unsigned k = 0; k < P; k++)
20 sum += (i + k);
21

22 }
23 }

Listing 7.1: Experiment 1 for throughput analysis.

The kernel will be considered in 4 scenarios: no conversion, conversion of L2 to a
MERGE only, conversion of L3 to a MERGE only, conversion of both loops. The metrics
that are used for validation are: the throughput of the loop-header of L2, called ΘL2

out;
the throughput of the loop-header of L3, called ΘL3

out; the throughput of the production
of tokens from L2 (true output of the final BRANCH), called ΘL2

loop; the throughput of
the production of tokens from L3, called ΘL3

loop. With respect to Figure 7.8, Θout is the
throughput of the output channel of each µ, while Θloop is the throughput of the output
channel of the bottom-right branch.

It is worth noting that the result produced by L3 can also be considered as the result
from the kernel. For this reason, increasing ΘL3

loop implies having a kernel which can
provide results faster to the user.

The results are shown in Table 7.1. These are obtained by running the algorithm
explained in the previous sections. Let’s consider the first version, with no conversions.
The input throughput of L2 is 1, being connected directly to the streaming environment.
This is Θin. Then, ΘL2

out = min(N · Θexternal,
N

L·(N−1)) = min(12, 12
11·3) ≈ 0.363. This

value can be used within the loop to compute the throughput of the components in
the pipeline. When considering the output of the final branch, its throughput will be
ΘL2

out = 0.363
12 ≈ 0.030, which is also the throughput at which L3 receives activation tokens.

Thus ΘL3
out = min(15 · 0.030, 15

5·14) ≈ min(0.45, 0.214) = 0.214. For the same reason as
before, ΘL3

out = 0.214
15 ≈ 0.14

The results are promising, due to the very small error between the measurements and
the expectations. On the contrary, the better resource usage shows that an improvement
in ΘL3

out is reachable, in this case by almost a factor of 4.7×.

Experiment 2

The previous example corresponded to a simple scenario with no loop nested and no
operations with II larger than 1. On the contrary, Listing 7.2 shows a more complex
kernel, having a nested loop.

1 # define M 200
2 # define N 12
3 # define P 15
4

5 void experiment_2 () {
6 int sum;
7 L1: for (unsigned i = 0; i < M; i++) {
8 sum = 0;
9

10 L2: for (unsigned j = 0; j < N; j++) {

103

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

Table 7.1: Results of the throughput analysis from the first experiment.

ΘL2
out ΘL3

out ΘL2
loop ΘL3

loop

1. No Conversion

Measured 0.353 0.211 0.029 0.014
Expected 0.363 0.214 0.030 0.014
Error (%) 2.75 1.40 3.33 0

2. Conversion on L2

Measured 1 0.211 0.084 0.014
Expected 1 0.214 0.083 0.014
Error (%) 0 1.40 1.20 0

3. Conversion on L3

Measured 0.353 0.439 0.029 0.029
Expected 0.363 0.454 0.030 0.030
Error (%) 2.75 3.30 3.33 3.33

4. Conversion on L2 and L3

Measured 1 1 0.084 0.067
Expected 1 1 0.083 0.067
Error (%) 0 0 1.2 0

11

12 // Latency of this addition : 5
13 sum += 2;
14

15 L3: for (unsigned k = 0; k < P; k++) {
16

17 // Latency of this addition : 10
18 sum += (i + k);
19 }
20 }
21 }
22 }

Listing 7.2: Experiment 2 for throughput analysis.

L1 works again as a streaming environment; L2 is the outer loop, so the value produced
by it (sum) will be provided outside, representing the throughput of the kernel.

The results are shown in Table 7.2. Again, all the possible pairs of conversions between
L2 and L3 are considered. It is clear that, compared to the previous experiment, the errors
are larger, although always smaller than 10%. In particular, the average error across all
the cases is ∼ 5% (without considering the exact pairs, otherwise it would be ∼ 3.5).

104

7.6 – Validation

Most of the time, the estimation of the throughput is larger than the correct one,
meaning that some factors are not taken into account when analyzing the circuit.

Just as an example, let’s see how the estimation of the throughput has been done
when L2 is converted. Since L3 is still with a MUX, it has a latency of 11 · 15 = 165, it has
only one slot and its II is 11 ·14 = 154. The outer loop receives again a token every clock
cycle, so Θexternal = 1. Since it is a MERGE, the corresponding formula should be used to
find the ΘL2

out: Θmerge
out = min(N · Θin, s

L+
∑︁

i
(IImax−IIi)

). The number of slots is 6 + 1 = 7,
because of the 5-slots pipeline of the adder, the opaque buffer after the MERGE and the
loop of L3. The latency is L = 6 + 165 = 171, while IImax = 154. All the 6 elements
of the pipeline have an II of 1. For this reason, Θmerge

out = min(12 · 1, 7
171+6·(154−1)) ≈

0.00642. For L3, the MUX scenario is used, having ΘL2
out as input throughput: ΘL2

out =
min(15 · 0.00642, 15

11·14) ≈ min(0.0963, 0.0974) = 0.0963. ΘL3
loop = ΘL2

out/15 ≈ 0.00642.
Finally, the output throughput of the external loop can be found by considering that the
output branch from L2 is connected to the output branch of L3, thus ΘL2

loop = ΘL3
loop/12 =

0.00642/12 ≈ 0.00053.

Table 7.2: Results of the throughput analysis from the second experiment.

ΘL2
out ΘL3

out ΘL2
loop ΘL3

loop

1. No Conversion

Measured 0.005 90 0.088 49 0.000 49 0.005 90
Expected 0.006 26 0.097 46 0.000 52 0.006 49
Error (%) 5.70 9.20 5.77 8.67

2. Conversion on L2

Measured 0.007 03 0.096 80 0.000 54 0.006 49
Expected 0.006 42 0.096 30 0.000 53 0.006 42
Error (%) 9.50 0.5 1.89 1.09

3. Conversion on L3

Measured 0.006 38 0.095 60 0.000 53 0.006 38
Expected 0.006 38 0.095 69 0.000 53 0.006 38
Error (%) 0 0.09 0 0

4. Conversion on L2 and L3

Measured 0.072 46 1 0.005 53 0.066 67
Expected 0.066 67 1 0.005 55 0.066 67
Error (%) 8.68 0 0 0

105

Static Analysis for Thread-Level Parallelism in Dataflow Circuits

7.7 What is Missing and Future Work
The current result shows a methodology which can be adopted to start the throughput
analysis of dataflow circuits. While promising, it still lacks the capability of fully manag-
ing all the possibilities arising when obtaining dataflow circuits through the Fast Token
Delivery methodology.

In general, the next step should be to integrate such results with the current litera-
ture in throughput analysis in networks (since the circuits in Dynamatic can be seen as
networks having packets flowing through routers - the single components - each of them
having an appropriate semantics). It is reasonable to think that [21] might be a starting
point. It should be noted that, in this context, the inner dynamic behavior of the circuit
will probably never allow for a full model to exist. The solution needs to set a maximum
error percentage which is considered acceptable.

Afterward, the assumption about the memory dependencies should be relaxed, with
two possible alternatives: imposing in-order computation whenever a memory dependency
exists; adopting [18] to limit the tokens flowing in a loop body (although this would
introduce new modifications in the mathematical framework of the throughput analysis).

Once the model is verified, the out-of-order system from [14] should be integrated,
by correctly identifying which points in the circuit require it. For instance, loops with
a fixed number of iterations do not need it, as the examples from this chapter show.
However, a trade-off between area increase and throughput improvement should be taken
into account: how much area is it worth to waste for a 2× throughput improvement?

106

Chapter 8

Conclusions

This thesis succeeded in its two main goals, as reported in the introduction. On the
one hand, it provided an implementation of [10] and [12] which is functional, efficient,
and coherent with the expectations. On the other hand, it has built an approximate
mathematical framework to solve the problem of throughput improvement when out-of-
order execution is allowed in elastic circuits.

The implementation of Fast Token Delivery and Straight to the Queue is fully inte-
grated into the Dynamatic flow, open source in Dynamatic repository [16] and the results
from Chapter 5 can be reproduced. This led to ∼ 1.4 time improvement when running
circuits, and a ∼ 0.8 area improvement. Having a new Pareto-point in the time-area
axis is a metric of the success of this work. Unfortunately, the current limitations in the
rest of the flow (LSQ, buffering...) do not allow to fully exploit the capabilities of this
approach. However, the full integration of Fast Token Delivery and Straight to the Queue
can be part of a future work.

Most importantly, this implementation allows, at a middle-end level, to have all the
required steps to work on the out-of-order algorithm from [14].

Starting from such results, the TLP problem was investigated, consisting of letting a
circuit elaborate more than one activation at a time, to improve the throughput at which
inputs are elaborated. A mathematical framework has been developed, which can state
the throughput improvement of moving from a MUX to a MERGE. This approach can lead to
an optimal configuration of MUXes and MERGEs as loop headers, which allows to correctly
introduce out-of-order execution in the circuit.

The results show a 5% error in the estimation for some compiled kernels under anal-
ysis. The whole setup is also available on Dynamatic and the results are reproducible.

The methodology, while having promising results, is still at an early stage. The results
have been obtained analytically using the semantics of the components. Being a problem
of packets flowing into a circuit, it should be handled via an appropriate mathematical
framework, such as Network Calculus [21]. This will be the direction of the project. The
expectation is that, by the end of the analysis, some results similar to those shown in
Chapter 7 will be found.

107

108

Bibliography

[1] P. Coussy and A. Morawiec, Eds., High-Level Synthesis: From Algorithm to Digital
Circuit. Dordrecht: Springer Netherlands, 2008.

[2] “AMD Vitis™ HLS.” [Online]. Available: https://www.amd.com/fr/products/soft
ware/adaptive-socs-and-fpgas/vitis/vitis-hls.html

[3] “Stratus High-Level Synthesis.” [Online]. Available: https://www.cadence.com/en
_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis
.html

[4] “Catapult High-Level Synthesis and Verification.” [Online]. Available: https:
//eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/

[5] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically Scheduled High-level Synthe-
sis,” in Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. Monterey CALIFORNIA USA: ACM, Feb. 2018, pp.
127–136.

[6] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of synchronous
elastic architectures,” in 2006 43rd ACM/IEEE Design Automation Conference,
Jul. 2006, pp. 657–662, iSSN: 0738-100X. [Online]. Available: https://ieeexplore.iee
e.org/document/1688878

[7] L. Josipovic, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink It or Shed It!
Minimize the Use of LSQs in Dataflow Designs,” 2019 International Conference on
Field-Programmable Technology (ICFPT), pp. 197–205, Dec. 2019, conference Name:
2019 International Conference on Field-Programmable Technology (ICFPT) ISBN:
9781728129433 Place: Tianjin, China Publisher: IEEE.

[8] L. Josipovic, A. Guerrieri, and P. Ienne, “Speculative Dataflow Circuits,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. Seaside CA USA: ACM, Feb. 2019, pp. 162–171.

[9] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella, “Buffer Place-
ment and Sizing for High-Performance Dataflow Circuits,” in Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’20. New York, NY, USA: Association for Computing Machinery, Feb.
2020, pp. 186–196.

[10] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Unleashing parallelism in
elastic circuits with faster token delivery,” in 2022 32nd International Conference on
Field-Programmable Logic and Applications (FPL). IEEE, 2022, pp. 253–261.

[11] C. Rizzi, A. Guerrieri, P. Ienne, and L. Josipović, “A Comprehensive Timing Model
for Accurate Frequency Tuning in Dataflow Circuits,” in 2022 32nd International

109

https://www.amd.com/fr/products/software/adaptive-socs-and-fpgas/vitis/vitis-hls.html
https://www.amd.com/fr/products/software/adaptive-socs-and-fpgas/vitis/vitis-hls.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://ieeexplore.ieee.org/document/1688878
https://ieeexplore.ieee.org/document/1688878

Bibliography

Conference on Field-Programmable Logic and Applications (FPL), Aug. 2022, pp.
375–383, iSSN: 1946-1488.

[12] A. Elakhras, R. Sawhney, A. Guerrieri, L. Josipovic, and P. Ienne, “Straight to
the Queue: Fast Load-Store Queue Allocation in Dataflow Circuits,” in Proceedings
of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey CA USA: ACM, Feb. 2023, pp. 39–45.

[13] J. Liu, M. Graczyk, A. Guerrieri, and L. Josipović, “Fast Switching Activity Estima-
tion for HLS-Produced Dataflow Circuits,” in 2024 34th International Conference
on Field-Programmable Logic and Applications (FPL). IEEE, 2024, pp. 118–125.

[14] A. Elakhras, A. Guerrieri, L. Josipovic, and P. Ienne, “Survival of the Fastest: En-
abling More Out-of-Order Execution in Dataflow Circuits,” in Proceedings of the
2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
ser. FPGA ’24. New York, NY, USA: Association for Computing Machinery, Apr.
2024, pp. 44–54.

[15] “Dynamatic Webpage,” 2024. [Online]. Available: https://dynamatic.epfl.ch/
[16] “Dynamatic Repository,” 2024. [Online]. Available: https://github.com/EPFL-L

AP/dynamatic
[17] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,

T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling Compiler Infrastruc-
ture for Domain Specific Computation,” in 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), Feb. 2021, pp. 2–14.

[18] J. Cheng, J. Wickerson, and G. A. Constantinides, “Dynamic C-Slow Pipelining for
HLS,” in 2022 IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2022, pp. 1–10, iSSN: 2576-2621.

[19] J.-M. Gorius, S. Rokicki, and S. Derrien, “SpecHLS: Speculative Accelerator Design
Using High-Level Synthesis,” IEEE Micro, vol. 42, no. 5, pp. 99–107, Sep. 2022,
conference Name: IEEE Micro.

[20] D. Leothaud, J.-M. Gorius, S. Rokicki, and S. Derrien, “Efficient Design Space Explo-
ration for Dynamic & Speculative High-Level Synthesis,” in 2024 34th International
Conference on Field-Programmable Logic and Applications (FPL), Sep. 2024, pp.
109–117, iSSN: 1946-1488.

[21] J.-Y. Le Boudec, P. Thiran, G. Goos, J. Hartmanis, and J. Van Leeuwen, Eds.,
Network Calculus, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2001, vol. 2050. [Online]. Available: http://link.springer.com/10.1007/3-5
40-45318-0

[22] K. D. Cooper and L. Torczon, Engineering a compiler. Morgan Kaufmann, 2022.
[23] P. Tu and D. Padua, “Efficient Building and Placing of Gating Functions,” ACM

SIGPLAN Notices, vol. 30, no. 6, pp. 47–55, Jan. 1995.
[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph

and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp.
319–349, Jul. 1987.

[25] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers and redun-
dant computations,” in Proceedings of the 15th ACM SIGPLAN-SIGACT symposium

110

https://dynamatic.epfl.ch/
https://github.com/EPFL-LAP/dynamatic
https://github.com/EPFL-LAP/dynamatic
http://link.springer.com/10.1007/3-540-45318-0
http://link.springer.com/10.1007/3-540-45318-0

Bibliography

on Principles of programming languages, ser. POPL ’88. New York, NY, USA: As-
sociation for Computing Machinery, Jan. 1988, pp. 12–27.

[26] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, Oct. 1991.

[27] F. Rastello and F. Bouchez Tichadou, Eds., SSA-based Compiler Design. Cham:
Springer International Publishing, 2022.

[28] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe, “The program dependence
web: a representation supporting control-, data-, and demand-driven interpretation
of imperative languages,” in Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, ser. PLDI ’90. New York, NY,
USA: Association for Computing Machinery, Jun. 1990, pp. 257–271.

[29] P. Havlak, “Construction of thinned gated single-assignment form,” in Languages
and Compilers for Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolau, and
D. Padua, Eds. Berlin, Heidelberg: Springer, 1994.

[30] M. Arenaz, P. Amoedo, and J. Tourino, “Efficiently Building the Gated Single As-
signment Form in Codes with Pointers in Modern Optimizing Compilers,” in Euro-
Par 2008 – Parallel Processing, E. Luque, T. Margalef, and D. Benítez, Eds. Berlin,
Heidelberg: Springer, 2008, pp. 360–369.

[31] Y. Herklotz, D. Demange, and S. Blazy, “Mechanised Semantics for Gated Static
Single Assignment,” in Proceedings of the 12th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, ser. CPP 2023. New York, NY, USA:
Association for Computing Machinery, Jan. 2023, pp. 182–196.

[32] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum, “WYSINWYX: What You
See Is Not What You eXecute,” in Verified Software: Theories, Tools, Experiments:
First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October
10-13, 2005, Revised Selected Papers and Discussions, B. Meyer and J. Woodcock,
Eds. Berlin, Heidelberg: Springer, 2008, pp. 202–213.

[33] “MLIR documenation.” [Online]. Available: https://mlir.llvm.org/docs/
[34] L. Josipovic, P. Brisk, and P. Ienne, “An Out-of-Order Load-Store Queue for Spatial

Computing,” ACM Transactions on Embedded Computing Systems, vol. 16, no. 5s,
pp. 1–19, Oct. 2017.

[35] L. Josipović, A. Guerrieri, and P. Ienne, “Invited Tutorial: Dynamatic:
From C/C++ to Dynamically Scheduled Circuits,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’20. New York, NY, USA: Association for Computing Machinery, Feb. 2020,
pp. 1–10.

[36] “CIRCT documentation.” [Online]. Available: https://circt.llvm.org/
[37] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Raising C to Poly-

hedral MLIR,” in 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2021, pp. 45–59.

[38] L. Josipovic, P. Brisk, and P. Ienne, “From C to elastic circuits,” in 2017 51st
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2017, pp. 121–
125.

111

https://mlir.llvm.org/docs/
https://circt.llvm.org/

Bibliography

[39] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast dominance algorithm,”
Software Practice & Experience, vol. 4, no. 1-10, pp. 1–8, 2001, publisher: Citeseer.

[40] M. Reisinger, “MatthiasJReisinger/PolyBenchC-4.2.1,” Mar. 2025, original-date:
2016-06-10T11:45:57Z. [Online]. Available: https://github.com/MatthiasJReisinge
r/PolyBenchC-4.2.1

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, Nov. 2017.

112

https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

	Introduction
	Background
	Problem Statement
	Goals
	Implementation and Research Methodology
	Delimitations
	Structure of the Work

	Background
	Compilers Background
	Compiler Structure
	Intermediate Representations and Data Structures

	Gated Static Single Assignment
	The Idea
	How to Implement GSA
	A Recent Comeback

	MLIR
	The Purpose of the Framework
	MLIR Jargon
	Main Dialects

	Dynamatic
	Static HLS vs. Dynamic HLS
	Dataflow Circuits
	A Dataflow Circuit Example
	Dynamatic Flow

	The Fast Token Delivery Methodology
	Motivations
	The Algorithm
	cf to handshake Conversion
	Token Delivery With Loops

	GSA Implementation
	Algorithm for Constructing MU Functions from PHI Functions
	Algorithm for Constructing GAMMA Functions from PHI Inputs

	Implementation Details
	Add Regeneration to a Pair of Producer and Consumer
	Add Suppression to a Pair of Producer and Consumer
	GSA Transformation
	Conversion Pass
	Peephole Optimizations

	The Straight To The Queue Methodology
	Memory Interconnection in Dynamatic
	Motivations for a Faster Memory Allocation
	Straight To The Queue Algorithm
	A Minimal Group Allocation
	Sequentialize Group Allocation
	Constructing the Allocation Network
	Handling Alternative Incoming Activation Tokens

	The PHI Insertion Mechanism
	Problem Statement
	The Algorithm

	Implementation Details

	Experimental Results
	Experimental Setup
	Methodology
	Heuristic Buffering Algorithm

	Functional Results
	Performance Results
	Timing Results
	Area Results

	Conclusions

	Thread-Level Parallelism in Dataflow Circuits
	What is Thread-Level Parallelism?
	Issues with Thread-Level Parallelism

	TLP in Dataflow Circuits
	Dataflow Circuits in a Streaming Environment
	Performance Consequences
	The Contribution of This Thesis

	Previous Works

	Static Analysis for Thread-Level Parallelism in Dataflow Circuits
	The Occupancy of a Channel
	Assumptions and Context
	The GSA Benefit

	Throughput Analysis Without Loops
	An Example of Throughput Analysis Without Loops

	Throughput Analysis With Loops
	MUXes as Loop Headers
	MERGE as Loop Headers with Operations Having II = 1
	MERGE as Loop Header with Operations Having II > 1
	Multiple MU in One Loop
	Nested Loops

	Combining All Together
	Validation
	Circuit Modifications
	Results

	What is Missing and Future Work

	Conclusions
	Bibliography

