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Summary

Since the discovery of the Quantum Hall effect and, consequently, the topological
states, the interest for devices exploiting this kind of phenomena has grown signifi-
cantly. These types of state are characterized by a surprising energy localization
resulting in a high-quality factor. In the first part of this work, some possible
topologies presented can be used to induce the creation of edge and corner states.
With FEM simulations, in particular COMSOL, the dispersion relations of the
single cells and supercells have been studied both in 2D and 3D. The topological
states have been induced because of the breaking of the symmetry in specific
directions. To prove the existence of the topological state, the Berry curvature
has been calculated. The Berry curvature is a parameter directly linked to the
topological nature of the states in a 3D system. In the second part of this work,
some possible layouts are shown to convert the topological state into an electric
signal. To perform this,SiO2 periodic structures have been deposited on top of a
piezo-electric material (AlScN) which can convert the RF mechanical signal into
a RF electronic signal in the tens of MHz range. This kind of signal could be
used as a sensor for various parameters, such as: acceleration, stress, vibration,
temperature and even infrared.
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Chapter 1

Introduction

1.1 Basis of Crystallography
To understand topology, it is fundamental to have a clear idea about dispersion
relations and periodicity conditions. The first logical step to do so is studying
crystalline structure. To do this, some basic concepts are needed. First of all,
crystals are systems where the atoms are arranged with a certain periodicity into
a lattice. The basis of this lattice is the Bravais lattice, the whole crystal can be
directly obtained by rigidly move the Bravais lattice. The atomic position can be
written by using the Bravais lattice basis:

rj = xja1 + yja2 + zja3 (1.1)

where xj, yj and zj are integer numbers, while a1, a2 and a3 are the basis vectors.
The crystalline structure can be now moved to the reciprocal space. In this space,
it’s way more effective to look at the atoms distribution not directly through their
position but by considering the Fourier transform of their position. To construct
the reciprocal lattice we build its vectors using the formulas:

b1 = 2π
a2 × a3

a1 · a2 × a3
; b2 = 2π

a3 × a1

a1 · a2 × a3
; b3 = 2π

a1 × a2

a1 · a2 × a3
; (1.2)

where bi · aj = 2πδij. The reciprocal lattice vector are:

G = v1b1 + v2b2 + v3b3 (1.3)

The reciprocal lattice becomes extremely handy when dealing with diffraction.
When an impinging wave gets diffracted from a certain infinitesimal volume element
it undergoes a phase shift. This phase shift can be described by a phase factor
ei(k−k′)·r, where r is the distance of the infinitesimal volume from the origin. When
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k − k′ = −∆k = −G the diffracted has the same frequency of the impinging wave.
This is called Diffraction condition and can be with the form:

k · (1
2G) = (1

2G)2 (1.4)

Thanks to this definition, a reciprocal space can be defined. This space, called
Brillouin zone, shows all the wave-vectors k which can undergo a Bragg reflection
by the crystal. The Brillouin zone is the Weigner-Seitz cell in the reciprocal lattice,
where the Weigner-Seitz cell is defined as: the locus of points in space that are
closer to that lattice point than to any of the other lattice points.

1.2 Introduction to Phononic Crystals and Acous-
tic Metamaterials

To obtain topological effects in acoustic structures is fundamental to use metama-
terials and phononic crystalls. The metamaterials are materials that, thanks to a
certain level of engineerization, have new properties that are not present naturally.
The first study of acoustic metamaterials and phononic crystals goes back to the
early 90s, when Sigalas and Economou demonstrated the existence of band gaps
in the phonon density of state and band structure of acoustic and elastic waves
in three-dimensional structures. The basic functioning of phononic crystals can
be reduced to a principle analogue to the Bragg scattering in photonics. Another
significant discovery was the existence of localization phenomena due to the pres-
ence of defects. These defects (such as the absence of a row of rods in a periodic
rods-array) can introduce available states in the band-gap generating a confinement
of the waves and can be exploited to obtain structure such as waveguides.

‘

1.2.1 One-dimensional Monoatomic Harmonic chain
The simplest example that can be taken into account to understand the functioning
of phononic structures is the one-dimensional monoatomic harmonic crystal.

This structure can be modeled in a very simple but effective way using a chain
of masses connected by springs (Figure:1.1). To make the model even simpler we
can consider only the nearest-neighbor interactions and no external forces applied.
The analytic form of the force over a single mass can be obtained directly:

m
d2uj

d2t
= β(uj+1 − uj) − β(uj − uj−1) (1.5)

By assuming solutions of the form

un = Aeikjaeiωt (1.6)

2
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Figure 1.1: Mass spring model for a monoatomic one dimensional harmonic chain

which corresponds to propagating waves where k is the wave number and ω is the
angular frequency, the equation 1.5 will have a solution of the form:

ω(k) = ω0sin(ka

2) (1.7)

where ω0 = 2
ñ

β/m.

Figure 1.2: Band diagram of a 1D monoatomic harmonic chain

Now the band diagram of the 1D monoatomic harmonic chain can be plotted
as we can see in Figure:1.2. From Figure1.2 and Equation1.7 we can see that the
band diagram has a 2π/a periodicity, so we can focus our attention on the region
between π/a and −π/a.

3
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1.2.2 One-dimensional Diatomic Harmonic chain

In this paragraph is going to be analyzed a slightly more complex system with
respect to the one in the previous paragraph. The focus is on a one dimensional
diatomic harmonic chain of atoms.

Figure 1.3: Mass spring model for a diatomic one dimensional chain

This new system is depicted in figure 1.3. Even in this case only the nearest
neighbor interaction is considered. The motion of the system is described by a
system of two equations of motion:

m1u
′′
n = β(un+1 − un + un−1

m2u
′′
n+1 = β(un+2 − un+1 − un)

(1.8)

And can be assumed a solution of the form:un = Aeiωteikna

un = Beiωteikn(a+1) (1.9)

As can be seen from equation 1.9, waves have different amplitudes for different
masses. The only non trivial solution of this system can be obtained by setting to
0 the determinant of the following matrix:

----- 2β − m1ω
2 −2βcos(ka)

−2βcos(ka) 2β − m2ω
2

----- = 0

From the last equation, two possible solutions can be obtained:

ω2 = β( 1
m1

+ 1
m2

) ±
ó

β2( 1
m1

+ 1
m2

)2 − 4 β2

m1m2
sin2(ka) (1.10)

These solutions lead to a band diagram slightly different form the monoatomic
case.

4



Introduction

Figure 1.4: Dispersion relation of a diatomic harmonic chain

As can be observed in figure 1.4, the diatomic chain dispersion relation presents
a band gap. This is due to the presence of two different masses inside the chain.
In fact, if the masses were the same the dispersion relation would have had the
same form of the monoatomic case.

5
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1.2.3 Resonance in the presence of a side branch

Figure 1.5: In the figure is depicted a system consisting in a monoatomic infinite
chain with a side branch in a specific position

When a side branch is present,as shown in figure 1.5 the resonating phenomena
become more complex to treat. The presence of the side branch complicates the
equations of motion in the side branch, which take the form:

−m′ω2un′ = β′(un′+1 − 2un′ + un′−1)forn′ /= 1′, L′

m′ω2uL′ = −β′(uL′ − uL′−1)

m′ω2un′ = −βI(u1′ − u0) + β′(u2′ − u1′)
(1.11)

In the site where the branch is connected the equation of motion will be:

−mω2u0 = β(u1 − 2u0 + u−1) + βI(u1′ − u0) (1.12)

The general solution of the system described in equations 1.11 and 1.12 will be of
the form

un′ = A′eik′n′a + B′e−ikn′a′ (1.13)

Putting this solution in equation 1.11 gives:

m0ω
2 = 2β′(1 − cos k′a). (1.14)

Subtracting 1.14 and 1.11 gives:

6
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β′(uL′+1 − uL′) = 0. (1.15)

This equation serves as a boundary condition on site N ′ in the side branch. The
displacement uL0+1, at a fictive site L0 + 1, is a support for the boundary condition
1.15. Similarly, by subtracting the equation of motion 1.11 and that of the fictive
site 1 the following boundary condition is obtained:

−βI(u1′ − u0) + β′(u1′ − u0′) = 0. (1.16)

The two boundary conditions at sites 1’ and L’ form the set of equations are:

uL′ − uL′+1 = 0, (1.17)
(βI − β′)u1′ + β′u0′ = 0. (1.18)

We insert the general solution 1.13 into 1.18 and obtain the set of linear equations:

A′eik′L′a(1 − eik′a) + B′e−ik′a(1 − e−ik′a) = 0, (1.19)
A′(βI − β′)eik′a + β′ + B′(βI − β′)e−ik′a + β′ = βIu0.?? (1.20)

Solving these equations gives the following:

A′ = −βIu0e
−ik′L′a(1 − e−ik′a)

∆ , (1.21)

B = βIu0e
ik′L′a(1 − eik′a)

∆ , (1.22)

where:

∆ = −4i sin k′a

2

5
(βI − β′) cos

3
k′

3
L′ − 1

2

4
a

4
+ β′ cos

3
k′

3
L′ + 1

2

4
a

46
. (1.23)

Finally, to find the perturbation V , we use 1.34 and 1.13 to obtain:

V (ω) =
2β′βI sin k′a

2 sin L′k′a

(βI − β′) cos k′
1
L′ − 1

2

2
a + β′ cos k′

1
L′ + 1

2

2
a

. (1.24)

The effect of the side branch on wave propagation along the infinite crystal is
understood more easily by considering the limiting case where b = bI = b0 and
m = m′ such that k = k′. Then, equation ?? simplifies to:

7
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V (ω) =
2b sin ka

2 sin L0ka

cos k
1
L0 + 1

2

2
a

. (1.25)

At the standing wave frequency of the side branch, V = 0, corresponding to a
full transmission state. The zeros of transmission scale with the number of atoms
in the side branch, altering the band structure. The formalism required to analyze
this further is based on the Green’s function approach known as Interface Response
Theory.

1.3 Topological Band theory

1.3.1 Quantum Hall effect

The topological study of matter started, and intensified, during the last 30 years,
after the discovery of the Quantum Hall effect. The quantum Hall effect is a
quantized version of the Hall effect that takes place in a 2D finite structure when a
strong magnetic field is applied.

Figure 1.6: Resistance variation along the x axis when different magnetic field
values are applied

In such a system, the Hall resistance Rxy is a step function.

8
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Figure 1.7: Electrons movement in the Quantum Hall effect

This is due to the topology of the system. By looking at figure 1.7, can be
seen how the electrons on the edge can’t maintain the orbit caused by the applied
magnetic field, and are forced to move along the edge. In the picture, it can be
observed that the electrons on the two edges will move in opposite directions,
maintaining a zero net current. This discovery opened the way to the topological
study of matter.

1.3.2 Concept of topology
Topology is an area of mathematics that investigates continuity and other related
concepts.

Figure 1.8: In the picture is shown how different objects are topologically
equivalent

Figure 1.8 helps having a basic understanding of this definition. The presence
of a hole in a torus makes it impossible to deform it into a sphere and vice versa.
This implies that the sphere and the torus are in different topological classes. On
the other hand, it can be noticed that a sphere can be deformed, by a continuous

9
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transformation, into a cube. This is due to the presence of a hole in the torus that
can’t be created by simply deforming the sphere.

1.3.3 Spatial and time reversal symmetry
The next step is extending these concepts and their mathematical formulation over
Quantum systems. To perform such a task, three basic concepts are needed:Dirac
points, spatial and the time reversal symmetry.

The Dirac points are high symmetry points in the band diagrams. In this high
symmetry points, conduction and valence band touch each other causing the closure
of the band gap. When this happens, a degenerate cone-like dispersion is created.

Figure 1.9: In the picture is shown a band diagram having a Dirac Point

This type of points are protected by spatial and time reversal symmetry, so to
open a band gap is necessary to brake one of these symmetries.

These symmetries express the concept that, going from A to B or from B to A,
either in a temporal or a spatial framework, produces the same output.The space
reversal symmetry can be described through the σ operator. Such operator acts on
the Hamiltonian in the following way:

σH(k)σ = −H(k) (1.26)

This symmetry, on the other hand, has been extensively treated in quantum
physics and in the topological study of matter. As is discussed in [10], the time
reversal symmetry is based on the operator Θ. Considered a periodic Hemiltonian

10
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H(t + T ) = H(t) the time reversal operator act as:

H(−t) = ΘH(t)Θ−1

(1.27)

If the condition H(t)=H(-t) holds then the time reversal symmetry is valid. It is
even more interesting to notice what happens when this symmetry is broken. As
an example of this second part, the Haldane analyses over graphene honeycomb is
extremely explicative.

Figure 1.10: Here is show the 2D graphene structure

Haldene performed a study and characterization over graphene to make it
topological. The graphene shows both sublattice spatial symmetry and time
reversal symmetry. To brake the first one that can be assigned opposite on-site
energy M or −M to the A or B sites respectively. The Hamiltonian is then given
by

H0(k) + Mσz. (1.28)
This leads to a gapped spectrum.

E(k) = ±
ñ

|h(k)|2 + M2, (1.29)

As can be observed in equation 1.29, by braking this symmetry we create two
distinct gapped states. But, it’s a not very interesting and basic case due to the

11
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fact that the states will be simply localized either on state A or on state B. On
the contrary, is way more interesting to study the braking of the time reversal
symmetry.

Figure 1.11: Here is show the Haldene model for the time reversal symmetry
braking in the graphene structure

A way to brake the symmetry is by introducing a imaginary second-nearest
neighbor hopping, with the pattern showed in figure 1.11, where the directions of the
arrows denotes the two opposite hopping directions. By doing so the Hemiltonian
becomes:

H(k) = H0(k) + Mσz + 2t2
Ø

i

σz sin(k · bi) (1.30)

When t2 overcomes a value ±M/3
√

3, the gap closes and changes sign.

12
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(a) Band diagram for the graphene when
t2 < ±M/3

√
3

(b) Band diagram for the graphene when t2 >
±M/3

√
3

Figure 1.12: In the figure is shown how an edge state appear after t2 > overcomes
±M/3

√
3

So there is an inversion in the bands at the Dirac point which leads to a
topological edge state, this is shown in figure 1.12; this concept will be better
explained in the following sections.

1.3.4 Berry Phase, Chern number and topological insula-
tors

As said in the previous section, by braking spatial and temporal symmetry band
gaps are generated. When this gaps arise, a topological insulator is obtained. In
this kind of insulator the bulk behaves like a classic insulator while the surface will
necessary have a gapless band diagram due to the inversions of the bands.

13
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Figure 1.13: Comparison between trivial and topological insulator considering
the band inversion

This inversion of the bands and the presence of a gapless band diagram on the
surface is shown in figure 1.13. While deforming in an adiabatic way the bands
of a system, certain fundamental properties ( such as the quantized value of the
Hall conductance, and the number of gapless boundary modes) cannot change
unless the system passes through a quantum phase transition. In this way different
groups of topological systems can be identified. In practice, a quantum phase
transition is a transition that takes place when the bandgap of a certain system
is closed (such as in the band inversion case). Strictly related to the concept
of qunatum phase transition is the Berry phase. The Berry-phase is the phase
acquired by the system while undergoing an adiabatic evolution along a closed
path. The extremely interesting aspect of the Berry phase is that even if the
evolution of a time-dipendent Hemiltonian is considered, the Berry-phase will be
time independent and simply related to the closed path along which it is calculated
(as long as the adiabatic condition is satisfied). This is expressed in the following
equation:

|Ψn(t)⟩ = eiγne− i
ℏ

s t

0 dt′εn(R(t′))|n(R(t))⟩, (1.31)

where the second exponential term is the “dynamic phase factor” and the first
exponential term is the geometric term, with γn being the Berry phase. By requiring
the state |Ψn(t)⟩ to satisfiy the time-dependent Schrödinger equation, it can be
shown that:

14



Introduction

γn(t) = i
Ú t

0
dt′⟨n(R(t′))| d

dt′ |n(R(t′))⟩ = i
Ú R(t)

R(0)
dR⟨n(R)|∇R|n(R)⟩, (1.32)

The element ⟨n(R)|∇R|n(R)⟩ is called Berry connection, which describes how
the eigen-states of the Hamiltonian change as the parameters R vary. This
connection leads to the Berry curvature. From the Berry phase we can obtain the
Chern number through equation:

C = 1
2π

Ú
BZ

d2k Ω(k) (1.33)

where the Berry curvature Ω(k) is defined as:

Ω(k) = ∇k × A(k) (1.34)

where A in equation 1.34 is the previously mentioned Berry connection.
A fundamental aspect of the Chern number is the fact that it is a topological

invariant. In fact we can define a topological class of insulator as the group of
insulators that have the same Chern number. It must be considered that by changing
the Hamiltonian near the surface, the dispersion of the edge states is modified.
Changing for instance the number of times that the Fermi energy will be crossed
by some states. However, the difference NR − NL between the number of right and
left-moving modes cannot change and is determined by the topological structure of
the bulk states. This is summarized by the bulk-boundary correspondence:

NR − NL = n. (1.35)

where n is the Chern number.
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Chapter 2

Topology applied to
phononic structures

2.1 From quantum to phononic systems
The theory described in the previous chapters can be extended to other fields such
as phononics and photonics. The main focus in this thesis will be on phononics
systems. As explained in the introduction, even in a phononic system we can
obtain a band diagram. This band diagram will come from the possible vibrational
modes of a periodic system. Like in the quantum mechanical case, also this kind
of band diagram can be deformed thanks to topology and can lead to different
type of insulators. What has been previously said about the topological study of a
quantum system is still holding, the biggest difference is that the main characters
here are not electrons but quanta of vibration: phonons. The eigenstates will be the
allowed resonance frequencies , and the eigenmodes will be the possible vibrational
modes of the system.

Here are going to be analyzed different structures and how mass loading, physical
parameters (such as Young’s modulus and density) and geometrical parameters
influence the dacoustic behavior of the system.

2.2 FEM simulations
To analyze the different structures, has been employed a finite element model (FEM).
The numerical solutions have been obtained through COMSOL multiphysics, using
the piezoelectric module. Thanks to this software a numerical solution of the coupled
electrical-mechanical equations has been calculated. The COMSOL software has
been employed for both eigen-studies and frequency studies. For what concerns
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the eigen-states study, periodic boundary conditions have been imposed as Floquet
boundary conditions. This conditions come from the Floquet theory, which treats a
branch of the ordinary differential equation theory. In particular it involves periodic
linear differential equation of the form:

ḟ = A(t)f (2.1)

where f ∈ Rn and A(t) ∈ Rn×n with period T. The COMSOL software solves two
sets of equations, one for the frequency study and one for the eigen-study. The
frequency study equations are:

ρw2u = ∆ · (FS)T + Fvejϕ, F = I + ∆u (2.2)

∆ · D = ρv, E = −∆V (2.3)
While the eigen-study equations are:

ρω2u = ∆ · (FS)T , F = I + ∆u, −iω = λ (2.4)

∆ · D = ρv, E = −∆V (2.5)

2.3 First geometry: elliptical rods over AlScN
substrate

Figure 2.1: Unit cell consisting in a squared shaped bulk with elliptical rods on
top of it
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The first unit cell taken into account is the one depicted in figure 2.1. This unit
cell is composed by a 500 nm thick AlScN squared substrate with elliptical rods
of SiO2 on top of it. The rods height is 2.1µm, while the edge of the single cell is
a = 3.8µm. The cell presents also a 80nm platinum bottom layer that will be used
as a ground when the cell is electrically driven. By tuning the shape, the rotation
angle, the height of the rods we can directly influence the dispersion relation. This
geometry was previously analyzed in [36], in that paper is studied a way larger
geometry and the whole structure is made in Si(100).

At first, the structure was scaled to reach micro-metric dimensions. After that
the substrate was changed from Si(100) to AlScN .

This substitution was performed to allow the possibility of having an electrical
readout from the acoustic response of eventual devices based on this type of cell
and technology. In Fact the AlScN is a piezoelectric material, a material able to
convert strain into an electrical signal and vice versa

As shown in [36] paper, the rotation of the elliptical pillars causes the opening
of a band gap around 0.9MHz, moreover, the rotation direction influences how the
band gap opens. If the rotation direction is positive the cell behaves like a normal
insulator. On the other hand, when applying a negative rotation angles, the system
becomes a topological insulator. This can be proved by looking at the Berry phase
in high symmetry points.

2.3.1 Opening of bandgaps and tuning of the band diagram

As in the quantum mechanical case, even here we can tune and deform the band
diagram like in the case explained by Professor Haldane in [22]. This can be obtained
by applying periodic structures with different bulk modulus E and different densities
ρ. An example of this can observed by comparing figure 2.4a and figure 2.4b the
phononic band diagram of a simple block of AlScN with an AlScN with some
periodic structures on top of it.
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(a) simple Block of AlScN dispersion relation,
no band gap is present

(b) Block of AlScN with with SiO2 rods
dispersion relation, a band gap opens above
120MHz

(c) Block of AlScN (d) Block of AlScN with SiO2 rods

Figure 2.2: Main caption for the figure with subfigures

2.3.2 AlScN material characterization
Here is reported a brief introduction to the AlScN. Aluminum Scandium Nitride
is a ternary compound formed by alloying Aluminum Nitride with Scandium.
This material has garnered significant attention due to its enhanced piezoelectric
properties compared to pure AlN. The addition of Scandium disrupts the crystal
symmetry of AlN, leading to a substantial increase in piezoelectric coefficients,
making AlScN highly suitable for applications in microelectromechanical systems
(MEMS), radio frequency (RF) filters, and energy harvesting devices. AlScN also
exhibits ferroelectric behavior at certain Sc concentrations (and for high voltages),
opening avenues for non-volatile memory applications. It has a wide bandgap ( 6 eV)
and high thermal stability. Which makes it an excellent candidate for high-power
and high-temperature electronic devices. In terms of mechanical properties, AlScN
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has a Young’s modulus typically ranging between 220 and 400 GPa, depending
on the Scandium concentration and the crystal orientation. This high stiffness
is advantageous for MEMS applications, where mechanical robustness is crucial.
Additionally, AlScN exhibits a high acoustic propagation velocity, generally around
6000 to 7000 m/s, which is beneficial for high-frequency acoustic wave devices
such as surface acoustic wave (SAW) and bulk acoustic wave (BAW) resonators.
These properties, combined with its superior piezoelectric performance, position
AlScN as a versatile material for next-generation technologies. Although the AlScN
exhibits a considerable acoustic velocity, this parameters its still lower than the
SiO2 deposited on top of it, whose longitudinal propagation velocity is around
11.85km/s and a transverse velocity of 6.12km/s .

2.3.3 Band tuning

Theoretically, every geometric parameter will directly influence the wave propa-
gation but, in this case, the bulk dimensions will be left unchanged, to facilitate
manufacturability, and the tuning will be performed by changing the rod dimen-
sions. The first goal is to open a band gap in the dispersion of the AlScN bulk. To
obtain this effect elliptical rods are deposited on top of it, all rods will be rotated
by a certain angle with respect to the Cartesian axis, assuming the x and y axes
along the bulk edges. The rotation of the ellipses is fundamental to obtain the gap
opening, in fact until one of the axis of the ellipses is parallel with respect to one
of the edges of the substrate, no band gap will be opened.

2.3.4 Rotation angle

The first parameter that can be modified is indeed the rotation angle of the ellipses
axes. This parameters, as has been shown by [36] causes a change in the size of
the bandgap; with a maximum size reached around θ = 45◦. The rotation is a
fundamental parameter to tune the topological index of the system.

2.3.5 Rods height

The rods height directly shift (almost linearly) the band gap. In fact the gaps are
due to the fact that the rods will enter a resonance state absorbing the vibrations
of the bulk and, as a consequence, blocking the wave propagation. In this view it’s
pretty straightforward to see that higher rods will have lower resonance frequencies
and vice-versa.
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2.3.6 Ellipses axis lenght and ratio

All the concept behind the gap opening revolves around the concept of performing
a mass loading of the bulk with different materials. Changing the axis dimensions
directly change the coverage of the pillars over the substrate modifying the mass
loaded and the spring model system. Another important aspect is the aspect ratio
of the rod. In fact, if cylindrical rods would have been employed the rods rotation
would have not had any effect. This is pretty straightforward. As a consequence, it
is logic to think that the more the cross section of the rods will be further from
the a perfect circle, the more the rotation angle is going to be effective to tune the
band gap opening.

2.3.7 Topological and normal insulator

(a) Dispersion relation of a unit cell with rods rotated by
−45◦

(b) Dispersion relation of a unit cell with rods rotated by
45◦

Figure 2.3: Here is shown a comparison between the dispersion relation of 2
different cell with opposite rotation angles,−45◦ and 45◦
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In figure 2.3 can be seen that by depositing rods with opposite orientations (specifi-
cally −45◦ and 45◦)very similar dispersion relations are obtained. This is true from
an eigenfrequency point of view.

(a) Dispersion relation of a unit cell with rods
rotated by −45◦, k=2 and frequency=25MHz

(b) Dispersion relation of a unit cell with rods
rotated by 45◦, k=2 and frequency=25MHz

(c) Mode shaper of a unit cell with rods
rotated by −45◦, k=2 and frequency=28MHz

(d) Mode shaper of a unit cell with rods
rotated by 45◦, k=2 and frequency=28MHz

Figure 2.4: Here it is shown a comparison between the modes of 2 different cell
with opposite rotation angles, we can see that the mode shape is inverted

But the displacement modes, as can be observed in figure 2.4 will have inverted
parity ( a first sign that a band inversion took place) and different Chern numbers,
which confirms the different topological nature of the two gaps. In particular, the
insulator obtained thanks to the 45◦ rods is a trivial insulator, where no band
inversion took place. On the other hand, the −45◦ case is a higher-order topological
insulator, in which the rods cause a band inversion and a consequent change in the
Chern number.

2.3.8 Edge state
It is extremely interesting to observe what happens when insulators with different
Chern numbers are linked together. Let’s remind that in this case the Chern number
variation is due to the Inversion of the bands described in figure 1.13 . A first
extremely naive but effective consideration is that a sort of transition between the
two band diagrams has to take place to have continuity. This transition generates
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two allowed states called edge states. The edge states are localized at the interface
between the trivial and the topological insulator. This edge states are in gap states
that allow traveling waves along the interface. The two edge states have opposite
group velocity, leading to opposite energy fluxes, due to this characteristic the two
edge states are chiral states featuring backwards and forwards propagation.

2.3.9 Corner states

Figure 2.5: Corner formed by the intersection between two interfaces, one along
x and the other along y

By looking at the edge states, a question that can come to mind could be: What
would happen if there were interfaces along multiple direction, such as figure 2.5.
The concept that was applied to justify the existence of edge states can be directly
extended to corners. In fact the braking of the symmetry along two different
directions causes the generation of a corner states. In this kind of topological state
the energy is confined in a 0D space. A major difference with respect with the edge
states is that the corner states are stationary states, where there isn’t a net flux of
energy in any direction. An interesting point about the corner state, is that their
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dispersion relation is a flat line in the middle between the two edge state dispersion
curves, so the corner states are characterized by 0 velocity group. In fact, in the
corner states is localized stationary energy, in contrast to the edge states where
the energy is chiral and so it propagates along the interface.

2.4 Second geometry: SSH cell
The second type of geometry considered in this work is the Su-Schrieffer-Heeger
(SSH) cell. The SSH model, originally proposed to describe the electronic structure
of poly-acetylene. At its core, the SSH model describes a chain of dimerized atoms,
where alternating strong and weak hopping amplitudes between neighboring sites
give rise to a band structure with distinct topological features.This model can be
used to explain and describe a two-dimensional topological acoustic insulator. Like
the previous case, here a specific symmetry is broken to open a band gap.

Figure 2.6: SSH A0 cell

In this case the geometry of the cell is quite simple, as described in figure 2.6
the unit cell is constituted by an AlScN substrate with two rods of SiO2 deposited
on top of it. The starting unit cell that is going to be described here has a 24µm
wide and 0.5µm thick substrate, while the rods are 3µm wide and 2µm thick.
This structure has been deeply studied in the paper [8]. The band diagram of the
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above structure will be tuned and studied by changing the rods dimensions and
the distance between the two rods. In the previous case the band gap was created
thanks to the inversion of the bands and the "breaking" of the Dirac point. Here,
the band gap is opened through a different mechanism. The presence of the rods
causes a coupling between higher order modes, in particular an higher order S
mode is coupled with the A0 mode. This coupling is possible because the higher
order modes are not purely longitudinal or transverse, and so the higher order S
modes can interact with the A0 mode.

Figure 2.7: Spring model for A0 A1 cell and the supercell structure, showing also
two edge states.

This behavior is depicted in figure 2.7 where a the system is framed through
a mass spring model. In this simple model, the coupling is introduced by using
springs which connect the two chains. In the figure the coupling takes place between
the two fundamental modes A0 and S0 because it is enforced by the s springs.
In a real and more complete model, the coupling between fundamental modes
doesn’t take place because these modes are respectively purely transversal and
purely longitudinal.
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Figure 2.8: SSH dispersion relation of a unit cell where the symmetry is not
broken (Cell A0), can be observed how the coupling here is almost non existing
and a Dirac Point is present around 80MHz

This can be shown easily by using a FEM, both the single cells and the supercells
have been studied in COMSOL and with a Matlab script to obtain displacement
and dispersion relations, such as the one in figure 2.8.

2.4.1 Bandgap opening and dispersion relation tuning
The tuning of the rods displacement is a fundamental procedure to induce the
opening of band gaps. In figure 2.8 is show the dispersion relation of the A0 cell,
in this cell the distance between the rods and the center of the cell is equal to the
distance between the rods and the edge of the cell. In this dispersion relation has
been used a color scale to highlight the nature of the mode, transverse modes are
characterized by the blue color while longitudinal modes are depicted in red. It is
interesting to see that for modes above the fundamental one it is possible to obtain a
coupling between transverse and longitudinal modes; in fact these coupling regions
have a more purple color (for example, the band gap that opens near 40 MHz).
The coupling between longitudinal and transverse modes is possible thanks to the
fact that higher order modes are neither purely transverse or purely longitudinal
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but have both components. Another very interesting point in the above mentioned
dispersion relation is the crossing point between the first longitudinal mode and
the sixth transverse mode, around 80 MHz. Although the sixth transverse mode
is far from being purely transverse, there is no coupling with the fundamental
longitudinal mode. This suggests that by some sort of tuning and by breaking the
symmetry of the cell should be possible to open a considerable band gap in that
region. To do so, a tuning of the position of the rods is performed. In the A0 cell
the distance between the center of the cell and the rod was 4.5µm and it was equal
to the distance between the rod and the edge of the cell. The rods can be moved
either towards the center or towards the edges of the cell, by this translation two
different types of cell can be obtained: A1 and A2. Cell A1 has a distance between
rods and center of 2µm while in cell A2 the rods are 2µm distant from the edges.

(a) SSH A1 cell geometry with tAlScN =
500nmand tSiO2 = 2µm,with a width of
and a distance between the rods of 4µm

(b) SSH A2 cell geometry with tAlScN =
500nm and tSiO2 = 2µm, and a distance
between the rods of 14µm

(c) SSH A1 cell dispersion relation (d) SSH A2 cell dispersion relation

Figure 2.9: Disperion relation of A1 and A2 cell with the correspective geometries
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By applying this displacement the dispersion relation deeply changes. In figure
2.9d and figure 2.9c are shown the dispersion relations of A2 and A1 cell respectively.
Although the dispersions relations seem identical there is a considerable difference
in the mode shapes around the band gap.

(a) Mode shape A1 cell 70Mhz (b) Mode shape A1 cell 90Mhz

(c) Mode shape A2 cell 70MHz (d) Mode shape A2 cell 90Mhz

Figure 2.10: Mode shape for cell A1 and A2 for the states at the edges of the
bandgap

As can be seen in fig 2.10 the parity of the modes for the two types of cell is
inverted. Can be observed that the cell A1 mode will be even at 70 MHz while cell
A2 mode is going to be odd at the same frequency, the behavior it’s inverted for
modes at the next eigenfrequency (90 MHz) . This difference is due to the opposite
type of translation that has been performed. And can be seen as a proof of the
topological change between the two structures.

2.4.2 Tuning band gap

Rods height

The first parameter that can be used to tune the dispersion relation is the thickness
of the rods. The thickness directly affects the resonant frequency of the rods.
Thicker rods will lead to lower resonant frequency while thinner rods will have a
higher resonant frequency. From this we can foresee that changing the rod thickness
will cause a shift in the dispersion relation frequency of the system (towards upper
frequencies for thinner rods and towards lower frequencies for thicker rods). It is
also important to take in consideration the mass loading effect of the rods, which
is one of the main characters in the deformation of the band diagram.
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Rods width

As just said, one of the main actors that allows the band tuning is the mass
loading performed by adding the periodic structures on top of the bulk, so can
be understood straightforwardly that changing the width of the rods will directly
affect the amount of mass "loaded" on top of the bulk. This different loading can be
used to tune the coupling between transverse and longitudinal modes and directly
change the band gap dimensions. Also if the device is not properly scaled with
the width of the rods, the periodicity of the structure is altered and this has huge
effects on its topological behavior.

2.4.3 Edge states

Even in this case, like the one described in section 2.3.8, the most interesting case of
study is when cells having different Chern numbers and, as a consequence, different
mode parity, are juxtaposed. In this paragraph cell A1 and A2 are going to be
used as an example.

Figure 2.11: SSH supercell structure

The edge state is studied in a supercell built by linking one array of A1 cells
with an array of A2 cells, as shown in 2.11. In this system, due to the fact that
the two cells have different topological indexes, two edge states are created in the
band-gap.
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(a) SSH supercell dispersion (b) First edge state displacement

(c) Second edge state displacement

As can be observed in Figure 2.12b and Figure 2.12c, the edge states are
localized at the interface between the A1 and the A2 array. This states shows a
high robustness to defects. This is due to the topological nature of the localized
states. In fact, defects don’t affect the topological nature of the system, they are
not able to alter the nature of the dispersion relation or the band gap dimensions.
It is also interesting to observe that the second edge state, figure 2.12c, is less
localized than the other, this can be explained considering that this is the state
closer to the band gap edge; the distance from the bandgap edge is a factor that
directly influences the energy localization.
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Chapter 3

Topology based RF acoustic
devices

3.1 Performed analyses in COMSOL

The main parameters that are going to be considered to study the behavior of the
different topological devices are the S21 and the Y21 parameters. This are well
know parameters in the electrical and microwave engineering. These parameters
are fundamental to study the energy transmission in the device. The S21 parameter
represents the forward transmission coefficient of a two-port network. It measures
the ratio of the signal output at port 2 to the signal input at port 1, assuming
all other ports are properly terminated, and it is expressed as the ratio between
the the transmitted voltage at port 2 and the incident voltage at port 1 S21 = V −

2
V +

1
.

The Y21 parameter is part of the Y-parameter matrix and represents the forward
transfer admittance of a two-port network, and it is mathematically expressed as
Y21 = I2

V 1 |V2=0. Also the also all the simulations have been done by setting a quality
factor Q of 500. This quality factor is in agreement with the one obtained in the
real device measurements. The quality factor is the ratio between stored energy
and dissipated energy Q = 2π Estored

Edissipated
, and gives us an idea of the localization

of the energy. To obtain all these parameters, the COMSOL software has been
employed. Every device was equipped with two electrodes, one for emitting the
signal and a second one to receive it, and a ground. In particular, all electrodes
were made of aluminum, while ground was simulated through a platinum layer
on the bottom of the device. The anchors were simulated by imposing perfectly
matched layers (PML) combined with low reflecting boundary conditions,
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3.2 Introduction to a elliptical rods forest system

As showed in section 2.2, topological states can be generated in a forest of elliptical
rods.

Figure 3.1: supercell 4 corners

In figure 3.1 is shown a supercell composed of a central array of normal insulators
surrounded by topological insulators. In this way 4 edge states and 4 corner states
will be created. The main focus in this section will be on the corner states, because
of their higher energy localization and Q factor. When an out-of-plane harmonic
perturbation is applied with a frequency that falls inside the dispersion relation
band gap, no acoustic wave should propagate in the system. The presence of corner
and edge states inside the bandgap leads to a spatially localized wave.
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Figure 3.2: Corner states displacement in the supercell

In figure 3.2 is depicted the out-of-plane displacement when an harmonic per-
turbation is applied at the corner states frequency. Can be easily observed how the
displacement is highly localized at the 4 corners of the interface between normal
and topological insulators.

Figure 3.3: Corner states energy density in the supercell
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The same considerations are valid for the energy density distribution, and this
is clearly shown in figure 3.3.

3.3 Electrical driving of a elliptical rods forest
supercell

Here it is important to remind that the substrate is a piezoelectric material with,
underneath, a 80 nm thick layer of platinum used as ground. Thanks to the AlScN
electromechanical coupling properties, it’s possible to excite an acoustic wave by
driving some electrodes on top of the surface and, more importantly, it’s possible
to obtain an electrical readout from the acoustic waves, similarly to a SAW. In this
way the measurement of the S21 and S11 parameters can be an effective and easy
way to measure the presence of topological states in real devices.
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(a) Here is shown a device in which 4 identical corner states are excited through
a central electrode

(b) Here is shown the displacement as a function of the frequency, is clear that
the only considerable displacement takes place at the corner states frequency

Figure 3.4: Displacement for an acoustic piezoelectric device based on corner
states technology

In figure 3.4a a structure having a central top electrode made of a 80 nm thick
layer of Alluminum is presented. In figure 3.4a the resulting displacement outside
the plane can be observed when the top electrode is driven at the corner states
frequency. The structure also presents 4 anchors. It is interesting to notice that, the
energy being localized in a small region around the corners of the interface between
normal and topological insulators, the presence of anchors does not significantly
affect the corner states. It’s also important to see that in the frequency range
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spanning the band gap, the corner state frequency is almost the only frequency at
which there is a considerable displacement. This is quite clear from figure 3.4b, in
which the normalized out of plane displacement is reported; as expected the only
peak is the one at the corner state frequency.

3.4 Boundary effects on topological states
As already stated, the topological states have an intrinsic robustness towards defects.
This stability is due to the fact that, the presence of single and isolated defects
doesn’t really affect the periodicity of the system, will not change the topological
index of the cells, and consequently, will not affect the topological states. On the
other hand, topological states are impacted by boundary conditions. Boundary
conditions won’t affect neither band gap nor the topological indexes but change
the conditions at the edge of the Brillouin Zone. This effect leads to a change in
the topological modes shape for edge states and a frequency shift for corner states
(which are a flat line in the dispersion relation, so the only way they can adapt to
a boundary condition variation is by shifting their frequency).

(a) 4 corners central electrode device (b) 4 corners central electrode device

Figure 3.5: Here is shown a comparison between two corner stetes at the same
interface but with different boundary conditions. As can be observed the 2 corners
have different frequency, this is due to the different boundary conditions

The boundary conditions can be changed in many different ways. For example,
by applying a stress.The alteration of the boundary conditions can be also done by
changing geometrical and topological aspects of the structure. This last possibility
can be observed in figure 3.5, where it is shown a structure presenting two different

36



Topology based RF acoustic devices

corners at the interface between NI and HOTI. Looking closely at the two different
corners, can be noticed that the upper corner is mainly influenced by NI, while
the lower corner is influenced more by HOTI. This difference causes a shift in the
corner state frequency. Although being small, the shift can be observed in both
frequency studies and eigenfrequency studies; this proves that the two corner states
have different frequencies.

3.5 Edge corner coupling

Edge states and corner states are not isolated systems. It is possible to couple an
edge state with a corner state.
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(a) Comparison between S21 parameters of the
isolated edge state compared to the S21 of the
edge state coupled to a corner state

(b) Geometry of the corner-edge coupled device

(c) Geometry of the edge state device without any
corner in the vicinity

Figure 3.6: Comparison between the isolated edge and the corner-edge coupled
system

This phenomena could be observed by looking at the S21 parameters of the
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two different systems depicted in figure 3.6.The structure is built by depositing
2µm silicon rods on top of a 500nm AlScN substrate; each single is a square with
3.8µm edges and the axis of the elliptical rodes are respectively b1 = 0.9µm and
b2 = 0.4µm; the rotation angels that have been employed are respectively θNI = 45◦

and θT I = −45◦ . It can be observed in figure 3.6a that, when the structure presents
both the edge state and the corner state, at the corner state frequency the corner
state is "activated" and captures the energy from the edge state causing a notch in
the transmission. This coupling is possible only if the distance between the edge
and the corner is not too large, otherwise the two topological states would behave
as isolated systems.

(a) Displacement map for a corner-edge coupled
system

(b) Displacement map for the isolated edge state

Figure 3.7: Here it is reported a comparison between the field displacement of a
edge-corner coupled system and a isolated edge structure
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The mechanical coupling between these two modes is also visible by comparing
the displacement of the two structures at the notch frequency, which is shown in
figure 3.7. This can be observed in figure 3.7a where can be seen how the corner is
excited by trapping the mechanical energy that was previously flowing in the edge
state.

3.6 SSH system introduction
As mentioned in section 2.3, another interesting type of geometry for acoustic
topological states is the SSH-type structure. The main goal of this section is to
show how electrically driven RF devices can be obtained by the unit cell and the
super-cells considered in section 2.3. In this type of structure, the generated edge
state is used in a opposite way compared to the one in the elliptical rods forest
treated in the previous paragraph. If in the elliptical rods, the edge was used as a
channel to allow the flow of mechanical energy in a certain range of frequencies
along the edge itself, in the SSH type structure the edge state is used to transmit
the signal in a direction perpendicular to the wave propagation direction. This
different approach leads to major differences in the signal response. In the SSH
case the signal isn’t driven by the chirality of the edge (which allows a flux along
the longitudinal edge direction). If in the elliptical rods cell the edge state showed
almost a flat line as S21 parameter, here the edge state behaves more like a corner
state, it creates a region where the mechanical energy will localize. In this way
the edge state will correspond to a peak in the S21 parameter. That’s why in this
circumstances the receiver can’t be too far from the edge, otherwise it won’t be
able to interact with the localized energy and there will be no output signal from
the device, as if there was no topological state at all.

3.7 SSH single edge RF device
The simplest device that can be obtained through this type of structure is a
supercell with two top electrodes, figure 3.8, one used as driver and the other as
signal-receiver, and a bottom electrode used as ground. To obtain these types of
device, two 80nm thick and 3µm wide aluminum electrodes have been deposited
on the AlScN bulk. The bottom electrode, instead, is obtained by depositing 80nm
thick Platinum layer on the lower face of the AlScN film. In particular the left Al
electrode has been used as driver and the right Al electrode as a receiver.

The structure depicted in figure 3.8 has been studied through FEM simulations
in the frequency regime (using the piezoelectric module of COMSOL multiphysics).
Different geometrical parameters have been tested and the structure has been finely
tuned. The final single cell consists in a 500nm thick and 24µm wide layer of
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Figure 3.8: SSH supercell with two Alluminum electrodes

AlScN, with 2µm thick and 3µm wide SiO2 rods. The supercell analyses has been
performed by driving the right Al electrode with a 1W power. From this analyses
the displacement, the energy density and the S21 parameters has been extracted.

Figure 3.9: SSH supercell’s S21 parameter

In this device the S21 parameter is a valuable and easy way of detecting the
topological state presence. To confirm even more the energy and displacement
localization this device was measured through an LDV system, which confirmed
the high energy localization. By looking at the S21 parameters in figure 3.9 two
peaks can be noticed, one for each edge state mode. The two peaks are separated
by a deep notch. This notch is due to a phenomenon called Fano resonance. At
the notch frequency the two states interact destructively creating the deep notch.
This notch has an extremely high Q-factor (in the order of 105 as explained in [8]),
which makes it suitable for sensing applications.
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3.8 SSH rainbow trapping

3.8.1 Multiple sensors for noise averaging
When any type of sensing is performed, a way to reduce the noise could be taking
simultaneous measurements with identical sensors. In this way, theoretically, the
noise will be reduced by a factor

√
N where N is the number of sensors employed.

This reduction is simply due to a sort of compensation of the noise between the
different measurements. This multiple sensors analysis can be effectively integrated
into a single device by performing rainbow trapping. The rainbow trapping is
a phenomenon that allows to localize waves at different frequencies in different
spatial regions. This phenomenon can be obtained directly by concatenating SSH
supercell with edge states at different frequencies in a single device.

3.8.2 Rainbow trapping structure

Figure 3.10: System built by concatenating two different SSH supercells

The different SSH supercells have to be carefully designed. The goal is to design
a device that can be easily produced through lithographic steps, to do so, the
thickness of the different materials have to be constant in the entire device (building
a device with different rod thicknesses would require a complex manufacturing
process). The starting point is a SSH supercell having 2 µm thick rods deposited
on top of 500nm AlScN bulk. To shift the working frequency, while keeping the
thicknesses constant, a tuning of the width of both the single cell and the rods
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was performed. In the every single cell, the width modification was done while
maintaining constant the distance between the rods and between rods and edges.
So, by considering a factor Nscale for a specific supercell in the rainbow trapping
system, the rods width in the supercell will be wrod = w0Nscale, where w0 is the non
scaled rod width ( in our case 3µm) while, to keep the the rod-rod and the rod-edge
distances constant over the whole device, the cell width, for every supercell, is
enlarged by a quantity 2(wrod − w0). In this way a structure such as the one in
figure 3.10 is obtained, where the periodicity is not perturbed along the entire
device.

43



Topology based RF acoustic devices

(a) Dispersion relation for a cell with 0.7 scaling factor

(b) Dispersion relation for a cell with 0.9 scaling factor

(c) Dispersion relation for a cell with 1 scaling factor

Figure 3.11: Dispersion relation for the single cells scaled as explained in the
paragraph
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The previously described tuning is quite effective. This is confirmed by the
dispersion relations in figure 3.11, where it can be observed that by performing
this sort of scaling the dispersion relation is almost rigidly and linearly shifted.

3.8.3 Two edges rainbow trapping device

The first rainbow trapping device that is going to be discussed is a two topological
edges device. This device is made up of two SSH supercells. Each supercell contains
14 unit cells, 7 normal insulators and 7 topological insulators. The single unit cell
is the one described in Section 2.4

Figure 3.12: Two edges rainbow trapping device

The device geometry is illustrated in figure 3.12. As can be seen, the structure
has a larger electrode on the left side, which will be used as driving electrode.
This electrode will induce an acoustic wave that will propagate across the device
and, thanks to the piezoelectric bulk, will generate an electric signal. Smaller
electrodes are located exactly where the interface state is going to appear. These
last electrodes position has been chosen to maximize the electromechanical coupling
between electrodes and topological states (which is going to be the maximum
displacement region). The first SSH supercell has the same dimension as the system
in section 2.4.3, the second, on the other hand, has been scaled (in the previously
illustrated way) by a factor 0.7.
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Figure 3.13: Two edges Y21

This scaling has been carefully designed to align the topological state of the
second SSH with the end of the bandgap of the first SSH supercell. In this way,
once the frequency fells into the bandgap of the first supercell, no signal will be
detected by the receivers until the first topological state frequency is reached. At
this first frequency, a spike in transmission will appear. The second spike in figure
3.13 corresponds to the second topological state of the first supercell. After this
second spike no signal will be transmitted. This is due to the fact that, even if
thee device is operating in the first supercell bandgap. This situation will remain
unchanged until the first topological state frequency of the second supercell. This
frequency has been located at the band edge of the first supercell. In this way the
signal can cross the first SSH region. After crossing the first supercell spatial region,
the signal reaches the second SSH. At this point the first topological state of the
second supercell is triggered. At this frequency the output signal will have both a
component from the first receiver (which is crossed by the wave that propagates to
the second topological edge) and from the second receiver that will capture the
signal from the topological state localized displacement. The overall output signal
is going to be dominated by the topological state component. This is due to the
high amount of localized energy. This is quite clear in figure 3.13, where the three
peeks correspond in sequence to the two topological states of the first supercell and
the first topological state of the second supercell.
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3.8.4 Three edges rainbow trapping device

Figure 3.14: Geometry for the 3 edges rainbow trapping device

The two edges device can be extended to three edges quite directly, obtaining the
device in figure 3.14. The major difference here is the tuning. The major issue is
that, in order to observe the last topological transmission peak, the last receiver
signal has to overcome the signal coming from the propagating wave that crosses
the previous 2 receivers. In order to mitigate this problem, the tuning has to be
performed even more carefully than before. The supercells in the final structure
have scale factors of: 1.35, 1 and 0.68.

Figure 3.15: Y21 3 edges

With this scaling factors the peaks of every edge state are perfectly visible in
the Y21 plot in figure 3.15, although the peak of the last supercell is considerably
smaller than the others.
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(a) The graph represents de out of plane dis-
placement for a 3-edges SSH device

(b) Edge mode of the first edge state at 67.1
MHz

(c) Edge mode of the second edge state at
74.7 MHz

(d) Edge mode of the third edge state at
84MHz

Figure 3.16: The pictures show the displacement at different frequencies, the
peeks in figure 3.16d correspond to the edge state, in the other figures are shown
snapshots of the localized edge modes for the three edge states

The displacement follows, as expected, the Y21 behavior; presenting peaks at
the topological states frequencies, as can be seen in figure 3.16.

3.8.5 Example of sensing application

In this subsection is going to be discussed a possible application of these devices.
As it was already explained in section 3.4 topological modes are almost defects
insensitive but can be affected by changes in the boundary conditions or in the
structure parameters( such as geometrical dimensions, Young modulus, density...).
In this way the topological states can be effectively used for sensing purposes. Here
is going to be analyzed a rainbow trapping accelerometer.
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Figure 3.17: Rainbow trapping device with fixed boundary conditions at the
highlighted edges

Figure 3.18: Stress distribution in the device when a a vertical acceleration is
applied

The device is structured as the previously discussed two topological edges
rainbow trapping device. To study the device response to accelerations, fixed
boundary conditions have been imposed over the left and right edge, as it is shown
in figure 3.17. In this way the simulation is taking into account the presence
of anchors that will limit the displacement at the two extremities of the device.
The study was performed in two steps, first the acceleration was applied using a
stationary study. This was based on the assumption that the force was applied to
the device for a long enough time interval to allow the device to reach a stationary
condition. The second step consisted in performing a frequency study similar to
the ones done in the previous sections to obtain the S21 and the Y21 parameters.
As expected, when a force is applied, the modes are modified. Looking at the Y21
parameters, two effects can be observed: a frequency shift and a change of the
transmission peaks height. The first one can be re-conduced to two main causes.
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Figure 3.19: Charge distribution in the device when a a vertical acceleration is
applied

First of all, the stress leads to a charge accumulation in the piezoelectric material,
but, due to the ground and electrodes presence, a charge discontinuity appears.
This charge discontinuity directly affects the wave propagation velocity causing a
frequency shift. The second effect comes from the fact that the topological states
perceive the stress change in the device boundary conditions, and consequently,
the edge mode shape changes, leading to a frequency shift. While the topological
states are shifted, the band gap is not modified by any means by the applied
stress, which is not changing any topological parameter. So the edge states can
move towards the center of the band gap or towards the closes band gap edge. Is
fundamental to remind that the states localization is directly related to how far
the edge state is from the band gap edge. The more the edge state is close to the
band gap center, the more the localization is going to be higher. The localization
plays a major role in determining how much energy is going to be captured by
the receivers, and therefore, how big the transmission peaks are going to be. The
second main effect on the transmission peak height is due to the fact that, when
a high acceleration is applied, the device is deformed. This deformation causes a
perturbation in the periodicity of the structure that can disturb the topological
state and more importantly slightly reduce the bandgap dimension. This reduction
leads to a lower localization and so a reduction of the transmission peaks. Even
though the change in the power of the output signal is observable, the main effect,
even at considerable accelerations (thousands of g), remains the frequency shift.
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Figure 3.20: Shift with different accelerations of the Y21 peak corresponding to
the first edge state of the first supercell, f=75MHz

From figure 3.20, can be seen how the Y21 of the peak at 75 MHz shifts when
different accelerations are applied. From this dataset, the device response has
been calculated considering how the current output varies when an acceleration is
applied.

Figure 3.21: Trend of the output current variation with respect to the applied
acceleration

By looking at the device current variation, in figure 3.21, can be noticed that
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the device has a good linearity over a broad range of accelerations. The next
step was to extract the limit of detection (LOD). To do so, it was assumed that
the main noise component was coming from the thermo-mechanical noise. The
thermo mechanical noise comes from the self-heating of the device due to its
vibration. This is a reasonable assumption and was confirmed by studies at cryo
temperature of the SSH device presented in section 2.3.4. During those analyses
both quality factor and responsivity of the device greatly improved at cryogenic
temperatures. The limit of detection was calculated for the peak at 74.997 MHz
(where all the acceleration and stress simulations have been done) by considering an
input power Pin = 1W . The corresponding bandwidth was Bw=0.082 MHz. The
frequency uncertainty due to thermo mechanical noise can be obtained through
the formula ∆fth−mech =

ñ
KbT Bw

4P in
f0
Q

. Where f0 is the resonant frequency. For this
device the thermo-mechanical noise was∆fth−mech = 2.5mHz. By considering the
thermo-mechanical noise and the device response, the limit of detection was equal
to LOD = 15µg. This result could be easily improved with a deeper study of
the electrodes geometry and the device dimensions. Maximizing the electrodes
dimensions should lead to a larger charge discontinuity and consequently a larger
frequency shift in the peaks, while tuning the dimensions of the device should
lead to a more effective response with respect to the acceleration, in practice there
would be a larger deformation and larger stress at the boundaries which would
directly cause a larger shift in the topological modes frequency.
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Conclusions

The RF topological Micro-Electro-Mechanical Systems discussed in this thesis are
promising in many different fields. The combination of versatility, efficiency and
straightforward manufacturing process, justify the growing interest that they are
arousing. The goal of this thesis is to provide the basic knowledge to understand
and use this topological phenomena and to design some possible electro-mechanical
devices based on this effects. Some, here presented, key factors for the study of
these devices are: the ability to relate topological effects and geometry in the
devices; the quantum physics knowledge of the topological mechanism behind this
phenomena; how to obtain an electrical readout of the topological localized states.
Another fundamental aspect it’s the tunability of these devices, this tunability is
easily obtainable through lithographic processes. Another interesting aspect is the
scalability. It would be possible to obtain this devices of few microns, the only
limit it’s the lithographic process itself. This last aspect is surprising, considered
that devices with this dimensions usually operates in the GHz range of frequencies.
This study also shows a possible way of studying this type of devices based on S21
parameters, Y21 parameters, displacement, anergy density and dispersion relations.
All parameters that can be obtained through a simple FEM simulation. It’s also
worth to notice how easily this devices can be used for sensing applications thanks
to their dependence on the boundary conditions while remaining robust against
defects (making the manufacturability even easier). It’s still plenty of possible
applications that are still worth to investigate. Temperature sensing, IR sensing
and stress sensing are just few possible example. Devices based on topology could
pave the way not only to new RF sensing systems but towards a completely new
way of building acoustic systems and MEMS.
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Appendix A

MATLAB code for ZAK
phase and Chern number
evaluation

1 %% Function chern
2

3 f unc t i on [ chern_number , Int_mode]= chern_ca l cu la t i on ( u_disp , BZ_sampling
, nx , de ltax , ny )

4 Int_mode=ze ro s (1 , BZ_sampling ) ;
5 chern_number=0;
6

7

8 f a c =1/2/3700/6000^2;
9

10

11 f o r j =1:BZ_sampling %f o r used f o r i n t e g r a t i n g over Bz
12

13 f o r n=1:nx %i n t e g r a l over x
14 %f o r l =1:ny %i n t e g r a l over y
15 l =1;
16 i f j<BZ_sampling
17 % Int_mode1=(conj ( u_disp ( l , n , i+j ) ) ∗u_disp ( l , n , j )−abs ( u_disp ( l , n , j )

) ) ∗ de l tax /(2∗ pi /BZ_sampling ) ; %i n t e g r a t e the mode over x , the
g rad i en t has been decomposed c o n s i d e r i n g de l tax

18

19 Int_mode1=dot ( conj ( u_disp ( l , n , j ) ) , u_disp ( l , n , j +1) ) ;
20 end
21

22 i f j==BZ_sampling
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23 Int_mode1=dot ( conj ( u_disp ( l , n , j ) ) , u_disp (1 , n , 1 ) ∗exp(−1 i ∗2∗ pi /( de l tax
∗nx ) ∗(n−1)∗( de l tax ∗nx ) /(nx−1) ) ) ;

24

25 end
26 Int_mode (1 , j )=Int_mode (1 , j )+Int_mode1 ;
27

28 % end
29

30 end
31

32

33 chern1=log ( Int_mode (1 , j ) ) ;
34

35 chern_number=chern_number+chern1 ;
36 end
37 chern_number=−imag ( chern_number ) ;
38 % chern_number=mod( chern_number , ( 2 ∗ pi ) ) ;
39

40 end
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