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Abstract

Recently, autonomous navigation of mobile robotic platforms has received increasing at-
tention from the research community. Both outdoor and indoor localization is very cru-
cial as it enables the navigation of Autonomous Mobile Robots. Autonomous Mobile
Robots can be employed for a wide range of applications including logistic operations,
automated inventory management in warehouses, inspection, and monitoring tasks in in-
dustrial plants, precision agriculture, and critical infrastructure monitoring without the
need for humans.

This research aims not only to provide positioning solutions for autonomous navigation
but also to improve and optimize their accuracy and reliability for autonomous naviga-
tion. The typical solution for indoor positioning is Ultra-Wide Band (UWB), and for
outdoor positioning is Global Navigation Satellite Systems (GNSS); these positioning so-
lutions was integrated with IMU (also called Hybrid solution) using the help of ESKF
(Error State Kalman Filter) for attitude estimation and a more accurate positioning esti-
mation. The goal of this thesis is to design a hybrid localization algorithm that combines
both UWB/GNSS and IMU data, enabling autonomous operations of robotic platform in
desired environments.

The designed algorithm was tested using both simulated data and real measurement data
and optimized iteratively. The indoor localization tests were conducted in the Robotic
Laboratory provided by LINKS Foundation, while the outdoor localization tests took
place on the sidewalks within the Politecnico di Torino area. These tests demonstrated
the algorithm’s capability to support autonomous navigation in dynamic environments.
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Chapter 1

Introduction

1.1 Context and Motivation

Autonomous Mobile Robots (AMRs) have become the need of the hour. In fields such
as industrial manufacturing, medical science, social science, agriculture, education, and
space exploration, AMRs have made impressive strides. For autonomous mobile robots,
navigation is a difficult task. The robot goes through several stages, including vision,
localization, cognition, and motion control, in order to navigate successfully. The robot
interprets its sensors to derive useful data during the perception phase. The robot uses
data from external sensors to assess its current location in the work environment during
the localization phase. The robot plans the actions required to get to the destination
during the cognition phase. By altering its motor outputs, the motion control phase
enables the robot to follow its intended path. In this thesis, we will take a closer look at
the localization phase.[5].

For outdoor localization, Global Navigation Satellite Systems (GNSS) signals (which in-
clude GPS, GLONASS, Galileo and BeiDou) are the go-to localization techniques. How-
ever, in indoor conditions, GNSS is of little to no use because of signal loss due to building
materials and hence for indoor localization it is imperative to adapt to other techniques,
most common being Ultra-Wideband (UWB) which is a type of radio frequency (RF)
based navigation [6]. However, these old school localization methods in most cases are
not extremely precise, do not have a very high refresh rate and do not provide the pose
estimation of a robotic system, something that is essential for autonomous localization.

Inertial navigation systems (INS) are self-contained and, in contrast to GNSS/UWB re-
ceivers, can deliver location, velocity, and attitude estimates quickly, typically 100 to 300
times per second. INS systems depends on Newton’s equations of motion, which state
that if an object’s initial location, velocity, and attitude are known, then all subsequent
positions, velocities, and attitudes can be calculated by integrating the object’s angular
rates and accelerations. However, sensor biases and low frequency noise are worsened by
the INS’s integrative nature. As a result, unaided INS may diverge [7].

To solve this issue, the proposed solution is to integrate GNSS/UWB with MEMS IMU.
In fact, it has been demonstrated that a navigation system with both high update rate
and good accuracy may be achieved by fusing the INS’s short-term accuracy and rapid
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Introduction

update rate with the GNSS/UWB’s long-term accuracy [8], [9]. An overview of the fusion
has been described in Figure 1.1.

Satellite Signals/Anchor Rangings
— > GNSS/UWB

Position

INTEGRATION —> Velocity
Attitude

h

Accelerations and Angular Velocities
— INS

Figure 1.1: Hybrid Solution Schematics

1.2 System Design Outline

Integrating the two streams of data is however, not very trivial. The two sets of data
are acquired at different frequencies and start times and so synchronization of the two
clocks are needed. Once done, the two datasets needed to be transformed to a common
coordinate system, which in this thesis was the East-North-Up (ENU) frame, a type of
navigation frame.

To proceed with the integration we have to select between loosely coupled, tightly coupled,
open or close loop. In this thesis, for indoor localization both loosely and tightly coupled
solutions were studied, while for outdoor localization, only loosely coupled solutions were
studied. In a loosely coupled system the GNSS/UWB operates independently from the
INS, whereas in a tightly coupled system, one can estimate the UWB position directly
within the state estimation process, incorporating raw range measurements into the fusion
algorithm.

Finally for the state estimation, the proposed solution is to use the Error-State Kalman
Filter (ESKF). ESKF is a variant of the Kalman Filter that estimates errors to the current
state rather than estimating the full state directly. This type of filter was used because
of the nonlinear nature of the system, and it provides better numerical stability with the
large state.

1.3 Thesis Organization and Contributions

This thesis has been structured in 8 chapters.

o Chapter 2 - Introduces the coordinate frames used in this thesis and how they are
analyzed.

o Chapter 3 - Describes the Kalman filters that were used while carrying out this thesis,
which helped us to process the hybrid UWB/GNSS with IMU data.

11
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Chapter 4 - Provides us an overview of the localization techniques and what one can
expect going forward in the thesis.

Chapter 5 - Describes the IMU which was used while carrying out this thesis and
how the integration between UWB/GNSS data was carried out.

Chapter 6 - Describes the lab setup and the experimental procedure. It then presents
the results and provides an analysis of the findings.

Chapter 7 - Details the outdoor experimental setup and testing process. The chapter
concludes with the presentation of results and a comprehensive evaluation of the
findings.

Chapter 8 - Presents the conclusion and further work

12



Chapter 2

Coordinate Systems

2.1 Introduction to Coordinate System

The measured quantities in inertial navigation systems are acquired in body frame, and
then converted into other frames. A minimal inertial navigation system uses two frames
at the very least. The vehicle accelerations are measured by the accelerometers in relation
to the IMU body frame. A fixed rotation matrix is required to convert the accelerations
from the IMU body frame into the fixed navigation frame which will be introduced later
on.

On the other hand, gyros measure the vehicle angular rates in relation to the IMU body
frame of reference and like in the case of accelerations, a fixed rotation matrix converts the
angular rates measured by the gyros in the IMU body frame of the gyros into angular rates
in the vehicle body frame. The gyro data are utilized to produce a rotation matrix, which
transfers the accelerations in the platform frame into the navigation frame of interest.
The navigation system processes this matrix to determine its position and velocity of the

vehicle. [7].

2.2 Coordinate Frames

The various coordinate frames and associated nomenclature used in this thesis are defined
in this section. Every coordinate system is a Cartesian orthogonal system.

2.2.1 Earth-Centered Earth-Fixed Frame (ECEF)

This coordinate system revolves with the earth and has its origin at its center of the earth.
Figure 2.1 shows the definition of the axes directions: the x-axis points towards the point
where the prime meridian and the equator cross, the z-axis points towards the mean polar
axis, and the y-axis completes the right-hand coordinate.

2.2.2 Local Geodetic Frame (Navigation Frame)

In everyday life, this coordinate system is frequently referred to as the north, east, and
down directions. Fitting the tangent plane to a fixed point on the geodetic reference ellipse

13
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yields the result.This point will serve as the coordinate system’s origin, and the x-, y-, and
z-axes all point in the direction of true north, east, and the earth’s interior, respectively,
to complete the right-hand coordinate system. This frame is sometimes also referred to
as the ENU frame(East-North-Up frame).The figure below (Figure 2.1 ) provides further
clarification of the previously discussed concept.

Z

N (True North)

Prime Meridian

Figure 2.1: ECEF and Local Geodetic Frame

2.2.3 Vehicle Body Frame

It is the frame associated to the body moving in our robotic platform. A generic term
"vehicle' is being used but in the case of indoor localisation it is an UAV/Turtlebot
(Figure 2.2), in the case of outdoor localisation it is an AgileX rover. The x-axis points
forward, the z-axis descends through the vehicle, and the y-axis completes the right-hand
coordinate system. The coordinate system originates at the vehicle’s centre of gravity.

Figure 2.2: Vehicle body frame of a TurtleBot

14
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2.2.4 IMU Body Frame

It is the frame associated to the IMU sensor used during the course of the thesis. In this
thesis,the coordinate axes of the IMU body frame is perfectly aligned with the coordinate
axes of the Vehicle body frame. In cases where they cannot be perfectly aligned, then we
would need an additional rotation matrix.

Figure 2.3: IMU body frame

2.3 Coordinate Frame Transformation

Converting a vector from one coordinate system to another is frequently required in
navigation systems. In our analysis, this is essential for transitioning between the body
frame and the navigation frame. Two distinct approaches to obtaining a mathematical
equation for the rotation matrix connecting two orthogonal, Cartesian coordinate systems
are discussed in this section.

2.3.1 Projection

In the first technique, a vector is projected onto the orthonormal bases of the two coordi-
nate systems in order to find a mathematical formula for the rotation matrix related to
coordinate systems. As shown in Figure 4.2, let {i,, j,, ka} and {i,, j,, ks} be the unit
vectors spanning two orthonormal coordinate systems with the same origin. The unit
vectors spanning coordinate system A can therefore be used to express vector P, that is:

P = x4i, + Yaj, + 2aKa (2.1)

15
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— Ja

= b

Figure 2.4: The directional cosine matrix connecting the two orthonormal coordinate
systems can be found by projecting the vector p onto their bases.

Since the coordinate systems are orthogonal, the vector P can be projected onto coordinate
system B by taking the dot product of P with the unit vectors of the B-frame.

Ty = <ib> P> = <ia7 ib>xa + <ja7 ib>ya + <ka7 ib>2a
Yp = <jb; P> = <ia7jb>xa + <ja7jb>ya + <ka7jb>za
Ry = <kb7 P> = <ia7 kb>xa + <ja> kb)ya + <ka7 kb>Za
The cosine of the angle between vectors ix and j;, denoted as cos(f; i), is the scalar

product (i, ji). The angle 6, ;; between the two vectors is expressed in this form. This
relationship can be written in matrix form as:

P, =R/P, (2.2)
Where
<ia7 ib> <ja7 ib> <ka7 ib)
R) = |(ia,jb)  (ardb)  (Ka,jb) (2.3)
<ia7 kb> <ja> kb> <kaa kb)
Or

coS(Biain) €0S(bjain) €OS(Okain)
R. = |cos(Biajp) c08(0jajp) cOS(Oran) (2.4)
co8(biakp) €0S(0japp) COS(Okakb)

The rotation matrix R? is a so-called directional cosine matrix. Although R? has nine
elements, it possesses only three degrees of freedom and can be uniquely described by
three Euler angles, which are collected in the vector 6.

The directional cosine matrix is an orthonormal matrix, meaning that:
R)R)" =R} Rl =1,
16
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where I is the identity matrix. Hence, the inverse of the rotation matrix is the same as
its transpose [7].

2.3.2 Plane Rotation

Plane projection is a rather convenient method for constructing the rotation matrix. When
two coordinate frames share the same origin, their transformation can be expressed using
plane rotations, where one frame is rotated around a vector v. The overall rotation matrix
between two frames connected by multiple plane rotations can be found by multiplying
the individual rotation matrices in a certain order. The order depends on wether the
rotations are about the current frame or a fixed frame.[7].

For the following example, let us assume three successive rotations:
1. A rotation of angle «; around the z-axis of Coordinate System A.
2. Then a rotation of angle 79 around the y-axis of the current frame.
3. A final rotation of angle «v3 around the x-axis of the current frame.

In Coordinate System A, we begin with an arbitrary point {z,, ¥4, 2, }. The first rotation,
denoted by 71, is performed around the z-axis of Coordinate System A.

The rotation matrix for the first rotation is given by:

x cos(v1) —sin(y) O] [zq
y'| = |sin(m) cos(m) Of |4 (2:5)
2 0 0 1 |2,

The coordinates {2’,%/, 2’} represent the mapping of the coordinates {4, ya, 2.} in the
intermediate frame. This is further illustrated in Figure 2.5a. Following this, another set
of rotations, s, is applied around the y-axis of the current frame. This set of rotation is
shown in Figure 2.5b.

x’ cos(y2) 0 —sin(y)] [«
y'| = 0 1 0 y' (2.6)
2" sin(y2) 0 cos(y2) | | &

Finally, a third and last rotation, denoted by =3, is performed around the current x-axis
(Figure 2.5¢). This rotation completes the transformation, resulting in the mapping of
the point {x,, Ya, 24} from Frame A to Frame B, giving the new coordinates {xy, yp, 25}

Tp " 1 0 0 "
uw| = |y"| =10 cos(yz) —sin(y3)| |y’ (2.7)
2 2" 0 sin(ys) cos(ys) | [2”

17
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Multiplying the rotation matrices in equations 2.5, 2.6 and 2.7 in a certain order of
rotations yields the rotation matrix from coordinate system A to coordinate system B.
The rotation matrix R? is found as follows.

R) = R.(73) - Ry(72) - Ra(m) (2.8)

Multiplying all the rotation matrices and finding the transpose, we get:

COS Yo COS V1 COS Yo Sin Yq — sin 7y
RZ = |Siny3 Sin“ys COsy; — COSy3sin-y; siny3sin -y, siny; 4+ cosy3 cosy;  Siny3 cos Y
COS Y3 sinya cos 7y + sinygsiny; €osy3sin s siny; — siny3cosy;  COS Y3 COS Y
(2.9)

It is important to note that if the subsequent rotations are based on a fixed frame A then
the order of multiplying with rotation matrices will reverse. In that case, the rotation
matrix, R will be as follows:

(2.10)

/

2y =2 y/ _ y// " =z

(a) Rotation around z. (b) Rotation around ¥’ (c¢) Rotation around z”.

Figure 2.5: Successive rotations around coordinate axes.
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Chapter 3

Kalman Filters

3.1 Introduction to Kalman Filters

Rudolf E. Kalman developed the state estimation method known as Kalman filtering in
1960. It is utilised in numerous application domains, such as spacecraft navigation, robotic
motion planning, signal processing, and wireless sensor networks, because of its ability to
extract valuable information from noisy data and its low computing and memory needs.
The typical use of Kalman filtering is focused on robotic applications and state estimation.
Kalman filters are designed assuming that the noise is Gaussian, which sometimes creates
a common misconception that Kalman filters can only be used with Gaussian noise[10].

In our thesis, two special types of Kalman filters will be used- Extended Kalman Filter
(EKF) and Error State Kalman Filter (ESKF).

3.2 Extended Kalman Filter

Kalman filters, are perfect when we are dealing with systems which behave linearly and
are normally distributed. Unfortunately for us, these conditions rarely stand true when
we try to deal with real life situations, in which linearization is necessary. In these cases,
we must adapt to Extended Kalman Filter (EKF). In this thesis, EKF will be exclusively
used for UWB based position estimation.

The system is modeled by the following non-linear equation (3.1) which is observed by
the measurement model (3.2):

L = f(zck,l,uk,l) + wyg (31)

Zp = h(il?k) + vy (32)

The process starts by executing what is known as the Time Update, which propagates
the state estimate x and its covariance matrix P over time.

x, = f (é—ktlvak—l) + qi (3.3)

P, = F.P/ Fl' + Q. (3.4)

19



Kalman Filters

where:

e q;: The mean vector of the system state noise vector wy, which has a Gaussian
distribution.

e Q;: The covariance matrix of the system state noise vector wy.

o F}: Based on the prior a posteriori state estimate #; ,, the Jacobian of the system
transition function f.

Following the discovery of these a priori values, the algorithm moves on to the "Measure-
ment Update" adjusting the estimations and determining a weight factor for the measures
based on their covariance matrix and the estimated state:

S, = H,P_H! + R, (3.5)
K, = P H}'S;! (3.6)
sy =z —h (&) (3.7)
T =& + Ky.sy (3.8)

Pl = (I - K.H,) P, (3.9)

where:

~

« Variables with (*) are estimates, (7) are prediction and (*) are correction.
e S; is the covariance matrix of the innovation vector.

e R, is the covariance matrix of the measurement noise vector vy.

o Kj is the Kalman filter gain.

e 55 is the innovation vector.

o Hj is the Jacobian of the observation function h, computed around the a priori state
estimate 2 .

The performance of the KF depends on a few factors such as how the system is modeled
and how well the initial parameters are chosen. In the following section, we will explore
what are state models and measurement models, as well as the specific model selected for
this study [11].

3.2.1 State Model

The state model is used to describe the system dynamics. There are a few type of models
that could be used in our scenario which are: P model (Position), PV model (Position-
Velocity) and PVA model (Position-Velocity-Acceleration). For this study, only P and PV
model were studied. The models that are displayed here are in three dimensions (n=3)
[11].
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P model

This model can be thought of as a static version of the KF'; that is, it only updates the
measurements. The model usually serves two purposes: tracking where due to low sam-
pling frequency, a dynamic model will not work well and estimating certain measurement
parameters while knowing the precise location. In case of tracking (our case), the matrix
Q. which is one of the parameters greatly affects the KF, where lower values allow us to
have a smooth output, but in turn we get a high settling time. For this reason, a variable
Q) is given as a function of the time interval between two measurements At; and the
standard deviation o, of a normally distributed acceleration vector. The state is modeled
as follows:

T = [:v Yy Z}T (3.10)
LT = f(wk—la O) = InxnTk—1 (311)
Qk = [Atklnxn] [Atk]nxn]To-g (312)

PV model

It is a dynamic KF that makes the assumption that the velocity is almost constant between
the Aty estimate intervals. Once more, process noise is crucial, and if we take into account
minimal gaussianly-distributed acceleration noise, we will get a smooth tracking. Slow
reaction or even divergence will be observed on non-linear manoeuvres (where velocity is
no longer constant); yet, some of these manoeuvres can be followed with noisier tracking
if process noise is set well. The expression for it’s state vector is:

T
Ty = [x Yy oz vy vy vz} (3.13)

Losn Atplnsn
xy = f(2-1,0) = [O i ]kx ) ] Tp—1 (3.14)

T
;Atifnm] [;Atifnxn] 2 (3.15)

3.2.2 Measurement Model

The measurement model, which follows the KF design, explains all of the variables and
phenomena associated to the measurements as well as their relationship to the state vec-
tor. The approach or techniques employed as constraints are taken into consideration
while formulating the measurement equation. Time of arrival, time difference of arrival,
angle of arrival, and received signal strength (more about them in section 4.1.1) are some
of the most often employed for position tracking. The majority of them can be trans-
formed into approximate locations or distances. In this thesis, only distance measurements
measurement model was studied as we worked with time of arrival.
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Distance Measurements

Tracking systems typically rely on some form of distance estimation. These measurements
can be represented as a vector zy = [21,29,...,2n|, Where each z; corresponds to an
individual measurement. Although these estimates may have uncertainties, they generally
follow a Gaussian distribution, making the EKF' a suitable choice for state estimation.

Z; = dz + ng, n; ~ N(O, 0'2) (316)

di,kz = \/(l’k — T k) + (yk - yi,k)2 + (Zk - Zi,k)2 (3-17)

\/ (k= Trefr k) + (Yk — Yrer k) + (26 — Zref1 )2
\/ T — Tref2, k + (yk - yref2,k>2 + (Zk - Zref2,k)2 (318)

T —Trefl,k Yk —Yrefl,k Zk —Zrefl,k 0 O

drefl k drefl k drefl k
ah s s s
Lk —Tref2,k Yk —Yref2,k 2k —Rref2,k .
Hy = o - dref2, i dref2, i dref2, i 00 (3‘19)
T=x)
— i 2 2 .
R, = diag ([O-drefl,k P D (3.20)

where, Hk is linearized measurement model (3.2), whose size depends on the model being
used. Rk is the measurement noise covariance matrix. In order to adjust the a priori
estimate, all of the distance measurements that are available at each step must be used.
Sometimes, if the a priori estimate is good, no significant improvement is noticed [11].

3.3 Error State Kalman Filter

Error State Kalman Filter (ESKF), also known as the Error State Extended Kalman
Filter (ES-EKF). The main difference between EKF and ESKF is that in ESKF the error
are modeled separately from the state. The non-linear system dynamic equation is:

241 = C(Zk, uk) + wy (321)
The term z,; is the state, which can be further broken down into:

where x, represents the position, v, represents the velocities and 6, are the euler an-
gles. The wuy represents the input of the system which are the accelerations and angular
velocities:

U = [ak wk} (323)
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The vector wy, is the process noise which are the external factors such as disturbances
and unmodeled forces etc. The main concept of this filter is separating the state vector
(2zr) and the input vector (uy) into two parts as follows:

zr =2z, + 2" (3.24)

u, = up, + uy " (3.25)

where 2z} is the nominal state and 2{™ is the error state, w} is the nominal input u;™ is

the accelerometer and gyroscope bias. Assuming small 2{™ and w;™ and applying taylor

expansion to ¢z, ug) leads us to:

Zp 0210 R ez, uy) + Crpdzy” + Copduy” + wy, (3.26)

where C' ;, and Cy, are defined as:

Cir= 80(8zz,u) s Cop = ac(;(;u) - (3.27)
=z; =uj
Let’s assume we have a perfect prediction (no noise), the nominal state will be:
Zp = oz, uy) (3.28)
Then the linear model for the error becomes:
dzpy = Cr oz + Copouy™ + wy, (3.29)

Observing that dx, = [0z, duy] it is evident that Cy and Chy corresponds to the top
part of the 1, matrix, which is also known as the transition matrix. The 1, matrix is a
15 by 15 matrix, where the bottom 6 x 6 stores the IMU bias values. Since the model
(3.29) is linear, we can apply the standard Kalman filter:

[ﬁjg ﬂ A7 ng’;] (3.30)

el (o m 3] 5]
Ky = Py H, (H.P_Hy + Ry;) (3.32)

P, = P, — K, H, P (3.33)

P, = ‘I’kPk‘I’z + Qa (3.34)

Where:
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e Variables with (7) represents the prediction values, so for example 62, represents
the predicted error state at time k+1 and 02, represents the estimated error state
at time k.

e Y is the measurement vector

o Ky represents the Kalman filter gain.

e P, : Predicted error covariance matrix.

o P.: Updated error covariance matrix.

e H;: Measurement matrix.

e R;;: Measurement noise covariance matrix.

In order to create an EKF, z nom is now added to both sides of equation (3.30) and
replaced with the current estimate in all equations. The time and filter update for the
estimates are provided below:

Zpi = (g, i) (3.35)
0y = [Wrl10:15,10150s, (3.36)

0Zp| 0%, B e
Lmk} - l(ga;] + Kk <yk Hj, LA"I:D (3.37)

Further analyzing (3.37), we see that @, term (the IMU biases) is Ogx; because the term
Y, only contains information about the position. Similarly, 62, term is Ogx; because this
is the term is fed back to update the state, so this must be reset to zero at every update
step [7]. The final equation then is:

Bl oafemfE]) o

ouy, 0wy,

Now that we have defined our ESKF, we will explore how it was utilized to achieve sensor
fusion, integrating multiple measurement sources as detailed in section 5.3.
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Chapter 4

Overview of Localization

Methods

4.1 Indoor Localization Techniques

Modern location-based (GNSS) service technologies are ideal for outdoor settings where
there is wide space for satellite signals to easily reach the devices. Unfortunately for
Indoor localization these services are of little to no use for us [12]. In an indoor envi-
ronment, a GNSS device’s power is significantly reduced because of signal attenuation
caused by different building materials [6]. There are a few different ways in which we can
have indoor localization such as Magnetic Based Navigation, Sound-Based Technologies,
Radio Frequency (RF) Based Navigation and many more [13]. In this thesis we are more
interested in RF Based Navigation and particularly Ultra-Wide Band (UWB) and the
hybrid performance of UWB with INS.

4.1.1 Ultra-Wide Band (UWB)

In recent years, UWB technology has emerged as a radio communication technology that
uses communication between the base station (also called anchors) and known position
data to determine a tag’s location based on the geometric relationship between the tag
and the base station. In comparison to other technologies, UWB technology has the
following advantages: good robustness, strong resistance to interference, high resistance
to multi-path effect, and accurate positioning. However, compared to other positioning
systems, UWB indoor positioning systems are more complicated and consequently more
expensive to install [14].

To estimate the distance between the anchor and the tag, it is required to build a series of
equations, based on the selected positioning model. There are different types of positioning

models, most common being TOA, TDOA, RSST and AOA [14].

TOA

Time of Arrival (TOA) is the most common positioning model in ranging, which uses
which calculates the distance between the anchor and the tag using the wireless signal’s
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time of flight. The TOA is further divided into two types: One-Way time-of-flight Arrival
(OWR) and Two-Way time-of-flight Arrival (TWR).

One-Way time-of-flight Arrival works as shown in Figure 4.1. The clocks of the anchors
and the tag must be synchronized. An anchor in the vicinity receives a signal that a tag
transmits to its region at a specific moment, therefore the distance between the tag and
the anchor is determined by:

distance = ¢ x (T} — Tp) (4.1)

where c is the speed of light, T} is when the anchor receives the signal and T} is when the
tag sends the signal.

Tag Anchor

t‘r "t

Figure 4.1: Operating Principle of OWR

Two-Way time-of-flight Arrival on the other hand is a ranging method based on the fact
that the tag and the anchor communicates with each other. The anchor sends a signal at
time Ty and it arrives to the tag at T,. The tag responds at Tj, which is intercepted by
the anchor at T7. The time to reply T}.cpy is:

Treply = Tb - Ta (42)

Then the distance is:
c X (Tl - TO - Treply)

. (4.3)

distance =

Where c is the speed of light. The divided by 2 term comes from the fact that its a
round-trip time. This is further explained figuratively in Figure 4.2.
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Anchor Tag
To request
T :
I Eeply
____________________________________ T,
E: response
t A 4 v t

Figure 4.2: Operating Principle of TWR

Syncing the base station and tag clocks and determining the number of tags are two issues
that are resolved by the TWR approach. This restricts how many tags can communicate
simultaneously because the base station can only communicate with one tag at a time
[14].

For 3D localisation, atleast 4 non coplanar anchor nodes are required [15]. If our anchor
nodes have the following coordinates:

1, Y1, 21)
2)

(
(552,927 Z
(963,?/3723
(

) (4.4)
T4y Y4, 24)

S

The tag is located dy, ds, d3, dy from the four anchor nodes. If the tag’s three-dimensional
coordinates are (xo, %o, 20), we can obtain:

(d1)* = (x1 — 20)> + (31 — ¥0)* + (21 — 20)°
(d2)? = (x2 — 20)> + (y2 — 10)* + (22 — 20)” (4.5)
(d3)? = (x5 — 20)* + (y3 — y0)> + (23 — 20)°
(da)® = (x4 — 20)> + (ya — Y0)* + (24 — 20)°

The ranging data d, ds, ds, dy are provided by the UWB system. From there using the
set of formulas (4.5), we can create a set of equations to find (o, o, 20) [14].
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TDOA

Time Difference Of Arrival (TDOA), like the time-of-arrival-based technique TOA, em-
ploys the airborne signal propagation time to accomplish ranging. TDOA must measure
the distance difference between several anchors and the tag in order to determine the
tag position, as opposed to measuring the distance between a single anchor and the tag
like TOA. Only the tag must transmit data to the base station in order for the TDOA
approach to work; neither signal synchronisation nor communication between the tag and
the base station are necessary [14].

RSSI

The Received Signal Strength Indicator (RSSI) method is based on the fact that a signal
becomes weaker with distance. Consequently, the power received by the tag and the
signal’s distance may be calculated using the following equation:

_ BG,GyXT

By(S) = (@rS) (4.6)

where A is the signal wavelength, 7 is the regional environmental path loss factor, G is
the gain when the base station transmits the signal, Gy, is the signal gain when the tag
receives the signal, P, is the frequency of the signal received by the tag, P; is the transmit
power of the signal transmitted by the base station, and S is the distance transmitted.

Since the RSSI method is independent of time, it also does not require a high degree
of synchronisation between the anchor and tag clocks. However, the environment has a
significant impact on the signal’s loss factor during propagation, and even small changes
in the environment can have a significant impact on the results. As a result, the data
error and positioning error are both larger [14].

AOA

The angle at which an incoming signal reaches a receiver in relation to a reference direction
is known as the Angle of Arrival (AoA), and it is usually measured with an antenna
or array of antennas. Techniques like phase difference, time difference, or amplitude
fluctuation across many antennas are used to estimate AoA. The AoA approach is simple
to use and also mitigates the issue of miss synchronized tag and base station clocks, but it
comes at a comparatively high cost and necessitates the arrangement of several antenna
matrices [14].

4.1.2 Hybrid UWB-IMU Localization

UWB has its own share of problems, which are multipath effects where UWB signals are
reflected off floors, walls and objects, making it challenging to consistently provide reliable
ranging results. Putting the receivers in a more open region or removing any barriers
that might induce those inferences would be simple ways to get around multipath effects.
However, in most interior situations, this alternative might not be feasible. UWB is also
not able to provide us with euler angles, which is needed for pose estimation, a must-have
for autonomous localization [16].
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The IMU sensor provides us with acceleration and gyroscope data which is fed into the
INS. The IMU is a popular sensor for robot pose estimation because of its compact size,
quick update frequency, and excellent accuracy. Nevertheless, there will be cumulative
errors because INS determines its position by integration. Eventually, after a lengthy
operation, the position estimation will drift, hence the INS can not be used on its own.
The integration of UWB and INS can yield its benefits. INS, on one hand, increases short
term positioning accuracy. On the other hand, UWB can maintain long term position
accuracy by suppressing the integral divergence of the INS [17].

In the following section, you will see the results of the HYBRID SIMULATOR, developed
at LINKS Foundation.

Simulation Setup

The hybrid IMU-UWB simulator was implemented using Matlab. A virtual lab with
UWB anchors was set up, and a path was generated. From the generated path, the
following information was extracted:

1. Position data (x, y, z coordinates)
2. Acceleration data (Acc,, Acc,, Acc,)
3. Gyroscope data (w,, wy, w;)

The ranging from each anchor was calculated based on the positional data, consider-
ing a specific UWB range. The generated path served as the ground truth. The real
measurement was then modeled as:

Myea1 = Myrue + 0 - N(0,1) (4.7)
where:
o M,cqa is the modeled value (ranging, acceleration and angular velocity).
o M ye is the ground truth generated with the help of Matlab

o o is the standard deviation which differs in each case. In the case of finding the set
of real rangings, we use the ranging standard deviation which is the spread of range
(distance) measurements due to noise, interference, and environmental factors. For
the acceleration. For the acceleration and the angular velocity, the o represents the
random noise in the environment the IMU experiences in real experiment faces.

« N(0,1) generates a random number between 0 and 1 which represents the induced
error, that follows a Gaussian distribution with mean value 0 and standard deviation
of 1.

After we have our real data, we will apply the kalman filters discussed above. The EKF is
used to estimate our UWB position (input ranging parameters, output positional data).
The ESKF is used to determine the hybrid positional data and the euler angles.
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Simulation Results

In this section we will see the results of three simulation carried out by letting randn
decide different set of data for us. Below are the UWB solutions:

UWE Solution
3DLocErr [avg=0.118, std=0.048, rmse=0.128] m

Exact position
B  Anchor Nodes
UWB position

Figure 4.3: UWB solution

alg=EKF, errX [avg=0.007, std=0.048, rmse=0.048] m

10 T T T =T
‘ xEst
x True
8l .
E
=
61— .
4 | | | | |
0 1 2 3 4 5 6
time [s]
2 alg=EKF, errY [avg=0.002, std=0.066, rmse=0.066] m
T
y Est
| y True
20— =
E
-
10— =
i | | | | |
0 1 2 3 4 5 6
time [s]
alg=EKF, errZ [avg=0.050, std=0.086, rmse=0.100] m
I I
[ zUWB o~
45 2This P———— e S e T -
— / = E —
£ 4
Ngs5 |- =
3 — =N e — —
25 | | | | |
0 1 2 3 4 5 6

time [s]

Figure 4.4: UWB Positioning (X, Y, Z)
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Now let us take a look at the hybrid solution:

IMU/UWB HYBRID Solution
3DLocErr [av%=0.086, std=0.030, rmse=0.091] m

®  Start position
n Anchor nodes
2 = Exact position
6 = UWB/IMU
= UWB solution
4
4
E
N 2
d 1
0
30
25 d
20
15 o
10
y [m] 9
5
0y x[m]
Figure 4.5: Hybrid Solution
alg=EKF, errY [avg=0.028, std=0.042, rmse=0.051] m
i T T < T =
xTrue
xEst
8l
E
=
61—
B | | | | |
0 1 2 3 4 5
time [s]
0 alg=EKF, errY [avg=0.028, std=0.042, rmse=0.051] m
20— \\\\\
E i
= eSS
o | | | | |
0 1 2 3 4 5
time [s]
alg=EKF, errZ [avg=0.043, std=0.050, rmse=0.066] m
45 I — T — —————————F—————
2 True —
zEst
al-
E
N
35—
3 —c + = | | | |
0 1 2 3 4 5

time [s]

Figure 4.6: Hybrid Solution Positioning (X, Y, Z)
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And now finally lets take a look at the euler angle estimation:

The above results are of simulation 1.

roll [deg]

Roll in ENU, RollErr [avg=-0.093, std=0.552, rmse=0.560] deg
T T

roll True
80 roll Est

2 3
time [s]

Pitch in ENU, PitchErr [avg=0.106, std=0.249, rmse=0.270] deg
I

pitch True
pitch Est

74\ T T
/\

time [s]

Figure 4.7: Euler Angles

simulation 1 are present in the table below.

The results of the

\
10— / \ 1
/ \
5 \ —
\
0 — -
5 | | | | |
0 1 2 3 4 5
time [s]
Yaw in ENU, YawErr [avg=0.826, std=1.087, rmse=1.365] deg
I I I
yaw True
150 |- yaw Est s
100 — —
50 — / ]
0 | | | | |
0 1 2 3 4 5

other two simulations and

Sim No. | UWB 3D Positional Error (m) | Hybrid 3D Positional Error (m) | % Improvement | Err Roll (°) | Err Pitch (°) | Err Yaw (°)
1 0.128 0.091 28.91 0.560 0.270 1.365
2 0.112 0.085 24.11 0.559 0.269 1.349
3 0.159 0.115 27.67 0.515 0.258 1.434

Table 4.1: Comparison of UWB and Hybrid 3D Positional Errors and Euler Angle Errors

The results clearly show that, the implementation of hybrid solution is worth the cost
because we have almost 25% improvement in our solution from UWB only solution. In
indoor environments this is a lot and in-fact, with this we also get euler angle estimation,
which is also extremely accurate.
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4.2 Owutdoor Localization Techniques

Among outside localisation techniques, Global Navigation Satellite Systems (GNSS) are
the most widely utilized. These kinds of systems are made up of groups of artificial
satellites in high orbit that are geo-referenced and constantly send out timing and location
information. Generally, the GNSS can have a positional localization error of 1-10 m or
in some cases even more [18]. This unreliable range can be a issue because autonomous
navigation requires very precise localization data. To improve the localization error, the
most common solutions are GNSS paired with RTK [19], GNSS paired with IMU [8] or
GNSS-RTK paired with IMU [20].

4.2.1 GNSS

A Global Navigation Satellite System (GNSS) consists of constellations of medium-Earth
orbit satellites that provide global or regional positioning and timing services. Currently,
there are four primary GNSS systems in use: Galileo (E.U.), Beidou (China), GLONASS
(Russia), and GPS (U.S.). There is also the Indian NavIC which provides coverage for
the Indian area and 1500 km beside it and Japanese QZSS in East Asia and Oceania
region. The time-of-arrival (TOA) notion is used by the Global Navigation Satellite Sys-
tem to calculate the user’s position. The receiver calculates the satellite-to-user distance
by estimating the satellite signal’s travel time and multiplying it by the speed of light.
When enough measurements are available, the user can estimate the satellite’s position
through trilateration because the receiver knows its exact position thanks to the modu-
lated data delivered by the signals. A satellite’s theoretical visibility does not necessarily
translate into its actual use for location determination; obstructions or poor signal quality
could prevent the receiver from processing the information. Theoretically, when at least
four satellites are visible, the user can locate the point in three-dimensional space that
corresponds to its position by intersecting the four spheres that were created from the
corresponding satellite-to-user distances, as illustrated in figure 4.8 [21].

Figure 4.8: Four satellites for three-dimensional trilateration[1]
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To achieve precise positioning, GNSS receivers use pseudoranges, which represent the
estimated distance between a satellite and the receiver. These pseudoranges are derived
from the difference between the satellite’s broadcast time and the receiver’s recorded time,
multiplied by the speed of light. However, pseudoranges are affected by several error
sources, including ionospheric and tropospheric delays, satellite clock drift, and receiver
clock bias.

The representation of position in ECEF coordinate frame has less significance in navi-
gation. Hence, the ellipsoidal representation (longitude, latitude and altitude) are more
commonly use for coordinate representation. While working on outdoor localization for
this thesis, the ENU coordinate frame was used to evaluate the results. The relation
between the ECEF coordinates and the ellipsoidal representation is as follows [22]:

X = (N + h)cos ¢ cos A (4.8)
Y = (N + h) cos ¢sin A (4.9)
b? )
Z = (azN + h) sin ¢ (4.10)
N = 2’ (4.11)
\/a2 cos? ¢ + b2 sin? ¢

where:
e X,Y,Z are coordinates in ECEF-frame.
« )\ is longitude, ¢ is latitude, h is the height.
o N is the prime vertical radius of curvature.
e a and b are the semi-major and semi-minor axes of the ellipsoid

Now, the relation between the ECEF coordinate frame and the ENU coordinate frame is
as follows:

—sin A coS A 0
REcsr = | —singcos A —singsin A cos ¢ (4.12)
cosgcosA  cos¢sin A sin¢

Lenu X - XO
Yenu | = Rgg]gF Y — YEJ (413)
Zenu Z - ZO

where:

o Xo, Yy, Zy is the reference position which is a fixed point in ECEF (Earth-Centered
Earth-Fixed) coordinates, usually taken as the starting point for the ENU frame.

« RENER is the rotation matrix, used to convert points in ECEF frame to ENU frame.
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GNSS has its own share of limitations in areas where there are obstacles between satellites
and receivers. These can lead us to have multipath errors (when the receiver, receives
multiple signals due to reflection). These cases can make it difficult for us to reach high
levels of accuracy. In these case, we can apply GNSS integrated with Real Time Kinetic
positioning (GNSS-RTK).

GNSS-RTK is a solution developed to mitigate errors caused by the earth’s atmosphere
which influences satellite-transmitted signals when GNSS is used for independent posi-
tioning. A real-time navigation device can attain precision down to the centimeter level
by correcting for computation mistakes brought on by atmospheric signal interference. A
base station is set up at known location. The base station continuously receives GNSS
signals and then it calculates the difference between its known position and the GNSS
based position, By doing this, it can identify the errors affecting GNSS signals. On the
other hand, we have our vehicle, which also receives the GNSS signals, which gets cor-
rected, by the base station. The corrections are transmitted over radio, internet or other
communication methods. It is important to note that, the accuracy of RTK depends on
how close we are to the base station and wether there is a clear line of sight (LOS) to
the base station. If we are too far from the base station, then the improvement in RTK
solution is not that much. Solutions coming from GNSS-RTK can be precise at centimeter
level at times [19].

4.2.2 Hybrid GNSS-IMU Localization

GNSS on its own as previously discussed is not extremely precise, and it also does not
have a very high frequency often maxing out at 50 Hz, which is not good enough for
autonomous system. GNSS-RTK, without a proper LOS with base station, can also be
a burden, given the extra relatively higher costs. This also means that if needed in a
GNSS/GNSS-RTK denied environment (for example under a bridge, in a tunnel etc),
we would have even worse positioning data. To address these limitations, integrating an
IMU with GNSS/GNSS-RTK provides a more robust and reliable localization solution,
ensuring continuous navigation even in GNSS/GNSS-RTK denied environments and also
provide us with the exact orientation at all times, at a much higher refresh rate.

The system integration design is exactly the same as the case with UWB and IMU. The
GNSS is used for long term estimation and the IMU is used for short term estimation
with high frequency. Similar to indoor localization, we can achieve better results than
standalone GNSS/GNSS-RTK when integrated with an IMU. There have been multi-
ple studies, showing how effective GNSS/IMU solution can be [8], [7] (only talks about
GPS/IMU localization). Similarly, GNSS-RTK paired with IMU showed great results
[20].

Let us summarize the crucial findings in these papers:

 In [8], the author investigates the fusion of low cost IMU and GNSS with the help
of EKF and ESKF. The GNSS signal was acquired at 1 Hz and the IMU acquisition
frequency was 100 Hz. There were three different types of simulation trajectories
set up- Oval, Serpentine and a Polygon. The author evaluated the positional errors
along z, y and z (mentioned in the paper as lateral, longitudinal and vertical).
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The general trend was ESKF fusion was better than EKF fusion. The GNSS only so-
lution was as imagined, the worst of the lot. Looking at the OVAL based simulation,
it is seen that we could expect the following percentages of improvement:

Filter Lateral (%) Longitudinal (%) Vertical (%)

EKF 18.0 29.9 -17.4
ESKF 20.3 31.4 43.6

Table 4.2: Improvement Percentage of EKF and ESKF Over GNSS

o In [20], the author investigates the integration of GNSS-RTK and MEMS IMU with
extended particle filter (EPF). The fusion was still done with the help of EKF, EPF
was used after obtaining the gaussian approximates. The GNSS data was acquired
at a frequency of 1 Hz and the IMU data acquisition frequency was 50 Hz. In this
study, the tests were carried out in open sky and GNSS-denied environments (under

bridge).

The following table contains the 3D localization results achieved by the tests. The
negative entry means decrease of performance in results. For reference, the percent-
age improvement of GNSS-RTK from GNSS was 98.75% in open sky condition and
23.87% under the bridge.

Method Open Sky (%) Under-Bridge (%)
GNSS-RTK/IMU EKF -33.33 32.18
GNSS-RTK/IMU EPF -33.33 64.97

Table 4.3: Improvement Percentage in Mean Localization Error Compared to GNSS-RTK
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Chapter 5

Inertial Measurement Unit
(IMU) for Localization

5.1 Selected IMU And Data Acquisition

For this thesis, the TDK ICM-42688-P IMU was used. It is a low-cost MEMS IMU. The
ICM-42688-P chip contains an Accelerometer and a Gyroscope accessible via SPI and 12C.
Due to the limited capabilities of the MCU, only SPI 4 wires (full- duplex) is supported.
An optional magnetometer could have also be connected but for the purpose of this thesis,
we did not use any magnetometer. The IMU board is powered with a micro-USB cable
[23].

The different protocols of communication can be accessed with different jumper con-
nection, available on the IMU. During the activities carried out in this thesis, the SPI
communication protocol was used, for which the jumper connection is as shown in Figure
5.1.

oo 0000O0O0O0 O™
000000

Figure 5.1: Hlustration of IMU jumper connections and orientation axes.
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The figure above also shows the default coordinate frame of the IMU (Z axis coming out of
the plane of the page). This could also be changed by configuring the mounting matrix.
In this study, the default coordinate frame was used without modifying the mounting
matrix. The IMU can be configured with multiple frequencies (1 Hz, 100 Hz, 1000 Hz
etc); for this thesis, a frequency of 200 Hz was used.

The IMU was designed for multiple uses like to detect steps, detect wake and sleep events
and of course the measurement of acceleration and angular velocity. The C code for these
different uses were provided. In this thesis, the C code given for the measurement of
acceleration and angular velocity was modified slightly and used. The data coming from
the USB Serial port of the IMU was logged using C++ code. The logging was done with
the help of a Raspberry PI (Figure 5.3), eliminating the need to have a laptop physically
mounted on the turtle bot/rover. The system architecture is further illustrated in the
figure below (Figure 5.2).

Figure 5.2: System Architecture

Figure 5.3: Raspberry PI 3rd generation
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5.2 IMU Calibration And Functionality Check

For the IMU to function properly, it had to be calibrated, which was done only after the
raw IMU data processor was loaded onto the MCU. To calibrate the gyroscope, hold the
board motionless for about a second. Hold the board motionless on four distinct faces for
about one second in order to calibrate the accelerometer. The calibration process is only
needed when a new code is loaded onto the MCU.

To verify that the IMU was functioning well, a static test along with a gravity-based test
was conducted.

Static test, as the name suggest was carried out by keeping the IMU motionless on a plane.
The expected results of such a test and the measured results are in the table below:

Expected Measured
Average x-axis acceleration (acc,) 0 m/s? -0.1526 m/s?
Average y-axis acceleration (acc,) 0 m/s? 0.1809 m /s>
Average z-axis acceleration (acc,) 9.80665 m/s* ! 9.7248 m/s?
Average x-axis angular velocity (gyr,) 0 rad/s 2.12 x 107° rad/s
Average y-axis angular velocity (gyr,) 0 rad/s 7.47 x 1079 rad/s
Average z-axis angular velocity (gyr.,) 0 rad/s —1.78 x 107° rad/s

Table 5.1: Comparison of Expected and Measured IMU Data

We can see that acc, is very close to its nominal value. The gyr,, gyr,, gyr, are almost
zero like expected. To deal with the acceleration bias discovered acc, and acc,, it was
decided when carrying out the tests, to leave at least 1 minute for initial bias estimation.
Then we can feed this initial bias in the ESKF and let the filter remove the bias.

Now we will take a look at the second set of experiments done, which was the gravity
based test. In this test, the IMU was kept static on different position to measure the
gravitational acceleration along the x, y, and z axes of the IMU (Figure 5.4 shows us on
of the orientation). The results are summarized in the table below:

Test | Expected Acceleration (m/s?) | Measured Acceleration (m/s?)
T1 (9r,0,0) (9.7836, 0.3376, 0.5425)
T2 (—gr,0,0) (—9.7459, —0.0848, 0.9654)
T3 (0, gr,0) (0.1807,9.7982, —0.0273)
T4 (0, —gr, 0) (—0.052, —9.7922, —0.3956)
T5 0,0, g7) (0.0810, 0.1060,9.7271)
T6 (0,0, —gr) (—0.1330,0.0436, —9.8738)

Table 5.2: Comparison of Expected and Measured Accelerations

IThis value represents gr which is the g measured in Turin.
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Figure 5.4: Positive X-axis gravitational acceleration measurement

5.3 IMU Data Integration In Localization

The IMU feeds data into the INS, which by itself is useless, as it determines the position by
integration. Figure 5.5 shows us how the INS in our case works. It needs to be constantly
reminded about the path to be followed. This is where we will use the UWB/GNSS
measurements based on the type of localization (indoor/outdoor). Depending on the
fusion strategy, these measurements can integrated in a "loosely" coupled or a "tightly"
coupled manner.

.tf-H_\‘f(')“ft

A J

figl}

J[;f-—.-i\t(_ )(ﬁ i 5| Position Estimate

d

‘ :H—Af ( . )(ﬁ » Attitude Estimate

0]
=

3

Y

Figure 5.5: ENU INS

In the following section, we will take a look at two coupling solutions. To see how the
equations are derived, please take a look at section 3.3 which talks in depth about the
ESKF.
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5.3.1 Loosely and Tightly Coupled Solutions

When the system is loosely connected (LC- Figure 5.7), it means that UWB/GNSS and
IMU function separately and do not directly share data. This configuration makes advan-
tage of the UWB/GNSS position estimates and does not use raw measurements such as
pseudoranges or TOA rangings data which is used for tightly connected systems (Figure
5.7). For the purpose of this thesis, tightly coupling (TC) solution was only introduced
in UWB/IMU sensor fusion. TC is useful especially in cases where fewer than 4 anchor
nodes are available, as we can still have position estimation [24]. However, we did not
face this issue when carrying out experiments for this thesis.

The use of the filter is essentially divided in two steps, irrespective of the algorithm
selected:

1. Prediction- Happens when we do not have any UWB/GNSS data, we predict the
state based only on the IMU (5.1)-(5.4)

2. Update- Happens whenever we have a UWB/GNSS update (5.5)-(5.9). The filter
corrects the predicted state using measurement updates from UWB/GNSS. The up-
date phase is then followed by a predict phase again(5.10)—(5.12) using the estimated
values.

Loosely Coupled Solution
Prediction Phase

u; = ug + oty (5.1)
Zi = (2, 0y) (5.2)
Oy = [Wili0:15,10:150T, (5.3)
P, =P ¥ +Qux (5.4)
Update Phase
K;, =P H! (H.P, H + R;)™" (5.5)
0%, = Ky (yx — Hizy) (5.6)
Zr=2, + 02 (5.7)
P.= P, — K;,H,P; (5.8)
w,, = U + 0y (5.9)
try = () (5.10)
0ty = [Wili0:15,10150 Ty, (5.11)
P, = Y. PY] + Quy (5.12)
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INS input Output
— > INS

ES KF UWB/GNSS
&

Figure 5.6: Loosely Coupled Algorithm [2]

Tightly Coupled Solution

Prediction Phase

Same as the set of equations (5.1)—(5.4)

Update Phase

rk‘_ = ||‘2k_ _panchorH + Vg

Hk _ (ﬁf;___ panchor>T
||zk - panchor”

K. = P, H (H.P; H + R;)™"
02, = Ky, (yk — Tk_)
Zr=2, +02
P, =P — K;.H.P;
u, = Uy + 0U,,

Zp = (2, )

0ty = [Wili0:15,10:1508,
P =9.P, U] +Quy
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INS input
(acc.gyr)
— > INS

QOutput

ESKF

UWB Rangings 'h/]z\ -
2

UWB Anchor Paosition

Figure 5.7: Tightly Coupled Algorithm
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Chapter 6

Indoor Localization Solutions

6.1 Setup for Indoor Localization Experiments

6.1.1 Ground Truth (VICON)

When carrying out the indoor localization, the VICON system, was used as ground truth.
The VICON system is made up of 6 cameras (one of them is shown in Fig 6.2b), covering
the entire robotics lab’s cage. The VICON has configurable frequencies (100 Hz, 200 Hz,
300 Hz) and uses infrared cameras which can provide very precise positional data (0.1
mm) and was logged using the help of a customized python script. The VICON system
identifies the moving object with the help of markers placed on top of the moving object.
The markers can be seen in Figure 6.5. The laboratory view from the VICON system
with the identified object, which in this case is a turtle bot can be seen in Figure 6.1. The
VICON camera the view from the VICON camera is presented in Figure 6.2.

Figure 6.1: The robotics lab as viewed from VICON with the turtle bot [3]
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(a) VICON Camera View (b) VICON Camera
Figure 6.2: VICON camera

6.1.2 Lab and Hardware Setup

The experimental setup can be divided in two parts, lab setup and hardware setup. The
robotics lab at LINKS Foundation is shown in Figure 6.4. The area of the lab where the
test was carried out is roughly 12 m?. It consisted of the previously discussed VICON
system and the UWB system. The UWB system consists of five anchor nodes, one of
which is shown in Figure 6.3. Each anchor is equipped with a UWB module (DWM1000),
a MCU (QN9090), and a power management unit. For positioning, we used the TOA-
TWR model. The IMU is also mounted on the Turtle Bot with its frame aligned with
the vehicle frame to eliminate the need for an additional rotation matrix. On the turtle
bot, the tag which is required for UWB communication is also visible. The tag consists
consists of the same UWB module and MCU as the anchor and a Bluetooth LE.

Figure 6.3: UWB Anchor
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(a) Front View

Figure 6.5: Turtle Bot Setup
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6.1.3 Test Cases and Execution

The tests were carried out by moving the turtle bot by hand inside the cage. This was
because the UAVs available at LINKS foundation could not have all the hardware mounted
on it at the same time (IMU, Raspberry Pi, power bank, UWB tag).

Two test scenarios were made with the UWB configuration to better estimate the z-axis
position. The scenarios S1 and S2 are further shown in Figure 6.6 and 6.7. The difference
between the two are the height of anchor 5. It must be mentioned that anchor 5 for
each scenario (ID 9 for S1 and ID 8 for S2), were different in terms of hardware, but for
simplicity have been labeled as anchor 5.

,,////
T
o' -
2 o
15
E
N
i 2
////// ﬂ\
05 //’/ \\
3 = (>
2 =
1 ///(0 ’
gt 05
Y [m] -1.5 X [m]

Figure 6.6: Scenario 1
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Figure 6.7: Scenario 2
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6.2 UWB-Only Positioning

In this section, we will take a look at indoor localization solutions using only UWB. The
UWRB data was acquired at a frequency of 10 Hz. Some initial tests were carried out with
the UWB, comparing the ranging solution it provided against the one computed with the
help of VICON. The table below shows us the average error, standard deviation of the
error and the root mean square error (RMSE) in ranging estimation.

Anchor 1 Anchor 2 Anchor 3 Anchor 4 Anchor 5

Avg Error (m) 0.0616 0.0893 -0.0112 0.0681 -0.2008
Std Error (m) 0.0467 0.0637 0.0572 0.0839 0.1803
RMSE Error (m) 0.0773 0.1097 0.0583 0.1080 0.2698

Table 6.1: Scenario 1

Anchor 1 Anchor 2 Anchor 3 Anchor 4 Anchor 5

Avg Error (m) 0.0533 0.0953 0.0261 0.0448 0.1400
Std Error (m) 0.0576 0.0968 0.0509 0.0979 0.1546
RMSE Error (m) 0.0785 0.1358 0.0572 0.1077 0.2085

Table 6.2: Scenario 2

It was seen that the noise distribution of anchor 1 to anchor 4 were all different, within
an acceptable range. Anchor 5 however in both scenarios, had a large average error and
so all the ranging data was corrected. It is important to also note that anchor 1 to 4
(they were the same anchors) in both scenarios had more or less the same ranging error,
meaning the estimated ranging error is deterministic.

To estimate the position with the UWB, the EKF described in section 3.2 was utilized.
Only P model was used because it was sufficient since we did not evaluate the velocity
and the movement speed was low. The matrix Ry from equation (3.20) which represents
the noise covariance, is generally set to the same value for each anchor. In this thesis, Ry
was also set to Std Error for the corresponding anchor, to see if we got better solution.

In this section, we will take a look at 2 sets of results, Sx-UWB(a) and Sx-UWB(b) where:
e x is the number of scenario, 1 or 2.

« aand b represent the selected noise covariance (a is the fixed noise covariance model,
b is the anchor dependent noise covariance model)

Scenario 1 (Figure 6.8) shows us that anchor dependent noise covariance model produces
a better result (a difference of 2.8 ¢cm in indoor positioning is quite substantial). This
result is further validated by the result of test carried out in 2nd scenario shown in Figure
6.10. Figure 6.9 and 6.11 represents the positional error along z, y and z. The RMSE of
the errors are mentioned in Table 6.3 and 6.4. Since the latter solutions produced better
results, only they were used for the update phase of the loosely coupled solution in the
hybrid UWB/IMU solution
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3DLocErr [avg=0.144, std=0.050, rmse=0.152] m

(a) Scenario 1-UWB(a)

Exact position
O Anchor Nodes
- UWB position

3DLocErr [avg=0.114, std=0.049, rmse=0.124] m

Y [m] 0 2 X [m]

(b) Scenario 1-UWB(b)

Exact position
O Anchor Nodes
UWB position

Figure 6.8: Comparison of trajectory between Scenario 1-UWB (a) and (b)
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Figure 6.9: Comparison of positional error between Scenario 1-UWB (a) and (b)

Error

S1I-UWB(a) S1-UWB(b)

errX (m)
errY (m)
errZ (m)

0.0836
0.0775
0.1010

0.0672
0.0814
0.0654

Table 6.3: RMSE of positional errors between Scenario 1-UWB (a) and (b)
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O Anchor Nodes O Anchor Nodes
UWB position - UWB position
3

(a) Scenario 2-UWB(a) (b) Scenario 2-UWB(b)

Figure 6.10: Comparison of trajectory between Scenario 2-UWB (a) and (b)
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Figure 6.11: Comparison of positional error between Scenario 2-UWB (a) and (b)

Error S2-UWB(a) S2-UWB(b)
errX (m) 0.0791 0.0693
errY (m) 0.0819 0.0729
errZ (m) 0.0918 0.0820

Table 6.4: RMSE of positional errors between Scenario 2-UWB (a) and (b)

50



Indoor Localization Solutions

6.3 Hybrid Solution
6.3.1 Simulated UWB and Real IMU

To make sure the IMU was working before having the integration between real UWB data
and real IMU data, we had an integration with simulated UWB data, which was normally
distributed. There were two types of simulation carried out in only scenario 2 as it was
enough to test wether the IMU was working as expected or not. The simulations and
their results are explained below:

o Error on final UWB positioning- In this case, we discarded the real UWB positioning
value and we took the ground truth acquired by the VICON system and added
gaussian noise to it in this fashion:

UWB; = GT; + 0 - N(0,1) (6.1)

where, GT is the ground truth, ¢ is the noise level and N(0,1) is a gaussian distri-
bution. The results of this simulation is as follows:
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Figure 6.12: Noise on true position

e Error on UWB rangings- In this case, we discarded the ranging values, took the
ground truth provided from the VICON system, calculated the true ranging and
added gaussian noise to it before feeding it into the EKF. This can be formulated as
follows:

Tik = \/(GTx,k — A )+ (GTy — Ayi)? + (GTop — AL )2+ 0 - N(0,1) (6.2)

where, 7; is the ranging measurement from the i-th anchor at time k, GT,, is the
x-component of the ground truth at time &, and A, ; is the z-component of the i-th
anchor coordinate. Similarly, GT,, GT, 4, A,;, and A,; represent the respective
components in the y and z directions. The result of this simulation is:
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Figure 6.13: Noise on true rangings

It can be seen that when we add the error on the positioning (Figure 6.12), the hybrid
solution tends to improve the result. As ¢ increases, the gap between the UWB localiza-
tion error and the hybrid localization error increases. Now shifting our focus to the 2nd
case (Figure 6.13), were we added error to the ranging, we see that the UWB errors are
much lower, this is because we have a filtering process afterwards, and the EKF does a
very good job removing the gaussian noise. Hence we do not see the large gap between
UWRB error and hybrid error, but we still see an improvement. These results prove that
the sensor fusion was indeed working, and now we can finally take a look at the results
obtained with real UWB and real IMU integration.
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6.3.2 Real UWB and Real IMU

In this section, we will analyse the optimized hybrid solution developed with real UWB
and IMU data. The section is divided into two subsection, showing us the hybrid solutions
obtained in both scenario. In each subsection, two sets of solution are presented with LC

and TC mechanism.

S1 Hybrid Solution

3DLocErr [avg=0.082, std=0.075, rmse=0.111] m

3DLocErr [avg=0.083, std=0.069, rmse=0.108] m

% Start position =
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+ Exact position

UWBI/INS Loosely Coupled Alg.
- UWB pos

(a) S1-LC trajectory

% Start position
O Anchor nodes

Exact position

+ UWBI/INS Tightly Coupled Alg.
- UWB pos

(b) S1-TC trajectory

Figure 6.14: Comparison of trajectory between Scenario 1 LC and TC
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Figure 6.15: Comparison of positional error between Scenario 1 LC and TC
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Error S1-LC S1-TC
errX (m) 0.07236 0.06892
ertrY (m) 0.05325 0.05452
errZ (m) 0.06519 0.06285

Table 6.5: RMSE of positional errors between Scenario 1 LC and TC
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Figure 6.16: Comparison of attitude estimation between Scenario 1 LC and TC

Figure 6.14 shows us the estimated trajectory (green), ground truth (blue), anchor nodes
(red square) and UWB position estimation (red dots). From the plot, it is evident that
the differences between the two mechanism are minimal, making it difficult to observe a
clear distinction based solely on visual inspection. Hence, the RMSE is also mentioned
at the top of picture. Figure 6.15 shows the positional errors and Table 6.5 reports the
corresponding RMSE error. Finally, the attitude estimation are represented in Figure
6.16 (red), along with the true roll, pitch and yaw angles (blue).
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S2 Hybrid Solutions
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Figure 6.17: Comparison of trajectory between Scenario 2 LC and TC
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Figure 6.18: Comparison of positional error between Scenario 2 LLC and TC

Error S2-LC S2-TC

errX (m)
errY (m)
errZ (m)

0.07192
0.07541
0.07120

0.07554
0.07442
0.07214

Table 6.6: RMSE of positional errors between Scenario 2 LC and TC
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Figure 6.19: Comparison of attitude estimation between Scenario 2 LC and TC

The solutions in this case are also represented in the same way as described earlier for
scenario 1 and so Figure 6.17 shows us the estimated trajectory (in green) along with
ground truth (blue), anchor nodes (red square) and UWB position estimation (red dots).
The RMSE is also mentioned at the top of picture. Figure 6.18 shows the positional errors

and Table 6.6 reports the corresponding RMSE error. Finally, the real and estimated euler
angles are represented in Figure 6.19



Indoor Localization Solutions

6.4 Result Discussion and Observations

Before carrying out the test, the hypothesis was that we would have a UWB 3D local-
ization error around 20 cm, however the standalone UWB system, as seen in Section 6.2
already produces reasonably good indoor localization result. In fact S1 produces slightly
better performance, and this could be due to the set up of the UWB anchors.

The article [25] shows us that with increasing spatial volume, the 3D localization error
tends to improve as it is related to the DOP of the system. In the paper, the author dealt
with 4 anchors and so to calculate the spatial volume of the area was relatively easier as
it formed a tetrahedron. In our case, it is a bit more challenging since we have 5 anchors.
In a simple system we would have to make 4 tetrahedrons and calculate the total volume
as the sum of each of them. However, our system is quite complex and simply adding the
volumes of individual tetrahedrons may lead to inaccuracies, as overlapping regions or
gaps between tetrahedrons can result in incorrect total volume calculations. Thankfully
though, with the help of Matlab function "convhull", we can calculate it directly.

Applying this in our case, we see that S1 has a spatial volume of 6.7563 m?® and S2 has a
spatial volume of 6.2476 m3. This explains why, even though minor, we have a better 3D
localization solution in S1.

Now, making our way to the hybrid solutions, looking at the simulations, we would
have expected a 3D localization improvement of around 25% from UWB standalone case.
However in real experiments that was not the case. One major reason for this was the
UWRB noise not being purely gaussian, and the EKF /ESKF generally have a more difficult
time dealing with non-gaussian noise as it assumes all noise to be gaussian. The following
table summarizes the percentage improvement in the hybrid solutions:

Method S1 (%) S2 (%)

LC 11.3 3.1
TC 12.9 1.5

Table 6.7: Percentage Improvement in Localization Accuracy for S1 and S2

S1 shows us decent results as we see a maximum of 12.9% improvement, which is about
50% of the expected result. Given the circumstances (very good UWB result means not
a lot of room for improvement), this is a relatively good result.

However the results obtained with S2 were highly unusual. It was seen that when finding
the optimum hybrid solution for S2, we could not trust heavily on IMU data (at least not
as much as S1). Previous studies also showed that in UWB/IMU hybrid localization, the
UWB solution tended to dominate the hybrid estimate [26]. This meant that if the UWB
localization had errors, our hybrid solution could not improve them as expected. In fact,
by taking a look at the XY plot of the S2 (Figure 6.20), it can be observed that the UWB
estimate is off at the circled zone. One possible solution to this problem could be to not
consider such UWB estimation for the UWB/IMU hybrid solution but this comes at a
risk of divergences of INS especially if too many UWB solutions are filtered off.
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13[]LocErr [avg=0.108, std=0.070, rmse=0.128] m 2

X Start position
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Figure 6.20: XY Plot 52 TC

The attitude estimation, in both scenarios were very good as in every case, roll (¢),
pitch (6) and yaw (i) errors were less than 5°) a minimum requirement for a stable
autonomous system. The coupling mechanism (LC/TC), did not massively affect the euler
angle estimation, as no stark differences were noticed between the two sets of solution,
presumably because the gyroscope was very accurate as it could be seen with low bias in
static situations.

These solutions are bound to change as the test environment changes, and so it would
be recommended to go ahead and implement the UWB anchors as shown in S1, for
a guaranteed better hybrid solution. In the current environment, both solutions are
acceptable because:

» Very good attitude estimation.

« Hybrid localization solution at 200 Hz instead of 10 Hz in the case of UWB localiza-
tion.

o A very good positioning estimation.



Chapter 7

Outdoor Localization Solutions

7.1 Setup for Outdoor Localization Experiments

7.1.1 Ground Truth (FIXPOSITION)

While carrying out the outdoor localization, Fixposition positioning sensor was used for
GT. Fixposition a high-end sensor fusion solution that provides highly accurate real time
pose information (3D position and orientation) in all scenarios, including GNSS degraded
and denied environments. The system can also receive information from additional auxil-
iary sensors (such as wheel-speed) to increase performance whenever required. Fixposition
can provide us with centimeter level accuracy [4].

X
v] i
\ J
(a) Fixposition Module (b) Fixposition Orientation

Figure 7.1: Fixposition [4]

7.1.2 Hardware Setup

To carry out the test, the AgileX Scout 2.0 was used (Figure 7.2), on which three things
there were mounted: IMU, U-blox module and antenna and Fixposition. The U-blox
positioning set provides us with GNSS and GNSS-RTK data. It uses the antenna (Figure
7.3b) and the module (Figure 7.3a) and the raspberry pi described earlier (Figure 5.3) to
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the log the data. The IMU was mounted at the center of the rover. The Fixposition was
powered with the help of a 7V battery. The PI was powered with the help of a power-
bank, just like the case of indoor localization. It was important to note that the axis of
Fixposition (Figure 7.1b) and IMU had to properly aligned. If the axes were misaligned,
an extra rotation matrix would be needed to transform the coordinate frames, making
the data processing more complicated.

(b) Rear View
Figure 7.2: AgileX Rover

}
|

R ]

(a) U-blox module (b) U-blox antenna

Figure 7.3: U-blox Positioning Set
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7.1.3 Test Cases and Test Execution

The test cases for outdoor localization were relatively straightforward compared to indoor
localization. Three main test scenarios were:

1. GNSS vs GNSS-RTK
2. GNSS vs GNSS/IMU
3. GNSS-RTK vs GNSS-RTK/IMU

Figure 7.4 shows the location where the test was carried out in semi-open-sky conditions.
Semi-open-sky conditions represent conditions where we do not have clear and unob-
structed view of the sky or in other words, urban areas. The red line is the path covered
during the test which is approximately 500 m and the blue marker is LINKS Foundation
for reference. The cross "X" represents the starting and the finishing point of the test. It
is important to note that both GNSS and GNSS-RTK data was acquired at 10 Hz and at
the same time using two U-blox module.

Figure 7.4: Outdoor test location

In this case, we unfortunately could not carry out a 3D experiment because of lack
of equipments. The tests were carried out on a relatively flat surface with the before-
mentioned rover, which has a maximum speed of 1.5 m/s [27].

The figures in the following section are reported in 2D because to maintain clarity and
since there was no significant movement in the z-direction. All solutions presented are in
ENU frame with the origin being the starting point.
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7.2 GNSS/GNSS-RTK Only Positioning

In this section, we will take a look at the GNSS/GNSS-RTK positioning solution. Since
both the data for GNSS and GNSS-RTK were captured together , we can consider the
following solution as a direct comparison. Figure 7.5a and 7.5b show us the trajectory for

each case. Figure 7.6a and 7.6b show us the positional error along =, y and z.

3DLocErr [avg=4.55, std=2.58, rmse=5.23] m

3DLocErr [avg=3.20, std=1.01, rmse=3.35] m
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Figure 7.5: Comparison of GNSS and GNSS-RTK trajectory
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Pos. Error GNSS GNSS-RTK

errX (m) 3.94 2.31
errY (m) 1.58 2.09
errZ (m) 3.06 1.24

Table 7.1: Comparison of positional errors for GNSS and GNSS-RTK

Looking at Figure 7.5 we can clearly see that GNSS-RTK provides us with better results,
however not to centimeter level precision. Furthermore, significant data loss was observed
during GNSS-RTK acquisition, which is also quite visible in it’s trajectory in Figure 7.5b.
Table 7.1 further reports the positional errors along z, y and z for both the experiments.

7.3 Hybrid Solution
7.3.1 GNSS/IMU Hybrid Solution

Now let us analyse the hybrid solutions. The best positional performance of the hybrid
solution, did not give us the best attitude estimation. To have an eligible attitude estima-
tion for autonomous navigation (errors less than 5°), we had to compromise on positional
performance. Hence, the following section proposes two solutions:

1. Case A: Best positional performance, can be utilized in cases were attitude estimation
is not important (e.g. autonomous cars, agricultural vehicles).

2. Case B: Best tradeoff solution, between positional data estimation and attitude es-
timation (e.g. humanoid robots, UAVs).
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Figure 7.7: Comparison of the two developed solution



Outdoor Localization Solutions

= sF T T ]
B sy 1
x 5L L L L S
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
E 2 ~ N\ T
c 0 M ./MM
L2p : e ‘ ]
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
— 10 T
E Y N S~
§OF T~ %'/ N el 1
N 10 Pt L ki L
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
(a) Case A positional errors
=10 T T
E 5l NN 1
w o - S \'
x L L L L
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
T3 T T T T
E % L PR W VT ‘M/ ]
LI; (1) r PN g o PR ]
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
= 10 o
' v il SR, 5 ~_/ i &
T e N ( e
N _10 L e L i L
17:28 17:30 17:32 17:34 17:36 17:38 17:40 17:42
time [s] Feb 04, 2025
(b) Case B positional errors
Figure 7.8: Comparison of positional errors
=20 Roll in ENU, RollErr [avg=-2 01, std=5 40, rmse=5 77] deg
j=J T
ﬁm’» M% \Cf\”/“w\ww ——roll Est
E oF e ‘ N e e M S vw/y ——roll True|
17:28 17:30 17:32 17:34 17.36 17:38 17:40 17:42
time [s] Feb 04, 2025
5 20 Pitch in ENU, PitchErr [avg-1 37, std 6.81, rmse-S 95] deg
b5 T il
Z. WM —pitch Est
= o e
Z-20 ;
= 47:28 17:30 17:32 17:34 17:36 17.38 17.40 17:42
time [s] Feb 04, 2025
= 200 Yaw in ENU, YawErr [avg=2.41, std=4.12, rmse-4 78] deg
o) I JW_
o, k«——*m—-» v ——yaw Est
= 0% ﬁr’\/\‘/"\__J w \ m
T -200
- 17:28 17.30 17:32 17:34 17:36 17.38 17.40 17:42
time [s] Feb 04, 2025
(a) Case A attitude estimation
_ RoII in ENU RollErr [avg=-1 87, std 3.95, rmse-4 37] deg
j=J
ﬁ?k i ’\,V”mwv\,vf —roll Est
50 %‘\'M&: bty W”L ol e
17:28 17:30 17:32 17:34 17.36 17.38 17:40 17:42
time [s] Feb 04, 2025
5 Pitch in ENU, PitchErr [avg-1 75, std-4 58, rmse-4 90] deg
L7} T
= 10 ,.Jl F W —pnch Est
§ _1g{ — M"‘"" JH i 6 ——pitch True
S 17:28 17:30 17:32 17.34 17.36 17.38 17:40 17:42
time [s] Feb 04, 2025
— Yaw in ENU YawErr [avg-O 92, std 3.03, rmse=3.17] deg
= 200 —
2 9 mi_‘_ﬂ“/’\ —yawEﬂ
- ey ,j/\ /'\_ yaw True|
T -200
- 17:28 17.30 17:32 17:34 17.36 17.38 17:40 17:42
time [s] Feb 04, 2025

(b) Case B attitude estimation

Figure 7.9: Comparison of attitude estimation
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Pos. Error Case A Case B

errX (m) 2.56 3.28
errY (m) 1.32 1.40
errZ (m) 3.14 3.09

Table 7.2: Comparison of positional errors for case A and B

Straightaway, looking at Figure 7.9, we can tell why we need to present two solutions.
In case A, roll and pitch angle estimation error is what one would consider too high for
autonomous navigation. However, if the euler angle estimation is not of importance as
discussed earlier, it does produce a very good positional solution. Figure 7.7a and 7.7b
show us the trajectory estimation of case A and case B. In green we have the estimation
and in blue we have the ground truth provided by Fixposition. The RMSE of each case
is mentioned on top of the figures. Figure 7.8a and 7.8b further illustrate the positional
erTor.

7.3.2 GNSS-RTK/IMU Hybrid Solution

Finally, let’s discuss the solution developed for the GNSS-RTK/IMU hybrid solution. As
discussed previously, there was significant data loss (around 46%), and so incorporating
the IMU data became a lot more challenging. So the focus shifted from having a better
solution (like in the case of GNSS/IMU) to having a more consistent solution, which
meant we would not see a high percentage of improvement. This is required considering
the fact that GNSS-RTK theoretically should have arrived at 10 Hz but due to the loss
of data, it was 5.32 Hz, which is not good enough for autonomous localization.

For simplicity, the GNSS-RTK/IMU hybrid solution is called RTK/IMU case. Figure
7.10 shows the estimated trajectory (in green) compared to the ground truth (in blue).
As always, the RMSE is mentioned at the top of the figure. Figure 7.11 represents the
positional errors along each axis, Table 7.3 summarizes the corresponding error. Finally,
Figure 7.12 illustrates the estimated Euler angles (in blue) alongside the ground truth (in
red) and the RMSE of the estimation.
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Figure 7.10: RTK/IMU trajectory estimation
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Figure 7.11: RTK/IMU positional errors

Pos. Error RTK/IMU

errX (m) 2.14
errY (m) 1.95
errZ (m) 1.25

Table 7.3: Positional error RTK/IMU case
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7.4 Result Discussion and Observations

First, let us compare the solutions obtained using GNSS and GNSS-RTK. GNSS has a
RMSE error of 5.23 m GNSS-RTK has a RMSE error of 3.35 m, a 36% improvement,
however, GNSS-RTK was not as precise as imagined (centimeter level accuracy) and to
top it off it had a 46% loss of data. In fact, the GNSS-RTK solution closely resembles the
solution of under-bridge scenario seen in [20]. Since the RTK base station is very close to
the experiment location [28], the loss of data and the below par estimation could be due
to some reasons like:

1. Multi-Path Interference- Urban area are prone to multi-path interferences due to
buildings,vehicles or other surfaces before reaching the receiver. This results in de-
layed signal reception and correction by the RTK base station and incorrect position
estimation

2. Satellite Visibility and Geometry- While in our test, satellite visibility was not an
issue, satellite geometry was. Satellite geometry plays a crucial role in GNSS-RTK
accuracy. Poor geometry, indicated by a high HDOP, occurs when satellites are
clustered together. Ideally, satellites should be well distributed across the sky. In
urban environments, buildings may block some satellites, reducing available signals
and worsening positioning accuracy. This results in higher HDOP values which are
not good for autonomous localization and subsequently degraded RTK performance.
Figure 7.13 shows us HDOP distribution for the GNSS-RTK test.
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Figure 7.13: RTK HDOP

Now, turning our focus to GNSS/IMU hybrid solution, we saw that euler angle estimation
was rather challenging, especially the roll and pitch estimation. In our experiments, there
were no rotations about x or y and so the roll and pitch angles should have been relatively
small, however as we improved positional estimation, our attitude estimation got worse.
So for this reason there were two sets of solution adopted. A summary of the developed
solution is described in Table 7.4.
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Type RMSE (m) Improvement (%)

GNSS 5.23 -
Case A 4.25 18.7%
Case B 4.72 9.8%

Table 7.4: Improvement Over Baseline GNSS

When tuning the parameters for GNSS/IMU hybrid solution, it was seen that we could
trust the IMU parameters a lot more compared to UWB/IMU hybrid solution in the
ESKF and this resulted in a higher percentage of improvement in the solution.

Finally, analyzing the GNSS-RTK/IMU solution was the most challenging of the lot. Due
to multiple zones in the trajectory having "gaps', the IMU predictions initially performed
well but due to poor bias management, it deteriorated over time and whenever we had
delays in receiving the GNSS-RTK update, estimated trajectory deviated significantly
from the actual path.

To solve this issue, we could not heavily trust the IMU data in the ESKF, because
whenever we did, those deviations only got worse. This meant that we would closely
follow the GNSS-RTK solution, allowing us to have a modest 6% improvement from the
original solution.

To investigate if the 2D solution leads to similar divergence issues, we obtain the following
result:

2DLocErr [avg=2.86, std=1.12, rmse=3.07] m
Y= . . . =_ : : :

— Fixposition y
Hybrid GNSS-RTK/IMU Solution| /

-50 -

y [m]

-100 -

-150 -

80 60 -40 20 0 20 40 60 80 100
x[m]

Figure 7.14: 2D RTK/IMU solution

The estimated yaw had an error of 5°. Visually, this solution is much better, however
this comes at a cost of not estimating the altitude. This solution could be adopted if and
only if the motive of our autonomous vehicle is to move on the ground and there is no
significant variations in elevations.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis, we explored hybrid solutions integrating UWB/GNSS with an IMU to
enhance the accuracy and reliability of AMR navigation in both indoor and outdoor
settings. The proposed approach used the ESKF to fuse sensor data with UWB/GNSS,
providing high-frequency position and attitude estimation, addressing the limitations of

standalone UWB and GNSS solutions.

Through extensive real-world experiments conducted at LINKS Foundation’s robotics lab
and Politecnico Di Torino, the developed approach proved to be effective in ensuring
reliable localization even in dynamic conditions. The results validated the advantages of
hybrid localization, showing that the fusion of GNSS/UWB and IMU data provides a
more reliable estimation of a robot’s position and orientation.

Unfortunately, the hybrid approach did not demonstrate significant improvements over
standalone localization methods, falling short of the improvements predicted in simula-
tion. We also found that, unlike simulations, in real-world situations we face a lot more
challenges like non-gaussian noise, IMU drift especially during extended gaps in updates
from UWB/GNSS, sensor noise and synchronization issues in indoor localization arising
from IMU data being collected on a Raspberry Pi while UWB data was processed on a
separate PC.

This research contributes to the field of autonomous navigation with the help of hybrid
localization techniques. Despite challenges faced during this thesis, this study provides
insights into sensor fusion for autonomous robots, highlighting key areas for future im-
provement in hybrid localization, in the following section.

8.2 Further Work

Before implementing the real-time system, certain modifications to the system design are
necessary to ensure a successful deployment.

e Model the IMU- The IMU has time varying biases, which needs to be taken into
account when estimating our position and orientation. To deal with this, we can
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first model the IMU using the Allan variance analysis, more information can be
found in [29]. Then we can expand the state of our ESKF from 9 to 15 elements,
estimating the accelerometer and gyroscope biases.

Using a smoothing filter- The ESKF used in this thesis assumes gaussian noise. While
for simulations this is viable, in real life experiments it is not. To mitigate this issue,
a smoothing like EPF could be used post ESKF stage. In [20] it can be seen that
results improved when this was applied.

Testing on an actual drone- While carrying out this thesis, unfortunately this was
not possible due to limitation. However, it would be a good idea to test this because
mounting UWB tags and sensors on flying platforms introduces unique challenges
which are vibration management, optimal antenna placement during 3D maneuvers
etc. In the case of outdoor localization, it becomes even more challenging with more
objects to mount.
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