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CHAPTER 2

Introduction

2.1 Aim

The aim of this project is the development of software for an industrial PC, based on Simulink/Mat-

lab simulations, designed to create an automatic flight controller for high-altitude wind turbines. The

wind generator utilizes a large sail (”Kite”), tethered by two ropes that drive two motor generators

in a ground station,the energy produced by the system will be captured and stored in batteries for

future use.

Currently, the system is manually controlled via a joystick. The goal is to automate the entire system,

transitioning from manual control to fully autonomous operation.

The software will interface with various sensors on board the Kite, which are used to measure ac-

celeration, altitude, force, and cable length. These sensors communicate wirelessly with the ground

station using appropriate transmission protocols.

2.2 What is Kite Energy?

Kite energy exploits wind energy through kites. Unlike traditional wind turbines, which have rotating

blades mounted on towers, kite energy is based on large kites that fly at high altitudes, where winds

are stronger and more consistent. These kites are attached to special cables that, by moving in the

wind, drive a generator and produce electrical energy.

The main advantages of this technology include the use of winds at higher altitudes, less visual impact,

and a lower land footprint.

Kite energy is particularly well-suited for regions with strong, stable winds at high altitudes. These

areas allow kites to capture winds that are more powerful and consistent than those found at the

Earth’s surface, where traditional wind turbines might not operate as efficiently. For example, coastal

2
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areas often experience constant and strong winds, making them ideal for kite energy. In these regions,

kites could fly tens of meters above the sea, where the wind is less disturbed by terrestrial obstacles

like hills or buildings. Similarly, desert or plain areas, which are often free from trees and other

hindrances, also provide stable wind conditions, perfect for kite energy systems. High mountains or

hills are another ideal setting, as wind speeds tend to increase with altitude, allowing kites to harness

energy from winds at great heights.

Kite energy also proves advantageous in areas with limited space or difficult access. Traditional wind

turbines require tall towers and substantial infrastructure, which can be costly to build and difficult

to install in remote or hard-to-reach locations. Kite energy, however, requires fewer large ground

structures and can be more easily deployed. This makes it particularly useful in areas such as small

islands or islets, where building traditional wind turbines is impractical. Similarly, for mountainous

or otherwise inaccessible regions, where transporting and assembling traditional turbines is expensive,

kite systems could offer a more feasible alternative.

In urban or industrial environments, where space is limited and traditional wind turbines may not

be viable, kite energy can offer a solution. Despite the density of buildings, kites can be mounted

on existing structures, such as platforms, rooftops, or even on industrial sites, without occupying

additional land. For instance, parking lots or industrial sites could host kites flying above buildings

or structures, collecting energy without interfering with ground activities. This discreet method of

energy generation could prove valuable in areas where minimizing the visual impact and optimizing

space are key concerns.

One of the key benefits of kite energy is its efficiency in harnessing high-altitude winds. While winds at

ground level can be turbulent and inconsistent, the winds at higher altitudes, where the kites fly, tend

to be more constant and stronger. This allows kites to generate more energy compared to traditional

wind turbines, which may not perform as effectively in less stable wind conditions near the ground.

Another significant advantage of kite energy is its low visual impact. Traditional wind turbines, with

their tall towers and rotating blades, often create a noticeable visual presence over large areas, which

can be a concern in many landscapes. Kites, on the other hand, are far more discreet since they fly

at high altitudes and don’t require large, imposing structures. This makes them a promising option

in locations where preserving the natural aesthetic is important.

Kite energy also offers low infrastructure costs. Unlike traditional wind turbines that need tall towers

and complex infrastructure, kite systems primarily require the kite itself and a cable system. This

dramatically reduces initial installation costs. Additionally, since kites occupy less land space, they

don’t require vast open areas like wind turbines do, making them more suitable for locations with
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limited space.

Lastly, kite systems are more flexible and adaptable than traditional wind turbines. They can be

easily adjusted to work in a variety of environments—from the open sea to remote, hard-to-reach

areas. Kites can also be deployed on a smaller scale, such as in community-based energy systems or

to power smaller structures, offering versatility in how and where they are used.

Despite its promising potential, kite energy remains an emerging technology. As a relatively young

field, many of the practical solutions are still in development and undergoing testing. The systems

currently face several challenges, such as ensuring the durability of the kites, managing the cables

effectively, and addressing safety concerns. Furthermore, long-term reliability is another key factor

that needs to be fully addressed before kite energy can be deployed on a larger scale.

Another limitation is vulnerability to weather conditions. While kites are designed to operate in

strong winds, extreme weather events such as storms can cause significant damage to the systems.

Adverse weather could not only impair the functionality of the kites but also temporarily reduce en-

ergy production, making it less reliable during severe conditions.

The safety concerns associated with kite systems are another drawback. Since the kites are tethered

to long, high-tension cables, managing these cables can pose risks. Issues such as cable wear, tension

buildup, or potential failures in the control systems could create hazards, both for the equipment and

the surrounding area.

Finally, while kite energy is efficient in high winds, it still remains an intermittent energy source. The

production of energy depends on the wind conditions, and factors like wind speed and direction can

cause fluctuations in energy generation. This unpredictability can limit the stability and consistency

of the power produced, which makes kite energy less reliable compared to more stable energy sources.

So Kite energy offers a promising solution in specific contexts where other forms of renewable energy

might face challenges. It is especially useful in areas where winds are strong and stable at high alti-

tudes, such as coastal regions or mountainous terrains, where traditional wind turbines might not be

as effective. Additionally, kite energy can be deployed in remote or hard-to-reach locations where the

installation of large wind turbines would be difficult or too costly.

Another advantage of kite energy is its suitability for areas with limited land space, such as urban

environments, industrial sites, or small islands. In these settings, where land is at a premium, kite

systems can provide a lightweight, non-invasive energy solution without requiring vast open areas.

Furthermore, for regions where visual impact is a concern, kite energy provides a more discrete op-

tion. The kites operate at high altitudes, so they do not have the same visual footprint as traditional

wind turbines, which can be imposing in certain landscapes.
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In conclusion, while kite energy is a technology with great potential, it is still in the developmental

stages. It could be a game-changer in areas where traditional wind turbines aren’t effective or feasible.

However, it’s important to consider its current limitations, including the technical challenges it faces,

and the need for further innovation to ensure that kite energy can deliver reliable and consistent power.

2.3 General description

In this section, the overall structure of the system will be detailed. As mentioned in the previous

chapter, the system utilizes airfoils, or power kites, to capture wind energy at altitudes ranging from

250 to 1000 meters above ground level. The energy harnessed is then stored in electrical accumulators.

The system is managed and controlled by a machine called the KE60, which was designed and

developed by Kytenergy Corporation(for more information, it’s possible to visit their website at

https://kitenrg.com/). A visual representation of the KE60 is shown in Figure 2.1, and its com-

ponents will be further explained in this section.

The airfoil is connected to the actuation unit located on the ground via two composite fiber cables,

wound on two spools which are in turn mechanically connected to two motor-generators. A ground

control unit automatically guides the airfoil by acting differentially on the two cables.

The machine generates electricity by converting the pulling forces on the cables into electrical power.

The operating cycle is composed of two phases: a traction phase and a recovery phase. During the first

phase the airfoil is guided along trajectories that cross the wind, generating large forces that unroll

the guide cables, causing the spools to rotate. In this phase the motor-generators produce electric

current. In the second phase the cables are rewound on the spools spending a fraction of the energy

stored in the traction phase.

The machine consists of:

• a chassis with wheels, equipped for towing and equipped with a braking system, lighting system and

extendable stabilisers, on which all the other components are fixed,

• a pair of spools on which the composite fiber cables are wound,

• a pair of motor-generators connected to the spools, which rotate the latter in the recovery phase

and which generate electrical energy in the traction phase,

• a pair of motors that translate the spools along linear guides to facilitate the orderly winding and

unwinding of the cables,

• a cable exit system, composed of a series of pulleys and ending with a rotating and oscillating arm

which allows the correct direction of the cables and the dampening of force peaks,
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• a series of electrical cabinets that house the power electronics and control electronics of the system,

• a cabinet that houses the battery pack (batteries + capacitors) in which the energy produced is

accumulated.

Figure 2.1: KE60 Image

The accumulators are located inside the compartment situated between the electrical cabinets and

the cabin . These consist of 33 lead-acid batteries, each with a voltage of 12V and a capacity of 75Ah,

arranged in series to achieve a total voltage of approximately 400V. These batteries play a crucial

role in ensuring the system’s efficiency by storing the energy generated by the kite, which can then

be used for continuous operation or to power various components of the system when needed.

2.4 Functioning

The KE60 is equipped with an operator cabin that features an interface for interacting with the sys-

tem. This interface includes controls for operating the kite and provides real-time machine status

information through an intuitive Human-Machine Interface (HMI) displayed on a monitor.

When the kite is in flight, all machine operating data is continuously monitored, displayed on the
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user interface, and, if logging functionality is enabled, recorded in the log file for further analysis.

These data are primarily used for more in-depth analysis. Based on the collected information, a

mathematical model will be developed to simulate the system’s behavior, optimizing performance and

predicting potential future scenarios( see chapter ”Next Steps”). This model will assist in improving

flight management and identifying the most influential variables in the kite’s operation.

In the current system, flight control is primarily managed through the joystick lever, which adjusts

the differential between the two cables for turning, and the throttle, which regulates the winding and

unwinding of the cables on the spools(a picture of the lever and throttle is in figure 2.2). By ma-

nipulating the joystick lever, the user alters the differential between the cables, affecting the airfoil’s

turning behavior. When the lever is in the neutral (center) position, the differential is zero, and the

airfoil maintains its current orientation.

Pushing the lever to the left creates a differential that causes the airfoil to turn left, while moving it

to the right induces a differential that makes the kite turn right. The amount of differential is directly

proportional to the movement of the joystick lever.

Figure 2.2: Actual joystick used to drive the kite

The differential value corresponding to the end positions of the lever can be set via the following input

field on the HMI:

“Max differential” - defines the maximum value of the differential in meters, corresponding to the

end position of the joystick.

The position of the throttle directly determines the rotation speed of the spools. Moving the handle
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forward from its central position rotates the spools in the direction of cable winding, while moving

it backward rotates the spools in the opposite direction. The rotation speed is proportional to the

amount of throttle movement.

The speed values corresponding to the throttle end positions can be set via the following input fields

on the HMI :

“Max positive speed” - it defines the maximum cable deployment speed in m/s, corresponding to

the end-stop position of the throttle lever forward, meanwhile “Max negative speed” - defines the

maximum cable winding speed in m/s, corresponding to the end-stop position of the throttle lever

backward.

The terms positive and negative are used to distinguish the two opposite directions of motion:

a positive speed corresponds to cable deployment (unwinding), as the cables extend outward,

a negative speed corresponds to cable winding (rewinding), as the cables are pulled back onto the

spools.

This convention helps clearly define the system’s behavior and allows for proper control of the spool

rotation direction.

The fields that are used to define and configure the command parameters are clearly illustrated in

Figures 2.3 and 2.4, providing a comprehensive overview of the system’s control settings.

Figure 2.3: Max differential
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Figure 2.4: Max velocity

Moving the throttle lever forward from its central position, the applied torque is in the cable deploy-

ment direction; moving it backward, the applied torque is in the cable winding direction. Note that

the direction of the applied torque does not directly determine the rotation direction of the spools, as

this also depends on the force exerted on the cables by the wing profile. The torque applied to the

spools is proportional to the amount of throttle lever displacement.

The torque values corresponding to the throttle end positions can be set via the following input fields

on the HMI:

“Max positive speed” - defines the maximum torque value in the direction of unwinding in Nm,

corresponding to the forward throttle end position meanwhile “Max negative speed” - defines the

maximum torque value in the winding direction in Nm, corresponding to the end position of the re-

verse throttle.

Furthermore the system includes a dedicated button that enables users to save logs of various data.

This functionality ensures that recorded information can be securely stored and accessed later for

in-depth analysis and troubleshooting(see Figure 2.5)
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Figure 2.5: Logging button switch

2.5 ’Eight’ mode Flight

The main objective of this experiment is the generation of electricity by exploiting wind energy.

The critical phase of the experiment is the reentry phase: that is, when the stored energy is consumed.

It is therefore necessary to devise a mathematical model that minimizes energy consumption while

maximizing the energy created by the Kite.

This model was formalized by Professor Fagiano (Polytechnic University of Milan), who demonstrated

that by making the kite move in the shape of a ’eight’, the consumption is minimal. The ’eight’ mode

is a flight trajectory in the shape of the number eight, used in Airborne Wind Energy (AWE) sys-

tems to efficiently extract energy from the wind. The distinctive feature of this mode is that the

aircraft—typically a kite—operates in a cycle that includes both ascending and descending phases.

During the descent, the aircraft can generate significant traction without the need for additional en-

ergy input, thanks to the combination of lift and drag forces. In this trajectory, the aircraft performs

two opposite semicircles that form the figure-eight pattern. The descending phase is particularly

important because it allows the system to recover energy, creating a cycle that maximizes efficiency.

Phases of the ”Eight” Flight

Initial Ascent (first ascending semicircle):

In the first part of the trajectory, the aircraft rises upwards, harnessing the lift generated by the wind.

In this phase, the aircraft is typically oriented upwards, usually with an angle of attack between 30°

and 45° relative to the wind direction. The upward motion requires energy, which can come from
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the reel-out speed (for ground-based systems) or from an onboard engine. However, this energy is

recovered in the subsequent phases of the flight.

Peak and Transition to Descent (top of the path):

Once the aircraft reaches the highest point of the trajectory (the ”peak”), it begins the transition to

the descent phase. During this phase, the flight speed may decrease, but the aircraft remains capable

of generating traction due to the wind energy. The point at which the aircraft changes direction

towards the downward trajectory is crucial: the angle of attack and control over aerodynamic forces

determine how efficiently the transition occurs.

Descent (second descending semicircle):

In the descending phase, the aircraft follows an inclined path downwards, utilizing drag to increase

the traction. In this phase, the drag force is maximized, and since the aircraft is moving downward,

it generates significant energy recovery. The downward motion takes advantage of gravity and aero-

dynamic forces to produce power without external energy input. This is one of the key advantages

of the ”eight” mode: the aircraft does not need energy to maintain flight during the descent and can

instead produce energy efficiently.

Recovery Phase and Cycle Repetition:

After completing the descent phase, the aircraft returns to the starting point of the cycle (i.e., the

initial ascent point). Here, the next iteration of the figure-eight path begins, continuing the cycle

without the need for external energy input.

Aerodynamic Forces in the ”Eight” Flight

The flight in the ”eight-down” mode relies on the interaction between several aerodynamic forces to

optimize energy production:

Lift:

During the ascent, the aircraft generates lift to rise. Lift is a force perpendicular to the relative wind

and depends on the shape of the wing, the wind speed, and the angle of attack. Lift is essential for

keeping the aircraft in the air and for allowing it to ascend at the beginning of the cycle.

Drag:

During the descent, drag becomes crucial for extracting energy from the system. Drag is the resistance

of the air to the aircraft’s motion and increases with speed. In the descending phase, drag becomes a

useful force, as it produces traction that is used to wind the tether and generate power.

Tether Tension:

The tension in the tether is key, as the tether is what transfers the traction generated by the aircraft

to the ground-based energy generation system. The tension in the tether increases during the descent
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when the aircraft is subject to drag, and this enables the generator to produce power.

Gravity:

Gravity acts favorably during the descent, as it helps keep the aircraft moving downward, utilizing

the force of traction without the need for external energy input.

Advantages of the ”Eight” Mode

The ’eight’ mode offers several advantages in AWE systems(Airborne Wind Energy):

Energy Efficiency: More efficient than traditional flight patterns, as the descent phase helps recover

energy without requiring external input.Traditional flight patterns in AWE systems often include:

-Stationary or Hovering Mode: some systems rely on a hovering or stationary flight, similar to

kites held in place by a tether. While this approach provides stability, it limits energy generation

efficiency due to lower relative wind speeds.

-Circular Looping Pattern: in some designs, the airborne unit follows a continuous circular trajec-

tory. While this allows for steady power generation, it often results in energy losses due to non-optimal

aerodynamic forces during certain segments of the loop.

-Linear Yo-Yo Motion: another common pattern involves a periodic up-and-down movement, where

the system ascends to generate power and then retracts with minimal resistance. This method can be

effective but often requires additional energy input during the retraction phase.

By contrast, the ’eight’ mode maximizes energy extraction by optimizing both the ascent and descent

phases, leveraging aerodynamic lift and drag forces more efficiently.

Flight Stability: the continuous motion between ascending and descending phases enhances stability,

reducing sudden fluctuations in traction and improving force management.

Power Optimization: the combination of lift and drag throughout the cycle allows for optimal power

production. The descending phase generates power more steadily and continuously, improving system

reliability.

Lower Energy Consumption: unlike conventional aircraft that require constant external energy to

sustain upward flight, this mode enables a more energy-efficient flight cycle.

Challenges and Considerations

While the ”eight” mode offers many advantages, there are some challenges and considerations:

Flight Control: Maintaining the aircraft along the correct trajectory requires precise control of the

angle of attack, speed, and tether tension. Any errors in control can compromise the efficiency of the

system.

Wind Variability: The production of energy is highly dependent on wind conditions. Turbulent or

variable winds could negatively affect the trajectory and efficiency of the system.
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Aircraft Design: The aircraft needs to be designed to withstand the forces of tension and drag during

flight and to be stable enough to perform the ”eight” cycle continuously.

2.6 Next steps

The next step is to automate the entire process, as the kite has the potential to remain airborne for

several hours. Initially, both an automatic control model and the manual pilot will operate using the

same parameters (such as sail positions, wind direction, etc.), and each will generate outputs that

control the kite. The automatic model will function purely in a virtual environment for comparison

purposes, allowing it to be assessed against the manual model. These outputs will be collected and

stored for further analysis.

Once the data has been reviewed and a reliable, comparable performance between the two models has

been established, the automatic system will be trusted to independently manage the entire process,

with the joystick no longer required for regular operation, except in case of emergency.



CHAPTER 3

Mathematical model

The Flight Controller serves as a software designed to automate the control of the Kite, effectively

replacing human intervention in steering the aircraft through a machine known as AWG(Airborne

Wind Generator).

The forthcoming chapter will delve into the context within which the Flight Controller operates,

including its interactions with the Kite, the machine, and other sensors. Subsequently, a detailed

presentation of the Flight Controller will be provided, elucidating its components and functionality

through block diagrams.

3.1 Context

The Flight Controller serves as a software that replaces human actions on the Pilots panel. Notably,

the Automatic and manual modes are mutually exclusive. As illustrated in figure 3.1, the controller

gathers measurements from the Weather station, AWG, and kite, utilizing this data to generate

automatic inputs.

14
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Figure 3.1: Block diagram system

In the upcoming section, the system architecture will be meticulously detailed, with a focused exam-

ination of the Flight Controller and AWG Blocks.

The Flight Controller operates with distinct commands, each tailored to the specific requirements of

the four flight phases outlined below (see figure 3.2):

Generation (0): This phase marks the system’s energy generation process.

Transition1 (1): Commencing after the maximum line length is reached, this phase initiates when the

kite maneuvers towards the suitable position for the recovery phase.

Recovery (2): During this phase, the ropes are wound until the minimum cable length is attained.

Transition2 (3): As the minimum cable length is reached, the control mechanism acts to position the

kite appropriately, preparing for the commencement of a new cycle with the generation phase.
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Figure 3.2: Trajectory Model

3.2 System architecture

The system is made up of two main parts that interact with each other, the Flight Controller and the

AWG.

As illustrated in figure 3.3 the Flight Controller architecture is divided into four blocks:

• Trajectory control: is responsible for controlling the trajectory of the kite along the azimuth

direction;

• Throttle Control: is responsible for controlling the kite entering and exiting;

• Supervisor: determines what the actual flight phase is;

• Conversion: transforms the kite measurements into a ground reference frame.

The AWG architecture can be divided into two blocks:

• Motion controller: it is the controller that receives signal references from both the Flight Controller

and the Pilots panel and controls the electrical drives accordingly;

• Winches: are the assembly of electric motors, drums and electric drives.

The signals flowing between the blocks shown in Figure 2 are as follows: simotion(see Appendix for

Simotion) signals in orange: • Lunwind: length of the unrolled laces of RED and GREEN winches

(Lunwind-RED, Lunwind-GREEN);

• vwinch: speed of both red and green winches (vWinch-RED, vWinch-GREEN)

Flight controller signals in green:
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• DLref: differential reference;

• Throttleref: Throttle reference.

Measurements from kite sensors in blue:

• position: position of the sail in the three geographical coordinates Latitude, Longitude,Altitude

expressed globally reference framework;

• orientation: orientation of the sail expressed by the RLK matrix; it is a direct measurement from

the avionics.

Measurements from kite sensors in black:

• AWG position is the AWG position expressed in Latitude-AWG, Longitude-AWG, Altitude-AWG,

which will be set as a parameter once the AWG is entered into the field;

• The AWG orientation is the angle between the longitudinal axis of the AWG and named North

Orientation-AWG ;

• WindDir is the measurement of the wind direction provided by the Weather Station.

Figure 3.3: AWG Block Diagram
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3.3 Reference frame

The model considers four reference frames:

• Global reference frame: its origin is at the point of Latitude 0, Longitude 0, Altitude 0 on the

Earth’s surface and is expressed in ENU (East-North-Up)( see Appendix for ENU);

• Ground reference frame: its origin is the center of AWG, using the axis referenced to the system

itself;

• Kite reference frame: its origin is the center of the kite, using the axis of its body;

• Local zenith reference frame: it is a mobile reference frame on the surface of a sphere with a radius

equal to the length of the rope; its origin is the center of the kite;

• Wind window reference frame: its origin is the center of AWG, and it moves according to the

direction of the wind

3.4 Flight Controller components

Considering that the machine is operated by two separate controls, the flight controller was designed

accordingly: the throttle and differential references are generated by two different control loops, Tra-

jectory Control and Throttle Control, which are therefore decoupled.

The data flow is described below:

• flight phase: indicates what the actual flight phase is;

• phi-sign: indicates whether the azimuthal kite position is increasing or decreasing;

• (theta, thetadot): elevation kite position and relative time derivative in polar coordinates;

• (phi, phidot): azimuthal kite position and relative time derivative in polar coordinates;

• (range): velocity angle.
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Figure 3.4: AWG Block Diagram

3.5 Reference frame

After obtaining position and velocity measurements from the onboard kite sensors, the flight con-

troller identifies the correct flight phase to calculate the differential and throttle references resulting

in common differential torque and torque references to the Simotion controller which will feed the

AWG winches.

In Trajectory Control two controllers are responsible for generating the differential reference, switching

each other depending on the flight phase.

3.6 Conversion

In order to create a fluid reading of the chapter the nomenclature is introduced:

Rxy is the rotation matrix that allows to rotate a vector from the Y reference system to the X reference

system.

The variables obtained from IPOK are expressed in the global reference system.

IPOK is A GPS-equipped IMU (Inertial Measurement Unit) is a device that combines an inertial

measurement unit (IMU) with a GPS (Global Positioning System) module.

The IMU (Inertial Measurement Unit) is a sensor that measures the acceleration, angular velocity, and

direction of an object. It typically includes accelerometers and gyroscopes, which provide real-time

data on position, speed, and orientation. The IMU is used to determine the movement of an object

in three-dimensional space without the need for an external system.
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GPS provides information about the geographic location of an object, allowing real-time determination

of latitude, longitude, and altitude. When the IMU is combined with GPS, the system can use the

GPS data to improve the accuracy of navigation data and compensate for errors that could arise from

the IMU alone. This type of technology is used in advanced applications such as autonomous vehicle

navigation, drones, military monitoring systems, and mobile device geolocation.

In this case, the IPOK is mounted on the kite to measure the data collected at high altitudes. This

data will then be used as input for the algorithm that controls the entire system.

From now on, reference systems are expressed with the following sub-indexes:

• global reference system: L;

• ground reference system: G;

• Reference system for kites: K;

• local zenith reference system: Lz;

• wind window reference system: W.

The conversion block is made up of two main blocks:

• Position of the sail in the reference system of the wind window: the purpose of the block is to

convert the coordinates of the Kite position (Latitude, Longitude, Altitude) to spherical ones (θ,ϕ, r)

in a reference system that rotates with the direction of the wind.

• Gamma calculation: calculates the velocity angle (gamma).

RGL is the rotation matrix that transforms a vector from a global reference system to a ground

reference system.
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Figure 3.5: Conversion module

3.6.1 Kite position in the wind window

The following scheme describes calculation for positions with variables representing:

xw, yw, zw is the kite position vector in cartesian coordinate w.r.t. wind window reference frame.

RWL is the matrix which rotates a vector from the global reference system to the wind window

reference system.

Figure 3.6: Kite position block

3.6.2 Rotation matrix

The RWL matrix is as follows:
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Figure 3.7: Rwl matrix

Wind direction is expressed as the angle between the vector from which the wind comes and North.

WindDir is considered clockwise positive. If the wind comes from S-W, the weather station reads

200°, to calculate WindDir:

Figure 3.8: Wind direction formula

The maximum limit of the WindDir variable is 360°. If this maximum is exceeded it must be converted.

3.6.3 Position of the kite in global reference system

This block calculates the position of the kite relative to the position of the machine on the field

(AWG), a difference between the relative positions is performed:

Figure 3.9: Difference formulas

Where :
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Figure 3.10: Conversion factors

are the conversion factors from decimal degrees (DD) to meters for both latitude and longitude.

3.6.4 Multiplication

The position of the kite in the wind window reference system in Cartesian coordinates is calculated

with the following formula:

Figure 3.11: Kite postion in wind window reference frame

3.6.5 Cart2Pol

This block performs the transformation of coordinates from Cartesian xw,yw,zw to spherical coordi-

nates θ ,ϕ, r in the wind window reference system.

Figure 3.12: Spherical conversions

3.6.6 Derivative

This block performs the derivative of θ ,ϕ which are then used for the Gamma calculation. Further-

more, θ is used for generating reference theta while ϕ is also an input to the supervisor.
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3.6.7 Rotation matrix

Figure 3.13: Rotation matrix

3.6.8 Gamma calculation

The velocity angle can be estimated by two methods. The gamma-xAxisKite variable will be calculated

and used for the algorithm, while the gammaFromPosition variable will be calculated and saved for

post-processing analysis

.

Figure 3.14: Gamma Calculation

Gamma calculation: gammaxAxisKite

This method takes into account both the kite position and orientation, the following formula is

implemented:
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Figure 3.15: Gamma formula

Where xAxisKiteLz is a three-component vector obtained by considering the first row of the RKLz

matrix.

To get that matrix you need to perform the following steps:

Figure 3.16: Rlzg Matrix

RLzG is computed as follows:

Figure 3.17: RLzG matrix

Gamma computation: gammaFromPosition

This method uses the derivative of the kite position in spherical coordinates according to the following

formula:
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Figure 3.18: Gamma formula

The derivatives of θ and ϕ are calculated by numerical differentiation.

3.7 Supervisor

The supervisor is made up of two modules which deal with the detection of the flight phase and the

calculation of the azimuth sign. These signals drive controller selection.

Figure 3.19: Supervisor module

Before performing the phase calculation, the arithmetic mean will be calculated between Lunwind-

RED and Lunwind-GREEN

3.7.1 Flight phase detection

To identify the end of the generation and recovery phases, the condition choices are mandatory and

are linked respectively to the maximum and minimum length of the ropes. While for the end of the

two transition phases, the azimuth angle was taken into consideration for the switching conditions.

Starting from the Generation phase:

• If the actual cable length exceeds its maximum (MaxTetherLength), transition1 begins Transition1:

• when cos( ϕ) maintains its value lower than CosPhiRec, the Recovery phase can begin. Recovery:

•When the tether length reaches its minimum value (MinTetherLength), transition2 is started Transition2:

• A new generation cycle is started when cos(ϕ) exceeds the CosPhiGen threshold.
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3.7.2 Sign computation

After calculating the flight phase and the derivative of phi, the sign calculation module extracts the

information used to select the controller gain for the recovery phase. If the previous flight phase is

transition 1 and the current flight phase is recovery, the following lines are executed:

Figure 3.20: Sign computation

3.8 Trajectory Control

It is responsible for generating the differential reference based on different flight phases. Below con-

trollers are described for each flight phase considering that:

• DLref,1 is generated by the gamma controller in the generation, transition1 and transition2 phases;

• DLref,2 is generated by the theta controller being fetched.

Only one differential reference is selected based on the current flight phase.

Figure 3.21: DL block diagram

3.8.1 Gamma controller

During the generation phase, the reference velocity angle gammaref is calculated by switching the

two target points to generate a figure of eight. Targets are selected based on the kite’s instantaneous

position in azimuth. A PI type controller works to reduce the error between reference range and
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estimated range as shown in the figure below.

• gamma-ref: speed angle reference;

• gamma: estimated or calculated velocity angle (depends on the method used, as already explained

previously).

Figure 3.22: Gamma controller

Gammaref Generator

In the following image, the active target points are drawn.

Whenever the wing is close to the target points in terms of azimuthal position, the target point is

moved to the other.

Figure 3.23: Kite motion range

The active target point is selected as indicated in the following strategy:
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Figure 3.24:

The velocity angle reference is calculated according to the following formula:

Figure 3.25: Active targets computation

To start the transition1 phase with the same velocity angle reference, the following formula is imple-

mented if the current flight phase is transition1:

Figure 3.26: Velocity angle reference formula

PI controller

The PI controller calculates the differential length reference according to the following formula:
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Figure 3.27: PID model

The equivalent discrete form is implemented using the following variables:

• GammaErr: difference between γref and γ;

• GammaSumErr: sum of GammaErr.

• Ts: sampling time.

By implementing the anti-windup strategy, a saturation value (DL-sat) is applied on the differential

reference to be taken into consideration taking into account the mechanical limits of the AWG.

For the current implementation the PID derived part is equal to zero. Hence, kDgamma = 0 and

derivative of reference gamma is not calculated.

3.8.2 Theta Controller

The differential reference is calculated according to the following scheme.

Figure 3.28: Theta Controller

A PID controller acts to reduce altitude error; The supervisor sign information changes the sign

of the PID parameters. Theta reference is calculated in different ways depending on the flight phase.
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Theta Ref Gen

The following formula is used to generate the theta reference (theta-ref), based on the Euler method

for discrete signals:

Figure 3.29: Theta reference and its time derivative formulas

Where:

• Ts : sampling time;

• τ(tau): time constant of the first order transfer function used for generating reference Theta.

• thetaSS: steady-state value of the theta reference.

PID

The PID controller calculates the differential reference according to the following formula:

Figure 3.30: PID

If Φ sign is negative, the three PID parameters only change their sign. The equivalent discrete

form is implemented using the following variables: • ThetaErr: difference between θref and θ;

• ThetaSumErr: sum of ThetaErr.

• Ts: sampling time.

By implementing the anti-windup strategy, a saturation value (DL-sat) is applied on the differential

reference to be taken into consideration taking into account the AWG mechanical limits.
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3.9 Throttle Control

It deals with throttle reference generation by reducing the error by means of a proportional controller

minimizing the error of speed and length of the winches. Use an empirical relationship between winch

torque and speed, setting the following throttle reference to generation phase and negative winding

speed. This formula is used when the system is on generation stage (step 0) and it required to control

the throttle value.

Figure 3.31: Throttle reference

Figure 3.32: Torque to velocity ratio conversion

Where:

• rho: air density at standard conditions;

• S: surface of the kite;

• CL: lift coefficient;

• E: kite efficiency;

• CorrTtoV: experimental correction factor for the torque/speed ratio of the square winch.

• a-ratio: conversion factor from angular position to linear position (can be approximated with the

inverse of the winch radius).

Meanwhile for the other three phases, the throttle reference is set to a constant value.
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Graphics

The subsequent phase involves implementing graphics.

These graphics hold significant importance, serving to visualize the trajectory of the model onscreen,

originating from the kite’s coordinates.

Moreover, during the completion of prototyping and the initiation of field tests, graphics play an im-

portant role. A comparative analysis between manual and automatic piloting becomes feasible. The

automatic pilot model conducts simulations with identical data to the manual model, displaying the

kite’s relative position onscreen during flight. This facilitates a direct visual comparison between the

two models(ON-FIELD analysis).

4.1 Cubical trajectory

For the graphics component, the decision was made to employ UNITY software, a versatile graphics

engine developed by Unity Technologies.

Unity is a powerful and widely used game development platform that allows developers to create both

2D and 3D games and interactive experiences.

It provides a comprehensive suite of tools for designing, programming, and deploying applications

across various platforms, including PC, mobile devices, consoles, and virtual/augmented reality sys-

tems. Unity’s user-friendly interface enables artists and developers to collaborate efficiently, com-

bining creative assets with advanced coding capabilities. The platform includes features like physics

simulation, real-time rendering, and asset management, making it a versatile tool for game design,

animation, and interactive media development. With a strong emphasis on ease of use, flexibility, and

cross-platform compatibility, Unity is one of the leading engines for game development and real-time

graphics.

33
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The initial step involved acquiring proficiency in using this graphic software. As a practice exercise,

the task was set to manipulate an object along a cubic trajectory. At each iteration, the object re-

ceives a set of coordinates (X, Y, Z) and is required to move towards the new position from its current

location.

To achieve this, a script written in the CSharp language was implemented in UNITY. UNITY scripts

bear similarities to those of ARDUINO, featuring a START() section for initializing parameters and

an UPDATE() area for program updates at each frame. Initially, three position arrays (X, Y, Z) were

defined to designate the target position of the mobile object. Each set represents the coordinates of

an edge of a cube.

Following the establishment of the object’s initial position in the START() section, the object orients

itself toward a new position by extracting coordinates from the position arrays. Subsequently, the

object moves towards this updated target using the MoveTowards function.

With each iteration, the target positions undergo updates, facilitating the object’s movement along a

cubic trajectory. Upon reaching the last triad, the new target becomes the set located at position ’0’

ensuring the continuous movement of the cube as it follows a cubic trajectory.

Nevertheless, the current script encounters an issue as the MoveTowards function necessitates multiple

frames to complete its operation. Consequently, in each iteration, the target is updated before the

function has finished its execution.

To address this challenge, a new condition has been incorporated. This condition ensures that the

target is not updated until the MoveTowards function has successfully concluded its operation.
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Figure 4.1: Cubic trajectory example

4.2 Graphics server/client implementation

The next step is to recreate the previous exercise but the target coordinates are sent from an external

program.

In particular, the external program is a Client, written in C++, which communicates with UNITY

via TCP/IP protocol.

So at UNITY script level a SERVER will be implemented that will receive the data and use it to

recreate the cubic movement. The initial task is to implement the Client in C++. The Client is

required, at each iteration, to transmit the coordinates of the Target via TCP/IP. The package car-

rying information regarding the new point utilizes a JSON structure. This ensures that each field is

accompanied by its corresponding value, eliminating any potential ambiguity.

During each iteration, the Client loads the coordinates of the new target onto an object of class type

named ”st-Coord.” This approach was chosen to leverage the capabilities of the Json.cpp library.

Specifically, within this library, there exists a function that facilitates the conversion of an object from

Class type to Json type.

In preparation for transmission via TCP, the packet undergoes a transformation into a string. Se-

rialization is executed using the JSON.cpp library, enabling the transition from a JSON object to

a string. Subsequently, the Server receives this string and is tasked with performing deserialization,
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retrieving the JSON structure from the string.

Upon implementing the Client, and in the absence of the Server, a testing procedure is desired. To

facilitate this, a TCP Server is being created using Hercules.

Upon configuring the IP and Port for the connection, the strings sent by the C++ Client could be

observed on the screen.

Figure 4.2: Hercules software

Note the Json-like structure of each string, where each field is accompanied by its corresponding value.

The subsequent step involves implementing the Server in Unity. This requires the creation of a script

designed to receive coordinates from the Client and update the new target. Consequently, this ap-

proach facilitates the transmission of coordinates between computers, enabling the realization of a

cubic trajectory, similar to the previous exercise.
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4.3 Trajectory implementation with spherical trajectories

The subsequent task involves modifying the movement of the object to enable it to follow a spherical

trajectory, mirroring the ’8’ motion of the kite.

Initially, the intention was to maintain the same technique employed in the previous exercise: provid-

ing a set of coordinates for the object to orient towards.

However, this approach proves impractical for replicating a wave-like movement, as it requires a large

number of coordinates.

To overcome this challenge, a decision was made to adopt a different method: changing the coordi-

nates through keyboard commands.

Specifically, the modification involves pressing Q to increase the radius of a unit and pressing A to

decrease its value. Likewise, pressing W or S increases or decreases Phi by 5°, and Theta is adjusted

with E and D.

Following the initialization of spherical coordinates Rho, Theta, and Phi, their values can be dynami-

cally altered through these keyboard commands. This process effectively creates a new target for the

object to aim at.

Parallel to the method employed in the prior exercise, the coordinates are stored in the Json class

and transmitted to the CSharp Server. However, a notable challenge arises: Unity operates solely

within a Cartesian reference system, not a spherical one. Consequently, each spherical triple must be

converted into Cartesian coordinates using trigonometric formulas.:

Figure 4.3: Trigonometric formulas

However, there must be adjustments since Unity’s reference system is y-up, i.e. Z and y are reversed

compared to the standard reference system.

After making these adjustments, it is possible, by typing the keys, to see the object move along a

spherical trajectory.
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Figure 4.4: Spherical movement example

Figure 4.5: Spherical movement from a transverse camera

4.4 Simulation trajectory visualization

The next goal is to visualize the complete movement of the kite. To achieve this, the spherical coor-

dinates were extracted from the Matlab/Simulink model.

The file generated by Matlab is quite large, prompting the decision to extract one row every N rows.
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The Matlab model samples at a very high frequency, and consecutive rows have minimal differences.

Therefore, a C++ program was developed to read the file created by Matlab and save one line every

N lines in another file. This processed file will then be utilized as input for the C++ Client.

The program responsible for generating the file has been kept separate from the C++ Client, primar-

ily due to concerns about potential performance issues when working with a large file (approximately

180k lines).

In this setup, the C++ Client reads the file produced by the external program. Each line in the file

contains spherical coordinates of the new target (Rho, Theta, Phi). These coordinates are then trans-

mitted to the Unity Server, which processes them to guide the object along the trajectory described

in the file. This approach helps manage the computational load and ensures smoother performance.

Figure 4.6: ”Eight” movement

The next objective is to optimize the entire process, aiming for automation. Currently, to initiate the

Unity program, it’s needed to click on the Play button, wait for it to load, and then run the C++

Client.

To streamline this, the initial approach was to extract the Unity .exe and activate it during the Client’s

initialization.

However, this strategy faces challenges, as the call to the Unity .exe requires continuous use of the

C++ Console, impeding the seamless continuation of execution. The Console remains engaged in

communication with Unity, preventing the program’s smooth progression.

To address this challenge, two strategies were identified: the first involves the use of MultiConsole at
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the C++ level (utilizing one Console for calling the Unity .exe and another for programming related

to the Client), while the second idea is to have Unity call the C++ Client executable.

After a thorough evaluation of both solutions, the decision was made to proceed with the second

strategy. The first strategy was deemed complex to implement, and the second strategy appeared to

offer a more straightforward and feasible approach.

To provide an efficient solution, a button was added to the Unity interface, which, when pressed,

triggers the execution of the C++ Client executable.

Figure 4.7: List of buttons in order to start/stop the executable or for changing the camera
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4.5 Camera

A critical aspect of the graphics is the choice of the observation point, determining the angle from

which the movement of the kite is viewed.

To facilitate this, a cubic object named AWG has been introduced at the origin (0,0,0). This object

is intended to represent the turret of the kite on the ground, serving the purpose of showcasing the

movement of the sail around this central point. This addition contributes to providing a clear and

illustrative perspective on the kite’s motion.

Figure 4.8: Behind AWG camera

Consequently, the camera was positioned behind the AWG to achieve a comprehensive visualization

of the kite’s motion. However, this perspective can present challenges in understanding certain phases

of the flight. For instance, during the Transition1 phase, where the glider moves laterally, it might

appear as if the glider continues to rise when viewed from behind the AWG. To address this display

issue, an alternative is to change the observation point, allowing the movement of the sail to be viewed

from above.
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Figure 4.9: AWG point of view camera

By adopting this overhead perspective, it becomes apparent how the target points are updated. Specif-

ically, during these updates, Theta remains constant while only Phi varies, providing a clearer insight

into the dynamics of the kite’s motion.
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Figure 4.10: ”Chasing” kite camera

However, this observation point fails to clearly display the ’figure-eight’ movement of the sail. In

response, a model was devised wherein the view can be dynamically chosen by modifying the camera

settings. Consequently, buttons were added to the screen, allowing users to switch between different

views and achieve a more optimal visual representation.

Three buttons were introduced with the following labels: ’MAIN’, ’AWG’, and ’TOP’. The ’Main’

camera corresponds to the view behind the AWG, ’TOP’ offers a top-down perspective, and ’AWG’

aligns the camera with the turret, providing a first-person view as if situated on the AWG itself. This

approach allows users to select the most suitable perspective for a clearer and more comprehensive

understanding of the kite’s motion.

Indeed, by incorporating these camera options and allowing users to switch between different views, a

comprehensive and detailed visualization of the kite’s movement is achieved. This approach provides

a flexible and user-friendly interface, enabling a better understanding of the dynamic ’figure-eight’

motion of the kite from various perspectives.
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Figure 4.11: in the moment it’s displayed the actual position and the actual phase



CHAPTER 5

Hardware

During the design phase, careful considerations were taken into account, particularly at the hardware

level and, crucially, at the operating system level. The primary objective was to proactively address

potential issues related to the performance of the entire process. This strategic approach aimed to

ensure the robustness and efficiency of the system by anticipating and mitigating potential challenges

in both hardware and operating system environments.

5.1 PC WINDOWS general purpose

Initially, the plan was to utilize a general-purpose computer supporting the Windows operating sys-

tem for implementing the Flight Controller. However, during the testing phase, challenges emerged

related to the cyclical nature of the Windows operating system. Specifically, Windows does not sample

constantly but depends on the state of the CPU.

To illustrate this behavior, a C++ program was implemented to demonstrate the non-linearity of the

Windows operating system. The full system operates on the order of thousands of hertz. Therefore,

a program was created to test the behavior of Windows under similar conditions as the system. The

test involves printing a message on the screen for every millisecond that passes. In cases where the

update print exceeds 1 millisecond, an error message is displayed on the screen.

Initially, the test was conducted when the processor is relatively idle (no background programs run-

ning). In this scenario, the program successfully prints the message every millisecond without errors.

However, when the CPU is busy, the cyclical nature of the print message is disrupted, and the program

prints the message along with its relative delay.

45
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Figure 5.1: Case when the CPU is ”working” at low rate

Figure 5.2: Case when Matlab is ”starting working”
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Addressing the issue is imperative as the Flight Controller algorithm relies on PID-type controllers,

which are highly sensitive to jitter. The presence of jitter can lead to partially incorrect results,

causing the Glider to execute inaccurate commands.

To mitigate this problem, the decision was made to opt for a Siemens IPC industrial computer. This

system comprises a SoftPLC in addition to the Windows operating system. This choice aims to provide

a more stable and reliable environment, especially for precision-driven PID controllers, ensuring that

the Flight Controller can operate with minimal jitter and deliver accurate commands to the Kite.

5.2 IPC Siemens

Siemens IPC (Industrial PC) and SoftPLC (Software PLC) are integral components in industrial au-

tomation systems, combining hardware and software solutions for efficient control and monitoring of

machinery and processes. Here’s an explanation of their features:

Siemens Industrial PCs (IPC) are ruggedized, high-performance computers designed for industrial

environments. They provide computing power for complex tasks, such as data collection, control, and

communication in factories and manufacturing plants. Here are the key features:

Robust Design:

Siemens IPCs are built to withstand harsh industrial environments, including extreme temperatures,

dust, vibrations, and electromagnetic interference. They are certified for use in industrial settings,

meeting various standards such as CE, UL, and others.

High Performance:

Siemens IPCs are equipped with powerful processors (e.g., Intel Core i-series) to handle demanding

tasks like data processing, machine control, and real-time analysis.

The performance makes them suitable for handling complex operations and running advanced soft-

ware applications.

Flexibility:

Siemens offers different IPC models, such as panel PCs, rack-mounted PCs, and embedded systems,

to suit various industrial use cases.

They are highly customizable with flexible I/O options, expansion slots, and connectivity ports, al-

lowing integration with other systems.

Real-time Capabilities:

Some Siemens IPCs support real-time operating systems (RTOS), providing precise control and mon-

itoring of industrial processes in real time.

This is critical for applications where delays cannot be tolerated, such as in machine automation or
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safety systems.

Communication and Connectivity:

Siemens IPCs come with extensive connectivity options, including Ethernet, USB, serial ports, and

industry-specific protocols such as PROFINET, PROFIBUS, and Modbus.

They support seamless integration with PLCs, SCADA systems, and other automation devices.

Industrial Software Compatibility:

Siemens IPCs are compatible with various industrial software tools, including Siemens’ own TIA Por-

tal, WinCC for HMI (Human-Machine Interface), and SIMATIC SCADA.

This makes them a good fit for Siemens-based automation systems.

Long Lifecycle and Support:

They are designed for long-term use in industrial settings, with a long product lifecycle and support

for software updates and maintenance.

SoftPLC (Software PLC)

A SoftPLC is a software-based implementation of a traditional hardware PLC (Programmable Logic

Controller). It runs on industrial PCs or standard computers instead of specialized hardware. Here

are its key features:

-Software-based Control:

SoftPLC enables PLC functionality to be performed by software running on general-purpose comput-

ers (like Siemens IPCs).

It eliminates the need for dedicated hardware PLC devices, providing cost-effective and flexible control

solutions.

-Flexibility and Scalability:

SoftPLC systems are highly flexible and can be scaled to suit different levels of automation, from

small systems to large, complex networks.

They can integrate with various industrial control devices, such as sensors, actuators, and robotics,

and can be adapted to different types of applications.

-Real-time Control:

Like traditional PLCs, SoftPLC systems support real-time control and deterministic operation, ensur-

ing that the control logic runs without delay. They can handle tasks such as machine control, process

monitoring, and data logging.

-High-level Programming Languages: SoftPLCs support high-level programming languages such

as IEC 61131-3, which includes Ladder Logic (LD), Function Block Diagram (FBD), Structured Text

(ST), Instruction List (IL), and Sequential Function Chart (SFC). This allows for easier programming
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and modification of control logic compared to traditional hardware PLCs.

-Cost-Effective:

SoftPLC offers significant cost savings by using standard hardware, such as industrial PCs or servers,

instead of dedicated PLC hardware.

It also reduces the need for specialized control hardware when scaling the system.

-Integration and Communication:

SoftPLC systems can easily integrate with other control and automation systems, as they support a

wide range of communication protocols like OPC, Modbus, PROFINET, and Ethernet/IP.

This makes them ideal for distributed control systems, remote monitoring, and communication with

SCADA or HMI systems.

-Advanced Features:

SoftPLCs often come with advanced features such as data analytics, remote diagnostics, and system

monitoring tools.

They can be combined with other software applications for enhanced data processing, machine learn-

ing, and predictive maintenance.

-Continuous Updates and Customization:

Unlike traditional PLCs, which have fixed hardware configurations, SoftPLC systems are easily up-

dated and customized to meet changing needs and new standards.

-Compatibility with Industry Standards:

Siemens’ SoftPLC solutions are fully compatible with international standards, such as IEC 61131-3,

and Siemens’ own protocols, including PROFINET and PROFIBUS.

Siemens IPC and SoftPLC Integration

When Siemens IPCs are used in conjunction with SoftPLC systems, they provide a powerful, flexible,

and scalable solution for industrial automation. The IPC serves as the hardware platform for running

the SoftPLC software, which in turn provides control and automation capabilities.

Key Benefits of Siemens IPC and SoftPLC:

Reduced hardware costs: By using a SoftPLC on a Siemens IPC, you eliminate the need for dedicated

PLC hardware.

Increased flexibility: Both Siemens IPCs and SoftPLCs offer flexibility in terms of programming, scal-

ing, and integration with other systems.

Enhanced performance: Siemens IPCs offer the processing power and real-time capabilities necessary

for running demanding SoftPLC applications.

Easy integration: Siemens SoftPLC solutions integrate seamlessly with other Siemens devices and
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third-party systems, allowing for comprehensive automation solutions.

In summary, Siemens IPCs and SoftPLCs provide an efficient, scalable, and flexible approach to

industrial control systems, enabling companies to reduce costs, improve performance, and enhance

automation capabilities.

Therefore, using the Siemens IPC there is no problem of the cyclicality of the entire system regardless

of the state of the CPU, therefore each process is deterministic.

5.3 HARDWARE and Interconnections

The system is composed of:

PC SIEMENS IPC 427E: receives the data relating to the position of the sail and the direction of the

wind and processes the algorithm to generate the rope length differential and the reference torque to

send to the Simotion.

SIMOTION: receives the signals useful for piloting the Kite from the PC

IPOK: Provides data relating to the speed and position of the Kite

WEATHER STATION: provides data relating to weather conditions

Figure 5.3: Block Diagram

The Siemens PC is composed (as previously described) of a Windows operating system and a CPU

1507S softPLC system.
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Figure 5.4: PC Siemens

The softPLC system offers the possibility of developing applications in advanced languages and inte-

grating them into the controller. ODK is a development package and serves as an interface for calling

proprietary programs in advanced languages from the CPU controller.

Therefore the ODK allows the use of function blocks (FB), which will be implemented to develop the

Flight Controller algorithm.

C++ code must be compiled as a dynamic-link-library (DLL), which helps promote code modular-

ization, code reuse, efficient memory use, and disk space reduction. So, the operating system and

programs load faster, run faster, and require less disk space on the computer.

5.3.1 DLL

Several DLLs have been implemented, each of which will have a well-defined role:

Ipok Data DLL

DLL Weather station data

DLL Conversion

DLL Algorithm

DLL Client Coordinates

Ipok Data DLL: this function block is used to receive data relating to the coordinates, position and
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speed of the sail from the IPOK. Communication with the IPOK occurs via TCP/IP communication

by implementing the TCP server in C++.

Figure 5.5: Internal structure of the Algorithm Module

Weather station data DLL: similarly to the previous block, the weather station sends data relating to

the wind direction to the Siemens PC via TCP/IP.

Figure 5.6: Profinet Interconnection
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Conversion DLL: this FB receives the inputs from the Ipok Data and Weather Station Data DLLs

to switch from global coordinates to local coordinates. These coordinates will then be sent to the

Algorithm DLL and Coordinate Client DLL.

DLL Algorithm: generates the length differential of the ropes and the reference torque to send to the

Simotion, which will pilot the sail. The outputs of the Algorithm DLL are saved in a PLC variable

and sent via PROFINET to Simotion, thus working in deterministic and cyclical times.

DLL CLIENT COORDINATE: receives the data relating to the position of the Kite and sends it via

TCP/IP to Unity on Windows to create a graphic.

The Coordinate Client is a TCP/IP socket client implemented in C++.

Figure 5.7: From Algorithm module to the Graphics module
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Figure 5.8: Overall functional blocks

5.3.2 Graphics

The graphics will be developed in Unity in the Windows operating system( as described in chapter

4). It was decided to use this program as it is a high level program, it has various features making it

widely used in the world of graphics.

In this environment, a script will be implemented in Csharp, which will act as a TCP/IP Server which

will receive the data via TCP from the CPU and will be fed to Unity, which will recreate the kite

trajectory in 3D.



CHAPTER 6

Simulation and future steps

6.1 Simulation

In this chapter, the results obtained from the Matlab simulation will be compared with the model

created in C++. This step is crucial, as for the model to be reliable enough to autonomously control

the sail, the difference between the two models must be minimal.

To compare the results of the two methods, a program was created that generates outputs starting

from a text file (using the same algorithm). These outputs will then be compared with the data from

Matlab.

Specifically, the file consists of four rows, with each row containing data relevant for data processing:

-The first row contains θ , ϕ , ThetaDer ,PhiDer

-The second row contains the lengths and velocities of the cables.

The third row contains the values of θ , ϕ from the previous iteration (this data is required because

the program operates in an ”open-loop” manner concerning the PID section)

-The last row contains the outputs generated by Matlab, which will then be compared with the results

from the algorithm.

Figure 6.1: Input file example

55
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The program will ”print” the results generated by the algorithm and compare them with the Matlab

model. The goal is to obtain results with a precision up to the first decimal place.

Figure 6.2: Output file example

To verify whether the algorithm is processing correctly, various moments were considered (including

critical moments). In particular, the moments when the sail changes its ”target” or transitions between

phases were taken into account. This approach allows for the evaluation of the model’s reliability.

To achieve this, several input files were created to assess the performance of the algorithm throughout

all phases of the flight.

Figure 6.3: Changing from phase 0 to 1
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Figure 6.4: Changing from phase 2 to 3 with a negative sign

Figure 6.5: Torque reference value

Unlike MATLAB, the algorithm does not always generate all outputs, which explains why some val-

ues appear as ”NaN”. As described in the algorithm chapter, each flight phase produces only specific

outputs, meaning that non-relevant values are not considered. Instead, based on the kite’s phase, it

determines which values to calculate. In fact, only the relevant data for that particular moment are

transmitted to SiMotion. Logically, this is as if a multiplexer were present in the algorithm, deciding

which values to consider based on the inputs.

As can be observed from the various outputs, the algorithm developed accurately reflects the data

processed by MATLAB, ensuring that the results align with the expected values and demonstrating

the consistency between the two systems. This correlation further validates the algorithm’s ability



Flight Controller 58

to replicate the same data processing and output generation, similar to the MATLAB implementation.

6.2 Future steps

The next steps will involve configuring the Siemens machine (so far, work has been done on a general-

purpose Windows machine). After that, field tests will be conducted, connecting the entire system to

the sail and comparing in real-time the data generated by the algorithm with the position of the sail

as controlled by a pilot. This will allow for the evaluation of the algorithm’s performance (based on

the real data transmitted by the sail) and for examining the discrepancies between the automatic pilot

model and the manual pilot model during critical moments (such as target changes, phase changes,

etc.). Additionally, the graphics created in Unity will be highly useful, as the real-time display will

allow for visual verification of the sail’s position in Unity and its actual position in the ”sky” with the

naked eye.

6.3 Collaborations and Acknowledgments

I would like to express my heartfelt thanks to the Motion Engineering team and Kyte Energy for the

opportunity they provided in bringing this project to fruition.



CHAPTER 7

Appendix

7.1 ENU reference frame

ENU stands for East-North-Up and is a local coordinate system used to describe positions relative to

a specific reference point, typically on the Earth’s surface.

In the ENU system: The East axis points towards the east from the reference point (positive towards

the east), The North axis points towards the north from the reference point (positive towards the

north), The Up axis points upwards, perpendicular to the Earth’s surface (positive upwards, away

from the Earth’s center).

The ENU system is commonly used in geodesy, navigation, and in applications where local positioning

relative to a specific point is needed. It is often used to simplify calculations and analyses involving

geographic locations, particularly in applications like GPS or robotics.

Figure 7.1: ENU reference frame example
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7.2 UDP and TCP

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) both are protocols of the

Transport Layer Protocols. TCP is a connection-oriented protocol whereas UDP is a part of the Inter-

net Protocol suite, referred to as the UDP/IP suite. Unlike TCP, it is an unreliable and connectionless

protocol. In this article, we will discuss the differences between TCP and UDP.

What is Transmission Control Protocol (TCP)?

TCP (Transmission Control Protocol) is one of the main protocols of the Internet protocol suite. It

lies between the Application and Network Layers which are used in providing reliable delivery ser-

vices. It is a connection-oriented protocol for communications that helps in the exchange of messages

between different devices over a network. The Internet Protocol (IP), which establishes the technique

for sending data packets between computers, works with TCP.

Figure 7.2: TCP Schema
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Features of TCP

TCP keeps track of the segments being transmitted or received by assigning numbers to every single

one of them.

Flow control limits the rate at which a sender transfers data. This is done to ensure reliable delivery.

TCP implements an error control mechanism for reliable data transfer. TCP takes into account the

level of congestion in the network.

Applications of TCP

World Wide Web (WWW) : When you browse websites, TCP ensures reliable data transfer between

your browser and web servers.

Email : TCP is used for sending and receiving emails. Protocols like SMTP (Simple Mail Transfer

Protocol) handle email delivery across servers. File Transfer Protocol (FTP) : FTP relies on TCP

to transfer large files securely. Whether you’re uploading or downloading files, TCP ensures data

integrity.

Secure Shell (SSH) : SSH sessions, commonly used for remote administration, rely on TCP for en-

crypted communication between client and server. Streaming Media : Services like Netflix, YouTube,

and Spotify use TCP to stream videos and music. It ensures smooth playback by managing data

segments and retransmissions.

Advantages of TCP

It is reliable for maintaining a connection between Sender and Receiver. It is responsible for sending

data in a particular sequence. Its operations are not dependent on Operating System . It allows and

supports many routing protocols. It can reduce the speed of data based on the speed of the receiver.

Disadvantages of TCP

It is slower than UDP and it takes more bandwidth. Slower upon starting of transfer of a file. Not

suitable for LAN and PAN Networks. It does not have a multicast or broadcast category. It does not

load the whole page if a single data of the page is missing.

What is User Datagram Protocol (UDP)?

User Datagram Protocol (UDP) is a Transport Layer protocol. UDP is a part of the Internet Protocol

suite, referred to as the UDP/IP suite. Unlike TCP, it is an unreliable and connectionless proto-

col. So, there is no need to establish a connection before data transfer. The UDP helps to establish

low-latency and loss-tolerating connections establish over the network. The UDP enables process-to-

process communication.
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Figure 7.3: UDP Schema

Features of UDP

Used for simple request-response communication when the size of data is less and hence there is lesser

concern about flow and error control. It is a suitable protocol for multicasting as UDP supports packet

switching. UDP is used for some routing update protocols like RIP(Routing Information Protocol).

Normally used for real-time applications which can not tolerate uneven delays between sections of a

received message.

Application of UDP

Real-Time Multimedia Streaming : UDP is ideal for streaming audio and video content. Its low-

latency nature ensures smooth playback, even if occasional data loss occurs.

Online Gaming : Many online games rely on UDP for fast communication between players.

DNS (Domain Name System) Queries : When your device looks up domain names (like converting

“www.example.com” to an IP address), UDP handles these requests efficiently .

Network Monitoring : Tools that monitor network performance often use UDP for lightweight, rapid

data exchange.

Multicasting : UDP supports packet switching, making it suitable for multicasting scenarios where

data needs to be sent to multiple recipients simultaneously.

Routing Update Protocols : Some routing protocols, like RIP (Routing Information Protocol), utilize

UDP for exchanging routing information among routers.

Advantages of UDP
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It does not require any connection for sending or receiving data. Broadcast and Multicast are available

in UDP. UDP can operate on a large range of networks. UDP has live and real-time data. UDP can

deliver data if all the components of the data are not complete.

Advantages of UDP

We can not have any way to acknowledge the successful transfer of data. UDP cannot have the mech-

anism to track the sequence of data. UDP is connectionless, and due to this, it is unreliable to transfer

data. In case of a Collision, UDP packets are dropped by Routers in comparison to TCP.UDP can

drop packets in case of detection of errors.

Which Protocol is Better: TCP or UDP?

The answer to this question is complex, as it depends entirely on the type of work being done and the

nature of the data being transmitted. UDP is preferable for real-time applications like online gaming,

as it minimizes lag. On the other hand, TCP is ideal for transferring data such as photos or videos,

as it guarantees the accuracy and integrity of the data being sent. In general, both TCP and UDP

are useful in the context of the work assigned by us. Both have advantages upon the works we are

performing, that’s why it is difficult to say, which one is better.

Figure 7.4: UDP vs TCP
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7.3 DLL

A DLL is a library that contains code and data that can be used by more than one program at the

same time. For example, in Windows operating systems, the Comdlg32 DLL performs common dia-

log box related functions. Each program can use the functionality that is contained in this DLL to

implement an Open dialog box. It helps promote code reuse and efficient memory usage.

By using a DLL, a program can be modularized into separate components. For example, an account-

ing program may be sold by module. Each module can be loaded into the main program at run time

if that module is installed. Because the modules are separate, the load time of the program is faster.

And a module is only loaded when that functionality is requested.

Additionally, updates are easier to apply to each module without affecting other parts of the program.

For example, you may have a payroll program, and the tax rates change each year. When these

changes are isolated to a DLL, you can apply an update without needing to build or install the whole

program again.

The following list describes some of the advantages that are provided when a program uses a DLL:

Uses fewer resources

When multiple programs use the same library of functions, a DLL can reduce the duplication of code

that is loaded on the disk and in physical memory. It can greatly influence the performance of not

just the program that is running in the foreground, but also other programs that are running on the

Windows operating system.

Promotes modular architecture

A DLL helps promote developing modular programs. It helps you develop large programs that require

multiple language versions or a program that requires modular architecture. An example of a modular

program is an accounting program that has many modules that can be dynamically loaded at run

time.

Eases deployment and installation

When a function within a DLL needs an update or a fix, the deployment and installation of the DLL

does not require the program to be relinked with the DLL. Additionally, if multiple programs use the

same DLL, the multiple programs will all benefit from the update or the fix. This issue may more

frequently occur when you use a third-party DLL that is regularly updated or fixed.
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7.4 PID

PID controllers represent a sophisticated feedback mechanism vital for controlling dynamic systems.

At their core, they operate using three basic terms: Proportional (P), Integral (I), and Derivative (D).

Each term uniquely modulates the output signal based on the difference between the desired setpoint

and the actual measured value, commonly known as the error.

The Proportional (P) term responds to the present error, generating an output proportional to its

magnitude. By applying immediate corrective action, the P term minimizes errors quickly.

The Integral (I) term addresses any persistent errors or long-term deviations from the setpoint by

accumulating the error over time. By integrating the error signal, the I term ensures that the system

approaches and maintains the setpoint accurately, eliminating steady-state errors.

The Derivative (D) term anticipates future changes in the error by evaluating its rate of change. This

approach dampens oscillations and stabilizes the system, especially during transient responses.

Figure 7.5: Generic PID Schema

A PID controller continuously calculates an error signal as the difference between a desired setpoint

(the target value) and the current process variable (the measured value). Based on this error signal,

the controller adjusts the system’s control input to minimize the error and maintain the process vari-
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able close to the setpoint.

Here’s how it works in more detail:

Error Calculation: The PID controller continuously calculates the error signal as the difference be-

tween the desired set point and the current process variable.

Proportional Control: The proportional (P) term responds to the current error by producing an out-

put proportional to the magnitude of the error.

Integral Control: The integral (I) term responds to the cumulative sum of past errors and aims to

eliminate any steady-state error. It is calculated as the integral of the error over time.

Derivative Control: The derivative (D) term responds to the rate of change of the error and helps

dampen rapid changes in the system. It is calculated as the derivative of the error over time.

Control Output: The control output is the sum of the proportional, integral, and derivative terms.

Adjustment of Control Input: The control output is applied as the input to the system being con-

trolled. It adjusts system parameters such as valve positions, motor speeds, or heating elements to

bring the process variable closer to the set point.

Feedback Loop: The process variable is continuously measured and fed back to the controller, closing

the control loop. The controller adjusts the control input based on the feedback, aiming to minimize

the error and maintain the process variable at the setpoint.

7.5 Simotion

Simotion is a motion control system developed by Siemens. It is part of the Siemens Totally Integrated

Automation (TIA) portfolio and is designed to provide high-performance motion control solutions for

industrial automation applications. Simotion is used for controlling and optimizing the movement of

machines and processes in various industries, such as manufacturing, robotics, packaging, and more.

Simotion is essentially a motion control system that integrates various motion control tasks, such as

positioning, velocity control, and torque control. It allows for precise and flexible control of drive

systems, enabling machinery to operate efficiently and accurately. It can handle both simple and

complex motion profiles, offering robust control over different types of motion systems, including both

synchronous and asynchronous motors.

Simotion is primarily used to: Control and optimize motion in machinery: It is employed to control

the movements of motors, actuators, and other devices in an automated environment.

Enhance production processes: By providing precise motion control, it can improve the accuracy,

speed, and overall performance of industrial machines. Integrate various automation components: It
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can integrate with other Siemens automation systems (like PLCs, HMI, and SCADA) to create a

comprehensive automation solution.

Simplify programming and maintenance: Simotion provides user-friendly tools to design, configure,

and manage motion control applications, which simplifies the programming and maintenance tasks.

Simotion is structured into several components that work together to provide motion control functionality:

Simotion Controllers: These are the central units of the system, responsible for controlling the motion

processes. Simotion controllers can be programmable or configured using software tools.

Simotion Software: This includes the Simotion Scout programming and configuration tool, which is

used for setting up and programming the motion control system. It allows the user to define motion

profiles, set parameters, and visualize system behavior.

Motion Control Modules: These are used to interface with the motors and drives, providing the nec-

essary hardware for controlling different motion parameters (e.g., speed, position, torque).

Simotion Drives: These include the drive systems that control the motor’s operation based on com-

mands from the Simotion controller. They allow for precise control of motor functions like speed,

torque, and position.

Communication Modules: Simotion uses communication networks (such as Profinet, Ethernet, or

Profibus) to connect various automation components and enable data exchange between the con-

troller, drives, and other devices in the system.

HMI (Human-Machine Interface): For monitoring and interacting with the motion control system,

Simotion can be integrated with HMIs, allowing operators to visualize machine status, adjust param-

eters, and control motion sequences.

Key Features of Simotion are :

High-precision motion control: It provides advanced control over positioning, speed, and torque, mak-

ing it ideal for applications that require high levels of precision. Flexible programming: It supports

both programming in IEC 61131-3 languages (like Ladder Logic, Structured Text) and motion-specific

function blocks for easy integration into control systems.

Scalability: Simotion can be scaled to meet the needs of small machines or large, complex systems

with multiple axes of motion.

Multi-axis control: It can handle systems with multiple axes (motors), such as synchronized movement

in robotics and packaging systems.

Real-time performance: Simotion ensures high-speed control and real-time response to changes in the

system, critical for high-performance applications. Integration with other Siemens automation prod-

ucts: It integrates seamlessly with other Siemens products, allowing for a fully integrated automation
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solution.

In other words ,Simotion is a versatile and powerful motion control system designed to provide pre-

cise control over industrial machinery and processes. Its flexibility, scalability, and high-performance

features make it suitable for a wide range of automation applications. Through the integration of con-

trollers, drives, and communication systems, Simotion enables industries to optimize their production

processes and improve machine performance.

7.6 PROFINET

PROFINET is an open Industrial Ethernet solution based on international standards. It is a commu-

nication protocol designed to exchange data between controllers and devices in an automation setting.

It was introduced in the early 2000s and is the most well-adopted Industrial Ethernet solution.

Since PROFINET is an open standard, hundreds of manufacturers have developed PROFINET prod-

ucts, such as PLCs, PACs, Drives, Robots, Proxies, IOs, and diagnostic tools.

PROFINET defines cyclic and acyclic communication between components, including diagnostics,

functional safety, alarms, and additional information. To link all of those components, PROFINET

employs standard Ethernet for its communication medium. Ethernet cables connect PROFINET

components within a network, allowing other Ethernet protocols to coexist within the same infras-

tructure. Besides PROFINET, you can employ other Ethernet-based protocols to complement the

network, such as OPC UA, SNMP, MQTT, or HTTP.

Industrial automation environments often require high-speeds and deterministic communication. De-

terministic communication means delivering messages exactly when they are expected.

PROFINET must ensure messages are delivered with the appropriate speed and determinism depend-

ing on the task. Not all applications require the same performance. For example, loading configuration

data for a process instrument can take several minutes without affecting production. On the other

hand, a communication delay of just a few milliseconds between a PLC and a high-speed VFD can

significantly impact the process.
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Figure 7.6: Profinet Schema

To ensure appropriate performance, PROFINET delivers data through the following communication

channels:

TCP/IP (or UDP/IP)

PROFINET Real-Time (RT)

PROFINET Isochronous Real-Time (IRT)

Time Sensitive Networking (TSN)

PROFINET can employ TCP/IP or UDP/IP communication for non-time-critical tasks, such as

configuration and parameterization. Due to the added latency and jitter associated with IP-based

communication, this method is unsuitable for time-critical tasks.

PROFINET employs a real-time channel to deliver data in a fast and deterministic fashion for time-

critical applications.

This is how PROFINET real-time works: Standard Ethernet frames have a field called an EtherType,

which indicates the type of protocol used. PROFINET real-time communication is set to have an

EtherType of 0×8892. Upon arrival at the destination node, the frame is directed to the PROFINET

application immediately. The data goes directly from Ethernet, Layer 2, to PROFINET, Layer 7. It

skips the TCP/IP layers and avoids the variable time it could take to be processed as such. Thus,

communication speed and determinism improve significantly.PROFINET real-time fulfills the require-

ments of the vast majority of time-critical applications. The overall performance will depend on your

network’s design, but generally, you can achieve cycle times of 250 µs to 512 ms.
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7.7 Socket Programming

Socket programming is a way of enabling communication between computers or devices over a net-

work using a standardized interface. It provides a mechanism for creating networked applications that

can exchange data between a client and a server. Socket programming is typically used in various

network protocols (like TCP/IP) and is crucial in enabling features like web browsing, file transfers,

and real-time communication.

Here’s a theory-oriented explanation of Socket Programming:

1. What is a Socket?

A socket is an endpoint for communication between two machines over a network. It serves as an

interface for sending and receiving data. In simpler terms, a socket is a combination of an IP ad-

dress and a port number. It helps applications communicate using the TCP (Transmission Control

Protocol) or UDP (User Datagram Protocol), which are the two main types of protocols for network

communication.

TCP (Transmission Control Protocol): A connection-oriented protocol that ensures reliable data

transmission. It establishes a reliable, stream-based connection between the client and server. It

guarantees that packets of data arrive in the correct order and retransmits any lost packets.

UDP (User Datagram Protocol): A connectionless protocol that is faster but does not guarantee reli-

able delivery. It is used when speed is more important than reliability, like in streaming or real-time

applications.

2. Types of Sockets

Stream Sockets (TCP sockets): These sockets are used for communication using the TCP protocol.

They ensure reliable, two-way, byte stream communication between the client and server.

Datagram Sockets (UDP sockets): These sockets use UDP, a simpler, connectionless protocol that

does not ensure reliable transmission. They send packets (datagrams) between the client and server

without establishing a dedicated connection.

3. Basic Socket Programming Steps

Here’s an overview of the steps involved in socket programming. This includes both client-side and

server-side operations.

Server-side Steps:

Create a Socket: The server creates a socket to listen for incoming connections.

Example: serversocket = socket.socket(socket.AFINET, socket.SOCKSTREAM) AFINET: Specifies

the IPv4 protocol.
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SOCKSTREAM: Specifies the TCP protocol.

Bind the Socket: Bind the socket to a specific IP address and port number. This step links the

socket to the local machine and makes it ready to accept incoming connections. Example: server-

socket.bind((’localhost’, 12345))

Listen for Connections: The server listens for incoming client connections. Example: serversocket.listen(5)

(5 is the maximum number of pending connections in the queue).

Accept Connections: When a client attempts to connect, the server accepts the connection and estab-

lishes a new socket dedicated to communication with that client. Example: clientsocket, clientaddress

= serversocket.accept()

Data Exchange: The server and client can now exchange data over the socket. Example: clientsocket.send(data)

and data = clientsocket.recv(1024).

Close the Socket: After communication is done, the server closes the socket. Example: clientsocket.close()

and serversocket.close().

Client-side Steps: Create a Socket: The client creates a socket that is used to connect to the server. Ex-

ample: clientsocket = socket.socket(socket.AFINET, socket.SOCKSTREAM) Connect to the Server:

The client connects to the server by specifying the server’s IP address and port number. Example:

clientsocket.connect((’localhost’, 12345)).

Data Exchange: The client can send and receive data from the server. Example: clientsocket.send(data)

and data = clientsocket.recv(1024). Close the Socket: After communication is done, the client closes

the socket. Example: clientsocket.close()

4. Socket Programming Functions

Common functions and methods used in socket programming include:

socket(): Creates a new socket. bind(): Binds the socket to a particular address and port. listen():

Makes the socket listen for incoming connections (used by the server). accept(): Accepts a connection

from a client (used by the server). connect(): Connects to a server (used by the client). send(): Sends

data through the socket. recv(): Receives data from the socket. close(): Closes the socket.

5. Socket Addressing

Sockets are typically identified by:

IP address: A unique identifier for a machine on the network. Port number: A number used to identify

a specific process or service on the machine. For example, a socket may be identified by (’localhost’,

8080), where localhost is the IP address and 8080 is the port number.

6. Blocking vs Non-blocking Mode

Blocking Mode: In this mode, the socket operations like recv() or accept() block the program’s ex-



Flight Controller 72

ecution until the operation is complete. This means the program waits until data is received or a

connection is accepted. Non-blocking Mode: In this mode, the socket operations do not block the

program. If there is no data available, or the connection is not ready, the operation will return imme-

diately, allowing the program to continue running.

7. Error Handling

Socket programming involves handling errors that may occur during network communication, such as:

Connection errors (unable to connect to the server). Timeout errors (data transfer takes too long).

Resource errors (insufficient resources to create a socket). Error handling is crucial to ensuring the

reliability of a network application.
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