
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Evaluating Hardware Offload of Network
Functions with SmartNICs

Supervisors

Prof. Fulvio RISSO

Ph.D. Student Davide MIOLA

Candidate

Vincenzo COSI

April 2025

Summary

The increasing demand for efficient and scalable data center networks has led the
industry to the exploration of hardware acceleration technologies, which allow
to offload portions of the Linux network stack processing away from the main
CPUs and into dedicated accelerators such as SmartNICs, thereby promising
advancements in overall system performance and efficiency.

This thesis questions these claims by conducting a series of experiments to evalu-
ate the performance and efficiency gains achieved by adopting NVIDIA ConnectX-7
100 Gbps SmartNICs across several server configurations. The tests covered a
variety of networking scenarios, including encapsulation, IPsec encryption, and the
deployment of real world cloud-native applications within a Kubernetes cluster.

Results indicate that SmartNICs can significantly reduce CPU overhead for IPsec
encryption tasks. However, in other cases, improvements were only measurable on
older and less powerful processors, while more modern hardware showed limited
benefits.

ii

Acknowledgements

Non sono mai stato particolarmente bravo con le parole, né tantomeno nell’esprimere
i miei sentimenti. Scrivere questi ringraziamenti non è semplice, quindi perdonatemi
se sarò un po’ conciso.

Il mio primo grazie va al Prof. Risso, per avermi dato l’opportunità di svolgere
questa tesi e per il supporto costante durante tutto il percorso che ne ha reso
possibile la realizzazione.

Un sentito ringraziamento a Federico e Davide, i miei dottorandi, per avermi
guidato con pazienza e competenza nei momenti più complessi che non sono certo
mancati lungo il cammino.

Grazie di cuore a tutto il Lab 9: un ambiente raro, stimolante e accogliente,
che ha trasformato le giornate al Politecnico in qualcosa di piacevole e significativo.
Le pause pranzo al sushi, le serate giochi e tutti gli attimi di leggerezza hanno reso
questi mesi davvero speciali.

Un ringraziamento speciale a Fra Cappa, per l’incredibile supporto tecnico e
umano. Non so come avrei fatto senza di te. . . e ancora non so come farò d’ora
in poi. E ovviamente grazie anche ad Attilio, per le mozzarelle, la torta polacca
aversana, e – soprattutto – per il costante incoraggiamento e la tua inesauribile
positività.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Goal of the Thesis . 1

2 Background 2
2.1 Linux Networking Stack . 2

2.1.1 Network to Socket or Virtual Interface 2
2.1.2 Data Transmission in Host and Virtualized Contexts 3

2.2 Open vSwitch . 4
2.3 IPsec . 4
2.4 SR-IOV . 5
2.5 Open Virtual Network . 6
2.6 Kubernetes . 7

2.6.1 Kubernetes Architecture . 8
2.6.2 Kube-OVN . 9
2.6.3 Multus . 9
2.6.4 SR-IOV network device plugin 10

2.7 Google Online boutique . 10
2.8 Related Works . 12

3 SmartNICs 14
3.1 ASIC-based . 14

3.1.1 NVIDIA ConnectX-7 . 14
3.2 SoC-based . 15

3.2.1 NVIDIA BlueField Family 15
3.3 FPGA . 16

v

4 Architecture and Offloading Techniques 17
4.1 Hardware and Software Architecture 17

4.1.1 Hardware Components . 17
4.1.2 Software Components . 18

4.2 Offloading Mechanisms . 19
4.2.1 Offload on ConnectX-7 . 19
4.2.2 Offloading Implementation 20

5 Experimental Evaluation 23
5.1 Open vSwitch Hardware Offload Tests 23

5.1.1 Virtual Ethernet vs SR-IOV 23
5.1.2 Geneve Tunneling Encapsulation 27
5.1.3 VXLAN + IPsec Offloading 32

5.2 Google Online Boutique Hardware Offload Tests 35

6 Results 38
6.1 Comparing First and Second Setups 38

6.1.1 Offloading in the First Setup 38
6.1.2 Offloading in the Second Setup 39

6.2 Synthesis of Findings . 41
6.3 Practical Considerations . 42
6.4 Hardware Offloading with ConnectX-7 limits 42

7 Conclusions 44
7.1 Current Limitations . 44
7.2 Future Work . 45

Bibliography 47

vi

List of Tables

2.1 List of services in the Google Online Boutique, their programming
languages, and descriptions. 11

5.1 Pod Placement for the Google Online Boutique 35

vii

List of Figures

2.1 A Kubernetes cluster. 8
2.2 Multiple network interfaces attached to a single pod with Multus. . 10
2.3 Google online boutique pods schema. 12

5.1 Configuration for the test without offload. 24
5.2 Configuration for the test with offload. 24
5.3 CPU usage for different numbers of streams on the first setup,

without encapsulation or encryption. 25
5.4 Throughput for different numbers of streams on the first setup,

without encapsulation or encryption. 25
5.5 CPU usage for different numbers of streams on the second setup,

without encapsulation or encryption. 26
5.6 Throughput for different numbers of streams on the second setup,

without encapsulation or encryption. 26
5.7 Configuration for the test with Geneve encapsulation and without

offload. 27
5.8 Configuration for the test with Geneve encapsulation and offload. . 28
5.9 CPU usage for different numbers of streams on the first setup, with

Geneve encapsulation. 29
5.10 Throughput for different numbers of streams on the first setup, with

Geneve encapsulation. 29
5.11 CPU usage for different numbers of streams on the second setup,

with Geneve encapsulation. 30
5.12 Throughput for different numbers of streams on the second setup,

with Geneve encapsulation. 31
5.13 Configuration for the test with VXLAN encapsulation + IPsec

encryption and without offload. 31
5.14 Configuration for the test with VXLAN encapsulation + IPsec

encryption and offload. 32
5.15 CPU usage under VXLAN + IPsec on the first setup. 33
5.16 Throughput under VXLAN + IPsec on the first setup. 33

viii

5.17 CPU usage under VXLAN + IPsec on the second setup. 34
5.18 Throughput under VXLAN + IPsec on the second setup. 34
5.19 Configuration for the test with the Google Online Boutique in a

Kubernetes cluster without offload. 35
5.20 Configuration for the test with the Google Online Boutique in a

Kubernetes cluster with offload. 36
5.21 CPU usage under Google Online Boutique test. Frontend pod and

loadgenerator pod ran both on Server 1. 36
5.22 Requests per second under Google Online Boutique test. 37

ix

Acronyms

ACL
access control list

CNI
container network interface

DMA
direct memory access

HPC
high-performance computing

IPsec
internet protocol security

ISR
interrupt service routine

NFV
network function virtualization

NIC
network interface card

OVN
open virtual network

OVS
open virtual switch

xi

PF
physical function

SA
security association

SDN
software-defined network

SR-IOV
single-root input/output virtualization

TC
traffic control

TCP
transmission control protocol

VF
virtual function

VM
virtual machine

VXLAN
virtual extensible LAN

xii

Chapter 1

Introduction

1.1 Goal of the Thesis
The primary objective of this thesis is to evaluate the viability and potential
benefits of implementing hardware offload on SmartNICs within a data center
environment. Specifically, this work investigates whether leveraging on SmartNICs,
such as NVIDIA ConnectX-7, can provide measurable improvements in performance,
efficiency, or other critical metrics that justify their adoption.

Manufacturers of SmartNICs emphasize their potential to offload network-related
tasks from the CPU, thereby reducing CPU usage and enabling better scalability
in data center operations. This thesis seeks to critically assess these claims by
examining whether the expected CPU savings and performance enhancements are
observable in practical settings. For example, the existing literature highlights the
advantages of hardware offload, such as reduced CPU overhead during packet pro-
cessing, improved energy efficiency, and enhanced throughput for high-performance
workloads.

To achieve this, a series of experiments were conducted utilizing NVIDIA
ConnectX-7 SmartNICs, focusing on their capabilities and performance under
various scenarios. These experiments aim to test the hypothesis that offloading
tasks to SmartNICs significantly alleviates CPU load while maintaining or improving
network performance. The findings aspire to provide insights into the practical
implications and trade-offs of integrating hardware offload technologies in modern
data center architectures.

1

Chapter 2

Background

2.1 Linux Networking Stack
The Linux networking stack is responsible for handling and routing network packets
between various interfaces, applications, containers, or virtual machines (VMs).
Although many concepts are similar to traditional host networking, containerized
and virtualized environments introduce additional abstractions, such as virtual
Ethernet (veth) pairs, bridge devices, or Open vSwitch (OVS) interfaces. This
section provides an overview of how network traffic flows within the Linux kernel,
detailing the path from the physical (or virtual) network interface to the receiving
application, container, or VM.

2.1.1 Network to Socket or Virtual Interface
When a packet arrives on a physical interface, such as an Ethernet card, it is
transferred via Direct Memory Access (DMA) to a ring buffer in kernel memory.
At this point, the hardware triggers an interrupt. To avoid performing extensive
processing in the Interrupt Service Routine (ISR) of the Network Interface Card
(NIC) driver, Linux divides the operation into a top half (the ISR itself) and a
bottom half (a deferrable function). The top half is concise, handling only critical
operations such as acknowledging the interrupt and scheduling the bottom half.
Meanwhile, the bottom half executes more time-consuming tasks, including parsing
the packet and delivering it to higher layers of the networking stack.

In containerized or virtualized environments, the receiving interface might not
be a physical NIC but rather a virtual device (for example, a veth pair endpoint, a
tap device connected to a hypervisor, or an SR-IOV Virtual Function). Regardless
of the interface type, once the packet is in kernel memory, it follows a similar flow:
the packet is inspected for protocol headers, potential filtering rules are applied
(e.g., via iptables or eBPF), and the packet is ultimately routed to its destination.

2

Background

If the packet is destined for a local container or VM on the same host, it may be
switched via a Linux bridge, Open vSwitch, or another virtual switch mechanism.
The virtual switch effectively decides whether to forward the packet to another
container’s veth interface, to an internal interface representing a VM (like a tap
device), or to pass it to the host network stack. In all cases, the kernel must match
the packet against the relevant forwarding rules (in bridging mode) or flow tables
(in OVS) to deliver it to the correct destination interface.

2.1.2 Data Transmission in Host and Virtualized Contexts
On the transmit path, the picture is typically simpler than on the receive side, as
socket writes represent the primary entry point for outbound traffic. For blocking
calls such as write or send, the kernel copies data from user space into kernel
space, passing it through the appropriate protocol layers. For TCP/IP, this includes
operations such as segmentation, congestion control, and flow control.

In virtualized or containerized environments, outbound traffic might originate
from a container’s application process writing to a virtual interface, for instance,
a veth endpoint. The kernel sends the packet to the corresponding peer device
on the host side (e.g., a bridge or OVS port). If the packet is destined for a
different container on the same host, the bridging or switching component routes
it internally without ever touching a physical NIC. In contrast, if the packet is
destined for a remote endpoint, it is forwarded through the host’s physical interface
driver, potentially utilizing SR-IOV or offloading mechanisms to accelerate packet
processing.

While the general principles of the network stack apply to both host-based
and container-based traffic, virtualization layers introduce additional complexity,
particularly with regard to:

• Interface Types: Physical NICs, veth pairs, tap devices, or SR-IOV Virtual
Functions.

• Bridging vs. Routing: Packets can be switched via a Linux bridge or OVS
if the source and destination share the same host.

• Offloading: SmartNICs and SR-IOV can bypass parts of the kernel networking
stack, potentially reducing CPU overhead.

• Security and Isolation: Namespaces, cgroups, and network policies ensure
container traffic remains isolated.

Nonetheless, the fundamental steps remain the same: inbound packets are DMA-
transferred into host memory, processed by the kernel’s networking stack (which
may include bridging, routing, or offloading), and handed off to the appropriate

3

Background

socket or virtual interface. Outbound packets, on the other hand, move from user
space into the kernel stack, optionally passing through virtualization layers or
virtual switches, and ultimately exit through a physical or virtual interface to reach
their destination.

2.2 Open vSwitch
Open vSwitch (OVS) [1] is an open-source multilayer virtual switch that facilitates
network automation through standard management interfaces and support for
various tunneling protocols. Originally developed to operate within virtualized
environments, OVS provides a flexible and programmable switching fabric that
integrates with cloud platforms and containerized workloads.

One of the standout features of Open vSwitch (OVS) is its capability to manage
both Layer 2 and Layer 3 forwarding. It supports advanced functionalities such
as flow-based forwarding, quality of service (QoS), and traffic mirroring. OVS is
frequently implemented in environments that leverage Software-Defined Networking
(SDN), allowing for dynamic policy enforcement and effective network segmentation.

To enhance network performance, OVS supports hardware offloading, allowing
data plane operations to be offloaded from the host CPU to specialized hardware
such as SmartNICs. Through integration with technologies such as SR-IOV,
OVS can achieve lower latency and higher throughput by leveraging hardware
acceleration.

This thesis explores how OVS hardware offloading, particularly when combined
with SmartNICs, impacts the performance of virtualized and containerized network-
ing environments. By evaluating different deployment scenarios, the study aims
to determine the effectiveness of OVS in reducing CPU utilization and improving
network efficiency.

2.3 IPsec
IPsec (Internet Protocol Security) is a suite of protocols that provide secure
communication over IP networks by ensuring data confidentiality, integrity, and
authenticity. It is widely employed in Virtual Private Networks (VPNs), secure
site-to-site communications, and protecting sensitive network traffic over untrusted
networks. IPsec operates at the network layer of the OSI model, making it
transparent to applications and enabling security at the IP packet level.

IPsec consists of several components, including the Authentication Header (AH)
and the Encapsulating Security Payload (ESP). The AH provides integrity and
authentication for IP packets by ensuring that transmitted data has not been

4

Background

altered in transit. ESP, on the other hand, offers encryption and authentication,
ensuring that data remains confidential and secure against eavesdropping attacks.

The protocol supports two operational modes: Transport Mode and Tunnel
Mode. Transport Mode encrypts only the payload of the IP packet, leaving the
header untouched, which is helpful for end-to-end communications between two
hosts. Tunnel Mode, in contrast, encapsulates the entire IP packet within another
IP packet, making it ideal for VPNs and secure communications between entire
networks.

A fundamental challenge of IPsec is the computational burden introduced by
cryptographic operations such as encryption and decryption. These processes
demand significant CPU resources, potentially degrading system performance, es-
pecially in high-throughput environments. Modern networking hardware, including
SmartNICs, to mitigate this, supports cryptographic offloading, where dedicated
hardware accelerators handle encryption and decryption operations. This reduces
CPU utilization, enhances throughput, and lowers network latency, making secure
communications more efficient.

The adoption of IPsec extends beyond traditional networking, as it plays a
crucial role in cloud security, secure data center communications, and 5G network
infrastructure.

2.4 SR-IOV
Single Root I/O Virtualization (SR-IOV) is a technology that enables a single
physical network interface card (NIC) to be shared efficiently among multiple virtual
machines (VMs) or containers while maintaining high performance. SR-IOV is
widely used in high-performance computing, cloud infrastructures, and data center
environments where low-latency and high-throughput networking are required.
SR-IOV exposes multiple Virtual Functions (VFs) from a single Physical Function
(PF) on a NIC. Each VF operates as an independent network interface that can be
assigned directly to a VM or container, bypassing the software-based network stack.
This direct assignment reduces CPU overhead, minimizes latency, and increases
network throughput compared to traditional virtualized networking solutions. The
key benefits of SR-IOV include:

• Improved Performance: By allowing direct access to hardware, SR-IOV
eliminates the need for hypervisor-based network processing, reducing CPU
usage and improving data transfer speeds.

• Scalability: SR-IOV enables efficient sharing of NIC resources among multiple
workloads, optimizing resource utilization in multi-tenant environments.

5

Background

• Reduced Latency: Since VFs can communicate directly with the physical
network hardware, packet processing is significantly faster than software-based
networking approaches.

• Enhanced Security: SR-IOV ensures isolation between different VFs, reduc-
ing the risk of network attacks between tenants in cloud environments.

Despite these advantages, SR-IOV also has limitations. It requires hardware support
from the NIC and firmware, as well as compatibility with the operating system and
hypervisor. Additionally, SR-IOV can be less flexible compared to software-based
solutions, as VFs are statically assigned and cannot be dynamically reconfigured as
easily as virtual network interfaces.

2.5 Open Virtual Network
Open Virtual Network (OVN) extends Open vSwitch (OVS) to create a distributed
network virtualization system that offers logical switches, routers, and distributed
ACLs capable of spanning multiple hypervisors, container hosts, and bare-metal
servers. Unlike traditional setups where bridges are configured on each host in-
dividually, OVN orchestrates the entire network as a collection of unified logical
components. This abstraction significantly reduces manual configuration, as ad-
ministrators can define logical networks at a high level, and OVN handles the
complexity of mapping them onto physical infrastructure.

OVN’s architecture revolves around two key databases known as the Northbound
and Southbound databases. The Northbound Database contains high-level network
definitions, such as logical switches, logical routers, and security policies defined
by administrators or automation tools. The ovn-northd daemon translates these
definitions into flow-based instructions, then writes them into the Southbound
Database. Each node in the cluster runs a local OVN controller, which retrieves
these low-level flow rules and enforces them by configuring the local OVS instance.

When a new container or virtual machine appears, OVN registers its network
configuration in the Northbound Database. The daemon ovn-northd maps the
logical topology onto physical resources by assigning IP addresses, setting up any
required routing rules, and generating tunnel endpoints if necessary. If two contain-
ers exist on different hosts, the communication is encapsulated using protocols like
Geneve or VXLAN, allowing OVN to forward traffic without requiring a centralized
gateway. Upon arriving at the destination host, packets are decapsulated and
delivered to the target logical switch or router, ensuring seamless connectivity
across distributed environments.

A key advantage of OVN lies in its automated adaptation to configuration
changes. When subnets, security groups, or network policies change, the OVN

6

Background

controllers dynamically update the local flow rules, guaranteeing that network traffic
is always routed according to the latest logical definitions. This process eliminates
the need for manual updates to multiple devices across the data center, significantly
reducing misconfigurations. OVN also integrates natively with IPv6, enabling
modern addressing schemas to be used transparently within logical networks.

Because OVN relies on Open vSwitch, all OVS offloading capabilities remain
available. Flow rules designed for high-bandwidth or latency-sensitive applications
can be offloaded to SmartNICs, relieving the CPU from repetitive packet processing
tasks. This feature becomes crucial when operating large-scale deployments where
east-west traffic dominates, as the overhead of software-based switching can degrade
performance. Hardware offloading, combined with OVN’s distributed control plane,
results in a powerful architecture for data centers seeking both efficiency and
scalability.

Notably, OVN fits well into container orchestration platforms. Kubernetes
clusters that require on-demand provisioning of logical networks or advanced
network policies can benefit from OVN’s approach to dynamic flow management.
Certain projects, such as Kube-OVN, merge Kubernetes’ CNI (Container Network
Interface) model with OVN’s distributed control plane. By doing so, they enable
pods to be attached seamlessly to logical networks orchestrated by OVN. This
synergy will be explored in more detail in the subsequent sections, illustrating how
Kube-OVN combines Kubernetes resource management with OVN’s powerful SDN
features to provide a cohesive network virtualization layer.

2.6 Kubernetes

Kubernetes [2] is an open-source container orchestration system for automating
software deployment, scaling, and management.

Kubernetes has become an important component in modern data centers, pro-
viding a robust and scalable platform for orchestrating containerized workloads.
Its ability to automate application deployment, scaling, and management has led
to widespread adoption by enterprises, cloud providers, and high-performance
computing environments. Kubernetes enables organizations to manage distributed
systems efficiently, ensuring high availability and optimized resource utilization.

As data center workloads grow increasingly complex, Kubernetes is crucial
in integrating networking solutions and supporting multi-cloud and hybrid-cloud
deployments. Through plugins and APIs, the platform’s extensibility allows for
seamless integration with networking and security frameworks, making it a versatile
choice for large-scale infrastructures.

7

Background

k-proxy

kubelet

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 2.1: A Kubernetes cluster.

2.6.1 Kubernetes Architecture
The architecture of Kubernetes follows a distributed model composed of multiple
components that work together to manage containerized workloads. At a high level,
Kubernetes consists of the following key components:

• Control Plane: The control plane is responsible for managing the overall
cluster state, making scheduling decisions, and maintaining desired application
configurations. It consists of components such as the API Server, Controller
Manager, Scheduler, and etcd (a distributed key-value store).

• Worker Nodes: Each worker node runs containerized applications and is
managed by the control plane. Nodes include essential components such as the
kubelet (agent responsible for managing container execution), the container
runtime (such as Docker or containerd), and the kube-proxy (responsible for
networking and service discovery).

• Networking and Storage: Kubernetes provides a pluggable networking
model that allows integration with various networking solutions. Storage
solutions are also managed dynamically using Persistent Volumes and Storage
Classes.

A crucial aspect of Kubernetes networking is the Container Network Interface
(CNI), a standardized framework that facilitates the configuration of networking
for containers. CNI is designed to provide a dynamic and extensible approach to
networking in containerized environments. Instead of relying on static networking

8

Background

configurations, CNI allows containers to be connected to different network topologies
based on application requirements.

CNI abstracts networking complexities by providing a standardized API for
container orchestrators like Kubernetes to assign IP addresses, configure routes,
and enforce policies dynamically. This enables seamless network integration,
ensuring that workloads can communicate efficiently regardless of their underlying
infrastructure. The framework supports a wide range of networking architectures,
from simple bridge networks to more advanced overlay and underlay networking
solutions.

One of the key advantages of CNI is its modularity, allowing administrators
to swap out or extend networking solutions based on their specific needs. By
decoupling the networking stack from the container runtime, CNI enhances flexi-
bility, scalability, and interoperability across different environments, making it a
foundational component of Kubernetes networking.

2.6.2 Kube-OVN
Kube-OVN [3] is a comprehensive Container Network Interface (CNI) implemen-
tation for Kubernetes that integrates Open vSwitch (OVS) to provide advanced
networking capabilities, including overlay networking, security policies, and network
segmentation. Designed to enhance Kubernetes networking, Kube-OVN combines
the flexibility of software-defined networking (SDN) with the performance benefits
of hardware acceleration, making it an ideal choice for cloud-native applications
and high-performance workloads.

One of the key advantages of Kube-OVN is its ability to support both underlay
and overlay networks, allowing for efficient routing and communication between
pods, nodes, and external services. By leveraging OVS, Kube-OVN provides
fine-grained network control, enabling administrators to define policies for traffic
shaping, Quality of Service (QoS), and security enforcement. Additionally, Kube-
OVN supports integration with hardware offloading technologies, such as SmartNICs
and SR-IOV, to further improve network performance by offloading processing
tasks from the CPU to dedicated networking hardware.

2.6.3 Multus
Multus [4] is a Kubernetes networking plugin that enables the use of multiple
network interfaces in a single pod. By default, Kubernetes assigns a single net-
work interface to each pod, but in many high-performance and network-sensitive
applications, additional interfaces are needed to support specialized networking
requirements.

Multus extends Kubernetes’ Container Network Interface (CNI) capabilities,

9

Background

allowing pods to connect to multiple networks simultaneously. This is particularly
beneficial for scenarios such as network function virtualization (NFV), storage
networking, and high-performance computing (HPC), where separating control,
data, and management traffic onto different interfaces can enhance performance
and security.

When combined with SmartNICs, Multus enables advanced networking configu-
rations, including direct hardware-accelerated paths for traffic-intensive applications.
By allowing network traffic to bypass the kernel and be processed directly on the
NIC, Multus can further reduce latency and CPU overhead in Kubernetes envi-
ronments. This makes it an essential tool for optimizing the networking stack
in cloud-native infrastructures, particularly in data centers leveraging SmartNIC
technology.

Figure 2.2: Multiple network interfaces attached to a single pod with Multus.

2.6.4 SR-IOV network device plugin
The SR-IOV Network Device Plugin [5] is Kubernetes device plugin for discovering
and advertising networking resources in the form of:

• SR-IOV virtual functions (VFs)

• PCI physical functions (PFs)

• Auxiliary network devices, in particular Subfunctions (SFs)

which are available on a Kubernetes host.

2.7 Google Online boutique
Google Online Boutique [6] is an open-source microservices-based e-commerce
application designed to simulate real-world cloud-native workloads. It consists
of multiple independent services, each responsible for a specific function, such as

10

Background

Service Language Description
frontend Go Exposes an HTTP server to serve the web-

site. Does not require signup/login and
generates session IDs for all users automat-
ically.

cartservice C# Stores the items in the user’s shopping cart
in Redis and retrieves it.

productcatalogservice Go Provides the list of products from a JSON
file and ability to search products and get
individual products.

currencyservice Node.js Converts one money amount to another
currency. Uses real values fetched from
European Central Bank. It’s the highest
QPS service.

paymentservice Node.js Charges the given credit card info (mock)
with the given amount and returns a trans-
action ID.

shippingservice Go Gives shipping cost estimates based on the
shopping cart. Ships items to the given
address (mock).

emailservice Python Sends users an order confirmation email
(mock).

checkoutservice Go Retrieves user cart, prepares order and
orchestrates the payment, shipping and
the email notification.

recommendationservice Python Recommends other products based on
what’s given in the cart.

adservice Java Provides text ads based on given context
words.

loadgenerator Python/Locust Continuously sends requests imitating re-
alistic user shopping flows to the frontend.

Table 2.1: List of services in the Google Online Boutique, their programming
languages, and descriptions.

frontend rendering, product catalog management, user authentication, and payment
processing. These services communicate over the network using HTTP and gRPC,
making the application a useful benchmark for evaluating networking performance
in cloud environments.

The modular nature of Google Online Boutique makes it an ideal testbed for

11

Background

studying the impact of hardware acceleration technologies like SmartNICs. Since
microservices often generate a significant amount of east-west traffic within a data
center, optimizing network performance through offloading mechanisms can lead to
substantial efficiency gains. By analyzing network latency, throughput, and CPU
utilization when running Google Online Boutique with and without SmartNIC
acceleration, researchers can assess the practical benefits of offloading network
processing from the host CPU to dedicated hardware.

This application is also widely used to evaluate the performance of service
meshes and Kubernetes networking configurations. Integrating SmartNICs into such
environments allows for an in-depth analysis of how offloading affects containerized
networking, application response times, and overall system scalability.

Figure 2.3: Google online boutique pods schema.

2.8 Related Works
The study of SmartNICs and hardware offloading has gained significant attention
in recent years due to the increasing need for high-performance networking in
cloud data centers, network function virtualization (NFV), and secure commu-
nications. This section reviews key research contributions related to SmartNIC
architectures, their role in accelerating network functions, and the impact on data
center performance.

Kfoury et al. [7] present a comprehensive survey on SmartNICs, providing an

12

Background

extensive classification of different SmartNIC architectures, including ASIC-based,
FPGA-based, and SoC-based implementations. Their work highlights the primary
use cases of SmartNICs, such as packet processing, security enforcement, network
telemetry, and virtualization acceleration. One of their key findings is the trade-off
between performance and programmability across different SmartNIC architectures,
which is a crucial consideration when selecting the appropriate offloading mechanism
for specific workloads.

Khan et al. [8] explore the integration of SmartNICs in Kubernetes environments,
focusing on offloading network functions such as IPsec encryption, virtual switching,
and tunneling. Their research demonstrates how BlueField-2 SmartNICs can
significantly reduce CPU utilization by handling encryption and packet forwarding
directly on the NIC, leading to improved throughput and lower network latencies.
The study further discusses the potential integration of hardware offloading with
Kubernetes networking plugins, particularly in high-performance computing (HPC)
and NFV use cases.

Liu et al. [9] conduct a detailed performance characterization of the BlueField-2
SmartNIC, analyzing its ability to offload various network functions from the host
CPU. Their results indicate that while the host CPU can saturate high-speed
network links, the embedded processors on the SmartNIC exhibit performance
limitations when handling kernel-space packet processing. However, operations
such as cryptographic acceleration and inter-process communication achieve sig-
nificant performance improvements when offloaded to the SmartNIC. This study
underscores the importance of selecting the right offloading strategy based on
workload requirements and hardware capabilities.

Efraim et al. [10] focus on the integration of SR-IOV with Open vSwitch (OVS),
detailing recent advancements in the Linux kernel that enable efficient hardware
offloading while maintaining software-defined networking (SDN) flexibility. Their
work describes the challenges of managing SR-IOV-enabled devices within virtual-
ized environments and proposes solutions that allow flow-based policy enforcement
while retaining the performance benefits of direct hardware access. This approach
is particularly relevant for cloud providers seeking to optimize their virtualized
network stacks without sacrificing manageability.

Overall, these studies collectively emphasize the growing importance of Smart-
NICs in modern networking environments, demonstrating their potential to enhance
performance, security, and energy efficiency. However, they also highlight key chal-
lenges such as programmability, integration complexity, and workload-specific
optimizations, which must be carefully considered when deploying SmartNIC-based
solutions in production environments.

13

Chapter 3

SmartNICs

Smart Network Interface Cards (SmartNICs) represent a significant advancement in
networking hardware, enabling the offloading of various network functions from the
host CPU to dedicated processing units within the NIC. These specialized network
cards enhance performance, reduce CPU utilization, and improve efficiency in
data centers, cloud infrastructures, and high-performance computing environments.
SmartNICs are typically categorized into three main types based on their architec-
ture: ASIC-based, SoC-based, and FPGA-based implementations. Each type
offers distinct advantages and trade-offs, making them suitable for different use
cases and workload demands.

3.1 ASIC-based
Application-Specific Integrated Circuit (ASIC)-based SmartNICs are designed with
purpose-built hardware to accelerate specific network functions. These SmartNICs
offer high efficiency and low power consumption but are less flexible compared to
other architectures. They are optimized for tasks such as packet processing, load
balancing, and network security enforcement, providing deterministic performance
with minimal overhead.

One of the most widely used ASIC-based SmartNICs is the NVIDIA ConnectX-
7, which is specifically engineered for high-throughput, low-latency networking
applications.

3.1.1 NVIDIA ConnectX-7
The NVIDIA ConnectX-7 is an advanced ASIC-based SmartNIC designed to
provide high-speed networking with hardware acceleration capabilities. While it
supports up to 400Gbps of network bandwidth, a 100Gbps version was used

14

SmartNICs

during testing. It includes features such as RDMA over Converged Ethernet
(RoCE), GPUDirect for optimized data transfer in AI workloads, and built-in
support for IPsec and TLS encryption offloading.

Key capabilities of the ConnectX-7 include:

• Hardware-accelerated packet processing: Reduces CPU load by offload-
ing network tasks such as tunneling, encryption, and flow steering.

• Dynamic congestion control: Enhances network efficiency by reducing
packet loss and improving throughput in high-performance environments.

• SR-IOV and VirtIO support: Enables direct assignment of virtual network
functions to VMs and containers for improved performance in cloud-native
architectures.

ConnectX-7 is widely adopted in cloud data centers, HPC environments, and
AI workloads due to its ability to accelerate high-bandwidth, low-latency communi-
cations while ensuring secure and efficient data movement.

3.2 SoC-based
System-on-Chip (SoC)-based SmartNICs integrate general-purpose processing units,
such as ARM cores, alongside dedicated networking hardware. This architecture
allows SmartNICs to support programmable offloading, making them highly adapt-
able to a variety of network functions, including virtual switching, firewalling, and
deep packet inspection.

3.2.1 NVIDIA BlueField Family
The NVIDIA BlueField family represents a series of SoC-based SmartNICs
that combine high-performance networking with embedded computing capabilities.
BlueField SmartNICs include multiple ARM cores, a programmable data path,
and dedicated accelerators for encryption, storage, and AI-driven analytics.

Key features of BlueField SmartNICs include:

• DPU (Data Processing Unit) Architecture: Allows for offloading of
security functions, telemetry, and AI-driven network monitoring.

• Integration with Kubernetes and SDN solutions: Provides seamless
support for containerized and virtualized workloads.

• Zero-Trust Security Enforcement: Enables advanced access control and
microsegmentation directly at the SmartNIC level.

15

SmartNICs

The BlueField SmartNICs are particularly well-suited for use in cloud com-
puting, cybersecurity applications, and AI-driven analytics, providing extensive
programmability and offloading capabilities.

3.3 FPGA
Field-Programmable Gate Array (FPGA)-based SmartNICs offer the highest de-
gree of programmability, enabling the development of custom network functions
optimized for specific workloads. Unlike ASIC-based solutions, which are fixed in
functionality, FPGA SmartNICs can be reprogrammed dynamically to accommo-
date evolving network requirements.

FPGA-based SmartNICs are commonly used for:

• Custom network acceleration: Tailored to specific applications such as
financial trading platforms, where ultra-low latency is required.

• High-performance packet filtering and inspection: Ideal for cybersecu-
rity and deep packet inspection use cases.

• Real-time data analytics and monitoring: Provides the ability to process
and analyze network traffic with minimal delay.

While FPGA SmartNICs offer unmatched flexibility, they tend to have higher
power consumption and require expertise in hardware programming for optimal
utilization. However, their ability to be reconfigured makes them a valuable tool
for organizations that need adaptable, high-performance networking solutions.

Overall, SmartNICs are transforming modern networking by offloading critical
functions from the host system, improving efficiency, and enhancing security. Their
diverse architectures cater to different operational needs, making them a crucial
component in next-generation data centers and cloud environments.

16

Chapter 4

Architecture and Offloading
Techniques

4.1 Hardware and Software Architecture
The integration of SmartNICs in modern data centers requires a well-defined
hardware and software architecture to fully leverage their offloading capabilities.
The overall architecture consists of multiple components, including compute nodes,
network interfaces, and software stacks optimized for offloading network functions.

4.1.1 Hardware Components
The hardware architecture includes the following key elements:

• Compute Nodes: High-performance servers equipped with SmartNICs,
supporting both virtualized and containerized workloads.

• SmartNICs: Network interface cards capable of offloading processing tasks
such as packet switching, encryption, and tunneling.

• Network Infrastructure: High-speed interconnects, including 100Gbps links
using QSFP+ cables, supporting efficient data transfer between nodes.

The experiments were conducted on two different hardware setups:

First Test Setup

• Servers: Two machines with different CPU configurations:

– Polycube-server: Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz, 28
cores.

17

Architecture and Offloading Techniques

– Fall-server: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, 24 cores.

• SmartNICs: NVIDIA ConnectX-7 (100Gbps) installed on both machines.

• Interconnect: Direct connection using 100Gbps QSFP+ cables.

• PCIe Configuration: Both servers use a motherboard with PCIe Gen 3 x8,
which does not fully utilize the ConnectX-7 bandwidth, as it requires PCIe
Gen 4 x16 for maximum performance.

• Operating System: Ubuntu Server 24.04.

Second Test Setup

• Servers: Two identical machines:

– Intel(R) Xeon(R) Gold 6442Y CPU, 96 cores.

• SmartNICs: NVIDIA ConnectX-7 (100Gbps) installed on both machines.

• Interconnect: Direct connection using 100Gbps QSFP+ cables.

• PCIe Configuration: Motherboards equipped with PCIe Gen 4 x16 slots,
which fully support the bandwidth requirements of the ConnectX-7 SmartNICs.

• Operating System: Ubuntu Server 24.04.

4.1.2 Software Components
The software stack plays a crucial role in managing and configuring SmartNIC
offloading. The main components include:

• Operating System: Ubuntu Server 24.04.

• Open vSwitch (OVS): A widely used virtual switch that integrates with
SmartNICs for offloading virtual networking functions described in the previous
chapter.

• Kubernetes and CNI Plugins: Networking solutions such as Multus and
Kube-OVN enable advanced networking features for containerized workloads.

• SR-IOV and VF Management: Allows for direct assignment of virtual
network interfaces to applications, bypassing software-defined network stacks.

18

Architecture and Offloading Techniques

4.2 Offloading Mechanisms
Offloading mechanisms refer to the delegation of networking tasks from the host
CPU to specialized hardware within SmartNICs. This approach enhances per-
formance, reduces CPU overhead, and ensures efficient resource utilization. The
following types of offloading are commonly used:

• Packet Processing Offload: The SmartNIC processes incoming and outgo-
ing packets, reducing software stack latency.

• Tunnel Offloading: Protocols such as VXLAN and Geneve are handled
directly by the SmartNIC, bypassing the host CPU.

• Security Offload: IPsec and TLS encryption/decryption are executed on
the SmartNIC to improve cryptographic performance.

• Virtual Switching Offload: Open vSwitch flow rules are offloaded to
SmartNIC hardware, reducing CPU-bound switching tasks.

4.2.1 Offload on ConnectX-7

The NVIDIA ConnectX-7 provides advanced offloading capabilities, enabling
high-performance networking with minimal CPU involvement. Key offloading
features include:

• OVS Hardware Offload: Flow-based packet processing is executed directly
on the SmartNIC, reducing the need for software switching.

• VXLAN and Geneve Acceleration: SmartNIC-integrated tunneling sup-
port for high-speed overlay networking.

• SR-IOV Virtual Functions (VFs): Allows namespaces, virtual machines
and Kubernetes pods to bypass the hypervisor, achieving near-native perfor-
mance.

• IPsec Offloading: Hardware-accelerated encryption and decryption improve
secure communications while maintaining high throughput.

These features make the ConnectX-7 a strong candidate for data-intensive
workloads, where traditional CPU-based processing may become a bottleneck.

19

Architecture and Offloading Techniques

4.2.2 Offloading Implementation
The implementation of SmartNIC offloading involves multiple steps, ensuring that
network traffic is properly redirected to the NIC hardware for processing. The key
steps include:

1. SR-IOV Configuration: Enable Virtual Functions (VFs) on the SmartNIC
and assign them to applications or containers.

2. Integration with Open vSwitch: Configure OVS with hardware offloading
enabled to allow flow-based acceleration.

3. Kubernetes Networking Setup: Use Multus to attach multiple network
interfaces to pods, leveraging hardware acceleration.

4. Security and Performance Optimization: Enable cryptographic accel-
eration for IPsec workloads and monitor performance using benchmarking
tools.

Hardware Offload Workflow

Offloading in SmartNICs follows a well-defined workflow that involves traffic
redirection from the CPU to the NIC hardware. This process is managed by several
key components [10]:

1. Representor Ports: In SR-IOV environments, each Virtual Function (VF)
is associated with a representor port. This representor acts as a proxy between the
VF and the SmartNIC’s embedded switch (e-switch). The representor port allows
the host system to monitor, control, and offload network flows at the hardware
level.

2. Devlink and Switchdev: The Linux kernel provides tools such as devlink
and switchdev to configure hardware offloading. Devlink enables interaction with
the SmartNIC firmware, while switchdev allows for flow-based rule programming
that offloads switching decisions to the SmartNIC rather than the host CPU.

3. TC (Traffic Control) Offloading: The Traffic Control (TC) subsystem
is used to manage network traffic and can offload rules to SmartNICs. With TC
Flower filters, administrators can define flow-based policies, which are then pushed
down to the hardware, allowing efficient forwarding, VLAN tagging, and tunneling
operations such as VXLAN and Geneve encapsulation.

4. Hybrid Offloading Approach: Not all traffic is offloaded immediately.
The system follows a hybrid approach, where:

• The first packet of a flow is handled by the software-based OVS, which
determines the forwarding decision.

20

Architecture and Offloading Techniques

• If the flow is suitable for offloading, the flow rule is installed in the SmartNIC
hardware via TC.

• Subsequent packets follow the hardware-defined path, reducing CPU involve-
ment and improving performance.

Practical Implementation in OVS

To integrate these offloading mechanisms into Open vSwitch, the following steps
are performed:

• Configure the SmartNIC’s e-switch to operate in switchdev mode, allowing
hardware-accelerated switching.

• Use devlink to set the appropriate operating mode for SR-IOV and enable
representor ports.

• Establish TC Flower rules to direct traffic flows efficiently while enabling
hybrid offloading.

• Monitor flow aging and offloaded counters to ensure the SmartNIC efficiently
manages active flows.

IPsec Offload

IPsec full offload enables cryptographic operations to be handled entirely by the
SmartNIC, significantly reducing the CPU overhead associated with encryption
and decryption.

The packet processing in IPsec offloading follows these steps [11]:

1. Incoming packets are received by the SmartNIC, which checks if they match
an existing Security Association (SA).

2. If a matching SA is found, the SmartNIC performs decryption, authentication,
and integrity verification directly in hardware.

3. The decrypted packet is then forwarded to the host system or switched through
the SmartNIC’s embedded switch, depending on the configuration.

4. For outgoing traffic, the SmartNIC encrypts packets and applies authentication
headers before transmission.

5. The processed packets are then forwarded directly to the network, bypassing
the host CPU.

21

Architecture and Offloading Techniques

This approach ensures minimal latency and improved throughput for encrypted
communication, making it ideal for high-performance and secure networking envi-
ronments.

By combining these techniques, SmartNICs can offload large portions of network
processing, significantly reducing CPU load and improving throughput for high-
performance workloads.

22

Chapter 5

Experimental Evaluation

This section presents the configurations of tests conducted to evaluate the perfor-
mance impact of SmartNIC hardware offloading in different networking scenarios.
The experiments were designed to compare traditional CPU-based packet process-
ing with offloading mechanisms provided by the NVIDIA ConnectX-7 SmartNIC.
The goal is to assess improvements in throughput, latency, and CPU utilization
when leveraging hardware acceleration.

As shown in chapter 4, two server setups were employed:

• First Setup (older hardware, Gen 3 x8)

• Second Setup (newer hardware, Gen 4 x16)

5.1 Open vSwitch Hardware Offload Tests
The first set of experiments focuses on Open vSwitch (OVS) hardware offloading.
OVS is widely used in virtualized and containerized environments to manage
network traffic, and its performance can be significantly improved by leveraging
SmartNIC offload capabilities.

OVS was configured in two modes: In the first all packet processing is performed
in software by the host CPU. In the second flow rules are offloaded to the SmartNIC,
reducing CPU overhead. Each test was executed multiple times to ensure consistent
and reproducible results.

5.1.1 Virtual Ethernet vs SR-IOV
Figures 5.3 and 5.4 focus on the first setup, illustrating CPU usage and throughput
with iperf3 TCP tests across varying numbers of parallel streams. Although

23

Experimental Evaluation

Figure 5.1: Configuration for the test without offload.

Figure 5.2: Configuration for the test with offload.

throughput often levels off around 64Gbps, SR-IOV offloading significantly reduces
CPU utilization when many streams are active.

Figure 5.3 shows that, at low stream counts, CPU usage remains modest
irrespective of configuration. As concurrency rises (12 or 24 streams), the non-
offloaded client setup experiences a steep climb in CPU consumption, whereas SR-
IOV offloading maintains lower overhead across the board. Meanwhile, Figure 5.4
indicates that both approaches start with comparable throughput, yet SR-IOV

24

Experimental Evaluation

0

5

10

15

20

25

30

35

40

45

50

1 4 12 24

C
PU

 U
sa

ge
 (

%
)

Parallel Streams

veth client sr-iov offload client veth server sr-iov offload server

Figure 5.3: CPU usage for different numbers of streams on the first setup, without
encapsulation or encryption.

0

5

10

15

20

25

30

35

40

45

50

55

1 4 12 24

Th
ro

ug
hp

ut
 (

G
bp

s)

Parallel Streams

veth sr-iov offload

Figure 5.4: Throughput for different numbers of streams on the first setup,
without encapsulation or encryption.

stays near 64Gbps under heavier loads, stabilizing performance despite hitting
PCIe limits.

To determine if these observations arise from hardware constraints, the same
tests were run on the second setup, which eliminates the PCIe bottleneck and
provides more CPU resources. Figures 5.5 and 5.6 summarize outcomes on the
newer machines, revealing that ConnectX-7 can achieve near line-rate operation
and alleviate CPU utilization more effectively under higher concurrency.

In Figure 5.5, offloading continues to yield tangible CPU savings as parallel

25

Experimental Evaluation

0

5

10

15

20

25

30

35

40

45

1 4 12 32

C
P

U
 U

sa
ge

 (
%

)

Parallel Streams

vanilla client offload client vanilla server offload server

Figure 5.5: CPU usage for different numbers of streams on the second setup,
without encapsulation or encryption.

0

10

20

30

40

50

60

70

80

90

100

1 4 12 24

Tr
h

o
u

gh
p

u
t

(G
b

p
s)

Parallel Streams

veth sr-iov offload

Figure 5.6: Throughput for different numbers of streams on the second setup,
without encapsulation or encryption.

streams increase. According to Figure 5.6, the newer setup allows throughput
to climb closer to the SmartNIC’s maximum, confirming that removing PCIe
bottlenecks and employing a robust CPU design helps SR-IOV maintain high data
rates without saturating the host CPU.

Overall, this veth vs. SR-IOV comparison highlights that offloading consistently

26

Experimental Evaluation

relieves CPU pressure, although the extent of those improvements can differ between
the two setups. On older hardware, SR-IOV provides a noticeable advantage by
sustaining a steady 64Gbps under heavier concurrency while significantly reducing
CPU load. In the second setup, which removes the PCIe bottleneck and benefits
from more powerful CPUs, offloading still lowers CPU usage, but the difference
compared to the veth configuration is not as pronounced. The newer servers are
inherently more capable of handling high data rates, so while SR-IOV helps, the
net gains in performance or CPU savings appear to be more modest.

In both environments, the core takeaway is that offloading does not always boost
raw TCP throughput beyond the available hardware limits but does allow higher
concurrency without disproportionately taxing the CPU. When system resources
align closely with the SmartNIC’s capabilities, offloading can yield predictable
performance at scale with minimal overhead. By contrast, when hardware resources
are constrained, SR-IOV often demonstrates clearer advantages in keeping CPU
usage under control.

5.1.2 Geneve Tunneling Encapsulation

Figure 5.7: Configuration for the test with Geneve encapsulation and without
offload.

A further set of tests was conducted to assess how Geneve tunneling impacts
offloading results under the first setup (older hardware) and the second setup (newer,
more capable servers). Geneve introduces an additional layer of encapsulation,
thereby adding overhead in the packet processing path. The experiments aim to

27

Experimental Evaluation

Figure 5.8: Configuration for the test with Geneve encapsulation and offload.

determine whether SR-IOV offloading continues to reduce CPU usage or boost
throughput once the complexity of tunneling is taken into account.

Figures 5.9 and 5.10 show results from the older machines. CPU usage rises
noticeably for the virtual Ethernet (non-offloaded) configuration when parallel
streams increase, largely due to the extra encapsulation overhead. SR-IOV offload-
ing helps contain CPU consumption, especially at higher stream counts, although
overall throughput remains constrained around 60–64Gbps. The key advantage
of hardware offloading in this scenario is preventing the CPU from becoming
overwhelmed by Geneve’s tunneling operations.

Figure 5.9 highlights how non-offloaded configurations incur a marked CPU
penalty as concurrency scales, whereas SR-IOV consistently keeps utilization lower.
In Figure 5.10, both approaches follow a similar throughput profile, with SR-IOV
slightly mitigating the performance dip introduced by tunneling. The net benefit is
most pronounced on the older hardware, where any form of overhead is amplified
by the limited PCIe bandwidth and CPU capacity.

The second setup, summarized in Figures5.11 and 5.12, differs in a surprising
way from the first. At low concurrency (1 and 4 streams), offloading actually
results in reduced throughput, even though CPU usage is slightly lower than in
the non-offloaded mode. When the number of streams increases to 12 or 32, the
throughput for offloaded and non-offloaded configurations becomes practically the
same, yet offloading shows a marginal rise in CPU usage. These counterintuitive
results suggest that, in the newer and more capable environment, some overheads
in the offload path or traffic steering mechanism outweigh the typical benefits of

28

Experimental Evaluation

0

10

20

30

40

50

60

1 4 12 24

C
PU

 U
sa

ge
 (

%
)

Parallel Steams

no offload client offload client no offload server offload server

Figure 5.9: CPU usage for different numbers of streams on the first setup, with
Geneve encapsulation.

0

10

20

30

40

50

60

1 4 12 24

Th
ro

ug
hp

ut
 (

G
bp

s)

Parallel Streams

no offload offload

Figure 5.10: Throughput for different numbers of streams on the first setup, with
Geneve encapsulation.

hardware acceleration, particularly at low stream counts, where the baseline CPU
load is already minimal.

29

Experimental Evaluation

0

5

10

15

20

25

30

35

40

45

1 4 12 32

C
PU

 U
sa

ge
 (

%
)

#Parallel Streams

vanilla client offload client vanilla server offload server

Figure 5.11: CPU usage for different numbers of streams on the second setup,
with Geneve encapsulation.

In Figure 5.11, offloading reduces CPU usage at lower concurrency, but this
advantage is overshadowed by the noticeable drop in throughput visible in Fig-
ure 5.12. At higher concurrency, CPU usage converges or even becomes slightly
higher under SR-IOV, while throughput remains essentially the same compared
to the non-offloaded configuration. Consequently, in contrast to the first setup,
the second setup does not exhibit a clear advantage for offloading under Geneve
tunneling.

One hypothesis is that the overhead of managing offloaded flows under Geneve
may introduce additional control-plane or data-plane complexity that negates the
typical CPU savings. The broader PCIe bandwidth and high core count may also
make software-based processing sufficiently efficient, leaving less headroom for
SR-IOV to provide improvements. As a result, offloading can occasionally lead
to suboptimal throughput at low concurrency or a slight CPU increase at higher
concurrency.

30

Experimental Evaluation

0

10

20

30

40

50

60

70

80

90

100

1 4 12 32

Th
ro

ug
hp

ut
 (

G
bp

s)

Parallel Streams

vanilla sr-iov offload

Figure 5.12: Throughput for different numbers of streams on the second setup,
with Geneve encapsulation.

Figure 5.13: Configuration for the test with VXLAN encapsulation + IPsec
encryption and without offload.

31

Experimental Evaluation

Figure 5.14: Configuration for the test with VXLAN encapsulation + IPsec
encryption and offload.

5.1.3 VXLAN + IPsec Offloading
A further series of tests examined the combined effect of VXLAN tunneling and IPsec
encryption. In contrast to earlier scenarios, this configuration pushes significant
cryptographic overhead onto the system, which often limits throughput when
handled purely by software. By moving encryption into the ConnectX-7 SmartNIC,
offloading attempts to keep throughput high despite CPU constraints.

Figures 5.15 and 5.16 outline the results. Notably, offloading in this context in-
creases CPU usage relative to the non-offloaded configuration; however, throughput
jumps from around 2.5Gbps up to nearly 27Gbps, amounting to an approximate
980% improvement. This ten-fold increase in transmission speed indicates that
hardware-accelerated encryption provides a much more meaningful gain than might
be inferred solely from CPU usage metrics.

As shown in Figure 5.15, the offloaded configuration consumes more CPU than
expected, likely due to the overhead of managing IPsec flows on the SmartNIC,
along with additional control-plane interactions. However, Figure 5.16 confirms
that offloading nevertheless drives throughput sharply upward, from a baseline
of just a few gigabits per second to well above 20Gbps. In other words, even if
CPU usage is not minimized, the system overall delivers a vastly higher packet
processing rate by delegating cryptographic operations away from the host.

These findings underscore that hardware offloading is particularly valuable when
the workload involves encryption or other computationally expensive functions.
While network-centric offloads may not always raise throughput under simpler use

32

Experimental Evaluation

0

2

4

6

8

10

12

14

16

18

1 4 12 24

C
PU

 U
sa

ge
 (

%
)

Parallel Streams

no offload client offload client no offload server offload server

Figure 5.15: CPU usage under VXLAN + IPsec on the first setup.

0

5

10

15

20

25

30

35

40

1 4 12 24

Th
ro

ug
hp

ut
 (

G
bp

s)

Parallel Streams

no offload offload

Figure 5.16: Throughput under VXLAN + IPsec on the first setup.

cases, tasks like IPsec encryption can see dramatic gains in data rate. Rather than
capping out at a fraction of line speed due to software-based ciphers, offloading
facilitates an order-of-magnitude improvement, allowing the system to sustain far
greater concurrency while maintaining acceptable performance. In many real-world
deployments, this trade-off of slightly higher CPU usage for a large throughput
boost is highly beneficial, as it ensures encrypted communications remain both
secure and efficient.

The same test was also performed on the second setup with broader PCIe

33

Experimental Evaluation

0

2

4

6

8

10

12

14

16

1 4 12 32

C
P

U
 U

sa
ge

 (
%

)

Parallel Streams

no offload client offload client no offload server offload server

Figure 5.17: CPU usage under VXLAN + IPsec on the second setup.

0

10

20

30

40

50

60

70

80

90

100

1 4 12 24

Tr
h

o
u

gh
p

u
t

(G
b

p
s)

Parallel Streams

no offload offload

Figure 5.18: Throughput under VXLAN + IPsec on the second setup.

bandwidth and more powerful CPUs, as shown in Figures 5.17 and 5.18. Despite
the hardware’s ability to handle higher base throughput, IPsec offloading still
leads to a noteworthy jump in performance. However, the net gain is smaller
in relative terms than on the first setup, since the modern CPUs can process a
fair amount of cryptographic load in software without saturating. Non-offloaded
configurations in this environment remain viable, but offloading continues to show
value by preventing CPU overhead from escalating under heavy concurrency, even
if it no longer yields the tenfold increase observed on older machines.

34

Experimental Evaluation

5.2 Google Online Boutique Hardware Offload
Tests

Figure 5.19: Configuration for the test with the Google Online Boutique in a
Kubernetes cluster without offload.

To demonstrate the impact of offloading in a more realistic microservices en-
vironment, the Google Online Boutique demo was deployed on the second setup,
where each server has enough CPU resources and PCIe bandwidth to handle high
levels of concurrency with minimal software overhead. Pods for each microservice
were distributed across the two nodes (Table 5.1) in such a way that the frontend
and loadgenerator services ran on the same host, heavily stressing its resources.

Table 5.1: Pod Placement for the Google Online Boutique

Node Microservices / Pods
node 1 frontend, loadgenerator, adservice, cartservice,

checkoutservice, currencyservice, emailservice,
shippingservice, redis-cart

node 2 paymentservice, productcatalogservice, recommendationservice

A custom script was added to the loadgenerator container, leveraging the Locust
framework to generate HTTP requests toward the frontend. Because Locust itself

35

Experimental Evaluation

Figure 5.20: Configuration for the test with the Google Online Boutique in a
Kubernetes cluster with offload.

0

2

4

6

8

10

12

14

16

18

20

Server 1 no offload Server 2 no offload Server 1 offload Server 2 offload

C
PU

 U
sa

ge
 (

%
)

Figure 5.21: CPU usage under Google Online Boutique test. Frontend pod and
loadgenerator pod ran both on Server 1.

does not maximize efficiency at high concurrency, multiple parallel Locust instances
were launched: ten total processes, each simulating 10,000 users, for a cumulative
load of 100,000 virtual users. In both the offloaded and non-offloaded cases, the
back-end microservices were unchanged; the only difference was that, for the offload
scenario, each pod’s secondary interface was bound to an SR-IOV Virtual Function
(VF) through Multus, whereas in the baseline scenario all pods shared a 100Gbps
virtual Ethernet device. It is worth noting that in both scenarios, the ConnectX-7

36

Experimental Evaluation

3000

3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

no offload offload

Re
qu

es
ts

 p
er

 s
ec

on
d

(R
ps

)

Figure 5.22: Requests per second under Google Online Boutique test.

card served as the secondary NIC on each pod, while the primary NIC was a
separate 25Gbps device. Moreover, the creation and assignment of VFs in the
offloaded setup were automated through the SR-IOV Network Device Plugin.

Figures 5.21 and 5.22 summarize the results, focusing on CPU usage and request
rates (requests per second). Surprisingly, the difference in performance with or
without SR-IOV offload remains minimal. Both approaches sustain roughly the
same number of requests per second, and the CPU utilization is very similar
across the pods, including those handling critical paths such as the frontend. The
loadgenerator itself hits its own internal limits regardless of whether hardware
offload is active. These observations align with what was reported in [12], where
typical CPU overhead for networking stands around 8% in containerized workloads.

Ultimately, the Online Boutique tests demonstrate that, on powerful modern
hardware, the networking subsystem represents a smaller share of overall CPU usage,
and offloading does not always translate into dramatic performance improvements
for highly local microservice communications. However, once workloads involve
additional overhead, such as inter-node encryption or large-scale cross-node requests,
SmartNIC offload remains a promising route to scale up secure networking without
exceeding CPU limits.

37

Chapter 6

Results

The tests performed across different network configurations and hardware setups
highlight the nuanced impact of SmartNIC offloading. While some scenarios yield
notable gains in throughput or CPU savings, others demonstrate more modest or
even counterintuitive results. This chapter consolidates the main findings from all
experiments, emphasizing how hardware offloading behaves under varying levels of
concurrency, encapsulation, and cryptographic overhead.

6.1 Comparing First and Second Setups
Two test setups were employed to explore offloading on older vs. newer hardware.
The first setup uses servers with limited PCIe bandwidth (Gen 3 x8) and fewer CPU
cores, whereas the second setup benefits from Gen 4 x16 and more powerful CPUs.
The differences between these environments underpin much of the variability in
results.

6.1.1 Offloading in the First Setup
In the older configuration, we observed a consistent pattern: offloading through
SR-IOV often did not increase raw TCP throughput beyond 60–64Gbps, yet it
substantially reduced CPU utilization when many parallel streams were active. In
simpler tests without encapsulation, this phenomenon became especially clear. The
CPU overhead for a virtual Ethernet (veth) client soared at higher concurrency,
whereas SR-IOV effectively capped CPU usage. Although line rate (100Gbps) was
never fully reached, the ability to maintain stable throughput while cutting CPU
consumption proved advantageous. In data centers, avoiding full CPU saturation
is often as critical as chasing maximum throughput.

When additional protocols were introduced, such as Geneve tunneling, offloading

38

Results

helped mitigate the extra overhead. The cost of encapsulating traffic in software
is non-trivial, especially under concurrency. SR-IOV offloading partially moved
that burden into the ConnectX-7, limiting the CPU’s involvement. While the
difference in throughput at times remained modest, the CPU relief was typically
more substantial. Therefore, on older hardware, any overhead, encapsulation or
otherwise, becomes more significant, thereby enhancing the perceived benefit of
hardware offloads.

In the most demanding scenario tested, combining VXLAN tunneling with
IPsec encryption, the results became more dramatic. Despite raising CPU usage
compared to a purely software-based approach, the net throughput soared from
a baseline of 2.5Gbps to almost 27Gbps (an approximately 980% improvement).
In this situation, the encryption engine on the SmartNIC essentially removes the
cryptographic bottleneck from the CPU’s workload. Although the processor ends
up managing some control-plane tasks and partial flow steering, the heavy lifting
of per-packet encryption is delegated to the ConnectX-7. This highlights that, in
real-world use cases, particularly those involving computationally expensive security
protocols, SmartNIC offloading can be the difference between an impractically low
data rate and a throughput close to line rate.

6.1.2 Offloading in the Second Setup

Moving to the newer servers changed the picture somewhat. With faster CPUs
and full PCIe Gen 4 x16 bandwidth, the host already manages a high volume of
traffic with minimal CPU strain. Under standard TCP tests (without encryption
or encapsulation), the offload advantage became narrower than in the first setup.
In some tests, offloading even proved counterproductive for throughput at lower
concurrency levels, possibly because the overhead of diverting flows into hardware
overshadowed any CPU relief. At higher concurrency, CPU usage differences
sometimes reversed or became negligible, suggesting that the improved baseline
performance of the second setup leaves less room for offloading to shine.

In Geneve-encapsulated tests on newer hardware, a similar trend persisted. While
SR-IOV occasionally reduced CPU usage, the difference between offloaded and
non-offloaded configurations remained smaller compared to the older environment.
Because the CPU and PCIe bandwidth can handle large traffic volumes in software,
offloading yields only marginal benefits. In certain runs, throughput either stagnated
around the same level for both modes or was even slightly lower for the offloaded
configuration, likely reflecting the overhead of maintaining hardware flows.

39

Results

Microservices Scenario: Google Online Boutique

The Google Online Boutique microservices demo on the second setup, provides
insight into offloading under a more realistic containerized workload. In stark
contrast to the encryption-centric VXLAN + IPsec case, here the CPU overhead for
networking was comparatively small, leaving less room for hardware acceleration to
shine. The throughput, measured in requests per second (RPS), remained nearly
identical with or without SR-IOV offload, and overall CPU consumption varied
by only a few percentage points. These findings suggest that in well-provisioned,
microservice-oriented environments, network overhead may account for a modest
slice of total usage, thus diminishing the incremental gains from offload.

Unlike high-bandwidth or heavily encrypted data streams, each service in the
Boutique mainly exchanges moderate-sized requests and responses. The short and
bursty traffic pattern does not push the ConnectX-7 SmartNIC to its limits, and
the higher PCIe bandwidth available in the second setup further reduces the chance
of hitting CPU or I/O bottlenecks in software.

Viewed in context with the other benchmarks, the Boutique scenario reinforces
the observation that offloading is most impactful when the networking subsystem
bears a large fraction of the system load. If the majority of cycles are already spent
in application logic, or if local container-to-container traffic remains in software
loops, hardware acceleration brings marginal returns.

Several factors may explain the muted impact of offloading in this scenario.
Because many of the microservices involved in the Boutique communicate within
the same node, traffic does not necessarily benefit from a direct hardware data
path: in the offload configuration, pods on the same node must still traverse the
physical NIC, which adds overhead for local traffic that might otherwise stay in
software. Conversely, the non-offloaded case uses a purely virtual switch path for
pods co-located on the same host, bypassing the physical device and thus avoiding
the overhead of SR-IOV for local communications.

This result implies that offload can be less effective when the bulk of commu-
nication happens among containers on the same host, since the SmartNIC must
handle traffic that might never leave the local machine. Potential resolutions to
this problem could involve:

• Topology-aware Scheduling: Placing pods on different nodes when en-
cryption or complex tunneling benefits are desired, ensuring that offloading
hardware is fully utilized for cross-node traffic.

• Refined Data Path Configurations: Allowing pods on the same node to
use a software path, while directing cross-node (or encrypted) flows to the VF.
This might require advanced policy definitions in Multus or Kube-OVN.

• Balancing CPU vs. Security/Isolation Requirements: If the goal

40

Results

is robust isolation or IPsec-level security, occasionally incurring additional
overhead is a fair trade-off. In that case, high concurrency encryption might
still benefit from the SmartNIC’s crypto engine, but pure local container-to-
container traffic could remain on a virtual switch path.

In sum, while the Google Online Boutique illustrates how high-level microser-
vices can reduce the relative influence of raw packet processing overhead, it does
not negate the role of offloading in more demanding or encryption-intensive use
cases. Operators deploying multi-node clusters and requiring secure cross-node
communications, or anticipating sustained high concurrency with large data trans-
fers, could still find significant advantages in offloading. However, for lightweight,
largely intra-node microservice traffic on modern hardware, SR-IOV offloading
may yield minimal improvements in either CPU usage or total request-handling
capacity.

6.2 Synthesis of Findings
In general, these experiments illustrate that hardware offloading is not universally
beneficial in all workloads. Its impact depends heavily on the specific interplay
between concurrency, protocol overhead, cryptographic requirements, and the
underlying hardware’s capacity to process packets in software.

CPU Gains vs. Throughput Gains. For many network-centric tasks (e.g.,
raw TCP streaming), offloading frequently translates into CPU savings rather than
heightened throughput. The system remains capped by either PCIe bandwidth
or the inherent overhead of TCP. However, relieving CPU resources can be vital
for large-scale deployments, where servers run numerous services in parallel, and
hitting a CPU bottleneck can limit concurrency.

Encryption as a Game-Changer. The clearest advantage of offloading arises
in encryption-heavy workloads, as demonstrated by the VXLAN + IPsec scenario
on the first setup. Software-based ciphers can drastically hamper performance.
Delegating them to the SmartNIC allows throughput to climb by an order of
magnitude, albeit sometimes with a minor increase in CPU usage. For organiza-
tions prioritizing secure communications at scale, hardware offloading can thus be
essential.

Impact of Better Hardware. On more modern servers (Gen 4 x16), the
improved baseline performance can reduce the relative gains from offloading. Indeed,
offload overhead might slightly hinder throughput at low concurrency. At the same

41

Results

time, the potential for CPU reduction remains valuable at higher loads, particularly
when advanced protocols like Geneve or IPsec are involved. However, those benefits
no longer appear as pronounced as they do on systems with more constrained
resources.

6.3 Practical Considerations
The diverse outcomes across test setups underscore the necessity of tailoring offload-
ing strategies to specific data center environments. When CPU capacity or PCIe
bandwidth is limited, SR-IOV can deliver substantial improvements—especially
for tasks involving encapsulation and encryption. In contrast, in an already well-
provisioned environment, the incremental advantages may be smaller, and some
overheads of hardware offloading might even hinder throughput in certain corner
cases.

Still, the experiment with IPsec encryption shows that, whenever a workload
involves computationally intensive tasks beyond simple packet forwarding, moving
those functions to dedicated SmartNIC hardware provides tangible benefits. En-
terprises seeking to secure east-west traffic at scale or handle surging concurrency
without overwhelming their CPU fleet, would likely profit from hardware-based
encryption. By contrast, organizations deploying modern servers with high core
counts and broad PCIe lanes might see less difference in basic tunneling or bridging
scenarios.

These results collectively suggest that hardware offloading should be viewed
as a flexible tool, which is beneficial for a number of areas where CPU overheads
hamper performance (e.g. encryption or limited PCIe bandwidth), yet not always
necessary in high-end, lightly loaded servers. Deciding whether to enable offloading
depends on balancing the cost and complexity of configuring SR-IOV with the
potential for efficiency gains under real-world workloads.

6.4 Hardware Offloading with ConnectX-7 limits
Although ConnectX-7 provides robust support for offloading certain tasks, its
capabilities are inherently restricted to the protocols and operations implemented
in hardware. The card’s hardware engines excel at accelerating IPsec encryption,
TCP offload, and certain tunneling mechanisms, but do not accommodate every
emerging protocol. WireGuard, for instance, is increasingly adopted for secure
networking but remains incompatible with ConnectX-7’s offload pipeline. This
lack of wire-speed offloading for newer or less standardized protocols reflects an
inherent inflexibility: once the ASIC design is finalized, introducing or updating
features becomes considerably more challenging.

42

Results

Even when ConnectX-7 handles supported protocols efficiently, its offload ap-
proach offers less elasticity compared to SoC-based SmartNICs, like the BlueField
family. Unlike BlueField, which runs an ARM-based operating system and sup-
ports custom code execution on the NIC itself, ConnectX-7 mainly accelerates
pre-programmed functions defined by its ASIC. As a result, ConnectX-7 users
benefit from reduced CPU overhead when leveraging its built-in offload functions,
such as IPsec, but cannot easily extend hardware offloading to proprietary or
fast-evolving network protocols. For large-scale or highly dynamic data centers that
frequently update their security and networking features, this limitation underscores
the importance of evaluating not just raw throughput or CPU savings, but also
the long-term adaptability of a particular SmartNIC solution.

43

Chapter 7

Conclusions

7.1 Current Limitations

While the results demonstrate clear advantages in utilizing SmartNIC offloading in
scenarios like packet encryption, there are several limitations to this study that
must be acknowledged. One key limitation is the reliance on synthetic workloads
for performance evaluation. Most of the tests were conducted using tools such
as iperf3 and controlled traffic generators, which, while effective for measuring
raw throughput and CPU utilization, do not fully capture the complexity of real-
world data center workloads. The only test involving a real-world application was
performed with Google Online Boutique, which provides some insight into how
offloading impacts containerized microservices, but remains a limited representation
of broader production environments.

Another limitation of this study is the focus on a single SmartNIC model,
the NVIDIA ConnectX-7. While this hardware provides extensive offloading
capabilities, the results cannot be generalized across all SmartNIC architectures,
such as FPGA-based or SoC-based solutions. Different SmartNIC designs may offer
varying levels of performance improvements depending on workload characteristics
and network stack integration.

Additionally, the experiments were conducted on a limited number of hardware
configurations, specifically two test setups with distinct CPU and PCIe architectures.
While this approach allowed for a comparison between constrained and optimal
PCIe bandwidth environments, a broader range of hardware setups would be
necessary to fully understand how offloading scales across different data center
architectures.

Finally, the evaluation primarily focused on networking-related metrics such as
CPU utilization and throughput. Other potential benefits of SmartNIC offloading,

44

Conclusions

such as energy efficiency and impact on overall system performance in multi-
tenant cloud environments, were not explored in this study. These aspects remain
important in determining the viability of SmartNIC deployment in large-scale
production environments.

7.2 Future Work
There are several directions for future research and development aimed at addressing
the limitations identified in this study. One crucial area is the optimization
of SmartNIC performance in environments with constrained PCIe bandwidth.
Investigating compression techniques, workload-aware flow scheduling, or alternative
interconnect solutions could help alleviate the impact of PCIe bottlenecks on
performance.

Another promising direction is improving software integration for SmartNICs
within widely used networking stacks such as Open vSwitch and Kubernetes.
Enhancements to automation frameworks could simplify the configuration process,
reducing the technical barrier to adopting SmartNIC offloading in real-world
data center environments. Developing intelligent orchestration mechanisms that
dynamically adjust offloading strategies based on workload profiles could further
optimize efficiency.

A more detailed analysis of offloading performance in diverse networking sce-
narios would also be valuable. Future studies could explore SmartNIC impact on
microservices communication patterns, network security functions, and distributed
machine learning workloads. Extending the evaluation to include multiple Smart-
NIC vendors and architectures, such as FPGA-based offloading solutions, could
provide deeper insights into trade-offs between different hardware implementations.

Additionally, exploring the role of SmartNICs in accelerating emerging network-
ing paradigms, such as software-defined networking (SDN) and network function
virtualization (NFV), could open new avenues for improving scalability and ef-
ficiency in cloud and edge computing environments. As SmartNIC technology
continues to evolve, further optimizations and refinements will be necessary to
maximize its impact across a broader range of applications.

Another fruitful line of research lies in policy-based traffic steering for container
environments. In particular, solutions like Multus could evolve to transparently
decide whether a given flow should be offloaded or routed via a software path,
depending on whether the traffic stays within the same host or must traverse
the physical network. If pods on the same node can communicate purely via
virtual Ethernet, they might avoid needless overhead of traveling to the SmartNIC.
Conversely, external or cross-node flows would naturally benefit from hardware
offloading, especially if they require encryption or tunneling. By integrating

45

Conclusions

advanced workload awareness and network policies, future Multus implementations
could dynamically attach pods to either a fully offloaded SR-IOV interface or
a software-based veth interface, thereby striking an optimal balance between
performance, CPU usage, and scalability.

46

Bibliography

[1] OvS Docs. url: https://www.openvswitch.org/ (cit. on p. 4).
[2] Kubernetes Docs. url: https://kubernetes.io/docs/concepts/overvie

w/components/ (cit. on p. 7).
[3] Kube-OVN Docs. url: https://kubeovn.github.io/docs/stable/en/

(cit. on p. 9).
[4] Multus Docs. url: https://github.com/k8snetworkplumbingwg/multus-

cni (cit. on p. 9).
[5] SR-IOV network device plugin Docs. url: https://github.com/k8snetwor

kplumbingwg/sriov-network-device-plugin (cit. on p. 10).
[6] Google Online Boutique Docs. url: https://github.com/GoogleCloudPla

tform/microservices-demo (cit. on p. 10).
[7] Elie F. Kfoury, Samia Choueiri, Ali Mazloum, Ali AlSabeh, Jose Gomez, and

Jorge Crichigno. «A Comprehensive Survey on SmartNICs: Architectures,
Development Models, Applications, and Research Directions». In: IEEE
Access 12 (2024), pp. 107297–107336. doi: 10.1109/ACCESS.2024.3437203
(cit. on p. 12).

[8] Rashid Khan and Rony Efraim. Implementing virtual network offloading using
open source tools on BlueField-2. 2021. url: https://www.nvidia.com/en-
us/on-demand/session/gtcspring21-s31380/ (cit. on p. 13).

[9] Jianshen Liu, Carlos Maltzahn, Craig Ulmer, and Matthew Leon Curry.
«Performance Characteristics of the BlueField-2 SmartNIC». In: (2021). url:
https://arxiv.org/abs/2105.06619 (cit. on p. 13).

[10] Rony Efraim and Or Gerlitz. «Using SR-IOV offloads with Open-vSwitch
and similar applications». In: (2023). url: https://netdevconf.org/1.2/
papers/efraim-gerlitz-sriov-ovs-final.pdf (cit. on pp. 13, 20).

[11] NVIDIA Docs. url: https://docs.nvidia.com/networking/display/
mlnxofedv24010331/ipsec+full+offload (cit. on p. 21).

47

https://www.openvswitch.org/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubeovn.github.io/docs/stable/en/
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://doi.org/10.1109/ACCESS.2024.3437203
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31380/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31380/
https://arxiv.org/abs/2105.06619
https://netdevconf.org/1.2/papers/efraim-gerlitz-sriov-ovs-final.pdf
https://netdevconf.org/1.2/papers/efraim-gerlitz-sriov-ovs-final.pdf
https://docs.nvidia.com/networking/display/mlnxofedv24010331/ipsec+full+offload
https://docs.nvidia.com/networking/display/mlnxofedv24010331/ipsec+full+offload

BIBLIOGRAPHY

[12] Davide Miola, Fulvio Risso, and Federico Parola. «Measuring the Cost of
the Linux Network Stack in Real-Time». In: 2024 IEEE 10th International
Conference on Network Softwarization (NetSoft). 2024, pp. 295–303. doi:
10.1109/NetSoft60951.2024.10588891 (cit. on p. 37).

48

https://doi.org/10.1109/NetSoft60951.2024.10588891

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Goal of the Thesis

	Background
	Linux Networking Stack
	Network to Socket or Virtual Interface
	Data Transmission in Host and Virtualized Contexts

	Open vSwitch
	IPsec
	SR-IOV
	Open Virtual Network
	Kubernetes
	Kubernetes Architecture
	Kube-OVN
	Multus
	SR-IOV network device plugin

	Google Online boutique
	Related Works

	SmartNICs
	ASIC-based
	NVIDIA ConnectX-7

	SoC-based
	NVIDIA BlueField Family

	FPGA

	Architecture and Offloading Techniques
	Hardware and Software Architecture
	Hardware Components
	Software Components

	Offloading Mechanisms
	Offload on ConnectX-7
	Offloading Implementation

	Experimental Evaluation
	Open vSwitch Hardware Offload Tests
	Virtual Ethernet vs SR-IOV
	Geneve Tunneling Encapsulation
	VXLAN + IPsec Offloading

	Google Online Boutique Hardware Offload Tests

	Results
	Comparing First and Second Setups
	Offloading in the First Setup
	Offloading in the Second Setup

	Synthesis of Findings
	Practical Considerations
	Hardware Offloading with ConnectX-7 limits

	Conclusions
	Current Limitations
	Future Work

	Bibliography

