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Summary

Rockfalls and landslides pose severe risks to infrastructure and public safety
in mountainous regions. Detecting these events in real-time is crucial for
risk mitigation and early warning systems. This research investigates the
use of State of Polarization Angular Speed (SOPAS) data collected from an
experimental mountain gully to monitor and detect anomalous events, par-
ticularly falling rocks. The study relies on data from four fiber optic circuits,
either buried or exposed, deployed along the gully. These circuits continu-
ously record SOPAS values that are derived from the Stokes parameters and
computed as the angle variation between consecutive Stokes vectors on the
Poincaré sphere. The SOPAS signal is acquired by a polarimeter and then
processed using a digital signal processing (DSP) scheme, which includes
smoothing filters to minimize environmental noise and a threshold-based de-
tection mechanism to trigger an alarm only when SOPAS values exceed a
predefined level for a significant duration.

The main objective of this research is to develop an efficient data pro-
cessing system capable of analyzing SOPAS data and distinguishing environ-
mental disturbances from rockfall events. The methodology includes filtering
the signal using low-pass filters, such as moving average and Savitzky-Golay,
to reduce noise and remove system artifacts while preserving key event char-
acteristics. A combination of statistical analysis (including mean, standard
deviation, and percentile calculations) and complementary cumulative distri-
bution function (CCDF) analysis is applied to characterize event patterns and
examine the distribution tails, emphasizing rare but high-intensity SOPAS
fluctuations.

To validate the proposed detection approach, two distinct SOPAS states
were analyzed. The first state, called quiet conditions, serves as a baseline
and features minimal disturbances. The second state, called event conditions,
was recorded during rockfall experiments conducted in the gully, where de-
signed blocks and regular rocks were deliberately dropped onto the fiber cir-
cuits to generate controlled SOPAS signals. Moreover, A dual-threshold de-
tection strategy was developed to improve event classification accuracy. This
approach is a combination of a SOPAS-based threshold (ωth), to ensure that
only significant angular speed variations are considered, and a time-based
threshold (dth), to filter short-lived fluctuations and reduce false alarms.
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Figure 1: Threshold vs. Exceedance
Duration, Circuit-3, for Quiet (green)
and Event (blue) Conditions.

Figure 2: Map of Exceedances for Dif-
ferent ωth and dth Threshold Values
(Circuit-2).

Figure 3: Map of Exceedances for Dif-
ferent ωth and dth Threshold Values
(Circuit-3).

Figure 4: Map of Exceedances for Dif-
ferent ωth and dth Threshold Values
(Circuit-4).

Analysis of exceedances (anomalies and events consisting of samples that
surpass the threshold ωth) was performed to compare the number and du-
ration of threshold violations across different states. The results revealed
clear differences. The quiet conditions state exhibits numerous but short-
lived exceedances, often caused by environmental noise. On the other hand,
event conditions state generates fewer but longer exceedances, with dura-
tions significantly surpassing those of background anomalies. Scatter plots
of exceedances durations versus threshold levels, like the one shown in Fig-
ure 1, highlight the distinction between background noise and induced events.
Moreover, map plots for different circuits were generated (Figure 2, 3, and
4) to visualize the distribution of exceedances that surpass both ωth and dth.
These maps provide an intuitive way to assess the impact of different thresh-
old selections. By choosing a specific pair of ωth and dth on the map, one can
immediately determine the expected number of false alarms. This enables
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the identification of an optimal threshold pair where no exceedances meet
both conditions, effectively eliminating false alarms. It also offers a clear
estimate of the number of false alarms within the observed time window,
which aids in fine-tuning the detection parameters.

The findings demonstrate that SOPAS analysis is a promising tool for
rockfall detection. The study identified the averaging window W and ωth as
key parameters for event detection, requiring careful optimization. While the
tested averaging windows performed well, setting ωth is more crucial, as it de-
pends on event intensity, fiber placement, and background noise conditions.
Future work could focus on optimizing detection thresholds, integrating ma-
chine learning techniques for events classification, and expanding fiber optic
deployments to cover larger geographic regions. This would enhance mon-
itoring capabilities and improve real-time hazard detection in mountainous
environments.
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Chapter 1

Introduction

1.1 Context

Natural hazards pose significant threats to human life, infrastructure, and
economic stability, particularly in mountainous regions. Rockfalls, avalanches,
landslides, and debris flows are especially dangerous due to their unpre-
dictability and destructive potential, which are further exacerbated by cli-
mate change. Increased extreme weather events, such as heavy rainfall and
rapid snowmelt, weaken slopes and raise the likelihood of hazardous move-
ments [1]. In the Italian Alps, these risks are prevalent, with over 93% of
municipalities facing threats from landslides and floods leading to substantial
annual damages [2]. Urban expansion into high-risk areas further amplifies
potential losses, highlighting the urgent need for reliable early warning sys-
tems.

Traditional monitoring methods, including ground-based sensors, visual
inspections, and satellite imagery, provide valuable insights but fall short
in real-time detection over large areas. Many require costly infrastructure,
suffer from environmental interference, or demand significant human involve-
ment. For instance, ground-based sensors are often limited in coverage, while
satellite-based systems can be obstructed by cloud cover or low temporal
resolution [3]. Optical fiber sensing technology emerges as a promising alter-
native, offering real-time ground movement detection through variations in
the state of polarization (SOP) of light. Unlike conventional sensors, optical
fibers provide wide-area coverage, cost-effectiveness, and resilience to harsh
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environmental conditions, making them suitable for continuous, large-scale
monitoring.

Developing effective early warning systems presents several challenges,
including the high cost and logistical difficulties of deploying conventional
sensors in remote mountain gullies. Many existing methods struggle to dif-
ferentiate between genuine hazards and environmental noise, leading to false
alarms or missed detections, which can compromise public trust and safety.
Additionally, extreme weather conditions can degrade sensor performance,
reducing their reliability when needed most. Traditional detection systems
also rely on centralized data analysis, causing delays that limit their effec-
tiveness in fast-moving hazards like rockfalls and avalanches.

This research aims to overcome these limitations by leveraging optical
fiber sensing technology. By focusing on the angular speed variations of SOP
(SOPAS), the system can detect ground movements and vibrations that may
signal impending natural hazards. This approach offers several advantages:
it is cost-effective, as fibers serve both as sensors and data transmission
channels; is highly durable in extreme conditions; and enables real-time event
detection without human intervention. By exploiting these unique features,
this study seeks to develop an innovative early warning system that enhances
safety and resilience in mountain environments.

1.2 History

Understanding the history behind any technology is just as important as
studying its principles. That is why I want to begin this Chapter by provid-
ing a brief history of the evolution of optical fiber. However, this won’t be a
comprehensive one—the focus will be only on the moments that I believe are
most relevant. What started as simple light bending in water experiments
has evolved into a technology that connects the world, enabling rapid and
reliable communication, and transforming the way we communicate, work,
and live. While the fiber optic history can be traced back to the mid-19th
century when John Tyndall showed total internal reflection in 1854, explain-
ing how light propagates in different media, scientists began using bent glass
rods for medical purposes in the early 20th century. In 1930, Heinrich Lamm
transmitted an image through a fiber bundle, which heavily contributed to
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the development of the contemporary optical fiber [4].

The tipping point arrived in the 1950s and 60s when important develop-
ments in the field were made. Bram van Heel and Harold Hopkins enhanced
image transmission using cladded optical fibers that greatly reduced light
losses. Narinder Singh Kapany, who popularized the term “fiber optics” in
1960, helped in giving popularity to the field. Single-mode fibers (SMF)
were proposed by Elias Snitzer in 1961, demonstrating their ability for effi-
cient data transmission. In 1964, Charles Kao, who would eventually receive
a Nobel prize in 2009, along with George Hockham, asserted that by mini-
mizing imperfections in the glass, low attenuation through the fiber could be
achieved. Their work then encouraged Corning Glass Works to develop low-
loss optical fibers in 1970, attaining the important milestone of 20 dB/km
attenuation limit, which made long-distance applications of fiber communi-
cation possible [4] [5].

By the 1980s, the fiber optics began to supplant copper wires for com-
munication. In 1977, the honor for installing the first metropolitan fiber
network was taken by Turin, Italy, demonstrating urban data transmission
capabilities. In America, Sprint also undertook the building of a nationwide
fiber-optic network, while 1988 witnessed the installation of the first transat-
lantic fiber-optic line with erbium-doped fiber amplifiers (EDFAs) for signal
amplification. In 1991, photonic crystal fiber was introduced for enhanced
fiber performance and, in the late 1990s, the start of the construction of
large-scale global networks like TPC-5 Pacific cable and FLAG (Fiber Link
Around the Globe) was seen [4] [5].

Optical fiber is now the backbone of global communication, acting in a
range of sectors, from telecommunications to healthcare and beyond. Its
unique capacity to transport data at fast speeds with minimum loss has al-
lowed for the creation of huge networks that support everything from internet
access to real-time medical imaging. With ongoing technological advance-
ments, optical fibers have reached new milestones, achieving record-breaking
transfer speeds of 402 terabits per second (Tbps) [6]. This demonstrates the
critical role of optical fiber in meeting the ever-increasing demand for faster,
more reliable data transmission in an increasingly connected world.
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1.3 Basic Principles of Optical Fiber

1.3.1 Overview

The optical fiber is a cylindrical, nonconducting waveguide that transmits
light along its axis. It is a thin strand of very purified glass. Its standard
diameter is an eighth of a millimeter (125 µm), which is roughly the thickness
of a human hair. The glass is made of SiO2 (silicon dioxide), similar to the
glass found in window panes or drinking glasses, but much purer.

Optical fibers are made up of layers of dielectric materials, as shown in
Figure 1.1. High-performance fibers have an interior portion (the core) with
a diameter of approximately (10 µm). The part of the fiber surrounding
the core is called the cladding, and its diameter is larger than the core,
depending on the type of fiber used. To provide mechanical protection and
prevent physical damage, a layer surrounding the core and cladding is used;
it’s called the buffer or protective coating.

Figure 1.1: Structure of an Optical Fiber. (Image from [7])

1.3.2 Refractive Index

The refractive index is a property of the material that determines how light
propagates through it. In a vacuum, such as outer space, light travels at its
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quickest. The speed of light in vacuum is approximately 300,000 kilometers
per second. To compute the refractive index of a medium, we divide the
speed of light in vacuum by the speed of light in that medium. Mathemati-
cally, this is expressed as:

n =
c

v
(1.1)

where:
n = refractive index of the medium
c = speed of light in vacuum
v = speed of light in the medium

In the vacuum, n = 1 by definition. A typical single-mode fiber (see
next subsection) for telecommunications has a pure silica cladding with an
index of approximately 1.444 at wavelength of 1500 nanometre (nm), and a
doped silica core with an index of roughly 1.4475. That said, a signal using
optical fiber for communication will travel at around 200,000 kilometers per
second, two-thirds of the speed of light. For instance, a phone call carried by
fiber between Turin and Algiers, a distance of approximately 1000 kilome-
ters, would have a minimum delay of 5 milliseconds between when the first
person speaks and the other hears. Mathematically, the delay is calculated
as follows:

Delay = Distance / Speed of light in fiber

For the Turin-Algiers example:

Delay = 1000 (km) / 200000 (km/s) = 0.005 seconds (5 milliseconds).

1.3.3 Single-Mode Fiber

Optical fibers can be classified into single-mode fiber (SMF) and multi-mode
fiber (MMF) based on the mode of light propagation. SMF, which is the
focus of this study, is designed for long-distance communication. It has a
small core, typically 8 − 10 µm, allowing only a single mode of light to
propagate. This design minimizes signal attenuation—the loss caused by
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light not traveling in a straight path—and dispersion, where different wave-
lengths travel at different speeds. As a result, SMF enables high-bandwidth
data transmission. It is commonly utilized in situations where reliable per-
formance is required, such as long-distance telecommunications networks or
places with harsh weather conditions. In contrast, MMF have a larger core
(50−62.5 µm), which permits multiple propagation modes. This makes them
suitable for shorter distances (up to a few kilometers), but they suffer from
higher dispersion and signal loss over long distances.

SMF operates based on the refractive index profile of the core. The
most common type is the step-index fiber, where the core has a uniform
refractive index that sharply drops at the core-cladding interface, as shown
on Figure 1.2. This abrupt transition helps confine the light within the core,
ensuring efficient transmission. Step-index fiber is often created by doping
high-purity fused silica glass (SiO2) with various amounts of minerals such
as titanium, germanium, or boron [10].

Figure 1.2: Refractive-index Profile for Step-index Fiber. (Image from [10])
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1.4 Optical Fiber Sensing

The results of this thesis were obtained using a sensor system made of optical
fibers. Therefore, it is critical to provide a brief overview of the current state
of technology in this subject, including alternatives to the one used in my
research.

Since laser ligth was established in 1960, researchers have been interested
in studying the possibilities of optical fiber communication systems for sens-
ing, data communications, and a variety of other applications. As a result,
fiber optic communication systems have emerged as the preferred method for
gigabit and beyond gigabit data transmission. This technology has found a
way not only on the telecommunication domain but also in civil engineering,
petroleum industry, medicine, environmental monitoring, and much more.
This evolution led to the development of optical fiber sensors, which utilize
light to detect various physical and chemical parameters, such as tempera-
ture, pressure, vibrations, and chemical concentrations. These sensors offer
key advantages, including immunity to electromagnetic interference, compact
size, remote sensing capabilities, and suitability for extreme environments.

Optical fiber-based sensors can be broadly classified into three categories:
discrete, distributed, and quasi-distributed sensing. Discrete sensing involves
the localized sensors that measure parameters at specific points along the
fiber. A widely used example is Fiber Bragg Gratings (FBGs), which con-
sist of periodic refractive index modulations in the fiber core. FBGs reflect
specific wavelengths of light, and any strain or temperature variations cause
shifts in the reflected wavelength, which enables precise measurements.

Unlike discrete sensing, distributed sensing uses scattering phenomena—
Rayleigh, Brillouin, and Raman scattering—to provide continuous measure-
ments along the entire fiber length. These techniques allow us to deter-
mine the spatially distributed parameters, making them highly effective for
structure health monitoring, environmental sensing, and a wide of industrial
applications. Raman sensing technique relies on Raman scattering, where
incident light interacts with molecular vibrations in the fiber, which causes a
frequency shift. It is used for distributed temperature sensing (DTS), making
it suitable for application like fire detection and pipeline monitoring, as well
as geothermal studies. Brillouin sensing depends on Brillouin scattering, a
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method that measures frequency shifts induced by temperature and strain
changes. It is widely used in distributed strain and temperature sensing
(DTSS) for applications such as structural health. Rayleigh backscattering
is used to detect acoustic vibrations along an optical fiber. It enables real-
time monitoring of seismic activity, pipeline leaks, perimeter security, and
even traffic movements by capturing minute disturbances along the fiber.

SOP, the focus of this research, is considered as a quasi-distributed sens-
ing technique. This technique leverages the use of the whole optical fiber as
a sensor. However, and even though it is highly sensitive to environmental
changes, SOP is unable to localize the exact site of an event along the fiber.
This is the major advantage of distributed sensing over quasi-distributed
sensing. Raman sensing typically achieves a spatial resolution of 1 meter,
and Brillouin can reach sub-meter resolutions, while the DAS system sur-
passes both with a resolution up to 0.1 meter [12].

1.5 Polarization

To understand polarization, let us start by introducing two fundamental con-
cepts: electric fields and magnetic fields of an electromagnetic wave. We can
write the electric field and magnetic fields for a plane wave propagating over
time t along the z-axis, as follows:

E(z, t) = x̂Ex cos(kz − ωt+ ϕx) + ŷEy cos(kz − ωt+ ϕy) (1.2)

B(z, t) = ẑ×E(z, t) = ŷBy cos(kz−ωt+ϕx)− x̂Bx cos(kz−ωt+ϕy) (1.3)

Where:

• z: Position along the propagation direction (typically the fiber axis).

• t: Time, representing how the electric field changes over time.

• Ex: Amplitude of the electric field in x-direction.
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• Ey: Amplitude of the electric field in y-direction.

• ϕx: Phase of x-component.

• ϕy: Phase of y-component.

• k = 2π
λ
: Wave number.

• ω = 2πf : Angular frequency.

Now, let us focus on the expression E(z, t), because the polarization is defined
by the behavior of the electric field vector. The two components of the electric
field, Ex and Ey, can be expressed as:{

Ex = Ax cos(kz − ωt+ ϕx)

Ey = Ay cos(kz − ωt+ ϕy)
(1.4)

where Ax and Ay are the magnitudes of the electric field components Ex and
Ey, respectively. Let the phase difference between the components be:

δ = ϕy − ϕx (1.5)

Then Equation 1.4 becomes:

Ex = Ax cos(kz − ωt) (1.6)

Ey = Ay cos(kz − ωt+ δ) (1.7)

We can expand Eq. 1.7 by using trigonometric identities:

Ey = Ay [cos(kz − ωt) cos(δ)− sin(kz − ωt) sin(δ)] (1.8)

By substituting (1.6) in (1.8), it is possible to find a more general formula
(1.9): (

Ex

Ax

)2

+

(
Ey

Ay

)2

− 2

(
ExEy

AxAy

)
cos(δ) = sin2(δ) (1.9)
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Eq. 1.9 describes an ellipse on Ex, Ey plane, whose shape depends on Ax,
Ay, and δ. It also stands as the base to describe the types of polarization
that can be obtained:

1.5.1 Linear Polarization

When the electric field oscillates only along a single axis, this is called Linear
Polarization. This type of polarization is generated when δ = 0 or δ = π. In
other words, the x- and y-components are either in phase or completely out
of phase. Substituting δ in (1.9), we find:

Ey =

(
Ay

Ax

)
Ex (1.10)

Eq. 1.10 shows that the trajectory of the electric field vector is a straight
line. The orientation of the line depend on the ratio Ay

Ax
.

1.5.2 Circular Polarization

Circular polarization happens if the electric field vector instead traces a cir-
cular rotation. This occurs when the magnitudes of the electric field compo-
nents, Ax and Ay, are equal and the phase difference δ = ±π

2
. Substituting

them in Eq. 1.10, we get:{
Ex = A cos(kz − ωt)

Ey = A sin(kz − ωt)
(1.11)

and thus:

(Ex)
2 + (Ey)

2 = A2 (1.12)

Eq. 1.12 illustrates the electric field vector, which traces out a circle in the
x-y plane.
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1.5.3 Elliptical Polarization

So far, we have seen special cases of polarization. Elliptical Polarization is
the most general case. It happens when the magnitudes Ax and Ay in (1.6)
and (1.7), respectively, are not equal and the phase difference is different
from 0 or π

2
. This is indeed the same equation found in (1.9), the ellipse

equation: (
Ex

Ax

)2

+

(
Ey

Ay

)2

− 2

(
ExEy

AxAy

)
cos(δ) = sin2(δ)

The length of the major ellipse’s axis is proportional to the larger of Ax and
Ay, while the length of the minor axis is proportional to the smaller one.
The phase difference δ accounts for the orientation and tilt of the ellipse.
Figure 1.3 shows the three mentioned types of polarization.

Figure 1.3: Type of Polarization. (Image from [8])

1.6 Stokes Parameters and Poincaré Sphere

Conventionally, to describe the light state of polarization, some useful param-
eters are employed, called Stokes Parameters. They provide a thorough
mathematical representation of the trajectory of the electric field. Let us
recall the expression of the electric field components in (1.6) and (1.7):
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{
Ex = Ax cos(kz − ωt)

Ey = Ay cos(kz − ωt+ δ)
(1.13)

And the ellipse equation in (1.9):(
Ex

Ax

)2

+

(
Ey

Ay

)2

− 2

(
ExEy

AxAy

)
cos(δ) = sin2(δ)

We define the Stokes parameters S0, S1, S2, and S3 to characterize the po-
larization, as follows: 

S0 = A2
x + A2

y

S1 = A2
x − A2

y

S2 = 2AxAy cos(δ)

S3 = 2AxAy sin(δ)

(1.14)

S0 represents the total intensity of light. S1 is the difference in intensity
between the horizontal and vertical components. S2 and S3 quantify the
phase-dependent interference between the components. These parameters
can fully describe the state of polarization. However, to account for how
much an electromagnetic wave is polarized or not, we need to define another
term called the degree of polarization- acronymed DOP but let’s call it
p. It is determined as:

p =

√
S2
1 + S2

2 + S2
3

S0

(1.15)

Linear Polarization occurs when S3 = 0. For circular polarization to
appear, S1 = S2 = 0 and S3 ̸= 0, meaning the phase difference δ is ±π

2
. The

sign of S3 defines the direction of polarization, either right-hand or left-hand
circularly polarized. Additionally, by varying p, we can describe the three
cases of light polarization:

• p = 1: Completely polarized light.
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• 0 < p < 1: Partially polarized light.

• p = 0: Unpolarized light.

To visualize the state of polarization geometrically, we use the Poincaré
Sphere. To do so, let us first express the Stokes parameters in spherical
coordinates: 

S0 = I

S1 = Ip cos 2ψ cos 2χ

S2 = Ip sin 2ψ cos 2χ

S3 = Ip sin 2χ

(1.16)

where:

• I: Total intensity of the light.

• ψ: Orientation angle.

• χ: Ellipticity angle.

The orientation angle, ψ, represents the orientation of the ellipse formed
by the electric field vector in the xy-plane, while the ellipticity angle, χ,
describes the shape of the polarization ellipse. These two variables can be
defined in terms of the parameters of the polarization ellipse as follows:

tan(2ψ) =
2AxAy

A2
x − A2

y

cos(δ) , 0 ≤ ψ ≤ π (1.17)

sin(2χ) =
2AxAy

A2
x + A2

y

sin(δ) , −π/4 < χ ≤ π/4 (1.18)

These parameters, along with the Stokes parameters, can be used to
create a geometric representation of the SOP of an electromagnetic wave
using the Poincaré sphere. The latter, as shown in Figure 1.4, provides a
powerful visualization tool to understand the SOP and its changes. Each
point on the Poincaré sphere corresponds to a unique SOP, and the Stokes
parameters S1, S2, and S3 correspond to the position of this point:
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• Linear Polarization: Represented by the equator of the sphere; the
angles vary from 0◦ to 180◦.

• Circular Polarization: Determined by the north and south poles,
where the north pole defines right-handed polarization and the south
pole defines left-handed polarization.

• Elliptical Polarization: Represented by points along the upper and
lower hemispheres. The degree of ellipticity increases as the point
moves from the equator to the poles.

Figure 1.4: The Poincaré Sphere. (Image from [9])
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1.7 Birefringence

Another important term that should be mentioned when dealing with po-
larization is birefringence. In a nutshell, it is the fact that, as different
polarization components travel through the fiber, they experience different
refractive indices. To better understand this phenomenon, we should first
introduce the concept of effective refractive index (neff). This is only for
the case of single-mode fibers (SMF), which is the focus of my research.

The effective refractive index seen by the mode propagating in the fiber is
defined as:

neff =
β

k0
(1.19)

where:

• β: propagation constant.

• k0 =
2π
λ
: free-space wavenumber.

Ideally, all the polarization components would have the same neff, but a
polarization-dependent variation is introduced. This happens due to imper-
fections in the optical fiber, such as the geometry of an elliptical core, resid-
ual stresses during fiber fabrication, and external perturbations (e.g., bends,
pressure, temperature changes). This is what introduces birefringence, which
is evaluated as:

∆n = nx − ny (1.20)

where nx and ny are the effective refractive indices experienced by the two po-
larization components. This birefringence causes the SOP of light to change
as it propagates and results in a phase delay between its polarization com-
ponents. For instance, in Linear Polarization, where otherwise the polarized
input remains the same, differential phase accumulation between the orthog-
onal modes can induce a phase shift of ±π

2
and may cause the polarization

to rotate.
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1.8 Thesis Structure

This thesis has four Chapters, excluding the introduction and conclusion,
each building on the preceding one to provide a thorough knowledge of the
research problem, methods, findings, results, and discussion. A full overview
of each chapter and its contents is provided below.

Chapter II: Methodology and Experimental Setup

This chapter describes the experimental setup and the algorithm used for
event detection. It also details the tools developed for data acquisition and
analysis. The chapter is divided into five sections:

• Section 2.1: Outlines the general architecture of an optical fiber sen-
sor.

• Section 2.2: Describes the polarimeter, the core component of the
entire setup.

• Section 2.3: Explains the event detection algorithm and the digital
signal processing (DSP) scheme used in the detection process.

• Section 2.4: Details the experimental setup deployed at the gully site.

• Section 2.5: Introduces the Polaralp system, the interface used for
monitoring the gully setup.

Chapter III: Rockfall Event Simulation

This chapter describes the experiments conducted to simulate rockfall events.
It outlines the tests performed across five different tranches, each correspond-
ing to a separate optical fiber circuit. These experiments are collectively
referred to as the event conditions.

• Section 3.1: Provides an introduction to the experiments and the
materials used.

• Section 3.2: Explains the application of the moving average filter to
the data, discussing its advantages and limitations.
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• Section 3.3: Describes and analyzes Tests 01–05, conducted on Circuit-
4.

• Section 3.4: Describes and analyzes Tests 06–13, conducted on Circuit-
3.

• Section 3.5: Describes and analyzes Tests 14–21, conducted on Circuit-
2.

• Section 3.6: Describes and analyzes Tests 22–27, conducted on Circuit-
1.

• Section 3.7: Describes and analyzes Tests 28–31, conducted on Circuit-
4.

• Section 3.8: Presents additional analysis using power spectrum and
wavelet transform techniques.

Chapter VI: Quiet Conditions

This chapter examines the second state of the SOPAS system, referred to as
the quiet conditions state.

• Section 4.1: Provides an introduction to the chapter.

• Section 4.2: Discusses system bugs and outlines an algorithm devel-
oped to remove them.

• Section 4.3: Describes additional filtering techniques used to smooth
SOPAS data.

• Section 4.4: Analyzes the quiet conditions through various compar-
isons, considering both the presence and absence of anomalies.

Chapter V: SOPAS Data States and Threshold Deter-
mination

This chapter compares the two SOPAS states using various parameters. It
also introduces the concept of thresholds and their role in distinguishing ac-
tual rockfall events from anomalies. The relationship between the SOPAS
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threshold and the filtering window size is explored to optimize event detec-
tion.

• Section 5.1: Defines the SOPAS threshold, ωth.

• Section 5.2: Investigates the relationship between the SOPAS thresh-
old and the filtering window size, W .

• Section 5.3: Analyzes samples exceeding the threshold ωth and com-
pares both SOPAS states.

• Section 5.4: Introduces the time-based threshold, dth, and examines
events that surpass both thresholds.

• Section 5.5: Explores the use of the Complementary Cumulative Den-
sity Function (CCDF).

• Section 5.6: Summarizes key statistical metrics used for comparing
the two SOPAS states.

• Section 5.7: Introduces the final results: the plots of exceedances vs.
thresholds.

• Section 5.8: Discusses the final results.

Chapter VI: Conclusion

This Chapter summarizes the key findings of the thesis, highlighting the
methodology used for SOPAS data analysis, the distinction between quiet
and event conditions, and the definition of detection thresholds. It also
outlines potential future improvements.
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Chapter 2

Methodology & Setup

This Chapter describes the experimental setup and the algorithm used for
event detection. It also lists the tools designed to acquire and analyse the
data. Before delving into the setup used in this research thesis, and since
we are dealing with fiber sensing, it is important to first describe the general
architecture of optical fiber sensing. In this way, we will have a broad picture
of all elements used to establish the experiment.

Figure 2.1: The Architecture of Optical Fiber Sensor. (Image from [13])
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2.1 Architecture of Optical Fiber Sensor

Optical fiber sensing relies on the interaction between light and the surround-
ing environment to detect and measure physical phenomena. The system
consists of several key components, as illustrated in Figure 2.1, each playing
an important role in data acquisition and signal processing. In general, it
consists of three main units:

• Interrogator Unit

This is the central element of the system, responsible for generating,
transmitting, receiving, and processing optical signals. It consists of an
optical source, which is a laser used to generate a stable probe light
to be injected into the fiber. The laser used in the experiment is shown
in Figure 2.2. It is a Novoptel laser instrument that emits light at 1550
nm. One of its key features is its high output power, reaching 17 dBm.
The reason for this high power is to compensate for the losses caused by
switches, connections, and splices in the fiber patch. It also features an
ultra-narrow linewidth, which is fundamental for phase measurements;
however, polarization measurements do not require a narrow linewidth
and could employ a larger linewidth with much cheaper lasers.

Figure 2.2: Laser Used During the Experiments. (Image from [14])

The unit also contains a receiver, responsible for detecting the mod-
ulated light that returns to the interrogator after propagating through
the sensing fiber and interacting with the physical field. For further
analysis, it converts the optical signal into an electrical signal. To re-
ceive the SOP measurement, a polarimeter is used—see the next sub-
section.
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Once the signal is received, a processing block extracts relevant in-
formation about the measured quantity. Then, the processed data is
formatted and stored in a unit called reporting for further interpre-
tation and visualization.

To interact with the sensing fiber, a patch panel block is present.
It routes the probe light into the optical transit cable and maintains
proper signal distribution.

• Optical Transit Cable

This is where the probe light propagates. The optical transit cable
functions as the medium for transmitting light between the interrogator
and the remote sensor. In this research, and as mentioned earlier, the
optical transit cable used is a SMF.

• Remote Sensor

This is where the interaction with the physical field occurs. At the
sensing location, external forces such as vibrations and acoustic waves
act as inputs to the remote sensor. The output is the measured and
modulated signal, which is sent back to the interrogator unit for further
processing. In this thesis, the terms optical transit cable and remote
sensor refer to the same entity. In the experimental field (see Subsec-
tion 3.4), fiber optic circuits are installed and utilized as a sensor to
extract polarization measurements.

2.2 Polarimeter

The polarimeter is the core of the whole setup. The one used in this research,
reported in Figure 2.3 and 2.4, is the PM1000 model by Novoptel. It is a
high-speed instrument that is capable of performing the four Stokes parame-
ters measurement with a sampling rate up to 100 MHz. It has three different
normalization modes that the user can select depending on the measurement
needs. The mode relevant to this thesis is the standard normalization mode.
In this mode, the Stokes vector is normalized to unit length. By doing so, its
tip will always appear on the surface of the Poincaré sphere, as illustrated
Figure 2.5. The Figure shows also the user-interface that appears when per-
forming tests— it is only a template, and the measurements are not taken
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from the experiments.

Figure 2.3: front side of the polarimeter. (Image from [15])

Figure 2.4: rear side of the polarimeter. (Image from [15])

Another hardware parameter that is relevant to the study is the average
time exponent (ATE). The ATE parameter controls the internal averaging
performed by the polarimeter after the 100 MS/s analog-to-digital (AD) con-
version. The number of samples averaged is given by 2ATE, where ATE can
range from 0 to 20. Consequently, the sampling frequency can be computed
from Eq. 2.1:

fs =
100 MS/s

2ATE
(2.1)

The maximum achievable sampling frequency occurs when no averaging is
applied (ATE = 0), resulting in fs = 100 MS/s, while the minimum sam-
pling frequency is 95.4 S/s, found by substituting Eq. 2.1 with ATE = 20. It
is worth noting that the software connected to the polarimeter, responsible
for processing the acquired data, applies a downsampling operation, reducing
the data rate to 100 Hz. As a result, the final dataset consists of samples
spaced at 10 ms intervals.
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Figure 2.5: Poincaré Sphere on the User Interface. (Image from [15])

2.3 Detection Algorithm & DSP Scheme

As discussed early in Chapter 1, Section 1.6, the Stokes parameters are used
to describe the state of polarization (SOP) of light. However, detecting po-
larization changes over time using these parameters is a challenge, as the
variations occur in a three-dimensional space.

Additionally, when an event occurs, the changes in the Stokes parame-
ters are often subtle, making direct detection difficult. To overcome these
challenges, instead of analyzing the Stokes parameters directly, we compute
the variation over time of the angle θ between two consecutive Stokes vector
samples over the Poincaré sphere (see Figure 2.6). This is referred to as the
angular speed (AS). This approach is simple since the computation has just
one sample memory. Moreover, it reduces the dimensionality problem by
evaluating a single dimension metric, while also enhancing sensitivity com-
pared to direct Stokes parameter analysis.

For the computation of the angular speed, The Stokes vector S⃗ is consid-
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Figure 2.6: Poincaré sphere showing two consecutive Stocks vectors S⃗[n] (in

red), S⃗[n− 1] (in blue), and θ, the angle between them.

ered, defined as:

S⃗ =

S1

S2

S3

 (2.2)

where the first parameter S0 is used as a normalization factor and is not angle
dependent. We denote the state of polarization angular speed (SOPAS) signal

as Ω[n]. Given the Stokes vector S⃗[n], where n represents the discrete time
index, the SOPAS signal can be represented by Eq 2.3:

Ω[n] = fs · arccos

(
S⃗[n− 1]⊤ · S⃗[n]

∥S⃗[n− 1]∥ · ∥S⃗[n]∥

)
(2.3)

Equation 2.3 is the fundamental computation used in all subsequent anal-
yses. It represents the SOPAS signal evaluated on a sample-by-sample basis,
serving as the foundation for all further tests. Note that the SOPAS is
bounded by the utilized sampling frequency fs. This is because in case the
arc length drawn over the Poincaré sphere surface exceeds π, there will be
undersampling [16]. Therefore, the maximum measurable SOPAS is:
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Ωmax = fs · π [rad/s] (2.4)

This upper limit, however, is usually sufficient if mechanical vibrations and
stresses are considered [17].

After we have defined the SOPAS, we can introduce the DSP scheme
of this research. This scheme, depicted in Figure 2.7, outlines the signal
processing pipeline for analyzing the SOPAS data. First, the discrete time
evolution of the Stokes vector S⃗[n] are acquired by the polarimeter. Then,

the dot product of the normalized Stokes vectors S⃗[n] and S⃗[n − 1], which
represente the SOP at consecutive time steps, is computed. The dot product
is then passed through an arccosine function and multiplied by the sampling
frequency to calculate the angular difference between the two SOP states,
resulting in the angular speed.

Figure 2.7: DSP Scheme for the Event Detection Algorithm.

After computing the angular speed, the signal undergoes a smoothing
filter, primarily implemented as a moving average (more details will be
given in the next Chapters). The moving average filter is used to attenu-
ate the SOPAS fluctuations caused by environmental noise of the SOP. The
smoothed signal, Ωsm[n], is then compared against a predefined threshold
to detect events. If the angular speed exceeds the threshold for a certain du-
ration, an event is detected, and the system generates an alarm signal, A[n].
Otherwise, if the angular speed does not exceed the threshold, no event is
detected and alarm is not generated.
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2.4 The Experimental Setup in the Gully

Now that we have the components which make up the experiment, it is time
to describe the site where the experiment took place and where the data was
collected. We will use Figure 2.8 as a reference to understand the layout of
this setup.

Figure 2.8: Experimental Setup in
the Gully.

(a) Circuit-1. (b) Circuit-2.

(c) Circuit-3. (d) Circuit-4.

Figure 2.9: Overview of the fiber optic
circuits layouts in the gully.

The chosen location is a gully situated above a roadway just outside a
town in the Valle D’Aosta region of Italy, called Cogne. It is a natural water-
way where rocks, debris, and water can slide due to gravity. This makes it an
ideal site for investigating real-world environmental disturbances that may
pose risks to the communities nearby. Regarding this, during the summer of
2024, specifically on Saturday, June 29, the Cogne (AO) area, particularly
Valnontey, was severely impacted by a major flood event. This event trig-
gered multiple debris flows along various gullies and caused the overflow of
streams [18], including the gully where our setup is deployed.

The experimental setup consists of four fiber-optic circuits, labeled Circuit-
1 to Circuit-4, which are placed separately along the gully:

• Circuit-1 (orange): positioned vertically at the top of the gully on its
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right side, taking the road as a reference. Image in 2.9(a) shows the
layout of circuit-1.

• Circuit-2 (purple): placed horizontally further down the gully on a
check-dam, as shown in image in 2.9(b).

• Circuit-3 (green): shown in image in 2.9(c), is also horizontally posi-
tioned, located just below Circuit-2.

• Circuit-4 (red): is the lowest circuit, situated closest to the road (ap-
proximately 30 meters) at the end of the gully. Image in 2.9(d) shows
its layout.

These four circuits are linked by an additional optical fiber (blue), which
connects them to the interrogator unit. The interrogator is installed on the
right side of the gully, adjacent to Circuit-4. On the left side of the gully,
between Circuit-3 and Circuit-4, a solar panels are placed providing energy
to power on the interrogator. Figure 2.10 depicts the interrogator. Mounted
above the interrogator is a video camera, which monitors the area to provide
supplementary observational data.

2.5 The PolarAlp system

The PolarAlp system is a user-friendly interface used to monitor the envi-
ronmental and structural changes in the gully setup, by detecting changes
in SOPAS. The system is accessed through a web application. As illustrated
in Figure 2.12, it is designed to display SOPAS data across the four fiber
circuits (‘CIRCUITO’). However, for now, only one circuit can be monitored
at a time. Users can select a date range (‘data inizio’ stands for starting date,
and ‘data fino’ for the ending date) and the number of samples to display
(Misurazioni), with a hard threshold of 1000 samples. The web applica-
tion also provides status indicators for the laser and polarimeter, including
DOP, polarimeter’s input power (Input power polarimetro), laser temper-
ature (Temparatura laser), and laser optical power. These indicators are
important to ensure the system operates within optimal parameters. Fig-
ure 2.13 shows the interface of these indicators. In the same Figure and in
Figure 2.12, one can notice jumps and discontinuities in the data. The jumps
are due to the first debugging phase that was made on the system, while the
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discontinuities are due to the burst mode. In this mode, only a segment of
data are taken in a period of time. In this case, only a few seconds were
recorded every 10 minutes.

Figure 2.10: The Interrogator.
Figure 2.11: System Status Indica-
tors.

2.5.1 System Status and Configuration

The PolarAlp system includes several status indicators and configuration
options, as shown in Figure 2.11, to ensure accurate and reliable monitoring.

• Laser Status (STATO LASER): The system allows users to turn the
laser on or off, controlling the output optical power.

• Threshold Comparison (ABILITAZIONE SOGLIA): Whenever SOPAS
exceeds the threshold, two things happen:
- The SOPAS data will be recorded,
- An SMS and email will be sent to the monitor.
In the analysis phase, it is turned off to avoid having SMS sent all the
time.
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• Simultaneous Measurement (MISURA SIMULTANEA DEI CIR-

CUITI): Although the system currently does not support parallel mon-
itoring of all four circuits, this feature is planned for future implemen-
tation.

• Continuous Data Transmission (INVIO CONTINUO DATI): Users
can choose between continuous data saving and burst mode, where data
is recorded in intervals.

• Activated Circuit (CIRCUITO ATTIVATO): This allows users to
choose one of the circuits to be monitored.

The system also allows for parameter tweaking, such as setting threshold
values, adjusting the moving average filter, and configuring the sampling
frequency.

Figure 2.12: SOPAS Display. Figure 2.13: Status Display.

2.5.2 Data Extraction and Analysis

PolarAlp system features the ability to connect to the database, which con-
tains the SOPAS data to be extracted and analyzed. The database acquires
the data from the interrogator and by then the user can establish an SQL
connection to the database using tools like DBeaver to read the data. This
way is better than using the webapp interface on the PC to connect to the
interrogator, which is slow. Once connected, users can execute SQL com-
mands to extract data based on the number of samples, circuit number, and
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date range. The data can be exported in various formats, with CSV being
the preferred option for further analysis. In the thesis, we used the webapp
to monitor the system status and also to change the parameters, while we
utilized the DBeaver database to download massive data.
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Chapter 3

Rockfall Events Simulation

3.1 Introduction

On Tuesday, October 15th, experiments were performed to simulate and ana-
lyze the impact of falling rocks on fiber optic sensors deployed in a mountain
gully. The experiment involved releasing blocks and rocks from different
launch positions to investigate their interaction with the terrain and the
fiber circuits. To replicate rockfall events, specifically designed blocks were
employed. As illustrated in Figure 3.1, these blocks were crafted to closely
mimic the rolling and falling behavior of natural rockfalls on a slope. Four
such blocks, weighing 13 kg each, were utilized. Additionally, naturally oc-
curring rocks of various sizes, collected from the gully, were tested to compare
detection capabilities. To further assess sensitivity, finer materials such as
gravel and sand were also introduced.

The experiments were executed in multiple phases, with the blocks and
rocks being released from different positions along the gully. The selection of
release positions aimed to realistically represent rockfall scenarios in relation
to the fiber optic circuits. A total of five tranches (launch sequences) were
conducted, each comprising several trials. Each trial was recorded through
short video clips, which began a few seconds before the release and contin-
ued a few seconds after, ensuring that they could later be cross-referenced
with the acquired data. From this point forward, we will use the following
notations:
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Figure 3.1: The Blocks Used in the Experiments.

• Events: The results of the rockfall experiments that we aim to detect.

• Anomalies: Any other SOPAS variations that are not relevant to our
detection goals.

3.2 Data Smoothing

Before beginning the analysis, the data must be smoothed to mitigate the
background noise and smooth fluctuations to define the events peaks bet-
ter. Background noise refers to the oscillations that do not correspond to
actual rockfall events but can still be detected by the fiber, even in quiet
conditions where no events occur. Filtering techniques such as low-pass fil-
ters are commonly used to reduce its impact while preserving meaningful
signals. However, these techniques introduce a delay in the processed signal.
Figure 3.2 illustrates the noise present in the analyzed tranches (in blue),
showing that its intensity is, for these experiments, generally very small and
rarely exceeds 0.2 rad/sec. A deep analysis of the background noise will be
presented in the next Chapter.
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3.2.1 Moving Average Smoothing

The first approach to addressing this issue is smoothing the data using MAT-
LAB’s movmean function. The moving average computes the average of a set
number of neighboring points and replaces each data point with this average.

For a given SOPAS signal Ω[n], the smoothed value at index n is computed
as:

Ωsm[n] =
1

W

n+W−1∑
i=n

Ω[i] (3.1)

where W represents the window size, i.e., the number of samples used for
averaging. The window size is derived from:

W = Tw × fs (3.2)

where Tw is the window size in seconds, and fs is the sampling frequency. In
this study, the sampling frequency is fixed at 100 Hz (samples per second).
For instance, if we set the window size to W = 50 samples, then the moving
average smooths the signal over:

Tw =
50

100
= 0.5 seconds (3.3)

3.2.2 Smoothing Effect

The results of applying the moving average on the noise are shown in Fig-
ure 3.2 (in red), where a considerable amount of fluctuation is removed.
Additionally, Figure 3.3, which presents a zoomed-in view of an anomalous
period, shows the smoothing effect on a segment with a detected event. It
can be observed that the variation in event values is reduced, allowing a
better peak definition. This peak enhances the ability to classify the events
types more effectively.

However, this is not always the case. The moving average filter tends to
flatten peaks as the window size increases.
Consider, for example, the event in Figure 3.4.

40



Figure 3.2: Noise (in blue) and its
Smoothed Version (in red).

Figure 3.3: Smoothed Event (taken
from Tranche 4).

Figure 3.4: Effect of Smoothing with
Different Window Sizes.

• Smoothing with W = 20 samples preserves the peak but may obscure
details about the number of underlying spikes.

• Smoothing with W = 50 samples further reduces visibility, making the
event less distinct.

• Smoothing with W = 100 samples nearly hides the event.

• Smoothing with W = 200 samples completely eliminates the event.

This is because the moving avergae filter acts like a low pass filter by
replacing the current sample value with the average of W previous sample
values, to reduce the impact of sudden spikes or rapid oscillations. This, how-
ever, raises concerns about the filter’s ability to preserve important features.
The excessive flattening observed with larger window sizes (W = 50, 100, 200
samples) underscores the need for careful selection of smoothing parameters
to avoid significant loss of detail.
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3.3 Tranche 1: Circuit-4 Tests

3.3.1 Tests Description

The first tranche was conducted upstream of Circuit-4, the closest circuit
to the road (see Figure 2.9(d)). Table 3.1 provides details of the performed
tests. Each test employed four blocks, with three individuals launching them
simultaneously. Two participants held a single block each, while the third
handled two.

Tranche Test Code Start Time End Time Material

1 01-04A 13:26:26 13:26:30 4 Blocks

1 02-04A 13:30:31 13:30:36 4 Blocks

1 03-04A 13:35:04 13:35:09 4 Blocks

1 04-04A 13:39:04 13:39:08 4 Blocks

1 05-04A 13:41:54 13:41:58 4 Blocks

Table 3.1: Summary of Tranche 1 Rockfall Tests.

In test 01-04A, the blocks were initially placed near Circuit-4 and then
rolled onto the fiber using hand movements. The video analysis revealed
that two blocks came to rest almost simultaneously, while the remaining two
stopped milliseconds later. In test 02-04A, a similar procedure was repeated,
but the blocks stopped shortly after their release. The participants then
manually rolled them further by approximately one meter. Conversely, in
test 05-04A, the blocks were released in parallel over the circuit, traveling
from the left to the right side of the gully. They continued rolling until
reaching the gully’s center, where they came to a stop. In Figure ??, the
recorded SOPAS values corresponding to these tests can be seen. In the plot
of this tranche, as well as in all other tranches, we use arrows of different
colors to indicate events and anomalies:

• Green arrows point to SOPAS variations that have a high probability
of being related to one of the tests (an event).

• Orange arrows indicate anomalies that are unlikely to correspond to
any test and are instead attributed to unintentional contact with the
fiber during the experiments.
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• Red arrows highlight other spikes or noise present in the data.

Figure 3.5: SOPAS Values of Tests in Tranche 1.

3.3.2 Analysis of Events

Based on observations from the experiments, we know that events typically
last only a few seconds, beginning when the blocks or rocks are released and
ending when they come to a stop. This information is crucial for defining
and distinguishing between consecutive events.

Referring to the tables above, we note that the maximum duration of an
event does not exceed six seconds. Furthermore, the recorded timestamps
help determine the separation between two events. However, in some cases,
a discrepancy was found between the recorded times in the videos and the
actual timestamps of the extracted SOPAS values. This makes it difficult to
definitively associate a given event with a specific test. Fortunately, the dif-
ferent materials used in the experiments—blocks, rocks, and gravel—provide
additional clues for distinguishing events. Additionally, we assume that the
number of blocks and rocks used in each test helps to identify the corre-
sponding events.
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As mentioned, all tests were conducted using four blocks. This suggests
that the events may contain four distinct peaks. To detect and define these
events, we will use Table 3.1 as a reference.

Test 01-04A started at 13:26:26. Looking at Figure 3.5, the closest de-
tected event occurs at 13:26:10, which might correspond to this test. How-
ever, according to the table, we expect the second test’s event to appear
three minutes later, which is not the case, as the next detected event is
at 13:26:45—only about 35 seconds apart. Instead, the following event at
13:30:32 appears exactly three minutes after the first, suggesting that this
is the true event for test 01-04A. Consequently, the event at 13:30:32 corre-
sponds to test 02-04A.

Following this pattern, we identify:

• The event for test 03-04A at 13:35:27.

• The event for test 04-04A at 13:39:47.

• The event for test 05-04A at 13:42:52.

When comparing these detected events to the recorded test times in the
table, we observe a small time shift. However, this shift is consistent across
all tests, strongly suggesting that these events correspond to the actual test
events.

Figure 3.6 illustrates the event for test 01-04A. When smoothing the
data, we observe two clear peaks and a third, slightly smaller peak, while
some additional peaks are also present. Notice the effect of applying a large
window size: the peaks are almost entirely removed.

3.3.3 Unexpected Anomalies Before the Tests

We also observe two additional anomalies before the first test:

1. The first anomaly starts at 13:22:40 and lasts for approximately 10
seconds (see Figure 3.7). When cross-checking with the table, we find
no test matching this duration, suggesting that it may not correspond
to any planned test. Instead, it could be attributed to people stepping
on the fiber before the experiments began.
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Figure 3.6: 01-04A Test’s Event. Figure 3.7: Unintentional Anomalies.

Figure 3.8: System Bug.

2. The second anomaly appears at 13:23:22 and also lasts for around 10
seconds. It exhibits three strong peaks (see Figure 3.7), which remain
even when using the largest smoothing window (200 samples). This
suggests that the anomaly may have been caused by three individuals
stepping on the fiber simultaneously.

3. A third small spike is observed at 13:24:31, approximately one minute
after the second anomaly. It is a single-sample peak, resembling a
system-induced spike rather than a true event. It is entirely smoothed
out with a window size ofW = 50 samples. Similar spikes appear before
the first recorded anomaly (indicated by red arrows in Figure 3.8).

These small spikes are classified as system bugs, likely caused by system
failures. More details on system bugs and their treatment are provided in
the next chapter.
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3.4 Tranche 2: Circuit-3 Tests

3.4.1 Tests Description

The second tranche was performed upstream of Circuit-3 (see Figure 2.9(c)).
This phase introduced both the designed blocks and naturally occurring
rocks. A total of eight tests were executed, with Table 3.2 summarizing
the test times. Video recordings were unavailable for tests 11-03B, 12-03B,
and 13-03B.

Tranche Test Code Start Time End Time Material
2 06-03B 14:44:07 14:44:09 4 Blocks
2 07-03B 14:46:19 14:46:24 4 Blocks
2 08-03B 14:50:00 14:50:05 4 Blocks
2 09-03B 14:53:17 14:53:23 4 Blocks
2 10-03B 14:59:00 14:59:01 2 Rocks
2 11-03B 15:01:10 15:01:14 2 Rocks
2 12-03B 15:03:31 15:03:34 2 Rocks
2 13-03B 15:05:45 15:05:49 2 Rocks

Table 3.2: Summary of Tranche 2 Rockfall Tests.

In test 06-03B, the blocks were gently placed on the terrain and then
left to roll over Circuit-3. Three blocks came to rest directly over the fiber
circuit, while one continued rolling, eventually stopping approximately three
meters away. A similar pattern emerged in tests 07-03B and 08-03B. How-
ever, in test 09-03B, two blocks were launched in a parallel manner to the
fiber circuit, while the other two were released from positions similar to pre-
vious trials. One block veered away from the circuit due to encountering a
large, smooth rock.

Test 10-03B introduced a different approach: two flat, regular rocks were
thrown from an elevated position near the participants’ heads. Due to their
rectangular shape, they came to an abrupt stop over the fiber upon impact.
The recorded SOPAS values for these tests are illustrated in Figure 3.9.
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Figure 3.9: SOPAS Values of Tests in Tranche 2.

3.4.2 Analysis of Events

At first glance, Figure 3.9 appears to show eight distinct events, which
matches the number of tests conducted. If the events followed the exact
order of the tests, this would suggest that the first event corresponds to the
first test in this tranche, 06-03B, the second event to the second test, and so
on.

Examining the first event, illustrated in Figure 3.10, we observe that it
has four distinct peaks, with the first being a small peak occurring 2 seconds
before the second peak. This matches the number of blocks used in test
06-03B. However, this event occurs at 14:38:03, whereas Table 3.2 records
the test at 14:44:07, indicating a time shift of approximately 6 minutes. To
confirm whether this anomaly corresponds to test 06-03B, we need to check
the time differences between subsequent events.

Unexpectedly, the time difference between the first two events—measured
from the end of the first event to the beginning of the second—appears to be
around 6 minutes and 45 seconds (see Figure 3.9), while Table 3.2 reports
a difference of only 2 minutes and 10 seconds. Repeating this process for
the second and third events, we find that the time differences align almost
exactly. According to Table 3.2, the difference between tests 07-03B and
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08-03B is 3 minutes and 36 seconds, which is also observed in the plot.
Similarly, the time difference between the third and fourth events matches
the interval between tests 08-03B and 09-03B. This pattern holds for all
subsequent events, confirming that they correspond to their respective tests.
The only discrepancy occurs with the first test.

Figure 3.10: 06-03B Test’s Event. Figure 3.11: 10-03B Test’s Event.

3.4.3 Highest SOPAS Intensity Event

The event with the highest SOPAS intensity in this tranche corresponds to
test 10-03B, which involved two regular flat rocks. As described earlier, these
rocks were thrown from an elevated position near the participants’ heads,
giving them greater momentum to strike above the fiber. This resulted in
two distinct peaks, as shown in Figure 3.11. However, when applying a
moving average filter, the event is smoothed to the extent that it appears as
a single peak. Add to that it is short in time thus a filter will completely kill
it.

3.5 Tranche 3: Check Dam Tests

3.5.1 Tests Description

The third tranche was conducted near the check dam (see Figure 2.9(b)).
This series of tests included the four early-mentioned blocks, gravel, and
sand, as listed in Table 3.3. Tests 18-02C, 20-02C, and 21-02C were not
recorded. Figure 3.12 shows the corresponding SOPAS values.

In test 14-02C, two regular rocks, similar to those used in test 10-03B,
were launched. They initially struck the upper edge of the check dam, just
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Tranche Test Code Start Time End Time Material

3 14-02C 15:26:52 15:26:55 2 Rocks

3 15-02C 15:28:10 15:28:14 2 Rocks

3 16-02C 15:29:33 15:29:37 14 Small Rocks

3 17-02C 15:31:07 15:31:11 2 Rocks

3 18-02C 15:32:19 15:32:21 Gravel and Sand

3 19-02C 15:33:29 15:33:30 Gravel and Sand

3 20-02C 15:34:53 15:34:55 Gravel and Sand

3 21-02C 15:35:56 15:36:11 Hand

Table 3.3: Summary of Tranche 3 Rockfall Tests.

centimeters above the fiber circuit, before falling into the gully. In test 15-
02C, the rocks rebounded twice—once on the upper edge above the circuit
and again on the lower edge. Test 16-02C involved smaller rocks, which were
first positioned on the check dam and then pushed onto the fiber circuit. In
test 17-02C, two larger rocks were used: one impacted only the upper edge,
while the other struck both edges, moving additional small rocks in the pro-
cess.

Gravel and sand were thrown over the circuit in test 19-02C, while test
21-02C featured direct manual tapping (Hand) on the fiber to evaluate de-
tection response. Notably, certain launches, particularly those involving finer
materials (tests 16-02C and 18-02C), resulted in no detectable signals.

3.5.2 Analysis of Tests with Gavels and Sand

We now define the tests and focus on those conducted using gavels and sand,
specifically tests 18-02C, 19-02C, and 20-02C. The last test, 21-02C, involved
shaking the fiber manually to test the actual response. Indeed, if we exam-
ine the final detected event—ignoring the smaller peaks that follow for the
moment—we can observe that its shape differs from all previous events (see
Figure 3.13). This event lasted from 15:35:56 to 15:36:12, which exactly
matches the recorded time in Table 3.3. This strongly suggests that this
event corresponds to the last test of this tranche, 21-02C.
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Figure 3.12: SOPAS Values of Tests in Tranche 3.

Taking this event as a reference, we can determine the timing of the other
tests. According to Table 3.3, the time difference between tests 21-02C and
20-02C is 1 minute and 1 second. In the plot, we observe a very small peak 23
seconds away from the reference event, followed by a larger anomaly ending
at 15:34:50. This is most likely the event corresponding to test 20-02C. Simi-
larly, the time difference between tests 20-02C and 19-02C is 1 minute and 23
seconds—almost the same value observed in the plot. Additionally, the time
difference between tests 19-02C and 18-02C is 1 minute and 10 seconds, both
in the table and in the plot, suggesting this event corresponds to test 18-02C.

Regarding the other tests, it appears that the fiber did not detect them,
as no events were found at the timestamps recorded in Table 3.3. This is
probably because the rocks either:

• Didn’t touch the fiber,

• Induced too weak vibration on the fiber by hitting the surrounding
terrain.

3.5.3 Unexpected Anomalies and Possible Causes

At the beginning of this tranche’s plot, we observe two identical anomalies
approximately five minutes apart (see Figure 3.14). These do not match any
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of the planned tests and may have been caused by people moving around the
fiber. The repeated anomaly could also be due to a system failure.

Additionally, we notice a series of anomalies occurring between 15:16 and
15:24. These could potentially be matched to certain tests, as they are spaced
several minutes apart. However, it is also possible that these anomalies were
caused by the movement of people unintentionally stepping on the fiber.

Figure 3.13: 21-02C Test’s Event. Figure 3.14: Duplicate Event.

3.6 Tranche 4: Circuit-1 Tests

3.6.1 Tests Description

This tranche was carried out downstream of Circuit-1 (see Figure 2.9(a)).
Table 3.4 outlines the details.

Tranche Test Code Start Time End Time Material

4 22-01D 15:56:19 15:56:24 4 Blocks

4 23-01D 15:58:59 15:59:01 4 Blocks

4 24-01D 16:07:37 16:07:43 2 Small Rocks

4 25-01D 16:08:44 16:08:50 2 Small Rocks

4 26-01D 16:10:37 16:10:38 3 Small Rocks

4 27-01D 16:12:11 16:12:12 1 Small Rock

Table 3.4: Summary of Tranche 4 Rockfall Tests.
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In test 22-01D, the four blocks were once again deployed. Three blocks
continued rolling down the gully, while one stopped approximately three me-
ters from its release point. Test 23-01D had a similar pattern. Instead, test
24-01D and 25-01D featured the release of two small rocks from a slightly
higher position than in the previous test. These rocks rolled downward until
halting. However, a fiber-cut alarm was triggered in test 25-01D, and a loss
of data for about 30 seconds was observed. In test 26-01D, three small rocks
were thrown; they traveled no more than three meters. In test 27-01D, a sin-
gle small rock was launched, ultimately stopping over the fiber. Figure 3.15
displays the SOPAS values for this tranche.

Figure 3.15: SOPAS Values of Tests in Tranche 4.

3.6.2 Analysis of Events

Figure 3.15 shows two distinct positions where events occur, identified as the
largest and second largest in SOPAS intensity among all other anomalies.
A zoomed-in view of the first event (see Figure 3.16b) reveals three distinct
peaks, with the first one being the highest. In contrast, a zoomed-in view of
the second event (see Figure 3.16a) displays only a single peak. The time dif-
ference between these two events is approximately 160 seconds. Comparing
this to Table 3.4, we can infer that these events correspond to tests 26-01D
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and 27-01D, respectively. This conclusion is based on the number of rocks
used in each test—three rocks for 26-01D and one rock for 27-01D—which
aligns with the detected signal patterns.

(a) 27-01D Test’s Event. (b) 26-01D Test’s Event.

(c) Duplicate Anomaly (d) 25-01D Test’s Event.

Figure 3.16: Events and Anomalies from 01D Tests .

Now, let us again examine Figure 3.15, which reveals five distinct po-
sitions, before tests 26-01D and 27-01D, where events are present. In the
first two tests, four blocks were used, which suggests that the corresponding
events might contain four peaks. A zoomed-in view of the first event, as seen
in shows two separate sets of peaks, occurring approximately two seconds
apart. Each set contains multiple peaks. When blocks are thrown, we ex-
pect one peak per block, but in this case, the blocks bounced, resulting in
additional detected peaks. This event may correspond to the first test in this
tranche, 22-01D.

The neighboring event occurs approximately 70 seconds after the end of
the first event. A zoomed-in view revealed four peaks. Despite a time dis-
crepancy of more than two minutes between this event and the expected test
time (see Table 3.4), it is the only event with four peaks, strongly suggesting
that it corresponds to test 23-01D. In the next two tests, two rocks were used

53



per test. The third detected event consists of two peaks, as expected. This
event likely corresponds to test 24-01D.

3.6.3 Duplicate Anomaly

A problem arises in identifying the fourth test, 25-01D, because data loss
was observed during this test. Indeed, the recorded data confirms this issue,
as the software appears to have duplicated samples upon restarting. This re-
sults in an unusual pattern of two nearly identical peaks (see Figure 3.16c).
Since data was lost, it is possible that the timestamps were also affected,
making it difficult to confirm whether this anomaly belongs to 25-01D or not.

Finally, a zoomed-in view, shown in Figure 3.16d, reveals a two-peak
event. However, the time difference compared to the recorded time in Ta-
ble 3.4 is quite large. Given the circumstances, the most reasonable conclu-
sion is that this is the event which corresponds to 25-01D. Due to the system
failure, a time shift likely occurred, causing the event to appear later than
expected.

3.7 Tranche 5: Additional Circuit-4 Tests

3.7.1 Tests Description

In the final tranche, additional tests were performed at Circuit-4. Four trials
were conducted, in which blocks were released in a parallel manner over the
fiber circuit, originating from the left side of the gully. Table 3.5 shows the
tests.

Tranche Test Code Start Time End Time Material
5 28-04A 17:02:10 17:02:14 4 Blocks
5 29-04A 17:04:05 15:04:11 2 Blocks
5 30-04A 17:06:08 17:06:13 4 Blocks
5 31-04A 17:08:39 17:08:44 4 Blocks

Table 3.5: Summary of Tranche 5 Rockfall Tests.
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Test 29-01D utilized only two blocks: one stopped in the middle of the gully
over the circuit, while the second traveled only half the distance of the first.
In test 30-01D, four blocks were released, all coming to rest near the center
of the gully, a pattern that repeated in test 31-01D. Figure 3.17 illustrates
the SOPAS values for the remaining tests in this tranche.

Figure 3.17: SOPAS Values of Tests in Tranche 5.

3.7.2 Analysis of Events

In the first two tests of this tranche, only two blocks were used, whereas in the
last two tests, four blocks were used. The time difference between the events
is nearly constant, approximately 2 minutes. Four events appear as expected
based on the description. Interestingly, SOPAS intensity increases progres-
sively, as illustrated in Figure 3.18. There is, however, a slight time shift.
The first event, which likely corresponds to test 28-04A, starts at 17:01:44,
whereas its recorded time in Table 3.5 is 17:00:10. Despite this shift, the
difference is relatively small.

Notably, a series of spikes appears at the beginning of the time axis. These
are system bugs and are entirely smoothed out when applying the moving
average filter. After the system bug artifacts, five significant anomalies can
be observed. The first, centered around 16:48:00, exhibits the highest SOPAS
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values among all events and anomalies encountered across all tranches (see
Figure 3.19). The second anomaly follows 18 seconds later as seen in Fig-
ure 3.19, while the third, fourth, and fifth occur at 16:53:37, 16:54:00, and
16:54:38, respectively.

Since this tranche contains only four tests, these additional anomalies are
likely due to human interference, with a high probability that individuals
unintentionally stepped on the fiber.

Figure 3.18: Event of the Last Four
Tests (28/29/30/31).

Figure 3.19: Highest SOPAS Inten-
sity Anomaly (+ the one next to it).

Discussion

Throughout the analysis, we confirmed that the system is indeed capable of
detecting rockfall events across all circuits. Despite the complexities involved,
the SOPAS-based sensing approach successfully identified events, demon-
strating the sensitivity of the system to rockfall-induced disturbances. This
validation is a crucial step, as it confirms that the technology is functional
and capable of capturing meaningful data. The challenges we encountered
primarily concern system-level reliability rather than the fundamental ability
to sense events, that can be addressed with further improvements.

The challenge lies in categorizing events based on SOPAS data alone.
While the system detects variations effectively, it does not inherently pro-
vide information about the specific cause behind each event. Further data
acquisition and analysis are necessary to develop a more precise classifica-
tion approach. Additionally, the application of smoothing filters, such as the
moving average, does not always yield ideal results. Even though smoothing
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helps to reduce noise, it can also obscure significant details of the anoma-
lies. Specifically, it tends to broaden peaks, making them less distinct. This
introduces uncertainty in determining whether a peak represents an actual
event or a residual effect of the smoothing process. Future improvements in
filtering techniques was made to enhance the accuracy of event detection,
and the results will be discussed in the next Chapter.

Despite these challenges, the analysis has provided valuable insights into
the effects of different rockfall events on the fiber circuit. By cross-referencing
experimental observations, test conditions, and SOPAS data, we have been
able to assess and interpret the detected events, paving the way for further
refinements in the system.

3.8 Time and Frequency Analysis

To further analyse of the SOPAS data, we initially relied on the power spec-
trum to investigate frequency components. Later, we introduced the wavelet
transform to refine our understanding of time-frequency variations. The tran-
sition between these two methods was driven by the need for better localiza-
tion of transient events, which are essential for detecting events in the gully
experiments.

3.8.1 Power Spectrum Analysis

The power spectrum, typically obtained through the Fourier Transform, helps
identify dominant frequency components in a signal. This method was our
initial choice for analyzing SOPAS data. The main aim of using the power
spectrum was to identify specific shapes or patterns associated with events,
aiding in the classification of different event types. As previously discussed,
the material used in the experiments may influence the shape of the SOPAS
signal, and the manner in which these materials were released may help de-
termine the frequency components of each event. Since the SOPAS signal
consists of both noise fluctuations and events, the power spectrum can al-
lows us to examine the dominant frequency components. We could observe
variations in spectral energy distribution by applying the power spectrum
to different test cases which can offer us insights into the behavior of the
SOPAS signal under different conditions.
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Figure 3.20: PSD of Circuit-1 Tests.

For this purpose, we used the stft() function in MATLAB (Short-Time
Fourier Transform). Figure 3.20 shows the power spectrum for Circuit-4
tests using raw SOPAS data. Note that the frequency range inside which
these spectrograms are represented goes from zero to half fs because of the
Nyquist theorem.

We can now observe the frequency components of the events. As estab-
lished earlier, seven distinct events are present—six corresponding to the six
tests of Circuit-4 and one caused by system failure. The power spectrum
shows the energy exhibited by both the background noise and the events.
The background noise has values around 1-Hz which is reasonable as the
natural fluctuations in SOPAS data occur mainly at this frequency. Some
events, like 26-01D, exibits higher power than the rest, which may indicate
that the thrown blocks had a bigger impact on the fiber. However, the power
spectrum does not provide much information about the shape of this event.
The frequency components of the 26-01D test (see Figure 3.21) are not clearly
distinguishable.

The power spectrum can offer a global frequency representation by indi-
cating which frequencies contain significant energy, but it does not provide
temporal localization of transient events. This limitation became evident
when analyzing rockfall events, as different phases of the rockfall could gen-
erate varying frequency content over time. It suffers from the fixed FFT
window size trade-off, where:
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• Narrow windows provide good time resolution but poor frequency res-
olution.

• Wide windows provide good frequency resolution but poor time reso-
lution.

These challenges led us to explore an alternative approach—the wavelet
transform.

3.8.2 Wavelet Transform Analysis

To overcome the time-frequency trade-off inherent in Fourier-based methods,
we employed the wavelet transform. The wavelet transform decomposes a sig-
nal into wavelets—localized oscillatory functions that vary in both scale (fre-
quency) and position (time). This decomposition is achieved using a mother
wavelet, a prototype function that is scaled to analyze the signal across differ-
ent time-frequency resolutions. The transformed signal provides information
about the time and the frequency. Therefore, wavelet-transformation con-
tains information similar to the STFT, but with additional special properties
of the wavelets, which show up at the resolution in time at higher analysis
frequencies of the basis function.

Mathematically, the Continuous Wavelet Transform (CWT) of a signal
ω(t) is defined in Eq 3.4:

W (a, b) =

∫ ∞

−∞
ω(t) · 1√

a
ψ∗
(
t− b

a

)
dt. (3.4)

where a is the scale parameter (inversely related to frequency), b is the trans-
lation parameter (related to time), and ψ(t) is the mother wavelet. The
wavelet coefficients W (a, b) provide a joint time-frequency representation of
the signal, allowing for the identification of transient features and their evo-
lution over time.

Unlike power spectrum analysis, wavelets transform enabled a precise lo-
calization of sudden changes in the signal, which offers a better and deeper
insight into the underlying physical processes. We used the cwt() function in
MATLAB for this analysis. The wavelet transform revealed frequency bursts
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at specific moments, which were not clearly visible in the power spectrum.
Figure 3.22 illustrates the wavelet transform of the 26-01D test.

Figure 3.21: PSD of 26-01D Test. Figure 3.22: WT of 26-01D Test.

This test featured three peaks, with the first peak exhibiting higher inten-
sity than the other two. While the power spectrum in Figure 3.21 does not
clearly highlight this difference, the wavelet transform allows us to identify
both low- and high-frequency components through a colormap representa-
tion. Additionally, it enables precise determination of the frequency values
at the exact moments when the rocks impacted the fiber optic.

This capability plays a crucial role in event detection. The wavelet trans-
form allows us to classify different types of events by analyzing their frequency
characteristics over time. For instance, the weight of the rocks could be in-
ferred from the variations in the SOPAS signal. Heavier rocks exert greater
pressure on the fiber, leading to more pronounced frequency variations. This
information could be useful to refine event classification and enhance the
reliability of event detection.
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Chapter 4

Quiet Conditions

4.1 Introduction

The experiments explained in Chapter IV provide a foundation for simulat-
ing a rockfall event scenario that may occur. A major advantage of these
experiments is that the SOPAS intensity is significantly lower than that of
real events in the gully. This is because we used small blocks and rocks,
whereas, in a real scenario, the rocks could be much larger and more severe.
This helps us establish a threshold that can detect such events, maximizing
correct detections while minimizing false detections, which could lead to false
alarms.

Before defining the threshold and its working mechanism, we need to
examine another state of our data, referred to as “quiet conditions.” This
state represents the SOPAS values recorded by the polarimeter when no real
events or experiments are occurring. We can also refer to it as the background
noise, which was briefly discussed in the previous chapter. Analyzing this
noise is crucial because we want our detector to identify only dangerous
events without being triggered by mere background noise. Additionally, it
serves as a reference for comparison and is essential for establishing a baseline
in event detection.
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4.2 System Bugs

Analyzing noise can sometimes be a challenging task. The SOPAS data,
collected from fiber optic circuits, consists of time-indexed angular speed
values. While the majority of these values represent real physical phenomena,
some errors may arise due to:

• Sudden spikes or glitches,

• External disturbances affecting polarization,

• Missing or corrupted data,

• Noise interference from environmental conditions.

What we encountered in our data is a sudden, isolated spikes that deviate
significantly from neighboring SOPAS values, which we refer to by system
bugs. These bugs are neither part of the natural signal variations nor events
caused by rockfall experiments. Figure 4.1 illustrates a sample taken during
what is considered a quiet conditions, where this large number of events is
not expected. A zoomed-in view (see Figure 4.2) shows the nature of these
bugs.

Figure 4.1: SOPAS Values of 15-10-
2024, From 18:00 to 23:00; Circuit-2.

Figure 4.2: One-sample Spikes (bugs)
- Zoom in on Figure 4.1

Notably, a bug is a peak or spike lasting for only one sample. It is usually
abrupt, short-lived, and uncorrelated with surrounding data points. These
bugs originate from the system hardware and may be caused by a lack of
calibration in the polarimeter. Due to temperature variations outdoors, the
polarimeter experiences sudden temperature fluctuations. if it is kept in a
lab where the temperature remains nearly constant or changes gradually, it
is less likely to undergo decalibration.
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4.2.1 Moving Average Smoothing

The first approach to addressing this issue is smoothing the data using the
movmean function in MATLAB, which we have seen the previous Chapter.
Figure 4.3 shows the results of applying the moving average filter to noisy
data. The limitation of this technique is that it is not dynamic. As indicated
by the arrows in Figure 4.3, it uniformly smooths but fails to account for
fluctuations where bugs values are high in certain periods and low in others.

A closer inspection reveals that while the moving average reduces noise in
the SOPAS signal, it struggles with high-intensity system bugs. This is true
even for larger windows (W = 50, 100, and 200 samples). Instead of fully
suppressing these bugs, it merely smooths them, leaving behind residual
peaks, as shown in Figure 4.4. Although these peaks have lower intensity
compared to the original ones, they can still resemble events, which may
lead to false detections.

Figure 4.3: Raw SOPAS values vs.
Filtered SOPAS using movmean.

Figure 4.4: Zoom in on Figure 4.3 re-
veals the smoothed bugs.

4.2.2 Dynamic Thresholding

To address these issues, a dynamic thresholding method based on standard
deviation within a sliding window was employed. This method is based on
observations from experimental trials, which revealed that events follow a dis-
tinct pattern involving multiple samples, unlike single-sample system bugs
(see Figure 3.16b above). When a possible event is detected, the variation
between its SOPAS values tends to be small, while in case of the bugs it is a
one-sample abrupt change.
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The goal of the dynamic thresholding was to detect and correct this values
that significantly deviated from their neighboring points while accounting for
the intensity of the bugs in particular periods. The approach follows these
steps:

Sliding Window Approach

Instead of evaluating each point in isolation, the algorithm processes the
SOPAS data using a sliding window technique. This localized approach en-
sures adaptive thresholding for identifying events.

First, we define the window:

• A variable-sized window is used to analyze local statistics. This ensures
that the threshold adapts to local fluctuations.

• The window extends symmetrically around each data point, bounded
by the dataset’s length.

Second, we extract local data:

• Within each window, a subset of the data centered around the current
point is extracted.

• This subset represents the “local neighborhood” of the point under
evaluation.

Statistical Calculation & Dynamic Thresholding

Within the sliding window, the algorithm computes the local mean and stan-
dard deviation. The mean provides a central reference for detecting devia-
tions, while the standard deviation quantifies data variability. Mathemat-
ically, the standard deviation of a SOPAS dataset with n samples is given
by:

σlocal =

√√√√ 1

n

n∑
i=1

(SOPASi − µlocal)2 (4.1)

64



Here, σlocal refers to the standard deviation taken within the sliding window.
Likewise, µlocal is the mean of the values in the window.

Now, we apply a dynamic threshold, defined as:

Tdynamic = k · σlocal (4.2)

where k is a user-defined multiplier (k factor) controlling sensitivity to out-
liers.

By setting the dynamic threshold using Eq 4.2, only significant deviations
from local patterns are identified as events. A higher k factor allows more
variation, reducing false positives, while a lower k factor makes detection
stricter.

Anomaly Detection & Correction

For each SOPAS data point, SOPAS(j), the algorithm compares it to its two
immediate neighbors, SOPAS(j−1) and SOPAS(j+1). The bug detection
rule is:

∣∣∣∣SOPAS(j)− SOPAS(j − 1) + SOPAS(j + 1)

2

∣∣∣∣ > Tdynamic (4.3)

If the absolute difference exceeds the dynamic threshold, the value is deemed
a bug. To correct bugs, SOPAS(j) is replaced with the mean computed
within the window (µlocal).

This approach effectively removes system bugs while accounting for their
quantity. Figure 4.5 illustrates cases before and after removing the bugs.
Furthermore, this approach account successfully for the presence of events
without removing them. Figure 4.6 presents results from tranche 5 tests. On
the left side, the presence of system bugs is evident, but they are effectively
removed by the algorithm. On the right side, the algorithm is applied to an
actual event. Here, we can clearly observe that while the event is smoothed,
its overall structure and characteristics remain intact.
Additionally, we have tried alternative correction methods to handling the
system bugs such as:
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Figure 4.5: Raw SOPAS vs. Filtered
SOPAS using the Dynamic Thresh-
olding.

Figure 4.6: Raw SOPAS vs. Filtered
SOPAS using the Dynamic Thresh-
olding (Tranche 5).

• Replacing the bug with themedian of the window instead of the mean.

• Replacing the bug with the smaller of its two neighboring values.

However, trials for different datasets suggest that the best method is the
local mean replacement.

4.3 Filtering the SOPAS Data

The moving average filter performs well in reducing noise, but it tends to
flatten peaks, making event detection more difficult. To address this limita-
tion, we applied various filters to the data to determine the most effective
one. In this section, we present, along with the moving average filter, the
two other filters used in our analysis: the Savitzky-Golay (Sgolay) filter and
the Median Filter.

4.3.1 Savitzky-Golay Filter

The Savitzky-Golay filter operates by fitting a low-degree polynomial to a
moving window of data points using the least-squares method. This approach
allows for smoothing without destroying essential characteristics of the signal
[19]. The Sgolay filter performs a local polynomial regression; this enables
it to reduce noise and maintain the structure of the original signal, unlike
traditional moving average filters, which may distort sharp features.
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It has two parameters: a sliding a window of fixed size over the data,
and a polynomial fit to the points within this window. The value of the
polynomial at the central point of the window is then taken as the smoothed
value. This process is repeated for each point in the data set, resulting in a
smoothed signal. The mathematical formulation is as follows:

• Polynomial Fitting: For a data point yi, a window of size 2m + 1
(centered at yi) is selected. A polynomial of degree n is fitted to the
data points in the window:

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where x represents the index of the data points within the window, and
a0, a1, . . . , an are the polynomial coefficients.

• Matrix Representation: The polynomial fitting can be expressed in
matrix form as:

y = Xa

where:

– y is the vector of data points in the window:

y = [yi−m, yi−m+1, . . . , yi+m]
T .

– X is the design matrix, with rows representing powers of the in-
dices x:

X =


1 (−m) (−m)2 . . . (−m)n

1 (−m+ 1) (−m+ 1)2 . . . (−m+ 1)n

...
...

...
. . .

...
1 m m2 . . . mn

 .
– a is the vector of polynomial coefficients:

a = [a0, a1, . . . , an]
T .

• Least Squares Solution: The polynomial coefficients a are obtained
by solving the least squares problem:

a = (XTX)−1XTy.

The smoothed value ŷi at the center of the window is given by:

ŷi = p(0) = a0.
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• Convolution with Filter Coefficients: The Sgolay filter can also
be implemented as a convolution with precomputed filter coefficients
c, derived from the first row of (XTX)−1XT :

c = [c−m, c−m+1, . . . , cm].

The smoothed value ŷi is then computed as:

ŷi =
m∑

k=−m

ckyi+k.

Implementation in MATLAB

In this thesis, the Sgolay filter is applied to SOPAS data to smooth fluc-
tuations using MATLAB’s built-in sgolayfilt function, with parameters
tuned to optimize the balance between noise reduction and event retention.
Specifically, a polynomial order of p and a window length of W were chosen
based on empirical evaluation of the dataset. An example implementation in
MATLAB is:

% Define filter parameters

p = 3; % Order of polynomial

W = 11; % Filter’s window (must be an odd number)

% Apply the Savitzky-Golay filter

filtered_SOPAS = sgolayfilt(SOPAS_data, p, w);

4.3.2 Median Filter

The median filter is a non-linear filtering technique used to reduce noise
while preserving edges in a signal. It replaces each data point with the me-
dian value of its neighboring points within a defined window. This makes it
effective for removing impulsive noise, such as sudden spikes in SOPAS data.

Implementation in MATLAB

MATLAB provides a built-in function called medfilt1, used for applying a
one-dimensional median filter. The syntax for using this function is:
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filtered_data = medfilt1(raw_data, window_size);

where:

• raw data is the original time-series signal (e.g., SOPAS data).

• window size specifies the number of neighboring points used for com-
puting the median.

4.3.3 Performance of Filters on SOPAS Data

Figure 4.7 presents the raw SOPAS data (in blue) alongside three different
filtering techniques: Sgolay filter (red), moving average filter (green), and
median filter (black). The choice of window size is crucial: a small window
preserves finer details but may not remove all noise, whereas a larger win-
dow provides stronger filtering but risks suppressing valid rapid fluctuations.
Therefore, selecting an optimal window size depends on the nature of the
noise and the characteristics of the data. For this specific burst of data, the
filters were applied with the same window size (W = 20, except for the Sgolay
filter, which requires an odd window size,W = 21) to allow a fair comparison.

Figure 4.7: Raw SOPAS vs. Filtered SOPAS .

Each filter can be assessed based on how well it smooths the data while
retaining important features such as peaks and events. They are applied to
the unfiltered SOPAS data, which exhibits high-frequency noise with sharp
spikes and fluctuations, making it difficult to identify significant events or
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trends.

The moving average filter reduces random noise and produces a smooth
trend. This makes it useful for capturing general patterns in SOPAS data
while suppressing small fluctuations. However, it blurs sharp peaks, making
it difficult to detect sudden events. The median filter, on the other hand, is
effective at reducing noise, making it ideal for reducing extreme spikes and
system bugs. However, it lacks flexibility, as it can slightly distort the signal
by flattening rapid oscillations.

The Sgolay filter smooths the signal while better preserving peaks and
transitions compared to both the moving average and median filters. It re-
tains sharp variations, making it useful for detecting fast changes in SOPAS
data. Sgolay filter might sometimes result in negative values, which can
be an issue in computaion, when using logarithmic scale, for example. It
smooths the data by fitting a local polynomial to a sliding window of points.
If the original data has values close to zero and the polynomial fit oscillates
slightly, it can produce negative values in regions where the true signal should
remain non-negative, as shown in Figure 4.8. Also, instead of just smoothing
the signal, it can sometimes amplify small variations by overfitting the local
polynomial. This can cause sharp oscillations, which might lead to negative
values. Figure 4.9 shows an example of this.

Figure 4.8: Drawbacks of Sgolay Fil-
ter (Example 1).

Figure 4.9: Drawbacks of Sgolay Fil-
ter (Example 2).
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4.3.4 Histogram Analysis of Filtered Data

To further analyze the distribution of SOPAS values, histograms were plotted
to assess how effective is each filter in altering the data distribution. Fig-
ure 4.10 shows the overlaid histograms of the three filters applied to SOPAS
data from Tranche 5.

Figure 4.10: Histograms of the Three
Filters

Figure 4.11: Tail of Histograms in
Figure 4.10

We notice that the median filter produces a more uniform spread with a
higher peak compared to the other filters. But it still retains more outliers
compared to the other two filters which seem to smooth these outliers better,
as seen in Figure 4.11. Though, they are significantly reduced compared to
the raw SOPAS data. On the other hand, The moving average filter results
in a distribution that is more compressed around the mean, with fewer ex-
treme values. Its lower variance indicates strong smoothing, and it exhibits
a higher peak near the center as fluctuations are averaged out. While it re-
moves noise, it may over-smooth sharp transitions. The Sgolay filter has to a
broader distribution at the left and right, which may indicate retaining more
details than the other filters. Among the three filters, it exhibits the lowest
variance while retaining sharp transitions. This suggests that the Sgolay fil-
ter is particularly effective in preserving peaks.

A similar pattern is observed in Figure 4.12, which corresponds to the
histograms of the filters applied to another SOPAS data burst. In this case,
the number of outliers was lower than in the first dataset. However, the
median filter exhibited higher variance, while the moving average and Sgolay
filters maintained similar distributions as before.
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Figure 4.12: Histograms of the Three
Filters for SOPAS Data in 16-10-2025
from 09:00 to 14:00

Figure 4.13: Effect of Removing Bugs
and Applying Sgolar Filter on Six
Circuit-2 Batches.

The analysis suggests that the Sgolay filter performs best among the
three filters, because it achieves efficient data smoothing while preserving
features like peaks and transitions. Therefore, it is the most suitable choice
for SOPAS data processing when both noise reduction and event detection
are required. Figure 4.13 shows the results of removing the system bugs and
smoothing the data for six different data batches acquired from Circuit-2.
Notably, the algorithm had effectively removed all the system bugs, and the
Sgolay filter smooths the data to a great extent.

4.4 Analysis of Quiet Conditions

We have acquired extensive SOPAS data from different circuits and various
days. These data are just background noise (considered as quiet conditions)
that the fiber circuits acquire continuously. By analyzing the distribution
of these data, we can compare it with the SOPAS data we collected during
the experiments (considered as event conditions) and then set a threshold to
determine when an alarm should be triggered.

The SOPAS data that will be presented from now on will be after remov-
ing the system bugs and applying the Sgolay filter for smoothing. Unless
otherwise mentioned, the filter’s window size used is 50. We will first per-
form a comparison between the data taken from different circuits. To ensure
a fair comparison, we first analyze SOPAS data recorded from the same cir-
cuit at different times of the day and then compare them across different days.
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The first comparison is based on three distinct time periods: morning,
evening, and night. This approach, even though these terms don’t always
match the exact time period with the collected data, covers the entire day,
allowing us to investigate whether SOPAS variations are time-dependent. If
variations exist, we can adapt the threshold accordingly. Furthermore, com-
paring different circuits on different days helps assess the consistency of data
acquisition across them. Unfortunately, the circuits cannot be activated si-
multaneously. This prevents direct verification of whether an event detected
in one circuit appears in another during the same time period. Additionally,
Circuit-1 was not operational during the data collection period, and thus, no
data is available for comparison.

(a) Batch 1: 24-11-2024 from 02:00
to 08:00.

(b) Batch 2: 23-11-2024 from 14:00
to 20:00.

(c) Batch 3: from 24-11-2024, 20:00
to 25-11-2024, 02:00.

(d) Overlaid Histograms of the Three
Batches

Figure 4.14: SOPAS Data & Overlaid Histograms Corresponding to Circuit-
2.

For all the data batches that will be shown in plots, each data batch con-
sist of bursts of 60 seconds every 70 seconds of data, resulting in a 10-second
gap between bursts. Some of the batches have a larger gap of missing data
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due to the failure of the system. However this won’t affect our analysis.

4.4.1 Comparison Based on Different Times of the Day

For Circuit-2, three data batches were collected, each containing six hours of
recorded SOPAS data. The recorded times are specified in the titles of the
corresponding SOPAS plots. Figures 4.14a, 4.14b, and 4.14c show the SOPAS
value plots for the morning, evening, and night, respectively. Additionally,
Figure 4.14d overlays the histograms of the three batches. Similarly, Circuit-
3 and Circuit-4 (Figures 4.15 and 4.16, respectively), each have three SOPAS
value plots and one histogram displaying the overlaid batches. For Circuit-4,
the batches are not always 6-hours long.

(a) Batch 1: 27-11-2024 from 06:00
to 12:00.

(b) Batch 2: 29-11-2024 from 15:00
to 21:00.

(c) Batch 3: 28-11-2024 from 21:00
to 03:00.

(d) Overlaid Histograms of the Three
Batches

Figure 4.15: SOPAS Data & Overlaid Histograms Corresponding to Circuit-
3.

All batches are considered to be in quiet conditions with no or very few
values that exceeds the average values. The summarized statistical metrics
for this Section are presented in Table 4.1. This table includes the mean,
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standard deviation, and 99th percentile of SOPAS values for each dataset.
The 99th percentile is particularly useful for defining an event threshold, as
it identifies extreme but still naturally occurring values in quiet conditions.

The SOPAS values range from approximately -0.01 (due to the Sgolay
filter) to 0.045 rad/s, indicating that SOPAS variations are relatively small.
This suggests that the system is generally stable, with minor fluctuations.
The histograms show a distribution that is not perfectly symmetric, with
a slight skewness to the left. This indicates that lower SOPAS values oc-
cur more frequently, which is expected since the data primarily consists of
background noise rather than significant events.

(a) Batch 1: 02-12-2024 from 05:00
to 11:00.

(b) Batch 2: 30-11-2024 from 13:42
to 17:00.

(c) Batch 3: 30-11-2024 from 23:00
to 03:34.

(d) Overlaid Histograms of the Three
Batches

Figure 4.16: SOPAS Data & Overlaid Histograms Corresponding to Circuit-
4.

The peak of the histograms is likely around mid-range values (0.012 to
0.018 rad/s). Compared to the mean values of each batch (see Table 4.1), the
data is concentrated around the mean, indicating a stable baseline with occa-
sional deviations. The presence of values at the higher end of the range (0.03
rad/s and above) suggests occasional anomalies, particularly for Circuit-4.
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However, these cannot correspond to actual rockfall events since the values
are significantly smaller than those observed in Chapter IV.

Circuit Data Batch Mean Std 99th P

3*Circuit-2 23/11 14:00 - 23/11 20:00 0.013 0.004 0.020

24/11 02:00 - 24/11 08:00 0.014 0.003 0.022

24/11 20:00 - 25/11 02:00 0.014 0.004 0.021

3*Circuit-3 27/11 06:00 - 27/11 12:00 0.016 0.003 0.025

28/11 21:00 - 29/11 03:00 0.016 0.003 0.024

29/11 15:00 - 29/11 21:00 0.016 0.003 0.024

3*Circuit-4 02/12 05:00 - 02/12 11:00 0.010 0.004 0.022

30/11 13:42 - 30/11 17:00 0.013 0.003 0.021

30/11 23:00 - 01/12 03:34 0.014 0.003 0.021

Table 4.1: Filtered SOPAS Statistics for Different Circuits

4.4.2 Comparison Based on Different Days

Figures 4.17, 4.18, and 4.19 show the three overlaid histograms from Circuit-
2, Circuit-3, and Ciruit-4 batches, respectively. Similar to the previous com-
parison, the batches are considered to be in quiet conditions with no or very
few values that exceeds the average values. These batches were taken on
different days to ensure that the values range found on the previous compar-
ison is not much different. Indeed, we can observe that the SOPAS values
range is almost the same as found when we made comparisons based on dif-
ferent times of the day, with a slight increase in the tail, reaching this time
a value of 0.5 rad/sec. This suggests that the background noise is consistent
throughout different circuits and on different days. In addition, most SOPAS
values are in the range of 0.012 to 0.018 rad/s, same as previously found.

The observations highlight the importance of adjusting event detection
thresholds based on the variation in SOPAS values. The threshold definition
might not be very complex since the variations are quite small compared
to event conditions. The statistics in Table 4.1 may be useful for defining
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Figure 4.17: Overlaid Histograms of
Circut-2 (Different Days).

Figure 4.18: Overlaid Histograms of
Circut-3 (Different Days).

Figure 4.19: Overlaid Histograms of
Circut-4 (Different Days).

a primary threshold and testing it against different data types, where not
only quiet conditions but also some anomalies are present. By taking into
account these insights, we can refine the detection criteria and ensure a good
and reliable event identification while minimizing false alarms.

4.4.3 Comparison Based on Different days — Anoma-
lies Present

Now that we have examined the case where the SOPAS data is in its qui-
etest conditions, let us explore instances where some anomalies appear within
these quiet conditions. To do so, we plotted the histograms of different data
batches from Circuit-2, where at least one anomaly was observed. These
anomalies were neither caused by actual events, as seen in the experiments,
nor by system bugs affecting the data.

Figure 4.22 presents ten histogram plots for batches of five- and six-hour
data intervals. The histogram in purple exhibits the longest tail among all
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the histograms, reaching a value of 0.24 rad/sec. Its SOPAS plot is displayed
in Figure 4.20. In contrast, the yellow histogram (Figure 4.21 shows its
SOPAS values) has the smallest tail, not exceeding 0.05 rad/sec. However,
the peak values or all batches remain within the same range as observed in
the previous comparison, between 0.01 and 0.02 rad/sec. This suggests that
the overall data distribution is consistent across different days.

Figure 4.20: Batch 1: from 16-10-
2024, 19:00 to 17-10-2024, 00:00.

Figure 4.21: Batch 2: from 22-11-
2024, 20:00 to 23-11-2024, 02:00.

Figure 4.22: Histogram Plots of Ten Different
Batches From Circuit-2.

This comparison highlights the variations in SOPAS data and reinforce
the general stability of its distribution. The presence of longer tails in certain
histograms suggests the presence of occasional disturbances that do not align
with typical experimental events or system bugs. These anomalies might be
attributed to environmental factors (perhaps animals or birds stepping over
the fiber) or minor external influences.

Despite the observed differences in tail lengths, the peak values remain
within a narrow range. This indicates that the baseline SOPAS conditions
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are stable over time. This consistency is essential for threshold-based de-
tection, as it helps distinguish real events from normal fluctuations. Future
analysis could involve correlating these anomalies with external factors, such
as animal movements, to better understand their origins.
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Chapter 5

SOPAS States & Threshold
Determination

As we have seen earlier, categorizing events based solely on SOPAS values
remains challenging. In this chapter, we aim to analyze both quiet conditions
and event conditions (rockfall event simulations). By comparing these states
under different scenarios, we can establish criteria to determine whether a
given event corresponds to an actual rockfall event or merely an environmen-
tal disturbance that should be disregarded. To do so, we want to establish a
threshold that can be efficient in detecting anomalies and events.

5.1 SOPAS-based Threshold

The threshold is one of the core parameters in this thesis. By setting a good
threshold, we can control the alarm to be triggered in case of an event occurs.
The chosen threshold is designed to balance sensitivity to events while mini-
mizing false detections. The first approach to define the threshold is relying
on the statistics of the SOPAS data, namely the mean, standard deviation,
and percentile. Using these parameters will help to rebust against normal
fluctuations and to adapt to the data’s actual distribution. The primary goal
of setting the threshold is to reduces false positives, that is avoiding flagging
minor fluctuations as anomalies.

In this work, two types of thresholds were defined. The first type is the
SOPAS threshold, denoted as ωth. This threshold is applied to the Ωsm[n]
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signal, where any significant impact on the fiber results in SOPAS values
exceeding this threshold. This exceedance allows us to classify the event as
either an anomaly or a valid event.

Initially, ωth is defined as:

ωinitial
th = mean(Ωsm[n]) + 2× std(Ωsm[n]) (5.1)

To refine this threshold further, we incorporate the 99th percentile (P99),
leading to the final definition:

ωth = max
(
2× ωinitial

th , 2× P99

)
(5.2)

These statistics can tell us a lot about our data. The mean represents
the central tendency of the SOPAS values. It provides a measure of the typi-
cal SOPAS intensity that is observed in the data. The standard deviation
(std) quantifies the spread or variability of SOPAS values around the mean:
a higher std indicates larger fluctuations in SOPAS values, while a lower one
suggests more stable and consistent conditions. The percentile represents
the threshold below which percent of the SOPAS data points lie. It helps
detect extreme anomalies by highlighting values that are significantly higher
than normal variations. If SOPAS values exceed this threshold, it may indi-
cate an unusual event, such as a rockfall. The 99th percentile of the smoothed
signal, P99(Ωsm[n]), is useful for setting an alert threshold, which allows for
detecting significant changes while minimizing false alarms.

5.2 Relationship Between ωth and W

To analyze the effect of applying the threshold, we applied it to some data
batches and compared them over a specific time period on a selected date, in
the afternoon from 14:00 to 17:00. In addition, we applied different filter’s
window sizes (W = 5, 50, 100 samples) to observe the relationship between
smoothing and thresholding. To ensure a reliable comparison, we selected
three data batches from the three circuits and clipped them to be 3-hours
each (from 14:00 to 17:00).
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Figure 5.1: Histograms of Circuit-2,
-3, and -4 (W = 5 samples).

Figure 5.2: Histograms of Circuit-2,
-3, and -4 (W = 50 samples).

Figure 5.3: Histograms of Circuit-2,
-3, and -4 (W = 100 samples).

Observing the plots, we note that the SOPAS data From Circuit-4 (his-
togram in red color) exhibits more noise than the other circuits (Circuit-2
in green and Circuit-3 in blue), where its tail extends for a longer period,
suggesting the presence of more anomalies. A similar pattern is observed
Circuit-3, though with lower intensity. To compare the distributions, we
overlaid the histograms of the three batches. The results are displayed in
Figure 5.1 for the circuits’ batches with W = 5 samples, followed by Fig-
ure 5.2 with W = 50 samples, and finally Figure 5.3 with W = 100 samples,
all for the same data batches.

For W = 5 samples, the tail of the SOPAS data from Circuit-4 is the
largest, reaching a value of 0.2 rad/sec. In contrast, Circuit-3’s tail reaches
0.1 rad/sec, which is half the value observed in Circuit-4. Meanwhile, Circuit-
2, which does not exhibit any apparent anomalies, has a small tail with only a
few outliers. The calculated thresholds, however, did not follow the expected
trend. The highest threshold was found in the Circuit-3 batch (Th = 0.083
rad/sec), despite Circuit-4 (Th = 0.076 rad/sec) exhibiting more outliers,
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whereas Circuit-2 had the lowest threshold (Th = 0.058 rad/sec). The same
pattern persisted when increasing the filter window size (W = 50), but the
threshold values for all batches decreased (0.071 rad/sec for Circuit-3, 0.068
rad/sec for Circuit-4, and 0.044 rad/sec for Circuit-2). Increasing the window
size further (W = 100) led to an even greater reduction in thresholds. As
expected, the number of outliers also decreased as the smoothing window
increased.

Discussion

From these results, we can draw several conclusions. Firstly, the filter win-
dow size plays a crucial role in determining the threshold values. A smaller
window preserves short-term variations, making anomalies more pronounced,
but it also leads to higher thresholds. On the other hand, larger window sizes
suppress noise and smooth out fluctuations, reducing the threshold values but
potentially masking significant anomalies.

The unexpected behavior in threshold values (where Circuit-3 had the
highest threshold despite Circuit-4 showing more outliers) suggests that the
thresholding method is sensitive not only to extreme values but also to the
distribution of SOPAS data. This indicates that while thresholding is an
effective way to detect anomalies, its accuracy depends on both the filtering
process and the statistical properties of the data.

Therefore, choosing an appropriate window size is critical. A very small
window may overestimate the threshold, leading to unnecessary alarms, while
an excessively large window may underestimate the threshold, potentially
missing real anomalies. A balanced approach is necessary, possibly by adapt-
ing the window size dynamically based on the characteristics of the data.

5.3 Samples Above Threshold (SAT)

Now that we have defined a threshold, we can further analyze the SOPAS
data by identifying samples exceeding the threshold. This is the goal: we
want to examine the type of SOPAS values that surpass ωth and catego-
rize them by distinguishing between actual rockfall events and those caused
by environmental disturbances, such as animals stepping on the fiber. To
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achieve this, a code was written to count and plot samples that exceed the
set threshold for each data batch. What we aim to observe is how the num-
ber of samples above the threshold (SAT) changes with different thresholds
and filter window sizes. For this purpose, we are currently showing only two
batches, as this should be sufficient to illustrate the point. Table 5.1 sum-
marizes the results.

Batch W (sam) Mean Std P99 ωth SAT

28-10-24 5 0.019 0.006 0.036 0.073 362

20 0.019 0.005 0.036 0.072 300

50 0.019 0.005 0.035 0.070 268

100 0.019 0.005 0.034 0.067 172

02-12-24 5 0.016 0.006 0.040 0.070 956

20 0.016 0.006 0.036 0.069 884

50 0.016 0.006 0.034 0.067 826

100 0.016 0.005 0.033 0.066 735

Table 5.1: Statistical Parameters and Threshold/SAT Values for Different
Batches and Window Sizes

Before starting the analysis, the expected results are: increasing the ωth

will decrease the number of SAT, and vice versa. Additionally, using a larger
W should also decrease the SAT, as applying a smoothing filter removes
some fluctuations, reducing the number of samples exceeding the threshold.
It is also important to remember that ωth depends on statistical parameters
(mean, std, and P99), which themselves change when adjusting W , since the
data being analyzed consists of smoothed SOPAS values.

In the first batch (28-10-24), the number of SAT decreases as and W
increases and ωth decreases. Similar trend us observed in the second batch
(02-12-24), where SAT decreasing by increasing W . These results suggest
that the window size has more impact, on these particular SOPAS data,
than the SOPAS threshold ωth, because the number of SAT always decreases
even though ωth decreases. Nevertheless, there is a trade-off between W and
ωth, which should be taken into account in the analysis.
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5.4 Events Above Threshold (EAT)

Taking the results from the previous Section into account, we employed an
alternative approach for analyzing by counting for anomalies and events con-
sisting of samples that surpass the threshold ωth. We refer to those anomalies
or events by exceedances. The start of an exceedance is marked by the first
sample that exceeds ωth, while the end is determined by the last sample that
falls below ωth, as shown Figure 5.4. The circular markers correspond to the
SOPAS values that comprise these exceedances.

Figure 5.4: Definition of an Ex-
ceedance (From 03B Tests).

Figure 5.5: EAT of Batch present in
Figure ??.

We further defined the second type of threshold, a time-based threshold,
denoted as dth. What we denote EAT are the exceedances that exceed ωth

for a specific duration, Ds. If this duration exceeds a time-threshold, dth,
then the exceedance will be classified as an event. This additional criterion
helps distinguish between different events and anomalies. For example, cer-
tain events, such as debris flows, tend to last for a longer period of time, while
environmental disturbances may only last for a few seconds. Figure 5.5 shows
an example for detecting EAT, taken from the data batch in Circuit-4 where
only one EAT is found. As we observed in Chapter 3, the rockfall event
simulations typically last for a few seconds (on average, around 5 seconds).
Although real events have completely different dynamics and duration (tens
of seconds to even minutes), considering the generated rockfall as events to
be detected, can be a useful guide to set the thresholds.

Let us first analyze the experiments presented in Chapter 3. The ex-
periments consist of a total of 5 tranches, each containing a number of ex-
ceedances. Table 5.2 illustrates the results. Each tranche is tested against
three parameters: threshold, SAT, and EAT. Also, for each parameter, 5 dif-
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ferent filter’s window sizes are computed. The extreme values of the window
sizes were used only to examine the relationship between the parameters,
but they are not employed in practices. The last column represents the EAT
that exceed both thresholds for Ds = 1 second.

Tranche ωth (rad/sec) SAT EAT

W= 5 — 50 — 100 — 200 — 500 W = 5 — 50 — 100 — 200 — 500 W = 5 — 50 — 100 — 200 — 500

04A (01 - 05) 0.126 — 0.126 — 0.129 — 0.134 — 0.145 855 — 873 — 866 — 739 — 444 1 — 2 — 2 — 3 — 2

03B (06 - 13) 0.082 — 0.080 — 0.079 — 0.077 — 0.074 164 — 203 — 234 — 132 — 184 0 — 0 — 0 — 1 — 1

02C (14 - 21) 0.297 — 0.310 — 0.303 — 0.309 — 0.324 653 — 504 — 398 — 381 — 531 0 — 1 — 1 — 2 — 2

01D (22 - 27) 0.228 — 0.217 — 0.201 — 0.181 — 0.164 286 — 319 — 327 — 426 — 408 0 — 0 — 0 — 2 — 1

04A (28 - 31) 0.359 — 0.355 — 0.359 — 0.344 — 0.392 738 — 737 — 704 — 868 — 844 3 — 3 — 3 — 5 — 3

Table 5.2: SAT and EAT statistics for different test cases

The maximum number of EAT found was 5, corresponding to tranche
04A (28 to 31 tests) using window W = 200 samples, while the minimum
number occurred three times in tranche 03B and 01D and one time in 02C.
On the other hand, the highest number of SAT was observed in tranche 04A
(1 to 5 tests) using W = 50 samples, whereas the lowest count was found in
tranche 03B using W = 200 samples.

We observe a clear pattern in the number of EAT across all tranches.
The number of EAT increases up to the fourth window size row (W = 200
samples), after which it starts to decrease. This demonstrates the impact of
using a larger W . Regarding the threshold ωth, there is no obvious pattern
of increasing or decreasing. Instead, the results appear to be more random.
This randomness comes from the way the threshold is defined. As the W
increases, it influences the statistical parameters that define ωth. With larger
W , there may be instances where ωinitial

th (see Eq 5.1) is smaller than the P99,
causing the final threshold to be set at twice the 99th percentile instead.

Notably, there is no clear relationship between SAT and EAT, because the
events differ significantly in how they are defined. Some exceedances exhibit
an inverse V-shape, where their SOPAS values increase and then decrease
once (second curve in Figure 5.4), while others have a random shape (first
curve in Figure 5.4), where samples count increase and decrease randomly.
This variability in shape leads to different numbers of SAT for different values
of threshold, and explains why the number of EAT is random.
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Discussion

The analysis of SAT and EAT, as well as the two threshold types, is valuable
in distinguishing between exceedances. The ability to define EAT based on
time allows to have more refined detection of rockfall events, which typically
last longer than environmental disturbances. But while this approach aids
to narrow down potential events, some uncertainty remains in the precise
duration of real-world events. Further research and more extensive data are
needed to refine the threshold for different event types, especially as the
timescale of environmental disturbances may vary.

The relationship between ωth, SAT, and EAT is complex, as demonstrated
by the observed variability across the tranches. Although larger W impacts
the number of EAT detected, their effect on the threshold definition intro-
duces some randomness. This suggests that more sophisticated methods may
be needed to account for the nature of these parameters, especially when ap-
plying this analysis to real-world data. Ultimately, this approach can serve
as a useful tool for events validation.

5.5 Complementary Cumulative Density Func-

tion (CCDF) Analysis

To further analyze the distribution of the SOPAS data, particularly its tail
behavior, we employed the Complementary Cumulative Density Function
(CCDF). It is defined as the probability that a random variable X exceeds
a given value x:

CCDF (x) = P (X > x) = 1− CDF (x) (5.3)

which is the inverse of the Cumulative Distribution Function (CDF (x)), rep-
resenting the probability that X is less than or equal to x. Figure 5.6 shows
the CCDF for Circuit-3. The filter’s window for this batch and all others in
this Section is set to W = 50 samples.

Before proceeding, we need to address an issue that arose while plotting
the CCDF. Notice the flatness in the tail of the CCDF (indicated by black
arrows), which appears as stair-like steps. Upon analyzing the histogram
of this batch and checking its SOPAS values, we found duplicate values at
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the tail, as shown in Figure 5.7. These duplicates occur occasionally due
to system failures, as we have seen in Chapter 3. This frequent duplica-
tion could bias the data distribution, since they exceed the threshold and
thus increasing the number of SAT. Though, this might not be a big issue
in our dataset since it happens rarely compared to the overall amount of data.

Figure 5.6: CCDf of Circuit-3 Batch
(09-1-24).

Figure 5.7: Duplicate Exceedance
From Batch in Figure 5.6.

Looking at tranche 03B from the rockfall experiments, which represent
the event conditions (Figure 5.8), we observe that only 10% of the values
exceed 0.026 rad/sec, where a steep drop begins. Additionally, applying the
threshold to this set of tests reveals that only 0.1% of the values exceed the
threshold ωth, which in this case is 0.080 rad/sec. A similar pattern is ob-
served across the other tranches. We overlaid all tranches on the same plot
(Figure 5.9), along with their respective thresholds. In each case, only 10% of
the values exceed the range of 0.025 to 0.03 rad/sec, except for tranche 01D,
where the corresponding value is 0.051 rad/sec. The thresholds crossings
occur between 0.1% and 0.4%, indicating the presence of only a few extreme
values, which is the case as the tests periods are not long compared to the
total acquired data.

To further investigate, we analyzed SOPAS data during quiet conditions
by dividing the batches into two categories:

• Batches with no exceedances (BT - Below Threshold).

• Batches with at least one exceedance (AT - Above Threshold).
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Figure 5.8: CCDF of Tranche 03B. Figure 5.9: CCDFs of All Tranches.

This classification allows us to examine the distribution in the presence and
absence of anomalies and how the tail behavior differs in each case. Addi-
tionally, we compare these distributions with the event conditions previously
analyzed.

For Circuit-2, we identified eight batches where all SOPAS values re-
mained below the threshold (BT), shown in Figure 5.10, and another eight
batches where at least one exceedance exists (AT), presented in Figure 5.11.
In the BT batches, only 10% of SOPAS values exceed the values ranging be-
tween 0.015 and 0.018 rad/sec, depends on each batch. Additionally, the tail
end consists mainly of values ranging between 0.03 and 0.04 rad/sec. Since
no values exceed ωth in these batches, there are no threshold crossings with
probability values. Conversely, in the AT batches, only 10% of the SOPAS
values exceeded values that range between 0.015 and 0.030 rad/sec, except
for one batch (blue curve), where this value reaches approximately 0.045
rad/sec. This batch exhibits the longest tail among all, with a maximum
value of 0.745 rad/sec. The threshold crossings with probability values range
between 0.01% and 0.001%.

For Circuit-3, we analyzed twelve BT batches (Figure 5.12) and six AT
batches (Figure 5.13). Here, 10% of the SOPAS values exceed 0.019 to 0.022
rad/sec in BT batches, whereas this range increases slightly to 0.020 to 0.024
rad/sec for AT batches, showing only a minor difference. The threshold
crossings with probability values are similar to those in Circuit-2, occurring
between 0.01 and 0.001 %.

Circuit-4, with four BT batches and three AT batches, follows a similar
trend. However, for this circuit it is even less: only 1% of SOPAS values
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Figure 5.10: CCDFs of BT Circuit-2
Batches.

Figure 5.11: CCDFs of AT Circuit-2
Batches.

exceed the 0.021 to 0.029 rad/sec range in the BT batches, whereas in the
AT batches, this range is slightly extended. Figure 5.14 and Figure 5.15
illustrate the CCDF plots of the BT and AT batches, respectively.

In addition, we computed the average ωth values for each case (see Ta-
ble 5.3). In the table, C denotes Circuit, while RFE represents the average ωth

values for the rockfall experiments. The BT case for Circuit-2 and Circuit-4
have the same average values, while Circuit-3 has a slightly higher value. For
the AT case, three different average values are observed, with Circuit-2 show-
ing the highest value. The rockfall experiments, on the other hand, exhibit
the highest average threshold among all cases.

Figure 5.12: CCDFs of BT Circuit-3
Batches.

Figure 5.13: CCDFs of AT Circuit-3
Batches.

Circuits(AT/BT) BT C2 BT C3 BT C4 AT C2 AT C3 AT C4 RFE

mean(ωth) [rad/sec] 0.042 0.049 0.042 0.078 0.060 0.049 0.218

Table 5.3: Average Threshold Values.
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Figure 5.14: CCDFs of BT Circuit-4
Batches.

Figure 5.15: CCDFs of AT Circuit-4
Batches.

Discussion

The CCDF analysis provides valuable insights into the tail behavior of SOPAS
data under different conditions. When comparing quiet conditions (BT
batches) and event conditions, we confirmed that extreme values are rare,
which indicates that major disturbances occur infrequently relative to the
overall dataset. One key observation is that the distribution of SOPAS val-
ues remains relatively stable across different batches and circuits. The 10%
cutoff values for BT and AT batches are close to each other, particularly in
Circuit-3 and Circuit-4, where the difference is minimal.

Although the probability of threshold crossings remains low, even small
percentage values can translate into actual samples, given that each batch
spans several hours of data at a 100 Hz sampling rate. This implies that, over
time, false alarms will inevitably occur every few hours, which is expected.

Evidently, ωth remains a useful parameter for distinguishing between
event and quiet conditions. Furthermore, the similarity in the average value
of ωth between Circuits in the BT case suggests comparable background noise
levels, while in the AT case the higher ωth in Circuit-2 suggests existence of
anomalies but with low SOPAS intensity compared the rockfall experiments
where the average ωth value is three times (0.218 rad/sec) the highest aver-
age value in this case (0.078 rad/sec). This again reinforces the importance
of ωth selection in differentiating between environmental disturbances and
actual rockfall events.

91



5.6 Statistical Metrics

In this section, we present statistical analyses applied to SOPAS data under
both quiet and event conditions. These statistics provide insights into set-
ting key parameters such as the SOPAS threshold ωth and the window sizeW .

Table 5.4 summarizes the SOPAS data used in this study, particularly
the data acquired under quiet conditions. It includes the number of data
batches for each circuit, the total batch duration, and the SOPAS values
duration (since data batches consist of bursts depending on the acquisition
rate). Additionally, the total number of samples recorded for each circuit is
reported.

Circuit # Batches
∑

Batches Duration
∑

SOPAS Duration
∑

# Samples

Circuit-2 19 105 h 09 m 90 h 08 m 32,448,000

Circuit-3 18 98 h 00 m 83 h 58 m 30,228,000

Circuit-4 07 37 h 51 m 32 h 26 m 13,626,000

Table 5.4: Summary of Batches and Data durations for each Circuit.

Table 5.5 provides a summary of the rockfall experiments. It includes the
statistical metrics used to define the SOPAS threshold ωth, the computed ωth

values, and the SAT and EAT (lasting more than Ds = 1 second) for each
tranche. Moreover, these parameters are evaluated for different filter window
sizes, specifically W = [50, 100, 200] samples.

2*Metric 01D (Tests: 22-27) 02C (Tests: 14-21) 03B (Tests: 6-13) 04A (Tests: 1-5) 04A (Tests: 28-31)

W=50 W=100 W=200 W=50 W=100 W=200 W=50 W=100 W=200 W=50 W=100 W=200 W=50 W=100 W=200

Mean 0.046 0.046 0.046 0.027 0.027 0.027 0.020 0.020 0.020 0.020 0.020 0.020 0.025 0.025 0.025

Std 0.031 0.027 0.022 0.054 0.049 0.044 0.007 0.006 0.005 0.015 0.014 0.013 0.063 0.062 0.060

P99 0.062 0.060 0.068 0.155 0.151 0.154 0.040 0.039 0.039 0.063 0.065 0.067 0.177 0.180 0.172

ωth 0.217 0.201 0.181 0.310 0.303 0.309 0.080 0.079 0.077 0.126 0.129 0.134 0.355 0.359 0.344

SAT 319 327 426 504 398 381 203 234 132 873 866 739 737 704 868

EAT 0 0 2 1 1 2 0 0 1 2 2 3 3 3 5

Table 5.5: Summary of Statistical Metrics for Rockfall Experiments.

To gain further statistical insights, we compute the minimum and max-
imum values of the mean, standard deviation, and 99th percentile of the
smoothed SOPAS data. Similarly, the minimum and maximum values of
ωth are calculated, all for different window sizes W (50, 100, and 200 sam-
ples). These results are summarized in Table 5.6. The table includes also
the number of SAT and EAT for each W .
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Metric W = 50 samples W = 100 samples W = 200 samples

min(Mean) 0.020 0.020 0.020

max(Mean) 0.046 0.046 0.046

min(Std) 0.007 0.006 0.005

max(Std) 0.063 0.062 0.060

min(P99) 0.040 0.039 0.039

max(P99) 0.177 0.180 0.172

min(ωth) 0.080 0.079 0.077

max(ωth) 0.355 0.359 0.344

SAT 2636 2529 2546

EAT 6 6 13

Table 5.6: Summary of Statistical Metrics for All Tranches

A similar analysis is conducted for quiet conditions. For each circuit,
the same window sizes (W = 50, 100, 200 samples) are used to ensure a
fair comparison with the event conditions. The same statistical metrics are
computed, and the number of SAT and EAT occurrences is counted and
reported for each W value. These statistics are summarized in Table 5.7.

2*Metric Circuit-2 Circuit-3 Circuit-4

W=50 W=100 W=200 W=50 W=100 W=200 W=50 W=100 W=200

min(Mean) 0.013 0.013 0.013 0.015 0.015 0.015 0.013 0.013 0.013

max(Mean) 0.025 0.025 0.025 0.019 0.019 0.019 0.015 0.015 0.015

min(Std) 0.002 0.002 0.001 0.003 0.003 0.002 0.003 0.002 0.002

max(Std) 0.024 0.023 0.023 0.005 0.005 0.005 0.005 0.004 0.004

min(P99) 0.018 0.017 0.016 0.024 0.023 0.021 0.021 0.018 0.018

max(P99) 0.121 0.120 0.119 0.035 0.034 0.033 0.029 0.027 0.027

min(ωth) 0.036 0.033 0.031 0.047 0.044 0.043 0.042 0.036 0.036

max(ωth) 0.242 0.240 0.238 0.070 0.068 0.067 0.058 0.055 0.055

SAT 4139 4152 3943 2960 3348 3771 790 746 746

EAT 4 14 12 5 10 10 1 3 3

Table 5.7: Summary of Statistical Metrics for Circuits.
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Discussion

The dataset consists of approximately 200 hours of acquisition. This provides
a solid groundwork for analysis and increases the reliability of the results.
The extended duration ensures that the findings are representative of long-
term trends rather than short-term fluctuations. Additionally, the use of
data from multiple circuits enhances the analysis by allowing a broader as-
sessment of the system’s performance across different locations.

In contrast, the data acquired from the rockfall experiments covered much
shorter periods, with each tranche lasting a maximum of 15 minutes. Despite
the shorter duration, the number of SAT occurrences in both states—quiet
conditions and event conditions—remains comparable. A similar trend is ob-
served for the number of EAT occurrences. This suggests that actual rockfall
events generate a density of samples comparable to what is accumulated over
days of acquisition under quiet conditions, which supports the ability of the
system to detect significant events.

Regarding the statistical metrics, the minimum and maximum values il-
lustrate the clear distinction between the two states. For example, in Circuit-
2 with a window size of W = 50 samples, the values obtained during the
rockfall experiments are nearly twice as large as those recorded under quiet
conditions. This significant increase validates the effectiveness of the rockfall
experiments and provides a strong reference for detecting real-world rockfall
events.

Furthermore, the EAT values increase across both conditions as the win-
dow size increases, except for Circuit-2. This trend suggests that the thresh-
old ωth plays a more critical role in event detection than the choice of window
size. However, there remains a trade-off between these two parameters that
should be carefully considered to optimize detection performance.
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5.7 Exceedances vs. Thresholds

This section presents the final results of this thesis. After analyzing the statis-
tical characteristics of each SOPAS state and identifying the key parameters,
we now focus on determining the most effective technique for detecting the
presence or absence of events. The objective is to make sure that the detec-
tion system does not trigger an alarm for every minor fluctuation above the
threshold. Instead, it should only activate for significant events, minimizing
false alarms.

Figure 5.16: ωth vs. Exceedance Duration for
Quiet (Purple) and Event (blue) Conditions;
Circuit-2.

Figure 5.17: ωth vs. Exceedance Du-
ration for Quiet (Purple) and Event
(blue) Conditions; Circuit-3.

Figure 5.18: ωth vs. Exceedance Du-
ration for Quiet (Purple) and Event
(blue) Conditions; Circuit-4.

To achieve this, we employ both thresholds discussed earlier: the SOPAS-
based threshold ωth and the time-based threshold dth. The combination of
these two criteria ensures a more reliable event detection mechanism while
reducing false alarms. To implement this approach, we developed a script to
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identify exceedances for both quiet and event conditions. Instead of selecting
a single fixed threshold, we define a vector of threshold values, ranging from
the chosen value of the SOPAS data to its maximum value. This allows us to
analyze how different threshold levels affect exceedance duration and count.

Figure 5.19: Map of Exceedances
(Circuit-2 Quite Conditions).

Figure 5.20: Map of Exceedances
(Circuit-2 Event Conditions).

Next, we compute the duration of each exceedance and visualize the re-
sults. To facilitate comparison between SOPAS states, Figure 5.16, 5.17,
and e 5.18 present an overlay of the “exceedance vs. threshold” plots for
SOPAS data of Circuit-2, Circuit-3, and Circuit-4, respectively. Each plot
shows both the quiet conditions and event conditions, for the purpose of
comparison. The blue curve in each plot corresponds to the event condi-
tions, while the other zoomed-in colored curves are for the quiet conditions
for each circuit.

Furthermore, to understand how exceedance distributions differ between
quiet and event conditions, we generated plots for each case by counting the
number of exceedances. Figures 5.19 and 5.20 are for Circuit-2, Figures 5.21
and 5.22 for Circuit-3, while Figures 5.23 and 5.24 are for Circuit-4.

For the first set of figures, each SOPAS state contains 25 different thresh-
old points, spanning a range of values. A key observation is that the highest
threshold in the quiet conditions does not even surpass the second threshold
value in the event conditions. This suggests that an appropriately chosen
threshold can effectively differentiate between normal fluctuations and ac-
tual rockfall events. The maximum exceedance duration is observed to be
around 7 to 8 seconds (we have observed higher values on some quiet condi-
tions batches). However, this occurs only when setting the threshold to its
minimum value, which is impractical for reliable detection. As the threshold
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Figure 5.21: Map of Exceedances
(Circuit-3 Quite Conditions).

Figure 5.22: Map of Exceedances
(Circuit-3 Quite Conditions).

increases, the number of exceedances decreases, which aligns with expecta-
tions.

Figure 5.23: Map of Exceedances
(Circuit-4 Quite Conditions).

Figure 5.24: Map of Exceedances
(Circuit-3 Event Conditions).

Another observation is that there is a significant contrast between the
two SOPAS states is in the number of exceedances: the quiet conditions
exhibit a much higher number of exceedances compared to the event condi-
tions. This discrepancy arises because the quiet condition dataset spans six
hours, whereas the event dataset lasts only around 15 minutes. The differ-
ence in acquisition time naturally results in a higher number of exceedances
in the quiet conditions, but these exceedances are typically of shorter dura-
tion. Since the total count of exceedances is influenced by the duration of
the dataset, it cannot be used as a reliable comparison metric. Instead, a
more robust approach is to compare exceedance durations. This is precisely
why the time-based threshold was introduced. For instance, if we ignore
exceedances for very low threshold values, and shorter than 1 second, the re-
maining long-duration exceedances will be more indicative of actual events.
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This filtering process significantly improves event detection by making sure
that only meaningful and sustained SOPAS variations are considered.

The combination of SOPAS-based and time-based thresholds provides a
balanced trade-off between sensitivity and reliability, which allows for ac-
curate event detection with minimal false alarms. In addition, the maps
provide an intuitive way to assess the impact of different threshold selec-
tions. By choosing a specific pair of ωth and dth on the map, one can im-
mediately determine the expected number of false alarms. This enables the
identification of an optimal threshold pair where no exceedances meet both
conditions, effectively eliminating false alarms. It also offers a clear estimate
of the number of false alarms within the observed time window, which aids
in fine-tuning the detection parameters. The results confirm that defining
an optimal threshold range, along with duration-based filtering, is important
for distinguishing actual rockfall events from background noise in the SOPAS
data.

5.8 Disucssion

We introduced a novel optical fiber sensing system based on State of Polar-
ization Angular Speed (SOPAS) tracking for monitoring and early warning
of hazardous mass movements in mountainous regions. The goal is to miti-
gate the increasing risks associated with growing human activity and infras-
tructure in these areas. Our system has demonstrated several advantages,
including high sensitivity, real-time detection, and potential scalability.

Compared to real rockfall events, our controlled experiments generated
weaker SOPAS intensities. However, the system successfully detected even
these weaker disturbances, including tests where only small rocks were thrown
onto the fiber. This is crucial as it confirms the high sensitivity of the sys-
tem, ensuring that even minor disturbances, that are potential precursors to
larger events, can be identified. Moreover, a detailed analysis of quiet condi-
tions (background noise) versus event conditions showed a clear distinction
in SOPAS values. Under quiet conditions, SOPAS remains consistently low,
significantly below the values observed during an event. This differentiation
is vital for refining the SOPAS-based detection threshold ωth, minimizing
false alarms while maintaining reliable event identification.
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Our study highlighted W and ωth as critical parameters for event de-
tection. These must be carefully optimized to balance sensitivity and ro-
bustness. The results confirmed that the chosen averaging windows (W =
50, 100, 200 samples) are effective across a wide range of both weak and in-
tense events. However, the selection of ωth is the most critical factor, as
this SOPAS threshold determines when an actual anomalous event should
trigger an alarm. Its optimal setting depends on several factors, including
the intensity of the anomalous events, the position of the fiber circuit on the
gully, and the quiet conditions state that characterizes the background noise.

The Complementary Cumulative Distribution Function (CCDF) analysis
revealed that false alarms are expected every few hours, likely due to ex-
ternal factors such as animals or human activity in the gully. Monitoring
all four fiber circuits simultaneously could have helped mitigate this issue,
but due to system limitations, only one circuit could be analyzed at a time.
Future work should explore multi-circuit monitoring to reduce false positives.

In addition, while our focus was rockfall detection, landslides and debris
flows are also important hazards that need further investigation. These pro-
cesses may produce SOPAS values closer to background noise rather than
the sharp spikes associated with rockfalls. This may make it challenging
to distinguish between these subtle changes and regular noise, which must
be addressed by future studies. Furthermore, and while the SOPAS values
alone provide detection, they may not be sufficient for event classification.
Machine learning techniques could help differentiate between different event
types; such as landslides, debris flows, and other anomaly types. Future
research should explore classification models trained on labeled datasets to
improve event characterization and reduce uncertainty.
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Chapter 6

Conclusion

This thesis presents a comprehensive study on the analysis of State of Polar-
ization Angular Speed (SOPAS) data to detect rockfall events. The method-
ology integrates an optical fiber-based sensing system with an event detection
algorithm to distinguish between actual rockfall events and anomalies.

The work began by detailing the experimental setup and the event detec-
tion algorithm, outlining the tools and techniques used for data acquisition
and analysis. The rockfall experiments were then described, demonstrat-
ing how controlled events were conducted to simulate real-world conditions.
These experiments provided valuable insights into SOPAS variations during
rockfall events. The study also examined the quiet conditions, where SOPAS
data was acquired and analyzed in the absence of rockfall events. By com-
paring the SOPAS states under event and quiet conditions, key statistical
parameters were extracted to define detection thresholds. Two critical pa-
rameters, the SOPAS threshold ωth and the time-based threshold dth, were
introduced and evaluated.

In addition, the issue of system bugs was addressed by identifying the
underlying problem and presenting an algorithm designed to eliminate these
bugs while preserving the overall SOPAS variations. Moreover, two filter-
ing techniques, the moving average and the Savitzky-Golay (Sgolay) filters,
were analyzed in detail, outlining their respective advantages and limitations.
Then, a detailed analysis of different filtering window sizes and statistical
metrics, which allowed for a robust threshold determination, was made. The
results indicated that actual rockfall events generate significant SOPAS vari-
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ations, distinguishable from background noise. Furthermore, the trade-off
between filtering window size and threshold sensitivity was highlighted, em-
phasizing the need for an optimized detection strategy. The study continued
by applying Complementary Cumulative Density Function (CCDF) analysis
to further refine event classification.

The findings demonstrate that SOPAS analysis is a promising tool for
rockfall detection. The study identified the averaging window W and ωth as
key parameters for event detection, requiring careful optimization. While the
tested averaging windows performed well, setting ωth is more crucial, as it
depends on event intensity, fiber placement, and background noise conditions.

Finally, this research provides a solid foundation for future work in fiber
optic-based geohazard monitoring. The findings can be extended by integrat-
ing machine learning techniques for automated event classification, optimiz-
ing detection thresholds, and deploying the system in broader environmental
conditions.
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Appendix A

Data Batches & Their
Acquisition Periods/Rates

Circuit Date Time Range Duration Acqui Rate

7*Circuit 4 30-11-2024 13:43 → 17:00 03 h 17 m 60s/70

17:00 → 23:00 06 h 00 m 60s/70

23:00 → 03:34 04 h 34 m 60s/70

01-12-2024 17:00 → 23:00 06 h 00 m 60s/70

23:00 → 05:00 06 h 00 m 60s/70

02-12-2024 05:00 → 11:00 06 h 00 m 60s/70

11:00 → 17:00 06 h 00 m 60s/70

Table A.1: Acquisition periods/rates for Circuit-4.
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Circuit Date Time Range Duration Acqui Rate

18*Circuit 3 28-10-2024 12:20 → 17:20 05 h 00 m 60s/62

19:00 → 00:00 05 h 00 m 60s/70

29-10-2024 00:00 → 05:00 05 h 00 m 60s/70

05:00 → 10:00 05 h 00 m 60s/70

21:00 → 02:00 05 h 00 m 60s/80

30-10-2024 02:00 → 07:00 05 h 00 m 60s/80

07:00 → 11:43 04 h 43 m 60s/80

09-11-2024 12:00 → 18:00 06 h 00 m 60s/70

18:00 → 00:00 06 h 00 m 60s/70

10-11-2024 00:00 → 03:17 03 h 17 m 60s/70

27-11-2024 00:00 → 06:00 06 h 00 m 60s/70

06:00 → 12:00 06 h 00 m 60s/70

12:00 → 19:00 07 h 00 m 60s/70

28-11-2024 15:00 → 21:00 06 h 00 m 60s/70

21:00 → 03:00 06 h 00 m 60s/70

29-11-2024 03:00 → 09:00 06 h 00 m 60s/70

09:00 → 15:00 06 h 00 m 60s/70

15:00 → 21:00 06 h 00 m 60s/70

Table A.2: Acquisition periods/rates for Circuit-3.
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Circuit Date Time Range Duration Acqui Rate

19*Circuit 2 15-10-2024 18:00 → 23:00 05 h 00 m 1

23:00 → 04:00 05 h 00 m 1

16-10-2024 04:00 → 09:00 05 h 00 m 1

09:00 → 14:00 05 h 00 m 1

14:00 → 19:00 05 h 00 m 1

19:00 → 00:00 05 h 00 m 1

21-11-2024 18:00 → 00:00 06 h 00 m 60s/70

22-11-2024 00:00 → 06:00 06 h 00 m 60s/70

06:00 → 09:09 03 h 09 m 60s/70

20:00 → 02:00 06 h 00 m 60s/70

23-11-2024 02:00 → 08:00 06 h 00 m 60s/70

08:00 → 14:00 06 h 00 m 60s/70

14:00 → 20:00 06 h 00 m 60s/70

20:00 → 02:00 06 h 00 m 60s/70

24-11-2024 02:00 → 08:00 06 h 00 m 60s/70

08:00 → 14:00 06 h 00 m 60s/70

14:00 → 20:00 06 h 00 m 60s/70

25-11-2024 02:00 → 08:00 06 h 00 m 60s/70

Table A.3: Acquisition periods/rates for Circuit-2.
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