
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

An abstract model of cloud-native
networks for security enforcement and

remediation

Supervisors:
Prof. Cataldo Basile

Dott. Franceso Settanni

Candidate:
Giuseppe Lisena

Academic Year 2024/2025
Torino

Abstract

In recent years, Kubernetes has established itself as a dominant platform for container
orchestration, becoming an integral component of numerous cloud infrastructures. A
significant portion of Kubernetes’ popularity stems from its ecosystem of external compo-
nents, including operators, network plugins, and various other tools. The proliferation of
these components, each tailored to specific use cases, has resulted in a diverse and often
overlapping landscape of solutions.

This thesis undertakes a comprehensive analysis of several prominent Kubernetes
network plugins, operators, and tools, encompassing popular solutions such as Flannel,
Calico, Cilium, Network Service Mesh, and Kube-router. The analysis delves into their
respective features, performance characteristics, and security implications, enabling a
comparative evaluation.

Furthermore, this thesis introduces an abstract model that encapsulates the diverse
resource types within Kubernetes. Designed to encompass a broad spectrum of Kubernetes
resources, the model has been validated against real-world deployments, including Google
Boutique, IBM Java microservices, and practical applications powered by Kubernetes,
Cilium, and KubeArmor. This structured representation offers a foundation for automated
processing by software tools.

ii

Ringraziamenti

Chi mi conosce sa bene che non sono una persona che dà peso alle formalità e che, anzi,
cerca di evitarle quando può. Nonostante ciò, ritengo doveroso ringraziare le persone che
hanno reso più piacevole questo percorso e altre, come i miei genitori, che lo hanno reso
innanzitutto possibile. È quindi a loro, Mario e Maria, che va il mio sentito ringraziamento
per aver sempre supportato le mie scelte e non avermi mai fatto mancare nulla, ricordandomi
sempre il giusto criterio in ogni cosa. Ringrazio anche mio fratello, Davide, che, nonostante
due anni non esattamente in discesa, è stato un ottimo confidente e mi ha sopportato
meglio di chiunque altro, come solo un fratello minore sa fare.

Ringrazio Roberto, Nico e Marco, i compagni di ventura che hanno intrapreso questo
percorso a Torino insieme a me: Roberto, compagno inestimabile di studi, la cui collabo-
razione è stata imprescindibile per il raggiungimento di questo traguardo; Nico, che è stato
il mio coinquilino durante questo percorso, aiutandomi quando ne avevo bisogno, oltre che
collega universitario, sempre pronto a mettere tutto in discussione; Marco, amico fedele e
disponibile, che è sempre stato in grado di strapparmi una risata anche nei momenti meno
sereni.

Ringrazio Lele, che nonostante la lontananza non ha mai mancato di far sentire la sua
presenza, mettendosi sempre a disposizione per discutere delle questioni più disparate e
consigliandomi sempre bene quando ne ho avuto bisogno.

Ringrazio Antonio, amico di una vita, sempre disponibile a sostenere interminabili
telefonate con il sottoscritto, ricordando aneddoti e condividendo novità, dubbi e i più
disparati pensieri.

Ringrazio anche Maty e Martina, amiche di (quasi) nuova data che hanno aiutato a
rendere più piacevoli e leggeri questi ultimi mesi.

Un sentito ringraziamento va al Prof. Basile e al Dott. Settanni, per l’opportunità
datami e per la loro infinita disponibilità. La loro guida e i loro consigli sono stati essenziali
nella stesura di questo elaborato e nel completamento del lavoro su cui quest’ultimo si
basa.

iii

Table of Contents

List of Figures vii

Acronyms ix

1 Introduction 2
1.1 Simplifying Cloud Management . 2
1.2 The Growing Complexity of Kubernetes 3
1.3 Goal of the Thesis . 3
1.4 Results Overview . 4
1.5 Outline . 4

2 Background 5
2.1 Traditional networking . 5
2.2 Virtualization . 6
2.3 Network Functions Virtualization . 7
2.4 Software-Defined Networking . 8
2.5 Microservices . 9
2.6 Containerization . 10

2.6.1 Docker . 11
2.7 Kubernetes . 14

2.7.1 History . 14
2.7.2 Control Loop . 14
2.7.3 Architecture . 15
2.7.4 Storage . 20
2.7.5 RBAC . 20
2.7.6 Operators . 21
2.7.7 Container Network Interface Plugins 22
2.7.8 Microservices . 23
2.7.9 Service Meshes . 23

v

2.7.10 Workflow . 25
2.8 Network Service Mesh . 26

2.8.1 Architecture . 26

3 Implementation 29
3.1 Comparative analysis . 29
3.2 Kubernetes Abstract Model . 50

3.2.1 Model details . 50
3.2.2 Automation Framework . 51

4 Results and Validation 57
4.1 Comparative Analysis . 57
4.2 Automated Framework . 58

4.2.1 Java Microservices . 58
4.2.2 Online Boutique . 61

4.3 Summary of Validation Findings . 64

5 Conclusion 65

A User manual 67
A.1 System setup . 67

A.1.1 Requirements . 67
A.1.2 Setup repository . 67

A.2 Usage . 68

B Developer manual 70
B.1 Adding new entities . 70

B.1.1 Model expansion . 70
B.1.2 Conversion functions . 72

Bibliography 74

vi

List of Figures

2.1 No virtualization vs Virtualization . 7
2.2 Network Functions Virtualization overview [4] 8
2.3 SDN architecture [6] . 9
2.4 Microservices Application [8] . 10
2.5 Docker architecture [11] . 12
2.6 Kubernetes Control Loop . 15
2.7 The components of a Kubernetes cluster [14] 16
2.8 The components of a worker node . 17
2.9 Kubernetes Service . 19
2.10 Kuberntes Operator workflow . 22
2.11 API Gateway . 23
2.12 Service Mesh architecture [18]. 24
2.13 NSM architecture . 27

3.1 Deployment class . 51
3.2 CalicoNodeStatus class . 52
3.3 CiliumNetworkPolicy class . 52
3.4 Feature analysis workflow . 54
3.5 Feature translation workflow . 55

4.1 Java Microservices example . 59
4.2 Java Microservices feature analyses process time computation 59
4.3 Java Microservices translation process time computation 59
4.4 Online Boutique example . 61
4.5 Online boutique example with unexpected key 61
4.6 Online Boutique feature analysis process time computation 62
4.7 Online Boutique translation process time computation 62

vii

Acronyms

CNI
Container Network Interface

K8s
Kubernetes

NAT
Network Address Translation

DNS
Domain Name System

CIDR
Classless Inter-Domain Routing

VM
Virtual Machine

RABC
Role-Base Access Control

NFV
Network functions virtualization

NSM
Network Service Mesh

CRD
Custom Resource Definition

ix

eBPF
extended Berkeley Packet Filter

ACL
Access Control List

OVS
Open vSwitch

CNF
Cloud-Native Network Function

x

Chapter 1

Introduction

The 21st century witnessed the rise of cloud computing as the go-to solution for managing
complex IT infrastructures, offering scalability, flexibility, and cost-effective deployment
models for a broad range of applications. As businesses increasingly adopted cloud tech-
nologies to streamline operations and accelerate innovation, the demand for efficient and
reliable management of applications and infrastructure grew exponentially. Cloud comput-
ing, initially seen as a tool to optimize storage and computing capabilities, soon became
the cornerstone of digital transformation across industries. The ability to dynamically
scale resources on demand, combined with pay-per-use pricing models, reshaped how
businesses manage IT workloads, resulting in both operational efficiencies and new business
opportunities. However, as cloud technologies evolved, the complexity of managing these
infrastructures also grew. Organizations found themselves navigating intricate environ-
ments with various tools and platforms designed to manage diverse workloads, networking
configurations, and security requirements. The increasing complexity of cloud infrastruc-
tures and the need to maintain a high level of availability, security, and performance pushed
the boundaries of traditional IT management practices. Consequently, businesses began to
look for solutions that could simplify this management while maintaining the agility and
scalability offered by the cloud.

1.1 Simplifying Cloud Management

Efficiently managing large-scale cloud IT infrastructures became a significantly complex
task to accomplish, mainly due to the inadequacy of traditional network and application
management paradigms. The intricacy of cloud-native applications, the dynamic nature of
virtualized resources, and the rapid pace of innovation made it evident that new approaches
were necessary. To overcome these limitations, Software-Defined Networking (SDN) and
Kubernetes have emerged as revolutionary technologies that address the core challenges
faced by modern cloud infrastructures. SDN transformed the way networks are managed
by decoupling the network control plane from the data plane, offering centralized control
that enables programmatic control over network behavior. This paradigm allows for greater

2

Introduction

automation and flexibility in configuring network topologies, traffic routing, and resource
allocation. Kubernetes, on the other hand, emerged as the leading solution for orchestrating
containerized applications, abstracting away the underlying infrastructure complexities. It
automates tasks such as deployment, scaling, and management of containerized workloads,
making it easier for developers and operations teams to focus on application logic rather
than infrastructure management. Both SDN and Kubernetes have laid the foundation for
simplifying cloud management, offering powerful tools that automate and abstract the
complexities of managing networks and applications. As a result, organizations can now
deploy highly resilient, scalable, and secure infrastructures with a degree of automation
that was previously unthinkable.

1.2 The Growing Complexity of Kubernetes
As Kubernetes became the de facto standard for container orchestration in the cloud
computing space, it gained widespread adoption across industries. Its modular architecture
and extensibility enabled the Kubernetes ecosystem to grow rapidly, with a vast array
of tools, plugins, and operators designed to enhance its capabilities. From networking
solutions like Calico and Flannel to storage frameworks such as Rook and Ceph, Kubernetes’
ecosystem has expanded to include a wide variety of components addressing diverse use
cases. These components have brought immense value to Kubernetes users by providing
enhanced networking, storage, security, and application management features, enabling
businesses to run complex, distributed applications with ease. However, the rapid expansion
of Kubernetes-related tools and plugins has introduced a new set of challenges. As the
ecosystem grows, so does the risk of overlap between the functionalities of various tools,
which can lead to confusion, inefficiencies, and even compatibility issues. Furthermore, the
need for seamless integration of these tools, particularly in heterogeneous environments with
different cloud providers and on-premise infrastructure, adds another layer of complexity.
With such a broad selection of tools available, organizations often face difficulties in
selecting the right components that align with their specific needs while maintaining a
high degree of interoperability. This growing complexity in the Kubernetes landscape
has highlighted the need for better strategies to manage and optimize the usage of these
tools. Understanding how different Kubernetes frameworks interact, what features they
offer, and where overlaps or conflicts may arise has become crucial for teams looking to
harness Kubernetes’ full potential without introducing unnecessary complexity into their
workflows.

1.3 Goal of the Thesis
This work aims to conduct an in-depth analysis of the main network plugins, operators, and
tools that populate the landscape of Kubernetes frameworks. By examining and comparing
the features offered by each of these components, this thesis seeks to identify their strengths,
weaknesses, and use cases, ultimately providing insights into how organizations can leverage
these technologies to streamline the management of their Kubernetes environments. The

3

Introduction

next step is to build an abstract model that can effectively represent Kubernetes resources in
a way that is intuitive and easily manipulable by both applications and automated systems.
This model will aim to simplify the interaction between developers, operations teams, and
Kubernetes resources, ensuring greater flexibility and efficiency in the management of
cloud-native applications. Once developed, the model will be validated against real-world
use cases, providing practical evidence of its effectiveness in addressing the challenges posed
by the growing complexity of Kubernetes and its ecosystem. Through this work, this thesis
will contribute to a deeper understanding of Kubernetes management and offer solutions to
mitigate the challenges faced by organizations as they navigate this increasingly intricate
environment.

1.4 Results Overview
This work presents a comparative analysis of the main Kubernetes extensions, ranging
from Container Network Interface to Service Meshes, and Security tools, highlighting the
differences between the different solutions. An abstract model for various Kubernetes
resources is also presented to simplify the management of clusters and help the process of
migrating from one solution to another. For this scope, an automated Python framework
has been developed, which can analyze the features of Kubernetes manifests and, using
the abstract mode, translate them.

1.5 Outline
The thesis is organized as follows. All the notions necessary to be able to understand the
work more technically will be presented in Chapter 2. Chapter 3 details the work done to
achieve the previously presented objectives. Within Chapter 4, the results of the work are
presented, along with the validation of such work. Finally, in Chapter 5, the conclusions
and possible future work related to this project are presented.

4

Chapter 2

Background

This chapter presents the principal concepts and technologies essential for understanding
the background of the developments undertaken in this thesis. The core ideas outline
various approaches within the field of networking and their evolution over time. It explores
key advancements that have shaped modern network architectures and management,
providing a foundation for the subsequent discussions.

2.1 Traditional networking

In the past, applications were predominantly deployed on physical servers, marking the
early days of enterprise infrastructure management. This approach, while simple in concept,
came with several limitations that organizations had to contend with. At its core, physical
server deployment was a one-to-one relationship: each application or service typically had
its dedicated hardware. While this allowed for some isolation between applications, it was
not sufficient to enforce strict resource boundaries, particularly when multiple applications
shared the same physical server. The lack of proper resource allocation and isolation
mechanisms meant that poorly behaved applications could consume an excessive amount
of resources, leading to performance degradation, system crashes, or downtime. This
became a significant problem as applications grew in complexity, and their demands on
infrastructure increased.

In response to these challenges, organizations began to dedicate separate physical
servers to individual applications. By isolating applications onto their physical machines,
administrators could ensure that the resource consumption of one application wouldn’t
impact the others. This approach, while somewhat effective in providing isolation and
stability, introduced a new set of problems. The biggest among these was the underuti-
lization of resources because physical servers often had excess capacity. This inefficiency
became increasingly costly as businesses scaled their operations.

Furthermore, the practice of managing several physical servers proved to be both
complex and costly. Each server required its own set of maintenance routines, including
regular updates, hardware checks, and troubleshooting. The need for physical space to

5

Background

house servers, as well as the associated energy consumption and cooling requirements,
added to the overhead. This not only inflated operational costs but also created a logistical
challenge for IT departments that had to keep track of multiple machines, handle the
physical installation and replacement of hardware, and ensure that the right resources
were allocated to the right application at all times.

As organizations grew and the number of applications multiplied, IT teams faced
significant challenges in scaling their infrastructure to meet the demands of modern
applications. In addition, maintaining the security and integrity of each server was a
daunting task. Each server was a potential point of failure, and if one server went down or
was compromised, it could jeopardize the availability of crucial applications and services.

The inefficiencies and challenges associated with physical server deployment ultimately
paved the way for more advanced technologies, such as virtualization and cloud computing.
These innovations allowed for better resource allocation, improved scalability, and greater
flexibility in deploying and managing applications.

2.2 Virtualization

While virtualization technology can be traced back to the 1960s, it wasn’t widely adopted
until the early 2000s. The technologies that enabled virtualization were developed decades
ago to give multiple users simultaneous access to computers that performed batch processing
[1].

Virtualization uses software to create an abstraction layer over computer hardware,
enabling the division of a single computer’s hardware components into multiple virtual
machines (VMs). Each VM runs its operating system (OS) and behaves like an independent
computer, even though it is running on just a portion of the actual underlying computer
hardware [2].

Server virtualization enables the consolidation of multiple VMs onto a single physical
server, maximizing resource efficiency (Figure 2.1). This approach allows for the optimal
use of computing capacity, storage, and networking resources.

Virtualization also simplifies IT management by facilitating the automation of tasks
such as provisioning, deployment, and configuration. By defining and deploying VMs as
software templates, administrators can streamline processes and reduce manual intervention,
minimizing errors and accelerating service delivery. Additionally, virtualization enables
the implementation of granular security policies, tailored to the specific needs of each VM.

With virtualization, it is possible to reduce downtime through the deployment of
redundant VMs. In the event of a failure, these redundant VMs can seamlessly take over,
ensuring business continuity. Moreover, virtualization accelerates the provisioning of new
applications and services, as it eliminates the need for physical hardware procurement and
configuration.

6

Background

Figure 2.1: No virtualization vs Virtualization

2.3 Network Functions Virtualization

Network Function Virtualization (NFV) is a way to virtualize network services, such as
routers, firewalls, and load balancers, that have traditionally been run on proprietary
hardware. These services are packaged as virtual machines on commodity hardware, which
allows service providers to run their networks on standard servers instead of proprietary
ones. It is one of the primary components of a telco cloud, which is reshaping the
telecommunications industry [3].

A network functions virtualization standard was first proposed at the OpenFlow World
Congress in 2012 by the European Telecommunications Standards Institute [4].

NFV enables service providers to execute network functions on standardized hardware,
eliminating the need for dedicated equipment. By virtualizing network functions, multiple
instances can be executed on a single server, leading to reduced hardware requirements
and, consequently, lower power consumption, space utilization, and overall operational
costs.

Additionally, NFV offers service providers the flexibility to deploy Virtual Network
Functions (VNFs) across diverse servers or dynamically relocate them in response to

7

Background

Figure 2.2: Network Functions Virtualization overview [4]

fluctuating demand. This adaptability accelerates the delivery of services and applications.
For instance, when a customer requests a new network function, a VM can be rapidly
provisioned to fulfill the requirement. Subsequently, if the function becomes redundant,
the VM can be decommissioned. This approach also facilitates low-risk testing of potential
new services.

2.4 Software-Defined Networking

Software-defined networking (SDN) is a category of technologies enable managing a network
via software. SDN technology enables IT administrators to configure their networks using
a software application. SDN software is interoperable, meaning it should be able to work
with any router or switch, no matter which vendor made it [5].

The key advantage of SDN is that it leverages the separation of the control plane from
the data plane. In networking terminology, a “plane” refers to an abstract conceptual
layer where networking processes occur. The control plane encompasses the network
control functions, such as routing and forwarding decisions, while the data plane handles
the actual transmission of data packets. Traditional network architectures tightly couple
the control and data planes within individual network devices like routers and switches.
This configuration necessitates device-by-device configuration, limiting scalability and
flexibility. SDN, on the other hand, decouples the control plane from the data plane and
the underlying hardware. This separation enables centralized control and management of
the network.

8

Background

Figure 2.3: SDN architecture [6]

2.5 Microservices

Complex application deployments can be subdivided into multiple simpler components,
also called micro-services, each of them implementing a specific function of the application.
This approach also simplifies the development, testing, and scalability of the application.
Microservices can be implemented and deployed independently of the others. Each element
could be made in a different language, eliminating implementation-specific limitations
(Figure 2.4).

However, the microservices-based approach has some drawbacks. For this type of
architecture to be effective, it is necessary to have efficient management of requests,
coordinating the different modules to avoid problems. Furthermore, having a copious
amount of different modules could become problematic for monitoring and configuring
services, as well as debugging and logging. Finally, automating the entire architecture
could become a challenging task.

The implementation of Virtualized Network Functions based on Virtual Machines
(VMs) faces several inefficiencies, as discussed before. These challenges can degrade service
quality, especially when large-scale resources are needed. To address these limitations, the
shift to Cloud-Native Network Functions (CNFs) is essential. CNFs, designed for cloud
environments, utilize microservices architecture and containerization, making orchestration
easier with tools like Kubernetes.

CNFs offer better scalability and efficiency than VNFs [7], benefiting from cloud com-
puting’s infrastructure to manage service scalability and provide cost-effective resource
usage. Microservices, isolated in containers, ensure greater flexibility and resource manage-
ment, allowing independent management and updates without impacting other services.

9

Background

Additionally, containers require fewer resources than VMs, allowing for the consolidation
of multiple microservices into a single container and optimizing resources and performance.

Figure 2.4: Microservices Application [8]

2.6 Containerization
Containerization is the packaging of software code with just the operating system libraries
and dependencies required to run the code to create a single lightweight executable, a
container, that runs consistently on any infrastructure [9].

Historically, developers faced challenges when transferring applications between different
systems, often encountering bugs and errors due to discrepancies in configurations and
dependencies. Containerization addresses this issue by bundling applications with their
required components, creating portable units that can be executed seamlessly across various
platforms and clouds.

Containerization offers a lightweight and efficient approach to packaging and deploying
applications. By sharing the host operating system and isolating applications within
containers, it reduces overhead, improves performance, and enhances security. Containers
are highly portable, allowing them to run consistently across different platforms and cloud
environments. This portability, combined with the ability to package monolithic and
microservice-based applications, accelerates development and deployment cycles [10].

One of the key advantages of containers is isolation. This feature can be achieved by
employing two technologies that are part of the Linux kernel:

• Cgroups, that limits and allocates resources, such as CPU, memory, disk I/O, and
network bandwidth, among process groups, preventing any single container from

10

Background

consuming all available system resources.

• Namespaces, that partitions kernel resources so that processes within a namespace
have their isolated instance of global resources, creating the illusion for containers
that they are running on their own independent system. Typical namespaces are
PID, to isolate process IDs, NET, to isolate network interfaces, and MNT, to isolate
filesystem mount points.

2.6.1 Docker
Docker is a software platform facilitating the rapid construction, testing, and deployment
of applications. It packages software into standardized units termed containers, each
encompassing all requisite components for execution, including libraries, system tools,
code, and runtime environments. By leveraging Docker, developers can swiftly deploy and
scale applications across diverse environments, assured of their consistent operation.

Docker is based on a client/server architecture, with many components that interact
with each other:

• Docker host, a physical or virtual machine running a Docker-compatible operating
system such as Linux.

• Docker Engine, Docker client-server architecture, comprising a Docker daemon,
Docker API, and Docker CLI.

• Dockerd, Docker daemon service that creates and manages Docker images, using
the commands from the client.

• Docker client, provides the CLI that accesses the Docker API.

• Docker objects, components that facilitate the packaging and distribution of
applications. These components include, but are not limited to, images, containers,
networks, volumes, and plugins.

• Docker containers, the instances of Docker images. Docker images serve as
immutable, read-only templates, whereas containers are dynamic, executable instances
derived from these images. Users can interact with containers, and administrators can
modify their configurations and runtime environments through Docker commands.

• Docker images, images contain executable application source code and all the tools,
libraries, and dependencies that the application code needs to run as a container.

• Docker registry, registries where it is possible to upload or download images in
such a way that centralized repositories are available. Generally, they are public, but
can also be configured for private use.

Docker images are composed of a series of layers, each representing a specific version of
the image. When a developer modifies an image, a new top layer is added, becoming the
latest version. Previous layers are retained for potential rollbacks or reuse in other projects.

11

Background

Figure 2.5: Docker architecture [11]

Upon container creation from a Docker image, an additional layer, known as the container
layer, is generated. Modifications made to the container, such as file additions or deletions,
are stored within this layer, which persists only for the duration of the container’s runtime.
This layered approach to image creation enhances efficiency by enabling multiple live
container instances to operate from a single base image. This shared base image allows for
a common software stack across all instances.

Docker Compose

Docker Compose serves as an effective instrument for the definition and management of
multi-container applications. Enhance development and deployment processes, thus facili-
tating a more seamless and efficient experience. Through the use of Compose, it is possible
to exercise comprehensive control over an entire application stack by managing services,
networks, and volumes using a straightforward YAML configuration file. The execution
of a singular command suffices to instantiate and initiate all services delineated within
the configuration. Compose works in all environments: production, staging, development,
testing, as well as CI workflows. It also has commands for managing the whole lifecycle of
your application [12].

Docker image

Containers are instantiated from images, which function as immutable templates encom-
passing all required instructions for the assembly of a Docker container. The construction
of an image is facilitated by a Dockerfile (Listing 2.1), a text document meticulously
configured to encompass all necessary commands for image creation. These instructions
are executed sequentially as written, therefore, careful consideration of their order is
imperative. The most important instructions available are:

• FROM, specifies the base image to build upon; must be the first instruction in a

12

Background

Dockerfile.

• RUN, executes commands in a new layer and commits the results; used to install
packages, run builds, etc. Can be formatted in two ways:

RUN <command to execute>
RUN ["executable-file", "params"]

• ADD, copies files from the source to the container’s filesystem with special features
like auto-extraction of archives and URL support.

• COPY, copies files from build context to container; simpler than ADD without extrac-
tion or URL features.

• ENV, sets environment variables available during both build and runtime in the
container.

• ARG, defines global variables available only during build time; can also be passed at
build time with –build-arg.

• CMD, provides default commands and arguments for executing the container and can
be overridden at runtime.

• ENTRYPOINT, configures the container to run as an executable; harder to override
than CMD and is often used together with CMD.

• WORKDIR, sets a working directory for subsequent instructions. It creates the directory
if it does not exist.

Listing 2.1: Dockerfile example
1 # Base image
2 FROM ubuntu :22.04
3

4 # Build argument
5 ARG VERSION =1.0
6

7 # Environment variables
8 ENV APP_HOME =/ app
9

10 # Run commands
11 RUN apt -get update && \
12 apt -get install -y python3 && \
13 mkdir -p ${ APP_HOME }
14

15 # Copy local files
16 COPY ./ app.py ${ APP_HOME }/
17

18 # Add files

13

Background

19 ADD ./ data.tar.gz ${ APP_HOME }/
20

21 # Set working directory
22 WORKDIR ${ APP_HOME }
23

24 # Define the executable
25 ENTRYPOINT [" python3 "]
26

27 # Default arguments
28 CMD [" app.py", "-- version ", "${ VERSION }"]

2.7 Kubernetes
This section provides an overview of Kubernetes, the foundational technology underpinning
the work presented in this thesis. We will dive into its core concepts and components.

2.7.1 History

To address the challenges of managing a rapidly growing cloud infrastructure and delivering
a robust platform, Google developed Borg, a pioneering container management system.
Inspired by the concept of collective consciousness, Borg was designed to orchestrate
containerized workloads across large-scale clusters. In 2013, Google introduced Omega,
its second-generation container management system. Omega further developed the Borg
ecosystem [13].

Docker’s popularity, with its focus on individual container creation and deployment,
inspired Google engineers to explore the concept further. However, limitations arose
in managing large-scale deployments with individual nodes. The need for automation
across multiple containers and machines became apparent, leading Google to develop its
next-generation container management system: Kubernetes.

Coinciding with the release of Kubernetes 1.0 in 2015, Google donated Kubernetes to
the Cloud Native Computing Foundation [13]. Since then, Kubernetes has emerged as the
most widely adopted container orchestration platform.

2.7.2 Control Loop

Kubernetes leverages a declarative model, allowing developers to define their desired
application state rather than specifying the precise steps to achieve it. This means
developers focus on “what” they want (e.g., a running application with specific features)
and leave the “how” and “where” to Kubernetes. This abstraction simplifies application
management and ensures continuous service availability.

From a developer’s perspective, the primary goal is a consistently running service
that’s resilient and scalable. Kubernetes achieves this through internal mechanisms like
ReplicaSets and Control Loops.

14

Background

ReplicaSets act as intermediaries, ensuring the desired number of pod replicas are
always running. They use selectors to identify pods, define the desired replica count,
and provide a pod template for creation. While ReplicaSets manage pod replication,
Deployments are preferred for their higher-level, declarative update capabilities.

Underpinning these mechanisms is the Control Loop (Figure 2.6), a continuous process
that maintains the desired state. It operates in three steps:

• Observe: Monitor the current state of the desired object.

• Analyze: Compare the current state to the desired state and identify discrepancies.

• Act: Take corrective actions to align the current state with the desired state.

Figure 2.6: Kubernetes Control Loop

2.7.3 Architecture
A Kubernetes cluster is organized in a single master node, referred to as the control plane.
The control plane handles one or more worker nodes.

Worker nodes contain all the necessary components to run the assigned workloads
assigned by the master node.

Control Plane Components

The control plane maintains the desired state of the cluster as defined by the user. It
ensures that the cluster operates as intended, assigning workloads to appropriate worker
nodes based on different parameters, reacting to different events in the cluster, including
failures, and storing the configuration data, state, and metadata of the cluster.

API Server. The API Server acts as the front-end for the Kubernetes control plane. It
exposes the Kubernetes API, which is used to interact with the cluster. The API Server
handles RESTful requests, processes them, and updates the cluster state.

15

Background

Figure 2.7: The components of a Kubernetes cluster [14]

Etcd. Etcd is a distributed key-value store that stores the cluster configuration, state,
and metadata. It ensures data consistency and reliability across the cluster by providing a
highly available and fault-tolerant storage solution. The API Server interacts with Etcd to
store and access information about the cluster.

Scheduler. The Scheduler is responsible for assigning pods to worker nodes based on
different factors. It takes into account factors such as CPU and memory requirements,
affinity rules, and policy constraints.

Kube Controller Manager. The Kube Controller Manager runs various controller
processes to shift the current state of the cluster towards the defined desired state. Each
controller is responsible for a specific aspect of the cluster’s operation, but they are all
compiled into a single binary and run in a single process for the sake of reducing complexity.
Examples of controllers are Node controller, responsible for noticing and responding when
nodes go down, and Job controller, which watches for Job objects that represent one-off
tasks, then creates Pods to run those tasks to completion.

Cloud Controller Manager. The Cloud Controller Manager integrates Kubernetes
with cloud provider-specific services and resources, allowing the Kubernetes control plane
to interact with the underlying cloud infrastructure. The Cloud Controller Manager runs
cloud-specific controller processes that handle the lifecycle of cloud resources, ensuring
that they are properly configured and maintained. As with the Kube Controller Manager,
these processes are compiled into a single binary.

16

Background

Node Components

Node components run on every node, maintaining running pods and providing the Kuber-
netes runtime environment [14].

Figure 2.8: The components of a worker node

Kubelet. The Kubelet is an agent that ensures that containers described in PodSpecs
are running and in a healthy condition by continuously monitoring their status. The
Kubelet communicates with the API Server to receive instructions and report back the
status of the node and its pods.

Kube-proxy. Kube-proxy is a network proxy that manages network rules and handles
traffic routing for services within the cluster. It maintains the network rules to allow
seamless communication between pods and services, regardless of their location within
the cluster. Kube-proxy is an optional component since a dedicated network plugin can
execute its function.

Container Runtime. The Container Runtime is the software responsible for running
containers and managing their lifecycle. Examples of container runtimes are Docker,
containerd, and CRI-O. The Container Runtime interfaces with the Kubelet to execute
operations as specified in the PodSpecs, ensuring that the containers are running as
intended and providing the necessary environment for applications to operate correctly.

Objects

In a Kubernetes cluster persistent entities are used to represent the state of the cluster.
These entities can describe different aspects of the cluster, including running applications,
defined policies, and available resources. The way these objects are used is through the
use of the Kubernetes API calls. A typical Kubernetes object includes:

• apiVersion, specifies the Kubernetes API version used by the object.

17

Background

• kind, is the type of the object.

• metadata, includes fields to uniquely identify the object, like a UID or a string, and,
optionally, a namespace.

• spec, describes the characteristics of the object.

• status, an optional field that describes the current state of the object.

Below are some of the fundamental objects of Kubernetes.

Pod. A Pod is the smallest deployable unit in Kubernetes, representing a single instance
of a running process in the cluster. A pod can contain a single container or a group of
them sharing resources.

Service. Services are abstractions employed to expose an application running on a set of
pods, handling load balancing among the pods, and service discovery.

The need for the service abstraction is rooted in the way Kubernetes works: pods are
automatically generated, restarted, destroyed, and so on, thus making it difficult to keep
track of their IP addresses. So Kubernetes assigns each pod an IP address and groups all
the pods running the same application under a single DNS name.

Kubernetes offers four types of services, specified via spec.type, that allow exposing
the application in different ways:

• ClusterIP, default option if no type is specified; the service is exposed only within
the cluster via a defined IP address.

• NodePort, allows the assignment of an IP address and a port to a service, allowing it
to be reached from outside the cluster.

• LoadBalancer, exposes the service externally employing a load balancer provided
by a cloud provider; by defining a LoadBalancer service, ClusterIP and NodePort
services are also created and the external traffic is routed to them.

• ExternalName, maps the service to a particular DNS name, the externalName; when
reaching the service, a CNAME record containing the defined externalName is returned.

Deployment. A Deployment provides declarative updates for Pod and ReplicaSet
resources [14]. With a Deployment, a desired state for the cluster is defined. The
component responsible for applying changes to the current state to converge toward the
desired one is the Deployment Controller. When defining a Deployment, a ReplicaSet is
created.

ReplicaSet. A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at
any given time. The ReplicaSet is defined in the Deployment and automatically managed.
A ReplicaSet is linked to its Pods via the Pods’ metadata.ownerReferences field, which
specifies what resource the current object is owned by [14].

18

Background

Figure 2.9: Kubernetes Service

Namespace. Kubernetes namespaces allow the isolation of groups of resources within
a single cluster. Inside a namespace, the different resources have unique names; these
names can be reused in other namespaces. Namespace-based partitioning applies to those
resources that are not cluster-wide objects, like Pods or Services. Thus, objects like Node
and PersisteVolume are not namespace-partitionable.

NetworkPolicy. Network policies are employed to specify rules for traffic flow within
your cluster, and also between Pods and the outside world, controlling traffic flow at the
IP address or port level (OSI layer 3 or 4) [14]. To employ network policies, it is necessary
to use a network plugin that supports them. Network policies apply to a connection
with a pod on one or both ends and are not relevant to other connections. If allowed,
a pod can communicate with other pods, namespaces, or IP blocks. For pod-based and
namespace-based policies, a selector is used to determine the allowed entities, while for
IP blocks, CIDR ranges are used. As further detailed, network policies serve as essential
guardrails, explicitly defining allowed and denied connections to restrict traffic between
pods (both within and across namespaces) and between pods and external networks.
A network policy specification includes a podSelector to identify the pods to which
the policy will apply, and policyTypes to specify whether the policy governs ingress
(inbound) or egress (outbound) traffic, or both. Ingress rules dictate the allowed inbound
traffic to the target pods, while egress rules specify the permitted outbound traffic from
these pods. Each rule incorporates a NetworkPolicyPeer to select the entities (pods,
namespaces, or IP blocks using CIDR notation) on the other side of the connection, and a

19

Background

NetworkPolicyPort to explicitly define the allowed ports or protocols for communication
with the pod. Importantly, network policies are additive in nature; if multiple policies
select a particular pod, the effective set of rules is the union of all the ingress and egress
rules defined across those policies [15].

2.7.4 Storage

Pods are ephemeral, meaning that the state of the information is not saved once the pod
is terminated. Also, sharing files between the same pod among multiple containers can be
quite challenging. For the mentioned reasons, Kubernetes provides two storage solutions.

Ephemeral Volumes

Ephemeral volumes have a lifetime equal to that of a pod and are primarily used when
applications need additional space, such as when files need to be available for reading
configurations useful to the pod. Common types of ephemeral volumes are:

• EmptyDir, an empty volume is created when a pod is assigned to a node and can
then be read and written.

• ConfigMap, read-only volumes used to make data for configurations available to the
pod; data is saved within a ConfigMap volume and used by the container inside the
pod

Persistent Volumes

Persistent volumes (PVs) represent a portion of the cluster’s storage that is made accessible,
allowing the volume’s lifecycle to remain independent from the lifecycle of the pod. Users
can create Persistent Volume Claims (PVCs), which are requests for resources from the
persistent volumes, where they specify the amount of storage required and the preferred
access mode.

There are two primary methods for provisioning persistent volumes: dynamic and static.
In the dynamic approach, when PVs do not meet the specifications in a PVC request, new
volumes are automatically created to fulfill the request. This is managed through storage
classes. In contrast, the static method involves pre-creating a set of PVs, which can then
be allocated to users as needed.

2.7.5 RBAC

Kubernetes employs Role-Based Access Control to govern resource access based on user
roles. The Kubernetes API group defines four core objects for managing permissions:

• Role, defines permissions within a specific namespace.

• ClusterRole, defines permissions across the entire cluster.

20

Background

• RoleBinding, assigns a Role to a user or group within a namespace.

• ClusterRoleBinding, assigns a ClusterRole to a user or group across all namespaces.

RBAC employs a simple permission model:

• Subjects, the allowed entities (users, groups, service accounts).

• Resources, the target resources (pods, deployments, secrets).

• Verbs, the access methods (get, list, create, update, delete).

2.7.6 Operators
Another fundamental Kubernetes concept is the operator. The reason for introducing this
notion is associated with the desire to personalize the management of certain automated
processes within the cluster by specifying what should be done when certain events occur.
Operators leverage the concept of Custom Resource Definitions (CRD), enabling the
definition of new types of resources that can then be monitored by the operator itself
(Figure 2.10. Custom resources are extensions of the standard Kubernetes API that provide
a fine-grained level of control over applications and their components, making it possible
to automate tasks beyond what Kubernetes itself offers.

The critical point lies in the coding aspect of the actions that need to be executed
within the cluster whenever an event related to the CRD occurs. The operator utilizes
high-level configurations, implementing a logic close to the one adopted by control loops.

After creating and defining a new CRD, an object can be generated containing customiz-
able fields. By default, all unrecognized fields are deleted; hence, the field ‘x-kubernetes-
preserve-unknown-fields: true‘ must be introduced to preserve unknown fields.

Operators can be differentiated based on their capabilities in managing the life cycle of
applications, which can be more or less comprehensive. In this sense, a complete operator
should be capable of managing all aspects related to pods, such as scheduling, installing,
upgrading, scaling, recovering, and so forth [16]. The five macro levels by which operators
can be classified, indicating their maturity level, are:

• Basic Install: The operator must be able to install and configure all the necessary
workloads to run the custom resources.

• Seamless Upgrades: Upgrades to various workloads should be possible without
data loss.

• Full Lifecycle: This level refers to the operator’s ability to back up and restore the
state of workloads.

• Deep Insights: Monitoring and alert systems are implemented for pod management.

• Auto Pilot: Based on well-defined metrics, the operator can automatically scale
resources.

21

Background

Figure 2.10: Kuberntes Operator workflow

2.7.7 Container Network Interface Plugins

Kubernetes, starting from version 1.3, supports the usage of Container Network Interface
plugins to manage the networking needs of a Kubernetes cluster. A CNI plugin is required
to implement the Kubernetes network model [14]. Popular Kubernetes network plugins
include Kube-Router, Flannel, Calico, and Cilium. A CNI plugin is required to implement
the Kubernetes network model.

Container Network Interface. The Container Network Interface (CNI) constitutes
a foundational project under the auspices of the Cloud Native Computing Foundation,
providing a comprehensive specification and associated libraries for seamless container
networking. These resources enable developers to develop plugins capable of dynamically
configuring network interfaces within Linux containers. Moreover, the project includes an
array of officially supported plugins that offer immediate solutions to common networking
requirements. Within the Kubernetes ecosystem, the CNI assumes a pivotal role as the
standard interface for network configuration within the cluster. Kubernetes depends
on CNI plugins to provide essential networking functionalities for its pods, including
the assignment of IP addresses, the establishment of inter-pod communication, and the
facilitation of external access to services. Prominent CNI plugins within the Kubernetes
ecosystem, such as Calico, Cilium, and Flannel, each present distinctive features and
capabilities, extending from basic network connectivity to sophisticated network policy
enforcement and security functionalities [17].

Kubernetes network model. The Kubernetes network model defines how containers
and pods communicate within a Kubernetes cluster.

• Pod-to-Pod communication: each Pod is assigned a unique cluster-wide IP
address. All the pods in the cluster can communicate without the use of a NAT or
proxies through the pod network.

22

Background

• Pod-to-Service communication: pods running an application are grouped under
a long-lived IP address or hostname, exposing a service.

• Service-to-External communication: services are exposed to clients external to
the cluster.

Network policies can be used to manage inter-cluster traffic or external traffic.

2.7.8 Microservices

Considering the requirements for a micro-services-based architecture, Kubernetes becomes
a fundamental tool for its realization, and in particular, two Kubernetes elements have to
be considered:

Figure 2.11: API Gateway

• API Gateway: a specific component, acting as a single entry point, designed to
handle all requests coming from the client and forward the request to the required
microservice (Figure 2.11).

• Services Mesh: additional network layers with the primary task of managing
communication between different services, separating the network aspects from the
application ones.

2.7.9 Service Meshes

In the context of a microservices-based architecture in Kubernetes, managing a large
number of services is a crucial aspect. One of the primary challenges in this setup is
handling the communication between services.

Service meshes provide a solution to this problem by introducing a dedicated commu-
nication layer. This solution is typically implemented by deploying a sidecar container

23

Background

alongside the primary container where the service logic resides. The sidecar functions as a
proxy, streamlining communication between services.

Without this approach, developers would have to build and manage the communication
logic themselves. Consequently, the network is established through sidecar containers,
which interact with the sidecars of other services to enable seamless communication.

• Sidecar Proxy, a lightweight component deployed alongside each service instance
designed to handle critical functionalities essential for inter-service communication,
including but not limited to load balancing, circuit breaking, and service discovery.

• Control Plane, it enables the specification of authentication policies, the generation
of metrics, and the configuration of service proxies across the entire mesh.

• Business Logic, core application logic and underlying code of a microservice. This
component is responsible for encapsulating the service’s computational tasks and
inter-service communication.

• Primitive Network Functions, utilized by a microservice to initiate network calls
and establish connections with the service mesh sidecar proxy.

• Application Network Functions, maintain and manage critical network functions
of the sidecar proxy.

Figure 2.12: Service Mesh architecture [18].

The main Kubernetes open-source solutions for implementing service meshes are:

• Istio: a service mesh that provides advanced traffic management, security, and
observability for microservices applications. It enables fine-grained control over service
communication, including routing, retries, fault injection, and circuit breaking. Istio
also ensures secure service-to-service communication through mutual TLS (mTLS)
and integrates deeply with monitoring and logging tools to offer observability at scale.

24

Background

• Linkerd: a service mesh designed to simplify microservices management while
delivering essential features like secure service-to-service communication (mTLS),
observability, and traffic routing. It focuses on ease of use and performance, making
it ideal for less complex scenarios compared to other service meshes.

2.7.10 Workflow
All the resources in Kubernetes can be declared through YAML manifests, which contain
all the details regarding the specified resource, such as the number of replicas for a specific
pod, how it should be externally exposed, what ports should or can be used, and additional
configuration files. Other key fields are those related to the containers that are to be
deployed within the pod, to specify which image to use, details related to the privileges
the container must have, and the resources it can consume or needs. An example manifest
is provided by Listing 2.2.

Listing 2.2: Kubernetes YAML manifest example
1 apiVersion : apps/v1
2 kind: Deployment
3 metadata :
4 name: nginx - deployment
5 labels :
6 app: nginx
7 spec:
8 replicas : 3
9 selector :

10 matchLabels :
11 app: nginx
12 template :
13 metadata :
14 labels :
15 app: nginx
16 spec:
17 containers :
18 - name: nginx
19 image: nginx :1.21
20 ports:
21 - containerPort : 80
22 resources :
23 limits :
24 cpu: "0.5"
25 memory : "512 Mi"
26 requests :
27 cpu: "0.2"
28 memory : "256 Mi"
29 ---
30 apiVersion : v1
31 kind: Service
32 metadata :
33 name: nginx - service
34 spec:

25

Background

35 selector :
36 app: nginx
37 ports:
38 - port: 80
39 targetPort : 80
40 type: ClusterIP

The YAML manifest can then be applied to the cluster using the command provided
by the Kubectl command line tool for interacting with the cluster, which works by commu-
nicating with the Kubernetes API server, translating command-line instructions into API
calls that the cluster understands. The pattern used for the commands is the following:

kubectl [command] [resource] [name] [flags]

2.8 Network Service Mesh
Before describing what Network Service Mesh (NSM) it is necessary to introduce the
concept of workloads: a workload is a running application, and it is often executed in a
runtime domain associated with a connectivity domain. Each workload has a different
connectivity domain, however, it is common to have scenarios in which multiple workloads
are achieving the same objective but running in different runtime domains. These workloads
need to communicate with each other, and NSM allows us to overcome this challenge:
different workloads have a way to connect to the required services, regardless of the runtime
domain in which they are being run [19].

NSM is also runtime domain-independent and is complementary to the common service
mesh solutions mentioned previously like Istio or Likerd. This is because NSM operates at
a lower level, by focusing on traffic management, compared to the other mentioned service
meshes, which focus on application-level traffic. The integration of these different solutions
that operate at different levels of granularity allows for a fine-grained level of control over
a cluster to better manage pods and services.

2.8.1 Architecture

Below, the main elements that compose the architecture of NSM are described.

• Network Services, the set of features to which workloads can connect, including
connectivity, observability, and security. The network services allow for specifying
the type of traffic that the workload has to handle. The default type is IP.

• Network Service Endpoint, the pod where the service(s) is provided. When the
endpoint is deployed, its name, along with the list of the provided services and the
ones it needs to connect to, is logged into a registry.

• Network Service Registry, a registry where both network services and endpoints
are registered.

26

Background

• Network Service Client, workload that needs to connect to a given network service.
The client is authenticated and authorized before making the connection to the
service. The connection to the service is made through an annotation by which the
service is specified, the type of mechanism desired, and the name of the corresponding
interface that is then created.

• Network Service Manager, responsible for discovering Network Services and
Network Service Endpoints and processing requests from clients. It must be located
on the same machine as the NSM client to provide it with a connection to the NSM
network. It can also serve as a registry if there is no real registry.

• Forwarder Vector Packet Processor, uses the Vector Packet Processor Framework
(VPP) as a backend to create network interfaces. VPP is a fast, scalable layer 2-4
multi-platform network stack that runs in Linux userspace.

Figure 2.13: NSM architecture

As in figure 2.13, when an NSC requests a specific service, it must first pass through
an NSMGR. This component is responsible for authenticating both the client and the
request, thereby enhancing security. Typically, a separate NSM instance is deployed for
each node in the cluster. The Spiffe (Secure Production Identity Framework for Everyone)
and Spire (SPIFFE Runtime Environment) projects are leveraged to provide a robust
identity management infrastructure within distributed environments, such as Kubernetes.
These frameworks work in tandem to ensure secure communication between services.

Each NSC is typically assigned a unique identifier, known as a SPIFFE ID, which is
essential for identifying and distinguishing components within the system. During the
cluster configuration process, it is recommended to deploy dedicated components to manage
this authentication procedure. After the authentication process is completed, the NSM
determines the appropriate data plane to forward the request to, which is then processed
by the forwarder VPP.

Upon arrival at the forwarder, the request parameters must be registered within a
registry, including the service requested and the desired mechanism. Additional parameters,
such as the interface name, are also specified, and the corresponding service endpoints are
identified. Similarly, once the endpoint registers its available services within the registry, it
will proceed to select the mechanisms it supports. In the final step, both the NSC and NSE

27

Background

interfaces are created, and traffic is handled directly by the forwarder, which establishes a
tunnel between the two endpoints.

28

Chapter 3

Implementation

The subsequent section presents a formal abstraction model for Kubernetes resources aimed
at simplifying cluster orchestration and supporting migration across diverse technological
ecosystems (e.g., CNIs, Service Meshes, Security tools). To support this model, an
automated Python-based framework was developed, capable of analyzing Kubernetes
manifest data and performing configuration translation based on the abstraction. This
development was informed by a comparative analysis identifying key differentiators among
prevalent Kubernetes extension categories.

3.1 Comparative analysis
A comparison of some key characteristics is needed to provide a comprehensive overview
of the diverse landscape of Kubernetes network and security solutions. Tables 3.1, 3.2, 3.3,
and 3.4 present a simplified view of the comparative analysis of key functional categories.
The solutions reported in the comparison, listed below, have been chosen based on the
wide adoption they have reached in the Kubernetes ecosystem.

• Kube-router, a turnkey solution for Kubernetes networking that provides service
abstraction, support for network policies, and load-balancing functionality [20].

• Flannel, is a plugin focused on networking for providing a layer 3 IPv4 network
between multiple nodes in a cluster; it does not control how containers are networked
to the host, only how the traffic is transported between hosts [21].

• Cilium, a software for transparently securing the network connectivity between
application services deployed using Linux container management platforms; it is
based on eBPF, which enables the dynamic insertion of powerful security visibility
and control logic within Linux itself. [22].

• Calico, a networking and security solution that enables Kubernetes workloads and
non-Kubernetes/legacy workloads to communicate seamlessly and securely. Calico

29

Implementation

consists of networking to secure network communication, and advanced network
policy to secure cloud-native microservices/applications at scale [23].

• Weave Net, a CNI that creates a virtual network that containers across multiple
hosts and enables their automatic discovery; with Weave Net, portable microservices-
based applications consisting of multiple containers can run anywhere: on one host,
multiple hosts, or even across cloud providers and data centers [24].

• Romana, a network and security automation solution for cloud-native applications
that automates the creation of isolated cloud-native networks and secures applications
with a distributed firewall that applies access control policies consistently across all
endpoints and services [25].

• Network Service Mesh, a hybrid/multi-cloud IP Service Mesh enabling L3 Zero
Trust, per workload granularity, per Network Service Connectivity/Security/Observ-
ability, and interoperability with existing CNI [19].

• Istio, a service mesh that layers transparently onto existing distributed applications,
providing a uniform and more efficient way to secure, connect, and monitor services
with load balancing, service-to-service authentication, and monitoring [26].

• Cert-manager, a tool for managing TLS certificates for workloads in a cluster that
renews the certificates before they expire [27].

• OVN-Kubernetes, a project that provides a robust networking solution for Kuber-
netes clusters with Open Virtual Networking and Open Virtual Switch at its core that
enables fine-grained cluster egress traffic controls and advanced networking features
along with Kubernetes core networking conformance [28].

• KubeArmor, a cloud-native runtime security enforcement system that restricts the
behavior (such as process execution, file access, and networking operations) of pods,
containers, and nodes at the system level [29].

The comparative analysis utilizes functional categories chosen to provide a thorough
characterization of the internal attributes of each Kubernetes extension. The functional
categories are presented as follows.

• Data plane(s), describes the underlying technologies and mechanisms used by each
solution to handle packet forwarding and network traffic at the Data plane(s) level.
Understanding this is crucial to assess performance, efficiency, and compatibility with
different infrastructure environments.

• Control Plane(s), details the components and processes involved in the control
plane, which manages the network configuration, policy enforcement, and overall
orchestration. This highlights the architecture and complexity of each solution’s
management.

30

Implementation

• K8s Native Network Policy Support, indicates whether the solution natively
supports Kubernetes Network Policies, a fundamental feature for implementing
network segmentation and security within Kubernetes.

• Network Authorization Policy Support, explores the types of authorization poli-
cies supported, distinguishes between endpoint-based and identity-based approaches,
and highlights the level of access control.

• Load Balancing, describes the load balancing mechanisms provided by each solu-
tion, crucial for distributing traffic and ensuring application availability within the
Kubernetes cluster.

• Security features, summarizes the security features offered by each solution, encom-
passing aspects such as encryption, access control, and specific security policies. This
is particularly important for assessing the security posture of applications deployed
in Kubernetes.

• Network Isolation, examines the level of network isolation provided, from basic
segmentation to more advanced, identity-based isolation, which is essential for multi-
tenancy and security in complex deployments.

• Packet Filtering, focuses on the packet filtering capabilities, indicating the layers at
which filtering can be performed (e.g., Layer 3, Layer 4, Layer 7) and the granularity
of control.

Kube-router
Data plane(s). Kube-router makes use of the Linux kernel’s IP Virtual Server (IPVS),
Linux Virtual Server (LVS), iptables, ipset, and BGP. IPVS/LVS is used for service
proxying, while iptables and ipset are used for implementing network policies. BGP is
used for inter-node pod-to-pod communication. For pods residing on the same node,
communication typically occurs through a local bridge interface. When traffic needs to
traverse between pods on different nodes, the BGP-learned routes in the node’s routing table
ensure that the packets are forwarded to the correct destination node. Communication with
Kubernetes Services is handled by Kube-router’s service proxy, which utilizes IPVS/LVS for
layer 4 load balancing. Traffic destined for a Service’s ClusterIP or NodePort is intercepted
and load-balanced across the backend pods that implement the service.

Control plane(s). The Network Services Controller monitors Kubernetes Services and
Endpoints. When a new Service is created or an existing Service is updated, this controller
reads the relevant information from the Kubernetes API server and configures IPVS on
each node in the cluster. The Network Policy Controller is responsible for implementing
Kubernetes Network Policies. This controller watches for changes in namespaces, network
policies, and pods in the Kubernetes API. Based on the defined network policies, the
controller configures iptables rules on each node to provide ingress filtering to the pods.
The Network Routes Controller manages the routing of network traffic between pods across

31

Implementation

different nodes. This controller monitors the pod CIDR allocated to each node by the
Kubernetes controller manager. For each node, the NRC advertises the allocated pod
CIDR to the rest of the nodes in the cluster using BGP.

K8s Native Network Policy Support. Kubernetes Network Policies are fully sup-
ported. The Network Policy Controller within Kube-router is responsible for watching for
NetworkPolicy objects and associated pods, and then translating these policies into the
appropriate iptables rules and ipset configurations on each node.

Network Authorization Policy Support. Kube-router does not directly support
authorization policies, though these are provided through Kubernetes Network Policies.

Load Balancing. Kube-router offers Layer 4 load-balancing through the use of IPVS/LVS.
Kube-router also supports advanced load balancing features like Direct Server Return
(DSR). Kube-router primarily operates in IPVS masquerading mode. This means that
when traffic from a client (either internal or external) reaches the IPVS virtual service, the
destination IP address is translated to the IP address of one of the backend pods. In DSR
mode, the load balancer forwards the initial request to a backend server, but the server
responds directly to the client, bypassing the load balancer for the return traffic.

Security features. Kube-router includes a built-in Network Policy Controller which
actively monitors the Kubernetes API server for NetworkPolicy objects and updates
related to Pods. Upon detecting these changes, the controller translates the high-level
network policies defined in Kubernetes into low-level rules within the Linux kernel’s
firewalling system, configuring iptables rules and ipset configurations. Kube-router also
supports MD5 password-based authentication as an advanced BGP capability, adding a
layer of security to the routing control plane.

Network Isolation. Basic isolation support through the use of Kubernetes network
policies.

Packet Filtering. Basic packet filtering based on Kubernetes network policies.

Flannel

Data plane(s). VxLAN operates by encapsulating Layer 2 Ethernet frames within
Layer 3 UDP packets, allowing the creation of an overlay network that can traverse any IP
network. This “L2 over L3” capability makes VxLAN highly adaptable to various network
environments, including cloud platforms where direct Layer 2 connectivity between nodes is
not always available. Host-GW backend offers an alternative approach by directly updating
the routing table of each host to facilitate inter-pod communication. When a pod on one
node needs to communicate with a pod on another, Flannel adds a route on the source

32

Implementation

node that directs traffic destined for the remote pod’s subnet to the IP address of the
destination node. The WireGuard backend leverages the Linux kernel’s native WireGuard
VPN capabilities to establish secure tunnels between nodes. This backend encapsulates the
traffic and encrypts it, providing enhanced security for inter-pod communication. The UDP
backend encapsulates IP packets within UDP datagrams but performs this encapsulation
and decapsulation in user space, which can introduce significant performance overhead.

Control plane(s). The flanneld agent runs as a daemon on each host in the Kubernetes
cluster. Its key responsibilities include allocating a unique subnet lease to the local host
from the preconfigured address space. This involves communicating with the chosen
backing store (etcd or Kubernetes API) to request and obtain a non-overlapping subnet.
The flanneld agent also monitors the backing store for subnet information related to
other hosts in the cluster, synchronizing this data locally to maintain awareness of the
entire network topology. Furthermore, flanneld configures the local network stack on
each node.

K8s Native Network Policy Support. Not supported.

Network Authorization Policy Support. Not supported.

Load Balancing. Not supported.

Security features. Both WireGuard and IPsec encryption methods are supported.

Network Isolation. Flannel, when configured with an overlay network backend like
VxLAN, inherently provides a degree of network isolation. By encapsulating pod traffic
within UDP packets and using a virtual network identifier (VNI), the overlay network
creates a logical boundary that separates the pod network from the underlying physical
network infrastructure.

Packet Filtering. Not supported.

Cilium

Data plane(s). based on Extended Berkeley Packet Filter (eBPF), a Linux kernel
technology that permits the dynamic insertion of bytecode at various integration points
within the kernel. Cilium forwards network traffic through a simple, flat Layer 3 network
that can seamlessly span multiple Kubernetes clusters. This is achieved through the
support of both native routing and overlay networking modes. In native routing mode,
Cilium leverages the regular routing table of the Linux host, requiring the underlying
network infrastructure to be capable of routing the IP addresses assigned to application
containers, while overlay mode employs encapsulation-based virtual networks, such as

33

Implementation

VxLAN and Generic Network Virtualization Encapsulation (GENEVE), to span across all
hosts. The latter approach has minimal infrastructure requirements, needing only basic IP
connectivity between hosts.

Control plane(s). The Cilium Agent is a crucial component of the control plane,
running as a daemon on each node within the Kubernetes cluster. This agent is responsible
for writing CiliumEndpoint and CiliumIdentity custom resources to the Kubernetes
API server, representing the network information and security identity of pods running
on its node. It also updates the eBPF maps on the node, ensuring that the Data
plane(s) enforce the correct policies based on these identities and endpoints. The Cilium
Operator serves as a cluster-wide management component, automating various tasks
related to Cilium’s operation. It also handles the lifecycle of Cilium custom resources,
such as CiliumNetworkPolicy and CiliumClusterwideNetworkPolicy. The Cilium CLI
provides a command-line interface that allows administrators and developers to interact
with the Cilium API server.

K8s Native Network Policy Support. Cilium fully implements the standard Ku-
bernetes NetworkPolicy specification, meaning that any network policies already defined
within a Kubernetes cluster will function as expected without requiring any modifications
when Cilium is deployed. Cilium translates the high-level declarative network policies
defined in Kubernetes into low-level eBPF programs that are then loaded directly into the
Linux kernel on each node.

Network Authorization Policy Support. Cilium’s network authorization policies
heavily leverage the concept of identity-based security. Instead of relying on IP addresses,
which can be dynamic and difficult to manage in Kubernetes, Cilium assigns a security
identity to each group of application containers (pods) based on their associated labels.
Policies are then defined based on these identities, specifying which identities are allowed
to communicate with each other.

Load Balancing. for traffic entering or leaving the cluster, Cilium’s eBPF implementa-
tion can be attached to eXpress Data Path (XDP) for extremely fast packet processing.
It also supports Direct Server Return (DSR) and Maglev consistent hashing when the
load balancing operation is not performed on the source host, further enhancing efficiency
and scalability. In multi-cluster environments managed by Cilium’s Cluster Mesh, global
service load balancing is also supported.

Security features. Cilium’s approach to Layer 3 and Layer 4 network policy en-
forcement is based on an identity-based security model that leverages Kubernetes la-
bels. Labels offer more stability compared to transient IP addresses, ensuring that
security rules remain effective even as the underlying infrastructure changes. These
policies are implemented through Kubernetes CRDs, namely CiliumNetworkPolicy and
CiliumClusterwideNetworkPolicy, which extend the capabilities of standard Kubernetes

34

Implementation

Network Policies. Cilium also supports traditional CIDR-based security policies for man-
aging access to and from external services. To enforce these Layer 7 policies, Cilium can
examine the content of network packets at the application level and filter traffic based
on HTTP methods, paths, headers, and DNS. For advanced Layer 7 policy requirements,
Cilium integrates with Envoy proxy, which is then responsible for enforcing the more
intricate Layer 7 rules. Cilium offers transparent encryption support through the use
of either WireGuard or IPsec. When WireGuard is enabled, the agent running on each
cluster node establishes secure WireGuard tunnels with all other known nodes in the
cluster. This process is automated, with each node generating its encryption key pair and
securely distributing its public key via Kubernetes annotations on the CiliumNode custom
resource object. These public keys are then used by other nodes to encrypt and decrypt
traffic originating from and destined to Cilium-managed endpoints running on those nodes.
Configuring IPsec encryption within Cilium involves the use of Kubernetes secrets to
manage and distribute pre-shared keys (PSKs). The process begins with generating a
strong, random PSK that is then stored as a Kubernetes secret within the same namespace
as the Cilium deployment. The Cilium agents, running as pods on each node, are configured
to mount this secret, allowing them to access the necessary IPsec configuration. Cilium
also offers real-time visibility network observability through Hubble, offering the possibility
to interact with the collected data using a command-line interface or a user interface.
Cilium also offers a valuable feature called Policy Audit Mode. When enabled, this mode
allows all network traffic to pass through without being blocked by network policies, but it
logs all connections that would have been dropped if the policies were in full enforcement
mode.

Network Isolation. By implementing policies that initially block all ingress and egress
traffic for specific pods or namespaces, it is possible to allow only the necessary communi-
cation paths selectively. Policies can also be defined based on pod labels, allowing for the
isolation of individual applications or microservices even within the same cluster network.
Cilium also supports network segmentation using multi-network configurations. This
feature allows connecting pods to multiple network interfaces, enabling the segregation of
traffic based on different security or functional requirements.

Packet Filtering. Cilium packet filtering is based on the network policies to filter
at layers 3 and 4 for traditional network parameters such as source and destination IP
addresses, ports, and protocols (TCP, UDP, etc.), and at layer 7 for application-level
protocol data. Furthermore, policies are often defined based on the security identity of the
source and destination endpoints, allowing Cilium to filter packets based on the labels and
metadata associated with the communicating pods.

Calico

Data plane(s). Calico makes use of both iptables for high-performance IP forwarding
and ipsets for efficient firewall routing. Calico Enterprise also supports eBPF for enhanced

35

Implementation

performance, lower latency, and features that are not feasible with iptables, and the signifi-
cant advantage of replacing the functionality of Kubernetes kube-proxy with native service
handling. For Kubernetes clusters running on Windows nodes, Calico provides support for
the Host Network Service (HNS). Additionally, Calico supports an integration with Vector
Packet Processing (VPP) to accelerate the networking performance of Kubernetes clusters
utilizing Calico significantly.

Control plane(s). Felix is a central agent that runs as part of the calico-node daemonset
on each node in the Kubernetes cluster. It is responsible for managing all other Calico
components on the node and for offering networking, network policy, and IP address
management capabilities. The BGP client (BIRD) retrieves the routes inserted by Felix
and distributes them to other nodes within the Calico deployment. confd is responsible
for monitoring the Calico datastore for any changes related to BGP configuration and
global default settings. The Calico API server provides a Kubernetes-native interface for
managing Calico resources directly using the kubectl command-line tool. calicoctl is a
command-line interface specifically designed for creating, reading, updating, and deleting
Calico objects.

K8s Native Network Policy Support. Calico offers full support for the enforcement
of native K8s network policies. Also, for broader, cluster-wide default deny requirements,
Calico GlobalNetworkPolicy does exist.

Network Authorization Policy Support. Calico network policies can be applied to
multiple types of endpoints, including pods, virtual machines, and host interfaces. Also,
one key enhancement is the ability to define policy ordering and priority. Calico network
rules support Allow, Deny, Pass, and Log actions.

Load Balancing. Calico does not directly implement load balancing. The Calico Ingress
Gateway is based on Envoy, which provides a standardized and vendor-neutral approach
to managing external traffic entering a Kubernetes cluster.

Security features. Calico network policies can be applied to a broader range of endpoints
compared to native network policies. Furthermore, Calico introduces enhancements such
as the ability to define the order or priority in which policies are evaluated, the inclusion of
explicit deny rules, and more flexible options for matching network traffic. Calico provides
the GlobalNetworkPolicy CRD to apply network policy to the entirety of the cluster
instead of being namespace-restricted. Calico also presents the concept of policy tears.
These tiers provide an additional layer of organization and ordering for global policies.
When a policy with a Pass action matches traffic, instead of immediately allowing or
denying the traffic, it skips the remaining policies within the current tier and proceeds to
evaluate policies in the next tier. Calico leverages labels and namespaces to implement
dynamic segmentation policies, so that they are not tied to static IP addresses, which can
change frequently in dynamic container environments. Within a policy, Calico offers the

36

Implementation

possibility to filter both Layer 3/4 packets (TCP, UDP, ICMP, CIDR rules) and Layer 7
ones (HTTP, DNS). Calico supports WireGuard encryption on the host-to-host portion of
the network path. This means that when a pod on one node communicates with a pod on
another node, the traffic is encrypted as it travels between the underlying host machines,
but the traffic between a pod and the host it resides on remains unencrypted. Furthermore,
Calico supports the Log actions to record network events that are filtered based on the
specified rules in a policy.

Network Isolation. Calico’s network isolation feature is provided by the network
policies, offering namespace, pod, and host isolation. Also, Network Segmentation can be
achieved in Calico by using its IP Address Management (IPAM) capabilities in conjunction
with network policies to divide a large network CIDR into smaller blocks of IP addresses
and assign these blocks to different nodes in the cluster.

Packet Filtering. Felix, the Calico agent running on each node, is responsible for
programming the necessary iptables and ipsets rules based on the defined network policies.
Calico also offers an eBPF-based filtering mechanism.

Weave Net

Data plane(s). Layer 2 overlay achieved through UDP encapsulation. It operates in
two modes. Sleeve mode, operating in user space, captures network packets on the Linux
bridge using pcap devices and encapsulates them within UDP via the wRouter component.
Fastpath mode operates within the kernel space, utilizing Open vSwitch’s (OVS) odp for
VxLAN encapsulation and forwarding. Instead of directly forwarding packets, the wRouter
manages them through odp flow tables, significantly boosting throughput.

Control plane(s). There are wRouters on each host to establish full mesh TCP links
with one another. These links are the foundation for synchronizing control information
using a Gossip protocol, a distributed communication method used in networking and
distributed systems that allows nodes to exchange information with randomly selected peers
periodically, making information propagate exponentially through the network without
central coordination.

K8s Native Network Policy Support. Weave Net provides support for Kubernetes
native network policy enforcement thanks to the Network Policy Controller (weave-npc),
which actively monitors the Kubernetes API for any NetworkPolicy objects defined within
the cluster.

Network Authorization Policy Support. Not supported.

37

Implementation

Load Balancing. Weave Net implements weaveDNS, an integrated DNS-based load
balancer, facilitating dynamic service discovery and load balancing by distributing DNS
queries for a given service name across the IP addresses of the underlying containers using
a round-robin strategy.

Security features. Weave Net utilizes NaCl encryption for sleeve traffic, which operates
in user space, and IPsec ESP encryption for fast datapath traffic, which operates in kernel
space. As previously discussed, Weave Net also offers full support for Kubernetes native
network policies.

Network Isolation. Basic network isolation is provided by network policies. Weave Net
also offers the “isolation-through-subnets” technique, which enables the hosting of multiple
isolated applications on a single Weave network by creating separate subnetworks within
the overlay.

Packet Filtering. Basic packet filtering is supported based on network policies. In
Fastpath mode, Weave Net also utilizes the Open vSwitch (OVS) datapath for packet
forwarding. OVS offers more advanced packet filtering.

Romana

Data plane(s). Romana handles traffic employing a fully routed network model in
which each endpoint is assigned a real, routable IP address. These addresses are configured
directly on the underlying cluster hosts. Romana supports a topology-aware IPAM system
to assign IP addresses based on an understanding of the underlying network topology,
including the arrangement of hosts, racks, and availability zones.

Control plane(s). romana-etcd provides the crucial function of accessing etcd storage.
The romana-daemon is a central, long-running service that acts as the core orchestrator
for the entire Romana system. The romana-listener is a specialized background service
designed to monitor the stream of events originating from the Kubernetes API Server.
romana-agent is a local agent that runs on all Kubernetes nodes. It installs the CNI tools
and configuration necessary to integrate Kubernetes CNI mechanics with Romana and
manages node-specific configuration for routing and policy.

K8s Native Network Policy Support. Full support for native Kubernetes network
policies is offered by bridging the gap between Kubernetes’ policy model and its internal
mechanisms by seamlessly translating the Kubernetes NetworkPolicy objects into its
internal policy format.

Network Authorization Policy Support. Not supported.

38

Implementation

Load Balancing. Not supported.

Security features. The topology-aware IP Address Management (IPAM) system assigns
natively routable IP addresses to endpoints, eliminating the need for overlays or tunnels.
Network isolation in Romana is primarily achieved through the implementation of iptables
Access Control Lists (ACLs), which are configured based on the defined network policies.

Network Isolation. Romana provides network policy-based isolation, also supported
by topology-aware IPAM.

Packet Filtering. Packet filtering in Romana is handled with network policies.

Network Service Mesh

Data plane(s). The Forwarder is responsible for creating and managing both client-side
and endpoint-side network interfaces, selecting the appropriate connection mechanisms
to facilitate communication, collecting operational statistics from these interfaces, and
performing load balancing for multiple endpoints that provide the same Network Service.
The vWire represents a bidirectional, virtual connection established between a Network
Service Client (NSC) and a Network Service Endpoint (NSE) and serves as the dedicated
pathway for all communication between the connected client and endpoint.

Control plane(s). The Network Service Manager (NSMGR) is the primary control
entity on each node. When an NSC requests a connection to a Network Service, the local
NSMGR accepts this request and queries the API Server, which serves as the service
registry, for available NSEs. The Network Service Registry (NSR) is a central component
that stores information about all the key elements of the NSM infrastructure, including
the defined Network Services, the registered Network Service Endpoints, and the running
NSMGR instances. For seamless integration with Kubernetes environments, NSM includes
an Admission Webhook. This Kubernetes component automatically injects NSCs into
Kubernetes pods based on specific NSM annotations present in the pod or namespace
specifications.

K8s Native Network Policy Support. Not supported.

Network Authorization Policy Support. authorization mechanism based on workload
identity, leveraging the same Spiffe ID that is used for Layer 7 communication and extending
this framework of cryptographic identity-based auditability down to Layer 3 of the network
stack. Whether a client is permitted to establish a connection to a specific Network Service
is determined by defined policies.

Load Balancing. depends on the specific implementation.

39

Implementation

Security features. NSM enforces the Zero Trust principle by default, mandating verifi-
cation for every connection and transaction and granting users and services the minimum
necessary access to perform their functions. Each NSC is independently authenticated with
SPIFFE ID and must be explicitly authorized to establish a connection with the desired
Network Service. The vWire between an NSC and an NSE ensures that network traffic
originating from a specific client is exclusively routed to its intended endpoint and vice
versa. NSM also makes use of mTLS to verify the identity of the communicating parties
and ensure that the data exchanged is protected from eavesdropping and tampering. NSM
allows for the creation of multiple independent and mutually unaware Registry Domains.
Each Registry Domain can manage its own set of Network Services and Endpoints, pro-
viding a form of administrative isolation between different groups of services or tenants.
Furthermore, NSM allows for the composition of security features into Network Services,
e.g., an Intrusion Prevention System (IPS) can be selectively inserted into the traffic
path between clients and the virtual L3 network based on client labels, offering enhanced
security for specific communication flows.

Network Isolation. vWires an isolated Layer 3 connection dedicated to a specific NSC
and NSE. NSM also achieves network isolation by decoupling Network Services from the
underlying Runtime Domain, allowing workloads from different environments, such as
separate companies connected to a shared NSM, to collaborate on specific tasks without
exposing their entire network infrastructure. NSM also supports the deployment of multiple
independent Registry Domains to create logical isolation boundaries between different sets
of services or tenants.

Packet Filtering. depends on the specific implementation.

Istio

Data plane(s). Istio data plane is composed of Envoy proxies, which are deployed as
sidecars alongside each microservice instance. These proxies intercept and control all
network communication between the microservices within the mesh, and collect and report
telemetry data on all mesh traffic.

Control plane(s). Istiod offers service discovery, configuration management, and cer-
tificate management. It takes high-level routing rules that control traffic behavior and
translates them into Envoy-specific configurations, which are then propagated to the
sidecar proxies at runtime. Pilot monitors the high-level routing rules and security policies
configured within Istio and translates them into low-level instructions that each Envoy
proxy can understand and enforce. Citadel focuses on ensuring the security of the service
mesh. It oversees security policies for Envoy proxies, handling tasks such as user authen-
tication, certificate management, and ensuring the encryption of network data through
mTLS. Galley acts as the configuration validation, ingestion, processing, and distribution
component.

40

Implementation

K8s Native Network Policy Support. Not supported.

Network Authorization Policy Support. Authorization rules in Istio are specified
using a specific CRD, AuthorizationPolicy, and operate at Layer 7. By default, if no
AuthorizationPolicy is applied to a workload, all requests to that workload are allowed.
Istio Authorization Policies support both ALLOW and DENY actions, as well as AUDIT and
custom actions to allow integration of external authorization systems or custom logic.

Load Balancing. Different load balancing algorithms are supported. By default, Istio
employs a least requests load balancing policy, where traffic is sent to the instance with
the fewest active requests, aiming to distribute the load evenly. Other strategies available
are round-robin, random, consistent hash, e.g...

Security features. Istio automatically enables mTLS encryption for all communication
within the service mesh to ensure that all data transmitted between services is encrypted
in transit. Istio also provides identity management with X.509 certificates formatted
according to the SPIFFE standard. Istio uses the AuthorizationPolicy resource to
define access rules, specifying the selector, an action (ALLOW, DENY, AUDIT), and the
rules to enforce, then the Envoy sidecar proxies evaluate these policies for every incoming
request and enforce the decision. Istio also supports the PeerAuthentication resource for
authentication, by specifying the selector and the mTLS mode (PERMISSIVE, STRICT,
DISABLE).

Network Isolation. Sidecar configurations can be used to limit the reachability of
services and fine-tune the set of ports and protocols that an Envoy proxy will accept.
These configurations can be applied to all workloads within a specific namespace or targeted
to particular workloads using workload selectors based on labels.

Packet Filtering. Packet filtering is handled by Envoy proxies.

Cert-manager

Data plane(s). Cert-manager does not implement a data plane; instead, it extends the
Kubernetes API by using CRDs to define certificate authorities (Issuers and ClusterIssuers)
and to manage certificate requests through the Certificate resource.

Control plane(s). The Controller takes actions to ensure the desired state is maintained,
driving the certificate issuance and renewal processes. The Webhook acts as an admission
controller, validating and defaulting Cert-manager API resources upon creation or update.
cainjector monitors Kubernetes Secrets containing CA certificates and ensures that other
resources, such as deployments and stateful sets that rely on these CA certificates for trust,
are automatically updated when the CA certificate changes. acmesolver handles challenges

41

Implementation

required by ACME-based Issuers. startupapicheck runs at the startup of Cert-manager
components to verify that the Cert-manager API is available and functioning correctly.

K8s Native Network Policy Support. Not supported.

Network Authorization Policy Support. The optional CertificateRequestPolicy
custom resource to automatically approve or deny CertificateRequests based on specific
criteria is supported.

Load Balancing. Not supported.

Security features. Cert-manager extends the Kubernetes API by introducing several
CRDs, such as Certificate, Issuer, ClusterIssuer, CertificateRequests to define
the desired state of certificates and the sources from which they should be obtained.
Cert-manager securely manages and stores sensitive information, primarily private keys
and issued certificates, within Kubernetes Secrets, which provide a secure mechanism for
holding sensitive information within the cluster. When Cert-manager issues a certificate,
the resulting private key and signed certificate are stored as key-value pairs within a
Secret in the same namespace as the corresponding Certificate resource. Beyond the
use of Kubernetes Secrets, Cert-manager also supports alternative methods for private key
storage through Container Storage Interface (CSI) drivers. When these drivers are used,
the private key is generated on-demand, just before the application starts, and it never
leaves the node where the application pod is running. The Cert-manager webhook operates
as an admission controller within Kubernetes, intercepting requests to the Kubernetes API
server for the creation or modification of Cert-manager resources. The webhook requires a
TLS certificate that the API server trusts to establish a secure HTTPS connection.

Network Isolation. Cert-manager can be configured to use namespace-scoped Issuer
resources, providing isolation between different namespaces and ensuring that certificates
are only issued within the intended scope.

Packet Filtering. Not supported.

OVN-Kubernetes

Data plane(s). The main component is Open vSwitch (OVS), which is responsible
for making packet forwarding decisions based on a set of rules defined by the OpenFlow
protocol. For communication between nodes in the cluster, OVN-Kubernetes utilizes
Generic Network Virtualization Encapsulation (GENEVE) tunnels to create an overlay
network.

42

Implementation

Control plane(s). in the centralized control plane setup, the ovn-kube-master runs on
the Kubernetes control plane nodes, monitoring objects like namespaces, pods, services, and
network policies from the API; it converts these changes into OVN logical entities (switches,
routers, ACLs) and stores them in the Northbound Database (NBDB). Meanwhile, the
Southbound Database (SBDB) maintains network state and switch port bindings for OVS,
with ovn-northd translating NBDB entries into SBDB data. The ovn-kube-cluster-manager,
running in the ovn-kube-control-plane pod, oversees cluster-wide tasks. In the interconnect
(distributed) control plane setup, the NBDB/SBDB are hosted on each worker node within
the ovn-kube-node pod. Here, ovn-kube-controller takes on the node-specific responsibilities
of ovn-kube-master, watching local Kubernetes objects, translating them into OVN entities,
and storing them in the local NBDB, while allocating pod IP addresses. A local northd
translates these entries into logical flows in the local SBDB, and ovn-controller on each node
retrieves the flows. Though distributed, cluster-wide configurations remain coordinated
through the ovn-kube-cluster-manager.

K8s Native Network Policy Support. the OVN-Kubernetes controller watches for
changes to NetworkPolicy resources in the Kubernetes API server. When a new network
policy is created or an existing one is updated, the controller translates the policy into
corresponding OVN ACL rules, which are stored in the NBDB. The OVN controller
running on each node reads the ACL rules from the SBDB.

Network Authorization Policy Support. Not supported.

Load Balancing. OVN-Kubernetes directly implements Kubernetes Services and support
for EndpointSlices using its own native OVN Load Balancers to ensure efficient routing
of traffic for both internal communication between pods within the cluster and external
traffic destined for services exposed outside the cluster.

Security features. OVN-Kubernetes implements Kubernetes Network Policies through
OVN ACLs, which allows for fine-grained control over network traffic at the pod level.
Each new NetworkPolicy in OVN-Kubernetes leads to the creation of a port group, and
pods matching the policy’s podSelector are added to this group. Subsequently, ACLs are
applied to these port groups to enforce the defined rules. OVN-Kubernetes supports the
encryption of network traffic within the cluster using IPsec in Transport mode, encrypting
the payload of the IP packet. In “Full” mode, all pod-to-pod traffic between nodes is
encrypted, and optionally, traffic to external hosts can also be encrypted after additional
configuration. “External” mode allows for encrypting only traffic destined for external IPsec
endpoints. OVN also leverages Kubernetes RBAC to control access to network-related
resources and can be configured to log network traffic, providing visibility into network
activity.

Network Isolation. OVN’s logical networks allow each namespace to have its log-
ical switches and routers. Kubernetes Network Policies, translated into OVN ACLs,

43

Implementation

let administrators define allowed communication paths with fine-grained control. Also,
GENEVE-based overlay networking additionally encapsulates pod traffic, isolating it from
the physical network.

Packet Filtering. ACLs can be configured to filter network traffic based on a wide
range of criteria, including source and destination IP addresses, port numbers, and network
protocols.

KubeArmor

Data plane(s). KubeArmor utilizes eBPF to observe and intercept system calls made by
containers and pods. This allows it to monitor network-related system calls like connect(),
bind(), listen(), accept(), etc., without requiring modifications to the application code
or the container image. KubeArmor integrates with Linux Security Modules (LSMs) such
as AppArmor, SELinux, and BPF-LSM. When a network-related system call is made,
KubeArmor’s eBPF probes can trigger policy checks against these LSMs. Based on the
defined policies, the LSM can either allow or deny the operation.

Control plane(s). The KubeArmor Controller runs as a deployment within the Ku-
bernetes cluster and watches for the creation, update, and deletion of KubeArmor policy
CRDs. When changes occur, the controller translates these policies into eBPF and LSMs.
The KubeArmor Agent runs as a DaemonSet on each node in the cluster and is responsible
for receiving policy updates from the KubeArmor Controller, loading and enforcing the
policies using eBPF and configuring the relevant LSMs, monitoring system events, and
providing logs and telemetry data.

K8s Native Network Policy Support. Not supported.

Network Authorization Policy Support. KubeArmor supports its form of network
authorization policy through its KubeArmorPolicy CRD that allows defining policies with
criteria based on process identity, destination IP address, protocol and port, and system
call type.

Load Balancing. Not supported.

Security features. KubeArmor defines different CRDs to cover different needs. The
command KubeArmorPolicy enforeces policies on pods, KubeArmorHostPolicy focuses
on the host machines, and KubeArmorClusterPolicy can be used to apply cluster-wide
policies. These policies allow to application of restrictions on process execution, file access,
(basic) network activity, and system calls usage. KubeArmor policies allow setting Allow,
Deny, or Audit actions when the specified condition in the policy is met. The Audit mode
allows for recording events without blocking them.

44

Implementation

Network Isolation. by controlling network-related system calls, KubeArmor can pre-
vent containers from establishing unauthorized network connections, thus isolating them
from unintended targets. KubeArmor can also enforce policies at the host level via the
KubeArmorHostPolicy.

Packet Filtering. Not supported.

45

Implementation

C
at

eg
or

y
K

ub
e-

ro
ut

er
Fl

an
ne

l
C

ili
um

D
at

a
pl

an
e(

s)
IP

V
S,

ip
ta

bl
es

,I
P

R
ou

tin
g

V
xL

A
N

,U
D

P,
H

os
t-

G
W

,W
ire

G
ua

rd
eB

PF

C
on

tr
ol

pl
an

e(
s)

N
et

wo
rk

R
ou

te
s

C
on

tr
ol

le
r,

N
et

wo
rk

Po
lic

y
C

on
tr

ol
le

r,
Se

rv
ic

e
Pr

ox
y

C
on

tr
ol

le
r

fla
nn

el
d

da
em

on
,

et
cd

,K
8s

A
PI

s
C

ili
um

A
ge

nd
,C

ili
um

O
pe

ra
to

r,
C

ili
um

C
LI

,C
ili

um
C

N
I,

H
ub

bl
e

K
8s

na
tiv

e
ne

tw
or

k
po

lic
y

su
pp

or
t

Ye
s

-
Ye

s

N
et

wo
rk

au
th

or
iz

at
io

n
po

lic
y

su
pp

or
t

-
-

Id
en

tit
y-

ba
se

d.
R

BA
C

su
pp

or
t

Lo
ad

ba
la

nc
in

g
D

SR
,I

PV
S/

LV
S

-
X

D
P

an
d

D
SP

fo
r

in
tr

a-
cl

us
te

r,
C

ili
um

C
lu

st
er

M
es

h
fo

r
in

te
r-

cl
us

te
r

Se
cu

rit
y

fe
at

ur
es

N
et

wo
rk

po
lic

ie
s

an
d

BG
P

W
ire

G
ua

rd
,I

Ps
ec

L3
,L

4
an

d
L7

ru
le

s.
Id

en
tit

y-
ba

se
d

po
lic

ie
s.

IP
se

c
an

d
W

ire
G

ua
rd

en
cr

yp
tio

n
fo

r
no

de
-t

o-
no

de
tr

affi
c.

Fi
ne

-g
ra

in
ed

co
nt

ro
l

N
et

wo
rk

iso
la

tio
n

Ba
sic

Ba
sic

Id
en

tit
y-

ba
se

d
iso

la
tio

n
an

d
se

cu
rit

y
gr

ou
ps

Pa
ck

et
fil

te
rin

g
Ba

sic
-

Id
en

tit
y-

ba
se

d,
L3

/4
/7

an
d

X
D

P-
ac

ce
le

ra
te

d
fil

te
rin

g

T
ab

le
3.

1:
C

om
pa

ris
on

ta
bl

e
1

46

Implementation

C
at

eg
or

y
C

al
ic

o
W

ea
ve

N
et

R
om

an
a

D
at

a
pl

an
e(

s)
ip

ta
bl

es
,i

ps
et

s,
W

in
do

w
s

H
N

S,
eB

PF
,V

PP
La

ye
r

2,
U

D
P

en
ca

ps
ul

at
io

n,
Sl

ee
ve

an
d

Fa
st

pa
th

m
od

e
R

ou
te

d
ne

tw
or

k
m

od
el

IP
A

M

C
on

tr
ol

pl
an

e(
s)

Fe
lix

D
ae

m
on

,c
on

fd
,

BI
R

D
,c

al
ic

oc
tl

w
R

ou
te

rs
,G

os
sip

pr
ot

oc
ol

ro
m

an
a-

et
cd

,r
om

an
a-

da
em

on
ro

m
an

a-
lis

te
ne

r,
ro

m
an

a-
ag

en
t

K
8s

na
tiv

e
ne

tw
or

k
po

lic
y

su
pp

or
t

Ye
s

Ye
s

Ye
s

N
et

wo
rk

au
th

or
iz

at
io

n
po

lic
y

su
pp

or
t

En
dp

oi
nt

-b
as

ed
,o

rd
er

in
g,

pr
io

rit
y,

ac
tio

ns
-

-

Lo
ad

ba
la

nc
in

g
-

we
av

eD
N

S
-

Se
cu

rit
y

fe
at

ur
es

Fi
ne

-g
ra

in
ed

co
nt

ro
l,

D
ef

au
lt-

de
ny

be
ah

vi
ou

r

Tr
affi

c
en

cr
yp

tio
n,

ac
ce

ss
co

nt
ro

l,
au

th
en

tic
at

io
n

an
d

au
th

or
iz

at
io

n
Fi

re
wa

lli
ng

,t
op

ol
og

y-
aw

ar
e

IP
A

M

N
et

wo
rk

iso
la

tio
n

N
et

wo
rk

po
lic

ie
s

V
irt

ua
lo

ve
rla

y
ne

tw
or

k
N

et
wo

rk
po

lic
y-

ba
se

d
to

po
lo

gy
-a

wa
re

IP
A

M

Pa
ck

et
fil

te
rin

g
W

or
kl

oa
d

En
dp

oi
nt

s,
Po

lic
y

En
fo

rc
em

en
t

N
et

wo
rk

po
lic

y-
ba

se
d,

O
V

S
N

et
wo

rk
po

lic
y-

ba
se

d

T
ab

le
3.

2:
C

om
pa

ris
on

ta
bl

e
2

47

Implementation

C
at

eg
or

y
N

et
wo

rk
Se

rv
ic

e
M

es
h

Is
tio

C
er

t-
m

an
ag

er
D

at
a

pl
an

e(
s)

Fo
rw

ar
de

r,
vW

ire
En

vo
y

Pr
ox

ie
s

In
te

ra
ct

io
n

w
ith

K
8s

A
PI

C
on

tr
ol

pl
an

e(
s)

N
SM

G
R

,N
SR

,A
dm

iss
io

n
W

eb
ho

ok
Is

tio
d

w
ith

Pi
lo

t
an

d
C

ita
de

l

C
on

tr
ol

le
r,

W
eb

ho
ok

,
ca

in
je

ct
or

,a
cm

es
ol

ve
r

st
ar

tu
pa

pi
ch

ec
k

K
8s

na
tiv

e
ne

tw
or

k
po

lic
y

su
pp

or
t

-
-

-

N
et

wo
rk

au
th

or
iz

at
io

n
po

lic
y

su
pp

or
t

Sp
iff

e
ID

,p
ol

ic
y-

dr
iv

en
A

ut
ho

ria
zi

on
eP

ol
ic

y
C

R
D

O
pt

io
na

l
C

er
tifi

ca
te

R
eq

ue
st

Po
lic

y

Lo
ad

ba
la

nc
in

g
D

ep
en

di
ng

on
im

pl
em

en
ta

tio
n

Bu
ilt

-in
tr

affi
c

m
an

ag
em

en
t

fe
at

ur
es

-

Se
cu

rit
y

fe
at

ur
es

Pe
r-

wo
rk

lo
ad

gr
an

ul
ar

ity
,S

pi
ffe

ID
,

ad
di

tio
na

lc
om

po
ne

nt
s

lik
e

IP
S

M
ut

ua
lT

LS
,

X
.5

09
,

SP
IF

FE

A
ut

om
at

ic
ce

rt
ifi

ca
te

re
ne

wa
l,

A
C

M
E

su
pp

or
t,

PK
m

an
ag

em
en

t,
R

BA
C

,e
xt

er
na

l
iss

ue
r

su
pp

or
t,

ce
rt

ifi
ca

te
re

vo
ca

tio
n

N
et

wo
rk

iso
la

tio
n

N
S-

R
D

de
co

up
lin

g,
vW

ire
,

m
ul

tip
le

N
SR

s
Fi

ne
tu

ni
ng

of
sid

ec
ar

co
nfi

gu
ra

tio
ns

N
am

es
pa

ce
d-

sc
op

ed
Is

su
er

re
so

ur
ce

s
Pa

ck
et

fil
te

rin
g

D
ep

en
di

ng
on

im
pl

em
en

ta
tio

n
En

vo
y

pr
ox

ie
s

-

T
ab

le
3.

3:
C

om
pa

ris
on

ta
bl

e
3

48

Implementation

C
at

eg
or

y
O

V
N

-K
ub

er
ne

te
s

K
ub

eA
rm

or

D
at

a
pl

an
e(

s)
O

pe
n

vS
w

itc
h

(O
V

S)
,O

pe
nF

lo
w

,
G

EN
EV

E
tu

nn
el

s,
ov

er
la

y
ne

tw
or

k
Sy

st
em

ca
lls

in
te

rc
ep

tio
n,

eB
PF

,L
SM

s

C
on

tr
ol

pl
an

e(
s)

ov
n-

ku
be

-m
as

te
r,

K
ub

er
ne

te
s

A
PI

,N
BD

B,
SB

D
B,

ov
n-

no
rt

hd
,o

vn
-k

ub
e-

cl
us

te
r-

m
an

ag
er

,
ov

n-
ku

be
-n

od
e,

ov
n-

ku
be

-c
on

tr
ol

le
r,

IP
A

M
K

ub
eA

rm
or

A
ge

nt
,K

ub
eA

rm
or

C
on

tr
ol

le
r

K
8s

na
tiv

e
ne

tw
or

k
po

lic
y

su
pp

or
t

Ye
s

-

N
et

wo
rk

au
th

or
iz

at
io

n
po

lic
y

su
pp

or
t

-
En

dp
oi

nt
-b

as
ed

Lo
ad

ba
la

nc
in

g
O

V
N

Lo
ad

Ba
la

nc
er

s,
K

ub
er

ne
te

s
Se

rv
ic

es
,

En
dp

oi
nt

Sl
ic

es
,i

nt
er

na
l/

ex
te

rn
al

tr
affi

c,
se

rv
ic

e
ro

ut
in

g
-

Se
cu

rit
y

fe
at

ur
es

A
C

Ls
,G

EN
EV

E
tu

nn
el

in
g,

IP
se

c,
T

LS
,

K
ub

er
ne

te
s

R
BA

C
,t

ra
ffi

c
lo

gg
in

g

Ru
nt

im
e

pr
ot

ec
tio

n,
fil

e
in

te
gr

ity
m

on
ito

rin
g,

pr
iv

ile
ge

d
co

nt
ai

ne
r

co
nt

ro
l,

ho
st

se
cu

rit
y,

po
lic

y-
ba

se
d

se
cu

rit
y

N
et

wo
rk

iso
la

tio
n

Lo
gi

ca
ln

et
wo

rk
s,

na
m

es
pa

ce
-le

ve
l

sw
itc

he
s/

ro
ut

er
s,

O
V

N
A

C
Ls

,G
EN

EV
E-

ba
se

d
ov

er
la

y,
fin

e-
gr

ai
ne

d
co

nt
ro

l

N
et

wo
rk

-r
el

at
ed

sy
st

em
ca

lls
H

os
t

po
lic

ie
s

Pa
ck

et
fil

te
rin

g
A

C
Ls

,s
ou

rc
e/

de
st

in
at

io
n

IP
,

po
rt

/p
ro

to
co

lfi
lte

rin
g

-

T
ab

le
3.

4:
C

om
pa

ris
on

ta
bl

e
4

49

Implementation

3.2 Kubernetes Abstract Model
The subsequent section of this work delivers a comprehensive analysis of the implementation
of the abstract model for the Kubernetes resources and the automated Python scripts
designed for parsing Kubernetes YAML manifests bidirectionally as JSON objects.

3.2.1 Model details

The model is composed of a series of Python dataclasses divided into two major sections:

• Main Entities: these entities model the Kubernetes resources that are identified by
the presence of the “kind” field inside the YAML manifest. Main entities represent
a distinct resource type in the Kubernetes API and include core resources (Pods,
Services, Deployments, etc.), extended resources (NetworkPolicies, CRDs, etc.), and
ecosystem-specific resources (Cilium, Calico, etc. components). A main entity can
be composed of both mandatory and optional parameters. Required fields common
to all main entities are “apiVersion” and “kind”. An example of a main entity is
“DaemonSet” (Listing 3.1).

Listing 3.1: Example of a main entity: DaemonSet class
1 class DaemonSet {
2 -apiVersion : str
3 -template : PodTemplate
4 -metadata : Dict[str , str | Dict[str , str]]
5 -selector : Dict[str , str]
6 -status : Optional [Dict[str , int]]
7 -updateStrategy : Optional [Strategy]
8 -minReadySeconds : Optional [int]
9 -revisionHistoryLimit : Optional [int]

10 -kind: str
11 }

• Sub-Entities: these are nested resources that are referenced within “main entities”
but do not exist as independent resources with their own “kind” attribute. A “sub
entity” provides a structured representation for complex structures and commonly
reused patterns within Kubernetes objects. In the same way as main entities, sub-
entities can make use of both mandatory and optional parameters. An example of a
sub entity, referred to in the “DaemonSet” example (Listing 3.1), is the “Strategy”
class (Listing 3.2).

Listing 3.2: Example of a sub entity: Strategy class
1 class Strategy {
2 -type: str
3 -rollingUpdate : Optional [RollingUpdate]
4 }

50

Implementation

A sub-entity can make use of other sub-entities, like in the case of “Strategy”, which
makes use of the RollingUpdate entity (Listing 3.3).

Listing 3.3: RollingUpdate class
1 class RollingUpdate {
2 -maxSurge : Optional [int]
3 -maxUnavailable : Optional [int]
4 }

Figures 3.1, 3.2, and 3.2 are simplified representations of some class of the model,
highlighting the separation between main entities and sub-entities, and their relations
within the model.

Figure 3.1: Deployment class

3.2.2 Automation Framework
This framework aims to facilitate the conversion process of the manifests of a cluster
using a certain solution to a desired one. Within the Kubernetes ecosystem, resources are
specified using YAML manifests, which encompass all required parameters for resource
definition. The objective of this framework is to streamline the process of analyzing
Kubernetes manifests and produce a valid instance of the model that can describe the

51

Implementation

Figure 3.2: CalicoNodeStatus class

Figure 3.3: CiliumNetworkPolicy class

resources with abstract classes. Contextually, the framework is also able to compute
resources expressed in terms of the abstract model and output valid Kubernetes manifests
that can be instantiated on a different tool compared to the starting one.

52

Implementation

Feature analyses: importing configurations from existing networks

This script analyzes a YAML manifest representing a Kubernetes resource. Based on the
input data, it generates a JSON file that captures an instance of the abstraction model
that can describe the input resource with generic classes. Furthermore, the script identifies
any term within the manifest that cannot be correlated with a resource defined by the
model (Listing 3.4), by comparing the keys of the provided field with the ones expected
by the model. The output file that is produced represents a generalization of the input
resources that allows for the conversion to a different tool than the one used in the input
manifests.

The listing ?? represents an example of an instance of the model in the form of a JSON
object obtained as a result of the processing of the Feature analysis script.

Listing 3.4: check_unexpected_keys function
1 def check_unexpected_keys (data , expected_keys):
2 if isinstance (data , list):
3 for item in data:
4 check_unexpected_keys (item , expected_keys)
5 else:
6 unexpected_keys = set(data.keys ()) - set(expected_keys)
7 if unexpected_keys :
8 print(f"[!] Unexpected keys: { unexpected_keys }")

Main processing The central function of the script involves extracting all fields within
the parsed manifest and differentiating between the “spec” keys and the other “top
level” keys (such as kind and metadata). Utilizing the kind_to_class (Listing 3.5) and
kind_to_subclass (Listing 3.5) dictionaries, it constructs the appropriate model instances
for each resource type. It establishes the hierarchical relationships among these objects,
facilitating the instantiation of the model.

Listing 3.5: kind_to_class dictionary
1 kind_to_class = {
2 ...
3 'GatewayClass ': GatewayClass ,
4 'DestinationRule ': DestinationRule ,
5 'ServiceMonitor ': ServiceMonitor ,
6 'PodMonitor ': PodMonitor ,
7 ...
8 }

Listing 3.6: kind_to_subclass dictonary
1 kind_to_subclass = {
2 ...
3 'roleRef ': RoleRef ,
4 'subjects ': Subject ,

53

Implementation

Figure 3.4: Feature analysis workflow

5 'trafficPolicy ': TrafficPolicy ,
6 'endpoints ': Endpoint ,
7 ...
8 }

Feature translation: converting abstract configurations

This script is designed to generate a valid YAML Kubernetes manifest, translated to the
desired output tool, from a JSON file that embodies an instance of the abstract model.

Main processing The primary function of the script involves the pre-processing of
top-level keys by modifying the top_level_keys data structure, which encompasses all
conceivable top-level keys of the model. These modifications are executed by eliminating
specific terms from top_level_keys, contingent upon the type of resource (indicated by the
kind parameter) currently being processed. After this step is completed, the input data
is split between top-level keys and spec ones, and everything is combined into a single
dictionary.

54

Implementation

Figure 3.5: Feature translation workflow

Listing 3.7: Example of high-level description label
1 [
2 {
3 " apiVersion ": " cilium .io/v2",
4 " metadata ": {
5 "name ": "dev -to -kube - apiserver "
6 },
7 " description ": null ,
8 " endpointSelector ": {
9 " matchLabels ": {

10 "env ": "dev"
11 }
12 },
13 " ingress ": null ,
14 " ingressDeny ": null ,
15 " egress ": [
16 {
17 " action ": null ,
18 " destination ": null ,
19 "http ": null ,
20 "icmp ": null ,
21 " ipVersion ": null ,
22 " metadata ": null ,
23 " notICMP ": null ,
24 " notProtocol ": null ,

55

Implementation

25 " protocol ": null ,
26 "to ": null ,
27 "ports ": null ,
28 " toEndpoints ": null ,
29 " toPorts ": null ,
30 " toFQDNs ": null ,
31 " toEntities ": [
32 "kube - apiserver "
33],
34 " toCIDR ": null ,
35 " toCIDRSet ": null ,
36 " toGroups ": null ,
37 " toNodes ": null ,
38 " toRequires ": null ,
39 "icmps ": null ,
40 " toServices ": null ,
41 "auth ": null ,
42 " authentication ": null
43 }
44],
45 " egressDeny ": null ,
46 " enableDefaultDeny ": null ,
47 "kind ": " CiliumNetworkPolicy "
48 }
49]

56

Chapter 4

Results and Validation

In this section, the results of the comparative analysis are presented, as well as the
validation of the Kubernetes abstract model with the Python-based automated framework.
Furthermore, performance considerations related to the processing of the automated
framework have been taken into consideration.

4.1 Comparative Analysis

The comparative analyses revealed that the landscape of Kubernetes networking and
security tools presents a diverse range of solutions, often with overlapping capabilities
reflecting an evolution from basic connectivity to complex traffic management and security
enforcement. Initially, CNI plugins like Flannel, Weave Net, and Romana focused primarily
on establishing pod-to-pod communication using various data plane techniques such as
VxLAN overlays, direct routing, or user-space encapsulation. Over time, many CNIs
evolved significantly; Kube-router utilizes IPVS and BGP, Calico integrates BGP with
iptables/ipsets and optionally eBPF, OVN-Kubernetes leverages Open vSwitch and GEN-
EVE, while Cilium heavily relies on eBPF for high-performance networking and security.
This evolution led CNIs like Calico, Cilium, Kube-router, Weave Net, OVN-Kubernetes,
and Romana to incorporate support for Kubernetes Network Policies, adding crucial L3/L4
security features directly at the networking layer, with some like Calico and Cilium even
extending these with custom resources for more granular control. Concurrently, service
meshes like Istio emerged, operating primarily at Layer 7 using sidecar proxies (Envoy) to
provide advanced traffic management, observability, and identity-based security (mTLS,
Authorization Policies), but typically not implementing the core CNI functionalities or
K8s Network Policies directly. Network Service Mesh focuses on providing L3 network
connectivity itself as a programmable service via identity-secure vWires, differing from
Istio’s application-layer focus by enabling composition of network functions and leverag-
ing SPIFFE identity for L3 authorization rather than relying on sidecars for L7 control.
Complementary tools address specific needs: Cert-manager automates the lifecycle of TLS
certificates, essential for securing communication often orchestrated by CNIs or service

57

Results and Validation

meshes, while KubeArmor focuses on runtime security, using eBPF and LSMs to enforce
policies based on system calls, process, and file activity, offering a distinct layer of defense
compared to network-centric policies provided by CNIs like Calico and Cilium or service
meshes like Network Service Mesh and Istio. This ecosystem shows a trend where CNIs are
expanding into security and even basic service mesh functionalities (especially eBPF-based
ones like Cilium), while dedicated service meshes provide richer L7 capabilities, and spe-
cialized tools handle orthogonal concerns like certificate management or host/process-level
security.

4.2 Automated Framework
To evaluate the automated framework, two distinct scenarios have been taken into account:

• Java Microservices [30]: The files contained within the “manifest” directory were
chosen for the analysis.

• Online Boutique [31]: In the root directory of the repository, the YAML manifests
located within the “kubernetes-manifests” and “istio-manifests” directories have been
analyzed.

For each operational scenario under investigation, a rigorous validation protocol was
implemented. This protocol involved a detailed assessment of the feature analysis stage,
focusing on the verification of resources identified by the framework and the resultant
model instance, which was serialized in JSON format. Complementary to the functional
validation, a quantitative analysis of the framework’s computational performance was
conducted. This evaluation employed standard temporal metrics to characterize the
execution efficiency. The specific metrics considered were:

• Total Execution Time: This metric represents the complete wall-clock time elapsed
from the initiation to the termination of the function of the framework’s process for
a scenario instance.

• Average Execution Time: Calculated as the arithmetic mean of the execution
times· recorded across different files (YAML manifests in the case of feature analysis,
JSON objects in the case of translation). This metric offers an indication of the typical
or expected temporal cost associated with executing a function of the framework.

• Standard Deviation (of Execution Time): This statistical measure quantifies
the degree of dispersion or variability observed in the recorded Total Execution Times
relative to the calculated Average Execution Time.

4.2.1 Java Microservices

Figure 4.1 illustrates the feature analysis of the deploy-cloudant.yaml manifest. All
resources specified within the manifest are accurately identified, resulting in the creation of

58

Results and Validation

an instance of the model, as demonstrated in Listing 4.1. Additionally, Figure 4.2 presents
the performance metrics associated with the execution time of the feature analysis process,
while Figure 4.3 shows the execution time for the translation from the model instance to
a Kubernetes manifest. Listing 4.2 shows the translation result from the model instance
(Listing 4.1) to a deployable Kubernetes manifest.

Figure 4.1: Java Microservices example

Figure 4.2: Java Microservices feature analyses process time computation

Figure 4.3: Java Microservices translation process time computation

59

Results and Validation

Listing 4.1: Model instance as a JSON object
1 [
2 {
3 " apiVersion ": "v1",
4 " metadata ": {
5 "name ": "cloudant -pv",
6 " labels ": {
7 "app ": " microprofile -app"
8 }
9 },

10 " capacity ": {
11 " storage ": "4Gi"
12 },
13 " accessModes ": [
14 " ReadWriteMany "
15],
16 " storageClassName ": null ,
17 " persistentVolumeReclaimPolicy ": " Recycle ",
18 " volumeMode ": null ,
19 " storageos ": null ,
20 " hostPath ": {
21 "path ": "/ var/ cloudant "
22 },
23 " gcePersistentDisk ": null ,
24 "kind ": " PersistentVolume "
25 },
26 {
27 ...
28 "kind ": " PersistentVolumeClaim "
29 },
30 {
31 ...
32 "kind ": " Service "
33 },
34 {
35 ...
36 "kind ": " Deployment "
37 }
38]

Listing 4.2: Kubernetes manifest obtained from model instance
1 apiVersion : v1
2 kind: PersistentVolume
3 metadata :
4 labels :
5 app: microprofile -app
6 name: cloudant -pv
7 spec:
8 accessModes :
9 - ReadWriteMany

10 capacity :

60

Results and Validation

11 storage : 4Gi
12 hostPath :
13 path: /var/ cloudant
14 persistentVolumeReclaimPolicy : Recycle
15 ---
16 ...
17 kind: PersistentVolumeClaim
18 ---
19 ...
20 kind: Service
21 ---
22 ...
23 kind: Deployment

4.2.2 Online Boutique

Figure 4.4 illustrates the results derived from the feature analysis executed on the
cartservice.yaml manifest file. The analysis process successfully identified all resources
declared within this manifest. Consequently, a corresponding model instance was gener-
ated, the structure of which is detailed in Listing 4.3. To demonstrate the framework’s
handling of non-supported input, Figure 4.5 presents an example case where a manifest
includes a resource definition containing an unsupported key, specifically number. Upon
encountering this key, the analysis framework issues a warning message. This warning
explicitly flags the unsupported key ([!] Unexpected keys: ’number’) and indicates
the specific resource definition within the manifest where the deviation was detected
(kind: ServiceEntry). Furthermore, in Figure 4.6, a report about the execution time
for the feature analysis process is provided, while Figure 4.7 shows the execution time
for the translation from the model instance to a Kubernetes manifest. Listing 4.4 shows
the translation result from the model instance (Listing 4.3) to a deployable Kubernetes
manifest.

Figure 4.4: Online Boutique example

Figure 4.5: Online boutique example with unexpected key

61

Results and Validation

Figure 4.6: Online Boutique feature analysis process time computation

Figure 4.7: Online Boutique translation process time computation

Listing 4.3: Model instance as a JSON object
1 [
2 {
3 " apiVersion ": "v1",
4 " metadata ": {
5 "name ": "redis -cart",
6 " labels ": {
7 "app ": "redis -cart"
8 }
9 },

10 " selector ": {
11 "app ": "redis -cart"
12 },
13 "ports ": [
14 {
15 "name ": "tcp -redis",
16 "port ": 6379 ,
17 " endPort ": null ,
18 " targetPort ": 6379 ,
19 " containerPort ": null ,
20 " nodePort ": null ,
21 " appPort ": null ,
22 " appProtocol ": null ,
23 " hostPort ": null ,
24 " protocol ": null ,
25 " dnsName ": null ,
26 " l7proto ": null ,
27 "l7 ": null
28 }
29],
30 " clusterIP ": null ,
31 " clusterIPs ": null ,
32 " sessionAffinity ": null ,
33 " externalTrafficPolicy ": null ,
34 " ipFamilies ": null ,
35 " ipFamilyPolicy ": null ,

62

Results and Validation

36 " externalIPs ": null ,
37 " externalName ": null ,
38 " loadBalancerSourceRanges ": null ,
39 " internalTrafficPolicy ": null ,
40 "type ": " ClusterIP ",
41 " status ": null ,
42 "kind ": " Service "
43 },
44 {
45 ...
46 "kind ": " Deployment "
47 },
48 {
49 ...
50 "kind ": " Service "
51 },
52 {
53 ...
54 "kind ": " ServiceAccount "
55 },
56 {
57 ...
58 "kind ": " Deployment "
59 }
60]

Listing 4.4: Kubernetes manifest obtained from model instance
1 apiVersion : v1
2 kind: Service
3 metadata :
4 labels :
5 app: redis -cart
6 name: redis -cart
7 spec:
8 ports:
9 - name: tcp -redis

10 port: 6379
11 targetPort : 6379
12 selector :
13 app: redis -cart
14 type: ClusterIP
15 ---
16 ...
17 kind: Deployment
18 ---
19 ...
20 kind: Service
21 ---
22 ...
23 kind: ServiceAccount
24 ---
25 ...

63

Results and Validation

26 kind: Deployment

4.3 Summary of Validation Findings
The validation process confirmed the utility and effectiveness of the developed components.
The comparative analysis provided a thorough and useful overview of the Kubernetes
networking and security tool landscape, highlighting the evolution and overlapping capa-
bilities of various solutions like CNIs, service meshes, and specialized security tools. The
abstract Kubernetes model demonstrated its effectiveness, validated through an automated
framework using distinct real-world scenarios (IBM Java Microservices and Google Online
Boutique). This framework’s feature analyzer accurately identified all specified resources
within the test manifests, successfully generating corresponding instances of the abstract
model and appropriately handling unsupported keys with warnings. Furthermore, the
feature translator reliably converted these abstract model instances back into deployable
Kubernetes manifests, confirming the model’s representational adequacy and the transla-
tor’s functional correctness. Performance metrics for both the analysis and translation
processes were also systematically measured.

64

Chapter 5

Conclusion

This thesis addressed the growing complexity within the Kubernetes ecosystem, particularly
concerning the diverse landscape of network plugins, operators, and security tools. Through
a comprehensive comparative analysis of key solutions like Flannel, Calico, Cilium, Network
Service Mesh, and Kube-router, this work highlighted their distinct features, performance
aspects, and security implications.

A central contribution of this research is the development of an abstract model designed
to represent a wide array of Kubernetes resources in a unified manner. This model
provides a foundation for simplifying cluster management and facilitating the migration
process between different technological solutions. An automated Python framework was
implemented to operationalize this model. This framework successfully demonstrated
its capability to parse Kubernetes manifests, translate them into the abstract model
representation, and convert the model back into deployable configurations.

The effectiveness of the abstract model and the automation framework was validated
using real-world deployment scenarios, including Google Online Boutique and IBM Java
microservices. The results confirm the model’s ability to encapsulate diverse resource types
and the framework’s utility in analyzing and translating configurations.

Overall, this work offers valuable insights into the Kubernetes networking and secu-
rity landscape and provides a practical toolset for managing complexity and improving
interoperability within cloud-native environments. Future work could involve expanding
the abstract model to encompass an even broader range of Kubernetes resources and
extensions, and refining the translation capabilities of the framework to accommodate
more complex scenarios.

65

Appendix A

User manual

A.1 System setup
Below are listed all the operations and components needed to set up and configure the
system correctly.

A.1.1 Requirements
The following components are needed to run the project:

• Python version 3.11 and above

• pip version 24.2 and above

• Docker Engine

• Docker Desktop (optional)

A.1.2 Setup repository
The project can be initialized in two ways:

• as a Docker container by running:

./docker.sh

• directly in a Python virtual environment:

./venv.sh
source .venv/bin/activate

67

User manual

A.2 Usage
The project can be executed by running the following command:

python transforms.py

Which presents the following options:

1. YAML to JSON, which parses YAML files to JSON ones.

2. JSON to YAML, which parses JSON files to YAML ones.

3. Both, which executes, in order, option 1 and option 2.

Upon choosing one of the options above, a list of available examples is presented inside the
examples directory. Once the execution ends, the results can be found inside the output
directory.
Example:

> python transforms.py

[1] YAML to JSON
[2] JSON to YAML
[3] Both
Enter 1, 2, or 3:

> 3

- google-boutique
- kubeflix
- real-apps
- bookinfo
- java-ms
- cilium
- calico
- kube-armor
Enter folder name:

> calico

[YAML --> JSON]
[...]
Converting examples/calico/cluster-info.yaml to JSON...
Kind: ClusterInformation
File converted!

[JSON --> YAML]
[...]
Converting output/yaml_to_json/calico/cluster-info.json to YAML...
File converted!

68

User manual

To add new examples, it is simply necessary to create a new folder inside examples and
put it inside the YAML files to parse.

When converting from YAML, any unsupported resource or term is displayed in the
execution console.

It is also possible to execute the single conversion functions to parse single files, by
running the following command and specifying the required paths:

• YAML to JSON

python yaml_to_json.py /path/to/yaml ./path/to/output_dir

Example:

python yaml_to_json.py examples/bookinfo/bookinfo.yaml
./output/yaml_to_json/bookinfo

• JSON to YAML

python json_to_yaml.py /path/to/json ./path/to/output_dir

Example:

python json_to_yaml.py output/yaml_to_json/bookinfo/bookinfo.json
./examples/json_to_yaml/bookinfo

69

Appendix B

Developer manual

B.1 Adding new entities

B.1.1 Model expansion

To add new entities to the model, it is necessary to edit the file

k8s_model.py

This file is located inside the model directory and is divided into two sections:

• Sub entities, for all the resources that do not have a kind attribute.
Example:

@dataclass
class Cinder:

volumeID: str = field(default_factory=str)
fsType: str = field(default_factory=str)
readOnly: Optional[bool] = field(default_factory=None)

• Main entities, for all the resources with a kind attribute.
Example:

@dataclass
class Job:

apiVersion: str = field(default_factory=str)
metadata: Dict[str, str | Dict[str, str]] = field(default_factory=str)
template: PodTemplate = field(default_factory=PodTemplate)
kind: str = 'Job'

70

Developer manual

For the new entities, all the top-level members must be specified, with the exception made
for the spec key, whose internal keys have to be added directly.

To reflect the changes inside the PlantUML schema, it is necessary to edit the file

k8s_model.puml

The file is organized like its Python counterpart, adding the new resources to their specific
sections and specifying any new relationships between entities. Example:

• Sub entities

class Cinder {
-volumeID: str
-fsType: str
-readOnly: Optional[bool]

}

• Main entities

class Job {
-apiVersion: str
-metadata: Dict[str, str | Dict[str, str]]
-template: PodTemplate
-kind: str

}

• Relationships

Job "1" -- "1" PodTemplate

The schema images can be manually generated, given that plantuml is installed, with
the following commands:

• PNG

plantuml -tpng model.puml

• SVG

plantuml -tsvg model.puml

71

Developer manual

B.1.2 Conversion functions

To make the conversion functions recognize the new entities added to the model, it is neces-
sary to add the new resources to the following mappings at the top of yaml_to_json.py:

• kind_to_class for the main entites.

• key_to_subclass for the sub entities.

Inside the file json_to_yaml.py, the variable top_level_keys contains all the top-level
keys of the model, and any top-level keys added with a new resource have to be added to
the data structure.
Example:

class BGPFilter {
-apiVersion: str
-metadata: Dict[str, str | Dict[str, str]]
-exportV4: Optional[List[BGPFilterRule]]
-exportV6: Optional[List[BGPFilterRule]]
-importV4: Optional[List[BGPFilterRule]]
-importV6: Optional[List[BGPFilterRule]]
-kind: str

}

top_level_keys = {
[...], exportV4, exportV6, importV4, importV6

}

Additionally, ad-hoc modifications to top_level_keys are needed for any eventual resource
that contains a non-top-level key that is, however, present in top_level_keys.
Example:

class Service {
-apiVersion: str
-metadata: Dict[str, str | Dict[str, str]]
-selector: Optional[Dict[str, str]]
-ports: List[Port]
[...]
-internalTrafficPolicy: Optional[str]
-type: str
-status: Optional[Status]
-kind: str

}

if kind == 'Service':
top_level_keys_copy.remove('type')

72

Developer manual

Additionally, since the Python naming convention forbids the use of specific terms and
characters, a keys_to_replace dictionary is present in both yaml_to_json.py and
json_to_yaml.py to substitute the terms in the model with the correct ones.
Example:

class ReferenceGrant {
-apiVersion: str
-metadata: Dict[str, str | Dict[str, str]]
-from_: Optional[List[Dict[str, str]]]
-to: Optional[List[Dict[str, str]]]
-kind: str

}

yaml_to_json.py

keys_to_replace = {
[...],
'from': 'from_'

}

json_to_yaml.py

keys_to_replace = {
[...],
'from_': 'from'

}

73

Bibliography

[1] Red Hat. What is virtualization? url: https://www.redhat.com/en/topics/
virtualization/what-is-virtualization.

[2] IBM. What Is virtualization? url: https://www.ibm.com/topics/virtualizatio
n.

[3] Aapo Kalliola, Shankar Lal, Kimmo Ahola, Ian Oliver, Yoan Miche, and Silke
Holtmanns. «Testbed for security orchestration in a network function virtualization
environment». In: 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 2017.

[4] Geeksforgeeks. Network Functions Virtualization. url: https://www.geeksforgeek
s.org/network-functions-virtualization.

[5] Cloudflare. What is software-defined networking (SDN)? url: https://www.cloudf
lare.com/learning/network-layer/what-is-sdn.

[6] Geeksforgeeks. What is Software Defined Networking (SDN)? url: https://www.
geeksforgeeks.org/software-defined-networking.

[7] Nathan Sousa, Danny Perez, Raphael Rosa, Mateus Santos, and Christian Esteve
Rothenberg. «Network Service Orchestration: A Survey». In: Computer Communica-
tions 142 (2018).

[8] Introduction to Microservices Architecture. Medium. url: https://medium.co
m/the- modern- scientist/introduction- to- microservices- architecture-
f0c7eefe79f1.

[9] IBM. What is containerization? url: https://www.ibm.com/topics/containeriz
ation.

[10] Xu Zhiqun, Chen Duan, Hu Zhiyuan, and Sun Qunying. «Emerging of Telco Cloud».
In: China Communications 10.6 (2013).

[11] Geeksforgeeks. Architecture of Docker. url: https://www.geeksforgeeks.org/
architecture-of-docker.

[12] Docker. Docker Compose. url: https://docs.docker.com/compose/.
[13] IBM. The evolution of Kubernetes. url: https://www.ibm.com/think/topics/

kubernetes-history.
[14] Kubernetes. Kubernetes documentation. url: https://kubernetes.io/docs/home/.

74

https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.ibm.com/topics/virtualization
https://www.ibm.com/topics/virtualization
https://www.geeksforgeeks.org/network-functions-virtualization
https://www.geeksforgeeks.org/network-functions-virtualization
https://www.cloudflare.com/learning/network-layer/what-is-sdn
https://www.cloudflare.com/learning/network-layer/what-is-sdn
https://www.geeksforgeeks.org/software-defined-networking
https://www.geeksforgeeks.org/software-defined-networking
https://medium.com/the-modern-scientist/introduction-to-microservices-architecture-f0c7eefe79f1
https://medium.com/the-modern-scientist/introduction-to-microservices-architecture-f0c7eefe79f1
https://medium.com/the-modern-scientist/introduction-to-microservices-architecture-f0c7eefe79f1
https://www.ibm.com/topics/containerization
https://www.ibm.com/topics/containerization
https://www.geeksforgeeks.org/architecture-of-docker
https://www.geeksforgeeks.org/architecture-of-docker
https://docs.docker.com/compose/
https://www.ibm.com/think/topics/kubernetes-history
https://www.ibm.com/think/topics/kubernetes-history
https://kubernetes.io/docs/home/

BIBLIOGRAPHY

[15] Gerald Budigiri, Christoph Baumann, Jan Tobias Mühlberg, Eddy Truyen, and
Wouter Joosen. «Network Policies in Kubernetes: Performance Evaluation and Secu-
rity Analysis». In: 2021 Joint European Conference on Networks and Communications
& 6G Summit (EuCNC/6G Summit). 2021.

[16] Boris Lublinsky, Elise Jennings, and Viktória Spišaková. «A Kubernetes ‘Bridge’
Operator between Cloud and External Resources». In: 8th International Conference
on Cloud Computing and Big Data Analytics (ICCCBDA). 2023.

[17] Shixiong Qi, Sameer G. Kulkarni, and K. K. Ramakrishnan. «Assessing Container
Network Interface Plugins: Functionality, Performance, and Scalability». In: IEEE
Transactions on Network and Service Management 18.1 (2021).

[18] GCore. Explaining Microservices and Service Mesh with Istio. url: https://gcore.
com/learning/decoding-service-mesh-architecture-for-docker.

[19] Network Service Mesh. NSM Concepts. url: https://networkservicemesh.io/
docs/concepts/enterprise_users/.

[20] Kube-router. Introduction. url: https://www.kube-router.io/docs/.
[21] Flannel. How it works. url: https://github.com/flannel-io/flannel.
[22] Cilium. What is Cilium? url: https://docs.cilium.io/en/stable/overview/

intro/.
[23] Calico. About Calico. url: https://docs.tigera.io/calico/latest/about.
[24] Weave Net. Introducing Weave Net. url: https://rajch.github.io/weave/

overview/.
[25] Romana. Welcome to Romana. url: https://romana.readthedocs.io/en/latest/

welcome.html.
[26] Istio. What is Istio? url: https://istio.io/latest/docs/overview/what-is-

istio/.
[27] cert-manager. Introduction. url: https://cert-manager.io/docs/.
[28] OVN-Kubernetes. Overview. url: https://ovn-kubernetes.io/.
[29] KubeArmor. KubeArmor. url: https://docs.kubearmor.io/kubearmor.
[30] IBM. Enable your Java microservices with advanced resiliency features leveraging Istio.

url: https://github.com/IBM/resilient-java-microservices-with-istio.
[31] Google. Online Boutique. url: https : / / github . com / GoogleCloudPlatform /

microservices-demo.

75

https://gcore.com/learning/decoding-service-mesh-architecture-for-docker
https://gcore.com/learning/decoding-service-mesh-architecture-for-docker
https://networkservicemesh.io/docs/concepts/enterprise_users/
https://networkservicemesh.io/docs/concepts/enterprise_users/
https://www.kube-router.io/docs/
https://github.com/flannel-io/flannel
https://docs.cilium.io/en/stable/overview/intro/
https://docs.cilium.io/en/stable/overview/intro/
https://docs.tigera.io/calico/latest/about
https://rajch.github.io/weave/overview/
https://rajch.github.io/weave/overview/
https://romana.readthedocs.io/en/latest/welcome.html
https://romana.readthedocs.io/en/latest/welcome.html
https://istio.io/latest/docs/overview/what-is-istio/
https://istio.io/latest/docs/overview/what-is-istio/
https://cert-manager.io/docs/
https://ovn-kubernetes.io/
https://docs.kubearmor.io/kubearmor
https://github.com/IBM/resilient-java-microservices-with-istio
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

	List of Figures
	Acronyms
	Introduction
	Simplifying Cloud Management
	The Growing Complexity of Kubernetes
	Goal of the Thesis
	Results Overview
	Outline

	Background
	Traditional networking
	Virtualization
	Network Functions Virtualization
	Software-Defined Networking
	Microservices
	Containerization
	Docker

	Kubernetes
	History
	Control Loop
	Architecture
	Storage
	RBAC
	Operators
	Container Network Interface Plugins
	Microservices
	Service Meshes
	Workflow

	Network Service Mesh
	Architecture

	Implementation
	Comparative analysis
	Kubernetes Abstract Model
	Model details
	Automation Framework

	Results and Validation
	Comparative Analysis
	Automated Framework
	Java Microservices
	Online Boutique

	Summary of Validation Findings

	Conclusion
	User manual
	System setup
	Requirements
	Setup repository

	Usage

	Developer manual
	Adding new entities
	Model expansion
	Conversion functions

	Bibliography

