
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Semantic Segmentation of Point Clouds
for Urban Mapping: presentation and

benchmarking of Turin3D Dataset

Supervisor

Prof. Paolo GARZA

Co-Supervisor

Dott. Luca BARCO

Dott. Giacomo BLANCO

Dott. Gaetano CHIRIACO

Candidate

Alessia INTINI

A.A. 2024/2025

Abstract

In recent years, considerable interest has emerged in improving urban planning
and management, which has led to the need to explore new technologies. In
particular, there has been a focus on the use of aerial aircraft for data acquisition
in the urban environment. Although it is possible to acquire a large amount of
data through these techniques, these are usually collected by LiDAR sensors, a
technology widely used in applications using 3D data. The real problem is how to
process and interpret them to extract useful knowledge in application contexts, so
the use of these data collected by LiDAR sensors has led to the opening of new
research scenarios in this field. The aim of this thesis is therefore to address the
segmentation challenges inherent to the processing of 3D data acquired by aircraft
operating in urban contexts, specifically obtain good results by testing different
models on a new dataset containing data collected on a limited area of the city
of Turin (about 1.43km2, divided into 57 blocks of about 25,000m2 each). The
data were collected by a LiDAR sensor during an aerial flight on 29 January 2022
and comprise 69,591,759 points with a resolution of approximately 51.05 points
per square meter. In order to use the dataset during the thesis experiments, it was
necessary to divide it into three parts comprising the training (70%), test (20%)
and validation (10%) subsets and also to manually label the test and validation
to be able to obtain quantitative evaluations of the different models. Initially, the
current state of the art in this field was evaluated by collecting public datasets
and analysing the best architectures used in this area. With regard to datasets,
those existing in the literature and presenting a taxonomy similar to that of Turin
were selected, i.e. Sensat Urban, DELFT SUM, ECLAIR, FRACTAL, Toronto-3D,
STPLS3D, Swiss3D and Hessigheim. Next, several neural network architectures
that emerged from the literature as the most promising in 3D semantic segmentation
tasks were considered, i.e. RandLA-Net, Point Transformer, KPConv and SPConv.
In the course of the research,several techniques were employed to improve the
segmentation results on Turin. First, it started with the transfer learning technique,
using for the training phase the concatenation of the previously selected datasets
and employing all the different neural network architectures. After that, these
models were tested on the Turin dataset to identify the best performing architecture,
subsequent experiments, in fact, only focused on the one that had performed best in
this initial step. Subsequently, semi-supervised techniques were employed, using the
confidence score of the best performing model’s predictions on the Turin dataset as
pseudo-labels during training. Several variants of these experiments were conducted
to obtain the most accurate model possible on this new dataset.

Table of Contents

List of Tables iv

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Formulation of the problem . 2
1.2 Contributions . 2
1.3 Outline of the work . 4

2 Related Works 5
2.1 LiDAR Sensor . 5
2.2 3D Point Clouds . 6
2.3 3D Semantic Segmentation . 7
2.4 Point-based Neural Networks . 8

2.4.1 PointNet . 9
2.4.2 RandLA-Net . 10
2.4.3 Point Transformer V1 Network (PTv1) 12
2.4.4 Kernel Point Convolution Network (KPConv) 13
2.4.5 Submanifold Sparse Convolutional Network 13

2.5 Datasets . 14
2.5.1 Sensat Urban . 15
2.5.2 SUM . 16
2.5.3 Eclair . 17
2.5.4 Fractal . 18
2.5.5 Toronto3D . 19
2.5.6 STPLS3D . 20
2.5.7 Swiss3D . 21
2.5.8 Hessigheim . 22

2.6 Transfer Learning . 23

ii

2.7 Semi-Supervised . 23

3 Turin3D Dataset 26
3.1 Dataset Description . 26
3.2 Data Acquisition . 28
3.3 3D Point Cloud Processing . 29
3.4 Semantic labels taxonomy . 29
3.5 Data splitting . 30
3.6 Annotation process . 31
3.7 Class mapping across Datasets . 32

4 Methodology 36
4.1 Problem Statement . 36
4.2 Transfer learning . 37
4.3 Semi-Supervised Learning . 38

4.3.1 Uniform Confidence Threshold 40
4.3.2 Class-Specific Confidence Threshold 41
4.3.3 Iterative Pseudo-Label Refinement 42
4.3.4 Dynamic Confidence Thresholding in Iterative Training . . . 43

4.4 Experimental setup . 45
4.4.1 Data Augmentation . 45
4.4.2 Architectures’ hyperparameters 47

5 Experimental Results 50
5.1 Parameters and configurations . 50
5.2 Metrics . 51
5.3 Transfer Learning . 51
5.4 Semi-Supervised Learning . 55

6 Conclusions and Future Works 59

Bibliography 61

iii

List of Tables

3.1 Comparison of Turin3D dataset with the representative datasets for 3D semantic
segmentation in urban scenarios. MLS: Mobile Laser Scanning system, ULS:
Unmanned Laser Scanning system, ALS: Airborne Laser Scanning system, SAP:
Synthetic Aerial Photogrammetry. 29

3.2 Mapping of the Sensat Urban dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 32

3.3 Mapping of the Delft Sum dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 33

3.4 Mapping of the ECLAIR dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 33

3.5 Mapping of the Fractal dataset classes to the Turin3D taxonomy, including their
labels and descriptions. 33

3.6 Mapping of the Toronto3D dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 34

3.7 Mapping of the STPLS3D dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 34

3.8 Mapping of the Swiss3D dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 34

3.9 Mapping of the Hessigheim dataset classes to the Turin3D taxonomy, including
their labels and descriptions. 35

4.1 Overview of augmentations applied to point clouds, including scaling, rotation,
translation, and jittering, along with their respective parameter values. 48

5.1 Results for Transfer learning experiments, with and without augmen-
tations, evaluated on both test sets of literature selected datasets
DS and labeled test set of Turin3D, considering mIou and F1 score.
For Turin3D also IoU per class is reported. 52

iv

5.2 Transfer learning results using RandlaNet with/without Sensat Ur-
ban in training selection. The experiments were evaluated on both
test sets of selected datasets DSel and labeled test set of Turin3D,
considering mIou and F1 score. For Turin3D also IoU per class is
reported. 53

5.3 Results for experiments with Semi-supervised learning with fixed
and adaptive confidence per iteration, using RandLA-Net with Aug-
mentations, evaluated on test set of Turin3D (Dtest

T) considering
IoU per class, mIoU and F1 score. 55

v

List of Figures

2.1 One of the possible vehicles that can perform LiDAR measurements. The image
is recreated from figure 1.5 (b), pp. 8 in [1]. The figure is used for the first time
in one of the authors’ paper (see [2].) . 6

2.2 3D data representation, the figure is used in [4]. 6
2.3 An illustration of point-based methods, shown in [5] 8
2.4 PointNet[7]: Classifies n points via MLPs, feature transformations, and max

pooling. Segmentation extends it by combining global and local features. Uses
BatchNorm, ReLU, and Dropout. 10

2.5 The proposed local feature aggregation module. The top panel shows the
location spatial encoding block while the bottom panel shows how two of these
components are chained together, to increase the receptive field size, within a
residual block [6]. 11

2.6 Point transformer[11] network for semantic segmentation. 12
2.7 Examples of SensatUrban dataset, different semantic classes are labeled by

different colors.[14] . 15
2.8 Overview of the urban mesh in SUM. Left: textured meshes covering an area of

approximately 4km2. Right: ground truth meshes.[15] 16
2.9 An example of the ECLAIR annotation, which covers 10km2 and contains 11

semantic classes[16]. 17
2.10 An example of an annotation for FRACTAL dataset, representing the different

scenes it contains[17]. 18
2.11 A section of the Toronto3D dataset is shown, with the top part displaying the

dataset in natural colors (RGB) and the lower part illustrating its classification
into 8 semantic classes[18]. 19

2.12 Examples of STPLS3D datasets, including Synthetic V1, Synthetic V2, Synthetic
V3 and real-world subsets. The different semantic classes are shown below[19]. . 20

2.13 An example of Swiss3D dataset, on the left can be seen the version with natural
colors(R,G,B) and on the right its classification[20]. 21

2.14 An example of Hessigheim dataset, on the left can be seen the version with
natural colors(R,G,B) and on the right its classification into 11 semantic classes[21]. 22

vi

2.15 Overview of method described in [23] . 24
2.16 Overview of method described in [24], it consists of three main parts: (1) Deter-

mining the learning status of each class from unlabeled data, (2) dynamically
adjusting class-specific thresholds, and (3) re-sampling the dataset accordingly. 25

3.1 Overview of the Turin3D dataset, with an example of the annotation followed
and the segmentation process. 26

3.2 The image represents several views of the point cloud contained in the Turin3D
dataset, (a) The entire area captured by the point cloud in the city of Turin,
shown in RGB. (b) Different areas in the point cloud, categorized by environment.
(c) Split for validation, training and test sets 31

3.3 Distribution of classes in the validation and test set. 31

4.1 The image shows an example from the Turin3D training subset: on the left,
the dataset in natural colors (RGB), in the middle, the pseudo-labels following
the dataset’s semantic classes, and on the right, the confidence scores for each
point. These labels are pseudo-labels generated by the best-performing transfer
learning model, not manually annotated. 39

4.2 It is possible to observe selected Pseudo-labels with a confidence threshold
of 0.85. The pseudo-labels can be observed on the left, and the confidence
representation on the right. 40

4.3 It is possible to observe selected Pseudo-labels with Class-Specific Confidence
Threshold. The pseudo-labels can be observed on the left, and the confidence
representation on the right. 41

4.4 Confidence distributions in the training subset obtained from the inference of
the best-performing model selected via transfer learning. 42

4.5 Confidence distributions in the training subset obtained from inference of the
trained model after the first iteration. 43

5.1 Number of points per class in the training dataset, comparing the inclusion and
exclusion of Sensat in the datasets used for transfer learning experiments. . . . 54

5.2 An example of test point clouds from the Turin3D dataset (left), with the
corresponding output from the best-performing transfer learning model (right),
which uses RandLA-Net and augmentation on the selected datasets, including
Sensat, chosen for subsequent experiments. 54

5.3 An example of test point clouds from the Turin3D dataset (left), with the
corresponding output from the best-performing model on the Turin3D test
subset (right), which utilizes iteratively updated confidence thresholds. 57

vii

Acronyms

ASCII
American Standard Code for Information Interchange - A character
encoding standard that represents text in computers and electronic devices.

FBX
Filmbox - A proprietary file format developed by Autodesk for the exchange
of 3D data.

FLS
Faro Laser Scan - A file format used to store 3D scan data acquired with
FARO laser scanners.

GPS
Global Positioning System - A satellite-based navigation system that
provides precise location and time information.

INS
Inertial Navigation System - A navigation system using accelerometers
and gyroscopes to calculate position, velocity, and orientation without external
signals.

LAS
Lidar Data Exchange Format - A standard binary format for storing
LiDAR point cloud data, designed to manage 3D spatial information including
intensity and classification.

LiDAR
Light Detection and Ranging - A remote sensing technology that uses
laser pulses to measure distances and create 3D models of environments.

ix

mIoU
Mean Intersection over Union - A metric used to evaluate semantic
segmentation performance by computing the intersection over union between
predicted and ground truth areas.

PCD
Point Cloud Data - A file format used to store 3D point clouds, commonly
associated with the Point Cloud Library (PCL).

PLY
Polygon File Format - A file format designed to store 3D models based
on polygons and point clouds, supporting attributes like color and surface
normals.

RGB
Red Green Blue - A color model based on the combination of three primary
colors (red, green, and blue) to represent digital images.

CNN
Convolutional Neural Network - A type of deep neural network particu-
larly effective for processing structured grid data, such as images, by using
convolutional layers to automatically learn spatial hierarchies of features.

RNN
Recurrent Neural Network - A class of artificial neural networks designed
for processing sequential data by maintaining a memory of previous inputs in
their hidden states.

MLP
Multilayer Perceptron - A type of feedforward artificial neural network
consisting of multiple layers of neurons, commonly used for supervised learning
tasks.

KNN
k-Nearest Neighbors - A simple machine learning algorithm used for classi-
fication and regression by finding the k closest data points in the training set
to a given query point.

x

CPE
Class Prediction Error - A metric used to evaluate the performance of a
model by calculating the error in class predictions made for each sample.

xCPE
Extended Class Prediction Error - An extended version of the Class
Prediction Error, considering additional factors or complexities in classifying
data.

LocSE
Localization Semantic Error - An error metric used to assess the precision
of a model in identifying the spatial location of objects or classes within a 3D
point cloud.

SC
Spatial Consistency - A measure of how well the predicted labels for a
point cloud align with the spatial structure of the environment, maintaining
continuity in neighboring points.

SSC
Semi-Supervised Classification - A machine learning approach that uses
both labeled and unlabeled data for training, aiming to improve model perfor-
mance when labeled data is scarce.

Nir
Near-Infrared - A region of the electromagnetic spectrum with wavelengths
just longer than visible light, often used in remote sensing for applications like
vegetation analysis.

MLS
Mobile Laser Scanning system - A mobile system that captures 3D data
using laser scanning technology mounted on a moving platform, often used for
mapping and surveying.

ULS
Unmanned Laser Scanning system - A laser scanning system mounted on
an unmanned aerial vehicle (UAV), used to collect 3D point clouds for various
surveying and mapping tasks.

xi

ALS
Airborne Laser Scanning system - A laser scanning system mounted on
aircraft to collect high-resolution 3D data of the Earth’s surface, often used
for large-scale topographic surveys.

SAP
Synthetic Aerial Photogrammetry - A technique that uses aerial pho-
tographs to create synthetic 3D models of the environment, often combined
with LiDAR data for enhanced accuracy.

xii

Chapter 1

Introduction

In recent years there has been a significant interest in improving urban planning
and management. This has brought the need to explore advanced technologies
for the acquisition and analysis of data that could be useful in these areas. In
particular, the focus is on data acquisition in urban environments, which can be
carried out using various platforms such as aerial aircraft, drones (UAVs), mobile
mapping systems, and ground-based surveying techniques. These innovations have
opened up several new possibilities for monitoring cities, thus making it possible to
collect information regarding urban morphology and apply it in various fields. For
example, in urban planning, these data can be used to make various improvements,
such as optimizing urban expansion, enhancing transportation networks, improving
the allocation of green spaces, and many others.
Although it is possible to acquire a large amount of data through these techniques,
these are usually collected by LiDAR sensors, a technology widely used in appli-
cations using 3D data. The real problem is how to process and interpret them
to extract useful knowledge in application contexts, so the use of these data col-
lected by LiDAR sensors has led to the opening of new research scenarios in this field.

The goal of this thesis is to address the segmentation challenges inherent in pro-
cessing 3D data acquired from aircraft that operate in urban contexts. Therefore,
in the course of this work, advanced segmentation techniques were looked for to
extract relevant information from 3D point clouds. This required the use of robust
segmentation models capable of classifying the various urban elements found in
cities, such as buildings, streets, vegetation and other structures. Specifically, the
identified models were tested on a new dataset, Turin3D, containing data collected
over a limited area of the city of Turin.

Introduction

1.1 Formulation of the problem
The data that are collected with LiDAR sensors constitute a great source of infor-
mation, which can come in handy in countless fields, such as urban mapping for
3D city modeling, urban planning for sustainable development, and infrastructure
management for road networks and public services. Through the collection of these
data, it is learned how convenient it is to work with 3D rather than 2D data, as
they are in fact more representative of reality. One of the most relevant aspects in
this context is 3D Semantic Segmentation, that is, the classification of each point,
in a 3D point cloud, by determining its membership in a precise class. However,
despite recent progress in deep learning applied to these 3D data, segmentation in
the urban context still presents countless challenges, making it necessary to find
more efficient solutions.

In the case of 3D data, the difficulty compared to 2D data lies in the fact that the
data are unstructured and scattered, also having variable point distributions. In
addition, especially in the urban context, several problems may be encountered
that could worsen the performance of the models
The main ones can be summarized as :

• Significant variation in data density depending on the acquisition methods
that are used, as LiDAR from aircraft or terrestrial.

• Problems of noise and occlusion, as shadow areas could be created in urban
settings that make acquisition difficult.

• The high variability of urban architecture, in fact according to cities this can
be very variable, just think for example of the presence or absence of rivers.

• Class imbalance, some will be much more present than others making it
difficult for deep learning models to learn poorly represented classes.

All these issues make it necessary to look for advanced approaches.

1.2 Contributions
The thesis work follows several key steps. First, a comprehensive review of the state
of the art in 3D data segmentation techniques is conducted, including the collection
of public datasets, the analysis of the most effective architectures in this domain and
also existing methodologies that can bring improvements. The next step involved

2

Introduction

creating a new dataset, Turin3D, and annotating the test and validation subsets.
Specifically, the dataset was divided into 70% for training, 20% for testing, and
10% for validation. This division was crucial for obtaining quantitative metrics
to evaluate the performance of different models. Based on the Turin3D dataset,
existing datasets with a taxonomy as similar as possible were selected. Additionally,
the most promising neural network architectures for 3D semantic segmentation were
identified through literature review. The experimental phase begins with transfer
learning to determine the most suitable neural network architecture, followed by
semi-supervised that using the confidence score of the best performing model’s
predictions on the Turin3D dataset as pseudo-labels during training. Quantitative
metrics are used to actually evaluate how the model improved.

This thesis presents several innovative contributions aimed at advancing the field
of 3D semantic segmentation, particularly in the context of urban environments.
The work addresses key challenges, including the scarcity of annotated data and
the need for more effective segmentation models. The main contributions of this
research are summarized as follows:

• Creation of the Turin3D Dataset. The first major contribution is the
creation of a a new dataset (Turin3D) which consists of 3D LiDAR point
cloud data collected in the San Salvario neighborhood of Turin, Italy (it covers
about 1.43km2, divided into 57 blocks of about 25,000m2 each). This dataset
supports the segmentation of urban scenes and provides a new resource to the
literature.

• Transfer Learning . Given the limited availability of labeled data, transfer
learning was used to adapt pre-trained models on datasets in the literature
to the Turin3D dataset. This approach allows knowledge from datasets with
a similar taxonomy to be leveraged, addressing the challenges posed by the
absence of annotated data and improving model performance.

• Semi-Supervised Learning. A semi-supervised learning approach was
used to improve model performance by exploiting confidence scores on the
training subset given by the best-performing transfer learning model. This
method involves generating pseudo-labels for unlabeled data and applying
class-specific confidence thresholds to ensure effective filtering of pseudo-labels,
especially for underrepresented classes. An iterative refinement process was
implemented, in which the model was retrained and updated pseudo-labels were
progressively refined. Next, dynamic confidence thresholds were introduced to
adaptively adjust the selection of pseudo-labels during each iteration, ensuring
more accurate labels. Finally, the loss function was adapted to incorporate
confidence scores, prioritizing the most reliable predictions and improving

3

Introduction

the robustness, generalization, and overall segmentation performance of the
model.

1.3 Outline of the work
In the thesis, the various topics will be addressed and the research will be divided
into 6 chapters, here to define a brief description of each:

• Chapter 1 - Introduction. This chapter introduces the general problem
addressed in this thesis and provides a formulation of the problem. The
remainder of the chapter is structured as follows.

• Chapter 2 - Related Works . This chapter presents a review of existing
research in the field of 3D semantic segmentation, analyzing state-of-the-
art methods and solutions. This chapter helps identify the most effective
approaches for addressing the research problem.

• Chapter 3 - Datasets. This chapter presents the datasets used in this
research, including data collected in the city of Turin, the Turin3D dataset,
and external datasets adapted to its taxonomy. Additionally, it provides a
detailed description of the acquisition and construction process of the new
Turin3D dataset.

• Chapter 4 - Methodology. The chapter covers all the methodologies that
were chosen to perform the experiments and why some of the choices that
could lead to improvements. All technical choices are described, including the
different neural network architectures, training strategies and dataset used.

• Chapter 5 - Experimental Results. This chapter presents the results of the
methodologies mentioned in the previous chapter, with the support of tables
and other visual elements that can support the analysis and interpretation of
the results.

• Chapter 6 - Conclusions. The final chapter summarizes the key contribu-
tions and findings of the research. It also discusses potential future directions
for advancing 3D semantic segmentation based on the results obtained.

4

Chapter 2

Related Works

This chapter provides a brief overview of key concepts and a review of the existing
literature on 3D semantic segmentation and its main paradigms. It begins by
introducing the types of data being analyzed and the existing detection methods.
Additionally, it presents an introduction to the most important neural networks
and datasets used in this field.

2.1 LiDAR Sensor

LiDAR is an active optical sensor that emits laser pulses to a target and measures
the signal return time, allowing the distance between the sensor and the object
to be calculated. By combining these measurements with GPS and INS (Inertial
Navigation System) data, LiDAR enables the reconstruction of detailed 3D point
clouds of the environment. This technology is widely used in applications such as
point cloud segmentation.
One challenge that can be found when using LiDAR sensors is in the detection
of water surfaces. Due to the highly absorptive and reflective properties of water,
LiDAR pulses often do not return meaningful signals, resulting in missing or
very sparse points in point clouds. In addition, variations in water turbidity,
surface motion and environmental conditions can further affect the accuracy and
completeness of the acquired data. These limitations make water segmentation
particularly challenging and often require additional processing techniques or
complementary data sources to improve detection and classification.
Despite this LiDAR sensors can be used in various mapping and monitoring tasks
because they can be mounted on aircraft, vehicles or tripods.

Related Works

Figure 2.1: One of the possible vehicles that can perform LiDAR measurements. The image
is recreated from figure 1.5 (b), pp. 8 in [1]. The figure is used for the first time in one of the
authors’ paper (see [2].)

Each recorded LiDAR point reports essential attributes, including intensity
(signal strength), return number (indicating whether it is the first, second, or
subsequent return from a single laser pulse), total number of returns, potentially
RGB values, GPS timestamp, scan angle, and scan direction.
After LiDAR data are collected, post-processing becomes necessary, which requires
the use of specific, often expensive and inaccessible software to perform. This
limitation highlights the growing need for machine learning algorithms to automate
classification, improving accuracy and reducing costs in large-scale LiDAR data
analysis. [3]

2.2 3D Point Clouds
As mentioned earlier, in recent years, it has become necessary to work with 3D
scenes and no longer 2D scenes since they are more representative of the real world.
However, there are several possibilities for representing 3D data such as point
clouds, meshes, and voxels, differences are shown in the figure 2.2.

Figure 2.2: 3D data representation, the figure is used in [4].

The major differences between these are:

6

Related Works

• Point cloud. It is a large collection of points shown in 3D space, these
points can express the spatial distribution and surface characteristics of the
target. Each point can contain many information, such as: three-dimensional
coordinates (x, y, z), color information (r, g, b) and surface normal vector, etc.

• Mesh. Data are represented by a mesh grid and it’s possible can be displayed
as a collection of points that build local relationships between them.

• Voxel. Data are divided into a regular grid, these are useful in contexts where
one wants to represent unevenly filled and regularly sampled spaces.

• Multi-view. In this technique, 3D objects are represented through images
acquired from multiple angles.

In the current research there has been a focus on the representation of 3D data
as point clouds, in fact these are one of the most popular forms of representation
due to their ability to capture in detail the spatial distribution and geometric
characteristics of objects.

There are various formats that can be used when it concerns 3D point cloud
files; the main difference between these files is the use of ASCII and binary. The
most common binary point cloud formats are FLS, PCD, LAS, etc. While other
file formats that support both ASCII and binary are PLY, FBX [4]. In particular,
the LAS and PLY formats are analyzed, which will be the ones mainly used in
the case of the datasets under study. In the case of LAS, this is particularly
popular for LiDAR data because of its ability to retain the detailed information
they provide us, while in the case of PLY, they are designed for the representation
of three-dimensional models and are able to support both geometric information
and attributes such as color and transparency.

2.3 3D Semantic Segmentation
Semantic segmentation of 3D point clouds in urban environments is a key task in
urban mapping and scene understanding, enabling the classification of each point
into a specific semantic category. This process is essential for applications such as
city modeling, infrastructure monitoring, and autonomous navigation. To achieve
this, existing methods can be categorized into four main paradigms: Projection-
based, Discretization-based, Point-based, and Hybrid methods [5]. In the
case of the first two paradigms, before the other steps, they transform the point cloud
into an intermediate regular representation, then the intermediate segmentation
results are projected onto the raw point cloud. In contrast, point-based methods
can work on irregular point clouds without performing any transformation.

7

Related Works

The following methods focus on point-based semantic segmentation and hybrid
methods. In the former, one directly works on the raw point cloud without requiring
any transformation, while in the latter they combine point-based techniques with
other representations, such as voxel grids, meshes or images, to improve the accuracy
and efficiency of segmentation.

2.4 Point-based Neural Networks
As mentioned above, if it is in the context of point-based methods, the networks
work directly with irregular point clouds. The main problem is that the raw point
clouds acquired by depth sensors are typically irregularly sampled and therefore
do not have a regular structure [6]; this consequently leads to the impossibility of
applying traditional CNNs [7]. For this end, PointNet [7] introduced shared MLPs
for point-based feature learning and a symmetrical pooling function for global
feature learning [5].

Figure 2.3: An illustration of point-based methods, shown in [5]

Several PointNet-based networks have been proposed in recent years, which can
be categorized into four main groups:

• Pointwise MLP Methods. Use shared MLPs, however these are not able
to capture the local geometry and mutual interaction between points [7]. For
this reason, new techniques have been introduced such as methods based on
neighbouring feature pooling, attention-based aggregation, and local-global
feature concatenation [5].

8

Related Works

• Point Convolution Methods. Use convolution operators for point clouds;
Hua et al. [8] proposed a point-wise convolution operator in which neighbouring
points are divided into kernel cells and then convolved with kernel weights.
For example, in the case of KPConv, the convolution weights of this are
determined by the Euclidean distances to kernel points, and the number of
kernel points is not fixed.

• RNN-based Methods. It employs RNNs to capture the spatial dependence
between points; experiments show how integrating spatial context can improve
segmentation performance [5].

• Graph-based Methods. Represent point clouds by means of graphs to
model geometric relationships [5].

Based on these methods, it is possible to explore different types of neural networks
that have different characteristics and strengths.

2.4.1 PointNet

PointNet [7] was introduced to address the limitations of traditional convolutional
architectures, which typically require highly regular input data formats. While
such formats facilitate convolution operations, they also lead to unnecessarily large
data volumes and introduce quantization artifacts, which can obscure the natural
invariances of the data. To overcome these issues, PointNet directly processes raw
point clouds, assigning labels to each point without requiring data transformations.

In this architecture, all points are processed identically and independently, its
main feature being the use of a single symmetric function, max pooling. This
allows the network to learn a set of optimal criteria that select interesting points
and encode the reason for their selection, while the final, fully connected layers of
the network aggregate these optimal values and serve to predict the labels for each
point.

9

Related Works

Figure 2.4: PointNet[7]: Classifies n points via MLPs, feature transformations, and max
pooling. Segmentation extends it by combining global and local features. Uses BatchNorm, ReLU,
and Dropout.

The structure of the network is illustrated in Figure 2.4, where the classification
network and the segmentation network share most of their architecture. The classi-
fication network takes n points as input, applies input and feature transformations,
and then aggregates the point features using max pooling, producing classification
scores for k classes. The segmentation network can be seen as an extension of the
classification network, where global and local features are concatenated to generate
per-point classification scores.

The PointNet architecture is based on three key modules:
1. Maximum global pooling as a symmetrical feature. Aggregates point

information and eliminates dependency on input order.

2. Combination of local and global information. After obtaining the global
features, they must be concatenated with the local features of each point to
improve segmentation.

3. Alignment networks with the T-Net. This is a module that learns spatial
transformations to align the point cloud in a canonical space, this guarantees
robustness to geometric variations.

PointNet[7] underlies all methods that directly process 3D point clouds and learns
features on a per-point basis using shared multilayer perceptrons. While this
approach is computationally efficient, it is unable to capture broader context
information for each point. For this reason, PointNet was the basis for other
networks developed later that aimed to improve on its limitations.

2.4.2 RandLA-Net
As explained earlier Pointnet[7] had limitations that its successors tried to improve,
for this reason, many dedicated neural modules were subsequently and rapidly in-
troduced. These methods can be divided into four categories: Neighbouring Feature

10

Related Works

Pooling, Graph Message Passing, Kernel-based Convolution and Attention-based
Aggregation. These can be efficient in the context of semantic segmentation, but
most of them are limited to use in scenarios where the point clouds are small.
This limitation stems from three main factors: commonly used sampling methods
are computationally and memory expensive, local feature learning algorithms are
computationally expensive, and existing networks have limited receptive fields,
making them inefficient for capturing complex structures in large point clouds.

This led to the introduction of RandLA-Net[6], an efficient neural architec-
ture capable of directly processing large-scale 3D point clouds without requiring
any pre/post-processing steps. The key concept behind RandLA-Net is Random
Sampling, which is the most efficient way to process large-scale point clouds. In
fact, this significantly reduces the point density while simultaneously applying a
carefully designed local feature aggregator to preserve the most relevant features;
this approach achieves an optimal balance between efficiency and effectiveness.

To understand Random Sampling, its key characteristics can be outlined as follows:
it uniformly selects K points from the original N points, with a computational
complexity of O(1). Compared to other methods, it has the highest computational
efficiency, regardless of the scale of the input point clouds and it does not require
extra memory for computation. The problem is that this may involve the removal
of many useful point features, to overcome this problem, RandLA-Net introduces a
new local feature aggregation module.

Figure 2.5: The proposed local feature aggregation module. The top panel shows the location
spatial encoding block while the bottom panel shows how two of these components are chained
together, to increase the receptive field size, within a residual block [6].

As can be seen in the figure 2.5, there are three different neural units:
• Local Spatial Encoding (LocSE). Its task is to encode the relative spatial

coordinates of neighbouring points and in this way improve the network’s

11

Related Works

ability to learn local geometric structures. To make this possible, it uses the
K-Nearest Neighbours (KNN) method that finds neighbouring points and
an MLP function to calculate relative representations. By combining this
information with the features of the neighbouring points, an enriched feature
set is generated.

• Attentive Pooling. Its purpose is to aggregate the features of neighbouring
points using an attention mechanism, so that there is no lost information. It
calculates attention scores for each feature and then uses a weighted sum to
select the most relevant information.

• Dilated Residual Block. It expands the receptive field by combining
multiple layers of LocSE and Attentive Pooling with residual connections,
inspired by ResNet[9] and dilated networks[10] . In this way, each point can
acquire information from an increasing number of neighbours, improving its
ability to capture larger structures but limiting the increase in computational
cost.

2.4.3 Point Transformer V1 Network (PTv1)
Other possible architectures to consider could be those based on transformers. The
introduction of transformers has brought significant advantages, and PointTrans-
former [11] extends these innovations to the field of 3D point cloud processing.
This neural network architecture exploits the self-attention mechanism, which
operates without a fixed structure. Unlike other networks that voxelize 3D space
or apply convolutions on graphs, PointTransformer uses local attention based on
a variant of vector self-attention combined with efficient positional coding. This
approach allows the model to accurately capture the geometric structure of 3D
scenes.

Figure 2.6: Point transformer[11] network for semantic segmentation.

12

Related Works

Figure 2.6 shows the structure of the network. At first, the Residual Point
Transformer block can be described as using a self-attention layer as its central
element, combined with linear projections to reduce dimensionality and a residual
connection to facilitate information flow. Using this block, the network adopts an
encoder-decoder architecture, comprising five downsampling stages that progres-
sively reduce the number of points. Consecutive stages are connected by transition
modules: the transition down for feature encoding and the transition up for
feature decoding. The transition down module employs farthest point sampling
to select a well-distributed subset of points and uses a kNN graph to aggregate
local features through max pooling. On the other hand, the transition up module
interpolates features to a higher resolution and combines them with the encoder’s
features via a skip connection. As for semantic segmentation, the final decoding
stage generates a feature vector for each point in the input point set.

2.4.4 Kernel Point Convolution Network (KPConv)
Another existing architecture that works with 3D points is KPConv[12], which
operates on point clouds without the need for intermediate representations such as
voxels or regular grids. This neural network architecture is given its name by a
new operation that is Kernel Point Convolution (KPConv), which is a novel
convolution to operate on 3D point clouds. This approach is distinguished by the
use of a set of spatially distributed kernel points, which define the weights of the
convolution, allowing greater flexibility than convolutions using fixed grids.
The most relevant feature of this operation is its deformable version, which allows
the kernel points to dynamically adapt their positions based on the geometry of the
scene. This capability is particularly useful in urban environments, where there is
significant variation in shape and density. In addition to this adaptability, the use
of radius neighborhoods instead of traditional k-nearest neighbors provides further
advantages in the urban domain. Since datasets in this field are often acquired
through LiDAR sensors, they may be sampled non-uniformly. In such cases, this
technique can help improve performance.

2.4.5 Submanifold Sparse Convolutional Network
Another commonly used approach in general is based on Convolutional Networks.
However, traditional Convolutional Networks are optimized for dense grid-based
data, such as 2D images, and become inefficient when applied to sparse data due to
their high computational cost. One of the main challenges when applying standard
Convolutional Networks to 3D data is that each convolution operation progressively
increases the number of active points in space, leading to a loss of the original
sparsity. This issue, known as the Submanifold Dilation Problem, is addressed by

13

Related Works

restricting the convolution output to only the active points present in the input.
However, this approach may result in the separation of neighboring connected
components, hindering the propagation of information.
To overcome these limitations, Submanifold Sparse Convolutional Networks
(SSCN) [13] were introduced. These networks propose a new implementation
for performing Sparse Convolutions (SC) and introduce a novel convolution
operator, Submanifold Sparse Convolution (SSC), specifically designed to
maintain sparsity while preserving spatial continuity.

• Sparse Convolutions (SC). It is a type of convolutional operation optimized
for scattered data, such as point clouds. Unlike standard convolutions, SC
assumes that non-active sites have zero value, reducing the computational
cost.

• Submanifold Sparse Convolution (SSC). It is a modified SC convolution,
which preserves the sparsity structure of the point clouds. In an SSC operation,
the output retains the same size as the input through appropriate padding,
ensuring that a point in the output is active only if the corresponding point
in the input is also active.

To construct this convolutional network based on SC and SSC, other operators are
defined such as Activation and Batch Normalization functions, Max Pooling (MP)
and Average Pooling (AP) and Deconvolution (DC).

The use of SSCs makes it possible to maintain high efficiency and accuracy in
point cloud processing, avoiding the wastage of computational resources on empty
regions.

2.5 Datasets

Several datasets exist to evaluate the performance of models using 3D point
clouds. In particular, those reported here are datasets used for 3D semantic
segmentation and representing urban environments; however, each of them has
a different taxonomy. The difference between them beyond the taxonomy is the
acquisition; in fact, it is possible to acquire these datasets from different types of
sensors, including Mobile Laser Scanners (MLS), Aerial Laser Scanners (ALS),
static Terrestrial Laser Scanners (TLS), RGBD cameras and other 3D scanners
[5]. They may also contain different fields for each point, depending on the type of
sensor used to collect the data.

14

Related Works

2.5.1 Sensat Urban

Figure 2.7: Examples of SensatUrban dataset, different semantic classes are labeled by
different colors.[14]

SensatUrban [14] is an urban-scale photogrammetric point cloud dataset and con-
taining almost three billion semantically annotated points. It covers approximately
7.6km2 of urban landscape in three UK cities: Birmingham, Cambridge and York.
The data were collected through aerial surveys, with flight paths pre-planned in a
grid pattern and automated using the e-Motion flight control system. To cover the
entire area efficiently, multiple flights were conducted in parallel, each lasting 40 to
50 minutes. The collected data were then processed using commercial software such
as Pix4D, which applies Structure from Motion (SfM) and dense image matching
techniques for point cloud reconstruction.
In total, the dataset consists of: 569 million points over 1.2km2 that are part of the
Birmingham suburban area, over 2.27billion points over 3.2km2 for the Cambridge
urban area, and finally about 904 million points over 3.2km2 for York. However, the
only labeled data are those for Birmingham and Cambridge, these follow the below
split: 14 tiles for Birmingham (10 for training, 2 for validation, and 2 for testing)
and 29 for Cambridge (20 for training, 5 for validation, and 4 for testing), each tile
is about 400X400m2. However, the creators of the dataset have not released the
labeled data for the test subset; only the labels for the other subsets are available.
The labels used in the dataset follow 13 semantic classes, the main ones of which
are: Soil (0), Vegetation (1), Buildings (2), Cars (9), Water (12), and so on; an
example of how the labeling is done can be found in Figure 2.7.
SensatUrban represents a significant contributor to large-scale applications, includ-
ing urban planning and infrastructure management.

15

Related Works

2.5.2 SUM

Figure 2.8: Overview of the urban mesh in SUM. Left: textured meshes covering an area of
approximately 4km2. Right: ground truth meshes.[15]

The SUM[15] dataset is a high-resolution 3D urban dataset covering approximately
4km2 in the centre of Helsinki, Finland.
It consists of a semantically annotated triangular mesh with six classes: Terrain
(1), Building (3), High Vegetation (2), Water (4), Vehicle(5) and Boat(6). The
mesh was generated from oblique aerial images with a GSD of 7.5 cm, acquired
in 2017 using an aircraft-mounted multi-camera system, while reconstruction was
performed using with ContextCapture software, which applies techniques of aerial
triangulation, dense image matching and surface reconstruction.
This dataset is an important resource for urban semantic segmentation due to its
extent and accuracy, offering high quality data and detailed annotation.

16

Related Works

2.5.3 Eclair

Figure 2.9: An example of the ECLAIR annotation, which covers 10km2 and contains 11
semantic classes[16].

The ECLAIR (Extended Classification of LiDAR for AI Recognition)[16] dataset
is a large LiDAR dataset acquired in the city of Espoo, Finland. It covers an area of
more than 10km2 and contains approximately 600 million points. This dataset was
developed to support urban research, furthermore, in contrast to other terrestrial
LiDAR datasets, ECLAIR was obtained using Airborne LiDAR Scanning (ALS).
This method provides a wider and more uniform coverage than others, but with
higher costs. The acquisition was performed with a proprietary multi-sensor system
mounted on a helicopter and the data was collected at a flight height of 100 meters
and speed of 40 knots. With 600 PRR (Pulse Repetition Rate) and 234.5 lines per
second, the LiDAR has a point density of 50points/m2 and a swath width of 328
meters.
After the data were collected, the dataset was processed by converting the raw
data into LAZ format, subsequently subdividing the point clouds into 1246 tiles
(with a size of 100 × 100 m) for more efficient processing. In addition, the dataset
was divided as follows: 70% of the data represents the training subset, 10% the
validation subset and 20% the testing subset. This partitioning ensures a balanced
evaluation of model performance across different stages of learning. Notably, the
dataset comprises 11 semantic classes, with a predominant focus on electrical
infrastructure, including categories such as Transmission Wires (6), Distribution
Wires (7), Poles (8), and Transmission Towers (9), among others.

17

Related Works

2.5.4 Fractal

Figure 2.10: An example of an annotation for FRACTAL dataset, representing the different
scenes it contains[17].

The FRACTAL(FRench ALS Clouds from TArgeted Landscapes)[17] dataset is a
large-scale LiDAR dataset designed for the semantic 3D segmentation of heteroge-
neous landscapes. It consists of 100,000 point clouds acquired by Airborne LiDAR
Scanning (ALS) and covers a total area of 250km2 selected from an initial area of
17,440km2 in five regions of France. This dataset was constructed using open-source
data from the Institut national de l’information géographique et forestière (IGN) as
part of the Lidar HD programme, which aims to achieve high-density 3D mapping
of the entire French territory by 2026.
During the construction of the dataset, a sampling scheme is used that explicitly
focuses on rare classes, rare objects and challenging landscapes. In general, FRAC-
TAL includes 9261 million points with an average density of 37 points/m2 and
annotation was provided for 11 semantic classes which are: Ground (2) , Vegeta-
tion (low, medium and high), Buildings (6), Water (9), Bridge (17), Permanent
Structures (64), Artefact (65), Synthetic (66). Furthermore, the existing division
for the dataset is as follows 80% for the training set, 10% for the validation set and
10% for the test set.

18

Related Works

2.5.5 Toronto3D

Figure 2.11: A section of the Toronto3D dataset is shown, with the top part displaying the
dataset in natural colors (RGB) and the lower part illustrating its classification into 8 semantic
classes[18].

Toronto-3D[18] is a large-scale urban outdoor point cloud dataset for 3D semantic
segmentation of urban environments; it is acquired through a mobile laser scanning
system (MLS) in Toronto, Canada and it covers 1km of urban streets comprising
approximately 78.3 million points. In particular, the devices used to collect the
data are a 32-line Teledyne Optech Maverick LiDAR sensor, integrated with a
Ladybug 5 panoramic camera and a GNSS system for geolocation.
Also thanks to these technologies each point contains different information such
as: the location of each point recorded in meters (x,y,z), natural color (R, G, B),
intensity, GPS time, scan angle and label. The labels included in the dataset are
manual annotations consisting of 8 classes, some of them are : Road (1), Road
Markings (2), Natural (3), Building (4), Utility Line (5), Fence(8), etc. It can be
observed that there are two class labels not commonly spread in other datasets,
these classes are road marking and utility line.

19

Related Works

2.5.6 STPLS3D

Figure 2.12: Examples of STPLS3D datasets, including Synthetic V1, Synthetic V2, Synthetic
V3 and real-world subsets. The different semantic classes are shown below[19].

STPLS3D[19] is a large-scale dataset designed for semantic segmentation derived
from aerial photogrammetry, covering more than 16km2 of landscapes and including
18 semantic categories. Some of these categories are: Ground (0), 16km2, Vegetation
(low, medium, and high), Truck (6), Aircraft (7), Military Vehicle (8), Light Pole
(11), Street Sign (12), Clutter (13), Dirt (18), etc.
The novelty of this dataset compared to others is that it combines real-world data
acquired from UAVs with three synthetic versions (V1, V2, and V3) generated
through a procedural pipeline. This approach addresses common challenges in real-
world data collection and annotation, such as class imbalance and heterogeneous
point quality. Synthetic data were obtained through a generation pipeline that
mimics the real photogrammetric acquisition process by simulating UAV flights
over virtual environments. These environments were built using open geospatial
data and procedural modeling tools, enabling the creation of realistic 3D point
clouds that remain compatible with real-world data while eliminating the need for
manual annotations.
In conclusion, the integration of synthetic data, as in this case, can significantly
influence the efficiency and generalization of deep learning models, bridging the
gap between real-world complexity and the need for large-scale annotated datasets.

20

Related Works

2.5.7 Swiss3D

Figure 2.13: An example of Swiss3D dataset, on the left can be seen the version with natural
colors(R,G,B) and on the right its classification[20].

Swiss3DCities[20] is a large-scale dataset designed for semantic segmentation of
3D point clouds acquired by aerial photogrammetry. The dataset covers a total
area of 2.7km2 spread over three Swiss cities with different urban characteristics:
Zurich (dense and urban), Zug (mixed, with industrial and residential areas), and
Davos (mountainous and rural). The data as mentioned earlier were collected by
multi-rotor drones following dual-grid flight paths, the main difference from data
collected by LiDAR sensors is that denser and more complete point clouds are
obtained.
The entire dataset is manually annotated with dense labels, the categories chosen
for semantic segmentation labels are: Terrain (1), Building (2), Urban Asset (3),
Vegetation (4) and Vehicle (5).
With its high-resolution acquisition and accurate semantic annotation, it repre-
sents one of the best datasets for developing advanced techniques in 3D semantic
segmentation.

21

Related Works

2.5.8 Hessigheim

Figure 2.14: An example of Hessigheim dataset, on the left can be seen the version with
natural colors(R,G,B) and on the right its classification into 11 semantic classes[21].

Hessigheim 3D(H3D)[21] is a dataset used for semantic segmentation of 3D
point clouds and textured meshes, data were acquired from a LiDAR system and
cameras integrated on the same Unmanned Aerial Vehicle (UAV) platform. The
data were collected in the village of Hessigheim, Germany, and in three different
time periods: March 2018, November 2018, and March 2019 in order to be used in
change detection applications.
A distinctive feature of this dataset is its high spatial resolution; in fact, for the
point cloud there is a density of about 800 points/m2, while the 3D mesh is textured
with images that have a ground resolution of 2-3 cm. The point cloud was entirely
annotated manually and later this annotation was transferred to the 3D mesh by a
geometric association method. It is possible to observe 11 semantic classes included
in the H3D annotation, some of these classes are: Low Vegetation (0), Impervious
Surface (1), Vehicle (2), Urban Furniture (3), Roof (4), Shrub (6), Vertical Surface
(9), etc.

22

Related Works

2.6 Transfer Learning

Transfer learning[22] is a crucial technique for improving the semantic segmenta-
tion of 3D point clouds, in particular in scenarios where labeled data is limited.
Using this approach, knowledge learned on large, well-annotated datasets can be
transferred to new domains that do not contain fully labeled data. In addition, a
pre-processing pipeline must be used for efficient point cloud segmentation; this
is necessary to ensure uniformity, compatibility and accuracy in the subsequent
segmentation model. The key steps are:

• Converting Batches to Same Size. The same size is given to each batch,
so that an equal number of points are generated for each. This uniformity
facilitates a training process and guarantees that each batch is of consistent
size, enabling efficient model convergence.

• Class Remapping. The datasets used may have different class labels, so a
process of remapping the classes is necessary to align them with each other.
This remapping process ensures consistency of class representation across
datasets, contributing to a unified segmentation model.

As demonstrated in [22], this approach produces high-quality 3D point cloud
segmentation while effectively addressing data sparsity issues, offering a robust
solution for urban point cloud analysis.

2.7 Semi-Supervised

In 3D semantic segmentation, having large amounts of labeled data is crucial for
training accurate models; however, the annotation process is expensive and complex.
For this reason, the use of Semi-Supervised Learning (SSL) techniques is useful,
as it allows unlabeled data to be used. In particular, pseudo-labels, e.g. based on
the confidence of predictions, can be generated to improve model learning without
depending exclusively on labeled data.

23

Related Works

Figure 2.15: Overview of method described in [23]

There are several methods that can be used to implement these SSL techniques.
One of these is the one described by Hongyan Li et al. (2021)[23], which proposes
an approach based on self-learning and confidence evaluation of pseudo-labels. This
method integrates self-training with generative adversary networks (GANs) to
improve the reliability of pseudo-labels assigned to unlabeled data. The architec-
ture consists of two networks: a segmentation network, which performs semantic
segmentation, and a discrimination network, which evaluates the reliability of the
generated labels, selecting only those that are considered highly reliable. It is
possible to see an overview of the model used in the figure 2.15.
The specific process performed in this method is iterative:

1. The model is initially trained with labeled data only.

2. After an initial training phase, this model is used to assign pseudo-labels to
unlabeled point clouds.

3. The discriminator evaluates the confidence of the labels and selects the reliable
ones.

4. The selected pseudo-labels are added to the training set to improve the model.

Another method proposed by Zhimin Chen et al.(2022)[24] focuses on the selection
of variable confidence thresholds for the choice of pseudo-labels. The use of
fixed thresholds can in fact generate two main problems. The first concerns
the unbalancing of classes: the most represented classes tend to dominate the
learning process, while the least represented classes receive an insufficient number of
pseudo-labels, compromising the effectiveness of the training. The second issue
is the poor adaptability of thresholds, a fixed threshold does not take into
account the different learning difficulties between classes, reducing the efficiency of
using unlabeled data and limiting the improvement of the model. To overcome these
limitations, the proposed method dynamically adapts the pseudo-label selection

24

Related Works

threshold according to the average confidence of each class, optimizing the training
process.

Figure 2.16: Overview of method described in [24], it consists of three main parts: (1)
Determining the learning status of each class from unlabeled data, (2) dynamically adjusting
class-specific thresholds, and (3) re-sampling the dataset accordingly.

The main strategies behind this method are:

1. Dynamic Thresholding. Instead of using a fixed threshold to decide whether
to include a pseudo-label, the threshold is dynamically adjusted according
to the average confidence of the class. For example, for classes with low
confidence, lower thresholds are selected to include more labeled data.

2. Dynamic Re-Sampling. Even with dynamic thresholds, some classes may
still dominate others; therefore, confidence is dynamically adjusted. At each
iteration, the confidence of each class is monitored and updated to continuously
improve the model.

The integration of these strategies optimizes the use of unlabeled data and improves
the generalization of the model.

25

Chapter 3

Turin3D Dataset

This chapter will principally describe the Turin3D dataset, which was the main
dataset used during the thesis work to evaluate the performance of the models
and improve them. It will also explain how the classes of all the other datasets
examined were mapped so that they were consistent with the taxonomy of the
Turin3D dataset.

3.1 Dataset Description

Figure 3.1: Overview of the Turin3D dataset, with an example of the annotation followed
and the segmentation process.

This section will focus on the description of the new Turin3D dataset, acquired
with LiDAR sensors in a limited area of Turin.
The current dataset was collected in the district of San Salvario in Turin, Italy,

Turin3D Dataset

and covers a total area of approximately 1.43km2; the entire area was subdivided
into 57 blocks, each of which has a size of approximately 25,000m2. To better
understand the spatial distribution of these points and the diversity of the captured
environments Figure 3.2a illustrates the area covered by the dataset, revealing the
variety of landscapes present. In fact, this area of the city includes several examples
of urban environments, moving from green areas and parks to urban centres, and
also including bridges and rivers.
The number of points per block varies significantly depending on the location of
the point cloud. This variation is due to the diversity of environments within
the selected area. As shown in Figure 3.2b, the left side features an urban and
residential landscape (highlighted in gray). The central area, on the other hand,
is predominantly green, with parks, tree-lined spaces, historical buildings, and a
river (highlighted in green). This area has fewer points on average due to the lower
presence of tall buildings and the LiDAR’s limitations in accurately capturing water
bodies. The rightmost part presents a more heterogeneous environment, with hilly
terrain, vegetation, and large houses (highlighted in orange). The dataset’s value
lies in its wide variety of landscapes, despite all the data coming from a single city.
Regarding the data structure of Turin3D, the point cloud is stored in the LAS 1.4
format, which provides a structured framework for encoding each point with its
attributes. Each point in the dataset contains rich information captured through
LiDAR sensors, including the following attributes:

• (X, Y, Z). 3D coordinates of the LiDAR point, stored as long integers. The
actual coordinates are computed using scale and offset values.

• Intensity. The magnitude of the returned laser pulse. Normalized to a
16-bitunsigned integer, with values depending on sensor characteristics.

• RGB. Color values associated with the LiDAR point, typically derived from
an auxiliary camera. Normalized to 16-bit.

• Return Number . Indicates which return this point corresponds to within a
single emitted pulse.

• Number of Returns. Total number of returns recorded for the given pulse.

• Scan Direction. Indicates whether the scan was moving left-to-right or right-
to-left.

• Flight Line Edge Flag. Indicates whether the point is at the edge of the flight
line.

• Scan Angle. The angle at which the laser pulse was emitted, relative to nadir.

• User Data. Field for custom user-defined information.

27

Turin3D Dataset

• Point Source ID. Identifier for the file or flight line from which the point
originated.

• GPS Time. Time at which the point was recorded, based on GPS timestamp-
ing.

Those listed earlier are all fields provided by the point clouds in the dataset; in
the course of the experiments covered in the thesis work, only the following fields
were used: (X,Y,Z), RGB and intensity.

3.2 Data Acquisition

The data in this dataset were acquired during an aerial flight, at an altitude of
approximately 1km, conducted on January 28-29 2022. Specifically, the acquisition
was possible thanks to the Leica CityMapper-2, a hybrid aerial sensor that
integrates LiDAR technology and optical imaging, providing high spatial accuracy
and full urban coverage. Through this acquisition, 69,591,759 points were collected
and each square meter possesses an average resolution of about 51.05 points, thus
providing a detailed representation of the urban environment.
The LiDAR system operates at a pulse repetition rate of 2MHz and employs a
gateless multiple-pulse-in-air (MPiA) approach, allowing precise distance measure-
ments with an accuracy of about 3cm.The scanning pattern is oblique. This ensures
a uniform distribution of points in the dataset. As a result, the reconstruction of
vertical surfaces, such as buildings, is improved. These surfaces are clearly present
in the treated case. In addition, the optical system is equipped with two 150 MP
nadiral cameras (RGB and NIR) and four 150 MP 45◦ oblique cameras (RGB),
which capture high-resolution images so that LiDAR data can be completed. A
total of 20,291 images could be collected through these cameras. After these surveys
to obtain a dataset that could be used in semantic segmentation, the LiDAR cloud
was merged with the optical images, producing a 3D colorized point cloud. This
process preserves both the geometric accuracy of the LiDAR and the radiometric
consistency of the photogrammetric data, as illustrated in Figure 3.3. In particular,
it can be seen that the dataset detection is accurate in detecting all elements in
the city such as buildings, vegetation providing a good reference to be used in 3D
semantic segmentation.

28

Turin3D Dataset

Dataset Year # points Classes RGB Intensity Area Sensor
SensatUrban [14] 2020 2847M 13 ✓ ✗ 7.64 Km2 UAV Photogrammetry
Swiss3D [20] 2020 226M 5 ✓ ✗ 2.7 Km2 UAV Photogrammetry
Toronto 3D [18] 2020 78M 8 ✓ ✗ 1 Km2 MLS
Hessigheim [21] 2021 74M 11 ✓ ✓ 0.19 Km2 ULS
SUM [15] 2021 19M 6 ✓ ✗ 4 Km2 Aerial photogrammetry
STPLS3D [19] 2022 794M 18 ✓ ✗ 7.27 Km2 Aerial Photogrammetry + SAP
ECLAIR [16] 2024 582M 11 ✓ ✗ 10.3 Km2 ALS
FRACTAL [17] 2024 9261M 7 ✓ ✓ 250 Km2 ALS
Turin3D 2025 69M 6 ✓ ✓ 1.422 Km2 ALS

Table 3.1: Comparison of Turin3D dataset with the representative datasets for 3D semantic
segmentation in urban scenarios. MLS: Mobile Laser Scanning system, ULS: Unmanned Laser
Scanning system, ALS: Airborne Laser Scanning system, SAP: Synthetic Aerial Photogrammetry.

3.3 3D Point Cloud Processing
After data collection, a reconstruction step was necessary to obtain more com-
plete and geometrically improved point clouds that will compose the dataset. As
shown in Section 3.2 there was an interaction of the LiDAR data with the aerial
images. For this purpose, Agisoft Metashape and nFrames SURE, two advanced 3D
photogrammetry and reconstruction software tools, were used in order to obtain
point clouds that were as detailed as possible. It could be seen that integration
between LiDAR data and oblique imagery can give better results, as it allows
better reconstruction of vertical surfaces. Also through this data integration it was
possible to acquire very useful additional information such as intensity, which is im-
portant for point classification. In fact, images make it possible to classify land use
and land cover, while LiDAR data make it possible to distinguish soil, vegetation,
and buildings, offering a significant advantage due to their sunlight-independent
acquisition capability. Therefore, the use of this combination is essential for 3D
models as it ensures that the reconstructed point cloud is geometrically accurate
and radiometrically enriched.

3.4 Semantic labels taxonomy
The definition of semantic labels followed three basic principles:

• Each class must be clearly distinguishable from the others, providing high
heterogeneity between classes and high homogeneity within each class.

• The classes selected for the taxonomy of this dataset were extracted from
those present in literature datasets to ensure uniformity. Additionally, they
were chosen to be relevant for urban planning applications.

29

Turin3D Dataset

• The classification must bring value to subsequent analyses, with a focus on
urban planning and green area applications.

The classes to be used, along with special case scenarios such as bridge structures
and different types of flooring (e.g., terrace flooring), were discussed and agreed
upon among the annotators to ensure a consistent and uniform definition.

A taxonomy consisting of six distinct semantic labels was adopted to simplify
the classification task. The number of classes is lower than in other datasets to
avoid labels that are too similar and difficult for human annotators to distinguish.
The chosen classes and their identifiers are listed below:

• Unassigned (0): is used to include points derived from noise in the acquisition
and reconstruction process; these points can be found clustered in masses too
small to be classified.

• Soil (1): natural surfaces, meadows.

• Terrain (2): any other artificial grounds, such as streets or sidewalks.

• Vegetation (3): trees, shrubs, bushes, and any other kind of low and high
vegetation.

• Building (4): walls, fences, barriers, residential and historic buildings.

• Street elements (5): cars, trucks, poles, benches.

• Water (6): river, water canals, pools.

A key feature of this taxonomy is its ability to distinguish between natural and
artificial terrain, an aspect found in some other datasets in the literature but not
all.

3.5 Data splitting
The dataset was split into approximately 70% for training, 20% for testing, and
10% for validation, it is possible to observe the specific division in Figure 3.2c.
However, only the validation and test subsets were manually annotated, while
the training set was assigned soft labels, which were used in some experiments
conducted as part of this research.

30

Turin3D Dataset

(a) (b) (c)

Figure 3.2: The image represents several views of the point cloud contained in the Turin3D
dataset, (a) The entire area captured by the point cloud in the city of Turin, shown in RGB. (b)
Different areas in the point cloud, categorized by environment. (c) Split for validation, training
and test sets

Figure 3.3: Distribution of classes in the validation and test set.

When selecting the tiles for each subset, care was taken to ensure that they
all contained the same variety of landscapes, preventing any environment from
being absent in any split. The figure 3.3 shows how the points for each class are
distributed across both the validation and test sets.

3.6 Annotation process
As mentioned in Section 3.5, after splitting the dataset, it was necessary to annotate
the test and validation subsets. This annotation process consisted of several steps;

31

Turin3D Dataset

the first step involved selecting datasets from the literature that were similar to
Turin3D, based on both their taxonomy and the type of sensors used for acquisition.
Each class of these datasets was mapped into one of the 6 classes of the proposed
taxonomy, a process that will be described in detail in Section 3.7. This concatenated
dataset was then used to train the RandlaNet [6] model. By running inference
on the Turin3D point clouds, the model generated the initial annotations for the
dataset. This part was useful for annotation purposes, but additionally required
the manual work by four annotators. After completing the initial annotation of
the 17 tiles, a peer review of all the work was done to ensure the consistency of all
annotations. The annotation process was supported by comparing the point clouds
with satellite images of the city taken in March 2022, and by using additional point
features such as RGB and intensity.

3.7 Class mapping across Datasets

In order to ensure a meaningful evaluation of transfer learning, it is crucial to select
datasets with taxonomies comparable to that of Turin3D. Based on the literature,
the most suitable ones were identified to be used for the experiment. The selected
datasets are: Sensat Urban[14], Delft Sum[15], ECLAIR[16], Fractal[17],
Toronto3D[18], SPTLS3D[19], Swiss3D[20] and Hessigheim[21].
The following tables specifically illustrate the taxonomies of each selected dataset
and the mapping that had to be done based on the classes in Turin3D.

Class Label Description Mapping
0 Ground impervious surfaces, grass, terrain Soil (1)
1 Vegetation trees, shrubs, hedges, bushes Vegetation (3)
2 Building commercial / residential buildings Building (4)
3 Wall fence, highway barriers, walls Building (4)
4 Bridge road bridges Terrain (2)
5 Parking lots parking lots Terrain (2)
6 Rail railroad tracks Terrain (2)
7 Traffic road including main streets, highways Terrain (2)
8 Street Furniture benches, poles, lights Street Element (5)
9 Car cars, trucks, HGVs Street Element (5)
10 Footpath walkway, alley Terrain (2)
11 Bike bikes / bicyclists Street Element (5)
12 Water rivers / water canals Water (6)

Table 3.2: Mapping of the Sensat Urban dataset classes to the Turin3D taxonomy, including
their labels and descriptions.

32

Turin3D Dataset

Class Label Description Mapping
0 Unclassified Incomplete objects. Unlabeled (0)
1 Terrain Roads, bridges, grass fields, and impervious surfaces. Unlabeled (0)
2 High Vegetation Trees, shrubs, and bushes. Vegetation (3)
3 Building Houses, high-rises, monuments, and security booths. Building (4)
4 Water Rivers, sea, and pools. Water (6)
5 Vehicle Cars, buses, and lorries. Street Element (5)
6 Boat Boats, ships, freighters, and sailboats. Unlabeled (0)

Table 3.3: Mapping of the Delft Sum dataset classes to the Turin3D taxonomy, including
their labels and descriptions.

Class Label Description Mapping
0 Undefined No specific classification assigned. Unlabeled (0)
1 Unassigned A catch-all category for non-subject points. Anything that is not Unlabeled (0)

on the class list is classified as Unassigned.
2 Ground All points representing the Earth’s surface,including soil, pavement, Unlabeled (0)

roads, and the bottom of water bodies.
3 Vegetation All points representing organic plant life, including trees, low shrubs, Vegetation (3)

and tall grass of various heights.
4 Buildings Man-made structures with roofs and walls, such as houses, Building (4)

factories, and sheds.
5 Noise Points that do not belong to any relevant class. Unlabeled (0)
6 Transmission Wires High-voltage wires for long-distance transmission from power plants to Street Element (5)

substations, including transmission ground wires.
7 Distribution Wires Lower-voltage overhead wires distributing electricity from substations to Street Element (5)

end users, including span guy wires and communication wires.
8 Poles Utility poles supporting different types of wires or electroliers. Includes poles Street Element (5)

with either transmission or distribution wires, as well as
down guy wires, crossarms, and transformers.

9 Tower (Transmission) Large structures supporting transmission wires, characterized by steel Building (4)
lattices and cross beams.

10 Fence Barriers, railings, or other upright structures, typically of wood or wire, Building (4)
enclosing an area of ground.

11 Vehicles All wheeled vehicles that can be driven, including cars, buses, Building (4)
and trucks.

Table 3.4: Mapping of the ECLAIR dataset classes to the Turin3D taxonomy, including their
labels and descriptions.

Class Label Description Mapping
1 Unclassified All points that do not belong in any of the other classes. Unlabeled (0)

Includes vehicles, animals, people, temporary objects, wood piles, etc.
2 Ground Points on natural and artificial ground. Unlabeled (0)

Bridge decks are excluded.
3 Low Vegetation Trees, shrubs, bushes, ferns, reeds, etc. Ground-level Soil (1)

vegetation (<20 cm) is included only if enough ground points are present locally.
4 Medium Vegetation Vegetation between 0.5 m and 1.5 m height. Vegetation (3)
5 High Vegetation Vegetation taller than 1.5 m. Vegetation (3)
6 Building Permanent structures (>10 m2). Includes houses, castles, Building (4)

mills, towers, chimneys, fortifications, roofs, facades, and some lightweight structures.
9 Water Points on rivers, lakes, seas, or oceans. Water (6)
17 Bridge Bridge structures. Terrain (2)
64 Permanent Structure Aboveground objects that define the landscape but are not buildings, Street Element (5)

vegetation, or bridges. Includes wind turbines, antennas, pylons, and bridge elements.
65 Artefact Points that do not correspond to real-world objects or terrain. Unlabeled (0)
66 Synthetic Artificial points created under bridges and on water Unlabeled (0)

surfaces to ensure coherent digital models.

Table 3.5: Mapping of the Fractal dataset classes to the Turin3D taxonomy, including their
labels and descriptions.

33

Turin3D Dataset

Class Label Description Mapping
0 Unclassified Unlabeled (0)
1 Road Paved road surfaces, including sidewalks, curbs, parking lots. Terrain (2)
2 Road Markings Pavement markings including driving lines, arrows, pedestrian crossings. Terrain (2)
3 Natural Trees, shrubs, not including grass and bare soil. Vegetation (3)
4 Building Any parts of low and multi-story buildings, store fronts. Building (4)
5 Utility Line Power lines, telecommunication lines over the streets. Street Element (5)
6 Pole Utility poles, traffic signs, lamp posts. Street Element (5)
7 Car Moving cars and parked cars on roadsides and parking lots. Street Element (5)
8 Fence Vertical barriers, including wooden fences, walls of construction sites. Building (4)

Table 3.6: Mapping of the Toronto3D dataset classes to the Turin3D taxonomy, including
their labels and descriptions.

Class Label Description Mapping
0 Ground Grass, paved roads, dirt, sidewalk, parking lots, etc. Terrain (2)
1 Building Commercial, residential, educational buildings. Building (4)
2 Low Vegetation 0.5 m < vegetation height < 2.0 m. Vegetation (3)
3 Medium Vegetation 2.0 m < vegetation height < 5.0 m. Vegetation (3)
4 High Vegetation Vegetation height > 5.0 m. Vegetation (3)
5 Vehicle Sedans and hatchback cars. Street Element (5)
6 Truck Pickup trucks, cement trucks, flat-bed trailers, trailer trucks, etc. Street Element (5)
7 Aircraft Helicopters and airplanes. Street Element (5)
8 Military Vehicle Tanks and Humvees. Street Element (5)
9 Bike Bicycles. Street Element (5)
10 Motorcycle Motorcycles. Street Element (5)
11 Light Pole Light poles and traffic lights. Street Element (5)
12 Street Sign Road signs at the side of roads. Street Element (5)
13 Clutter City furniture, construction equipment, barricades, and other 3D shapes. Street Element (5)
14 Fence Timber, brick, concrete, metal fences. Building (4)
15 Road Asphalt and concrete roads. Building (4)
17 Windows Glass windows. Building (4)
18 Dirt Bare earth. Soil (1)
19 Grass Grass lawn, wild grass, etc. Soil (1)

Table 3.7: Mapping of the STPLS3D dataset classes to the Turin3D taxonomy, including
their labels and descriptions.

Class Label Description Mapping
1 Terrain Natural terrain (e.g., grass or soil), impervious terrain Unlabeled (0)

(e.g., road or sidewalk), and water areas (e.g., river or lake).
2 Building Built structures and man-made constructions. Building (4)
3 Urban asset Traffic light, pole, crane, public transportation Street Element (5)

stop, trash bin, etc.
4 Vegetation Tree or bush. Vegetation (3)
5 Vehicle Car, bike, scooter, etc. Street Element (5)

Table 3.8: Mapping of the Swiss3D dataset classes to the Turin3D taxonomy, including their
labels and descriptions.

34

Turin3D Dataset

Class Label Description Mapping
0 Low Vegetation Grass, small plants, and ground-level vegetation Soil (1)
1 Impervious Surface Paved areas such as roads, sidewalks, and plazas Terrain (2)
2 Vehicle Cars, trucks, and other road vehicles Street Element (5)
3 Urban Furniture Benches, streetlights, poles, and other street installations Street Element (5)
4 Roof Upper surfaces of buildings, including sloped and flat roofs Building (4)
5 Facade Vertical walls of buildings, including windows and doors Building (4)
6 Shrub Bushes and medium-sized vegetation Vegetation (3)
7 Tree Large trees, including trunks and canopies Vegetation (3)
8 Soil/Gravel Unpaved surfaces, such as dirt paths and gravel areas Soil (1)
9 Vertical Surface Vertical non-building elements like retaining walls Building (4)
10 Chimney Smoke stacks and ventilation structures on rooftops Building (4)

Table 3.9: Mapping of the Hessigheim dataset classes to the Turin3D taxonomy, including
their labels and descriptions.

35

Chapter 4

Methodology

This chapter provides a detailed overview of the methodologies used throughout
the thesis and why it was necessary to investigate these fields. It covers the neural
network architectures used, the datasets selected from the literature, and the
specific parameters chosen for each experiment.

4.1 Problem Statement
Semantic segmentation of 3D point clouds is an essential task in various domains,
including autonomous driving, urban mapping, and territorial planning. However,
as mentioned earlier, several challenges arise due to the irregularity of the data
and their variability in distribution. Additionally, the availability of annotated
data is often limited, as is the case of Turin3D dataset under consideration. For
this reason, techniques are often employed to leverage well-annotated datasets and
transfer the acquired knowledge to domains with sparser annotations. However,
this approach can introduce challenges in model generalization, particularly in
urban environments, where city landscapes can vary significantly. In this study, one
of the main challenges was identifying datasets with urban landscapes as similar as
possible to that of Turin3D.
To address the challenges described above, two main techniques were used: transfer
learning and semi-supervised learning with pseudo-labeling.
The following experiments will refer to the source domain under consideration as
DS = {(xS

i , yS
i)}NS

i=1 composed of NS point clouds from literature datasets, where
xS

i ∈ RPi×F denoted a point cloud with Pi points of F features, and yS
i ∈ CPi

denoted point-wise labels from class set C = {Unassigned, Soil, Terrain, Vege-
tation, Building, Street Element, Water}, according to the taxonomy proposed
in Section 3.4.The datasets selected from the literature included Sensat Ur-
ban [14], DELFT SUM [15], Toronto3D [18], Fractal [17], STPLS3D[19],

Methodology

Swiss3D [20], Hessigheim [21] and ECLAIR [16], with each dataset’s original
classes mapped to exactly one class of C. While the following formulation will
be used to refer to Selected Datasets, composed of Sensat Urban[14], Delft
Sum[15], Fractal[17], Toronto3D[18], SPTLS3D (real)[19], Swiss3D[20] and
Hessigheim[21],DSel = {(xsel

i , ysel
i)}Nsel

i=1 . The target domain, Turin3D, is rap-
resented by DT = {(xT

j)}Ntrain
T

j=1 ∪ {(xT
k , yT

k)}Nval
T

k=1 ∪ {(xT
l , yT

l)}Ntest
T

l=1 with unlabeled
training and labeled validation and test sets, consisting of N train

T , N val
T and N test

T

point clouds, respectively. Four different types of architectures were used for the
transfer learning experiments so that it could be evaluated which one obtained
the best results to be used in the subsequent experiments. These neural net-
work architectures are A ={RandLANet[6], PointTransformer[25], SparseConv[13],
used in the experimental approaches described in the following sections. All the
methodologies used in the course of the work are presented in detail below.

4.2 Transfer learning
The technique of transfer learning[22] allows knowledge acquired in one domain
to be applied to a different but related domain. This approach is particularly useful
in scenarios where there is limited labeled data available in the target domain, but
abundant labeled data exists in the related source domain.
In this research, the transfer learning technique was employed to address the issue
of limited annotated data in the Turin3D dataset. For Turin3D the annotation
process was carried out only on the test and validation subsets, since annotation
can be a complicated and costly process. Therefore, it was necessary to explore
methodologies that could be applied despite the lack of annotations in the training
subset. To this end, the source domain for the transfer learning experiments
consisted of two dataset variations: one including all selected datasets from the
literature (DS) and another with only a subset of them (DSel). These datasets
were introduced in Section 2.5, while the necessary mapping to adapt them to
Turin3D was illustrated in Section 3.4. This remapping enables the integration of
case reports from different datasets into a unified representation, facilitating the
development of a robust segmentation model.
In the first case, the focus was on concatenating all the datasets selected from
the literature. These datasets were chosen based on the mode of acquisition and
their representation of urban environments, similar to those covered in the current
work. After this first step in which all datasets were used, it has been evaluated if
excluding some of them would yield better results. Thus, given that ECLAIR[16]
and STPL3D(Synth)[19] were the most different datasets from Turin3D in terms of
taxonomy, they were excluded. ECLAIR[16] is particulary focused on the semantic
classification of electrical elements, for example pole or power transmission. These

37

Methodology

elements are not present in the Turin3D dataset and they are far from the purpose
of its classification. In the case of STPLS[19], the synthetic component has been
excluded. Because combining real and synthetic data[26] in semantic segmentation
is a challenge since they are very different. Synthetic point clouds are generated
using software such as LiDAR simulations or 3D models, which makes them more
“perfect” than real data. Real data, on the other hand, are noisy and affected by
factors such as lighting, occlusions, and environmental variability. These differences
can make it difficult to apply models trained on synthetic data to real data. In
particular, synthetic data often exhibit substantial differences in color compared to
real data, which could lead to a deterioration in the model’s performance.
Another issue considered was whether to include or exclude the Sensat Urban
dataset from the training phase. Because, the dataset creators did not release
labels for the test set, making it impossible to perform tests when merging it with
the other datasets.
Therefore these different source domains were used for training and each architecture
a ∈ A was used to obtain:

θ∗
a = arg min

θ
L(fa

θ , DS) (4.1)

These models were then evaluated on both on the datasets used for training (Dtest
S

or Dtest
Sel), based on the experiment, and on Turin3D test set (Dtest

T). This approach
enabled a comprehensive evaluation of the models’ performance across different
urban contexts.

4.3 Semi-Supervised Learning

In the context of 3D semantic segmentation of point clouds, as discussed in
Section 2.6, most common scenarios include partially labelled data, as manual
annotation is both expensive and time-consuming. To address this challenge, semi-
supervised learning techniques can be employed to leverage partially annotated or
pseudo-labeled data. Based on the transfer learning results, the best-performing
architecture on the Turin3D validation set was selected:

a∗ = arg max
a∈A

mIoU(fθ∗
a
, Dval

T) (4.2)

38

Methodology

Figure 4.1: The image shows an example from the Turin3D training subset: on the left, the
dataset in natural colors (RGB), in the middle, the pseudo-labels following the dataset’s semantic
classes, and on the right, the confidence scores for each point. These labels are pseudo-labels
generated by the best-performing transfer learning model, not manually annotated.

The selected model was used to generate predictions on the unlabeled Turin3D
training set Dtrain

T . Each point was assigned the class label with the highest confi-
dence score, but only if that score exceeded a class-specific confidence threshold τc,
minimizing the risk of propagating errors due to model uncertainty. This filtering
resulted in a set of high-confidence pseudo-labels ŷT

j = fθ∗
a∗ (xT

j) for a subset of
points in the training set. In fact, the pseudo-labelled point cloud had less points
than the original one due to this filtering step.
Across all experiments, the generation of pseudo-labels followed a specific method-
ology. Point cloud labels were filtered to retain only those that met a predefined
confidence threshold. In particular, the threshold for each class was determined as a
weighted average of the confidence scores obtained from the model that performed
best in the transfer learning experiments. Specifically, the formula used to calculate
the threshold is as follows:

τc =
Ø

u∈Uc

u · nu,cq
v∈Uc

nv,c

(4.3)

where τc represents the confidence threshold for class c, Uc is the set of unique
confidence values observed for points predicted as class c, u is a specific unique
confidence value, nu,c is the count of points predicted as class c with confidence

39

Methodology

value u, and q
v∈Uc

nv,c is the total number of points predicted as class c (ensuring
that the weights sum to 1).
In this phase, the intensity was incorporated as additional point’s feature, so the
features used become F = {x, y, z, R, G, B, Intensity}. The latter could provide
valuable information to further refine the training process and improve model
robustness.
In the following sections it will be detailed the various methodologies used in
semi-supervised learning and the different experiments done to improve the model
and select pseudo-labels that are most accurate as possible.

4.3.1 Uniform Confidence Threshold
As a first experiment, a fixed confidence threshold of 0.85 was used for all semantic
classes. This value was based on the confidence distribution across all classes,
assuming it would include enough pseudo-labels despite distribution variations. A
high confidence threshold reduces the number of pseudo-labels but increases their
reliability. However some classes may remain underrepresented at this threshold.
Conversely, the selection of a lower threshold could increase the risk of propagating
model errors.

Figure 4.2: It is possible to observe selected Pseudo-labels with a confidence threshold of 0.85.
The pseudo-labels can be observed on the left, and the confidence representation on the right.

An example of the pseudo-labels considered when using a fixed threshold is
shown in Figure 4.2. As mentioned earlier, this illustrates that some classes are
underrepresented due to their lower confidence values. This approach was initially
chosen for its simplicity. However, after evaluating the results, it was decided to
use class-specific confidence thresholds in subsequent experiments. As shown
in Figure 4.2, some classes, such as soil and street elements, almost disappear
completely when the threshold is set to 0.85. Since each class has a very different

40

Methodology

confidence distribution, choosing a single threshold turns out not to be the most
effective approach.

4.3.2 Class-Specific Confidence Threshold

Figure 4.3: It is possible to observe selected Pseudo-labels with Class-Specific Confidence
Threshold. The pseudo-labels can be observed on the left, and the confidence representation on
the right.

As mentioned in the previous section, using the same threshold for all classes is
not an optimal solution. As shown in Figure 4.4, the confidence distribution in
the Turin3D training subset varies significantly across different semantic classes.
Furthermore, using this approach, some classes could be underrepresented. For
example, the soil class (1) has a lower confidence distribution, making it more likely
to be excluded, while the water class (6) consistently shows high confidence values.
To address this, a different confidence threshold is used for each class. Specifically,
the threshold for each class is determined by the weighted average of the confidence
scores, as represented by the dotted line in Figure 4.4. However, additional
considerations were necessary to balance classes that appeared unbalanced. For
all classes, the threshold was set based on the weighted average, except for two
classes: soil (1) and water (6). As shown in Figure 4.1, the model frequently tends
to confuse points belonging to class 1 with those belonging to class 6. To mitigate
this problem, a lower threshold was chosen for the soil class and a higher threshold
for the water class. This modification allowed more points to be included in the
former and limited the number of points in the latter, thus helping to balance the
pseudo-labeling. In conclusion, the thresholds selected for each class are: Soil (1):
0.1, Terrain (2): 0.6, Vegetation (3): 0.8, Building (4): 0.8, Street Element (5):
0.5 and Water (6): 0.9.

41

Methodology

Figure 4.4: Confidence distributions in the training subset obtained from the inference of the
best-performing model selected via transfer learning.

In conclusion custom thresholds for each class can lead to a better balance of
pseudo-labels than seen previously with a fixed threshold. However other solutions
that could improve the model will be explored in the following sections.

4.3.3 Iterative Pseudo-Label Refinement
One of the main limitations of using pseudo-labels is the potential introduction of
noise and uncertainty due to the absence of actual labels. To address this issue,
iterative strategies could be used to refine the pseudo-labels, gradually updating
them to enhance the reliability of the labels during training. As mentioned in
Section 4.3.1, the selection of appropriate confidence thresholds is essential for
determining pseudo-labels. Therefore, the first step in this experiment was to filter
the pseudo-labels based on the previously defined thresholds; in this way it is more
probable to keep only the most reliable ones.
For this stage of the experiments, the chosen configuration consisted of 3 iterations,
each running for 200 epochs. This setup was selected as it provided a balance
between observing potential improvements and avoiding excessive resource con-
sumption. At each iteration, a re-training of the model was performed using new
pseudo-labels. These new pseudo-labels were obtained by running inference on the
training subset of Turin3D using the model from the previous iteration. The best

42

Methodology

checkpoint, selected based on the highest mIoU achieved on the validation subset,
was used for inference. This iterative cycle allows the quality of the labels to be
progressively refined, taking advantage of the self-correction of the model as it
progresses through each iteration. The goal is to reduce noise in the pseudo-labels
and improve the generalization of the model.
However, using the same confidence thresholds at each iteration to select pseudo-
labels may lead them to be no longer aligned with the updated confidence scores
from subsequent inferences. As a result, the expected improvements may not be
achieved.

4.3.4 Dynamic Confidence Thresholding in Iterative Train-
ing

Figure 4.5: Confidence distributions in the training subset obtained from inference of the
trained model after the first iteration.

In the iterative training process, confidence thresholds play a crucial role in select-
ing pseudo-labels and ultimately determining model performance. Using a fixed
threshold for every iteration may not be optimal, as confidence scores evolve over
time. In fact, each iteration generates a new training subset based on the model’s
inference from the previous iteration. The difference in confidence distributions can
be observed between the initial training subset, shown in Figure 4.4, and the one

43

Methodology

obtained after inference following the first training iteration, presented in Figure 4.5.
Dynamic confidence thresholds aim to address this issue by adjusting threshold
values at each iteration based on the updated predictions, ensuring a more adaptive
and effective selection of pseudo-labels. The iterative process followed these steps:

1. Initial confidence filtering. Pseudo-labels were selected based on the
thresholds defined for each class discussed above.

2. Inference on Training Set. After selecting the pseudo-labels, training was
performed for each iteration. Following each iteration, inference was conducted
on the Turin3D training subset to obtain the new pseudo-labels. This procedure
closely followed the approach described in the previous experiment.

3. Adjustment of dynamic confidence threshold. This is the main difference
from the previous experiments. At this stage, weighted averages of the total
number of points with specific confidence for each class are calculated. This
allows for a representation of how the points are distributed in the new training
subset obtained from inference.

This process was repeated iteratively for 3 cycles, each consisting of 200 epochs,
as described earlier. This allowed for a gradual improvement in the quality of the
pseudo-labels and, consequently, the performance of the model.

This iterative process was also conducted using confidence to weight the loss
function. By incorporating confidence scores, more importance was given to errors
where the model was more confident, i.e., the pseudo-labels were more accurate
(higher confidence). On the other hand, low confidence predictions had a reduced
impact on the optimization process, as the pseudo-labels used may have been
inaccurate. This approach aims to refine the training process by leveraging trust
not only to select pseudo-labels for model training, but also to correct them.
Mathematically, the loss function was modified as follows:

L = 1
N

NØ
i=1

wyi
· ci · LCE(f(xi), yi) (4.4)

where N is the total number of samples, f(xi) is logit for xi input, yi is ground
truth of sample xi, LCE is Cross-Entropy Loss, ci is the confidence for input xi

and wi is the weight of the class yi determined by the distribution of classes in the
dataset.

44

Methodology

4.4 Experimental setup

4.4.1 Data Augmentation
3D point clouds of urban environments are significantly influenced by a variety
of environmental factors. Data collected in cities can be affected by variations
in illumination due to atmospheric conditions, different capture angles, or the
movement of subjects within the scene. Additionally, the sensors used to acquire
the data may introduce inaccuracies. In the context of this research, LiDAR sensors
as explained in Section 2.1 may produce disturbances in the collected data due to
reflective surfaces.
Data augmentation[27] is a technique used to improve model performance, par-
ticularly when the available datasets are limited or unrepresentative. It allows
increasing the volume, quality and diversity of training data by applying transfor-
mations on existing data. In fact, using it helps models generalize better, reducing
the risk of overfitting and making them more robust to variations in the input data,
such as illumination, rotations or geometric distortions. During the experiments,
data augmentation techniques were applied to improve the performance of the
models and enhance their generalization ability to adapt to the new domain. The
following data augmentation techniques were used:

• Normalize. In this technique, coordinates are scaled in the same range so
as to ensure a consistent distribution with the least possible dependence on
different scales of the input data. In this case, linear normalization is applied,
which is defined as:

D′

S = DS − µ(DS)
s

(4.5)

where µ(DS) represents the mean of the points that compose the source domain
DS , while s = max(maxDS − minDS).

• Recentering. This technique has the purpose of recentering the coordinates
along the axes specified as parameters in this case all axes were chosen, thus
reducing the sensibility to the absolute position of the points favoring a
homogeneous representation. The recentering augmentation can be expressed
as:

D(d)
S = D(d)

S − µ(Ds)(d) (4.6)

where D(d)
S represents the data along the d − th dimension, while µ(Ds)(d)

represents the mean of the points that compose the source domain DS along
d-th dimension; d ∈ {0,1,2} indicates the possible dimensions along which the
centering operation occurs.

45

Methodology

• Rotate. In this technique, careful rotation is applied to multiple axes; in
the case discussed, the "all" parameter was used to allow rotation along all
directions. The maximum rotation angle was set to 30◦, as this augmentation
was particularly useful for improving performance in the experiments conducted
on the Turin3D dataset. Given that the dataset includes tiles representing
hilly areas with multiple elevation layers rather than a flat terrain, applying
such rotations helped the model generalize better to variations in elevation
and terrain structure. The rotation transformation can be expressed as:

D′
S = {Rp | p ∈ DS} (4.7)

R = I + sin α[u]× + (1 − cos α)[u]2×α ∼ U(0, π/6) (4.8)

where u =

cos θ cos ϕ
sin θ cos ϕ

sin ϕ

 , θ ∼ U(0, 2π), ϕ ∼ U
1
−π

2 , π
2

2

• RandomHorizontalFlip. This technique applies a reflection transformation
along the specified axes. The formula to be applied is:

D′
S = max(DS)d − Dd

S, d ∈ [0,1,2] (4.9)

where Dd
S is for all the data belonging to the source domain for each different

value of the axis. In the experiments conducted, the transformation was
applied to the x and y axes (so with parameters [0,1]), while the z axis was
excluded. Because in the case of urban data, the flip along the z axis would be
unrealistic, since the ground should always remain at the bottom. The goal of
this augmentation is that the model becomes more robust to variations in city
and street orientation, improving its generalization ability.

• ChromaticAutoContrast. Using an application probability of 0.1. This
technique adjusts color contrast; it works by improving the difference between
lighter and darker points, actually increasing contrast. This helps simulate
the variations in lighting conditions that occur in real-world scenarios. The
transformation can be expressed as:

cmin = min
i

ci, cmax = max
i

ci, ci = (ri, gi, bi)

s = 255
cmax − cmin

, c′
i = (ci − cmin) · s (4.10)

cnew
i = (1 − λ)ci + λc′

i, λ ∼ U(0, 1) (4.11)
where ci represents the RGB fields of all points belonging to the domain DS.

46

Methodology

• ChromaticJitter. This technique introduces jitter into the color values of
the points in the point cloud. It does this by adding small variations to the
RGB values of the points, which are usually controlled by a standard deviation
value in this case of 0.008. This technique also aims to make the model less
affected by lighting conditions. The function applied to the The function
applied to the domain DS is defined as:

n ∼ N (0, 1)N×3, n′ = n · σ · 255 (4.12)

cnew
i = clip (ci + n′, 0, 255) (4.13)

where n represents a standard Gaussian noise, while also in this case ci

represents the RGB fields of all points belonging to the domain DS. The clip
function is used to make sure that the new results remain in the range [0,255].

• HueSaturationTranslation. This technique alters the hue i.e., the actual
color and saturation of the dots in the point cloud. In this way, variations
can be achieved that can improve the model, making it more robust. In this
specific case, 0.3 as the maximum hue(hmax) and 0.1 as the maximum
saturation(smax) were used as values. The applied function can be expressed
as:

H ′ = mod(H + ∆(H),1) (4.14)

∆H = (rhue − 0.5) · 2 · hmax, rhue ∼ U(0,1)

S ′ = clip(S · (1 + ∆S),0,1) (4.15)

∆S = (rsaturation − 0.5) · 2 · smax, rsaturation ∼ U(0,1)

where ∆H is a random variation to the hue added to H, the same operation
is performed at saturation by ∆S.

Table 4.1 shows a schematic summary of the data augmentations applied to the
datasets and their corresponding parameters. The configuration that gave the
best results was selected for each experiment, ensuring that no deterioration would
occur due to aggressive augmentation.

4.4.2 Architectures’ hyperparameters
During the transfer learning experiments, several neural network architectures were
selected from the literature based on their suitability for 3D semantic segmentation.
For each architecture, parameters were chosen to achieve a balance between good
performance and efficient memory usage. Below is a list of all the networks used
and the most relevant parameters:

47

Methodology

Augmentation Parameters

Recenter dim: [0,1,2]
Normalize methods: Linear
RandomHorizontalFlip axes: [0,1]
Rotate method: All
ChromaticAutoContrast prob: 0.1
ChromaticJitter std: 0.008
HueSaturationTranslation hue max: 0.3

saturation max: 0.1

Table 4.1: Overview of augmentations applied to point clouds, including scaling, rotation,
translation, and jittering, along with their respective parameter values.

• RandLA-Net[6]. The strength of this neural network architecture is that it
efficiently processes large-scale data using a combination of random sampling
and local feature aggregation, while keeping memory consumption limited
compared with others.
During the research, the parameters used for the network were as follows:

– Number of neighbors: 16, each point considers the 16 closest neighbors
for feature aggregation, capturing local geometric structures.

– Number of layers: 5, it is composed of five hierarchical layers, which
progressively extract high-level features by preserving spatial relationships.

– Subsampling ratio: [4, 4, 4, 4, 2], this parameter defines the subsampling
factor to be applied at each local aggregation level of the network. This
is used to reduce the number of points processed at each level.

– Feature size: [8, 16, 64, 128, 256, 512], represents how the number of
feature channels increases through each layer, allowing the network to
learn progressively richer information.

– Grid size for downsampling: 0.2, during the downsampling step, the
network aims to reduce the point density of the point cloud. In order to
enhance computational efficiency, minimizing the number of points to be
processed while preserving the geometric representation.

• Point Transformer V1[11]. It exploits a self-attention mechanism to ef-
fectively capture complex spatial relationships within unstructured 3D data,
which is why it was selected to perform the experiments. The parameters
chosen are:

48

Methodology

– Number of transform blocks[28]:[2, 3, 4, 6, 3], defines the number of
transformer blocks at different depths of the network, providing progressive
feature refinement.

– Voxel size:0.2, which determines the resolution of voxelization, i.e., the
size of each voxel into which the point cloud is divided. A larger value
results in more points being clustered within a single voxel. However, if
the value is too large, it may lead to a loss of finer details.

• SparseConv[13]. It is specifically designed to handle irregular data in point
clouds in a way that reduces computational costs and maintains high repre-
sentation power. In fact, unlike standard convolutional networks that assume
dense representations of data, SparseConv operates directly on sparse inputs.
The key hyperparameters used during the experiments were:

– Multiplier: 32, it controls the expansion of feature maps across layers,
allowing the network to increase its capacity for hierarchical feature
extraction.

– Voxel size: 0.2, it determines the resolution of voxelization, again
depending on the value of it varies the level of detail.

– Residual blocks: True, it enables residual connections within convo-
lutional layers, facilitating gradient flow and improving the training of
deeper networks.

– Convolution block repetitions: 1, this specifies how many times each
convolutional block is repeated before moving to the next stage, impacting
feature refinement.

The parameters were not chosen through grid searches or extensive experiments,
as that would have been too time-consuming. Instead, they were selected based on
values suggested in the literature for different architectures and recommendations
from experiments on various datasets.
All these neural network architectures were used to conduct these experiments and
find the model that had the best performance to then be used in the next steps.

49

Chapter 5

Experimental Results

This chapter initially presents the metrics chosen to evaluate the experiments
conducted and then provides an analysis of the results obtained. The experiments
aim to assess the performance of various approaches, starting with the transfer
learning phase followed by the semi-supervised learning approach. The results are
discussed in detail, highlighting the effectiveness of each method and its impact
on the segmentation quality of the Turin3D dataset. The following section will
explore the evaluation process, and a comparison of the models’ performance using
the selected metrics.

5.1 Parameters and configurations

Considering all the experiments, the following fixed parameters and technologies
were used. Models were trained using NVIDIA A100 GPUs with Multi-Instance
GPU (MIG) partitioning, specifically utilizing 20GB and 40GB MIG slices. Training
ran for a total of 200 epochs per session, the batch size was set to 4, with a
maximum of 65,536 points per batch element, ensuring a balance between accuracy
and memory management. In addition, for each of the 200 epochs, 100 point clouds
from the training set and 10 point clouds from the validation set are selected in
order to perform training and validation. These selected point clouds correspond to
spherical neighborhoods extracted from the original point clouds, with the center
of each neighborhood randomly sampled. Finally, an initial learning rate of 0.001
was adopted for model optimization, promoting stable convergence throughout the
training process.

Experimental Results

5.2 Metrics
During this research, quantitative metrics were used to be able to evaluate the
performance of the applied models. The metrics selected were F1 Score and
Intersection over Union (IoU).

• F1 Score. It is the harmonic mean of precision and recall; it combines both
into a single value to provide a balanced measure of classification quality. The
F1 score formula is:

F1 = 2 × Precision × Recall
Precision + Recall (5.1)

Precision = TP
TP + FP , Recall = TP

TP + FN (5.2)

where TP is True Positive, FP is False Positive, and FN is False Negative.

• Intersection over Union (IoU). It is a measure of overlap between the predicted
segmentation and the ground truth. It is defined as the ratio of the intersection of
the predicted and true regions to their union. The formula for IoU is:

IoU = |A ∩ B|
|A ∪ B|

= TP
TP + FP + FN (5.3)

where A is the predicted region and B is the true region. While TP is True Positive,
FP is False Positive, and FN is False Negative.

5.3 Transfer Learning
To evaluate the actual benefits of applying transfer learning to semantic point cloud
segmentation, a series of experiments were conducted exploiting the architectures
discussed in Section 2.4. Table 5.1 presents the performance of selected state-of-
the-art networks that were identified as the most promising when trained on a
concatenation of existing datasets in the literature. The evaluation was performed
on both the concatenated datasets (DS and DSel) and Turin3D to identify the best
performing model. In addition, all experiments were conducted with and without
data augmentation to determine whether this could further improve performance.

51

Experimental Results

Turin3D Test
Model Augmentation Soil Terrain Vegetation Building Street Elements Water mIoU F1 mIoU F1

✗ 0.0 57.31 4.12 38.83 20.52 64.03 30.8 41.48 57.2 74.67RandlaNet
✓ 12.94 41.89 60.58 63.19 28.53 0.3 34.57 49.51 59 71.94
✗ 0.0 1.79 21.96 6.84 0.0 0.0 5.14 8.81 12.63 16.87Point Transformer
✓ 0.0 2.98 27.65 11.34 0.0 0.0 7.05 11.69 12.83 16.52
✗ 0.0 0.0 0.0 17.71 0.0 0.0 2.95 15.05 17.05 30.31SparseConv
✓ 0.0 4.18 9.04 15.52 0.0 0.0 4.9 13.18 20.22 28.29

Table 5.1: Results for Transfer learning experiments, with and without augmen-
tations, evaluated on both test sets of literature selected datasets DS and labeled
test set of Turin3D, considering mIou and F1 score. For Turin3D also IoU per
class is reported.

These results highlight how the selected architectures generalize differently on
Turin3D. RandLANet demonstrates the best performance, achieving 34.57 mIoU
and an F1-score of 49.51 on the dataset under consideration when using augmen-
tation. However, a decrease in performance is observed when testing on datasets
from the literature, as well as on those used for training the model (59 mIoU).
This suggests that the model loses some of its effectiveness when transitioning
from the source domain (used for training) to the target domain (used for testing),
resulting in lower performance than initially expected. This result highlights a key
challenge commonly encountered when transferring knowledge from one domain
to another. In the context of urban environments, it emphasizes the difficulty of
generalizing across different cities, as each city may present unique environmental
elements and distinct conditions. What makes the difference is the use of data
augmentation, this leads as can be seen from the table an improvement. In fact
for RandLANet, a significant enhancement can be observed for the classification
of vegetation (+56.58), buildings (+24.36) and soil (+12.94). However, although
the performance is better, there may be a reduction in performance with regard
to water classification (−64.03). In fact when using this technique there may be
improvements for some classes but negatively affect others.
As for other architectures, it is clear that they struggle to generalize, causing
a greater decrease of performance than RandLANet when switching from one
domain to another.
Point Transformer achieves in the case of using augmentation only 7.05 of mIoU
on Turin3D, which seems to be better than the result obtained without augmen-
tation (5.14). While in the case of SparseConv a minimal improvement can be
seen with augmentation, achieving 4.9 mIoU. These networks perform worst when
classifying Soil (1), Street Element (5), and Water (6). They often fail to classify
these correctly. Without augmentation, the performance worsens even more, with
additional classes being misclassified. A possible reason may also be the scarcity
or total absence of these classes in some of the datasets examined. This issue
may highlight the variability between different cities as well as the differences in

52

Experimental Results

annotation conventions across datasets. For example, the street element class may
include several urban elements that vary considerably from one another. These
considerations lead to the need for effective domain adaptation techniques in order
to overcome the problems mentioned above. In contrast, a common trait among
almost all of them is decent performance in recognizing vegetation; this seems to be
the most easily transferable semantic class due to its similar shape across different
urban environments. Similarly, buildings also transfer relatively well, while road
elements and water face more difficulty in transferring between domains due to
their higher variability across different urban settings. In conclusion, given the
superior performance of RandLANet with augmentation, the latter is chosen
as the best architecture to continue with transfer-learning and semi-supervised
experiments.

Turin3D Test
Soil Terrain Vegetation Building Street Elements Water mIoU F1 mIoU F1

Selected with
Sensat Urban[14]

10.05 43.75 81.42 72.36 16.70 8.12 38.73 49.42 78.59 67.39

Selected without
Sensat Urban[14]

31.99 34.19 72.13 57.09 8.16 0.0 34 45.3 14.9 24.13

Table 5.2: Transfer learning results using RandlaNet with/without Sensat Urban
in training selection. The experiments were evaluated on both test sets of selected
datasets DSel and labeled test set of Turin3D, considering mIou and F1 score. For
Turin3D also IoU per class is reported.

Alongside these experiments, a focus was placed on the possibility of using
only a selection of these, excluding ECLAIR and STPLS3D synth (DSel). The
reason for their exclusion is explained in Section 4.2. The Table 5.2 presents the
performance of the model under different configurations. In these experiments,
it was also evaluated the impact of adding SensatUrban to the source domain
collection of datasets during training. Notably, the inclusion of Sensat Urban
generally improves overall performance. Indeed, performance increase significantly
for both Turin3D(38.73 mIoU and 49.42 F1) and source domain test set(78.59
mIoU and 67.39 F1). For the selected datasets in particular, the difference is
especially pronounced, with an increase of +63.69 in mIoU when Sensat Urban is
used. This suggests that Sensat Urban provides valuable features that significantly
enhance generalization. Regarding IoU by class, most categories show an increase.
Furthermore, the Water class improves substantially, reaching 8.12 IoU, whereas it
disappears completely without Sensat Urban. The only class that experiences a
decline is Soil, where IoU drops from 31.99 to 10.05.

53

Experimental Results

Figure 5.1: Number of points per class in the training dataset, comparing the inclusion and
exclusion of Sensat in the datasets used for transfer learning experiments.

In conclusion, Sensat Urban significantly improves the generalization of the
model, although some classes benefit more than others. This may depend largely on
their distribution within the source domain, as shown in Figure 5.1. For example,
for the Vegetation and Building classes, Sensat Urban increases the presence of
points belonging to these classes, leading to improved model performance for them.

Figure 5.2: An example of test point clouds from the Turin3D dataset (left), with the
corresponding output from the best-performing transfer learning model (right), which uses
RandLA-Net and augmentation on the selected datasets, including Sensat, chosen for subsequent
experiments.

On the other hand, the deterioration in performance for the Soil class, as shown

54

Experimental Results

in Figure 5.2, is due to the model’s difficulty in distinguishing this class properly,
likely caused by variations in color and lighting conditions.
After analyzing the results of this experiment, it can be concluded that the best-
performing model is RandLA-Net with augmentation and DSel. For this reason, it
will be the only model used in the following experiments.

5.4 Semi-Supervised Learning
As previously illustrated, the transfer learning experiments demonstrated gaps in
learning some specific classes. After selecting RandLANet with augmentation as
the best architecture, semi-supervised learning approaches were explored to further
improve performance on Turin3D, generating pseudo-labels on the unlabelled train
set using different confidence thresholding strategies. The results obtained for the
different semi-supervised experiments can be seen in Table 5.3.

Pseudo-Label Thresholding Iteration Soil Terrain Vegetation Building Street Elements Water mIoU F1
Same Threshold for each class

Fixed Confidence
equals 0.85

1 0.0 40.65 78.93 79.49 25.99 6.74 38.63 57.70

Different Threshold for each class
Fixed Confidence

per 600 epoch
1 4.16 38.25 86.98 77.54 17.17 5.42 38.25 47.22

Fixed Confidence
per iteration

1 26.17 50.26 85.38 73.94 17.77 17.88 45.23 57.67
2 32.26 34.38 86.52 66.50 27.55 0.0 41.20 63.16
3 26.29 32.64 68.60 55.74 7.32 0.0 31.7 51.49

Adaptive Confidence
per iteration

Not weighing the loss
1 26.17 50.26 85.38 73.94 17.77 17.88 45.23 57.67
2 30.28 52.29 87.80 77.68 19.69 23.27 48.49 61.12
3 32.89 50.88 87.62 69.92 18.01 30.51 48.30 74.45

Weighing the loss
1 24.90 52.22 85.58 78.59 17.77 16.55 45.93 57.88
2 24.47 52.97 85.71 76.33 19.47 19.85 46.97 59.49
3 28.97 53.73 85.62 77.65 19.98 20.41 47.73 60.29

Table 5.3: Results for experiments with Semi-supervised learning with fixed
and adaptive confidence per iteration, using RandLA-Net with Augmentations,
evaluated on test set of Turin3D (Dtest

T) considering IoU per class, mIoU and F1
score.

The first experiments used a fixed confidence thresholds as illustrated in Sec-
tion 4.3.1 value equal to 0.85 for all classes. This choice was made based on the
assumption that using a relatively high value would provide the most accurate
pseudo-labels as possible. Nevertheless, it has been observed that using this thresh-
old emphasizes the imbalance that exists between the classes. In fact the class
Soil(1) disappears completely. On the other hand, the performance remains high
for the classification of Vegetation (3) and Building (4) (78.93 and 79.49 mIoU). As
stated in Section 4.3, this is not a good approach since each class has significantly
different confidence distributions. For this reason next experiments will use distinct

55

Experimental Results

confidence thresholds for each class.
To improve segmentation accuracy and reduce class imbalance, iterative experi-
ments were conducted using two different approaches for confidence thresholding.
In the first approach, the confidence thresholds for each class were kept fixed across
all iterations. In the second approach, the thresholds for each class were updated
in each iteration, along with the pseudo-labels. Both thresholding methods start
with the same result in the first iteration (45.23 mIoU and 57.67 F1 score), since
they use the same as confidence thresholds. This first iteration already represents
a substantial 6.50 improvement over the transfer learning technique (38.73 mIoU).
The difference between the two strategies can be seen from the second iteration. In
fact, even the distribution of confidence from one iteration to the next can vary.
In the case of the fixed threshold strategy, performance progressively deteriorates
with each iteration, dropping to 31.76 mIoU by the third iteration. Notably, after
the first iteration, the Water (6) class disappears entirely, reverting to the initial
situation where all classes used the same confidence threshold. This supports the
idea that each time the model performs inference on the training dataset, the confi-
dence distribution changes, necessitating an update of the thresholds accordingly.
In contrast, when the confidence thresholds are updated iteratively, a consistent
improvement is observed. The mIoU reaches 48.49 in the second iteration before
stabilizing at 48.30 in the third iteration, while the F1 score increases significantly
to 74.45. Particularly significant is the improvement in Water (6) segmentation,
which increases from 17.88 to 30.51 IoU (+12.63) across iterations. Vegetation
(3) maintains high IoU values around 87, while Soil (1) shows steady improve-
ment, reaching 32.89 at the third iteration. Thus, it can be observed that the
classes that were the most problematic obtain significant improvements from using
this approach, where both the pseudo-labels and the confidence thresholds are
recalculated iteratively in each iteration. To improve performance, an additional
experiment was conducted in which the loss was weighted by confidence, following
the same iterative approach described above. The formula used for this approach
is given by Equation (4.4), which can be found in Section 4.3. The results obtained
from this method also show a similar trend. In this case, improvements are more
gradual, with IoU values increasing linearly between iterations(in the first the
mIoU is 45.93, in the second 46.97, in the third 47.73). Notably, the performance
of the model improves steadily at each step, reflecting the more refined adjustments
made during training as a result of using loss-weighting the confidence of each
pseudo-label. All classes show stable improvements across different iterations with
respect to the previous experiments.
In conclusion, both strategies demonstrate very similar performance, with the first
strategy yielding slightly higher results. However, the second may be preferred due
to its greater stability, as it does not exhibit the fluctuating trends seen in the first.

56

Experimental Results

Figure 5.3: An example of test point clouds from the Turin3D dataset (left), with the
corresponding output from the best-performing model on the Turin3D test subset (right), which
utilizes iteratively updated confidence thresholds.

In general, classes Building (4) and Terrain (2) showed fluctuations in perfor-
mance with both approaches, demonstrating the difficulty in generating consistent
pseudo-labels for these classes that may have a complex and diverse appearance
even within the same dataset. On the other hand, results for class Water (6) high-
light the effectiveness of the adaptive approach, in fact performance raised during
the various iterations, unlike the fixed approach that made this class disappear
totally.
In conclusion, a significant improvement can be seen using semi-supervised tech-
niques (48.49 mIoU) compared to using transfer learning techniques (38.73 mIoU).
An overall gain of +9.76 demonstrates the significant value of adaptive pseudo-
labeling strategies for point cloud segmentation tasks in urban context. Furthermore,
for the sake of completeness, an additional experiment was conducted considering
a long training loop lasting 600 epochs without confidence thresholds updates
instead of iterative updates. This was done to rule out the possibility that the
improvement came from simply training for 600 epochs instead of using the iterative
approach with 200 epochs for each of the three iterations. However, as shown
by the results, training for 600 epochs without the iterative updates led to much

57

Experimental Results

lower performance (mIoU of 38.35 and F1-score of 47.22) compared to the iterative
approach. Therefore, it can be concluded that the improvements are not due to
the longer training duration but rather the iterative approach itself. Improvements
come from recalculating pseudo-labels, which occurs even when fixed thresholds
are used. For this reason, all iterative models perform better than this one where
pseudo-labels are no longer recalculated.

58

Chapter 6

Conclusions and Future
Works

During this thesis work, a new dataset, Turin3D, was introduced, containing
data collected through LiDAR sensors during aerial flights over the San Salvario
district in Turin, Italy. The dataset covers an area of approximately 1.43km2

and represents a significant contribution to the field of 3D semantic segmentation.
It captures a diverse range of urban environments, from green parks to dense
urban centers, bridges, rivers, and hilly terrains. The data were acquired using the
Leica CityMapper-2 system, which combines LiDAR and high-resolution optical
imagery, resulting in a colorized 3D point cloud that maintains both geometric
accuracy and radiometric consistency. A key feature of the Turin3D dataset is the
well-defined semantic label taxonomy, which includes six main classes: Unassigned,
Soil, Terrain, Vegetation, Building, Street elements, and Water. These labels
were carefully chosen to be distinct and relevant to urban planning applications,
ensuring a high level of heterogeneity between classes and homogeneity within
them. The dataset was split into training, testing, and validation sets, manual
annotations performed for the validation and test subsets. This dataset, with more
than 69 million points, is a valuable resource for future research and applications
in urban planning, 3D modeling and semantic segmentation, providing a rich basis
for understanding complex and diversified urban environments.
In this work, Transfer Learning and Semi-Supervised Learning techniques were
explored for semantic segmentation of urban point clouds using the Turin3D dataset.
Several state-of-the-art architectures were evaluated, applying data augmentation
strategies to improve generalization. The experiments showed that RandLA-Net
with augmentation achieved the best performance, reaching 34.57 mIoU on Turin3D.
Including SensatUrban in the source datasets further enhanced generalization,
leading to 38.73 mIoU. To address class imbalances, semi-supervised learning with

Conclusions and Future Works

adaptive pseudo-labeling was investigated, resulting in a significant improvement,
with 48.49 mIoU (+9.76 compared to transfer learning). The iterative update
of confidence thresholds proved to be the most effective approach, particularly
benefiting challenging classes such as Water and Soil. These results highlight the
advantages of adaptive pseudo-labeling in improving point cloud segmentation and
underline the importance of domain adaptation techniques for better generalization
across urban environments.
In particular, these techniques enabled effective use of the unlabeled training set,
highlighting their potential. Given that, in this field, fully annotated datasets
are often unavailable due to the time-consuming and costly nature of annotation,
leveraging these approaches can offer performance improvements. The results
obtained in this research are promising; however, there is certainly room for
improvement in future studies. Firstly, having a fully annotated Turin3D dataset
would allow for supervised training, enabling a more accurate evaluation of the
techniques used. Additionally, further experiments could be conducted using newer
neural network architectures. For instance, in this research, only Point Transformer
v1 (PTv1) was used, while the literature also offers two more recent versions
(PTv2 and PTv3). Future studies could explore these architectures or other state-
of-the-art models to assess whether different architectural choices could provide
additional benefits. Another possible approach is to explore domain adaptation
techniques specifically designed for 3D point cloud semantic segmentation. These
methods could improve model generalization by reducing the impact of the varying
environmental characteristics of different cities. This would eliminate the need for
fully annotated datasets, effectively addressing the initial challenge.

60

BIBLIOGRAPHY

Bibliography

[1] P. M. Mather. Computer Processing of Remotely-Sensed Images: An Intro-
duction. USA: John Wiley & Sons, Inc., 2004 (cit. on p. 6).

[2] F. P. Medina, L. Ness, M. Weber, and K. Y. Djima. «Heuristic Framework
for Multiscale Testing of the Multi-Manifold Hypothesis». In: Research in
Data Science. Springer, 2019, pp. 47–80 (cit. on p. 6).

[3] F. Patricia Medina and Randy C. Paffenroth. «Machine Learning in LiDAR 3D
point clouds». In: CoRR (2021). url: https://arxiv.org/abs/2101.09318
(cit. on p. 6).

[4] Huang Zhang, Changshuo Wang, Shengwei Tian, Baoli Lu, Liping Zhang,
Xin Ning, and Xiao Bai. «Deep learning-based 3D point cloud classification:
A systematic survey and outlook». In: Displays (Sept. 2023), p. 102456. url:
http://dx.doi.org/10.1016/j.displa.2023.102456 (cit. on pp. 6, 7).

[5] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. «Deep Learning for 3D Point Clouds: A Survey». In: CoRR
abs/1912.12033 (2019). arXiv: 1912.12033. url: http://arxiv.org/abs/
1912.12033 (cit. on pp. 7–9, 14).

[6] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,
Niki Trigoni, and Andrew Markham. «RandLA-Net: Efficient Semantic Seg-
mentation of Large-Scale Point Clouds». In: CoRR abs/1911.11236 (2019).
arXiv: 1911.11236. url: http://arxiv.org/abs/1911.11236 (cit. on pp. 8,
11, 32, 37, 48).

[7] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
«PointNet: Deep Learning on Point Sets for 3D Classification and Segmen-
tation». In: CoRR abs/1612.00593 (2016). arXiv: 1612.00593. url: http:
//arxiv.org/abs/1612.00593 (cit. on pp. 8–10).

[8] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise Convolutional
Neural Networks. 2018. arXiv: 1712.05245 [cs.CV]. url: https://arxiv.
org/abs/1712.05245 (cit. on p. 9).

61

https://arxiv.org/abs/2101.09318
http://dx.doi.org/10.1016/j.displa.2023.102456
https://arxiv.org/abs/1912.12033
http://arxiv.org/abs/1912.12033
http://arxiv.org/abs/1912.12033
https://arxiv.org/abs/1911.11236
http://arxiv.org/abs/1911.11236
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1712.05245
https://arxiv.org/abs/1712.05245
https://arxiv.org/abs/1712.05245

BIBLIOGRAPHY

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]. url:
https://arxiv.org/abs/1512.03385 (cit. on p. 12).

[10] Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. Dilated Point
Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point
Clouds. 2020. arXiv: 1907.12046 [cs.CV]. url: https://arxiv.org/abs/
1907.12046 (cit. on p. 12).

[11] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point
Transformer. 2021. arXiv: 2012.09164 [cs.CV]. url: https://arxiv.org/
abs/2012.09164 (cit. on pp. 12, 48).

[12] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Mar-
cotegui, François Goulette, and Leonidas J. Guibas. KPConv: Flexible and
Deformable Convolution for Point Clouds. 2019. arXiv: 1904.08889 [cs.CV].
url: https://arxiv.org/abs/1904.08889 (cit. on p. 13).

[13] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D Se-
mantic Segmentation with Submanifold Sparse Convolutional Networks. 2017.
arXiv: 1711.10275 [cs.CV]. url: https://arxiv.org/abs/1711.10275
(cit. on pp. 14, 37, 49).

[14] Qingyong Hu, Bo Yang, Sheikh Khalid, Wen Xiao, Niki Trigoni, and Andrew
Markham. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds:
A Dataset, Benchmarks and Challenges. 2021. arXiv: 2009.03137 [cs.CV].
url: https://arxiv.org/abs/2009.03137 (cit. on pp. 15, 29, 32, 36, 37,
53).

[15] Weixiao Gao, Liangliang Nan, Bas Boom, and Hugo Ledoux. «SUM: A bench-
mark dataset of Semantic Urban Meshes». In: ISPRS Journal of Photogram-
metry and Remote Sensing 179 (Sept. 2021), pp. 108–120. issn: 0924-2716.
doi: 10.1016/j.isprsjprs.2021.07.008. url: http://dx.doi.org/10.
1016/j.isprsjprs.2021.07.008 (cit. on pp. 16, 29, 32, 36, 37).

[16] Iaroslav Melekhov, Anand Umashankar, Hyeong-Jin Kim, Vladislav Serkov,
and Dusty Argyle. ECLAIR: A High-Fidelity Aerial LiDAR Dataset for
Semantic Segmentation. 2024. arXiv: 2404.10699 [cs.CV]. url: https:
//arxiv.org/abs/2404.10699 (cit. on pp. 17, 29, 32, 37).

[17] Charles Gaydon, Michel Daab, and Floryne Roche. FRACTAL: An Ultra-
Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse
Landscapes. 2024. arXiv: 2405.04634 [cs.CV]. url: https://arxiv.org/
abs/2405.04634 (cit. on pp. 18, 29, 32, 36, 37).

62

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1907.12046
https://arxiv.org/abs/1907.12046
https://arxiv.org/abs/1907.12046
https://arxiv.org/abs/2012.09164
https://arxiv.org/abs/2012.09164
https://arxiv.org/abs/2012.09164
https://arxiv.org/abs/1904.08889
https://arxiv.org/abs/1904.08889
https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/2009.03137
https://arxiv.org/abs/2009.03137
https://doi.org/10.1016/j.isprsjprs.2021.07.008
http://dx.doi.org/10.1016/j.isprsjprs.2021.07.008
http://dx.doi.org/10.1016/j.isprsjprs.2021.07.008
https://arxiv.org/abs/2404.10699
https://arxiv.org/abs/2404.10699
https://arxiv.org/abs/2404.10699
https://arxiv.org/abs/2405.04634
https://arxiv.org/abs/2405.04634
https://arxiv.org/abs/2405.04634

BIBLIOGRAPHY

[18] Weikai Tan, Nannan Qin, Lingfei Ma, Ying Li, Jing Du, Guorong Cai, Ke
Yang, and Jonathan Li. «Toronto-3D: A Large-scale Mobile LiDAR Dataset for
Semantic Segmentation of Urban Roadways». In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE,
June 2020, pp. 797–806. doi: 10 . 1109 / cvprw50498 . 2020 . 00109. url:
http://dx.doi.org/10.1109/CVPRW50498.2020.00109 (cit. on pp. 19, 29,
32, 36, 37).

[19] Meida Chen, Qingyong Hu, Zifan Yu, Hugues Thomas, Andrew Feng, Yu Hou,
Kyle McCullough, Fengbo Ren, and Lucio Soibelman. STPLS3D: A Large-
Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset. 2022.
arXiv: 2203.09065 [cs.CV]. url: https://arxiv.org/abs/2203.09065
(cit. on pp. 20, 29, 32, 36–38).

[20] Gülcan Can, Dario Mantegazza, Gabriele Abbate, Sébastien Chappuis, and
Alessandro Giusti. Semantic Segmentation on Swiss3DCities: A Benchmark
Study on Aerial Photogrammetric 3D Pointcloud Dataset. 2020. arXiv: 2012.
12996 [cs.CV]. url: https://arxiv.org/abs/2012.12996 (cit. on pp. 21,
29, 32, 37).

[21] Michael Kölle, Dominik Laupheimer, Stefan Schmohl, Norbert Haala, Franz
Rottensteiner, Jan Dirk Wegner, and Hugo Ledoux. «The Hessigheim 3D
(H3D) benchmark on semantic segmentation of high-resolution 3D point
clouds and textured meshes from UAV LiDAR and Multi-View-Stereo». In:
ISPRS Open Journal of Photogrammetry and Remote Sensing 1 (Oct. 2021),
p. 100001. issn: 2667-3932. doi: 10.1016/j.ophoto.2021.100001. url:
http://dx.doi.org/10.1016/j.ophoto.2021.100001 (cit. on pp. 22, 29,
32, 37).

[22] Alperen Enes Bayar, Ufuk Uyan, Elif Toprak, Cao Yuheng, Tang Juncheng,
and Ahmet Alp Kindiroglu. Point Cloud Segmentation Using Transfer Learn-
ing with RandLA-Net: A Case Study on Urban Areas. 2023. arXiv: 2312.11880
[cs.CV]. url: https://arxiv.org/abs/2312.11880 (cit. on pp. 23, 37).

[23] «Semi-supervised point cloud segmentation using self-training with label
confidence prediction». In: Neurocomputing 437 (2021), pp. 227–237. issn:
0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.01.091. url:
https://www.sciencedirect.com/science/article/pii/S092523122100
1739 (cit. on p. 24).

[24] Zhimin Chen, Longlong Jing, Liang Yang, Yingwei Li, and Bing Li. Class-Level
Confidence Based 3D Semi-Supervised Learning. 2022. arXiv: 2210.10138
[cs.CV]. url: https://arxiv.org/abs/2210.10138 (cit. on pp. 24, 25).

63

https://doi.org/10.1109/cvprw50498.2020.00109
http://dx.doi.org/10.1109/CVPRW50498.2020.00109
https://arxiv.org/abs/2203.09065
https://arxiv.org/abs/2203.09065
https://arxiv.org/abs/2012.12996
https://arxiv.org/abs/2012.12996
https://arxiv.org/abs/2012.12996
https://doi.org/10.1016/j.ophoto.2021.100001
http://dx.doi.org/10.1016/j.ophoto.2021.100001
https://arxiv.org/abs/2312.11880
https://arxiv.org/abs/2312.11880
https://arxiv.org/abs/2312.11880
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.091
https://www.sciencedirect.com/science/article/pii/S0925231221001739
https://www.sciencedirect.com/science/article/pii/S0925231221001739
https://arxiv.org/abs/2210.10138
https://arxiv.org/abs/2210.10138
https://arxiv.org/abs/2210.10138

BIBLIOGRAPHY

[25] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao,
Wanli Ouyang, Tong He, and Hengshuang Zhao. Point Transformer V3:
Simpler, Faster, Stronger. 2024. arXiv: 2312.10035 [cs.CV]. url: https:
//arxiv.org/abs/2312.10035 (cit. on p. 37).

[26] Xidong Peng, Xinge Zhu, and Yuexin Ma. CL3D: Unsupervised Domain
Adaptation for Cross-LiDAR 3D Detection. 2022. arXiv: 2212.00244 [cs.CV].
url: https://arxiv.org/abs/2212.00244 (cit. on p. 38).

[27] Alhassan Mumuni and Fuseini Mumuni. «Data augmentation: A comprehen-
sive survey of modern approaches». In: Array 16 (2022), p. 100258. issn: 2590-
0056. doi: https://doi.org/10.1016/j.array.2022.100258. url: https:
//www.sciencedirect.com/science/article/pii/S2590005622000911
(cit. on p. 45).

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/
1706.03762 (cit. on p. 49).

64

https://arxiv.org/abs/2312.10035
https://arxiv.org/abs/2312.10035
https://arxiv.org/abs/2312.10035
https://arxiv.org/abs/2212.00244
https://arxiv.org/abs/2212.00244
https://doi.org/https://doi.org/10.1016/j.array.2022.100258
https://www.sciencedirect.com/science/article/pii/S2590005622000911
https://www.sciencedirect.com/science/article/pii/S2590005622000911
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Formulation of the problem
	Contributions
	Outline of the work

	Related Works
	LiDAR Sensor
	3D Point Clouds
	3D Semantic Segmentation
	Point-based Neural Networks
	PointNet
	RandLA-Net
	Point Transformer V1 Network (PTv1)
	Kernel Point Convolution Network (KPConv)
	Submanifold Sparse Convolutional Network

	Datasets
	Sensat Urban
	SUM
	Eclair
	Fractal
	Toronto3D
	STPLS3D
	Swiss3D
	Hessigheim

	Transfer Learning
	Semi-Supervised

	Turin3D Dataset
	Dataset Description
	Data Acquisition
	3D Point Cloud Processing
	Semantic labels taxonomy
	Data splitting
	Annotation process
	Class mapping across Datasets

	Methodology
	Problem Statement
	Transfer learning
	Semi-Supervised Learning
	Uniform Confidence Threshold
	Class-Specific Confidence Threshold
	Iterative Pseudo-Label Refinement
	Dynamic Confidence Thresholding in Iterative Training

	Experimental setup
	Data Augmentation
	Architectures' hyperparameters

	Experimental Results
	Parameters and configurations
	Metrics
	Transfer Learning
	Semi-Supervised Learning

	Conclusions and Future Works
	Bibliography

