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Summary

Self-sovereign identity (SSI) is a decentralized identity model. When applied in
the Internet of Things domain, this model enables digital trust independently of
the protocol agreed among peers for data exchange. Each peer has full control on
its own identity and it must publish a decentralized identifier on a trusted public
utility. Such identifiers are the basic building block to provide authentication in a
decentralized fashion. However, SSI framework requires secure management of the
cryptographic material required for building the digital identity. Each device is the
true owner of its own identity, therefore a proper key management system needs
to be integrated for autonomously generating identity keys and produce digital
signatures.

Today, trusted platform modules (TPMs) are used in IoT. TPMs have key
management capabilities: they can generate asymmetric key pair in its isolated
environment from the operating system and securely produce digital signatures.
This thesis describes the usage of an hardware TPM 2.0 as a key management
system for the IOTA Identity framework, an SSI library that relies on the IOTA
Tangle, a largely used Distributed Ledger Technology (DLT). Both projects are
created by IOTA Foundation. The de facto standard key management system
implementation for IOTA Identity is Stronghold. This solution is a software
component that can execute the required cryptographic procedures and implements
a secure storage of the cryptographic material, both at rest and in memory. The
IOTA Identity framework contains generic interfaces to ease the implementation of
custom key management systems to support SSI operations. The aforementioned
interfaces have been implemented to offload key management operations to the
hardware TPM 2.0 device. Specifically, the TPM 2.0 creates keypair with signing
capability and exposes the public part when a new decentralized identifier needs
to be published. On the other hand, the sensitive part of the key pair is never
exposed outside of the TPM 2.0 context. Similarly, if a verifier requires to verify
the credential, the TPM 2.0 loads a previously generated signing key and produces
a digital signature.

In addition, the usage of hardware TPM 2.0 can be propagated to the higher
level of the SSI framework. A credential issuer that is also a Privacy Certification
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Authority can verify the TPM 2.0 device identity and the policy of the key used for
decentralized identity. The issuer releases credentials that enforce a strong policy
about the usage of identity keys. A peer that requires a stronger authentication
may require for such credentials and trust only digital signatures performed by
keys loaded in the hardware TPM 2.0 that can neither be exported or generated
externally.
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Chapter 1

Introduction

1.1 IoT digital identity
The National Institute of Standards and Technology (NIST) gives a definition of
digital identity:

"For these guidelines, digital identity is the unique representation of a
subject engaged in an online transaction. A digital identity is always
unique in the context of a digital service, but does not necessarily need to
uniquely identify the subject in all contexts. In other words, accessing a
digital service may not mean that the subject’s real-life identity is known"
[1]

The NIST definition of digital identity is a representation of an online persona.
A digital identity does not need to completely describe a subject; rather, it is
sufficient for it to possess certain attributes that serve to uniquely identify the
subject within a specific context.

The subject of a digital identity does not necessarily refer to an individual;
any type of abstract or physical entity that needs to be identified in a digital
context requires an identity. IoT devices are a significant example of non-individual
subjects associated with digital identities. Those devices are usually constantly
available. Some devices are associated with sensors that collect data to transmit to
a controller, while others receive actions that they execute with actuators.

The unique characteristics of IoT devices are also cause of security concerns.
Data collected by these devices must be authentic, so that controllers can decide
to take action on reliable data [2]. In addition, leakage of data collected from IoT
devices compromises privacy. In conclusion, malfunctioning of IoT devices has the
potential to result in physical harm [3].

Providing strong digital identities can be a solution to some of the security
issues of IoT devices; subjects can be authenticated providing evidence of the digital
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Introduction

identity they claim to be. Different types of digital identity may be also authorized
to perform specific operations rather than others.

Identity models can be categorized according to the actor that owns a digital
identity. Three models can be distinguished: centralized, federated and decentral-
ized.[4]

1.1.1 Centralized identity model

Figure 1.1: Centralized identity model

It represents a common account-based identity. Subjects can register to a certain
organization, usually by providing a username and a password. The digital identity
is owned by the organization rather than subjects. If the identity is deleted, the
subject will be unable to access to the application.[4]

Centralized identity characteristics

• Centralized identities are not reusable nor portable. Subjects are required to
create a new digital identity for each new registration.

• Identities are fully controlled by organizations. They control all the registered
accounts of subjects, which generates a honeypot that serves to incentivize
attackers. A successful attack may lead to a data breach, with a significant
quantity of identities compromised.

1.1.2 Federated identity model
The federated identity model mitigates some of the issues of the centralized identity
model. Subjects can now register to an identity provider (IdP). The digital identity
is an account owned by the IdP. This digital identity can be used by subjects to
access relying parties (RP) that support the identity provider where the account
is registered. This mechanism is widely used and enables subjects to connect to
different RPs, using the single sign-on (SSO) feature.

2
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Figure 1.2: Federated identity model

Federated identity characteristics

• SSO partially allows to reuse digital identities

• It still does not exists a single IdP that enables access to any RP

• IdP is an even bigger centralized storage of accounts

• IdP can log subject activities online

1.1.3 Decentralized identity model

Figure 1.3: Decentralized identity model

The decentralized identity model proposes a different approach from centralization
and federation. The main difference is that this model is no longer account-based.
Instead, the parties involved contribute equally to share a peer-to-peer connection.
Each subject publishes its own identifier on a verifiable data registry (VDR), visible
to any other peer that wants to establish a connection. The peers can mutually
authenticate using asymmetric cryptography [4].

Decentralized identity characteristic

• Subjects control their own decentralized identifiers
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• Identifiers are published on a verifiable data registry

• Identifiers can always be reused

• Identifiers are published on a decentralized VDR.

1.1.4 Decentralized key management
A decentralized identity model solves weaknesses of the centralized and federated
identity model. However, it also needs to overcome its own challenges. In fact, the
biggest challenge of the decentralized identity model is decentralized key management
[5].

It is recommended to delegate key management to hardware security devices [3].
In the context of trusted computing, Trusted Platform Modules 2.0 (TPMs) are
the solution provided by the Trusted Computing Group (TCG) [6]. TPM devices
are low power, relatively inexpensive but capable of storing keys and performing
cryptographic operations in a shielded environment.

Furthermore, TPM 2.0 has its own identity based on a PKI. It uses a custom
protocol that also extends the identity to transient keys generated by the TPM.
This protocol enables to uniquely authenticate a TPM device while also being
privacy preserving.

1.2 Thesis purpose
The purpose of this thesis is to analyze an existing decentralized identity model and
to try to offload cryptographic capabilities to a secure hardware device. Specifically,
the TPM is used as a key management system (KMS) for IOTA Identity Framework
[7], a concrete example of decentralized identity.

Secondly, this thesis also proposes a solution to exploit TPM 2.0 capabilities to
generate credentials that can be used in the decentralized identity model, ensuring
that a decentralized digital identity is bound to a physical TPM 2.0 device.
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Chapter 2

Background and related
work

2.1 Self-sovereign identity
’Self-sovereign identity’ has gradually become the most common term to identify
the decentralized identity model. In fact, a self-sovereign identity is «neither
dependent nor subjected to any other power of state» [4]. Indeed, the paradigm
of self-sovereign identity represents a shift in identity management. As opposed
to account-based models, each subject autonomously controls their own digital
identities without the need to request to a centralized entity to operate on subject’s
behalf.

As illustrated in Figure 1.3, the self-sovereign identity model can be used to
establish a peer-to-peer connection. Initially, each peer has to generate a new
asymmetric key pair. The next step involves the publication of the public key
on a trusted verifiable data registry, with a decentralized identifier (DID) being
uniquely assigned to the published data [8]. Decentralized identifiers are described
in detail in Section 2.2.1. Finally, peers can be mutually authenticated to establish
a connection; each peer sends its own DID and the proof of possession of the private
key. The proof can be verified by querying the VDR to retrieve the public key and
verify the proof of possession.

2.1.1 ToIP Stack
The connection of peers using decentralized identifiers has already been described.
However, the fact that a subject can autonomously manage its own identity does not
imply that an SSI is self-asserted [4]. In particular, the Trust over IP Foundation
project is interested in simplifying and standardizing how trust can be established
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between digital identities [9].

Figure 2.1: ToIP Stack [9]

The ToIP stack, shown in Figure 2.1, is a framework presented by the ToIP
Foundation to provide the components required to obtain digital trust. Each level
of the stack is separated in two halves: the first one delineates the technology, while
the second one refers to governance frameworks applied for each level. Indeed, it is
insufficient to ensure trust solely through the implementation of a technological
stack; although digital trust is valid from a technological perspective, it is worthless
in the real world if it isn’t supported by a governance authority. Consequently, it
is necessary for the governance authority to describe, at each layer, the rules that
it considers necessary to respect in order to guarantee the validity of digital trust.

The layers defined in the ToIP stack are as follows:

• Layer 1 is for verifiable data registries, defining the root of trusts for decen-
tralized identifiers.

• Layer 2 is for the establishment of peer-to-peer connection protocols.

• Layer 3 is for the establishment of transitive trust relationship through the
Trust Triangle.

• Layer 4 is for application built on top of the decentralized digital trust
infrastructure.

6
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Trust Triangle

The credential Trust Triangle «enables establishment of transitive trust relationships
between any three parties anywhere in the world using the data exchange formats
and protocols for verifiable credentials» [9]. Transitive trust is supported by the
utilization of digital credentials.

Figure 2.2: Verifiable Credential Trust Triangle [9]

Figure 2.2 describes how transitive trust can be established in the context
of decentralized digital identity. The actors involved in the trust triangle are
distinguished by their roles, which are categorized as follows.

• The issuer is the provider of digital credentials.

• The holder is the subject of a digital credential. It directly trusts the issuer
and stores issued digital credentials into its own digital wallet.

• The verifier is any entity that requires some form of assurance about the
holder. Next, the holder can present the credential provided by a trusted
issuer.

The establishment of trust, as illustrated in Figure 2.2 is structured into four
phases:

1. The issuer publishes a decentralized identifier on a trusted VDR

7
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2. The issuer digitally signs a Verifiable Credential (described in Section 2.2.2)
and send it to the credential holder.

3. The holder presents the credential to the verifier, which reads the DID of the
issuer to recover its public key from the VDR

4. Finally, the verifier can verify the issuer’s digital signature. If the verification
is successful, it trusts the assertions that the issuer made about the holder

2.2 SSI building blocks
It has been previously described the self-sovereign identity model and trust rela-
tionships among SSI. This section focuses on the building blocks that are used to
implement the aforementioned concepts. For this purpose, the following elements
are used:

• An asymmetric key pair

• A Decentralized Identifier (DID) and its associated DID Document

• At least a Verifiable Credential (VC) provided by a trusted issuer

• A Verifiable Presentation (VP) provided to a verifier

2.2.1 Decentralized identifier
Decentralized identifier (DID) is a type of globally unique identifier that can be
generated and autonomously controlled by subjects. Moreover, subjects can provide
cryptographic proofs to demonstrate to control a DID. Decentralized identifiers are
defined as a W3C Recommendation [8].

Figure 2.3: An example of DID [8]

Decentralized identifiers are represented as a URI (Figure 2.3). The URI scheme
for a decentralized identifier corresponds to the value "did". In addition, the URI
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also includes a DID method, which uniquely identifies a specification that describes
how to create, read, update or delete DIDs. Often a DID method is associated to a
specific verifiable data registry. Finally, the URI is completed with a method-specific
identifier, which is a unique identifier that depends on the DID method.

The complete URI is a unique identifier that is resolved into a DID document.

DID Document

A DID document is a JSON object that contains data referred to a DID subject
(e.g., public keys, trusted service endpoints).

Figure 2.4: An example of DID Document

At the very least, a DID document requires that the id property contains the
DID of the subject. However, it would not be enough to provide proof of control
of the DID in the SSI model. Therefore, a DID document should also have at
least a verification method in the verificationMethod property. A verification
method contains a representation of an asymmetric public key. A subject proves to
control a DID providing a digital signature that can be verified with the public key
defined in the verification method. Figure 2.4 illustrates a valid DID document
that contains a verification method that wraps a public key represented as a JSON
Web Key (JWK) [10].

2.2.2 Verifiable Credential Data Model
The Layer 3 of the ToIP stack (Section 2.1.1) implements transitive trust relation-
ships on top of the decentralized identity model, through the management of digital
credentials. Digital credentials are represented in compliance with the Verifiable
Credential Data Model W3C Recommendation [11]. The specification provides a
common format for representing any type of credential. Furthermore, it facilitates
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the use of cryptographic proofs to detect and prevent tampering, as well as to
verify the authorship of credential data.

Verifiable Credential

In accordance with the Verifiable Credential Data Model, digital credentials are
represented by Verifiable Credentials (VCs). The information contained within
these credentials is represented in JSON-LD format.

Figure 2.5: Verifiable Credential sections

As illustrated in Figure 2.5, a Verifiable Credentials contains three types of
information:

• Credential Metadata: it describes properties about the credential (e.g., creden-
tial issuer identifier, expiration date, credential revocation mechanism).

• Claims: it represents the set of assertion of the issuer about the credential
subject.

• Proofs: a credential contains one or more cryptographic proofs provided by
the issuer.

Verifiable Presentation

The trust triangle is completed when the verifier verifies one or more credentials
provided by the credential holder. The standard format provided by the Verifiable
Credential Data Model to display VCs is the Verifiable Presentation (VP).

Analogously to the Verifiable Credential structure, a Verifiable Presentation
provides three types of information:

• Presentation Metadata: it describes specific properties about the presentation
(e.g., identifier of the holder, expiration date).

• Verifiable Credentials: a presentation contains one or more VCs that the holder
wants to send to the verifier.

10



Background and related work

Figure 2.6: Verifiable Presentation sections

• Proofs: the holder can provide one or more cryptographic proofs.

When a verifier receives a VP, it verifies that it is an authentic message received
from the holder. In addition, it can cryptographically verify that included Verifiable
Credentials are authentic messages generated by trusted issuers. Furthermore, the
verifier is able to validate the claims provided by the issuer and determine the trust
to be placed in the holder.

2.3 IOTA Tangle
Distributed ledger technologies (DLTs) are commonly used as verifiable data registries
in the SSI model [4, 9, 8]. In the Decentralized Identifiers specification, a definition
of distributed ledger technology is provided as follows:

These systems establish sufficient confidence for participants to rely upon
the data recorded by others to make operational decisions. They typically
use distributed databases where different nodes use a consensus protocol
to confirm the ordering of cryptographically signed transactions.[8]

The IOTA Foundation has developed an entire ecosystem around its core,
known as the IOTA Tangle. It is a DLT that supports a range of services for the
development of decentralized applications for the IoT industry [12]. The current
version of the Tangle, known as Stardust, enables the usage of the Tangle as a
native token exchange, smart contract platform and verifiable data registry for SSI.

The Tangle structure is a directed acyclic graph (DAG), where transactions
are represented as vertices in the graph. A new insertion approves other "parents"
transactions. Consequently, the approval time of a transaction is determined by
the traffic conditions on the DLT nodes. In conditions of low traffic, an inserted
transaction will experience a longer waiting period before being approved from
a new transaction. Under conditions of high traffic, it is easier to find a new
transaction that verifies a previous one. On the other hand, new transactions also
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need to provide a proof of work to protect nodes against distributed denial of
service (DDoS) attacks [13].

Figure 2.7: Example of the DAG generated by insertion of transaction in IOTA
Tangle [12]

Transaction Block

The specifications of the Stardust protocol have been published as Tangle Improve-
ment Proposals (TIPs) by IOTA Foundation. Specifically, TIP-0024 describes
the structure of a transaction block. Each block has an identifier, named block
ID, which is derived as the digest of the BLAKE2b-256 hash of the transaction
block. The following fields, according to implementation proposals, are part of a
transaction block [14]:

• Protocol version: version number that identifies the protocol.

• Parents count: number of directly approved blocks.

• Parents: a list of block identifiers that are directly approved by the block.

• Payload length: size of the transaction payload.

• Payload: generic content of the transaction.

• Nonce: the nonce found that completes the proof of work.
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2.3.1 Consensus

Despite the goal of achieving true decentralized consensus [15], the Stardust version
of the Tangle requires a node plugin, the coordinator, which is used by nodes
to confirm blocks and reach consensus [16]. The current implementation of the
coordinator is based on the Tendermint Core BFT consensus [17] which enable a
set of validators to operate as a distributed coordinator. The coordinator scans
blocks in the DAG for conflicts. Conflicting transactions cannot both be verified,
as this could lead to a double spending attack [12].

The coordinator can insert in the ledger a single type of transaction, named
milestones. The insertion of a milestone results in each block that is either directly
or indirectly referred to the milestone adopting a definitive state. Legit transactions
are included in the ledger state, while conflicts are excluded.

White-flag consensus

White flag consensus, as described in [18], defines the behavior of the coordinator
when conflicting transactions are found. In TIP-0002, a deterministic order for
transactions, starting from a milestone, is delineated. The order is generated
using the Depth-First Search algorithm. In order to avoid conflicts, only the first
valid message is added to the ledger state. The coordinator then sets the valid
transactions as ’applied’ and adds them to the ledger state, while a conflicting
transaction is marked as ’ignored’.

Milestone

Subsequent to the process of transaction validation, the coordinator adds to
the Tangle a specific transaction type, named milestone. Starting from the last
inserted milestone, the coordinator executes the white-flag consensus on unconfirmed
transactions. Conflicting transactions are excluded from the ledger state, marking
them as ignored.

The coordinator also computes a Merkle tree hash (MTH) of transactions
included in the validation, provided as a proof of inclusion. Indeed, the milestone
payload includes the hash root of all blocks IDs referenced by the milestone and the
hash root of all block IDs applied to the ledger state [19]. Finally, the coordinator
digitally signs the content of the milestone, using the Ed25519 signature scheme.
Tangle nodes that are in possession of the coordinator’s public key in advance verify
the authenticity of the milestone.
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2.3.2 UTXO
Two distinct implementation proposals, respectively TIP-0018 and TIP-0020, define
the content of the transactions supported in the Stardust version of the Tangle.
The proposed model of transaction is based on unspent transaction output (UTXO).

In general, the account balances are not directly bound to an address (as in the
account-based model). Instead, they are associated with the output of transactions.
These outputs are then consumed as inputs of other transactions, and the unspent
balance is stored in a new output. According to [20], the utilization of this model
within the Tangle offers certain advantages over the prior account-based model:

• Parallel validation of transactions.

• Easier double-spending detection.

• Replay protection when using the same address.

Figure 2.8: The UTXO model [20]

The figure 2.8 represent the high-level concept of UTXO, while TIP-0020 de-
scribes the structure of a transaction payload. The structure of a transaction
payload is distinguished by three main components: inputs, outputs and unlocks.

Inputs

Inputs of a UTXO transaction are outputs resulted from previous confirmed
transactions that are going to be consumed. Each transaction contains a counter
of the inputs consumed, the list of inputs and the input commitment, which is the
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concatenation of the hash of serialized outputs selected by the inputs. The list of
inputs needs to refer to specific outputs:

• Input Type: always set to 0.

• Transaction ID: Block ID referring to the transaction that contains the output.

• Transaction Output Index : the index of the referenced output.

Outputs

The UTXO transaction produces a series of outputs. Therefore, the count of the
outputs produced is added in the transaction together with the list of outputs. IOTA
defines the Stardust version of the Tangle as a multi asset ledger [21]. The tangle
supports different types of outputs that can be produced in UTXO transactions:

• Basic Output

• Alias Output

• Foundry Output

• NFT Output

2.3.3 Ledger programmability
The Stardust protocol exploits the functionalities of the UTXO model. In fact,
this version of the protocol enables the execution of UTXO scripts on the ledger.
Some UTXO output can be evaluated as states of a UTXO state machine. Stardust
specifications provides a set of supported operations that can be used during the
change of a state [21].

Chain constraint

The process of updating the state of a UTXO state machine is only possible
according to a well-defined set of rules called chain constraint. It enables to «carry
the UTXO state machine state encoded in outputs across transactions» [21]. The
permitted operations for changing state depends on the output type and the current
state of the transaction. Therefore, inside the transaction graph it is possible to
identify chains generated by UTXO state machine. Each chain is uniquely identified
by an identifier.
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Figure 2.9: Representation of a chain generated by the UTXO state machine [21]

2.3.4 Alias Output
Alias output is a specific implementation of the UTXO state machine. Each state
machine is uniquely identified by an alias identifier that remains unchanged for all
the states of the UTXO state machine. The next clauses are describing some of
the properties that characterize an Alias Output. The complete specification is
available in TIP-0018 [21].

Alias ID

It is the unique identifier of the state machine. It is a 32 bytes long identifier
generated as the BLAKE2b-256 hash of the specific output identifier that created
the first state. The Alias Address is derived from the Alias ID.

State Index

It is a counter that is increased each time a new transaction is generated and the
state machine moves to a newer output state.

State Metadata

This property is a byte array that can be updated exclusively by the state controller.
A state controller is an address that is defined as the owner of an alias state machine.
The byte array starts with a 16-bits integer that denotes the size of the array,
succeeded by the raw bytes.
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Unlock Conditions

UTXO outputs are characterized by specific unlock conditions. In order to consume
outputs, transactions are required to unlock them. Each output type defined in
Stardust has specific unlock conditions. In particular, an alias output can have at
most one of each of the following:

• State Controller Address Unlock Condition: when an output is unlocked by
the state controller, the state index is increased, and only some properties can
be updated

• Governor Controller Address Unlock Condition: when an output is unlocked
by the governor, the state index is not increased. The governor can update
features, metadata, and unlock conditions.

Both unlock types are simply a digital signature of the hash of the transaction
payload is executed, using the key associated with the correspondent address set in
the unlock conditions.

Features

The characterization of outputs is also performed through features. While unlock
constraint are adding constraints to be checked in order to consume a block, features
enable new functionalities of outputs. For instance, an alias output can have at
most one of each of the following features:

• Sender Feature: certain types of UTXO outputs, such as the alias output,
necessitate a form of authorization, associating each output to exactly one
specific address. Such address is specified in the sender feature property of an
Alias Output.

• Issuer Feature: it is an immutable feature for the Alias Output. It contains
the address of the creator of the UTXO state machine, named the issuer. It
cannot be changed during state changes and it is validated to have always the
same value in the UTXO chain.

• Metadata Feature: this features does not influence any validation of the output.
It is an additional field where arbitrary binary data can be added. It is used
to serve higher layer applications built on the Tangle. It starts with 2 byte
representing the length, succeeded by a byte array containing the data.

2.4 IOTA Identity Framework
The preceding section provided a concise synopsis of main feature of the Stardust
protocol version of the IOTA Tangle as a multi-asset ledger. The IOTA Identity
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Framework [7], also known as IOTA Identity, is a library written in Rust that facili-
tates the utilization of the Tangle as a VDR and provides support for self-sovereign
identity operations. The library is also compliant with the W3C recommendations
for decentralized identifiers and Verifiable Credential Data Model [8, 11]. The
operations available on IOTA Identity can be categorized as follows:

• DID operations: provides CRUD operations of DID documents, interacting
with the IOTA Tangle.

• VC operations: provides a set of operation related to Verifiable Credentials
creation, revocation and validation.

• VP operation: provides a set of operation related to Verifiable Presentations
creation and validation.

• Key management: provides generic interfaces that can be implemented for
binding a key management system as a provider of cryptographic operations
for SSI. IOTA Identity also includes default implementations of such interfaces.

2.4.1 DID operations
IOTA Identity provides utility functions in order to use the Tangle as a verifiable
data registry.

Publish

The publishing operation of a DID document consists in the creation of a new
UTXO state machine of alias outputs.

As a requirement, the DID controller possesses a funded Ed25519 address.
Indeed, an alias output that stores some data requires a deposit of IOTA coins,
known as storage deposit [22]. This mechanism limits the maximum size of data
that can be stored in the Tangle, avoiding an uncontrolled expansion of snapshot
size on the DLT nodes. The following steps are to be taken for the publication:

1. Create a DID document compliant with the W3C Recommendation [8]

2. Create a new alias output. The state controller and the governor are set with
the same funded Ed25519 address. The DID document is encoded in the state
metadata property of the alias output.

3. Publish the new output as a transaction on the DLT.

4. When the block is published, the DID can be assigned to the output. In fact,
the method-specific identifier is set to the hexadecimal encoding of the Alias
ID.
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It is important to note that the security of DID document data is also dependent
on the management of the key pair associated with the Ed25519 address of the DID
controller. In the event of a leakage of the sensitive part of the key, a malicious
actor may gain control of the published DID document. For instance, the malicious
actor could add a new verification method that contains a new key, allowing them
to prove possession of the DID.

Resolve

IOTA Identity provides code examples for resolving DIDs [7]. Initially, the user
provides a configuration of the Tangle node with which it whishes to interact.
Subsequently, a resolver recovers the last alias output of the UTXO state machine
associated to the alias ID contained in the DID. The DID document can be read
from the state metadata property of the retrieved alias output.

Update

Updating a DID document consists in generating a new state of the UTXO state
machine which contains the updated DID document in the state metadata property.
The user should execute the following instructions, using IOTA Identity:

1. Resolve the DID in order to receive the correspondent DID document.

2. Update the DID document.

3. Encode the DID document in a new alias output.

4. Publish the output with a new transaction.

If the size of the DID document is increased, then it is also required to add more
funds as storage deposit.

Delete

Delete operation of a DID document from the Tangle can be both reversible and
an irreversible:

• deactivation: the state controller sets DID document metadata as ’deactivated’.
This change is an update of the state metadata, therefore it can be reversed.
The DID documents can still be resolved but validation may fail.

• destroy: the governor address consume the alias output without generating
a new one. The storage deposit is once again available to the governor for
spending.

19



Background and related work

2.4.2 Verifiable Credential Data Model implementation
IOTA Identity Framework is compliant with the Verifiable Credential Data Model
v1.1 [11]. The library can only manage the JWT representation of Verifiable Cre-
dentials and Verifiable Presentation, described in Section 6.3.1 of the specification
[11]. Additional encoding and decoding rules are provided in order to avoid data
duplication and compatibility with JWT decoders.

Figure 2.10: Verifiable credential enveloped in a decoded JWT payload

As can be verified in figure 2.10:

• The proof field is absent and replaced by the JWT header and the JWT
signature.

• The iss property corresponds to the issuer identifier.

• The nbf represents issuance date of the credential as a UNIX timestamp, in
place of the issuanceDate property.

• The jti property replaces the id property.

• The sub corresponds to the identifier of the credential subject.

• The exp replaces the expirationDate property, formatted as a UNIX times-
tamp.

• The vc property (or vp for a Verifiable Presentation) contains the additional
credential properties that are not replaced in JWT representations.
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2.4.3 Key Storage
The cryptographic operations in the SSI model are based on asymmetric key pairs;
each public key added into a DID document has a corresponding private key. DID
subjects need to manage the key pair and be able to provide a proof of possession
of the private key. IOTA Identity Framework provides two Rust traits, JwkStorage
and KeyIdStorage, that can be used to connect an external key provider to the
SSI operations implemented in the library.

Architecture

The Figure 2.11 illustrates the high-level architecture of the key storage interfaces.
Specifically, the relationships between the interfaces have been highlighted in order
to describe the retrieval of a private key, providing a verification method as input.

Figure 2.11: High level architecture of the Key Storage of IOTA Identity Frame-
work

The following process is employed by IOTA Identity to address private keys,
starting with a verification method:

1. Compute the method digest; for JWKs corresponds to the SHA256 thumbprint
[23] of the public JWK.

2. Query the KeyIdStorage to retrieve, if exists, the key identifier associated to
the verification method

3. Use the private key managed by JwkStorage, providing the key identifier as an
input. The interface can retrieve the private key and complete the operation
requested.
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JwkStorage interface

The interface is designed to expose all the operations necessary to support the
life cycle of key pairs in the SSI model. The keys are represented as JSON Web
Keys. Each key pair is associated with a keyID, a generic identifier that is used to
locally address the private key. In order to implement the JWkStorage interface,
the following operations must be implemented:

• Generate a new key pair and return the public JWK, associated with a unique
key identifier.

• Insert an existing JWK.

• Digitally sign messages with a supported signature scheme.

• Delete the JWK from the storage.

• Check if the JWK associated to a key identifier exists.

KeyIdStorage interface

The KeyIdStorage interface provides a mapping of a verification method to a
KeyID. It allows to translate a public key representation (e.g., the digest of the
public key) to the local identifier of the correspondent private part available in
JwkStorage.

The implementation of the KeyStorage interface requires four operations:

• Insert a new couple of key identifier and verification method reference.

• Read the correspondent key identifier of the provided verification method.

• Delete a couple of key identifier and verification method reference.

Default implementations

IOTA Identity also provides default implementations of key storage interfaces. A
first one, called Memstore, is an insecure in-memory implementation of key storage.
Its intended use is exclusively for testing.

The default implementation intended for real use cases is the StrongholdStorage.
The implementation of key storage interfaces are build upon Stronghold, the de
facto standard key management system in IOTA Identity.
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2.5 Stronghold
Stronghold is an open-source project, written in Rust, provided by the IOTA Foun-
dation [24]. The core idea of Stronghold is to provide secret manager functionalities
without exposing secrets outside of a protected environment generated by the
software. In order to utilize sensitive data, Stronghold exposes special functions,
termed ’procedures’, which facilitate the utilization of data without disclosing the
sensitive cryptographic material. The software is frequently employed as a library,
yet it is equally capable of functioning as a command-line interface.

Stronghold is generally applied to three different use cases:

• It is used as a SecretManager in the IOTA SDK, supporting capability of a
deterministic wallet [25].

• As previously mentioned, it supports the implementation of key storage
interfaces in the IOTA Identity Framework [26].

• It can be used as a vault to protect arbitrary data provided by the user.

2.5.1 Data protection at rest
Stronghold securely stores secrets in files, using its own serialization structure,
named snapshot. A snapshot contains all the information required by Stronghold
when it is running, but they are protected using symmetric encryption. The
encryption key is derived from a passphrase provided by the user. Therefore,
Stronghold requests to provide a passphrase for unlocking the snapshot.

Snapshot encryption key generation

Each time Stronghold generate a snapshot, a new encryption key is generated as
follows:

1. A secret key is derived from the passphrase

BLAKE2562b(passphrase)

2. Generate an ephemeral key pair for x25519 key exchange

3. Complete the key exchange among the secret key and the ephemeral key

Finally, the obtained shared secret can be used to encrypt the Stronghold instance
with xChaCha20-Poly1305 algorithm.
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2.5.2 Data protection at runtime
When running, Stronghold is a collection of vaults. Each vault contains a set of
sensitive data, named records. The content of records cannot be accessed directly;
rather, they’re loaded as crypto boxes. Crypto boxes are enclosures that protect
records during runtime. Each vault has a master key that is used to retrieve plain
text of records from the crypto boxes. The protection of data in crypto boxes is
achieved using the xChaCha20-Poly1305 algorithm.

However, this mechanism is not enough to protect sensitive data during runtime;
vault keys are still available in plain text in the volatile memory. In the event of a
memory dump, it would still be possible to use master keys to decipher vault records.
In order to solve this issue, Stronghold implements a mechanism of mitigation
based on non-contiguous data types [24].

This proposed mitigation mechanism involves the division of information (in
this case, vaults’ master keys) into two distinct shards of data. Consequently, the
information is stored in two different shards and in different memory locations.
In circumstances where a vault key is required to be used, shards are reunited to
reconstruct the information.

In Stronghold, there are three possible types of non-contiguous memory imple-
mentation,categorized according to the location of the shards:

• Full RAM : both shards are stored in different pages of volatile memory.

• Full Files : both shards are stored on different files in non-volatile memory.

• Ram and File: it is a hybrid solution that stores the information both in file
and in volatile memory.

The splitting phase of information is inspired by the work of Bruce Shneier et
al. in "Cryptography Engineering" with the Boojum scheme [27]. Considering a
random R and a key k to protect, we can define:

x = R

y = h(R) ⊕ k

where h is specifically the BLAKE2562b hash function. With full control of
memory, k can be deleted, leaving only x and y when data is not actually in use.

In the event of a memory dump being conducted at a specific moment in time,
it is unlikely that the master key will be available in contiguous pages of memory.

It is also critical that the two shards are constantly refreshed. Considering a
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new random R′, then:

x′ = x ⊕ R′ (2.1)
y′ = y ⊕ h(x) ⊕ h(x′) (2.2)

= k ⊕ h(x) ⊕ h(x) ⊕ h(x′) (2.3)
= k ⊕ h(x′) (2.4)

Therefore, it is always true that:

y ⊕ h(x) = k ⊕ h(x) ⊕ h(x) = k (2.5)

2.5.3 Procedures
Stronghold exposes a set of functions, named procedures, that can be used to interact
with Stronghold environment. For instance, procedures are the only possible
instrument that a user can use for operating with a key stored in Stronghold.

Procedures pipeline

It is possible to categorise stronghold procedures into three distinct types:

1. Generators: procedures that generates new secrets without receiving any input
(e.g, BIP-39 mnemonic)

2. Processors: procedures that generates new secrets, receiving secret seeds as
input. This is common for deterministic wallets (e.g, SLIP-0010 key derivation)

3. Receivers: procedures that produce a result that can be exported outside the
Stronghold environment (e.g, public key derivation or digital signature)

The different types of procedures can be combine to produce a result that can be
exported outside of the Stronghold environment. In figure 2.12 it can be observed
a pipeline pattern generated by the categories of procedures. Initially, a generator
creates a new secret and stores it inside a vault. The secret itself is stored in
a crypto-box and can be addressed by an internal addressing mechanism called
locations. Each new record in a vault has a location. When the generator procedure
is completed, the location of the result is returned, instead of the secret itself. Next,
if needed, a processor procedure can be executed, providing as input the location
of the secret generated by the generator. The processor procedure can access the
vault and operate with secrets, generating a new one in a new location. Finally, a
receiver procedure receives as an input the location of a secret and return public
data to the caller.
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Figure 2.12: Stronghold procedure pipeline design [24]

2.5.4 Supported algorithms
Having considered how Stronghold works and the interfaces that interact with users,
it is essential to analyze the list of available procedures to define the capabilities of
Stronghold.

Stronghold procedures

The following list details the Stronghold procedures that are currently available:

• "WriteVault" stores arbitrary data.

• "RevokeData" sets data of a location as revoked. This operation prevents a
secret from being accessed.

• "GarbageCollect" deletes from vaults all records marked as revoked.

• "CopyRecord" copies the content of a location into a new one.

• "Slip10Generate" generates a new seed according to SLIP-0010.

• "Slip10Derive" derives a SLIP-0010 child key, given a seed or a parent key.
The chain code is returned.
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• "BIP39Generate" generates a new BIP-39 seed and store it in a location. The
correspondent BIP-39 mnemonic is returned.

• "BIP39Derive" derives the seed from a BIP-39 mnemonic and stores it in a
new location.

• "GenerateKey" generates a Curve25519 secret key and store it in a location.

• "Ed25519Sign" creates a digital signature using a private key stored in a
provided location using the EdDsa signature scheme.

• "X25519DiffieHellman" generates a x25519 shared key in a new location.

• "Hmac": computes the HMAC, given the location of a secret key and a message.

• "Hkdf " computes a new hashed key derivation function and store it in a new
location. The new location is return as a result

• "ConcatKdf " executes the concat KDF as defined in Section 5.8.1 of NIST.800-
56A and store the new output in a new location.

• "AesKeyWrapEncrypt" uses a key stored in a record as a key encryption key
(KEK). The cipher text of the secret key encrypted by the wrap key is returned.

• "AesKeyWrapDecrypt" decrypts the wrapped key and store it in a new location.

• "Pbkdf2Hmac" generates a key from the provided password and store it in a
new location.

• "AeadEncrypt" encrypts data using AEAD encryption scheme with a key stored
in a vault. The cipher text is returned.

• "AeadDecrypt" decrypts data using AEAD encryption scheme. The plaintext
is returned.

• "ConcatSecret" concatenates two secrets and store the result in a new location.

IOTA Identity Framework compatibility

As stated in the preceding section, the IOTA Identity Framework incorporates a
key storage implementation based upon Stronghold, named StrongholdStorage.
The compatibility of algorithms for the key storage is provided by the intersec-
tion of Stronghold procedures and JWS compatible digital signature algorithms.
Therefore, only HMAC [28] and EdDSA [29] can be used to generate a JWS with
Stronghold. However, since HMAC is not based on asymmetric cryptography,
StrongholdStorage implements only the EdDSA signature scheme.
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2.6 Trusted Platform Module 2.0
Trusted Platform Modules are components that operate in the context of trusted
computing. The trusted computing group (TCG) defines trust as «expectation of
behavior» [6]. Therefore, trusted computing can be defined as components that are
behaving as expected, so that such components are considered trusted.

Trusted computing requires the concept of Root of Trust, which refers to a
component that must be trusted and for which any incorrect action is undetectable.
The TCG identifies three distinct Root of Trust:

• Root of Trust for Measurement (RTM) performs integrity checks (measurement)
and sends it to the RTS

• Root of Trust for Storage (RTS) collects and store measurements in a shielded
memory, isolated from the measured platform.

• Root of Trust for Reporting (RTR) reports the content of the RTS, typically
with a digital signature of the hash of the contents of the RTS.

The Trusted Platform Module is a system component that has a separated state
from the system on which it reports. There are different implementations of a TPM.
Discrete TPMs are isolated in a tamper resistant silicon, while integrated TPMs
included in another chip, losing tamper resistance properties. Instead, firmware
TPMs are provided on the host CPU in a special execution mode. In the context
of trusted computing, the TPM acts as a Root Trust for Storage and Root of Trust
for Reporting.

The following list enumerates the primary functionalities of a TPM 2.0:

• Key management capabilities: the TPM has its own random number generator,
which can be used to generate keys. Moreover, keys can be used inside the
volatile memory of the TPM and can be stored inside TPM non-volatile
memory or externally, but protected through binding and sealing[6].

• Identity management: the TPM architecture provide an identity layer to
authenticate the platform. This identity layer can be used during the process
of remote attestation.

• Non-volatile storage: non-volatile memory of the TPM can be used to store
arbitrary data (e.g. x509 certificate or secret that must be retrieved before
the operating system is loaded)

• device attestation: being a RTR, the TPM can securely report the state of
the platform, digitally signed.
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Figure 2.13: TPM 2.0 architecture [6]

2.6.1 Architecture
The figure 2.13 represents the architecture overview of the TPM. For discrete
implementation, the TPM is connected to the host system through an external
interface and communicate via an I/O buffer.

Cryptographic subsystem

The TPM 2.0 has a cryptographic subsystem that can be used by the device itself
or requested by the host.

The following list enumerates the capabilities of the cryptographic subsystem:

• Key derivation functions
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• Hashing functions

• Symmetric encryption

• HMAC

• Asymmetric encryption

• Sigital signature creation and verification

• Random number generator (it has its own source of randomness)

Authorization subsection

When a command is sent to the TPM, the authorization layer checks that resources
are accessed only if the caller has an adequate authorization.

Volatile memory

Volatile memory contains all the information that the TPM uses in its running
state. Obviously, when the TPM device is powered off the volatile memory is lost.
It contains:

• Platform Configuration Registers (PCR). They’re shielded locations that
contain the content of measurements.

• Object Store: TPM keys and data are called objects. In order to be used,
TPM objects must be loaded on the volatile memory. Objects can be loaded
externally or load data from the non volatile memory of the TPM

• Session Store: TPM commands, particularly authorization, are provided
through session. Sessions can be negotiated in order to execute actions on the
TPM.

Generally, TPM resources are very limited. In particular, the minimum re-
quirement for volatile memory is to be able to contain at the same time the
following:

• Two loaded TPM objects

• Three authorization sessions

• The I/O buffer
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Non-volatile (NV) memory

The TPM has a non-volatile memory as well to store persistent data. Similarly to
volatile memory, resources are limited.

Power detection module

TPM has only an ON/OFF power state. However, the system host may have
several states. The power detection modules tracks the power state of the host
system and reset volatile memory data if needed.

2.6.2 TPM Software Stack 2.0

The TPM Software Stack 2.0, maintained by the TCG, is a set of APIs that
facilitate communication between the system host and the TPM device. Figure
2.14 illustrates the API layers of the software stack.

Figure 2.14: TPM Software Stack 2.0 structure [30]
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TPM Device Driver

The TPM device driver is an operating system-specific software that handles
communication between the hardware TPM and the operating system host.

TPM Access Broker and Resource Manager (TABRM)

This component is optional, but it relieves the user of the need to manually manage
the TPM’s resources. The volatile memory of TPM is very limited; therefore, the
TABRM layer takes care of a series of operations.

The Resource Manager swaps objects, sessions and sequences from TPM memory.
This is particularly useful when it is required to manage more than an object at
the same time.

The TPM Access Broker takes manages the synchronization of interactions with
the TPM. It allows different processes to interact with the TPM without collisions.

TPM Command Transmission Interface (TCTI)

The TPM command transmission interface (TCTI) is responsible for interfacing with
different types of TPMs. It is the first common layer for each TPM implementation.

Marshalling/Unmarshalling API

This is not a proper layer of the stack. It is a common library that contains
serialization and deserialization instruction for TPM’s commands and responses.

System API (SAPI)

The system API provides access to TPM 2.0 functionalities. It is designed to
operate with low level calls.

Enhanced System API (ESAPI)

The layer’s functionality is contingent upon SAPI, providing a set of simplified
abstractions in the form of system calls. It comprises functions for cryptographic
operations, session management, and commands necessary for attestation.

Feature API (FAPI)

This is the highest level of abstraction of the TSS. This provides a simpler high-level
abstraction for application developers. However, it is important to note that, given
its purpose is to function within software applications, it does not offer all the
capabilities provided by ESAPI.
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2.6.3 TPM Hierarchical Object Structure
The TPM 2.0 specifications introduce the concept of hierarchies. The initial
composition of each hierarchy is characterized by a seed, which is situated within
the TPM device. The creation of objects within the TPM always requires the
specification of a parent object; this can be either the hierarchy seed or other
derived TPM objects. It is important to note that every TPM object is directly or
indirectly associated with a hierarchy seed.

The TPM 2.0 has four different hierarchies [31]:

• The Platform Hierarchy is intended for use by the platform owner. Usually
contains objects utilized during the initial boot sequence.

• The Endorsement Hierarchy is used by the privacy administrator. It is used
for operations that require the TPM identity to be presented.

• The Storage Hierarchy is intended for use by the platform owner. Its utilization
is recommended for non-privacy-sensitive operations.

• The Null Hierarchy is an ephemeral hierarchy with; each time the TPM is
powered off the seed is dropped. A new one is generated at each new power
cycle.

It is important to note that seeds of persistent hierarchies can be cleared and
recreated independently.

Primary keys

The TPM incorporates cryptographic keys into the TPM object structure [32].
Consequently, keys are also part of a hierarchy.

Primary keys are TPM objects that have the hierarchy seed as parent object.
The cryptographic material is derived directly from the hierarchy seed using TPM
key derivation functions. The TPM2_CreatePrimary() ESAPI function from the
TSS 2.0 is used to generate primary keys. The sensitive part of a primary key is
never exported outside the TPM memory.

Despite the limited resources of the TPM, primary objects enable the possi-
bility to generate an unlimited amount of keys. Indeed, keys are the result of a
function that takes as input the seed of the hierarchy (already persistent) and a
public template [32]. Public templates are defined as structures that contain the
configuration of the TPM object to be created, including attributes, authorization
values, key usage and key algorithms. In addition, a public template may contain
the unique data, that uniquely characterize the public template. Consequently,
primary key are generated in a deterministic manner; if the same public template
is provided and the hierarchy seed has not changed, the TPM 2.0 can recreate the
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exact key. This approach is advantageous in circumstances where it is necessary to
have keys that can survive a power cycle without consuming the scarce resources
of non-volatile memory.

Child keys

Specific types of primary objects can be used as parents for child keys. Child keys
can be created with TPM2_Create() ESAPI function [33]. The generation of the
object is analogous to primary keys. However, the parent object cannot be the
hierarchy seed but a different TPM object. The sensitive part of the key is exported
outside the the TPM memory, but it is wrapped by the parent key. Child keys
with restricted decrypt attributes can also be parent for other keys.

2.6.4 Credential Protocol

The TPM architecture specification describes the credential protocol, which is

a privacy preserving protocol for distributing credentials for keys on a
TPM. The process allows a credential provider to assign a credential to
a TPM object, such that the credential provider cannot prove that the
object is resident on a particular TPM, but the credential is not available
unless the object is resident on a device that the credential provider
believes is an authentic TPM.[6]

Endorsement Key Credential Profile

Endorsement keys are asymmetric key pair generated by the TPM in the Endorse-
ment hierarchy. They are primary objects directly derived from the hierarchy seed.
The TCG EK Credential Profile specification describes the usage of endorsement
keys and the creation of Endorsement Key Certificates [34]. Endorsement keys
involved in the PKI define the digital identity of the TPM device.

Consequently, the creation of digital signatures with the EK may result in
privacy concerns due to correlation. Indeed, the EK should never directly perform
digital signatures. The solution provided by the TCG is the Credential Protocol
[6]. A TPM can create an ephemeral signing key and present it with the EK
to a credential provider that supports the protocol. The provider can verify the
possession of the EK by the TPM and return a valid credential associated with
the ephemeral signing key. The credential provider is trusted to not disclose any
association between the EK and the signing key.
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Figure 2.15: TCG Credential protocol example [31]

Credential generation

The Figure 2.15 illustrates a possible workflow proposed in [31] to issue a credential
to an ephemeral signing key.

The protocol is composed of these steps:

1. The client TPM sends the public area of a TPM object corresponding to a
new signing key and a valid EK certificate to the credential provider.

2. The credential provider validate the certificate chain of the EK certificate.

3. The credential provider examines key parameters and decides whether to issue
a new credential or not.

4. The credential provider generates the new credential.

5. The credential provider generates a new symmetric key and uses it to wrap
the credential.

6. The credential provider generates a seed and encrypt it with the public part
of the EK.

7. The credential provider generates a new symmetric key derived from the seed
and the TPM object name (the hash of the public part of the TPM object)
of the credentialed object. Finally, the secret is encrypted by the generated
symmetric key.
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Steps 6 and 7 are performed by the TPM2_MakeCredential() function. It’s
worth noting that the make credential operation is stateless; it does not necessarily
requires a TPM device to be executed. It should also be noted that the EK is used
to encrypt a seed and not to sign data. This prevents the credential provider to
have an evidence that correlates the EK with the ephemeral key.

The result of the make credential operation and the encrypted credential is sent
back to the TPM client. Therefore, the TPM solves the challenge sent by the
credential provider:

1. Decrypt the seed with the EK.

2. Compute the name of the signing key object.

3. Use the seed and the object name to derive the encryption key.

4. Unwrap the secret.

5. Finally the secret can be used to decrypt the encrypted credential.

The operation that the client TPM executes is the TPM2_ActivateCredential()
ESAPI function. When the EK and the signing key are loaded in the TPM memory,
it solves the challenge received from the provider and returns the secret key.

A successful challenge demonstrates that the TPM device is the owner of the EK
and that an object with the name corresponding to the one computed during the
generation of the challenge is loaded in the TPM memory. The credential provider
can add validation steps or require additional proofs in order to issue a credential.
For instance, the TPM can also load externally generated keys, the protocol itself
does not guarantee that the key is created and managed by the TPM itself. On
the other hand, the credential provider can accept only signing keys with specific
attributes that guarantees that the key is generated by the TPM device itself.
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Solution Design

3.1 Rationale
SSI model provides a decentralized identity layer for humans, organizations or
things. The model relies on verifiable data registries, used as a distributed public
key infrastructure (DPKI).

In order to provide secure distributed key management, IOTA Identity Frame-
work relies on the Stronghold project, which provide key management capabilities
and data protection both at rest and at runtime. However, the runtime protection
of keys relies exclusively on the mitigation mechanism of non-contiguous data types.

The first section of the chapter provides a possible implementation of key storage
for IOTA Identity Framework, using a TPM 2.0 as a key management system.

The primary rationales for the selection of the TPM are as follows:

• It is relatively inexpensive and low power. Therefore, it is suitable for being
integrated with IoT devices.

• Discrete and integrated TPMs are more resistant to software attacks. The
cryptographic material is always loaded in the isolated TPM environment and
managed by the cryptographic subsystem.

• The TPM is already capable of managing a digital identity. It relies on a PKI
based on X.509 certificates that aim to provide a digital identity to the system
host.

TPM capabilities can be integrated in the SSI model, especially for IOTA
Identity, which provides key storage interfaces that can be easily implemented. The
following section describes the development of a library that uses TSS 2.0 ESAPI
functions to implement key storage interfaces of the IOTA Identity Framework.
This library enables a TPM device to support SSI operations (e.g. creating a DID
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document or digitally sign a Credential), managing the required cryptographic
operations.

Section 2.6 describes in detail the capabilities of the cryptographic subsystem of
the TPM and how the cryptographic material is represented in the TPM context.
A subset of TPM keys can express a stronger form of authentication. For instance,
a primary key depends directly on the hierarchy seed resident in the TPM device.
Consequently, that primary key can be used exclusively on the specific TPM device
that includes the hierarchy.

The final section of the chapter describes possible solutions for anchoring a
self-sovereign identity to a TPM 2.0. The solution consists in a revision of the
TPM credential protocol [6] for requesting and issuing a verifiable credential. Then,
the credential issuer is able to generate a new verifiable credential attesting that
the key pair used by the holder uniquely corresponds to a TPM device.

3.2 Tpm storage
This section describes the design of the implementation of a library, named
TpmStorage, that implements IOTA identity key storage interfaces using a TPM
device and the TPM Software Stack 2.0.

3.2.1 Overview
As observed in the IOTA Identity section of Chapter 2, two generic interfaces
are provided to extend functionalities of a key management system, JwkStorage
and KeyIdStorage. The IOTA Identity Framework is written using the Rust
programming language.

Analogously, the implementation has been performed inside a fork of the IOTA
Identity Framework [26]. Therefore, TpmStorage is provided as a library inside
the IOTA Identity Framework, similarly to the other existing implementation of
MemStore and StrongholdStorage.

The TpmStorage library interacts with the TSS through Rust bindings of TSS
2.0 ESAPI layer [35].

3.2.2 Architecture
The Figure 3.1 illustrates at a high level of abstraction the interaction of different
entities involved in the IOTA Identity Framework: as already mentioned, the
verification methods contained into the DID document are identified by a method
digest and the KeyIdStorage associates the method digest to a unique key identifier.
The TpmStorage provides an implementation of the JwkStorage interface: it takes
as input the key identifier to uniquely address to the JWK. However, the key
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Figure 3.1: High level design of key storage implementation

identifier is also involved in the key generation process; the identifier is used as
unique data for the generation of primary key in the TPM. This approach enables
the generation of key pairs that are independent of the limited resources of the
TPM device. Considering the hierarchy seed as unchanged, if a TPM object is not
loaded in the volatile memory, it can be recreated providing the same template as
input.

3.2.3 Key generation
In the event of the generation of a new verification method. Key storage interfaces
are involved as follows to generate a new key pair and return a new public JWK:

1. The DID document Rust abstraction request for a new verification method to
the TpmStorage

2. A public template with a new unique data is generated. Then, the TPM2_CreatePrimary()
ESAPI function is called to generate a new primary key.

3. If the command is completed successfully, an opaque address, a transient
handle, and the new public TPM object data are returned.

4. The transient handle is mapped with the corresponding key identifier. It
is highly probable that a generated object will be utilized. Therefore, the
internal cache tracks the objects loaded in the volatile memory and retrieves
the handle instead of recreating them when they need to be used.
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5. the TPM public area is encoded as a public key JWK according to the section
6 of RFC-7518 [28].

6. TpmStorage returns the key identifier and the corresponding public key in
JWK format.

Output format

The result is a Json Web Key compliant with the format specified in RFC-7518
like the one present in 2.4.

The kid properties in the JWK contains the object name of the TPM. As
suggested by [31] in Chapter 8, the entity name is stored combined with the public
key at the creation time. Considering the fact that TPM handles are opaque
pointers, it could be possible by a malicious actor to swap the object pointed by the
handle so that an operation is performed with an unintended key. However, in this
case it is possible to check that the object name inserted in the JWK corresponds
to the name of the object pointed by the transient handle.

TPM public template

The key generation process in TpmStorage currently support only one template.
The following object attributes are set for each object:

• fixedTPM: the key cannot be duplicated in a different TPM

• fixedParent: the key cannot change its parent object

• sign: the key can be used for signatures

The single supported signature scheme is ECDSA with SHA-256 hashing algo-
rithm. Key pair is generated on secp256r1 curve.

Finally, the unique data field contains the provided key identifier, which is a
32-byte random generated with the TRNG of the TPM device.

3.2.4 Signature
JwkStorage provide a sign() method that generate a digital signature to be
included in a JWS. The implementation of TpmStorage requires two prerequisites
to perform sign operation:

• A suitable key has been created and loaded in the TPM volatile memory.

• The internal cache contains the mapping of the transient handle corresponding
to the loaded TPM object and the matching key identifier.
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It should be noted that this prerequisite corresponds to the state of the
TpmStorage after the key generation phase. Consequently, after the key generation
phase is completed it is possible to execute the sign operation.

The sign operation from JwkStorage requires three input parameters:
• A key identifier

• The corresponding public JWK

• the message to be signed
The sign operation proceeds as follows:

1. The internal cache is queried to retrieve the transient TPM handle, given the
corresponding key identifier.

2. The public part of the TPM object is read and the object name is computed
to be compared with the kid field of the public JWK. This verifies that the
loaded object in the TPM memory corresponds to the intended signing key.

3. Compute the digest of the message with the SHA-256 hash function.

4. Sign the digest with the TPM using TSS ESAPI API.

5. Signature bytes are encoded and returned to the caller.

3.2.5 Key deletion
JwkStorage requires the implementation of the delete operation. It is necessary that
the key is deleted and purged so that it cannot be recovered anymore. Considering
the key generation process, it is evident that the generated primary key cannot be
properly purged; it is a specific derivation of a key derivation function that takes
as input the hierarchy seed and the public template with unique data. As long as
both information are available for the TPM, the same key can be regenerated also
after the delete operation. Consequently, the TPM object key can be recreated as
long as the value can be read. When the delete operations is executed:

1. The corresponding object handle is deleted from the internal cache.

2. The object is removed from the volatile memory of the TPM.
However, it should be noted that it does not guarantee that a key has been

deleted and cannot be recovered. The irreversibility of the operation can be obtained
by removing any reference to key identifiers. All the references are eliminated,
but not from the mapping of the KeyIdStorage. Therefore, even though the key
identifier references are removed from the TpmStorage, the irreversibility of the
operation is obtained when some KeyIdStorage implementation drops the value
as well.
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3.2.6 Data Persistence
The architecture of the TpmStorage described above does not keep data in non-
volatile memory. As a consequence, if the system host goes through a power cycle
or the TPM device is reset. In such cases, volatile memory is lost. However,
key generation of this implementation is deterministic and the same keys can be
recomputed if are both available the hierarchy seed and the key identifier.

Hierarchy management

In order to regenerate keys after power cycles, TPM objects keys must be created
under one of the three persistent hierarchy of the TPM; if keys are created using
the seed of the Null hierarchy, the seed is regenerated at each power cycle, making
impossible for identity keys to be recovered. TPM keys for used in TpmStorage are
created childs of the Storage Hierarchy Primary Seed. It is a persistent hierarchy,
therefore the seed is stored in the TPM non-volatile memory and is not dropped
after a power cycle.

The choice of generating keys in the Storage hierarchy instead of the Endorsement
hierarchy has been determined by the intention of keep an independent management
of the keys for SSI and keys that are used for the digital identity of the TPM in
trusted computing.

Key identifier management

The generation of a key also depends on the public template provided to the TPM
as input of the TPM2_CreatePrimary() ESAPI function. Currently, TpmStorage
supports the generation of a single key type. Therefore, public templates are
distinguished only by the unique data property. Indeed, it has been established
by design to use the key identifier as a value for unique data. Therefore, if the
hierarchy seed unchanged, the generation of different keys exclusively depends on
the value of the key identifier.

As already discussed, the key identifier is a sufficiently long random sequenc
of bytes generated by the TPM, ensuring a sufficient entropy to the primary key
generation. Even though the IOTA Identity Framework uses the key identifier as
a form of local addressing, it still determines the life cycle of the identity keys; if
the mapping of the KeyIdStorage is lost, it would be impossible to retrieve a key
starting from the public JWK of the verification method.

TpmStorage directly binds the key generation process to key identifiers. If the
hierarchy seed does not change, the persistence of the key identifiers determines
the persistence of the TPM keys. Consequenly, keys can be easily recreated as long
as the implementation of the KeyIdStorage exists and contains key identifiers. For
instance, if the implementation stores the mapping in a persistent storage (e.g.,
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a JSON file), then the correspondent keys can be recreated; it is possible to read
the saved key identifiers and provide them as input to the key generation function,
satisfying the prerequisites required for the usage of TPM keys as described in
Section 3.2.4. On the other hand, a volatile implementation, like MemStore, loses
all data when a power cycle happen. A volatile implementation could still be
acceptable for some use cases; when the system starts, it is possible to interact
with the DLT to update the DID document and replace it with a new verification
method or publish a new one obtaining a new DID. This approach forces to apply
a key rotation strategy.

Generally, TpmStorage can work with any implementation of KeyIdStorage.
IOTA Identity Framework has only two implementations available:

• KeyIdMemstore: the in-memory implementation of KeyIdStorage. It is not
a persistent storage, but the access to the mapping is efficient.

• StrongholdStorage: key identifiers mapping is stored as caching data in the
stronghold snapshot. It provides data persistence and integrity with a loss in
performance.

3.3 TPM Verifiable Credentials
The first part of the chapter described a solution that uses a TPM 2.0 device
as a key provider for supporting operations to manage a self-sovereign identities.
Identity keys are handled in the isolated environment on the TPM device. The
provided implementation of JwkStorage generates keys that are directly dependent
on the storage hierarchy seed and the sensitive part is always resident inside the
TPM volatile memory. As a consequence, the keys used to operate with an SSI are
tied directly to the TPM; these keys cannot exist if the device that created them is
not available.

This section provides a solution to express the aforementioned result in the SSI
context. An holder of an identity key generated with the TPM 2.0 should be able
to provide evidence that the key in use can be used exclusively by a specific TPM
device.

The TPM 2.0 already support identities for the RTR with the credential protocol.
In fact, TPM vendors usually generate one or more X.509 certificates for primary
keys in the endorsement hierarchy. Endorsement keys are not used for signing
content of applications; the ability to correlate signatures may be privacy concerning.
The credential protocol provides a solution for the issuance of credentials; a TPM
can present the EK certificate and a signing key to a credential provider, which
is trusted to not leak any information about correlation between the EK and the
new signing key. Subsequently, the credential provider issues a credential for the
signing key.
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3.3.1 TPM Credential Protocol for Verifiable Credentials
The credential protocol does not specify the format of the credential generated
by the credential provider. Therefore, the same protocol can be used to generate
a Verifiable Credential. Considering the trust triangle, the holder can request to
the issuer a Verifiable Credential that asserts that a verification method in a DID
document is derived by a TPM key that is compliant with a fixed policy for key
creation.

Key policy

Initially, identity keys must come from allowed TPM devices; the issuer trusts root
certificates of the Certification Authority that issued the EK certificate of TPMs.
In a credential request, the issuer must receive the EK certificate, the public area
of the TPM object key and the DID of the holder. In addition, it validates the
certificate chain up to the root certificate. The issuer reads the TPM public area
object and computes the name of the object. It also resolve the DID and verifies
the public JWK in the verification method, checking that the computed name
corresponds to the value stored in the kid property. At this point, both keys are
associated to a verifiable identity; the EK is provided as a valid X.509 certificate
and the public TPM object corresponds to a valid verification method for the
provided DID.

The issuer validates the key object and decide whether to issue a VC. It checks
that:

• fixedTPM is SET.

• fixedParent is SET.

• decrypt is CLEAR.

• sign is SET.

This attributes ensures that the TPM key is a signing key that can be used
exclusively by a specific TPM device.

VC model

Following the successful validation of the key by the issuer, it adds a claim in the
Verifiable Credential to assert that the key that has been provided satisfies the
policy. Then, the issuer computes the digest of the public key in the verification
method. In particular, the digest computation for a secp256r1 public key as been
done as follows:

SHA-256(x||y)
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where x and y are the coordinates on the curve.
Figure 3.2 illustrates an the payload of the Verifiable Credential that contains

the digest reference to the validated key.

Figure 3.2: Custom verifiable credential for TpmStorage

3.3.2 Proposed solutions
In the event of a successful validation of parameters, the issuer sends a challenge to
the holder. The issuer creates a challenge with ESAPI TPM2_MakeCredential()
function and the holder solves the challenge with ESAPI TPM2_ActivateCredential()
function. The holder can solve the challenge only if both the EK and the identity
key are loaded in the TPM memory.

The validation of the key performed by the issuer, determines that the holder
can solve the challenge only if it is the owner of both the Endorsement Key and
the identity key.

The following clauses describe two different approaches implemented, using
IOTA Identity Framework and TpmStorage.

Actors

In order to present the proposed solutions, the involved actors are defined in order
to properly describe the protocol steps:

• TpmStorage.

• Holder : it is a running application that uses IOTA Identity Framework.

• IOTA Tangle: it is the verifiable data registry used for SSI

• Issuer : it is an application that can issue a Verifiable Credential to the holder.

It is supposed that Holder and Issuer have already published their DID documents
on IOTA Tangle and that the parties communicate over a secure protocol (e.g.,
HTTPS).
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1-RTT solution

The first solution is inspired by the example of credential provisioning presented in
[31].

Figure 3.3: Sequence diagram of 1-RTT solution for TPM credential issuance

In detail, the protocol is executed as follows:

1. Holder asks the TpmStorage to retrieve the EK certificate. The certificate is
available in the TPM non-volatile memory in a specific location according to
TCG specifications [34].

2. Holder sends to the Issuer a request for a new credential, sending the EK
certificate, the TPM key object and a DID.

3. The issuer validate the parameters received from the holder.

• The holder DID is resolved into the corresponding DID document.
• The name of the TPM key object is computed and compared with the

kid property of the public JWK contained in the DID document.
• The TPM key object is validated to ensure that satisfies the key policy.

4. The issuer prepares the challenge to be sent to the holder:

• The EK public key is extracted from the EK certificate, according to
default templates defined in [34].

• A 32-bytes symmetric key is generated.
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• The TPM2_MakeCredential() operation is executed to protect the sym-
metric key.

5. The issuer creates a new Verifiable Credential for the holder.

• The digest of the public key is computed and included as a claim.
• A cryptographic proof is added to the Verifiable Credential.

6. The issuer wraps the credential into a JWE. The payload is encrypted with
the generated symmetric key.

7. The issuer sends to the holder the challenge and the wrapped VC.

8. The holder request to the TpmStorage to solve the challenge with TPM2_ActivateCredential()
and return the symmetric key.

9. The holder unwraps the VC using the symmetric key.

2-RTT solution

The second proposed solution completes the credential issuance in two Round Trip
Time instead of a the single one needed by the first solution. On the other hand
the encryption of the Verifiable Credential as a JWE is not required in this case.

Figure 3.4: Sequence diagram of 2-RTT solution for TPM credential issuance

In detail, the protocol is executed as follows:
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1. Holder asks the TpmStorage to retrieve the EK certificate. The certificate is
available in the TPM non-volatile memory in a specific location according to
TCG specifications [34].

2. Holder sends to the Issuer a request for a new credential, sending the EK
certificate, the TPM key object and a DID.

3. The issuer validates the parameters received from the holder (see 3.3.2).

4. In the event of a successful validation, the issuer prepares a challenge for the
holder:

• The EK public key is extracted from the EK certificate, according to
default templates defined in [34].

• A 32-bytes nonce.
• The TPM2_MakeCredential() operation is executed to protect nonce.

5. The issuer sends to the holder the challenge.

6. The holder request to the TpmStorage to solve the challenge with TPM2_ActivateCredential()
and return the symmetric key.

7. The holder sends the nonce back to the issuer, proving that the challenge has
been solved.

8. The issuer generates a new VC for the holder (see 3.3.2).

9. The issuer sends the Verifiable Credential to the holder.

Verifiable Credential Verification

The preceding clauses described the procedure with which a credential holder proves
to a trusted issuer to possess a verification method that it is anchored to a TPM
device. In the trust triangle, a verifier accepts the claims that the issuer made
about the holder. Therefore, the verifier can trust the holder to be an SSI anchored
to a TPM device.

As illustrated in Figure 3.5, the protocol is executed as follows:

1. The holder request a nonce to the verifier. It will be included in the Verifiable
Presentation to prevent replay attacks.

2. The holder creates a Verifiable Presentation containing the issued Verifiable
Credential. The Verifiable Presentation must be signed with the key verified
by the issuer.
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Figure 3.5: Sequence diagram of VP verification

3. The holder sends the VP to the verifier.

4. The verifier validates the VP received from the holder:

• Holder’s DID is extracted and resolved into a the corresponding DID
document

• The proof of the presentation is verified
• Issuer’s DID is extracted and resolved into the corresponding DID docu-

ment
• The proof of the Verifiable Credential is verified
• The digest of the holder’s verification method is computed and compared

with the digest verified by the issuer
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Testing and results

This chapter describes the testing phase and the results obtained for the solutions
provided in the preceding chapter. Each of the following tests are executed with
three different key storage implementations: MemStore, StrongholdStorage and
TpmStorage. However, it has not been possible to run tests with the same key type
and signature algorithm; key storage implementations in IOTA Identity and the
TPM 2.0 do not share a common signature scheme. Therefore, TpmStorage uses
secp256r1 key pairs and ECDSA signature scheme. On the other hand, MemStore
and StrongholdStorage use curve25519 key pairs and EdDSA signature scheme.

4.1 Test environment
The tests needs intends to simulate the behavior of an IoT device that uses its own
SSI to interact with other actors.

4.1.1 Testbed
All tests are executed on a Raspberry Pi 4 Model B, having Raspberry Pi OS
installed via the Raspberry Pi Imager. Additionally, it has been installed a discrete
TPM 2.0, model OPTIGA™ TPM SLB 9670 TPM2.0 manufactured by Infineon.

4.1.2 Actors
Testing includes the establishment of trust relationships according to the trust
triangle. Therefore, three different actors have been used during the testing phase

• Issuer : it is an application capable of both issuing traditional credentials and
credentials for TpmStorage.
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• Verifier : it is an application that verifies VPs received from the credential
holder. It supports the validation of credentials for TpmStorage

• Holder : it is a set of binary executables that contains the test cases.

4.2 Test cases
Each different implementation of key storage is used in four different tests:

1. Generation of a new key pair, returning the correspondent public JWK.

2. Creation of a new DID document that includes a verification method, provided
by the key storage.

3. Holder connects with the issuer to obtain a Verifiable Credential.

4. Holder sends a Verifiable Presentation and waits for a successful verification
from the Verifier.

A single test contains 100 measured iterations, from which the arithmetic mean,
median and standard deviation have been computed.

4.2.1 Key generation
This test measures the key generation operation defined by the JwkStorage inter-
face.

Mean (ms) Median (ms) Std. deviation
MemStore 0.148 0.144 0.015
StrongholdStorage 3,050.004 3,040.229 27.338
TpmStorage 285.925 285.787 2.380

Table 4.1: Key generation results

The outcomes of the tests differ significantly for each implementation. MemStore
has obviously the best performance, because it does not implement any protection
for the generated JWKs. In contrast, StrongholdStorage is severely affected by
the security features implemented. The generation of a new key results in its
immediate inclusion within a snapshot file. However, this requires to serialize a
new snapshot that is encrypted with a new symmetric key. This operation is fully
dependent on the processing power of the host system. Consequently, the less
processing power a device has, the longer it takes to generate a key. TpmStorage
obtained a better result than the StrongholdStorage, but it is significantly distant
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from the results obtained by MemStore . In order to generate a key, TpmStorage
sends several commands to the TPM to receive the primary key, compute the name,
and generate the random for the key identifier. Communication with the device is
the slowest part of the process and determines the result of the test.

4.2.2 DID document creation
The test consists in the generation of a simple DID document that contains a single
verification method. The key of the verification method is provided by the distinct
implementation of key storage.

Mean (ms) Median (ms) Std. deviation
MemStore 0.175 0.169 0.028
StrongholdStorage 6,161.352 6,135.867 59.737
TpmStorage 282.766 285.425 8.28

Table 4.2: DID document creation results

MemStore and TpmStorage obtained similar result respect to the test on key
generation. On the other hand, StrongholdStorage doubled the execution time.
Indeed, StrongholdStorage also implements the KeyIdStorage interface. There-
fore, it saves in the snapshot file the key identifier, which triggers a new commit
that updates the snapshot.

4.2.3 Verifiable Credential issuance
In this test, the holder requests a credential to the issuer and receives a valid
Verifiable Credential. The test measures the time elapsed from the credential
request to the reception of the plain text VC by the issuer. In addition, TpmStorage
requests the credential using the custom version of the credential protocol. The
test also measures the amount of data transmitted and received, expressed in bytes.

Mean (ms) Median (ms) Std. deviation TX (bytes) RX (bytes)
MemStore 113.3568 108.178 15.072 649 791
StrongholdStorage 159.612 154.491 33.218 649 791
TpmStorage - 2RTT 1,617.841 1,610.206 25.12 1133 1051
TpmStorage - 1RTT 1,541.677 1,539.091 19.98 990 1441

Table 4.3: VC issuance results

It is worth noting that MemStore and StrongholdStorage obtained similar
results in this test. The overhead generated by the networking operations is sufficient
to remove the performance gap between the two implementations. Conversely, the
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TpmStorage took more than a second to complete an iteration. It has to interact
with the TPM device even more than previous tests to recover the endorsement
key and its certificate, recover the identity key and solve the challenge provided by
the credential issuer. Moreover, the issuer has to interact with its own TPM device
to generate the challenge for the holder.

4.2.4 Verifiable Presentation verification
The last test consists in the last phase of transitive trust establishment. A credential
holder tries to authenticate to the verifier, providing its own Verifiable Presentation.
The holder measurements include the generation of a Verifiable Presentation and a
successful verification provided by the verifier.

Mean (ms) Median (ms) Std. deviation TX (bytes) RX (bytes)
MemStore 324.127 315.829 38.717 1727 48
StrongholdStorage 324.025 318.670 30.24 1727 48
TpmStorage 394.422 393.299 26.81 1859 48

Table 4.4: VP verification results

In addition, it has been also extracted the creation time of a Verifiable Presen-
tation for each key storage.

Mean (ms) Median (ms) Std. deviation
MemStore 21.542 20.438 8.115
StrongholdStorage 23.861 22.352 8.800
TpmStorage 189.300 191.188 12.740

Table 4.5: VP creation results

The test confirms the considerations formulated for the issuance of Verifiable
Credential. Both MemStore and StrongholdStorage takes similar time to generate
digital signature. Instead, TpmStorage has a consistent overhead provided by the
communication with the TPM device.
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Chapter 5

Conclusions and future
works

The expected results for the thesis work has been fully achieved. Initially, the
TPM has been identified as a suitable key management system for self-sovereign
identity. Indeed, the implementation of the TpmStorage demonstrated that it is
possible to complete operations in the SSI model with the support of a TPM
device, while managing the cryptographic material in an environment isolated from
the system host. The storage implementation enabled the generation of primary
keys encoded as public JWK in DID documents, the completion of challenges to
prove the ownership of the DID, as well as to provide proofs included in Verifiable
Presentations, without being limited by the scarce resources of the TPM device.

In addition, the characteristics of the TPM have been exploited to provide a
stronger concept of decentralized digital identity in the IoT domain. The revision of
the credential protocol for the issuance of Verifiable Credential generate credentials
that can be used specifically by a unique TPM device. Therefore, the proposed
solution actually bounds a self-sovereign identity to a physical TPM device.

The integration of the TPM capabilities and SSI can be further investigated
in two main aspects: performance and digital identity integration. The current
implementation of TpmStorage requires to access several times to the TPM in
order to complete stateless operations. For instance, during the test phase it has
been used the TPM to generate the challenge for the issuance of the Verifiable
Credential. Software implementation of stateless commands reduce the number of
commands executed by the TPM, resulting in an improvement in performance.

The result of this thesis provided the anchoring of an SSI to a single TPM
device. However, future developments can extend the binding not only to a physical
device but also to the state of the system host. Indeed, the usage of Extended
Authorization Policies for identity keys enable to require that certain conditions
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about the state of the system host are verified before allowing the device to use a
key. For instance, such policies may prevent the usage of identity keys if the state
of the system host is potentially compromised.
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Appendix A

User Manual

This chapter will provide a guide to replicate the same environment used for the
development and testing of TpmStorage on a Raspberri Pi 4.

A.1 Requirements

The requirements section provide a guide to install all the software required to run
the TpmStorage.

A.1.1 TPM Software Stack

The TPM Software Stack is provided by the Trusted Computing Group. It contains
API to interact with a TPM. The version 4.1.3 has been used to successfully run
the software.

The following instructions are required to install the version 4.1.3 of the TPM
Stoftware Stack 2.0:

1 $ git clone https :// github .com/tpm2 - software /tpm2 -tss
2 $ cd tpm2 -tss
3 $ git checkout 4.1.3
4 $ ./ bootstrap
5 $ ./ configure
6 $ make -j$(nproc)
7 $ sudo make install
8 $ sudo ldconfig
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A.1.2 TPM Access Broker and Resource Manager
The execution of some examples of the developed software required different
processes to access the same TPM device. The resource manager offloads the user
to manually export and reload the context of a TPM.

These are the instructions to install version 3.0.0 of the resource manager:
1 $ git clone https :// github .com/tpm2 - software /tpm2 -abrmd
2 $ git checkout 3.0.0
3 $ ./ bootstrap
4 $ ./ configure
5 $ make -j$(nproc)
6 $ sudo make install
7 $ sudo ldconfig

A.1.3 OpenSSL
The OpenSSL library is used by the code examples of the issuer to decode and
verify X.509 certificate chains.

OpenSSL can be installed as follows:
1 $ sudo apt install openssl

A.1.4 Rust
The code examples of TpmStorage are written in Rust. Therefore, it is required to
install it with the following command:

1 $ curl --proto ’=https ’ --tlsv1 .2 -sSf https :// sh. rustup .rs | sh

A.2 TPM Storage
The TPMStorage is available on GitHub as a fork repository of IOTA Identity: [26]

A.2.1 Install
The software can be downloaded as a git repository:
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1 $ git clone https :// github .com/ Cybersecurity -LINKS/tpmstorage -
identity .rs.git

2 $ git checkout tags/ thesis
3 $ cd tpmstorage - identity .rs

It possible to run all the benchmarks executed for the testing phase through the
command:

1 $ cargo run --release --example <example_name >
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