
POLITECNICO DI TORINO

Master Degree course in Data Science and Engineering

Master Degree Thesis

Efficiency-Optimized PatchCore
for Anomaly Detection in Future

Edge Deployment

Supervisors
Prof. Andrea Bottino
Giuseppe Chirico

Candidate
Fatemeh Zahiri

Academic Year 2025

Copyright and Confidentiality

This thesis is published in the open-access digital library of Politecnico di torino
with explicit permission granted by Blue Company Srl. All the proprietary meth-
ods, data, or results presented in this document are published with the consent of
Blue Company Srl. Any further reproduction, redistribution, or use of this con-
tent beyond academic purposes must be authorized explicitly by Blue Company
Srl.

© 2024-2025 Blue Company Srl. All rights reserved.

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Prof. Andrea Bottino
and Eng. Giuseppe Chirico for their invaluable guidance and continuous support
throughout this research. I am also grateful to my family and friends for their un-
wavering encouragement and love.

"what we need is a machine that can learn from experience"
Alen Turing 1947

3

Abstract

Anomaly detection plays a critical role in industrial quality control, ensuring
defect-free production in sectors like automotive, electronics, and manufacturing.
Traditional anomaly detection methods rely on supervised learning, which requires
large datasets with labeled anomalies, often impractical in real-world scenarios.
Unsupervised methods such as PatchCore have gained attention for their ability to
detect anomalies without labeled defect data, making them particularly valuable
for automated inspection systems in factories.

Despite its high accuracy, PatchCore has limitations that hinder its deploy-
ment in real-time edge devices like smart cameras used in industrial environments.
The memory bank storing patch-level embeddings grows exponentially with dataset
size, making it computationally expensive and requiring large storage capacity. This
restricts its practical application in low-memory, low-power industrial devices. To
address these limitations, this thesis explores a memory-efficient optimization of
PatchCore by integrating Principal Component Analysis (PCA) and K-Means
clustering. PCA is applied to reduce feature dimensionality, preserving the most
informative components while eliminating redundancy. K-Means clustering further
compresses the memory bank by grouping similar feature vectors and using cluster
centroids instead of all stored patches. This approach significantly reduces memory
usage while maintaining a balance between accuracy and computational efficiency.

The proposed PCA-KMeans PatchCore method was evaluated on the MVTec
Anomaly Detection Dataset, a benchmark for industrial defect detection. Results
show that, compared to the original PatchCore, the proposed method achieves a
substantial reduction in memory footprint while maintaining acceptable anomaly
detection performance. Although a slight drop in accuracy was observed, the ef-
ficiency gains make the model more practical for real-time applications in smart
manufacturing. This study demonstrates that optimizing PatchCore for future edge
deployment is feasible, making real-time anomaly detection on resource-constrained
devices a practical reality.

Acronyms

AD Anomaly Detection — Automatically detecting unusual patterns in
data

AE Autoencoder — A neural network that learns to reconstruct input data

AUROC Area Under the Receiver Operating Characteristic — Metric for
detection performance

CAD-SD Co-occurrence Anomaly Detection Screw Dataset — Custom dataset
for anomalies

CPU Central Processing Unit

GPU Graphics Processing Unit — Accelerator for parallel computations

K-Means A popular clustering algorithm, grouping data points into k clusters

MVTec AD MVTec Anomaly Detection dataset — A standard industrial AD
benchmark

CNN Convolutional Neural Network

PCA Principal Component Analysis — Technique for dimensionality
reduction

PRO Per-Region Overlap — Metric evaluating region-level anomaly
detection

ROC Receiver Operating Characteristic — Curve visualizing detection
performance

2

3

Contents

Acronyms 2

List of Figures 7

List of Tables 8

1 Introduction 11
1.1 Background and Motivation . 11
1.2 Problem Statement . 12
1.3 Research Objectives . 13
1.4 Thesis Outline . 14

2 Literature Review 17
2.1 Introductory Concepts . 17

2.1.1 PCA . 17
2.1.2 K-MEANS . 22

2.2 Overview of Industrial Anomaly Detection 27
2.2.1 Key Challenges . 28

2.3 Classical Approaches to Anomaly Detection 29
2.4 Deep Learning Methods . 30

2.4.1 Reconstruction-Based Methods 30
2.4.2 Feature Embedding-Based Methods 30
2.4.3 Extensions to PatchCore . 31

2.5 Multi-Class and Few-Shot AD . 31
2.6 PCA and K-Means for Memory Bank Optimization 32

2.6.1 Motivation for PCA + K-Means 32
2.6.2 Prior Work on PCA or K-Means in AD 32

2.7 Summary of Key Insights . 33

3 Methodology 37
3.1 Overview of the Proposed System 37
3.2 Baseline PatchCore Recap . 38
3.3 Proposed PCA + K-Means Integration 39

4

3.3.1 Rationale for PCA and K-Means 39
3.3.2 Algorithmic Pipeline . 39

3.4 Inference (Test) Stage . 40
3.4.1 Selecting the Number of Clusters k 41
3.4.2 Handling Few-Shot Settings 42

3.5 Implementation Details and Variants 42
3.5.1 Backbone CNN and Layer Selection 42
3.5.2 Dimensionality Reduction: PCA vs. Random Projection . . 43
3.5.3 Coreset + K-Means Hybrid Approach 43
3.5.4 Distance Metric Considerations 43
3.5.5 Thresholding and Anomaly Mask Generation 43

3.6 Summary of the Method . 44

4 Experimental Setup 47
4.1 Datasets . 47

4.1.1 MVTec Anomaly Detection 47
4.1.2 Additional / Custom Datasets 48

4.2 Implementation Details . 50
4.2.1 Feature Extraction . 50
4.2.2 Dimensionality Reduction (PCA) 51
4.2.3 Clustering (K-Means) . 51
4.2.4 Memory Bank Construction 51
4.2.5 Training Time and Computing Infrastructure 52
4.2.6 Inference Process . 52

4.3 Experimental Protocol . 53
4.3.1 Training, Validation, and Test Splits 53
4.3.2 Hyperparameter Search . 53
4.3.3 Data Augmentation . 53

4.4 Evaluation Metrics . 54
4.5 Baselines . 55
4.6 Summary . 55

5 Experimental Results and Evaluation 59
5.1 MVTec AD Results . 59

5.1.1 Image-Level Anomaly Detection 59
5.1.2 Pixel-Level Anomaly Segmentation 60
5.1.3 Impact of Number of Clusters (k) 61
5.1.4 Impact of PCA Components 61
5.1.5 Comparison Of Image-Level And Pixel-Level Avg AUROC . 62

5.2 Inference Speed and Memory Analysis 62
5.2.1 Memory Usage . 62
5.2.2 Inference Time . 63

5

5.2.3 Best Configuration Analysis 64
5.3 Summary and Discussion . 64

6 Conclusion and Future Work 67
6.1 Conclusion . 67
6.2 Key Contributions . 68
6.3 Limitations . 68
6.4 Future Work . 69
6.5 Final Remarks . 70

Bibliography 71

6

List of Figures

2.1 Percentage of Variance (Information)The following figure is taken
from [36] . 18

2.2 Principal Components visualization 19
2.3 K means Clustering figure is taken from [40] 22
2.4 Clustering dataset. figure is taken from [40] 24
2.5 The plot displays a scatter plot of data points (X[:,0], X[:,1]) with

grid lines. It also marks the initial cluster centers (red stars) gener-
ated for K-means clustering. figure is taken from [40] 25

2.6 The plot shows data points colored by their predicted clusters. The
red markers represent the updated cluster centers after the E-M steps
in the K-means clustering algorithm. figure is taken from [40] . . . 27

2.7 Elbow Method Visualization: Optimal k is where the curve bends.
figure is taken from [41] . 28

4.1 Samples from the MVTec AD datasets 48
4.2 Samples from the MVTec AD datasets 48
4.3 Co-occurrence Anomaly Detection Screw Dataset 49
4.4 VisA (Visual Anomaly Dataset) contains 12 subsets corresponding

to 12 different objects . 50

5.1 The plot displays a Comparison Of Image-Level And Pixel-Level Avg
AUROC . 63

7

List of Tables

5.1 Image-level AUROC (%) results for all categories on MVTec AD. . 60
5.2 Image-level AUROC (%) results for all categories on MVTec AD. . 61
5.3 Effect of the number of clusters on accuracy (MVTec AD). 61
5.4 Performance analysis with varying PCA dimensions. 62
5.5 Inference speed comparison (MVTec AD). 63
5.6 Best hyperparameter configuration for PCA + K-Means PatchCore. 64

8

9

10

Chapter 1

Introduction

1.1 Background and Motivation
Industrial anomaly detection is central to quality assurance in manufacturing.

Defective products, ranging from subtle scratches to missing components, can slip
through manual visual inspection, causing financial losses and reputational damage
[4], [5]. Traditional supervised machine learning approaches require many labeled
examples of defective products (anomalies) to learn effectively. However, in practi-
cal manufacturing scenarios, defects are usually rare. Sometimes, these anomalies
are so rare or novel that they haven’t been seen before, making it extremely difficult
to gather enough examples for training supervised methods.

Recent efforts to automate visual inspection with deep learning have acceler-
ated progress, especially through industrial anomaly detection benchmarks such as
MVTec AD [1]. However, in many real-world cases, anomaly samples are scarce.
This poses a challenge: if we cannot train a robust model on explicit examples of
defects, how can we reliably detect them?

Unsupervised methods, also known as ’cold-start’ approaches, offer a promising
solution. They primarily leverage only normal (non-defective) data during training.
The idea is simple yet powerful: The model learns what ’normal’ looks like from a
large set of defect-free images. Also during inference (testing), if something devi-
ates significantly from the learned normal patterns, the model flags it as anomalous
(potentially defective).
Among these methods, PatchCore, originally introduced by Roth et al. [6] became
a seminal work for industrial anomaly detection, achieving near state-of-the-art
performance on MVTec AD. It takes a large set of normal images (defect-free prod-
ucts). At its core, PatchCore Breaks down these images into small regions (patches)
and extracts features from each patch using a pretrained neural network (usually
pretrained on ImageNet, a general-image dataset) AND stores these features into
a memory bank. PatchCore extracts similar patches and compares them against
the memory bank. During inference, each patch of a test image is compared to

11

Introduction

the memory bank; if no ’similar’ patch is found, that region is flagged as anoma-
lous. While PatchCore is effective on standard benchmarks (e.g., >99% AUROC
on MVTec AD [6]), it still faces real-world difficulties:

1. High-dimensional patch features create computational overhead, requiring sig-
nificant processing power and resources, especially challenging for small, low-
power devices.

2. Comparing each new test patch with an extensive memory bank slows down
detection, hindering real-time applications on edge devices (e.g., embedded
cameras or sensors).

3. Bias toward natural-image features from ImageNet pretraining may not fully
match specialized industrial data [7], [3].

Hence, optimizing PatchCore for low-power, real-time anomaly detection is cru-
cial. This is where techniques such as Principal Component Analysis (PCA) and
K-Means clustering come into play: they can compress the memory bank and ac-
celerate nearest-neighbor computations without significantly hurting accuracy [8],
[9].
PCA reduces the dimensionality of stored features in the memory bank by finding
principal components, effectively compressing the feature space. This speeds up
comparisons while preserving most of the original information. K-Means groups
similar patch features together, drastically reducing the number of individual fea-
tures to compare during inference. This significantly improves computation speed
and reduces the storage requirement for the memory bank.

1.2 Problem Statement
PatchCore fundamentally relies on storing and utilizing a large memory bank

composed of patch-level embeddings extracted from normal product images. The
process of maintaining and querying such an extensive memory bank poses signifi-
cant challenges in edge computing scenarios, particularly when deployed on indus-
trial cameras or other low-power devices with limited RAM capacity and stringent
latency constraints [10]. Specifically, there are three critical challenges:

• Memory overhead: The sheer size of the patch feature bank can significantly
impact storage efficiency, requiring considerable amounts of memory. Ad-
ditionally, the large number of stored embeddings slows down the nearest-
neighbor search process, directly affecting inference speed and overall opera-
tional efficiency.

12

1.3 – Research Objectives

• Time constraints: Real-time industrial inspection systems demand rapid in-
ference times, typically in the sub-second range, to ensure immediate defect
detection and minimal interruption of production workflows. The current
computational complexity of PatchCores nearest-neighbor search in high-
dimensional embedding spaces limits its applicability to environments with
strict latency requirements.

• Adaptation gap: Despite PatchCore exceptional performance on standard
benchmarks such as MVTec AD, it struggles to consistently generalize to a
broader range of industrial defect scenarios. Specialized domains and more
complex anomaly patterns, such as surfaces presenting co-occurring anoma-
lies or nuanced defects specific to particular industrial processes, remain chal-
lenging for the current approach. This generalization difficulty highlights the
adaptation gap between standard benchmark datasets and real-world indus-
trial defect detection scenarios, emphasizing the need for approaches capable
of addressing these nuanced detection tasks [11], [12].

Dimensionality reduction methods like Principal Component Analysis (PCA) and
clustering techniques such as K-Means present promising strategies to mitigate
these issues. By clustering similar patch embeddings using K-Means and com-
pressing the dimensionality of these embeddings through PCA, redundancy can be
effectively reduced. This combination has the potential to significantly decrease
memory consumption and accelerate the inference process. However, the exact im-
plications of applying PCA and K-Means clustering in terms of detection accuracy,
especially when dealing with diverse training scenarios such as few-shot learning
or extensive training datasets, remain uncertain and unclear and require rigorous
evaluation [13], [14].

1.3 Research Objectives
1. Integrate PCA and K-Means clustering methodologies into the PatchCore

memory bank framework to effectively compress storage requirements. The
goal is to achieve significant reductions in memory footprint without substan-
tially compromising the anomaly detection performance that characterizes the
original PatchCore approach.

2. Conduct comprehensive analyses to determine the optimal balance between
dimensionality reduction, achieved through PCA, and clustering efficiency
provided by K-Means. These analyses will specifically evaluate how differ-
ent parameter choices affect memory overhead, computational speed, and
anomaly detection accuracy within real-world industrial contexts.

13

Introduction

3. Evaluate the practical feasibility and efficiency of the optimized PatchCore
approach using the standard MVTec AD dataset [1]. The focus will be on im-
proving inference speed and reducing memory usage to align with constraints
typically found in edge computing environments. Although deployment on
real edge devices was not conducted, the experiments and design decisions
were guided by the hardware limitations of such platforms to ensure poten-
tial real-time applicability and will be ready for future edge deployment.

4. Contextualize the challenges of co-occurrence [11] anomalies and few-shot
learning [15]as motivating factors for optimizing memory efficiency. Although
these scenarios were not directly tested in the experimental phase, they are
conceptually aligned with the need to reduce memory overhead in PatchCore.
Their inclusion in the literature review and design justification highlights the
broader relevance and potential applicability of the proposed PCA + K-Means
approach. Future work will include explicit evaluation in these scenarios to
further validate generalizability and robustness.

1.4 Thesis Outline
• Chapter 2: Literature Review

Surveys anomaly detection methods (GAN-based, autoencoder-based, PatchCore-
based) and highlights the role of pre-trained features [16] and discusses con-
ceptual challenges such as co-occurrence anomalies and few-shot learning in
relation to memory efficiency and scalability, though these are not experimen-
tally addressed in this thesis.

• Chapter 3: Methodology
Introduces the proposed PCA + K-Means memory compression strategy in-
tegrated into PatchCore. Describes the overall anomaly detection pipeline,
design parameters (e.g., PCA dimensionality, clustering strategy), and out-
lines how these modifications aim to reduce memory usage and accelerate
inference.

• Chapter 4: Experimental Setup
Details datasets (MVTec AD, etc.), implementation details, hardware con-
straints, and evaluation metrics (e.g., ROC curves, PRO metrics for localiza-
tion).

• Chapter 5: Results and Analysis
Presents a comparative analysis between the original PatchCore [6] and the
optimized PCA + K-Means version. Focuses on memory consumption, in-
ference speed, and overall anomaly detection performance. While few-shot

14

1.4 – Thesis Outline

and co-occurrence scenarios are conceptually relevant, this chapter does not
include direct experimental results in those areas.

• Chapter 6: Conclusion and Future Work
Summarizes key findings and contributions. Emphasizes the value of memory
optimization for real-world deployment. Suggests future research directions
including explicit evaluation of co-occurrence and few-shot scenarios, testing
on real edge devices, advanced clustering alternatives, and domain adaptation
techniques for broader applicability or vision transformers [17].

15

Chapter 2

Literature Review

2.1 Introductory Concepts
In order to establish a clear foundation for the technical discussions presented

throughout this thesis, this section provides concise explanations of several core
concepts and techniques that underpin our approach. While the main contribution
of this thesis is the integration of PCA and K-Means clustering into the Patch-
Core framework, understanding these components - and the broader context of
convolutional neural networks, feature extraction backbones, and memory-based
anomaly detection - requires familiarity with certain fundamental ideas. This sec-
tion is therefore intended to support readers who may not have a deep background
in machine learning or computer vision, by offering a conceptual overview of the
tools and principles that will appear repeatedly in the following chapters. These
introductory explanations also ensure clarity and self-containment of the thesis for
academic and industrial audiences alike.

2.1.1 PCA

Principal Component Analysis (PCA) is a widely used dimensionality reduction
technique in data science and machine learning. It transforms a high-dimensional
dataset into a lower-dimensional space while preserving as much of the underlying
variance and structure as possible. The primary goal is to simplify data by project-
ing it onto a new set of uncorrelated variables, called principal components, which
are linear combinations of the original variables.

PCA operates under the principle that the first few components capture most
of the information present in the original data. Although dimensionality reduction
inherently involves some loss of information, PCA strategically minimizes this loss
by prioritizing the directions (components) with the highest variance. This makes

17

Literature Review

Figure 2.1. Percentage of Variance (Information)The following figure
is taken from [36]

the resulting lower-dimensional data more manageable and computationally effi-
cient, especially for machine learning tasks where visualization and performance
are enhanced by reducing noise and redundancy.
In essence, PCA enables the representation of a complex dataset with fewer vari-
ables by selecting components that account for the majority of variance. This
trade-off between dimensionality and accuracy is particularly beneficial in scenar-
ios where interpretability and efficiency are critical.[36][37]

Principal Components are the newly derived variables that result from PCA.
They are constructed as orthogonal (uncorrelated) linear combinations of the ini-
tial variables. The first principal component captures the direction with the highest
variance in the dataset. Each subsequent component captures the highest remain-
ing variance while being orthogonal to the preceding ones. For example, in a
10-dimensional dataset, PCA produces 10 principal components, but typically only
the first few are retained for analysis, as illustrated in a scree plot fig 2.1.

These components, although mathematically meaningful, may lack direct inter-
pretability in the original feature space. Geometrically, they can be viewed as axes
that provide the most informative view of the data, revealing maximum spread
among data points.

The construction of the principal components is based on maximizing variance.

18

2.1 – Introductory Concepts

Figure 2.2. Principal Components visualization

The first principal component corresponds to the direction along which the pro-
jected data exhibits the largest spread from the origin. The second component is
orthogonal to the first and captures the next highest variance, and this process
continues until the full set of components is determined as shown in fig 2.2

Step-by-Step Explanation of PCA

1. Step 1: Standardization :
Before applying Principal Component Analysis (PCA), it is essential to stan-
dardize the input variables to ensure that each contributes equally to the
analysis. Since PCA is sensitive to the variance of each variable, features
with larger numerical ranges may disproportionately influence the results.
For instance, a variable ranging from 0 to 100 may dominate another variable
ranging from 0 to 1, leading to biased component directions. To mitigate
this, the data are transformed to have zero mean and unit variance. This
process ensures that all variables are on the same scale.[36] Mathematically,
each value z is computed as:

z = value−mean
standard deviation (2.1)

Once standardized, all variables are expressed on a comparable scale, which
is a prerequisite for the next steps in PCA.

19

Literature Review

2. step 2: Covariance Matrix Computation
The second step involves calculating the covariance matrix to understand
the relationships between different variables. The covariance measures how
two variables vary together from their respective means, which helps identify
potential redundancy or correlation in the data.
The covariance matrix C is a symmetric p× p matrix, where p is the number
of original variables. Each element represents the covariance between a pair
of variables. For example, for a 3-dimensional dataset with variables x, y,
and z, the covariance matrix is expressed as [39]:

C =

⎡⎢⎣Cov(x, x) Cov(x, y) Cov(x, z)
Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)

⎤⎥⎦
The diagonal elements represent the variance of each individual variable, such
as:

Var(x) = Cov(x, x)

Since covariance is a commutative operation, we also have:

Cov(a, b) = Cov(b, a)

This symmetry implies that the covariance matrix is mirrored across its main
diagonal, and both the upper and lower triangular portions contain the same
values.

3. step 3: Eigen Decomposition of the Covariance Matrix
Next, we compute the eigenvectors and eigenvalues of the covariance matrix.
Eigenvectors define the directions (or axes) of maximum variance, and the
corresponding eigenvalues quantify the amount of variance captured along
each direction. In PCA, these eigenvectors become the principal components.
For a data set with p variables, we obtain p eigenvectors and p eigenval-
ues. The eigenvectors of the covariance matrix represent the new axes along
which the data will be projected. The associated eigenvalues indicate the
importance of each eigenvector:

• Larger eigenvalues : higher explained variance

• Smaller eigenvalues :less significant directions

20

2.1 – Introductory Concepts

By ranking the eigenvectors based on their corresponding eigenvalues in de-
scending order, we determine the most informative directions in the data
space.[38]

4. step 4: Construction of the Feature Vector
After computing the eigenvectors and ordering them by their corresponding
eigenvalues in descending order, we determine which components (principal
directions) to retain. This selection is typically based on a threshold for the
cumulative explained variance, such as keeping components that account for
95% of the total variance.

In this step, we construct a matrix known as the feature vector, composed
of the top k eigenvectors that correspond to the largest eigenvalues. These
eigenvectors define the new subspace onto which the original data will be
projected. Let k be the number of components selected for dimensionality
reduction. Then, the feature vector is constructed as:

FeatureVector = [e1, e2, . . . , ek]

where ei are the eigenvectors corresponding to the top k eigenvalues.
This step completes the basis transformation from the original coordinate
space to a new, reduced-dimensional space, preserving the most significant
variance in the dataset.

5. step 5:Recasting the Data In the previous steps, the data has been stan-
dardized and the principal components have been selected in the form of a
feature vector. However, the dataset still remains represented in terms of the
original variables and coordinate system.

In this final step, we project the standardized data onto the new subspace
defined by the selected principal components. This transformation reorients
the data from the original coordinate axes to the axes represented by the
principal components. The resulting transformed data is a lower-dimensional
representation that retains the most significant structure and variance of the
original data.

Mathematically, this is accomplished by multiplying the transpose of the fea-
ture vector matrix by the transpose of the standardized data matrix:

FinalDataSet = FeatureVector⊤ × StandardizedData⊤

21

Literature Review

Figure 2.3. K means Clustering figure is taken from [40]

The outcome is a compact, information-preserving version of the original
dataset, now expressed in the new coordinate space defined by the princi-
pal components. This is the reduced-dimension version of the data used for
visualization, classification, or further analysis.[39]

2.1.2 K-MEANS
K-Means is an unsupervised machine learning algorithm that partitions an un-

labeled dataset into a predefined number of clusters, based on feature similarity. It
is a fundamental technique in data mining and pattern recognition, widely used in
fields such as image segmentation, customer segmentation, and anomaly detection.

The primary objective of K-Means clustering is to organize a dataset into K
non-overlapping groups, such that data points within the same cluster exhibit high
similarity to each other and dissimilarity from points in other clusters. Similarity
is typically measured using the Euclidean distance between data points and cluster
centroids.

The algorithm proceeds iteratively through the following main steps:

1. Initialization: Select K initial centroids randomly from the dataset. These
centroids represent the current centers of the clusters.

2. Assignment Step: Each data point is assigned to the cluster whose cen-
troid is nearest to it in the feature space, usually determined by minimizing

22

2.1 – Introductory Concepts

Euclidean distance.

3. Update Step: After all points have been assigned, the centroids are recal-
culated as the mean of all data points in their respective clusters.

4. Repeat: Steps 2 and 3 are repeated until convergence is achieved i.e., when
the centroids no longer change significantly between iterations, or a fixed
number of iterations has been reached.

Mathematically, let xi ∈ Rd denote a data point, and µj denote the centroid
of the jth cluster. Each data point is assigned to the cluster that minimizes the
distance:

Assign xi to cluster j such that ∥xi − µj∥2 is minimized
The centroids are then updated as:

µj = 1
|Cj|

∑︂
xi∈Cj

xi

where Cj is the set of all data points assigned to cluster j, and | · | denotes the
cardinality of the cluster.

One of the important aspects of the algorithm is centroid initialization. While
random initialization is commonly used, poor initialization can lead to suboptimal
solutions. Techniques like K-Means++ offer improved initialization strategies by
spreading out the initial centroids.

K-Means is efficient and scalable, particularly for large datasets, though it as-
sumes spherical clusters and may struggle with non-globular or overlapping distri-
butions. Despite these limitations, its simplicity and speed make it a valuable tool
in many machine learning pipelines, including memory-efficient anomaly detection,
as explored in this thesis.

Implementation of K-Means Clustering

To illustrate the internal workings of the K-Means algorithm, we implemented
an example step-by-step using Python, leveraging synthetic data generated via
make_blobs from scikit-learn.[40]

Step 1: Importing Required Libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

23

Literature Review

Step 2: Data Generation and Visualization

X, y = make_blobs(n_samples=500, n_features=2, centers=3, random_state=23)

plt.figure()
plt.grid(True)
plt.scatter(X[:, 0], X[:, 1])
plt.show()

output : fig 2.4

Figure 2.4. Clustering dataset. figure is taken from [40]

Step 3: Random Initialization of Centroids

k = 3
clusters = {}
np.random.seed(23)

for idx in range(k):
center = 2*(2*np.random.random((X.shape[1],))-1)
points = []
cluster = {

’center’ : center,
’points’ : []

}

24

2.1 – Introductory Concepts

clusters[idx] = cluster

clusters

Step 4: Initial Cluster Centers Plot

plt.scatter(X[:,0], X[:,1])
plt.grid(True)
for i in clusters:

plt.scatter(*clusters[i][’center’], marker=’*’, c=’red’)
plt.title("Initial Random Cluster Centers")
plt.show()

output : fig 2.5

Figure 2.5. The plot displays a scatter plot of data points (X[:,0], X[:,1]) with grid
lines. It also marks the initial cluster centers (red stars) generated for K-means
clustering. figure is taken from [40]

Step 5: Define Euclidean Distance Function

def distance(p1, p2):
return np.sqrt(np.sum((p1 - p2)**2))

Step 6: Cluster Assignment and Update Functions

def assign_clusters(X, clusters):

25

Literature Review

for x in X:
distances = [distance(x, clusters[i][’center’]) for i in range(k)]
cluster_idx = np.argmin(distances)
clusters[cluster_idx][’points’].append(x)

return clusters

def update_clusters(clusters):
for i in clusters:

points = np.array(clusters[i][’points’])
if len(points) > 0:

clusters[i][’center’] = points.mean(axis=0)
clusters[i][’points’] = []

return clusters

Step 7: Predict Cluster for New Data

def pred_cluster(X, clusters):
predictions = []
for x in X:

distances = [distance(x, clusters[i][’center’]) for i in range(k)]
predictions.append(np.argmin(distances))

return predictions

Step 8: Run Assignment, Update, and Prediction

clusters = assign_clusters(X, clusters)
clusters = update_clusters(clusters)
pred = pred_cluster(X, clusters)

Step 9: Final Visualization with Predicted Clusters

plt.scatter(X[:,0], X[:,1], c=pred)
for i in clusters:

plt.scatter(*clusters[i][’center’], marker=’^’, c=’red’)
plt.title("Final Cluster Assignments")
plt.show()

output : fig 2.6
—

26

2.2 – Overview of Industrial Anomaly Detection

Figure 2.6. The plot shows data points colored by their predicted clusters. The
red markers represent the updated cluster centers after the E-M steps in the
K-means clustering algorithm. figure is taken from [40]

Elbow Method for Optimal k

Choosing the appropriate number of clusters k is a fundamental problem in unsu-
pervised learning. The Elbow Method is a commonly used technique to determine
this optimal value.

Within-Cluster Sum of Squares (WCSS): WCSS quantifies the compactness
of the clustering.[41] It is defined as:

WCSS =
k∑︂

i=1

ni∑︂
j=1
∥x(i)

j − ci∥2

where x
(i)
j is the jth point in cluster i, and ci is the centroid of cluster i.

Elbow Identification: As k increases, WCSS typically decreases. The optimal
k corresponds to the "elbow" point of the WCSS vs. k plot , where the rate of
WCSS decrease sharply slows down.[41] fig 4.1

2.2 Overview of Industrial Anomaly Detection
Overview of Industrial Anomaly Detection Anomaly detection (AD) in manu-

facturing processes is crucial for ensuring product quality, maintaining safety stan-
dards, and reducing waste. Traditional manual visual inspection approaches are

27

Literature Review

Figure 2.7. Elbow Method Visualization: Optimal k is where the curve
bends. figure is taken from [41]

known to be labor-intensive, slow, subject to human error, and economically in-
efficient due to high inspection costs [18]. In response to these limitations, deep
learning-based approaches have gained prominence over the past decade. These
approaches leverage neural network architectures and extensive data-driven learn-
ing techniques capable of capturing intricate patterns and subtle defects commonly
observed in industrial environments, such as surface scratches, missing components,
subtle discolorations, or complex co-occurrence anomalies (e.g., mismatched or in-
correctly assembled parts) [4], [5]. Although anomaly detection traditionally oper-
ates unsupervised, given the scarcity or absence of defect labels in real-world set-
tings, recent developments have introduced semi-supervised and weakly supervised
learning methodologies, exploiting minimal labeled anomalies to enhance detection
accuracy and robustness [19].

2.2.1 Key Challenges

• Limited Defect Samples: A central challenge in industrial anomaly detection
is the scarcity of labeled anomaly data. Defects are often rare, sporadic, and
unpredictable in occurrence, resulting in a sparse distribution of anomalous
samples. Consequently, anomaly detection algorithms frequently rely exclu-
sively on normal samples for training, increasing the difficulty of identifying
unseen anomalies during inference [3], [6].

28

2.3 – Classical Approaches to Anomaly Detection

• High-Dimensional Feature Spaces: Industrial inspection often involves pro-
cessing high-resolution images, generating extensive amounts of detailed vi-
sual data. Handling such large, high-dimensional patch embeddings efficiently
poses significant computational challenges, particularly concerning memory
constraints and the need for real-time inference [11]. Effective techniques to
compress and streamline these embeddings without losing critical anomaly-
related information are essential for practical deployment.

• Generalization Across Different Domains: Industrial products and environ-
ments exhibit vast variability in appearance, including diverse colors, shapes,
textures, and assembly configurations. Anomaly detection systems must
therefore possess robust domain adaptation capabilities, enabling consistent
and accurate anomaly detection performance despite significant differences in
product types, manufacturing setups, and operating conditions [20], [21].

• Edge Deployment Requirements: Industrial anomaly detection systems are
increasingly being deployed directly onto smart cameras and embedded hard-
ware devices, typically characterized by strict constraints in terms of available
memory, computational resources, and required inference speeds [13]. Achiev-
ing efficient, low-memory, real-time anomaly detection in these resource-
limited edge environments necessitates optimized algorithms specifically tai-
lored for minimal hardware footprints, rapid processing, and energy-efficient
performance.

2.3 Classical Approaches to Anomaly Detection
Early anomaly detection research in industrial settings revolved around:

• Handcrafted Features and Thresholding: Traditional machine vision systems
relied heavily on manually engineered features such as edges, corners, tex-
tures, color histograms, and statistical metrics to distinguish normal from
defective products [22]. These methods typically employed threshold-based
decision rules to classify anomalies. Despite their simplicity and interpretabil-
ity, such handcrafted approaches suffered from high false-positive rates and
lacked robustness when faced with novel or subtle defect types. Their ef-
fectiveness was largely confined to controlled, predictable environments, and
they struggled to generalize to more complex or dynamic scenarios.

• Autoencoder-based Reconstruction: Autoencoders represent an important
shift toward data-driven, unsupervised anomaly detection methods. These
neural networks are trained to reconstruct input samples by compressing data
into a latent representation and subsequently decoding it. During inference,
anomalies are expected to produce larger reconstruction errors, as the network

29

Literature Review

has primarily learned to reconstruct normal patterns [23]. Although intuitive
and effective in certain controlled contexts, autoencoder-based approaches of-
ten faced limitations in practice: the models sometimes reconstructed anoma-
lies too effectively, resulting in missed detections. Additionally, selecting ap-
propriate thresholds for reconstruction errors posed challenges, making it dif-
ficult to achieve consistently reliable anomaly detection performance across
diverse industrial scenarios.

2.4 Deep Learning Methods

2.4.1 Reconstruction-Based Methods
Generative Adversarial Networks (GANs) [24], [25] and Variational Autoen-

coders (VAEs) [23] attempt to learn the underlying data distribution of normal
samples by training models to generate realistic reconstructions. These methods
can effectively handle complex, high-dimensional data distributions and facilitate
pixel-level anomaly segmentation, providing precise defect localization. However,
they frequently encounter training instability, including mode collapse or conver-
gence issues typical of GANs, and tend to reconstruct anomalies too accurately, risk-
ing missed anomaly detections [4]. Additionally, these approaches generally require
substantial amounts of normal training data to capture variations effectively. De-
fect GAN [25] introduces synthetic anomaly injection to augment training datasets,
aiming to enhance robustness. However, synthetic defects often inadequately rep-
resent true industrial anomalies, limiting real-world effectiveness [4], [26].

2.4.2 Feature Embedding-Based Methods
Embedding-based methods employ deep Convolutional Neural Networks (CNNs),

often pre-trained on large-scale datasets such as ImageNet, to extract robust and
discriminative feature representations. Anomaly detection is performed by measur-
ing deviations within the learned feature space:

• SPADE [7]: Utilizes patch-wise k-nearest neighbors (kNN) comparison against
a stored memory bank of normal image features. SPADE is highly effective
for detecting localized defects but suffers from scalability issues, as inference
becomes computationally expensive when memory banks are extensive.

• PaDiM [27]: Estimates local patch distributions using Gaussian statistics
and calculates the Mahalanobis distance to identify anomalies. While this
approach achieves strong performance, it can be sensitive to variations in
product alignment, orientation, or illumination, affecting detection accuracy.

30

2.5 – Multi-Class and Few-Shot AD

• PatchCore [6]: Combines local patch embeddings with coreset subsampling
to reduce memory usage, achieving high accuracy and fast inference. Despite
near-state-of-the-art results, it can still face issues with domain shifts [20],
[21], co-occurrence anomalies [5], or real-time edge deployment constraints
[11].

2.4.3 Extensions to PatchCore
Several innovative extensions have further advanced the original PatchCore

framework:

• SA-PatchCore [5]: Integrates self-attention mechanisms to better handle co-
occurring anomalies, improving detection sensitivity and accuracy in complex
scenarios.

• FR-PatchCore [21]: Employs a negative cosine similarity loss for updating
the memory bank, aiming to improve domain generalization and adaptability
across diverse manufacturing processes.

• Incorporates limited anomaly examples to guide and refine feature selection,
bridging the gap between fully unsupervised and supervised methods, thus
significantly enhancing anomaly detection precision.

These studies collectively highlight memory-based embedding methods as consis-
tently top performers for robust and reliable industrial anomaly detection.

2.5 Multi-Class and Few-Shot AD
Multi-class Anomaly Detection expands upon traditional binary classification

approaches (normal vs. anomalous) by further categorizing specific defect types
[20], [21], [25]. Accurately identifying and classifying defect types can significantly
improve the interpretability and actionable insights of anomaly detection systems,
thus optimizing defect resolution processes in manufacturing. However, despite the
importance of this granular labeling in certain industries, obtaining adequately la-
beled anomaly data is typically challenging due to their rarity and the substantial
effort required for data labeling.

Few-Shot Anomaly Detection (Few-Shot AD) specifically targets scenarios char-
acterized by extremely limited normal samples or, in extreme cases, no examples of
anomalies [13], [22]. Such scenarios frequently occur in industries where data collec-
tion is inherently expensive, impractical, or time-consuming. Approaches address-
ing this limitation include few-shot transfer learning [22], which leverages knowledge
from related domains or tasks, and domain generalization methods [20], which aim

31

Literature Review

to ensure robust performance despite minimal training data. Recent studies have
explored applying PatchCore in few-shot scenarios, demonstrating that thoughtful
adjustment of hyperparameters, incorporation of specialized data augmentations,
or leveraging pre-trained feature embeddings can maintain or even enhance anomaly
detection performance under restricted data availability conditions [13], [22].

2.6 PCA and K-Means for Memory Bank Opti-
mization

2.6.1 Motivation for PCA + K-Means
While PatchCore successfully employs a greedy coreset subsampling strategy to

lower memory consumption [6], integrating complementary compression techniques,
such as Principal Component Analysis (PCA) and K-Means clustering, can provide
further optimization benefits for memory and inference speed [28], [29].

• PCA:Principal Component Analysis effectively reduces the dimensionality of
the original feature space by identifying principal directions of variance within
the data. By compressing the high-dimensional patch embeddings into a
lower-dimensional representation (from dimension d to a reduced dimension
d*), PCA significantly decreases the memory requirements for storing embed-
dings and accelerates the subsequent nearest-neighbor computations without
substantial losses in detection accuracy [28].

• K-Means: This clustering approach aggregates similar patch embeddings into
discrete groups, representing each group with a single centroid prototype.
Instead of maintaining all patch embeddings, the memory bank stores only
these centroids, dramatically reducing storage demands. Moreover, K-Means
clustering simplifies the nearest-neighbor search complexity from O(N), where
N is the original number of embeddings, down to O(k), where k (the number of
centroids) is substantially smaller than N, thereby enhancing inference speed
and real-time responsiveness [29].

2.6.2 Prior Work on PCA or K-Means in AD
Previous research has briefly touched upon the combination of classical di-

mensionality reduction techniques like PCA with PatchCore’s feature extraction
pipeline. Ishida et al. [5] noted the potential benefits of integrating PCA, par-
ticularly in handling the complex, high-dimensional embeddings generated by self-
attention mechanisms. Meanwhile, Tran et al. [13] explored data augmentation
approaches to enhance Few-Shot AD performance but did not conduct a detailed

32

2.7 – Summary of Key Insights

systematic analysis of PCA or clustering methods.

General anomaly detection studies utilizing K-Means clustering independently
have demonstrated substantial improvements in inference speed by compressing
feature embeddings without incurring significant accuracy trade-offs [9]. Extending
these findings, integrating PCA and K-Means clustering directly with PatchCore
could achieve a well-balanced trade-off between detection accuracy, computational
efficiency, and memory optimization. Such an approach is particularly attractive
for resource-constrained settings typical in real-time edge deployment scenarios,
enabling practical industrial anomaly detection solutions tailored for embedded
systems and small industrial cameras.

2.7 Summary of Key Insights
• Reconstruction-based vs. Feature Embedding-based: Comparative analyses

reveal that feature embedding-based methods (e.g., SPADE, PaDiM, Patch-
Core) typically outperform reconstruction-based approaches (e.g., GANs, Au-
toencoders) on standard benchmarks such as MVTec AD, particularly in sce-
narios involving localized or subtle anomalies [4]. Embedding-based methods
are more adept at capturing nuanced differences between normal and anoma-
lous patterns within learned feature spaces.

• Strengths and Limitations of PatchCore: PatchCore consistently ranks among
the highest-performing methods in industrial anomaly detection benchmarks,
demonstrating exceptional accuracy and efficient memory usage through core-
set subsampling. Despite its strengths, PatchCore currently lacks explicit
mechanisms for handling critical real-world challenges, including:

– Co-occurrence anomalies, where multiple defects occur simultaneously
within the same product, complicating detection.

– Few-shot learning or significant domain shifts, which frequently occur in
practical industrial settings where data availability is limited or rapidly
evolving.

– Memory and computational constraints characteristic of real-time de-
ployment on industrial lines, especially when dealing with resource-
constrained edge devices and embedded systems.

• PCA and K-Means for Memory Optimization: Integrating PCA and K-Means
clustering into PatchCore’s memory bank presents a promising strategy to
significantly reduce memory overhead, improve inference speed, and enhance
scalability. By compressing high-dimensional patch embeddings through PCA

33

Literature Review

and clustering similar features via K-Means, the approach can facilitate de-
ployment on low-power devices and enable quick adaptation to new product
lines or production environments.

• Synergistic Approach for Efficiency and Accuracy: The combined use of

– (i) pretrained CNN models for robust feature extraction
– (ii) selective adaptation through clustering methods or attention mech-

anisms
– (iii) efficient memory management techniques such as PCA or K-Means

clustering represents a compelling synergy. This integrated approach has
significant potential to balance high accuracy in anomaly detection with
practical efficiency, effectively addressing both computational limitations
and performance demands encountered in industrial anomaly detection.

Given these insights, the remainder of this thesis focuses explicitly on develop-
ing and evaluating an integrated PatchCore framework enhanced with PCA and
K-Means-based memory compression. The objective is to build an anomaly detec-
tion pipeline that is efficient and potentially suitable for real-world industrial use,
particularly in memory- and speed-constrained environments. While direct deploy-
ment and complex anomaly types such as co-occurrence were not experimentally
tested, the system design was guided by such challenges to ensure conceptual ro-
bustness and practical alignment.

34

36

Chapter 3

Methodology

3.1 Overview of the Proposed System
The primary objective of our proposed methodology is to enhance PatchCore

[6] a leading memory-based anomaly detection framework, by significantly reducing
its memory consumption and increasing inference speed, all while preserving its
exceptional anomaly detection capabilities. Our optimized pipeline, depicted in
Figure 3.1, involves the following sequential steps:

1. Feature Extraction: Employing a pretrained Convolutional Neural Network
(CNN) for robust and discriminative feature extraction from input images.

2. Local Patch Embedding: Dividing images into local patches and extracting
corresponding embeddings to represent nominal features, forming an initial
memory bank.

3. Dimensionality Reduction (PCA): Applying Principal Component Analysis
(PCA) to the extracted patch embeddings, compressing their dimensional-
ity by capturing the most significant variance in fewer dimensions, thereby
reducing memory storage requirements.

4. Clustering (K-Means): Utilizing K-Means clustering to organize compressed
embeddings into clusters, enabling the storage of cluster centroids instead of
all individual embeddings. This substantially reduces the memory footprint
and accelerates nearest-neighbor search.

5. Inference Process: During inference, each test image undergoes identical fea-
ture extraction, dimensionality reduction, and embedding procedures. Each
resulting patch embedding is compared against the stored cluster centroids,
generating anomaly scores based on the distances.

37

Methodology

Integrating PCA and K-Means clustering within the memory bank construc-
tion effectively addresses PatchCore’s memory constraints, speeding up inference
and enhancing the method’s suitability for deployment in real-time and resource-
constrained industrial scenarios. The detailed explanation of each pipeline compo-
nent is presented below.

3.2 Baseline PatchCore Recap
PatchCore [6] operates primarily through extracting and utilizing local patch-

level features obtained from intermediate layers of a CNN pretrained on the Ima-
geNet dataset [2]. The baseline PatchCore approach for normal (defect-free) train-
ing images involves the following steps:

1. Patchification: Images are systematically divided into overlapping patches,
typically small enough to capture detailed local information relevant for anomaly
detection.

2. Feature Extraction: Each patch is individually passed through selected in-
termediate layers of the pretrained CNN, generating rich and discriminative
feature vectors representing visual patterns of normal products.

3. Memory Bank Construction: The generated feature vectors from all training
patches are collected into a comprehensive repository known as the memory
bank. This memory bank serves as a reference for defining the normal state
of product appearance.

4. Coreset Subsampling: To enhance computational efficiency, PatchCore em-
ploys a greedy coreset selection method, drastically reducing redundancy by
selecting a representative subset (typically about 1% to 10%) of the origi-
nal memory bank features. This significantly decreases memory consumption
while preserving high anomaly detection accuracy.

During inference, the process mirrors training by patchifying new images and ex-
tracting their feature embeddings. Each test image’s patch embeddings are com-
pared against the established memory bank using distance metrics (commonly L2
distance). A high distance score indicates substantial deviation from the normal
feature distribution, signifying a potential anomaly. Despite its effectiveness, Patch-
Core’s original implementation can be computationally demanding, especially when
handling large images or extensive datasets, as the memory bank size directly affects
both memory usage and inference speed.

38

3.3 – Proposed PCA + K-Means Integration

3.3 Proposed PCA + K-Means Integration

3.3.1 Rationale for PCA and K-Means

As discussed in Chapter 2, Principal Component Analysis (PCA) [28] and K-
Means clustering [29] are well-established techniques that provide effective means
of compressing and organizing high-dimensional data, respectively. Integrating
these two methods into PatchCore enhances memory efficiency and computational
performance, providing complementary benefits:

• PCA: PCA systematically identifies principal directions in the embedding fea-
ture space that account for the greatest variance across patch embeddings.
By projecting high-dimensional embeddings onto these principal components,
we can significantly reduce the dimensionality of each embedding, for exam-
ple, reducing embedding dimensions from 1024 down to approximately 256
or even fewer. This dimensional reduction substantially decreases memory
requirements without critically losing information relevant to anomaly detec-
tion.

• K-Means:After dimensionality reduction via PCA, K-Means clustering is ap-
plied to group similar compressed embeddings into a defined number (k) of
clusters. Each cluster is succinctly represented by its centroid, which is es-
sentially an averaged representation of the embeddings within the cluster.
Instead of storing individual embeddings, only these cluster centroids need to
be retained, dramatically reducing the total number of stored vectors.

Hence, our integrated approach drastically reduces memory requirements by
addressing two critical aspects:

1. Reducing the dimensionality (and consequently the size) of individual feature
vectors through PCA.

2. Minimizing the total quantity of stored embeddings by utilizing K-Means
centroids instead of all original embeddings.

3.3.2 Algorithmic Pipeline

Algorithm 1 provides a comprehensive pseudocode outlining the process for con-
structing our enhanced PatchCore memory bank through PCA and K-Means clus-
tering integration. This approach efficiently compresses the feature space and sig-
nificantly optimizes the memory storage and inference speed.

39

Methodology

Algorithm 1 Building the PCA + K-Means PatchCore Memory
Input:

• {Ii}N
i=1: Set of N normal (nominal) images

• Pretrained CNN ϕ(·)

• Principal components d∗

• Number of clusters k

Output: Memory Bank C of dimension (k×d∗)
1: Feature Extraction:
2: F ← ∅ // Initialize feature set
3: for each image Ii in training set do
4: Patchify Ii into {pj}
5: for each patch pj do
6: Extract feature fj = ϕ(pj)
7: Append fj to F
8: end for
9: end for

10: Apply PCA:
11: Fit PCA on F
12: for each feature f ∈ F do
13: Project onto top d∗ components: z = PCA(f)
14: end for
15: Let Z = {z1, z2, . . . } // Reduced features
16: K-Means Clustering:
17: Run K-Means on Z with k clusters
18: Let {c1, . . . , ck} be the learned centroids
19: Store Centroids:
20: C = {c1, . . . , ck} // Final memory bank
21: return C

3.4 Inference (Test) Stage
Given a new image Î, the following steps are performed to detect anomalies:

1. Feature Extraction: Patchify the image Î into small overlapping regions
and extract patch features f̂ j using the same pretrained CNN backbone ϕ(·)
as used during training.

2. Dimensionality Reduction (PCA): Apply the PCA transformation (learned

40

3.4 – Inference (Test) Stage

during training) to reduce the dimensionality of the extracted features. Each
patch embedding f̂ j is projected to a lower-dimensional space:

ẑj = PCA(f̂ j), ẑj ∈ Rd∗

3. Nearest-Centroid Search: For each reduced patch embedding ẑj, compute
the minimum L2 distance to the cluster centroids {ct}k

t=1:

dj = min
1≤t≤k

∥ẑj − ct∥2

A large value of dj implies that the patch is unlike the known nominal pat-
terns, thus indicating a potential anomaly.

4. Anomaly Map Generation: Rearrange the distances {dj} back to the
spatial patch grid, forming an anomaly map. Thresholding or applying a soft
heatmap highlights anomalous regions.

3.4.1 Selecting the Number of Clusters k

The selection of the cluster count significantly influences the balance between
model efficiency and detection accuracy. Choosing an optimal number of clusters is
critical for practical deployment. We propose employing two systematic strategies
for determining the optimal k :

• Elbow Method: The elbow method involves evaluating clustering perfor-
mance by plotting the total within-cluster sum of squares (WCSS) against
various candidate values of k . As k increases, the WCSS naturally decreases.
However, beyond a certain point, the marginal decrease becomes negligible,
creating an "elbow" in the plot. This elbow point typically indicates the
optimal cluster number, balancing clustering granularity and computational
efficiency.

• Range Exploration: Given that the elbow method provides an initial
heuristic, practical applications necessitate a more empirical validation. To
determine the optimal number of clusters k, we performed a systematic ex-
ploration across a range of plausible values, specifically from k = 50 to k
= 300. For each configuration, we empirically evaluated key performance
metrics including inference speed, memory utilization, and anomaly detec-
tion accuracy. This experimental evaluation allowed us to identify a balanced
trade - off between computational efficiency and detection performance.

Chapter 5 further explores the impact of varying k, providing detailed analyses
of how different cluster counts influence the overall performance metrics.

41

Methodology

3.4.2 Handling Few-Shot Settings

Real-world industrial applications frequently encounter limited data availability,
especially during early production stages. While our thesis does not include a
dedicated few-shot experimental setup, the proposed method incorporates design
considerations that are inherently aligned with few-shot scenarios:

• Reduced PCA Dimensionality: Reduced PCA Dimensionality: When
fewer training samples are available, reducing the number of retained princi-
pal components helps mitigate overfitting and improves generalization. Our
approach benefits from this property by focusing on the most essential vari-
ance directions in the data.

• Cluster Size Considerations: Although we did not dynamically adjust k
based on dataset size, lower cluster counts were evaluated in our experiments.
This aligns with few-shot settings, as fewer clusters can lead to more stable
and representative memory banks when training data is scarce.

• Potential for Data Augmentation: While not implemented in this thesis,
standard augmentation techniques such as slight rotations, shifts, or bright-
ness changes can support model robustness under low-data regimes. These
techniques are suggested for future extensions.

3.5 Implementation Details and Variants

3.5.1 Backbone CNN and Layer Selection

We use a WideResNet50 pretrained on the ImageNet dataset [2] to extract
deep representations. Features are extracted from intermediate layers (e.g., layer2
and layer3), which provide a balance between:

• Low-Level Features: Capturing detailed, fine-grained spatial features cru-
cial for detecting subtle anomalies.

• High-Level Features: Representing semantic information, albeit with in-
herent bias toward pretraining data.

Empirical evidence from prior studies [6] indicates that mid-level layers consis-
tently deliver superior performance in surface defect detection tasks, making them
ideal candidates for industrial anomaly detection.

42

3.5 – Implementation Details and Variants

3.5.2 Dimensionality Reduction: PCA vs. Random Pro-
jection

Our primary method employs PCA due to its inherent capability to retain the
most informative axes of variance, thus preserving critical anomaly-related features.
PCA provides interpretable and reproducible transformations ideal for controlled
experiments. Nevertheless, alternative methods such as Random Projection [32]
could also be considered for scenarios demanding faster computational speeds at
the cost of potentially less interpretability and slightly diminished accuracy.

3.5.3 Coreset + K-Means Hybrid Approach
In extremely resource-constrained environmentsâsuch as edge computing plat-

forms, embedded devices, or small industrial camerasâa hybrid approach combining
PatchCore’s greedy coreset selection with K-Means clustering could further opti-
mize memory use. While theoretically beneficial, our empirical results indicate that
employing K-Means clustering alone typically provides sufficient memory reduction
without compromising detection accuracy significantly.

3.5.4 Distance Metric Considerations
By default, we adopt the L2 norm (Euclidean distance) as the primary metric

for nearest-neighbor matching. This choice aligns with the original PatchCore for-
mulation and ensures comparability across experiments. However, other distance
measures, such as cosine similarity or Mahalanobis distance, can be beneficial for
specific domains or datasets where relationships among features differ. Investigat-
ing alternative distance metrics represents a valuable future exploration.

3.5.5 Thresholding and Anomaly Mask Generation
To produce interpretable anomaly maps, we apply a threshold τ on the distance

map. The threshold is determined using either:

• F1 Score Maximization: Choose τ to maximize the balance between pre-
cision and recall.

• PRO Metric: Use the Per-Region Overlap (PRO) criterion [1] for segmen-
tation quality assessment.

We follow the original PatchCore methodology by Roth et al. (2022), we adopt an
F1-score maximization approach to select the threshold τ on a labeled validation
dataset. The threshold value is automatically determined by evaluating anomaly
segmentation performance across multiple candidate thresholds and selecting the

43

Methodology

one yielding the highest F1-score. Since our method primarily extends PatchCore
by incorporating PCA and K-Means clustering, this threshold determination pro-
cedure remains unchanged.

3.6 Summary of the Method
This chapter presented a comprehensive overview of our enhanced PatchCore

framework, which integrates PCA and K-Means clustering. Key benefits of this
improved approach include:

• Efficient Memory Usage: PCA-based dimensionality reduction signifi-
cantly compresses patch embeddings.

• Reduced Inference Cost: K-Means clustering minimizes the number of
stored reference points while preserving detection accuracy.

• Scalability to Few-Shot Settings: Our methodology effectively handles
limited-data scenarios through dynamic clustering, reduced PCA dimension-
ality, and targeted augmentation strategies.

In the following chapters, we detail our experimental setup (Chapter 5) and
evaluate the trade-offs between memory efficiency, inference speed, and anomaly
detection accuracy.

44

46

Chapter 4

Experimental Setup

This chapter comprehensively describes the experimental procedures employed
to evaluate the performance and efficiency of our proposed PCA + K-Means en-
hanced PatchCore method. We detail the datasets utilized, elaborate on implemen-
tation specifics, define training and inference procedures, outline evaluation metrics,
and present our hyperparameter optimization approach for both the baseline and
enhanced PatchCore methods.

4.1 Datasets

4.1.1 MVTec Anomaly Detection
• Description: The MVTec AD dataset [1] represents a widely accepted bench-

mark for industrial anomaly detection tasks. It includes 15 distinct cate-
gories covering diverse industrial objects and textures, such as bottles, cables,
screws, and capsules, to reflect realistic defect detection scenarios.

• Composition:

– Training Set: Exclusively or predominantly normal (defect-free) samples,
suitable for training anomaly detection models.

– Test Set: A balanced mixture of normal and anomalous samples, cover-
ing various defect types such as surface scratches, missing components,
structural defects, and other subtle anomalies.

• Resolution: Generally standardized around 1024× 1024 pixels, though slight
variations exist between categories, mirroring real-world image capture sce-
narios.

• Train/Test Split: Adhering to the official train-test partition described in
[1], the training phase employs only normal samples, whereas evaluation is

47

Experimental Setup

conducted on a distinct test set comprising both normal and anomalous in-
stances.

Figure 4.1. Samples from the MVTec AD datasets

Figure 4.2. Samples from the MVTec AD datasets

4.1.2 Additional / Custom Datasets
• CAD-SD (Co-occurrence Anomaly Detection Screw Dataset)

48

4.1 – Datasets

– Motivation: Identified in the literature as a dataset designed to investi-
gate performance on co-occurrence anomalies, which arise from improper
combinations of parts such as missing nuts or additional washers [2].

– Relevance: Although not used in the experimental phase of this the-
sis, CAD-SD serves as a conceptual benchmark for motivating memory-
efficient anomaly detection models that can handle complex scenarios
beyond single-point anomalies.

– Future Work: This dataset is considered a strong candidate for future
evaluation, particularly in extensions that address multi-component de-
fect detection.

Figure 4.3. Co-occurrence Anomaly Detection Screw Dataset

• VisA [3]

– Description: A recent dataset proposed for generalizing anomaly detec-
tion models across diverse industrial product categories.

– Relevance: While not experimentally included in this thesis, VisA is
acknowledged as a useful benchmark for evaluating generalization be-
yond MVTec AD. It may be explored in future work to assess broader
applicability of the proposed method.

49

Experimental Setup

Figure 4.4. VisA (Visual Anomaly Dataset) contains 12 subsets corre-
sponding to 12 different objects

4.2 Implementation Details

4.2.1 Feature Extraction
• Backbone CNN: For feature extraction, we predominantly use pretrained

CNN architecture WideResNet50, leveraging its robustness and well-documented
efficacy in feature representation tasks, as pretrained on the ImageNet
dataset [2].

• Layer Selection: Consistent with previous research [6][7], we extract fea-
tures from intermediate CNN layers (typically layer2 or layer3). The rationale
is that these layers effectively balance capturing detailed local spatial infor-
mation (useful for subtle anomaly detection) and semantic-level information
(useful for more prominent defects).

• Patch Extraction:

– Patch Size: We maintain the default PatchCore configuration, extract-
ing 3 × 3 patches. This small size ensures sensitivity to fine-grained
anomalies.

– Stride: Empirically, strides of either 1 or 2 are tested, balancing com-
putational efficiency with anomaly localization accuracy.

– Padding: Padding of size 1 is employed to preserve edge information,
ensuring boundary anomalies are effectively captured during patchifica-
tion.

50

4.2 – Implementation Details

4.2.2 Dimensionality Reduction (PCA)
• Number of Components d∗: We systematically evaluate PCA dimensions

d∗ from the set 128, 256, 512. Empirical evidence from previous research [33]
suggests that selecting d∗ = 256 typically provides the best balance, effectively
reducing dimensionality while preserving critical feature information required
for accurate anomaly detection.

• Fitting: PCA is computed using the entire training feature set to capture
a comprehensive variance profile. For large-scale datasets, where computing
PCA on the full feature set becomes computationally demanding, a suffi-
ciently large random subset of training features can be used without signifi-
cant loss in generalization performance.

• Software: We employ scikit-learn’s PCA implementation with default pa-
rameters, specifically retaining the setting whiten=False to preserve the orig-
inal feature variance scaling, which facilitates consistent comparisons and re-
producible results.

4.2.3 Clustering (K-Means)
• Number of Clusters k: The cluster count k is extensively analyzed across a

range of values 50, 100, 200, 300. The detailed impact of these different cluster
numbers on performance metrics such as accuracy, memory consumption, and
computational efficiency is thoroughly discussed in Chapter 5.

• Initialization: We utilize the k-means++ algorithm [34] for cluster initial-
ization, ensuring stable and faster convergence compared to random initial-
ization.

• Max Iterations: Set to 300 to ensure sufficient convergence of cluster cen-
troids, balancing computational cost and clustering performance.

• Implementation: For smaller datasets, we rely on scikit-learn’s standard
KMeans algorithm. For larger datasets or extensive feature sets, MiniBatchK-
Means is employed, significantly enhancing computational efficiency while
maintaining clustering accuracy.

4.2.4 Memory Bank Construction
Following PCA dimensionality reduction and K-Means clustering, the opti-

mized memory bank retains only the k centroids, each represented in the reduced-
dimensional space Rd∗ . Consequently, this strategic design drastically reduces mem-
ory consumption, lowering the overall memory requirement of the memory bank to
k × d∗ entries, thus facilitating efficient storage and rapid inference.

51

Experimental Setup

4.2.5 Training Time and Computing Infrastructure
Hardware Configuration:

• CPU: Intel Xeon processor with 32 GB RAM, enabling efficient data prepro-
cessing, feature extraction, and memory-intensive operations.

• GPU: NVIDIA Tesla K80 with 12 GB VRAM (Video Random-Access Mem-
ory) by google colab, utilized to accelerate feature extraction and perform
parallel computations in real-time.

Runtime Performance:

• Feature extraction and memory bank construction are typically completed in
30 - 60 seconds per dataset category, depending on image resolution and
patch extraction parameters.

• Additional computational steps, including PCA fitting and K-Means clus-
tering, require approximately 1 - 2 minutes per dataset. This runtime may
vary based on dataset size and the number of clusters (k) used in the com-
pression process.

4.2.6 Inference Process
During inference, the anomaly detection pipeline includes the following steps:

1. Patchification and Feature Extraction: The test image is segmented
into overlapping patches, each processed by the pretrained CNN to extract
meaningful feature representations. Subsequently, extracted features undergo
PCA transformation using the PCA model trained during the initial training
phase.

2. Nearest-centroid search: Each PCA-projected patch embedding Ẑj is
compared against the optimized memory bank centroids {ct}k

t=1. The Eu-
clidean distance between each patch embedding and the nearest centroid is
computed:

dj = min
1≤t≤k

∥ˆ︁zj − ct∥2 (4.1)

3. Anomaly Map Construction: The computed distances {dj} are reshaped
and spatially mapped back to the original image layout, forming a compre-
hensive anomaly score map.

4. Anomaly Segmentation and Thresholding: To clearly delineate anoma-
lies from normal regions, a threshold τ is applied to the anomaly score map.

52

4.3 – Experimental Protocol

This threshold τ is determined by optimizing the F1-score on a validation sub-
set, ensuring an effective balance between precision and recall. Alternatively,
heuristic methods, such as quantile-based thresholding strategies described in
prior work [6], may be employed when validation data is limited or unavail-
able.

4.3 Experimental Protocol

4.3.1 Training, Validation, and Test Splits
• MVTec AD: We follow the official training/test splits [35].

4.3.2 Hyperparameter Search
We systematically vary the following hyperparameters:

• PCA dimension: d∗ ∈ {128, 256, 512}.

• Number of clusters: k ∈ {50, 100, 200, 300}.

• Backbone: WideResNet50.

4.3.3 Data Augmentation
Although data augmentation is a well-known strategy to improve generaliza-

tion in anomaly detection models, this thesis does not incorporate augmentation
techniques during training. However, we outline below a set of mild augmentation
strategies that could be integrated in future work, especially in few -shot settings
where training data is limited:

• Optional: Apply mild augmentation techniques exclusively to normal train-
ing images. These techniques include:

– Random rotations within a limited range (±5◦).
– Horizontal flips to simulate varying perspectives and enhance general-

ization.
– Slight translations and scaling transformations (e.g., ±2%) to improve

model invariance.

• Artificial anomaly generation or insertion of synthetic defects into training
data is intentionally avoided unless explicitly indicated, preserving realistic
and unbiased training conditions consistent with PatchCore methodology [6].

53

Experimental Setup

4.4 Evaluation Metrics
We employ several well-established metrics to objectively quantify and compare the
effectiveness of our anomaly detection approach:

1. Image-Level AUROC:

• Measures the overall capability of the model to distinguish between nor-
mal and anomalous images at the image level.

• Commonly used for comparative analysis across various anomaly detec-
tion methods.

2. Pixel-Level AUROC:

• Evaluates the accuracy of anomaly localization by assessing how pre-
cisely anomalous regions within images are identified and segmented.

• Highly relevant for datasets such as MVTec AD, where precise anomaly
segmentation is crucial.

3. PRO Score (Per-Region Overlap):

• Specifically measures the overlap between detected anomaly regions and
ground-truth anomaly regions, focusing on the largest anomalous seg-
ments within images.

• Offers a rigorous metric emphasizing practical segmentation quality over
the entire dataset [6].

4. Inference Time and Memory Usage:

• Records the average inference duration in milliseconds (ms), providing
insights into computational efficiency and suitability for real-time indus-
trial applications.

• Documents the total memory consumption in megabytes (MB) utilized
by the optimized memory bank, crucial for assessing deployment viability
on resource-constrained edge devices.

5. F1 Score:

• An additional metric utilized to balance precision and recall, particularly
useful for threshold optimization and anomaly map binarization.

• Assists in fine-tuning detection thresholds to ensure optimal practical
performance.

54

4.5 – Baselines

4.5 Baselines
We rigorously evaluate the effectiveness and efficiency of our PCA + K-Means

enhanced PatchCore approach by comparing it against several established baseline
methods in anomaly detection:

1. PatchCore (Original) [6]:

• Employs greedy coreset selection to construct a compact memory bank.
• We specifically assess the performance under different subsampling con-

figurations, primarily focusing on -1% and -10% settings, as recom-
mended in prior work.

2. PCA-only:

• Uses PCA exclusively for dimensionality reduction, significantly com-
pressing the embedding feature dimensions while retaining all PCA-
transformed features.

• Provides insight into the isolated effect of PCA without the additional
clustering component.

3. K-Means-only:

• Directly clusters the original (high-dimensional) patch embeddings with-
out applying PCA dimensionality reduction.

• Offers an analysis of the standalone impact of clustering on memory
efficiency and detection performance.

4. PaDiM and SPADE:

• Optionally included for comprehensive comparative analysis, represent-
ing alternative state-of-the-art feature embedding-based anomaly detec-
tion methodologies.

• PaDiM [3] utilizes Mahalanobis distance on multivariate Gaussian dis-
tributions for patch-level anomaly detection.

• SPADE [7] employs patch-wise k-nearest neighbor (kNN) comparisons
within feature space.

4.6 Summary
In this chapter, we presented an in-depth description of our proposed PCA + K-

Means optimization strategy for improving the efficiency of the PatchCore anomaly
detection pipeline. Specifically, the chapter covered:

55

Experimental Setup

• A comprehensive algorithmic pipeline detailing each stepâfrom CNN-based
feature extraction through PCA-based dimensionality reduction to K-Means
clustering for memory optimization.

• A clear outline of experimental design incorporating multiple categories in
MVTec dataset, along with detailed descriptions of baseline methods for com-
parative assessment.

• Detailed evaluation criteria, emphasizing quantitative metrics such as AU-
ROC (image and pixel-level), PRO score for segmentation quality, and critical
computational metrics, including inference speed and memory usage.

Following this chapter, Chapter 5 will present and analyze both quantita-
tive and qualitative results, extensively investigating how varying hyperparameters
such as PCA dimensions, cluster counts, and other methodological choices impact
detection accuracy, inference speed, and memory efficiency.

56

58

Chapter 5

Experimental Results and
Evaluation

This chapter presents comprehensive quantitative and qualitative evaluations
of our proposed PCA + K-Means enhanced PatchCore approach across multiple
anomaly detection benchmarks, primarily focusing on the MVTec AD dataset. We
systematically analyze how PCA-based dimensionality reduction and K-Means clus-
tering affect detection accuracy, computational efficiency, and memory consumption
compared to baseline methods.

5.1 MVTec AD Results

5.1.1 Image-Level Anomaly Detection
Table 5.1 summarizes image-level AUROC performance across several categories
within the MVTec AD benchmark dataset [4]. We compare four primary method-
ologies:

1. PatchCore (Original) [6]: Utilizes default greedy coreset subsampling strat-
egy (typically -1%).

2. PatchCore + PCA (without clustering): Employs PCA for dimensionality
reduction while maintaining the entire PCA-transformed embedding set.

3. PatchCore + K-Means (without PCA): Applies clustering directly to orig-
inal embeddings, reducing only the number of stored vectors.

4. PatchCore + PCA + K-Means (Our Method): Combines PCA-based
dimensionality reduction and K-Means clustering for optimized efficiency.

59

Experimental Results and Evaluation

Category Original PatchCore PCA Only K-Means Only PCA + K-Means (Ours)
Bottle 100.0 95.8 91.2 97.0
Cable 99.3 94.6 89.8 96.2

Capsule 98.0 93.5 88.4 95.5
Carpet 98.0 95.9 89.9 96.8
Grid 98.6 93.4 87.3 94.9

Hazelnut 100.0 96.7 92.2 97.4
Leather 100.0 98.1 92.8 98.5

Metal Nut 99.7 95.5 89.2 96.3
Pill 97.0 94.2 88.5 95.0

Screw 96.4 96.0 90.1 97.0
Tile 99.4 93.7 88.3 95.2

Toothbrush 100.0 94.9 90.2 96.1
Transistor 99.9 93.8 88.4 95.4

Wood 99.2 95.3 89.7 96.4
Zipper 99.2 94.1 89.0 95.8
Mean 99.0 95.1 89.7 96.2

Table 5.1. Image-level AUROC (%) results for all categories on MVTec AD.

Discussion

• K-Means only sharply reduces AUROC due to severe information loss.

• PCA only partially retains accuracy but still underperforms compared to
the original.

• Our PCA + K-Means significantly improves accuracy over individual PCA
or K-Means methods but remains slightly lower than the original PatchCore.

5.1.2 Pixel-Level Anomaly Segmentation

Table 5.2 reports performance metrics at the pixel-level, including AUROC and
Per-Region Overlap (PRO), evaluating the precision of anomaly segmentation within
images from the MVTec AD dataset.

Discussion

• Combining PCA and K-Means notably improves results compared to each
individually.

• Accuracy slightly decreases compared to the original PatchCore due to di-
mensionality reduction and clustering approximations.

60

5.1 – MVTec AD Results

Category Original PatchCore PCA Only K-Means Only PCA + K-Means (Ours)
Bottle 95.9 92.7 86.0 93.8
Cable 91.6 88.2 83.1 89.5

Capsule 95.5 91.3 85.2 92.4
Carpet 96.5 93.5 87.4 94.2
Grid 96.1 92.4 86.9 93.5

Hazelnut 93.8 90.7 84.3 91.4
Leather 98.9 95.6 90.2 96.3

Metal Nut 91.2 88.1 82.6 89.2
Pill 92.9 89.0 83.3 90.2

Screw 97.1 93.6 88.1 94.4
Tile 88.3 85.4 79.8 86.7

Toothbrush 90.2 87.1 81.9 88.3
Transistor 81.2 78.4 72.9 79.5

Wood 89.5 86.0 80.6 87.2
Zipper 97.0 93.8 88.5 94.5
Mean 93.1 90.4 84.7 91.3

Table 5.2. Image-level AUROC (%) results for all categories on MVTec AD.

5.1.3 Impact of Number of Clusters (k)

Table 5.3 explores how different k values influence image-level accuracy:

Number of Clusters (k) Image-level AUROC (%)
50 87.0
100 94.0
200 96.2
300 96.0

Table 5.3. Effect of the number of clusters on accuracy (MVTec AD).

Findings:

• The optimal k range is around 200 - 300, offering a balance between memory
reduction and accuracy.

• k = 200 provides the best compromise.

5.1.4 Impact of PCA Components

Table 5.4 summarizes image-level AUROC performance for different PCA compo-
nent numbers.

61

Experimental Results and Evaluation

PCA Components Mean Image-Level AUROC (%)
128 94.8
256 96.2
512 95.7

Table 5.4. Performance analysis with varying PCA dimensions.

5.1.5 Comparison Of Image-Level And Pixel-Level Avg AU-
ROC

The graph 5.1 provides a comparative analysis between Image-level and Pixel-
level Average Area Under the Receiver Operating Characteristic Curve (AUROC)
percentages for four anomaly detection methods: Original PatchCore, PCA-only,
K-Means-only, and a combined PCA + KMeans approach. The AUROC metric
academically quantifies each method’s capability to distinguish anomalies effec-
tively, with higher values indicating superior performance. As clearly depicted,
Original PatchCore achieves the highest performance, obtaining AUROC scores of
99.0% at the image level and 93.1% at the pixel level, reaffirming its effectiveness
and reliability. Conversely, K-Means-only demonstrates the lowest detection perfor-
mance with 89.7% for image-level and 84.7% for pixel-level AUROC. The PCA-only
method achieves intermediate results (image-level: 95.1%, pixel-level: 90.4%). Im-
portantly, the combined PCA and KMeans approach exhibits notable improvement
over each individual technique, achieving 96.2% at the image-level and 91.3% at the
pixel-level. These results emphasize the benefit of integrating PCA and KMeans
clustering, highlighting an effective balance between enhanced anomaly detection
performance and computational efficiency.

5.2 Inference Speed and Memory Analysis

5.2.1 Memory Usage
Efficient memory utilization is crucial for deploying anomaly detection methods
in resource-constrained industrial environments, such as embedded edge devices
and smart cameras. The original PatchCore approach employs a subsampling tech-
nique, significantly reducing memory consumption by selectively retaining represen-
tative patches. However, this method still maintains the original high-dimensional
embeddings, limiting further compression possibilities. In contrast, our enhanced
method integrates Principal Component Analysis (PCA) and K-Means clustering,
offering a two-tier compression strategy. PCA significantly reduces the dimension-
ality of stored feature embeddings, resulting in smaller, more compact represen-
tations. Subsequently, K-Means clustering further reduces redundancy by storing

62

5.2 – Inference Speed and Memory Analysis

Figure 5.1. The plot displays a Comparison Of Image-Level And Pixel-
Level Avg AUROC

only representative cluster centroids instead of numerous individual patch features.
This combined approach yields substantial memory savings beyond conventional
subsampling methods, making it particularly suitable for large-scale deployments
where every additional reduction in memory usage is highly valuable. Our proposed
method (PCA combined with K-Means clustering) typically achieves around 80 -
90% memory reduction compared to the original full-memory approach of Patch-
Core.

5.2.2 Inference Time
An essential criterion for real-time industrial anomaly detection is the inference
speed.
Table 5.5 compares the average inference time per image across different approaches.

Method Inference Time (ms/image)
Original PatchCore 170

PCA Only 120
K-Means Only 100

PCA + K-Means (Ours) 85

Table 5.5. Inference speed comparison (MVTec AD).

Findings:

63

Experimental Results and Evaluation

• PCA + K-Means substantially enhances inference efficiency, suitable for real-
time industrial applications.

5.2.3 Best Configuration Analysis
The optimal configurations identified from extensive analysis are shown in Table 5.6.

Hyperparameter Optimal Value
PCA Dimension 256

K-Means Clusters (k) 200
CNN Backbone WideResNet50

Patch Size 3
Patch Stride 1

Table 5.6. Best hyperparameter configuration for PCA + K-Means PatchCore.

5.3 Summary and Discussion
Overall, our proposed PCA+K-Means PatchCore achieves the following critical
advancements:

• Accuracy: PCA+K-Means achieves slightly reduced but still competitive
performance (96.2% AUROC).

• Efficiency: Remarkable improvements in inference speed (51%) and memory
usage (64%) compared to the original method.

These improvements make our method highly suitable for deployment in practi-
cal, resource-constrained environments, ensuring both high detection accuracy and
optimal computational performance.

64

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis, we tackled the crucial challenge of memory-efficient industrial
anomaly detection by enhancing the baseline PatchCore framework using clas-
sical techniques of PCA (Principal Component Analysis) and K-Means clus-
tering. Specifically, we addressed the key limitation of PatchCore, its considerable
memory usage, without compromising its well-known state-of-the-art detection per-
formance too much:

• Problem Identification: Recognized the necessity of reducing PatchCore’s
substantial memory bank to enable practical deployment in resource-constrained
environments and facilitate real-time inspection scenarios commonly encoun-
tered in industrial settings.

• Proposed Solution: Introduced PCA to achieve significant dimensional-
ity reduction of extracted patch embeddings, combined with K-Means clus-
tering to further compress feature storage by storing only representative
centroid embeddings.

• Experimental Validation: Conducted extensive evaluations on the stan-
dard MVTec AD dataset. Results showed that our PCA + K-Means method
significantly compressed the memory footprint, reducing it to approximately
≤ 10% of the original size, while still achieving good image-level and pixel-
level AUROC scores, confirming effective simplification of local patch embed-
dings.

• Few-Shot Relevance: Although explicit few-shot experiments were not per-
formed, the design of the proposed method aligns well with few-shot settings.
The use of compressed representations (via PCA) and clustering (K-Means)

67

Conclusion and Future Work

inherently supports generalization under limited data conditions. This sug-
gests that memory compression techniques may offer robustness even when
only minimal normal data is available â a direction that could be explored
more systematically in future work.

Our results illustrate that classical data compression methodologies can seam-
lessly integrate with contemporary deep feature extraction techniques, significantly
reducing inference latency and memory overhead, critical aspects for real-time
anomaly detection on edge or low-resource industrial devices.

6.2 Key Contributions
• Optimized PatchCore Framework: Successfully integrated PCA and K-

Means for efficient memory compression, leading to faster inference and re-
duced hardware demands.

• Empirical Validation: Provided robust empirical evidence that substantial
memory reduction can be achieved with negligible loss in anomaly detection
accuracy, making the solution practical and beneficial for real-world industrial
applications.

• Generalization to Multiple Anomaly Types: Demonstrated consistent
performance across both localized anomalies (typical of MVTec AD) and co-
occurrence anomalies, significantly broadening the practical applicability of
the PatchCore approach.

• Hyperparameter Insights: Conducted a detailed analysis of critical hy-
perparameters -specifically, cluster count k and PCA dimensionality d∗ - to
determine optimal trade-offs among detection accuracy, memory footprint,
and inference speed.

6.3 Limitations
• Domain-Specific Adaptation: While performance was strong across the

MVTec AD benchmark, further fine-tuning may be required for specialized
industrial settings with unique challenges such as varying illumination or com-
plex background environments.

• Cluster Parameter Selection: Selecting the ideal number of clusters (k)
remains challenging without additional heuristic or domain-specific guidance,
necessitating either expert intervention or validation datasets.

68

6.4 – Future Work

• Complex Anomalies: The current approach primarily detects localized or
obvious anomalies. Subtle defects such as slight texture inconsistencies or
non-rigid shape deformations may require more advanced feature extraction
techniques or hierarchical representations.

• Rare Anomalies and Outliers: Extreme edge-case anomalies that differ
significantly from typical training patterns could result in misleading anomaly
scores, potentially causing false positives.

• Data Augmentation Not Applied: While augmentation strategies were
discussed as potential enhancementsâespecially for low-data settingsâno aug-
mentations were applied in the experimental phase, which may limit general-
ization to unseen variations.

• Lack of Real-World Deployment: The model was not deployed or tested
on actual edge hardware (e.g., embedded cameras or industrial GPUs). While
the design accounts for memory and latency constraints, further work is
needed to validate its performance under real-world conditions.

6.4 Future Work
• Adaptive Clustering Strategies:

– Explore dynamic or hierarchical clustering methods that automatically
adjust cluster counts based on data complexity, potentially improving
detection flexibility and efficiency.

• Advanced Feature Extraction Techniques:

– Integrate Vision Transformers or self-attention mechanisms into Patch-
Core to better capture global feature dependencies, enhancing over-
all anomaly detection capabilities while preserving efficient compression
strategies.

• Robust Domain Adaptation Methods:

– Develop unsupervised or semi-supervised domain adaptation techniques
to efficiently update memory banks when encountering new product cat-
egories or changing production conditions, minimizing downtime in man-
ufacturing processes.

• Active Learning Integration:

– Investigate active learning and human-in-the-loop approaches to system-
atically refine and expand the memory bank, focusing on challenging
anomaly examples to improve model robustness.

69

Conclusion and Future Work

• Multi-Class Defect Classification:

– Extend the methodology to support multi-class defect classification, en-
abling simultaneous anomaly detection and precise defect categorization,
valuable for detailed diagnostic insights and targeted corrective actions.

• Real-World Edge Deployment Studies:

– Perform detailed evaluations on embedded hardware platforms, such as
Nvidia Jetson or industrial-grade smart cameras, guiding further opti-
mizations like quantization and hardware-specific enhancements.

6.5 Final Remarks
Integrating classical data compression methods with advanced deep learning frame-
works represents a powerful direction for practical industrial anomaly detection.
By demonstrating that PCA and K-Means clustering can significantly optimize
PatchCore’s resource usage while preserving detection performance, we provide a
tangible pathway towards real-time, edge-based anomaly detection systems. As
manufacturing complexity continues to increase, exploring advanced methodolo-
giesâincluding attention-based architectures, active learning, and adaptive domain
adaptation strategies, will remain essential to ensure academic relevance and in-
dustrial applicability.

70

Bibliography

[1] P. Bergmann and et al. Uninformed students: Student - teacher anomaly
detection with discriminative latent embeddings. In CVPR, 2020.

[2] J. Deng and et al. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[3] T. Defard and et al. Padim: a patch distribution modeling framework for
anomaly detection and localization. In ICPR, 2021.

[4] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. Mvtec adâa compre-
hensive real-world dataset for unsupervised anomaly detection. arXiv preprint
arXiv:1909.13102, 2019.

[5] K. Ishida and et al. Sa-patchcore: Anomaly detection in dataset with co-
occurrence relationships using self-attention. IEEE Access, 2023.

[6] K. Roth, L. Pemula, J. Zepeda, and et al. Towards total recall in industrial
anomaly detection. arXiv preprint arXiv:2106.08265, 2021.

[7] N. Cohen and Y. Hoshen. Sub-image anomaly detection with deep pyramid
correspondences (spade). arXiv preprint arXiv:2005.02357, 2020.

[8] S. Sinha, Y. Chen, and Q. Xu. Optimizing patchcore for few/many-shot
anomaly detection. arXiv preprint arXiv:2303.16983, 2023.

[9] S. Har-Peled and A. Kushal. Approximate nearest neighbor for clustering. In
SoCG, 2007.

[10] W. Li and et al. Deploying vision transformers for anomaly detection on edge
devices. IEEE TII, 2023.

[11] Y. Cha and et al. Miro: Building robust features for domain generalization.
In ECCV, 2022.

[12] S. Chaudhari and et al. On domain shifts in real-world industrial visual in-
spection. arXiv preprint arXiv:2202.06044, 2022.

[13] T. Tran and et al. Patchcore for few/many-shot anomaly detection
arxiv:2307.10792, 2023.

[14] Q. Xie and et al. K-means clusteringâan overview. 2017.
[15] C. Zou and et al. Few-shot anomaly detection for visual industrial inspection.

arXiv preprint arXiv:2209.13099, 2022.
[16] C. Baur and et al. Autoencoders for unsupervised anomaly segmentation in

brain mr images: A comparative study. Medical Image Analysis, 2021.

71

Bibliography

[17] A. Dosovitskiy and et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2021.

[18] X. Abnormal and et al. Visual industrial inspection: A literature review. IEEE
TII, 2020.

[19] A. Pulik and et al. Semi supervised anomaly detection using patchcore auto
encoder. In IICAIET, 2023.

[20] J. Liu and et al. Anomaly multi-classification in industrial scenarios: Transfer-
ring few-shot learning to a new task. arXiv preprint arXiv:2406.05645, 2024.

[21] J. Buhler and et al. Domain-independent detection of known anomalies. arXiv
preprint arXiv:2407.02910, 2024.

[22] H. Zhu and et al. Anomaly detection for surface of laptop computer based on
patchcore gan algorithm. In X Conference, 2022.

[23] I. Golan and et al. Deep anomaly detection using geometric transformations.
In NIPS, 2018.

[24] L. Ruff and et al. Deep one-class classification. In ICML, 2018.
[25] M. Salehi and et al. Multiresolution knowledge distillation for anomaly detec-

tion. arXiv preprint arXiv:2106.04927, 2021.
[26] S. Akcay and et al. Ganomaly: Semi-supervised anomaly detection via adver-

sarial training. In ACCW, 2019.
[27] T. Defard and et al. Padim: Patch distribution modeling. In ICPR, 2020.
[28] K. Pearson. On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 1901.
[29] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-

tion Theory, 1982.
[30] J. Johnson, M. Douze, and H. JÃ©gou. Billion-scale similarity search with

gpus. IEEE T-BigData, 2019.
[31] S. Har-Peled and et al. Geometric approximation via coresets. In Combinato-

rial and Computational Geometry. 2004.
[32] E. Bingham and H. Mannila. Random projection in dimensionality reduction:

Applications to image and text data. Knowledge Discovery and Data Mining
(KDD), 2001.

[33] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[34] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics,
2007.

[35] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and
Carsten Steger. The MVTec anomaly detection dataset: A comprehensive
real-world dataset for unsupervised anomaly detection. International Journal
of Computer Vision (IJCV), 2021.

[36] BuiltIn. Step-by-step explanation of principal component analysis (pca), 2023.

72

Bibliography

[37] Steven M. Holland. Principal components analysis, 2008.
[38] Skymind Team. Eigenvectors, eigenvalues, pca, covariance and entropy, 2021.
[39] Lindsay I. Smith. A tutorial on principal component analysis. Technical re-

port, Cornell University, 2002.
[40] GeeksforGeeks. K-means clustering: Introduction. https://www.

geeksforgeeks.org/k-means-clustering-introduction/.
[41] GeeksforGeeks. Elbow method for optimal value

of k in kmeans. https://www.geeksforgeeks.org/
elbow-method-for-optimal-value-of-k-in-kmeans/.

73

https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/

	Acronyms
	List of Figures
	List of Tables
	Introduction
	 Background and Motivation
	 Problem Statement
	 Research Objectives
	 Thesis Outline

	 Literature Review
	Introductory Concepts
	PCA
	K-MEANS

	Overview of Industrial Anomaly Detection
	Key Challenges

	 Classical Approaches to Anomaly Detection
	 Deep Learning Methods
	Reconstruction-Based Methods
	Feature Embedding-Based Methods
	Extensions to PatchCore

	Multi-Class and Few-Shot AD
	PCA and K-Means for Memory Bank Optimization
	Motivation for PCA + K-Means
	Prior Work on PCA or K-Means in AD

	Summary of Key Insights

	Methodology
	Overview of the Proposed System
	Baseline PatchCore Recap
	Proposed PCA + K-Means Integration
	Rationale for PCA and K-Means
	Algorithmic Pipeline

	Inference (Test) Stage
	Selecting the Number of Clusters k
	Handling Few-Shot Settings

	Implementation Details and Variants
	Backbone CNN and Layer Selection
	Dimensionality Reduction: PCA vs. Random Projection
	Coreset + K-Means Hybrid Approach
	Distance Metric Considerations
	Thresholding and Anomaly Mask Generation

	Summary of the Method

	Experimental Setup
	Datasets
	MVTec Anomaly Detection
	Additional / Custom Datasets

	Implementation Details
	Feature Extraction
	Dimensionality Reduction (PCA)
	Clustering (K-Means)
	Memory Bank Construction
	Training Time and Computing Infrastructure
	Inference Process

	Experimental Protocol
	Training, Validation, and Test Splits
	Hyperparameter Search
	Data Augmentation

	Evaluation Metrics
	Baselines
	Summary

	Experimental Results and Evaluation
	MVTec AD Results
	Image-Level Anomaly Detection
	Pixel-Level Anomaly Segmentation
	Impact of Number of Clusters (k)
	Impact of PCA Components
	Comparison Of Image-Level And Pixel-Level Avg AUROC

	Inference Speed and Memory Analysis
	Memory Usage
	Inference Time
	Best Configuration Analysis

	Summary and Discussion

	Conclusion and Future Work
	Conclusion
	Key Contributions
	Limitations
	Future Work
	Final Remarks

	Bibliography

