
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

3D Gaussian Splatting for UAV-Based
Reconstruction of Urban Environments

Supervisors

Prof. Andrea BOTTINO

Prof. Dr. Francesco NEX

Candidate

Carolina ROVEGNO

April 2025

Alle Nonne, il mio tesoro più grande.
Al Nonno, la mia stella.

ii

Acknowledgements

Coming to the end of this long journey, some acknowledgements are necessary.

To my supervisors, Prof. Andrea Bottino and Prof. Francesco Nex for their support
and for giving me the opportunity to work on this project at the University of
Twente. The months spent in Enschede have been incredible, an experience I will
never forget.

To my family, for their unwavering support and for never stopping believing in me,
even when everything seemed dark.

To my lifelong friends, Laura, Giulia and Serena, for always standing by my side in
every situation.

To the friends I met in Torino, Alessandro, Letizia, Simona, Valentina, for sharing
this journey with me and for making these years a little lighter.

Finally, to those who have been with me from the beginning but are no longer here
to see me cross this finish line with a laurel crown on my head. This achievement
is also for you.

iv

Abstract

UAV-based 3D reconstruction of large-scale environments has been largely adopted
in different domains, starting with virtual reality and 3D documentation and moving
on to more practical applications such as land analysis, urban area mapping and
disaster management. The reconstruction techniques used are mainly based on two
different approaches: with passive sensors, relying on image-only methodologies
and with active sensors, which consist of laser-based methods (such as LiDAR).
Image-based reconstruction was traditionally based on photogrammetric computer
vision, but deep learning has recently innovated these techniques. Deep learning-
based methods can learn how to represent three-dimensional scenes to generate
realistic renderings from a sequence of images. Among these approaches, Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have recently shown
promising results in the generation of accurate rendering, but the quality of the
generated 3D point cloud is often neglected. The main object of this research
project is to assess the 3D Gaussian Splatting algorithm in terms of quality of
the generated 3D reconstruction. In particular, both the original implementation
and its updated version, called DN-Splatter, are considered during the evaluation
process. DN-splatter takes into consideration normal and depth maps extracted
from the data to obtain a more accurate representation from a geometrical point
of view. The evaluation is conducted on three different UAV-captured datasets of
urban environments, two of them including ground-truth LiDAR point clouds. In
order to assess the algorithms’ performances, both renders and point clouds are
evaluated with appropriate metrics. In particular, PSNR, LPIPS, and SSIM are
used to evaluate the generated images, thus the quality of the final renders compared
to UAV images. On the other hand, the generated point clouds are evaluated
from a geometric point of view, by calculating the point-to-point distance from
the LiDAR point cloud. Although the quality of the final renders does not show
an evident difference between the two algorithms, the results show DN-Splatter
outperforms the original 3D Gaussian Splatting in geometric accuracy. In that
regard, the rendering is able to “hide” incorrect 3D reconstructions that are more
evident in the point clouds comparison.

vi

Table of Contents

List of Tables x

List of Figures xi

Acronyms xiv

1 Introduction 1
1.1 UAVs for 3D Reconstruction . 1
1.2 Motivations and Goals . 2
1.3 Thesis Structure . 2

2 Background 4
2.1 Active 3D Reconstruction . 5

2.1.1 LiDAR-Based Reconstruction 5
2.2 Passive 3D Reconstruction . 6

2.2.1 Sparse Reconstruction: Structure from Motion 7
2.2.2 Dense Reconstruction: Multi-View Stereo 9

2.3 Deep Learning for 3D Reconstruction 10
2.3.1 Neural Radiance Field . 11

3 3D Gaussian Splatting 13
3.1 Introduction to the Algorithm . 13
3.2 Algorithm’s Pipeline . 14

3.2.1 Initialization . 15
3.2.2 Rasterization . 15
3.2.3 Loss Computation . 17
3.2.4 Optimization . 17

3.3 Evaluation Metrics . 19
3.3.1 PSNR . 19
3.3.2 SSIM . 20
3.3.3 LPIPS . 20

viii

3.4 Addressing Limitations . 21
3.5 DN-Splatter: Depth and Normal Supervision 22

3.5.1 Normals Estimation . 22
3.5.2 Depth Maps Generation . 23
3.5.3 Loss Functions . 24

4 Methodology 25
4.1 Selected Datasets . 25
4.2 Computational Resources . 27
4.3 Software Setup . 28

4.3.1 Microsoft Visual Studio . 28
4.3.2 Anaconda Environment . 29
4.3.3 Singularity . 29
4.3.4 Slurm Scheduling . 30

4.4 Running with Limited Resources 31
4.4.1 Image Rescaling . 31
4.4.2 Cells Division . 32
4.4.3 Other Suggestions . 33

4.5 Data Pre-Process . 34
4.5.1 SfM-sparse Alignment with Camera Poses 35
4.5.2 Compute Normal and Depth Maps 36

4.6 Analysis of Training Hyperparameters 38
4.7 Evaluated Training Configurations 39

4.7.1 3D Gaussian Splatting . 40
4.7.2 DN-Splatter Algorithm . 41

4.8 Renders and Point Cloud Extraction 45
4.9 Pointcloud Post-Process . 46

4.9.1 Alignment . 46
4.9.2 Outliers Removal . 47
4.9.3 Downsampling . 49
4.9.4 Point-to-Point Distance . 49

5 Results and Discussions 50
5.1 Photometric Analysis . 50
5.2 Geometric Analysis . 55

6 Conclusions 63

Bibliography 66

ix

List of Tables

4.1 UseGeo and H3DG flight specifications. 27

5.1 3D Gaussian Splatting photometric results 51
5.2 3D Gaussian Splatting photometric results for individual cell using

base configuration . 52
5.3 DN-Splatter photometric results . 53
5.4 The percentage of gaussians in the point cloud produced by 3DGS

that are below a specific distance threshold in comparison to LiDAR
is displayed in the table for each tested configuration. The mean
and standard deviation global distance values, both in centimetres,
are also displayed. 56

5.5 The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR
is displayed in the table for each tested configuration. The mean
and standard deviation planar distance values, both in centimetres,
are also displayed. 56

5.6 The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR
is displayed in the table for each tested configuration. The mean
and standard deviation global distance values, both in centimetres,
are also displayed. 58

5.7 The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR
is displayed in the table for each tested configuration. The mean and
standard deviation global planar distance values, both in centimetres,
are also displayed. 59

x

List of Figures

2.1 Common 3D reconstruction methods for real-world environments.
Source:[8] . 4

2.2 Different UAV data collection for urban environment reconstruc-
tion tasks: RGB sensor acquisition (passive techniques) on the left,
LiDAR sensor acquisition (active techniques) on the right. 6

2.3 Incremental Structure-from-Motion pipeline. Source:[17] 8
2.4 Structure-from-Motion sparse reconstruction of urban environment. 8
2.5 Sparse reconstruction (on the left) versus dense reconstruction (on

the right) of the same urban environment: comparison of resulting
point clouds obtained respectively with SfM and MVS technique. . 9

2.6 NeRF scene representation and rendering procedure. 12

3.1 NeRF and 3DGS different rendering concepts. NeRF employs an
MLP to estimate density and color at each sampled position after
periodically sampling each ray from the image to the scene. Gaus-
sian Splatting uses elliptical splats to determine each gaussian’s
contribution to the light beam. Source:[27] 14

3.2 3D Gaussians Splatting’s pipeline 14
3.3 3D Gaussian Splatting rasterization algorithm 16
3.4 Adaptive density control of 3D gaussians 17
3.5 3D Gaussian Splatting optimization algorithm. 18

4.1 Example of images in the PDT Dataset. 25
4.2 Example of images in the UseGeo Dataset. 26
4.3 Example of images in the H3DG Dataset. 27
4.4 Point cloud division algorithm . 33
4.5 Pescara del Tronto dataset divided into three cells, optimized sepa-

rately, before the alignment phase using Align Tool. 47
4.6 DN-Splatter point cloud, displayed in CloudCompare. On the left,

the top view of the scene is shown, on the right the side view of the
same scene. Outliers, circled in red, are highlighted. 48

xi

4.7 DN-Splatter point cloud, following the clean-up operation using
Segmentation Tool. 48

5.1 Some extracts from the reconstruction of the Pescara del Tronto
dataset. 51

5.2 On the left, the reconstruction of C3,largely covered in vegetation;
on the right, the reconstruction of C1 characterized by a high number
of details. 53

5.3 Some extracts from the reconstruction of the H3DG dataset. 54
5.4 On the left, a side view of the reconstructed environment; on the

right, an aerial view of the same region. 54
5.5 On the left, the point cloud representing the global distance between

the LiDAR reference and the generated point cloud, with the relative
distribution of points on the different distance values; on the right,
the same representation but related to the planar distance. 57

5.6 Point cloud representing block C2 of the H3DG dataset, generated
via DN-Splatter in the basic configuration. In light blue, the LiDAR
point cloud is shown, in RGB the generated point cloud. Clusters of
outliers are evident on the rooftops. 59

5.7 On the left, the point cloud representing the global distance with the
relative distribution of points; on the right, the same representation
but related to the planar distance. 60

5.8 On the left, the point cloud generated by the 3D Gaussian Splatting
algorithm; on the right, the point cloud generated by the DN-Splatter
algorithm, both in their basic configuration. 61

xii

Listings

4.1 Commands to create a Miniconda environment 29
4.2 SLURM sbatch script for job submission 30
4.3 Convert images to COLMAP format 35
4.4 COLMAP model aligner . 36
4.5 Nomal maps generation . 36
4.6 Monocular depths estimation . 37
4.7 Base configuration - 3D Gaussian Splatting 40
4.8 High Quality configuration - 3D Gaussian Splatting 41
4.9 Base configuration - DN-Splatter 42
4.10 Edeg-based configuration - DN-Splatter 43
4.11 Tuning configuration - DN-Splatter 43
4.12 Tuning configuration for H3DG dataset - DN-Splatter 44
4.13 DN-Splatter output directory . 45
4.14 Renders extraction and metrics computation 46
4.15 Point cloud export . 46

xiii

Acronyms

UAVs
Unmanned Aerial Vehicles

SfM
Structure from Motion

MVS
Multi-View Stereo

NeRF
Neural Radiance Fields

3DGS
3D Gaussian Splatting

DNS
DN-Splatter

H3DG
Hessigheim 3D Geometric Benchmark

PSNR
Peak Signal-to-Noise Ratio

SSIM
Structural Similarity Index Measure

LPIPS
Learned Perceptual Image Patch Similarity

xiv

Chapter 1

Introduction

1.1 UAVs for 3D Reconstruction

Unmanned Aerial Vehicles (UAVs) are a very useful tool for solving tasks in different
scenarios. The ability to be remotely guided or fly autonomously, combined with
their small size, light weight and agility makes them the best choice in situations
where, for various reasons, it is not possible for humans to reach the scene to be
reconstructed. One example is emergency situations or whenever there is a need
to capture aerial images for tasks like land analysis. These devices can capture
different kinds of data, as they can be equipped not only with RGB and thermal
cameras, capable of acquiring high-resolution images, but also sensors that can
extract in-depth information of the scene. An example is LiDAR, which will be
discussed in the next chapter. The ability to acquire these types of heterogeneous
data, either separately or in a hybrid manner, makes them very useful in the
field of 3D reconstruction [1] and urban mapping [2], for both active and passive
approaches. The reconstruction process can be performed either online or offline,
depending on when the data processing is done. Both approaches are based on
feature extraction from the scene, followed by mapping and creation of the three-
dimensional environment. The offline methodology is based on Structure from
Motion (SfM) which is a passive reconstruction technique, that only uses 2D images
to create the 3D scene. This approach needs time to be able to process all the
data and is often used in photogrammetry or modeling, as well as land analysis
and general 3D reconstruction. In contrast, the online method is based on the
Simultaneous Localization and Mapping (SLAM) technique. It can also integrate
other sensors to acquire information on the device’s position and create a map of the
surrounding environment. This method is often used for autonomous navigations
tasks. In emergency situations it is necessary to use online approaches to obtain
results as quickly as possible.

1

Introduction

1.2 Motivations and Goals
3D reconstruction of urban environments can be highly useful in different scenarios,
from computer vision tasks to virtual reality applications. However, there are some
difficulties to consider when recreating a 3D scene. Poor or variable lightning and
adverse weather conditions, occlusions and data noise can represent a challenge,
especially on large-scale datasets. Additionally, these types of datasets can be
problematic in terms of processing time and computational resources, especially
when traditional rendering techniques are used, since a dense point cloud is required
to achieve accurate results. Also, deep learning techniques may not be as accurate
in terms of results if the selected dataset is quite different from the data used in
the network training process. 3D Gaussian Splatting [3] tries to partially address
these challenges by optimizing the point parameters directly from the input images,
without the need for a complex neural network. It implements volumetric rendering,
which enables high-quality results even with a sparse point cloud. This allows
the processing of a larger amount of data without losing quality reconstruction.
However, the algorithm’s performance has been so far evaluated on small-scale
datasets, which differ in features from the datasets considered in this research
project. The main objective is to evaluate the 3D Gaussian Splatting performances
in reconstructing large-scale urban environments using high-resolution UAV-images
as input data. In particular, the goal is to determine whether the algorithm is
capable of accurately reconstructing the geometry of the scene while also generating
high-quality real-time renderings.

1.3 Thesis Structure
This research project, with a focus on outdoor environment reconstruction using
3D Gaussian Splatting, is divided into five different chapters:

• Chapter 2 presents an overview of 3D reconstruction techniques, highlighting
the differences between passive and active methodologies. In addition, it also
shows the main features of deep-learning-based method which can be both
passives, active or even hybrid techniques, based on the scenario and the
available data.

• Chapter 3 focuses on 3D Gaussian Splatting algorithm, documenting its
key features, workflow and optimization process which led to a sparse point
cloud representation of the scene. Some of the algorithm’s limitations are also
presented, together with a possible solution: the DN-Splatter algorithm [4].

• Chapter 4 describes the methodology. Initially, the three datasets selected
for the reconstruction process are presented, followed by a description of the

2

Introduction

metrics used to evaluate the resulting renders. Next, the chapter focuses on
the post-processing of the generated sparse point cloud and the description of
the point-to-point distance computation between the output and the LiDAR
point cloud.

• Chapter 5 presents and discusses the results obtained on the three datasets,
both visually and geometrically.

• Chapter 6 concludes the research project summarizing the key concepts and
proposing possible insights for future work.

3

Chapter 2

Background

The process of 3D reconstruction can be accomplished through a variety of methods,
ranging from deep learning-based to conventional ones. Depending on the sort of
data the algorithm receives as input, these can be divided into sensor-based (active
approaches) and image-based (passive approaches). Over the years, numerous
studies [5][6][7] have been carried out over time to assess how well certain methods
work in resolving particular issues.
An overview of various reconstruction techniques is provided in this chapter.

Figure 2.1: Common 3D reconstruction methods for real-world environments.
Source:[8]

4

Background

2.1 Active 3D Reconstruction
Active reconstruction approaches use sensors that emit an active signal to learn
about the geometry of a scene. These techniques generate depth information
dynamically from the signal’s interaction with the surroundings rather than simply
depending on ambient light or photographs. There are several techniques that are
characterized by the use of different signals. By measuring the distance between
the sensor and objects, laser pulses can provide depth information about the
environment. Other methods employ light signals projected onto the surface of the
scene and they analyzed the distortion to calculate depth.
Active reconstruction’s independence from lighting conditions and ability to obtain
precise depth information even in low-light and low-texture scenarios are its main
advantages. The drawback is the need for specialized technology, which inevitably
raises the cost of this process compared to methods that only employ RGB images.
In addition, the reconstruction process may be complicated by possible noise and
interference issues in scenarios with reflecting or clear surfaces.
The LiDAR sensor, which is the specific type of sensor employed to collect the
ground-truth data used in the experimental phase of the research project, will be
introduced in the next Section.

2.1.1 LiDAR-Based Reconstruction
LiDAR (Light Detection and Ranging) is a remote sensing technology which mea-
sures the precise distance between a sensor and nearby objects using laser beams.
The basic concept is based on the emission of a laser pulse which is then reflected
off the impacted surfaces before returning to the sensor. A finely detailed three-
dimensional representation of the scene is produced by calculating the distance
between the sensor and the object based on the time it takes for the pulse to return
to the receiver. One of LiDAR’s primary benefits is its capacity to gather data
in challenging locations, low light levels, and adverse weather situations where
image-only techniques like photogrammetry might not be as effective. In addition,
this technology is really useful to address terrain mapping tasks thanks to its ability
to partially penetrate vegetation Its drawbacks, however, are the high expense of
specialized technology, the requirement to process vast volumes of data in order
to produce precise models, and the incapacity to extract scene-specific texture or
color information.
In recent years, LiDAR has been widely used in several fields, including mapping,
autonomous driving, archeology, and environmental monitoring [9]. In particular,
the 3D reconstruction of outdoor environments has been transformed by its in-
tegration with Unmanned Aerial Vehicles (UAV) systems [10][11]. These devices
represent the ideal equipment to solve these tasks since they they can rapidly

5

Background

fly over large areas and gather incredibly detailed information with centimeter
accuracy.

Figure 2.2: Different UAV data collection for urban environment reconstruction
tasks: RGB sensor acquisition (passive techniques) on the left, LiDAR sensor
acquisition (active techniques) on the right.

2.2 Passive 3D Reconstruction

Passive 3D reconstruction techniques [12][13][14] rely only on 2D images acquired
by cameras, without the need for active signals. These methodologies use image
analysis to extract geometric information and reconstruct the three-dimensional
structure of the scene. Passive techniques have several advantages, including
simplicity of data acquisition, since a set of images taken with standard cameras
is sufficient. They are also cheaper than active methods and can be applied
to a wide range of contexts, such as photogrammetry, archaeology and urban
modeling. On the other hand, relying on RGB data only, they are sensitive to all
limitations associated with image acquisition, such as variable lighting conditions,
data resolution, data noise and possible lack of texture information. In recent years
these passive approaches have seen great improvements due to deep learning-based
techniques [15]. For the sake of this chapter, a passive technique will be addressed
in Section 2.3.1, even though these methods are frequently associated with hybrid
approaches, where reconstruction is accomplished by integrating RGB images with
data from active sensors.

6

Background

2.2.1 Sparse Reconstruction: Structure from Motion
Sparse Reconstruction is a passive 3D reconstruction technique that aims to obtain
a three-dimensional representation of the scene using a limited number of keypoints
extracted from RGB images captured from different perspectives. This task is as
useful as it is complex; in fact, it is easy to go from a 3D world to a 2D one by
capturing a series of images, but the reverse step is not so intuitive. A whole range
of factors must be considered.
The Sparse Reconstruction process generally follows a specific pipeline, divided
into four main steps:

• Feature extraction. This initial stage enables the identification of potential
key points in the images. These points must be invariant to geometric and
radiometric transformations to ensure robustness even under varying lighting
conditions or different camera angles. The most used descriptors that satisfy
these conditions are SIFT (Scale Invariant Feature Transform) descriptors
[16], which allow robust feature points to be detected at rotation, scale, and
illumination. These key points provide key geometric information for the
subsequent image matching step.

• Feature matching After feature extraction, matches must be established
between images to determine which points represent the same portion of the
scene in different views. Feature matching is done by comparing the extracted
feature descriptors and selecting the best matches using similarity metrics,
such as Euclidean distance. This step is crucial, as incorrect matches can
compromise the quality of the final reconstruction.

• Scene reconstruction through triangulation. The position of cameras
and keypoints is estimated in the three-dimensional space and the sparse
representation is generated accordingly. This is done through an iterative
process where the position of the cameras and images is estimated with respect
to the 3D scene initially created from a pair of images.

• Bundle adjustment. This is a final optimization stage which reduces
the projection error by minimizing the discrepancies between the acquired
images and the reconstructed 3D model. This process improves reconstruction
accuracy and ensures geometric consistency between different images.

This Section examines the Structure from Motion (SfM) [18][19] technique, which
is a popular photogrammetry technique for reconstructing a 3D sparse scene based
on this approach. This technique turns out to be widely used in different domains,
from computer vision to archaeology, from 3D scanning for the reconstruction of
minute objects to the reconstruction of large-scale monuments or scenes. Unlike

7

Background

Figure 2.3: Incremental Structure-from-Motion pipeline. Source:[17]

traditional photogrammetry, which needs to know the location of certain cameras in
advance to accurately recreate the scene, SfM automatically derives this information
using the pipeline mentioned above and showed in Fig. 2.3. This way of extracting
information makes this approach suitable to be used at consumer level as well, as
it achieves respectable results even on data acquired from less high-performance
cameras and even smartphones. It can adapt to different levels of input data quality.
Despite this, there are also cases where this methodology fails to perform at its
best. The main problem lies in the reconstruction of scenes or objects without
textures or at least without enough key points to rely on for image overlay. It
is much more complex to work with images that represent a very uniform scene
with not enough edges or features to align. Moreover, this method produces only a
partial representation of the scene, proving insufficient for applications requiring
complete and detailed three-dimensional models. For this reason, it is often used
as a preliminary step before proceeding with more advanced dense reconstruction
techniques.
This approach is also used by the 3D Gaussian Splatting algorithm, using COLMAP
software [20][21], to generate the sparse point cloud shown in Figure 2.4 from which
the optimization process starts.

Figure 2.4: Structure-from-Motion sparse reconstruction of urban environment.

8

Background

2.2.2 Dense Reconstruction: Multi-View Stereo

Dense Reconstruction is a 3D reconstruction approach designed to produce a de-
tailed and continuous representation of a three-dimensional scene. Unlike Sparse
Reconstruction, which uses a small number of characteristic points, Dense Recon-
struction produces a high-resolution point cloud or complex three-dimensional mesh
that better captures the geometry of the environment. The Dense Reconstruction
process often begins with a preliminary sparse reconstruction step, which offers
an initial estimate of camera positions and a rough structure of the scene. Next,
the point cloud is densified using complex techniques that take advantage of image
correlation. Multi-View Stereo (MVS) [22] is a common approach that employs
photos from several viewpoints to accurately rebuild depth and three-dimensional
structure. Its main goal is to densify the sparse point cloud generated by SfM in
order to obtain a detailed representation of the scene. There are multiple MVS
algorithm versions [23], each with unique properties that influence reconstruction
quality, processing requirements, and application to a wide range of scenarios, from
the most complicated scenery to the reconstruction of minute objects. Point-based
techniques work directly on the sparse point cloud acquired from SfM and proceed
to densify it by gradually adding points estimated from multiple perspectives using
a triangulation procedure. These are highly flexible and computationally efficient
they so can be employed in a variety of fields, but they are also vulnerable to
errors in matching and generating continuous surfaces. In contrast, voxel-based
and patch-based volumetric approaches work on a volumetric representation of the
three-dimensional environment, defined by spatially oriented voxels and patches,
respectively. They are capable of reconstructing complex scenes in great detail and

Figure 2.5: Sparse reconstruction (on the left) versus dense reconstruction (on
the right) of the same urban environment: comparison of resulting point clouds
obtained respectively with SfM and MVS technique.

9

Background

are resistant to outliers, but they are also computationally expensive and memory
demanding. The most frequently used variant of MVS is the depth-based method.
This approach involves generating a depth map for each input image, which consists
of a grayscale image having each pixel representing the distance between the camera
and a point in the scene. Next, these maps are merged to generate a dense point
cloud. Finally, after filtering procedures and removing any outliers to increase
reconstructive quality, the point cloud is converted to a three-dimensional surface
using meshing methods.

2.3 Deep Learning for 3D Reconstruction
Deep learning has revolutionized the field of 3D reconstruction by introducing
new approaches [24][25] based on neural networks capable of learning intricate
geometric representations from images, point clouds or volumetric data. Traditional
systems like Structure from Motion (SfM) and Multi-View Stereo (MVS) use
geometric methods to recreate the three-dimensional structure of a scene from
images. These techniques, however, necessitate a large number of pictures with
significant overlaps, are sensitive to texture and illumination changes, and can
produce noisy or inadequate reconstructions in areas with few distinguishing
features. With the introduction of models based on convolutional neural networks
(CNNs) and more sophisticated architectures like Generative Adversarial Networks
(GANs) and Neural Radiance Fields (NeRFs), deep learning has completely changed
this process. These techniques overcome many of the limitations of conventional
methods by learning how to recreate 3D scenes directly from images without the
need for exact geometric information. Specifically, methods like NeRF eliminate
the necessity for dense point clouds or explicit meshes by enabling a continuous
representation of the world throughout a radiance field. Methods based on deep
learning are generally more resilient than conventional techniques, which means they
can manage situations with inconsistent lighting or inadequate texture information.
This is possible thanks to the large amount of data the models are trained on,
which allow them to perform well even in challenging circumstances. The models
are also able to create novel views, which means they can be used to extract
valuable reconstruction information from perspective not captured by original
images. However, some limitations have to be considered when choosing a deep-
learning approach to solve the reconstruction task. First of all, these models
are computationally expensive, and they require specific hardware to perform
correctly. Additionally, they heavily rely on training data. The results could be
unpredictable and the performances less accurate when applied to input data with
significantly different features from the training set. Lastly, some deep learning
based methods ignore the underlying geometric information in favor of a visually

10

Background

appealing reconstruction. As a result, they frequently highlight the scene’s aesthetic
value over its geometric accuracy. This might be acceptable in situations where
the visual element is more crucial, like virtual reality applications, but it becomes
an issue in any scenario where the environment must be precisely recreated, such
as indoor or outdoor mapping.

2.3.1 Neural Radiance Field
Neural Radiance Fields (NeRF) is a new deep learning technique for modeling
and rebuilding 3D scenes using 2D images introduced in 2020 by Mildenhall et al.
[26]. This technique represents a three-dimensional scene as a 5D radiance field,
which means that for each point in space, the model considers not only its spatial
position (x, y, z) but also the viewing direction (θ, ϕ). The visual appearance of a
point in a scene might vary depending on the perspective, especially for materials
that reflect light in different ways. The radiance field is represented by a neural
network trained to learn the function F(x), which assigns a color value (r, g, b)
and volume density σ to each point in 3D space.

F (x, y, z, θ, ϕ) → (r, g, b, σ)

The model consist of a two-stage Multi-Layer Perceptron (MLP): the first calculates
the density and a vector of intermediate features, and the second uses these features,
along with the viewing direction, to determine the final color. Figure 2.6, which is
taken from the original paper by Mildenhall et al. , shows the rendering process.
The procedure is based on a technique known as volume rendering, which involves
casting virtual rays across the scene. Along these, multiple 3D points are sampled
at different depths. The information about color and volume density of each point,
are then combined to calculate the final intensity of the associated pixel in the
reconstructed image. The weighted sum of all sampled points’ colors, weighted
by their respective opacities, produces the final pixel value in the rendered image.
Model optimization involves decreasing the difference between generated and
ground-truth images using photometric loss based on the mean square error. Due
to its ability to capture fine image details, this method allows for the creation of
high-quality, photorealistic three-dimensional scenes. It supports continuous scene
representation without the need for explicit meshes, which makes the final results
considerably smoother. Additionally, it has the ability interpolate information
between distinct views, resulting in new perspectives that did not appear in the
training data. In general, it is capable of handling more complex scenes which
have particular geometries and non-uniform lighting conditions, resulting in a
qualitatively more accurate representation compared to other traditional methods
such as MVS. On the downside, this method has some limitations. For starters, it

11

Background

Figure 2.6: NeRF scene representation and rendering procedure.

is a computationally expensive approach that demands significant training time
and memory resources. Producing a single image requires sampling thousands of
points along a ray, making it an extremely inefficient process because the MLP
network must be trained for each scene individually. This can require a large
number of training hours in case performance hardware is not available. To solve
these challenges, alternatives such as 3D Gaussian Splatting have been designed,
which provides a more efficient and faster rendering approach while maintaining
the visual quality of NeRF. The 3DS algorithm, which is the main object of this
project, will be discussed in Chapter 3.

12

Chapter 3

3D Gaussian Splatting

3.1 Introduction to the Algorithm

In 2023, Kerbl et al. proposed 3D Gaussian Splatting (3DGS) [3] as a new approach
for representing and synthesizing three-dimensional scenes. It is suggested as a
more effective substitute for Neural Radiance Fields (NeRF), providing much faster
rendering without sacrificing visual quality. In contrast to NeRF, which reproduces
the scene using an implicit radiance field learned from a neural network, 3DGS
adopts a representation based on 3D Gaussians, which are gaussian distributions
placed into three-dimensional space. Each entity is characterized by specific
properties such as position, color, opacity, and spatial covariance.
Then, using a sophisticated rasterization technique, these gaussian distributions
are projected onto the image plane and merged to create photorealistic images in
real time. Among 3D Gaussian Splatting’s most innovative characteristics is its
ability to dynamically adapt to the scene’s complexity and appropriately distribute
gaussian points to achieve the ideal balance between performance and quality. These
features make 3DGS one of the most promising methods for real-time rendering
applications, including visual 3D reconstruction, virtual reality, and immersive
environment generation.
This chapter will describe the 3D Gaussian Splatting algorithm, including its
primary features, its unique gaussian optimization and the rendering procedure.
Some of its drawbacks will be discussed, as well as a potential solution, the DN-
Splatter, which is an improved version of the original algorithm that takes into
consideration also normal and depth maps extracted from the input data to generate
a more geometrically accurate model of the scene.

13

3D Gaussian Splatting

Figure 3.1: NeRF and 3DGS different rendering concepts. NeRF employs an
MLP to estimate density and color at each sampled position after periodically
sampling each ray from the image to the scene. Gaussian Splatting uses elliptical
splats to determine each gaussian’s contribution to the light beam. Source:[27]

3.2 Algorithm’s Pipeline
This Section presents the algorithm pipeline, illustrated in Figure 3.2 from the
original paper by Kerbl et al. Several works have since focused on providing a
more detailed description of the 3D Gaussian Splatting process from an algorithmic
perspective [27][28][29]. The algorithm’s pipeline is based on specific stages. Starting
with the generation of the sparse point cloud through the use of COLMAP library,
we proceed to the rasterization process where the 3D gaussians are mapped into
a bidimensional space generating an image. Then, the generated image is then
compared to the ground-truth image using a unique loss function and the error
is used as a reference to update the gaussian parameters in the optimization step.
This type of pipeline allows for a detailed representation of the reconstructed scene,
minimizing the time required for the rendering phase. The various pipeline stages
will be explained in depth in the following Sections.

Figure 3.2: 3D Gaussians Splatting’s pipeline

14

3D Gaussian Splatting

3.2.1 Initialization
The initialization process, which is the starting point of the algorithm, consists of
the implementation of the SfM technique, previously explained in Section 2.2.1.
Starting with the set of two-dimensional images as input, using the COLMAP
library, the sparse point cloud representing the scene is generated. Each point is
then turned into the center of a three-dimensional anisotropic gaussian, which is
defined by four distinct parameters:

• Position (x, y, z) , which is defined by three coordinates in the three-
dimensional space and represents the location of the gaussian mean (µ);

• Color, which is represented by Spherical Harmonics (SH) coefficients. Each
gaussian stores a set of SH coefficients for each color channel (R, G, B),
allowing the color to shift according to the view direction;

• Opacity (α), which quantify how much a single point is visible in the scene;

• Covariance (σ), represented by a 3x3 matrix, generated from a scale vector
s = (sx, sy, sz) and rotation quaternions which define the orientation and the
stretch of the gaussian in space.

An anisotropic gaussian, unlike isotropic ones that have a spherical shape, has
a complete covariance matrix, so its shape can vary in all directions in space.
This allows it to orient and stretch freely to fit more easily the geometry to
approximate. The parameters describing each gaussian are crucial to obtain an
accurate reconstruction of the scene, but only location and color information can
be extracted from the SfM-generated point cloud. The remaining parameters must
be estimated during the optimization process.

3.2.2 Rasterization
Following the conversion of every point in the SfM sparse point cloud into a three-
dimensional anisotropic gaussian, the points must be mapped into two-dimensional
space in order to produce images. The process of converting three-dimensional
gaussians in space to two-dimensional gaussians in the image plane is known as
rasterization. This is an important phase in the pipeline since it produces an
image that can be compared to ground-truth to obtain an algorithm assessment
measure. This information will be useful during the optimization phase to modify
the gaussian parameters appropriately. The rasterization process begins with a
frustum culling operation, which is a filtering operation that eliminates all gaussians
that do not fall within the camera’s field of view and therefore do not contribute
to the generation of the current image. This reduces the number of gaussians to be

15

3D Gaussian Splatting

optimized and thus makes the process more efficient. Next, it is necessary to act on
the three-dimensional gaussians, projecting them onto the two-dimensional image
plane. To do this, a transformation is applied to the mean and covariance matrix
such that the gaussian is mapped in two dimensions. This is done by considering
any perspective deformations and trying to maintain the shape and orientation of
the primitive as much as possible. The rasterization process, due to computational
efficiency issues, does not take place on the entire image dimension, but is done
in parallel on small regions of the image. Specifically, the image is divided into
tiles of size 16x16 pixels. Each gaussian is identified by a key, characterized by
depth information and the identifier of the tile to which it belongs. Next, the
gaussians are sorted according to this key and for each tile, a list is generated which
contains all the elements that affect that tile in order of depth. The final step is
to combine the opacity and color values of the gaussians in the sorted list. This
is then performed for each pixel of the corresponding tile, until the entire image
is generated. This procedure, known as alpha-blending, produces natural colors
and smooth transitions in the finished image. The algorithm in Figure 3.3, taken
from the original publication, explains the fundamental steps in the rasterization
process.

Figure 3.3: 3D Gaussian Splatting rasterization algorithm

16

3D Gaussian Splatting

3.2.3 Loss Computation
After the two-dimensional image is obtained by gaussian “splatting” and alpha-
blending, it is compared with the ground-truth image to check the quality of the
reconstruction. The loss function chosen by this algorithm is characterized by the
contribution of an L1 loss, combined with a D-SSIM, multiplied by the parameter
λ which is set equal to 2 by the original paper. The function is defined by the
following formula:

L = (1 − λ)L1 + λLD−SSIM (3.1)

Specifically, L1 loss, also called Mean Absolute Error (MAE) basically consists of
calculating the absolute difference between the values predicted by the model and
actual values. In this case, the pixel-to-pixel differences between the generated
image and the ground-truth image are computed. In contrast, Dissimilarity SSIM
Loss (D-SSIM) is a function that calculates the index of structural dissimilarity
between two images, focusing on structural details and contrast. Minimizing
this value maximizes the similarity between the two images considered. This
combination allows for a good balance between the numerical precison of L1 loss
and the visual quality of D-SSIM.

3.2.4 Optimization
The optimization process is based on an adaptive density control of individual
gaussians. This enables for better scene representation while keeping the number
of gaussians to a minimum in order to prevent consuming too many computational
and time resources at this stage. Although the gaussian parameters are adjusted
with each iteration, the adaptive density check is performed once per 100 iterations.
Pruning and densification are the two basic procedures done on the set of gaussians.
Pruning is the elimination of a gaussian whose opacity value is less than a particular
threshold. This means that if a gaussian is too transparent to contribute effectively
to the final scene generation, it gets eliminated. This improves computing efficiency
while maintaining reconstruction quality. The other requirement for excluding
a gaussian is its placement in the scene. For example, if it is positioned in a
non-visible zone or in an area with uniform elements, such as the sky, it will not
help to define the final scene. Densification, on the contrary, allows to increase the

Figure 3.4: Adaptive density control of 3D gaussians

17

3D Gaussian Splatting

number of gaussians in certain regions of the scene. The basic idea is shown in
Figure 3.4, taken from the original paper by Kerbl et al. This is done following a
well-defined approach, depending on the presence of either under-reconstructed or
over-reconstructed areas. In the case of under-reconstruction, the gaussians are
too small to faithfully represent the desired information. This can generate empty
areas, not covered by gaussians. In this case, a cloning of a gaussian present in that
area is performed, copying all its parameters and placing it in the direction of the
gradient. This allows for more accurate reconstruction and correct filling of empty
areas. Conversely, over-reconstruction occurs when a gaussian is too large. This
may be necessary for the reconstruction of a certain region of the scene but have
excessive size. In this case, a split operation is performed to divide the gaussian into
smaller gaussians that more faithfully represent the region of interest. A gaussian
that is too large, could cover a vast area of the scene without representing its
details and small local variations accurately. Renderings characterized by blurred
and unsharp surfaces could then be generated, leading to an approximate and
poorly detailed representation. The algorithm in Figure, taken from the original
publication, explains the fundamental steps in the optimization and densification
process.

Figure 3.5: 3D Gaussian Splatting optimization algorithm.

18

3D Gaussian Splatting

3.3 Evaluation Metrics
In order to evaluate the performance of the 3D Gaussian Splatting algorithm a
number of metrics, such as PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural
Similarity Index Measure) and LPIPS (Learned Perceptual Image Patch Similarity),
must be taken into account [30]. These objectively assess the quality of the
reconstruction from a photometric point of view by comparing the generated
renders with the ground-truth images given as input to the training pipeline.
Specifically, while PSNR evaluates an error at the level of individual pixels, SSIM
and LPIPS are metrics that evaluate structural and perceptual features within the
images. These three evaluation metrics are presented in detail in the following
Sections.

3.3.1 PSNR
PSNR is a metric that is usually employed in image compression contexts and
establishes the quality of a reconstructed image, in relation to the original one.
Specifically, it is a signal-to-noise ratio that works at the level of individual pixels,
so it does not take into account local structure or complex image features. It
is based on the use of the (MSE), which allows calculation of the mean square
difference between corresponding pixels in the two images. The MSE is defined by
the following formula:

MSE = 1
mn

mØ
i=1

nØ
j=1

(I(i, j) − Î(i, j))2 (3.2)

Where I(i, j) and Î(i, j) are the pixel values of the original image and the recon-
structed image, respectively, m and n are the dimensions of the image, so mxn is the
total number of pixels. The PSNR uses MSE as the noise metric of the generated
image, compared with L representing the maximum value in pixel intensity, which
is 255 in the case of 8-bit images per channel. The PSNR formula is defined as
follows:

PSNR = 10 · log10

A
L2

MSE

B
(3.3)

It is evident that the MSE value calculated on the generated image heavily affects
the final PSNR score. In particular, high MSE, which means that the reconstruction
is very different from the ground truth, results in low PSNR. Conversely, when the
reconstruction is more faithful to the original, so the MSE is lower, it will result in
a PSNR metric with higher values. In general, good PSNR scores are found in the
20-40 dB range. Lower values suggest a poor model reconstruction capability.
An important factor to consider is that this metric, relying solely on the MSE, works

19

3D Gaussian Splatting

on the intensity difference between pixels of the reconstructed image and pixels of
the original image. Therefore, it does not consider local structural components,
such as textures, edges, and fine details, which instead play a key role in human
perception of the image. This could lead perceptually very different images to have
comparable PSNR values. For this reason, this metric is never used individually, but
in combination with other metrics that calculate the degree of similarity between
images on a perceptual level. In this case, SSIM and LPIPS are used.

3.3.2 SSIM
Structural Similarity Index Measure (SSIM) [31] is a metric to assess the similarity
between the reconstructed image and the source image. Unlike PSNR, it is not
based solely on the difference between pixels but is sensitive to factors such as
luminance, contrast, and image structure that play a key role in human perception.
This puts emphasis on the whole image by allowing minor local changes to go
unnoticed. SSIM is based on three main components:

• Luminance (µ) is a measure of the average light intensity in a given area,
which emphasizes the average of the pixel values of the images. It plays an
important role in human perception: two images with the same structural
characteristics but different luminance are perceived as qualitatively different.

• Contrast (σ)is the variation of the pixel values, around the luminance
(average) value. Thus, it represents the variance of the pixels. This parameter
helps to understand, from a perceptual point of view, how sharp or blurry an
image appears;

• Structure (σxy)refers to how the pixels are correlated within the image.

These three factors’ contributions are combined to provide the descriptive formula
of SSIM:

SSIM(I, Î) = (2µIµÎ + C1)(2σIÎ + C2)
(µ2

I + µ2
Î

+ C1)(σ2
I + σ2

Î
+ C2)

(3.4)

This measure can assume values between [-1, 1], where 1 denotes a perfect similarity
between the two images, 0 denotes no similarity and hence no correlation between
the images, and negative values denote a great dissimilarity.

3.3.3 LPIPS
Learned Perceptual Image Patch Similarity (LPIPS) [32] is an evaluation metric
that computes the similarity between two images from a perceptual perspective.
To do this, unlike SSIM, it leans on features extracted from convolutional neural

20

3D Gaussian Splatting

networks which are pre-trained to model human perception of image quality. When
it is necessary to compare two images, these are passed into a neural network,
usually VGG or AlexNet. The feature maps in each layer of the network are then
extracted and compared to each other by calculating the difference between them.
Comparing the maps across multiple layers of the network allows local as well
as global details of the images to be captured. At this point, the difference is
multiplied by a weight that is optimized in training to best reflect human perception.
The formula for LPIPS is given by:

LPIPS(I, Î) =
Ø

l

wl∥fl(I) − fl(Î)∥2
2 (3.5)

where wl are the weights learned from the network, and fl(I) and fl(Î) are the
feature maps recovered at level l of the network. The ultimate value of the LPIPS
measure typically falls between 0 and 1, where 0 denotes perfect similarity, meaning
that there is no difference between the feature maps. Higher values, on the other
hand, indicate dissimilarity between the images.

3.4 Addressing Limitations
Through the pipeline previously described, the 3D Gaussian Splatting technique
allows for the generation of high-quality real-time renderings using just photos which
represent the scene from different perspectives. Despite its many advantages, it has
several drawbacks. Scalability comes first. It turns out to be a very good algorithm
for reconstructing small-scale scenes, but the problem becomes more complicated
when large-scale scenes must be represented. In that case, a substantially larger
number of three-dimensional gaussians will be required to describe the scene.
Each gaussian, with its parameters, will have to undergo several iterations of
optimization, which lead to a very large number of gradient descent operations and,
consequently, also to a higher consumption of memory and hardware resources. In
addition, the optimization process characterized by pruning and densification, could
generate unwanted visual artifacts. Too much pruning may delete information
necessary for an accurate reconstruction of the scene, just as poor densification
may result in gaussians that are too large or insufficient for describing a specific
region. Another very important limitation, especially in the task analyzed by this
project where scene geometry plays a key role, is the fact that the reconstructed
scene is nothing more than an approximation of the original geometry. Indeed, the
algorithm is designed to obtain real-time renderings of the reconstructed scene,
but since these are generated through the use of probability distributions, even
if approximated through the optimization process, there is no guarantee that the
geometric information is faithfully maintained.

21

3D Gaussian Splatting

To overcome these limitations, recent studies have proposed improvements such as
integrating depth and normal maps to the original algorithm. This is the example of
the DN-Splatter, proposed by Turkulainen et al [4] in 2025, which will be described
in the following Section.

3.5 DN-Splatter: Depth and Normal Supervision
The DN-Splatter algorithm was born with the idea of addressing some of the limi-
tations of 3D Gaussian Splatting, improving the quality of the final reconstruction,
not only in terms of rendering, but also from a geometric point of view. Through
the use of depth maps, both monocular and obtained through special sensors, and
normal maps it seeks to achieve better geometric consistency of the reconstructed
scene. This information is also integrated into the optimization process through
the use of a special loss function that takes into account not only the photometric
factor, but also information about normals and depth.

3.5.1 Normals Estimation
The first innovation introduced by DN-Splatter compared with the original algo-
rithm is the estimation of the normals of the gaussians representing the scene. The
normals are calculated using the geometric information of each gaussian, specifically
their scale vector s = (sx, sy, sz). This, together with the mean and quaternion
of rotation, determines the shape and orientation of the primitive in space. The
normal of each gaussian can then be approximated as the direction of the smallest
axis of the scale vector. During the optimization process, it is imposed that the
gaussians become as flattened as possible along one axis, so that they resemble
disks as closely as possible and best represent surfaces. This implies that one of
the three scaling axes, will be significantly smaller than the other two. To ensure
that this happens, a loss function is used on the scale, defined in this way:

Lscale =
Ø

i

∥ arg min(si)∥1 (3.6)

An additional check is performed during optimization to determine the direction of
the normals. As a result of the gaussian parameter update, these could be oriented
in the opposite way. The scalar product for each point is then calculated, and if it
is negative, indicating that the normal points in the direction of the camera, it is
inverted. Furthermore, depth maps are calculated for each image using pre-trained
networks such as Omnidata [33] and DSINE [34], beginning with the input images,
to ensure that the gaussians are oriented supervisedly. By comparing these ground-
truth normal maps to the normals generated by the gaussians, the parameters can
be optimized to minimize the difference using a loss function. During this stage,

22

3D Gaussian Splatting

the Lnormal, a normal-related loss function, is calculated. This is defined by the
contributions of two distinct loss functions and has the following formula:

Lnormal = LN̂ + Lsmooth (3.7)

Where,

• LN̂ is an L1 loss, or Mean Absolute Error (MAE), which determines the
distance between normals estimated by gaussian scaling vector (LN̂) and
ground-truth normals (N) by reducing the noise of the estimates. Its formula
is given by:

LN̂ = 1
|N̂ |

Ø
∥N̂ − N∥1 (3.8)

• Lsmooth is a Total Variation (TV) loss function, which is a kind of L1 acting
on the differences between neighboring pixels. This dictates that normals
change smoothly between adjacent pixels, avoiding abrupt transitions that
may indicate errors in reconstruction.

Lsmooth =
Ø
i,j

1
|∇iN̂i,j| + |∇jN̂i,j|

2
(3.9)

3.5.2 Depth Maps Generation
In the context of DN-Splatter, depth maps play a crucial role in helping the model
reconstruct accurate three-dimensional scenes. DN-Splatter can rely on two main
sources of depth maps:

• Monocular-depth: given input images, maps are estimated from a pre-
trained network;

• Sensor-depth:they are acquired directly from sensors on the scene, such as
LiDAR or RGB-D sensors.

In the case where the dataset under consideration does not contain depth infor-
mation, pre-trained models, e.g., the ZoeDepth network [35], are used to generate
depth maps from the input RGB images. Since the maps generated may have
scaling problems with respect to the reconstructed model, it is necessary to align
these maps with the depth information extracted from the projection of the SfM
points sparse point cloud on the camera.
In the case where scene depth information captured by special sensors is available
instead, it is possible to use these maps for more effective training, since they
are not predicted by neural networks, but computed directly on the information
extracted from the scene to be reconstructed. A depth loss function based on the

23

3D Gaussian Splatting

gradients of the RGB images is introduced whose goal is to adapt dynamically to
the different regions of the scene and their complexity, so as to give more weight to
the smoother areas and reduce its influence in the areas with more detail. This is
very useful given the poor ability to reconstruct areas without textures by using
images alone. In this situation photometric loss may not be as efficient; therefore,
depth loss helps in regularization. The function is given by the following formula:

LD̂ = grgb · 1
|D̂|

Ø
log(1 + ∥D̂ − D∥1) (3.10)

3.5.3 Loss Functions
The loss function in the DN-Splatter technique differs from the one used in the
original 3D Gaussian Splatting version. Its goal is to regularize depth and normals
of the scene so that not only the photometric component is considered, but also
the geometric one, improving the quality of the reconstruction. Specifically, the
loss function is a combination of several components and is defined as follows:

L = LC + λdLD + Lscale + (λnLN + λsLsmooth) (3.11)

Where,

• LC (3.1) represents the photometric loss used in the original implementation
of 3D Gaussian Splatting , characterized by the combination of L1 loss and
LD-SSIM;

• LD (3.10) represents depth loss function;

• Lscale (3.6) acts directly on the gaussians, forcing them to “flatten” to better
represent the scene surfaces;

• LN (3.8) represents loss on normals;

• Lsmooth (3.9) is a smoothness regularization on the normals.

The different λ parameters, on the other hand, are directly selectable in the
training phase as needed and control the influence of individual losses on the final
optimization. In the reference paper the values are as follows: λd = 0.2, λn = 0.1,
λs = 0.1

24

Chapter 4

Methodology

4.1 Selected Datasets
In order to evaluate the performance of the 3D Gaussian Splatting algorithm for
the reconstruction of urban environments, starting from UAV-based imagery, three
datasets with different features were used.

Pescara del Tronto. This dataset consists of 125 images at 4000x3000 resolution
picturing the Italian town of Pescara del Tronto following the earthquake in Au-
gust 2016. These images represent a scene characterized by a central urban area
surrounded by dense vegetation. Despite the presence of buildings, the number of
well-defined edges is limited due to their post-earthquake state. The abundance of
debris makes it challenging to identify well-defined key points for the generation of
the SfM sparse point cloud. In addition, this dataset does not have ground-truth
obtained through LiDAR sensor; therefore, it will not be possible to have a geomet-
ric quality metric in this case, but only an assessment of visual quality obtained
through renders. Figure 4.1 shows some images of the dataset in question.

Figure 4.1: Example of images in the PDT Dataset.

UseGeo [36][37]. This dataset contains a collection of data including RGB images,

25

Methodology

relative depth maps, camera poses and point clouds, both photogrammetric (ob-
tained through MVS) and LiDAR. In total, it contains 829 images at a resolution of
(7952x5278), divided into three separate datasets. For the purpose of this project,
dataset 1 characterized by 224 images is considered, whose resolution was reduced
by half (3976x2639) to ensure a limited training time, to avoid running into gpu
saturation problems and to have a better comparison with the previous dataset.
The flight specifications are shown in table 4.1.
The scene could be described as divided into two different parts, an urban area
characterized by well-defined edges and a surrounding green area. The vegetation,
although present, is less invasive compared to the previous dataset. In this case,
ground-truth obtained by LiDAR sensor is present, so it is possible to use this
information for supervise the training with depth information and evaluate geo-
metric accuracy of reconstruction by difference between generated point cloud and
LiDAR-point cloud. In particular, an area rich in buildings will be compared with
one predominantly characterized by vegetation.
Examples of images in this dataset are shown in Figure 4.2.

Figure 4.2: Example of images in the UseGeo Dataset.

Hessigheim 3D Geometric Benchmark (H3DG) [38]. This dataset was
created in the context of a joint project between Institute for Photogrammetry
(Ifp, University of Stuttgart) and the German federal agency of hydrography. The
data represent a region of the country of Hessigheim, Germany and are divided
into two main blocks: North and South. Specifically, information regarding drone
trajectory, exterior information, raw rgb images with a resolution of (14204x10625),
and LiDAR mesurment are available. In the context of this project, a subset
of RGB images representing a region of the southern block is considered. For
computational issues and comparison purposes with other datasets, the source
images were rescaled by a factor of 0.28, obtaining a resolution equal to (3977x2982).
The area represented is predominantly residential, characterized by the presence
of numerous buildings, streets and some garden sections. This allows for a high
number of details and key points useful for accurate reconstruction of the sparse
point cloud. Unlike the other two datasets, there are no areas characterized by

26

Methodology

dense vegetation, at least in the region considered for the project.
In general, the captured images are rich in detail, which can be very useful in the
reconstruction phase for a more accurate result. On the other hand, it can also be
problematic from a computational point of view: a larger number of gaussians will
be needed for scene reconstruction, requiring much more computational resources
to carry out the optimization phase.
Examples of images from the H3DG dataset are shown in Figure 4.3.

Figure 4.3: Example of images in the H3DG Dataset.

Dataset Sensor Camera Average
flight
height

GDS
(Ground
sampling
distance)

LiDAR
point
cloud

density

UseGeo RIEGL
miniVUX-

3UAV
scanner

SONY
ILCE-
7RM3

80 m 2 cm 50
points/m2

H3DG RIEGL
VUX1LR
scanner

Two oblique
Sony Alpha

6000

50 m 2-3 cm 400
points/m2

Table 4.1: UseGeo and H3DG flight specifications.

4.2 Computational Resources
Given the high demand for computational resources needed for this project, a
cluster service provided by Politecnico di Torino [39] was employed. Specifically,
the Legion cluster was used, characterized by the following technical specifications:

• Architecture: Cluster Linux Infiniband-EDR MIMD Distributed Shared-
Memory

27

Methodology

• Node interconnection: Infiniband EDR 100 Gb/s

• Network Service: Ethernet 1 Gb/s

• CPU model: 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores

• GPU Node: 24x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores

• Performance: 90 TFLOPS (July 2020)

• Computational cores: 1824

• Number of nodes: 57

• Total RAM Memory: 22 TB DDR4 REGISTERED ECC

• OS: CentOS 7.6 - OpenHPC 1.3.8.1

• Scheduler: SLURM 18.08
Despite the great potential of this cluster, which still supported an appropriate level
of model training, the algorithm codes taken into examination do not appear to be
optimized for the use of multiple GPUs in parallel. This has made it necessary to
make certain arrangements during the data pre-processing stage, especially since
handling hundreds of high-resolution photos is highly demanding. These regulations
can be executed even without a powerful cluster, making it possible to apply the
methods mentioned above to complete the reconstruction process.

4.3 Software Setup
In order to successfully develop and run this project, it has been necessary to set up
a dedicated work environment capable of supporting the organization of the code,
the management of external libraries, and the processing of a large amount of data.
This Section presents the setup employed, including the development environments
and tools for managing computational jobs.

4.3.1 Microsoft Visual Studio
Microsoft Visual Studio was used as the integrated development environment (IDE)
for debugging and code management. Its integration with versioning systems, e.g.,
Git, proved very useful in maintaining an organized workflow. In addition, the use
of its particular extension, Desktop Development with C++, provided a robust
environment for development. Although the code base is written in the Python
language, this extension is necessary because many scientific computing libraries,
e.g., PyTorch, OpenCV, TensorFlow contain implementations written in the C++
language for reasons of computational efficiency.

28

Methodology

4.3.2 Anaconda Environment

Anaconda is an open-source distribution of Python that allows simplified manage-
ment of libraries and development environments. In the context of this project, a
reduced and lighter version of it, Miniconda, was used directly on Legion clusters.
This was used for the creation of an isolated and configurable environment that
allowed simple and controlled management of the libraries and dependencies needed
to run the 3D Gaussian Splatting code, minimizing any incompatibilities between
packages. The environment is generated with the command shown in Listing 4.1,
eventually followed by a list of packages that must be present within it. The
environment must then be activated and, if necessary, it is possible to continue
with the installation of other packages.

1 # create miniconda environment
2 conda create -n[NameEnvironment] python =3.7
3 source ~/. bashrc
4 conda activate [NameEnvironment]
5

6 # install addictional packages
7 conda install -n [NameEnvironment] [package1] ... [packageN]

Listing 4.1: Commands to create a Miniconda environment

4.3.3 Singularity

The DN-Splatter algorithm is not executed through the Miniconda Environment
system like 3D Gaussian Splatting, but it exploits another approach: a Singularity
container [40]. This is a containerization system that is often used in HPC systems
because it allows complete isolation of the system, like a small virtual machine. It
therefore turns out to be a very secure approach. This solution proved necessary
because of the incompatibility of the Open3D library, which is necessary for the
code to work properly, with the CentOS 7.6 operating system present on the cluster.
The container was created locally using the installation instructions on the DN-
Splatter code GitHub page and then uploaded to cluster where it was run as needed.
The singularity container is manageable through a series of commands. First, the
choice must be made whether to start from a pre-existing container, which can be
downloaded via singularity pull command, or to create one from scratch. It is
important to note that creating a new container requires sudo (superuser do)
permissions. In this case, the container used was generated locally via the sudo
singularity build command from a pre-existing container, based on Ubuntu
22.04, equipped with CUDA 11.8 and cuDNN 8, optimized to run on machines
with NVIDIA GPUs.

29

Methodology

4.3.4 Slurm Scheduling
Simple Linux Utility for Resource Management (SLURM) [41] is a resource man-
agement and job scheduling system used in HPC systems. This allows user jobs to
be executed and distributed, via queues, in order to optimize the resources required
and reduce execution time. Through submission sbatch scripts, it is possible to
request the resources needed for a given job, such as number of CPUs, GPUs,
memory, and execution time. One of the advantages of using the execution queue is
that the job, once scheduled, runs even without an active connection to the cluster,
which makes it very useful in the case of very long optimization times. In addition,
through a priority management mechanism based on several factors such as queue
time and job size in terms of required resources, it is always guaranteed that the
scheduled job manages to start in a reasonably short time. In the context of this
research project, his method was used to perform the scene reconstruction using
both algorithms, 3D Gaussian Splatting and DN-Splatter.
An example of a sbatch script for training using 3D Gaussian Splatting is presented
below in Listing 4.2.

1 #SLURM sbatch script for job submission
2 #!/ bin/bash
3 # SBATCH --job -name=h3dg -base
4 # SBATCH --mail -type=ALL
5 # SBATCH --mail -user= s306124@studenti . polito .it
6 # SBATCH --partition =cuda
7 # SBATCH --time =5:00:00
8 # SBATCH --nodes =1
9 # SBATCH --ntasks -per -node =32

10 # SBATCH --output =[output -path/ output_ %x_%j.log]
11 # SBATCH --error =[output -path/ error_ %x_%j.log]
12 # SBATCH --mem =32 GB
13 # SBATCH --gres=gpu :1
14

15 # Configure cuda memory allocation :
16 export PYTORCH_CUDA_ALLOC_CONF = max_split_size_mb :32
17

18 # activate conda environment :
19 source /. bashrc
20 conda activate gaussian_splatting
21

22 #run train script
23 python train.py
24 --source_path data/H3DG -3977 x2982
25 --model_path output /H3DG -3977 x2982/base
26 --eval
27 --resolution 1
28 --data_device cpu
29 --test_iterations 30000

30

Methodology

30 --save_iterations 30000
31 -- checkpoint_iterations 7000 14000 21000

Listing 4.2: SLURM sbatch script for job submission

4.4 Running with Limited Resources

This section presents strategies to be made in case the available computational
resources are not sufficient for proper training of the dataset under consideration.
3D reconstruction is a computationally intensive task, requiring the processing of
a large amount of data, often at high resolution, and there is not always access
to specialized hardware. However, several arrangements can be applied to reduce
the computational load and allow the algorithm to operate properly even on less
performing hardware. These include downsampling strategies for images or point
clouds, specific code optimizations, and the use of HPC server systems.

4.4.1 Image Rescaling

Although it may seem insignificant, lowering the resolution of the RGB images
that are being fed into the algorithm is one of the first adjustments that can be
made. Excessively high resolution will necessitate a significantly greater number of
gaussians, whose optimization stage will certainly affect the GPU state and may
result in a CUDA OOM (Out Of Memory) problem. This expedient is far more
effective than lowering the quantity of photos provided as input to the system in
terms of final reconstruction’s quality. Because the reconstruction performed by
3D Gaussian Splatting is passive, i.e., based solely on data extracted from RGB
images, the more information you have about the scene from different perspectives,
the more details you will capture for the final result.
In the context of this study, image resolution was reduced in both UseGeo and
H3DG datasets. Specifically, UseGeo was tested using all 224 source images at full
resolution (7952x5278), but the optimization failed due to a CUDA OOM problem.
Therefore, it was decided to cut the resolution in half to ensure that the scene could
be recreated without any particular issues and with good reconstruction quality, as
will be explained in detail in the Results Section (5). As for the H3DG dataset,
which is characterized by images at a very high resolution (14204x10625), given
the problems encountered in the training of the previous dataset, it was decided to
maintain a resolution comparable to the latter, so a downscale to the resolution of
(3977x2982) was performed.

31

Methodology

4.4.2 Cells Division

In the hypothetical case where there is a need to reconstruct a large-scale scene, a
simple downsampling of the images may not be sufficient to be able to finish the
gaussian optimization phase without problems. It may happen that, despite the
reduction in quality, if the number of images needed to describe the scene turns
out to be very large, the available resources may still not be sufficient for accurate
reconstruction. To solve this problem, a division of the scene into cells can be
made, which will then be optimized separately. At the end of the training pipeline,
the resulting point clouds can be merged to obtain a point cloud representing the
entire scene, if necessary. During the testing phase, two possible modes of division
were considered: one manual and the other automatic, via python scripts.
Manual division is conceptually very simple. Its foundation is the manual division
of the photos that will subsequently be sent to the system as input. The number of
folders created corresponds to the number of areas into which the source scene is
divided. The RGB photos that represent each region are grouped together within
each folder. Then, each folder will be treated as a separate dataset and then
optimized separately. This method is certainly very simple and intuitive; however,
it is not very scalable. In the case of a very large scene, going through a large
number of images and dividing them into the relevant folders is definitely not a
well-optimized job.
Automatic division by script, on the other hand, does not rely on dividing
images, but on dividing the sparse point cloud representative of the entire scene.
In order to do this, however, it is necessary to have information about the poses
of the camera that acquired each image, in order to be able to determine which
images contribute to the generation of a given region of the point cloud. The
idea is simple: starting with the sparse representation generated using COLMAP,
determine the coordinates of the bounding box that includes the point cloud. At
this point, as needed, a division of this area into nxm cells is made. Through the
pose information and the coordinates of each cell, it is possible to determine which
images contribute to the generation of each cell. Separate folders can then be
created, one for each cell, containing the RGB images, the image poses, and the
sparse point cloud “clipped” from the sparse point cloud of representing the entire
scene. An additional control on the number of images is also inserted, so that
each subdataset has a maximum number of images and does not risk encountering
OOM problems. This is done in the following way: when the number of images
exceeds the predefined constant, the point cloud is further divided into the four
parts. This leads to the condition described above, where there are several folders,
each representing different regions of the scene to be reconstructed, which can be
separately optimized as separate datasets.
Figure 4.4 shows in detail the workflow of automatic division. This method turns

32

Methodology

out to be very fast, as it is automatic and especially scalable to large scenes.
Moreover, it allows a representation of the final scene to be obtained despite having
limited computational capabilities.

Figure 4.4: Point cloud division algorithm

4.4.3 Other Suggestions
Speaking specifically of 3D Gaussian Splatting, other possible optimizations to
reduce resource consumption can be applied directly in the training phase. By acting
directly on the command line arguments in the train.py file, several parameters
can be specified that act directly on the number of gaussians generated, their
optimization and, consequently, the resources required to finish the process without
running into issues. Firstly, a very important argument is data_device. Its default
value is cuda, but as also specified by the authors, in case of datasets characterized
by a large number of high-resolution images, it is appropriate to set this value to
cpu. This is done as a matter of memory management and computational resources
during training. Since the memory of the GPU (VRAM) is limited compared to
the CPU memory, in the case of very heavy datasets, it is counterproductive to use
it to load input data, model variables, and operations necessary for optimization.
In the case of high-resolution datasets, it is very easy to saturate VRAM and run
into CUDA OOM problems. For this reason, the tendency is to use data_device
cpu in order to reduce VRAM consumption and leave the GPU “free” to perform

33

Methodology

the more complex and intensive computations such as gaussian optimization and
rendering. However, this necessarily results in a slowdown of the training phase,
since data must be transferred from the cpu to the gpu when needed. As mentioned
earlier, a large number of gaussians necessarily requires a large number of operations
during optimization, which then becomes computationally challenging. Therefore,
it is possible to adjust the parameters that handle the threshold values for the
densification operations in order to limit, as much as possible, the total number
of gaussians. This of course comes at the expense of reconstruction quality. It
would be advisable to find the right compromise between a reasonable amount of
gaussians and good reconstruction quality. Some parameters that can be adjusted
are:

• densify_from_iter and densify_until_iter, which set the interval of
densification during training. With a narrower interval, fewer densifications
will be performed, so fewer gaussians will be obtained, but also a lower quality
of the scene;

• densification_interval sets the frequency with which the densification
process is applied. The default value is 100, which means that this operation
is performed every 100 iterations of optimization;

• densify_grad_threshold sets a minimum limit for the gradient of the 2D
position, below which points are not densified. If the gradient is below this
threshold, it means that between successive iterations, that particular point
has varied little, so it may not be densified. This allows only the points that
are actually changing to be densified, optimizing resources. By increasing this
value, this also excludes from densification points that have more significant
changes between successive iterations, limiting the number of gaussians but
also risking reducing reconstruction quality.

4.5 Data Pre-Process

Once the scene to be reconstructed has been chosen, it is not enough to have the
RGB images available to start the training process. Certain steps, which will be
described in this Section, need to be taken to prepare the dataset for training. The
generation of the sparse point cloud and its alignment to the camera poses is a
common operation for both algorithms; the generation of normals and depth maps,
on the other hand, is related only to DN-Splatter, since 3D Gaussian Splatting
does not consider this information during the training phase.

34

Methodology

4.5.1 SfM-sparse Alignment with Camera Poses
The first step for proper three-dimensional reconstruction of the scene, whether
using 3D Gaussian Splatting or DN-Splatter as an algorithm, is to generate the
scattered point cloud through the use of the COLMAP library, as explained in
detail in Chapter 3.
Once the original code has been cloned from GitHub, it is necessary to enter the
corresponding dn-splatter folder and run the command shown in listing 4.3. This
calls the convert_colmap.py function, which executes the following commands in
order:

• colmap feature_extractor, which extract keypoints from RGB images in
the <data_root/images> directory;

• colmap exhaustive_matcher, which performs matching between features of
different images;

• colmap mapper which performs the bundle adjustment operation.

1 python dn_splatter / scripts / convert_colmap .py
2 --image -path [data_root / images]
3 --use -gpu
4

5 #This function provides the following directories in <data_root >
6 <data_root >
7 |--- images
8 | |---<image 0>
9 | |---<image 1>

10 | |---...
11 |--- colmap
12 |--- database .db
13 |--- sparse
14 |---0
15 |--- cameras .bin
16 |--- images .bin
17 |--- points3D .bin

Listing 4.3: Convert images to COLMAP format

The convert_colmap function, as can be seen from the structure of <data_root>
directory shown in Listing 4.3, generates four different files. First, a database
which stores all the information useful for reconstruction, such as image meta-
data, extracted features, image matches, and preliminary 3D points. Inside the
<data_root/colmap/sparse/0> directory, on the other hand, binary information
related to sparse reconstruction is stored. Specifically:

• cameras.bincontains information about the camera used for the reconstruc-
tion, thus its intrinsic parameters (model, identifier, focal length, image size).

35

Methodology

• images.bin contains information about the images and their estimated poses
from the reconstruction; it contains the id of the images and the camera
that acquired them, position and orientation of the camera, and finally list of
associations between two-dimensional features and three-dimensional points.

• points3D.bin contains the sparse point cloud and its features such as RGB
information and spatial coordinates.

An extra step needs to be taken to ensure that the newly created sparse point
cloud is in line with the camera positions if a dataset contains information about
the camera poses in addition to the RGB photos that represent the scene. The
coordinates of the cameras in this case are in ENU (East-North-Up) format and,
in order to be displayed correctly by COLMAP, must have the following format:
image_name.jpg X Y Z. The files containing the camera poses of the datasets under
consideration, have a different format from the required one. These include, in
addition to the camera position coordinates, information about the camera rotation
angles (omega[deg], phi[deg], kappa[deg]), focal length, main point coordinates,
and distortion coefficients. A conversion of this file was therefore necessary in order
to transform it into one compatible with COLMAP requirements. To perform
the alignment, simply run the command shown in Listing 4.4. In the case of 3D
Gaussian Splatting, at this point the dataset can be considered complete, therefore
it is ready to start the training phase. Regarding DN-Splatter, additional steps
need to be taken, which will be explained in the next Section.

1 colmap model_aligner
2 --input_path /path/to/model
3 --output_path /path/to/geo -registered -model
4 --ref_images_path /path/to/text -file
5 --ref_is_gps 0
6 --alignment_type custom
7 -- alignment_max_error 3.0

Listing 4.4: COLMAP model aligner

4.5.2 Compute Normal and Depth Maps
In order to perform scene reconstruction using DN-Splatter, it is necessary to have
folders containing normal and depth map information. Being able to supervise the
optimization step with a ground-truth is essential.
Regarding normals, these are estimated through the use of the DSINE model,
which is pre-trained to generate, from each RGB image, the corresponding map of
normals. This is done through the following command:

1 # Generate monocular normal estimates for input images
2 python dn_splatter / scripts / normals_from_pretrain .py

36

Methodology

3 --data -dir [data_root]
4 --model -type dsine

Listing 4.5: Nomal maps generation

These maps are necessary in the training phase to have additional information
about the surface to be reconstructed, which is more accurate than the normals
estimated directly from gaussians.
The next step is to generate the depth maps. This step may not be necessary if the
dataset already has depth maps obtained by sensors during the data acquisition
phase. In this case, it is possible to use these sensor-based maps as supervision
during training, which are certainly more accurate than the monocular maps
extracted from RGB images by neural networks. In the event that a dataset does
not have this information, the generation of monocular depths becomes critical.
This is done through the command shown in Listing 4.6. Specifically, depth
maps calculated from the sparse point cloud are first generated and saved in the
<data_sfm_depths> directory. Next, monocular depths are computed using the
ZoeDepth network, which takes RGB images as input and, for each image, generates
the corresponding depth map. As a final step, since the monocular depths often
have scaling problems, these are aligned with the sfm_depths in order to ensure
geometric consistency between the scene to be reconstructed and the corresponding
depth maps and to obtain a more accurate reconstruction.

1 # Converts colmap SfM points to scale aligned mono -depth estimates
2 python dn_splatter / scripts / align_depth .py
3 --data [data_root]
4 --sparse -path [data_root / colmap / sparse /0]
5 --mono -depth - network zoe
6 --align - method grad_descent
7

8 #This function provides the following directories in <data_root >
9 <data_root >

10 |--- image_path
11 | |---<image 0>
12 | |---<image 1>
13 | |---...
14 |--- colmap
15 |--- database .db
16 |--- sparse
17 |---0
18 |--- cameras .bin
19 |--- images .bin
20 |--- points3D .bin
21 |--- sfm_depths
22 | |---< sfm_depth 0>
23 | |---< sfm_depth 1>
24 | |---...

37

Methodology

25 |--- mono_depth
26 | |---< mono_depth 0>. png
27 | |---< mono_depth 0> _aligned .npy
28 | |---...

Listing 4.6: Monocular depths estimation

4.6 Analysis of Training Hyperparameters
As previously mentioned, the DN-Splatter algorithm is a variation of the 3D
Gaussian Splatting technique. However, its implementation is based on Nerfstudio’s
[42][43] version of 3D Gaussian Splatting, Splatfacto, rather than the original code.
Because of this, there are a lot more parameters that may be changed during
the training phase compared to the original 3DGS code. In particular, it is
possible to act on a very large number of parameters related to the optimization of
gaussians, colors, opacity, and cameras, but also parameters that handle machine
configuration, logging of results, and the viewer for real-time visualization of the
training process. In this Section, some parameters related to the optimization
pipeline (pipeline.model) are presented in particular. For simplicity of explanation,
they can be divided into two categories: parameters related to gaussian number
management and parameters related to various loss functions. Regarding the first
category, the following parameters are given:

• pipeline.model.refine-every defines the frequency at which the gaus-
sian refinement process takes place. The default value is 100 iterations. It
corresponds to the densification_interval parameter used in the imple-
mentation of 3D Gaussian Splatting and explained in Section 4.4.3.

• pipeline.model.cull-alpha-thresh represents the opacity threshold below
which gaussians are removed, since they are considered insignificant for the
final representation. It is necessary to manage the value well since a threshold
too high eliminates a large number of gaussians, losing quality. Conversely, a
threshold too low keeps gaussians that do not make a significant contribution
to the scene, burdening calculations and memory unnecessarily.

• pipeline.model.cull-scale-thresh represents the scale threshold, below
which gaussians are removed. The concept is similar to the previous parameter,
the only difference being that the threshold works on the size of the gaussians
and not their opacity.

• pipeline.model.cull-screen-size defines the minimum threshold (pixel)
size of the gaussian on the screen. If the projected gaussian occupies fewer
pixels than the threshold, it is deleted.

38

Methodology

• pipeline.model.split-screen-size represents the minimum threshold be-
low which the gaussian is no longer reduced into smaller gaussians.

Speaking about loss functions, the choice of what kind of function to utilize in
order to oversee gaussians and normals is left up to the individual. To balance their
contributions during the optimization stage, it is also possible to directly alter the
weights, which are the lambda parameters that multiply the loss functions. The
following are directives that allow the modification of lambda parameters and the
choice of loss functions:

• pipeline.model.depth-loss-type permits the selection of the loss type to
be applied to depth data. The available losses are: MSE, L1, LogL1, HuberL1,
TV, EdgeAwareLogL1, EdgeAwareTV.

• pipeline.model.smooth-loss-type permits the selection of the smooth
loss type to be applied to normals data. Again, as in the previous case,
the losses available are MSE, L1, LogL1, HuberL1, TV, EdgeAwareLogL1,
EdgeAwareTV.

• pipeline.model.ssim-lambda

• pipeline.model.sensor-depth-lambda

• pipeline.model.mono-depth-lambda

• pipeline.model.smooth-loss-lambda

• pipeline.model.normal-lambda

• pipeline.model.sparse-lambda

In general, varying these parameters provide different reconstructions not only in
quality but also in computational efficiency. It is important to note, however, that
an incorrect choice of hyperparameters could generate scenes of inferior quality or
even create problems of memory saturation due to an excessive number of gaussians
to be optimized. Therefore, it is necessary to find the right balance and modify
the parameters judiciously.

4.7 Evaluated Training Configurations
This Section presents the different configurations that were tested, broken down
by algorithm. The results of applying these configurations to the three datasets
considered will be presented in Chapter 5.

39

Methodology

4.7.1 3D Gaussian Splatting
Regarding the 3D Gaussian Splatting algorithm, two configurations were tested.

Base configuration. Characterized by the default values proposed in the
original implementation of the algorithm. The only differences from this version
appear to be in the data_device and resolution parameters. The former, which
by default contains the value gpu, has been assigned the value cpu, for the reason
explained in Section 4.4.3. When it comes to resolution, the original code stipulates
that resolutions greater than 1600 pixels, automatically undergo a reduction to
1600 pixels to avoid getting computationally intensive calculations. In this case,
the resolution value has been set to 1, which implies that the original resolution of
the input images is used. If set otherwise, the resolution undergoes a downscale
by a factor of 1/n, where n is the value passed to the resolution parameter.
Specifically, the values of the parameters chosen are given below:

1 #Base configuration - 3D Gaussian Splatting
2 python train.py --source_path [data_root]
3 --model_path [output_folder]
4 --eval
5 --resolution 1
6 --data_device cpu
7 --sh_degree 3
8 --iterations 30000
9 --feature_lr 0.0025

10 --opacity_lr 0.05
11 --scaling_lr 0.005
12 -- position_lr_max_steps 30000
13 -- position_lr_init 0.00016
14 -- position_lr_final 0.0000016
15 -- densify_from_iter 500
16 -- densify_until_iter 15000
17 -- densify_grad_threshold 0.0002
18 -- densification_interval 100
19 -- opacity_reset_interval 3000
20 --lambda_dssim 0.2

Listing 4.7: Base configuration - 3D Gaussian Splatting

High quality configuration. In this arrangement, the parameters that
specifically deal with gaussian optimization are changed. The interval and frequency
at which densification operations occur are increased by altering the threshold
values using the densify_until_iter and densification_interval arguments.
Lowering the settings of feature_lr, opacity_lr, and scaling_lr results in
a somewhat slower but more reliable training process. In order to enable the
model to concentrate more on the finer points of the reconstruction, the value of
lambda_dssim is finally adjusted, dropping it slightly from the suggested value.

40

Methodology

The values of the parameters used in this configuration are listed below.
1 #High Quality configuration - 3D Gaussian Splatting
2 python train.py --source_path [data_root]
3 --model_path [output_folder]
4 --eval
5 --resolution 1
6 --data_device cpu
7 --sh_degree 3
8 --iterations 30000
9 --feature_lr 0.0020

10 --opacity_lr 0.03
11 --scaling_lr 0.003
12 -- position_lr_max_steps 30000
13 -- position_lr_init 0.00016
14 -- position_lr_final 0.0000016
15 -- densify_from_iter 500
16 -- densify_until_iter 20000
17 -- densify_grad_threshold 0.0002
18 -- densification_interval 50
19 -- opacity_reset_interval 3000
20 --lambda_dssim 0.1

Listing 4.8: High Quality configuration - 3D Gaussian Splatting

4.7.2 DN-Splatter Algorithm
Concerning the testing phase performed by DN-Splatter algorithm, three different
configurations were analyzed, which will be presented below. As the list of possible
hyperarameters is very long, for the sake of simplicity and clarity, only the param-
eters that were changed for each configuration will be reported. Parameters not
explicitly discussed are intended to be default values according to the original imple-
mentation. The training command starts by executing the singularity container (file
with the .sif extension), which contains all the libraries and dependencies necessary
for proper code execution. Then the various options related to the dn-splatter
module are defined. All four configurations use CoolerMapDataParser (coolermap
command) as their dataperser, which is a version that extends ColmapDataParser
from Nerfstudio. Its purpose is to process the data obtained from COLMAP,
considering the additional information given by the depth and normal maps.

Base. This configuration features all the established defaults proposed by the
original implementation. In particular, normals generated by the zoe model and
monocular depth maps aligned with those extracted from the SfM reconstruction
are used as ground-truth. Two loss functions are then specified, one for depth
optimization and one for normals optimization. HuberL1 used for depth information

41

Methodology

helps to improve its accuracy by trying to keep the scene noise low and reducing
the impact that outliers might have on the optimization. In contrast, TV is a loss
function that aims to make the normals estimated from gaussians more uniform,
thus trying to achieve more homogeneous surfaces in the final reconstruction. It
basically uses the difference between adjacent pixels to penalize local variations.
This configuration was also tested, in the case of the UseGeo dataset, by using
depth maps extracted directly at the scene during data acquisition as ground truth
for supervising depth information.

1 #Base configuration - DN - Splatter
2 singularity exec --nv /home/ crovegno / dns_nerf_1 .0.3. sif
3 ns -train dn - splatter
4 --experiment -name h3dg -base
5 --data [data_path]
6 --output -dir [output_path]
7 --vis viewer + tensorboard
8 --viewer .quit -on -train - completion True
9 --pipeline .model.depth -loss -type HuberL1

10 --pipeline .model.smooth -loss -type TV
11 --pipeline .model.use -depth -smooth -loss True
12 --pipeline .model.use -normal -tv -loss True
13 --pipeline .model.mono -depth - lambda 0.2
14 --pipeline .model.smooth -loss - lambda 0.1
15 --pipeline .model.normal - lambda 0.1
16 --pipeline .model.cull -alpha - thresh 0.1
17 --pipeline .model.densify -grad - thresh 0.0002
18 --pipeline .model.densify -size - thresh 0.01
19 --optimizers .means. optimizer .lr 0.00016
20 coolermap
21 --colmap -path [colmap_path]
22 --depths -path [mono_depths_path]
23 --load - depths True
24 --normal - format opencv
25 --normals -from pretrained

Listing 4.9: Base configuration - DN-Splatter

Edge-based. The following configuration was tested with the goal of putting
the focus of training on edges optimization, since these are very important in the
case of urban datasets. In this situation, several values of hyperparameters were
changed, starting with the loss functions. In particular, the loss choices try to
minimize the difference between estimated information and ground-truths while
trying to keep a focus on edges and image details. The EdgeAwareLogL1 works on
the depth estimation error, focusing on the edges of the image, using a combination
of L1 and logarithm to be less sensitive to large errors. The EdgeAwareTV on the
other hand tries to improve estimates on normals, focusing on changes in normals
along significant edges of the scene.

42

Methodology

1 #Edge -based configuration - DN - Splatter
2 singularity exec --nv /home/ crovegno / dns_nerf_1 .0.3. sif
3 ns -train dn - splatter
4 --experiment -name h3dg -edges
5 --data [data_path]
6 --output -dir [output_path]
7 --vis viewer + tensorboard
8 --viewer .quit -on -train - completion True
9 --pipeline .model.depth -loss -type EdgeAwareLogL1

10 --pipeline .model.smooth -loss -type EdgeAwareTV
11 --pipeline .model.use -depth -smooth -loss True
12 --pipeline .model.use -normal -tv -loss True
13 --pipeline .model.mono -depth - lambda 0.2
14 --pipeline .model.smooth -loss - lambda 0.1
15 --pipeline .model.normal - lambda 0.1
16 --pipeline .model.cull -alpha - thresh 0.1
17 --pipeline .model.densify -grad - thresh 0.0002
18 --pipeline .model.densify -size - thresh 0.01
19 --optimizers .means. optimizer .lr 0.00016
20 coolermap
21 --colmap -path [colmap_path]
22 --depths -path [mono_depths_path]
23 --load - depths True
24 --normal - format opencv
25 --normals -from pretrained

Listing 4.10: Edeg-based configuration - DN-Splatter

Tuning. In this configuration, the goal was to play with the different parameters,
trying to obtain a higher quality reconstruction without affecting too much the
total number of gaussians and thus the computational resources required. More
importance is given to the contribution of depth, increasing the lambda parameter
of the monocular depths with the goal of better aligning the estimated surfaces
with the real ones. The contribution of ssim is also increased in order to improve
the perceptual quality of the scene. The opacity threshold below which gaussians
are discarded is lowered; thus, a higher number of gaussians will contribute to the
final reconstruction.

1 # Tuning configuration - DN - Splatter
2 singularity exec --nv /home/ crovegno / dns_nerf_1 .0.3. sif
3 ns -train dn - splatter
4 --experiment -name h3dg - tuning
5 --data [data_path]
6 --output -dir [output_path]
7 --vis viewer + tensorboard
8 --viewer .quit -on -train - completion True
9 --pipeline .model.depth -loss -type EdgeAwareLogL1

10 --pipeline .model.smooth -loss -type EdgeAwareTV
11 --pipeline .model.use -depth -smooth -loss True

43

Methodology

12 --pipeline .model.use -normal -tv -loss True
13 --pipeline .model.mono -depth - lambda 0.3
14 --pipeline .model.ssim - lambda 0.3
15 --pipeline .model.smooth -loss - lambda 0.2
16 --pipeline .model.normal - lambda 0.1
17 --pipeline .model.cull -alpha - thresh 0.05
18 --pipeline .model.densify -grad - thresh 0.0002
19 --pipeline .model.densify -size - thresh 0.01
20 --optimizers .means. optimizer .lr 0.00012
21 coolermap
22 --colmap -path [colmap_path]
23 --depths -path [mono_depths_path]
24 --load - depths True
25 --normal - format opencv
26 --normals -from pretrained

Listing 4.11: Tuning configuration - DN-Splatter

This configuration proved to be problematic when training the H3DG dataset. Since
the scene to be represented is rich in detail, a much higher number of gaussians
is generated than in the other datasets, as will be shown in the Results Section.
This, combined with the fact that this configuration tries to increase the number
of gaussians in order to obtain a higher quality representation, caused CUDA
OOM problems. It was therefore necessary, exclusively for this dataset, to think of
another training configuration, with the opposite goal of decreasing the number of
generated gaussians. The final configuration is shown below:

1 # Tuning configuration for H3DG dataset - DN - Splatter
2 singularity exec --nv /home/ crovegno / dns_nerf_1 .0.3. sif
3 ns -train dn - splatter
4 --experiment -name h3dg - tuning
5 --data [data_path]
6 --output -dir [output_path]
7 --vis viewer + tensorboard
8 --viewer .quit -on -train - completion True
9 --pipeline .model.depth -loss -type EdgeAwareLogL1

10 --pipeline .model.smooth -loss -type EdgeAwareTV
11 --pipeline .model.use -depth -smooth -loss True
12 --pipeline .model.use -normal -tv -loss True
13 --pipeline .model.mono -depth - lambda 0.2
14 --pipeline .model.ssim - lambda 0.2
15 --pipeline .model.smooth -loss - lambda 0.1
16 --pipeline .model.normal - lambda 0.05
17 --pipeline .model.cull -alpha - thresh 0.13
18 --pipeline .model.densify -grad - thresh 0.0005
19 --pipeline .model.densify -size - thresh 0.02
20 --optimizers .means. optimizer .lr 0.00014
21 coolermap
22 --colmap -path [colmap_path]

44

Methodology

23 --depths -path [mono_depths_path]
24 --load - depths True
25 --normal - format opencv
26 --normals -from pretrained

Listing 4.12: Tuning configuration for H3DG dataset - DN-Splatter

4.8 Renders and Point Cloud Extraction
Following the training procedure, the next stage is based on the outcomes’ extraction
and subsequent analysis, which are essential steps to assess the accuracy of the
configurations that were just tested. After training, the DN-Splatter algorithm
creates an output directory with the following definition:

1 #DN - Splatter output directory
2 <output_path >
3 |---< experiment_name >
4 |---<dn -splatter >
5 |---<timestramp >
6 |---< nerfstudio_models >
7 | |---step -000029999. ckpt
8 |--- config .yml
9 |--- dataparser_transforms .json

10 |--- events .out. tfevents

Listing 4.13: DN-Splatter output directory

where,

• config.yml contains information regarding the configuration of the model
and all its parameters, including the paths to all folders necessary to resume
training from a given checkpoint, if necessary;

• dataparser_transform.json contains a transformation matrix describing
the orientation of the scene in the camera system and a scaling factor.

• events.out.tfevents is the file that contains the Tensorboard logs that
allow us to check in real time how the training is progressing by analyzing the
performance of loss and evaluation metrics.

The photometric quality of the reconstruction can be seen directly through the
support of Tensorboard, if enabled during the training phase. The same applies
to the final scene reconstruction: this can be viewed either in real time or at the
end of the optimization phase via the viewer made available by nerfstudio. In case
it is necessary to download the renders at the end of the training, they can be
generated and exported manually using the appropriate command:

45

Methodology

1 # Renders extraction and metrics computation
2 ns -eval
3 --load - config [config_path]
4 --output -path [output_path]
5 --render -output -path [renders_path]

Listing 4.14: Renders extraction and metrics computation

The same applies to the final point cloud. In case it is necessary to perform
post-processing operations on it or to compare it with a LiDAR reference to
obtain a geometric measure of the reconstruction, it should be exported via the
corresponding command:

1 #Point cloud export
2 ns - export gaussian -splat
3 --load - config [config_path]
4 --output -dir [output_path]

Listing 4.15: Point cloud export

4.9 Point cloud Post-Process
Frequently it happens that the point cloud resulting from the training phase of the
algorithm is not the final result desired, but rather becomes the input for other
operations. Therefore, it is often necessary to submit this data to a post-processing
phase that prepares it for this purpose.
In the context of this project, the resulting point cloud must be compared with
the point cloud obtained by LiDAR sensor to calculate the geometric accuracy
of the reconstruction. This is done through the use of CloudCompare software,
which allows point cloud processing in an easy but effective way. The point clouds
obtained as a result of the training, before being imported to CloudCompare for post-
processing operations, undergo a conversion performed through 3dgsconverter [44].
This operation is not strictly necessary, since the point cloud is still read correctly by
the software, but since the software does not support gaussian visualization, without
the conversion much information related to colors, described by SH coefficients,
and opacity values is lost.
Four postprocessing operations performed on the resulting point clouds are presented
in this Section.

4.9.1 Alignment
The manual point cloud alignment operation is not always necessary, but there
are cases when it proves to be really important. An example might be the case
where one does not have information about camera poses available for a point cloud

46

Methodology

alignment using colmap model_aligner. Or situations where not enough hardware
resources are available for training the complete dataset and it is necessary to
apply the cell partitioning operations as described in Section 4.4.2. In this case, the
only way to realign the different cells is to perform a manual alignment to recreate
the point cloud representing the entire scene. In the context of this project, this
operation was performed in particular in the case of the Pescara del Tronto dataset.
In fact, in addition to a total optimization of the dataset in its entirety by using
resources offered by the cluster, the solution of dividing it into cells for training
with limited resources was also tested. Figure 4.5 shows the three individually

Figure 4.5: Pescara del Tronto dataset divided into three cells, optimized sepa-
rately, before the alignment phase using Align Tool.

trained cells of the dataset under consideration, prior to manual alignment. The
cell alignment was done using CloudCompare and consists of two basic steps: first
a approximate alignment is done using Align Tool, then refined using Iterative
Closest Point (ICP).
The initial alignment using Align Tool allows for a rough alignment between the two
point clouds by manually selecting at least three points common to the two point
clouds. Later, this alignment can be improved using ICP. This allows, through
a series of iterations, to minimize the distance between the two point clouds by
finding the best combination of rotation and translation operations. Once the
alignment of the point clouds is done, a merge can be performed so that they are
joined and the point cloud representing the entire scene is obtained.

4.9.2 Outliers Removal
Another very important operation is the management of outliers. These are
characterized by points that deviate from the main point cloud, compromising
the result of any subsequent operations such as LiDAR ground-truth distance

47

Methodology

calculation. They can result from errors during the processing phase, data noise
or lack of a significant number of data points to represent a certain region of the
scene. In particular, this occurs near the outside margins of the point cloud, where
fewer images are taken from different angles, giving the model less information to
use for precise scene reconstruction.
Figure 4.6 shows the point cloud for the PDT dataset, obtained by DN-Splatter
algorithm. As can be seen, the areas circled in red represent outliers, groups of
points that deviate from the distribution of interest and are likely to create problems
in subsequent operations. A manual cleanup was then done, using CloudCompare’s
Segment Tool, to remove these areas and obtain a more compact point cloud.
Figure 4.7 shows the final result.

Figure 4.6: DN-Splatter point cloud, displayed in CloudCompare. On the left,
the top view of the scene is shown, on the right the side view of the same scene.
Outliers, circled in red, are highlighted.

Figure 4.7: DN-Splatter point cloud, following the clean-up operation using
Segmentation Tool.

48

Methodology

4.9.3 Downsampling
Downsampling is an operation that allows the reduction of the number of points
that belong to a point cloud, in order to make processing easier, but without losing
too much in terms of quality. This, can prove very useful when working for example
with LiDAR data, characterized by millions of points. In this context, in order to
have an easier data handling during the post-processing phase, a downsampling was
performed on the point cloud obtained from the LiDAR sensor of the H3DG dataset,
which was very heavy. This downsampling was necessary because the point cloud
obtained from the reconstruction algorithm is much less detailed than the LiDAR
ground-truth. As a result, the two relevant data points can be compared more
fairly. Using a technique based on spatial sampling, which measures the distance
between individual points, the downsampling was performed using CloudCompare’s
Subsampling tool. By setting a value of 0.02 m for example, one point is retained
every 2 cm. This method, compared to random sampling, maintains a more uniform
distribution of points, reducing density without losing too much structural detail.

4.9.4 Point-to-Point Distance
The last post-processing operation applied to the point cloud resulting from the
reconstruction algorithm is the calculation of the point-to-point distance with
the LiDAR point cloud, representing the grond-truth. This step is necessary
because the ultimate goal of this project is precisely to evaluate the ability of the
algorithm to generate an accurate reconstruction, not only photometrically but also
geometrically. The distance is calculated by taking the ground-truth point cloud as
a reference and setting the reconstructed point cloud as the target. Then, using a
nearest neighbor search algorithm, the nearest points belonging to the target cloud
are searched for each point in the LiDAR. The Euclidean distance between these
points is then computed. At the end of the process, the result can be visualized in
the form of a color scale on the target cloud, where the color changes indicate the
difference in distance. In this case, since the outer areas of the reconstructed point
cloud, due to the limited number of data covering those areas, are poorly defined,
only the central part is considered for distance calculation.

49

Chapter 5

Results and Discussions

This Section will present and discuss the results obtained during the course of this
thesis project, through the algorithms and approaches described in the previous
chapters. In particular, the analysis will be of two types, photometric and geometric.
The former focuses on the visual evaluation of reconstructed scenes, through the
analysis of evaluation metrics; the latter emphasizes the geometric accuracy of the
point clouds reconstructed by the models, in relation to the LiDAR point cloud
obtained from the sensor during data acquisition.

5.1 Photometric Analysis
When reconstructing a real scene, photometric analysis of the generated environment
represents a fundamental aspect of the whole process. This is because the human
brain is naturally inclined to recognize real images; therefore, it is particularly
sensitive to noise or artifacts in reconstruction. Inconsistent colors, poorly defined
textures or errors in lighting have a very strong visual impact, immediately giving
the impression of a generated image, different from the real one.
In order to evaluate the photometric accuracy of the reconstruction, the evaluation
metrics proposed by the original implementation of the 3D Gaussian Splatting
algorithm have been considered: PSNR, SSIM, LPIPS. Table 5.1 shows the results
obtained on the three datasets considered, trained by 3D Gaussian Splatting, in
the configurations presented in Section 4.7.1. From these data, it can be noted
immediately that, unlike what might be expected, a higher number of gaussians
does not necessarily lead to an increase in reconstruction quality. In fact, the
High-Quality configuration, despite having a much higher number of gaussians
than the basic configuration, as can be seen from the G-Count field in the table,
achieves almost comparable results in the evaluation metrics. In contrast, a more
substantial difference can be seen by comparing the performance of the algorithm

50

Results and Discussions

Dataset Config. PSNR SSIM LPIPS G-Count

PDT Base 24,9772 0,7311 0,3181 8.099.123
Hq 24,5958 0,7066 0,3316 7.561.579

D1 Base 26,8579 0,8198 0,2498 12.490.019
Hq 26,4887 0,7998 0,2916 11.080.751

C1-H3DG Base 25,9121 0,8521 0,2984 13.412.243
Hq 25,6817 0,8336 0,3002 12.611.021

C2-H3DG Base 26,2762 0,8909 0,2704 13.104.205
Hq 26,0723 0,8738 0,2981 12.206.544

Table 5.1: 3D Gaussian Splatting photometric results

on the three datasets examined. In particular, the dataset representing Pescara
del Tronto turns out to have the lowest values. This is certainly related to the
features of the images that compose it. In fact, the scene is characterized by a
vast green area, which is almost devoid of key points with which to perform an
accurate sparse reconstruction. In addition, the central region of the scene, despite
being characterized by an urban area, is also particularly complex to reconstruct
because of the condition of the buildings following the earthquake. Rubble and
debris create a highly variable area that is difficult to reproduce correctly during
the gaussian optimization phase. This generates poor PSNR, SSIM and LPIPS
values, describing the fact that the generated renders are deficient both at pixels
level and at perceptual level.
The other two datasets analyzed, UseGeo and H3DG, as can be seen from the values
shown in Table 5.1, are more accurately represented. This again, as explained
above for the PDT dataset, depends on the properties of the ground-truth images

Figure 5.1: Some extracts from the reconstruction of the Pescara del Tronto
dataset.

51

Results and Discussions

that compose it. Both datasets are characterized by urban landscapes, rich in
detail and well-defined edges. This aspect greatly helps the process of finding and
matching features to create the sparse point cloud from which the optimization
process starts. Consequently, it proves easier to optimize gaussians for a more
accurate representation of the scene, confirmed by the better values of evaluation
metrics.

Dataset Cell PSNR SSIM LPIPS G-Count

PDT
C1 22,8397 0,6204 0,4534 5.298.320
C2 23,4572 0,6796 0,3841 4.919.338
C3 23,4422 0,6712 0,3875 6.353.678

D1

C1 26,8480 0,7965 0,2422 3.910.713
C2 23,4682 0,7430 0,2686 5.536.776
C3 22,3885 0,7063 0,3459 2.410.307
C4 24,6784 0,8053 0,2470 4.102.176
C5 25,0813 0,7629 0,3032 2.364.862
C6 26,0062 0,7927 0,2622 4.976.818
C7 23,0083 0,7684 0,2445 5.654.048

Table 5.2: 3D Gaussian Splatting photometric results for individual cell using
base configuration

Taking a closer look, it can be seen that different regions of the same scene produce
renders of different quality. Table 5.2 shows the results obtained on the PDT and
UseGeo datasets, divided into cells as described in Section 4.4.2, , to try coping
with the problem of limited computational resources. The obtained metrics show
how the quality of the generated renders varies significantly depending on the
conformation of the represented territory. For example, in the UseGeo dataset,
the most distant values are represented by cell number 3, characterized almost
exclusively by vegetation, and cell number 1, rich in detail due to the presence of
buildings and roads with well-defined edges. A representation of the two cells can
be seen in Figure 5.2.
Regarding the DN-Splatter algorithm, the tests conducted on the three datasets
under consideration, using the configurations described in Section 4.7.2, are shown
in Table 5.3. Again, similar to previous results, there is not much difference among
different configurations for the same dataset. In general, it can be seen that the
basic configuration achieves better results in terms of evaluation metrics. It is also
interesting to note that, in contrast to the approach based on the implementation
of 3D Gaussian Splatting, the number of gaussians used for reconstruction is
significantly lower, while still maintaining the photometric quality and, in some
cases, improving it. As in the previous case, the best performance is on the UseGeo

52

Results and Discussions

Figure 5.2: On the left, the reconstruction of C3,largely covered in vegetation; on
the right, the reconstruction of C1 characterized by a high number of details.

Dataset Config. PSNR SSIM LPIPS G-Count

PDT
Base 27,8767 0,8454 0,2338 3.703.461
Edges 25,3759 0,7673 0,3847 2.396.815
Tuning 26,4337 0,8037 0,3102 4.191.022

D1

Base 27,8504 0,7650 0,2787 3.771.038
B-Sensor 27,9094 0,7646 0,2768 3.790.209

Edges 27,2715 0,7458 0,2962 3.455.903
Tuning 27,7093 0,7825 0,2487 6.677.079

C1-H3DG
Base 22,6333 0,6648 0,3607 9.366.555
Edges 22,1787 0,6325 0,3958 7.263.430
Tuning 21,5394 0,6048 0,4328 5.619.977

C2-H3DG
Base 23,2432 0,7195 0,3007 9.019.811
Edges 22,6004 0,6729 0,3515 7.263.430
Tuning 22,2445 0,6669 0,3653 5.619.977

Table 5.3: DN-Splatter photometric results

dataset. On this very dataset, a test was also performed using depth maps extracted
from LiDAR data as ground-truth for depth information. However, at least at the
photometric level, there is not much difference from the basic configuration. The
H3DG dataset, on the other hand, gets lower quality results. This is probably due
to the strong contrast given by the light/shadow areas. These sudden changes in
illumination probably create artifacts during optimization, affecting the overall
quality of the reconstruction.
Another very important aspect to consider is that both models work from input
images, so they can only use the information they have available as ground-truth
data for the optimization phase. In the case of data acquired by UAV from above,

53

Results and Discussions

Figure 5.3: Some extracts from the reconstruction of the H3DG dataset.

they do not have side perspectives of the buildings or regions to be reconstructed.
This generates a final reconstruction that is very detailed, from a photometric point
of view, in certain areas, but equally deficient in others. As can be seen from Figure
5.4, the output is very good from an aerial view, but extremely undefined from a
perspective which is different from the input images. The model itself is capable
of reconstructing new views not present in the input data by interpolating among
those available, but in the case of aerial images this is extremely complicated. In
fact, the images on which the original algorithm was tested are all characterized by
one key aspect: they are images that “ rotate” around the subject, capturing it
from every perspective. In this way, a good overall result can be achieved. Aerial
images, on the other hand, capture the environment only from above, limiting the
model’s ability to correctly reconstruct different perspectives.
Concluding this photometric analysis, it can be said that, in general, the quality
of the results is not excellent, but still satisfactory, and thus the model is able

Figure 5.4: On the left, a side view of the reconstructed environment; on the
right, an aerial view of the same region.

54

Results and Discussions

to represent even large-scale aerial scenes in a photometrically accurate manner.
However, attention should be paid to the region being reconstructed, the quality of
the images being acquired, and keep in mind that since this is aerial data, viewing
the reconstruction from different perspectives could be challenging.

5.2 Geometric Analysis
The goal of the 3D Gaussian Splatting algorithm studied in this thesis project
is to recreate urban environments using only RGB images as starting data. As
was described in the previous Section, it has been shown to work quite well even
on images different from those for which it was designed, such as aerial images
that allow reconstructing large-scale environments from a different perspective.
Unfortunately, however, the reconstruction in this case has a purely aesthetic
purpose, therefore the geometric accuracy of the generated point cloud is not
taken into account. This may be acceptable in situations where the main focus
falls on visual appearance, such as reconstructing environments for virtual reality
applications. However, in contexts that require some geometric accuracy, such as
mapping urban environments, this aspect must also be taken into account.
This Section therefore evaluates geometrically the point clouds generated by both
algorithms in the different configurations tested. This is useful not only to evaluate
the geometric accuracy of 3D Gaussian Splatting, but also to test whether DN-
Splatter actually succeeds in solving this problem by generating more accurate
clouds. Geometric accuracy was evaluated by calculating the distance between the
point cloud obtained by LiDAR sensor, for datasets that have such information,
and the point cloud generated by the reference algorithm. Specifically, results
will be presented using two types of values: the average distance (expressed in
cm) between the LiDAR points and the points in the generated cloud, and the
percentage of points in the generated cloud that are below a reference threshold,
both in terms of global distance and in terms of distance over the plane. For the
calculation of C2C (Cloud to Cloud) distance using the CloudCompare software,
a maximum threshold distance between points of 1m was used. This threshold
value is very high, but it was necessary for proper distance evaluation given the
low accuracy of the generated point clouds.
The point cloud generated by the 3D Gaussian Splatting algorithm turns out to
be rich in outliers, which cannot always be removed by clean-up operation before
distance calculation. Especially, these clusters of points develop in height, going to
affect the global distance calculation. For this reason, the distance calculated in
the XY plane is also considered, which ignores the Z component, thus the elevation
difference. In fact, since the scene is taken exclusively from aerial images, this data
is not as important as in other contexts. The geometric results calculated on the

55

Results and Discussions

Dataset Config. 3DGS - C2C Absolute Distance - Global
5 cm 10 cm 20 cm 50 cm 80 cm #gauss. Mean Std.Dev.

D1 Base 20,81% 32,74% 45,69% 60,03% 63,83% 12.499.019 46,2 cm 42,4 cm
HQ 19,34% 30,52% 42,43% 55,24% 58,81% 11.080.751 50,4 cm 43,3 cm

D1
Central

Base 20,39% 35,08% 51,48% 68,64% - 5.251.163 25,0 cm 19,5 cm
HQ 19,26% 33,41% 49,99% 68,24% - 4.391.684 25,5 cm 19,4 cm

C1
H3DG

Base 15,43% 26,12% 40,76% 62,04% 69,81% 13.412.243 46,4 cm 41,2 cm
HQ 14,29% 25,81% 39,18% 60,02% 66,91% 12.611.021 48,3 cm 43,1 cm

C2
H3DG

Base 12,56% 22,58% 36,87% 59,04% 65,90% 13.104.205 48,6 cm 39,6 cm
HQ 11,64% 21,12% 34,92% 58,35% 62,13% 12.206.544 51,2 cm 40,3 cm

Table 5.4: The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR is displayed
in the table for each tested configuration. The mean and standard deviation global
distance values, both in centimetres, are also displayed.

Dataset Config. 3DGS - C2C Absolute Distance - Planar
5 cm 10 cm 20 cm 50 cm 80 cm #gauss. Mean Std.Dev.

D1 Base 38,41% 57,52% 77,73% 97,25% 99,75% 12.499.019 13,0 cm 14,1 cm
HQ 38,97% 58,44% 78,18% 97,00% 99,70% 11.080.751 12,9 cm 14,4 cm

D1
Central

Base 41,85% 66,04% 88,64% 100% - 5.251.163 9,18 cm 8,61 cm
HQ 40,53% 64,63% 87,83% 100% - 4.391.684 9,47 cm 8,79 cm

C1
H3DG

Base 44,19% 65,51% 87,12% 99,03% 97,97% 13.412.243 10,4 cm 11,7 cm
HQ 43,92% 65,03% 86,70% 97,31% 99,72% 12.611.021 10,6 cm 11,9 cm

C2
H3DG

Base 42,10% 64,04% 84,57% 98,13% 99,83% 13.104.205 10,8 cm 12,2 cm
HQ 41,23% 62,81% 84,10% 97,75% 99,61% 12.206.544 11,3 cm 12,4 cm

Table 5.5: The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR is displayed
in the table for each tested configuration. The mean and standard deviation planar
distance values, both in centimetres, are also displayed.

point clouds generated by the 3D Gaussian Splatting algorithm are presented in
Table 5.4 and Table 5.5.
The generated point clouds, as can be seen, are not very accurate, with a very low
percentage of points being below 10 cm in distance, especially for global distance.
On the other hand, excluding the Z component and calculating the distance over
the plane, the values are better, with more than 95 percent of points being at a
maximum distance of 50 cm. In the particular case of the UseGeo dataset, given

56

Results and Discussions

the large difference from the LiDAR reference, a central region of the scene was
extracted that appeared to be the most accurate. This was evaluated separately by
setting a maximum distance threshold lower than the total point cloud of 50 cm. It
can be seen, however, that the results, at least as far as global distance is concerned,
are comparable with those extracted from the total point cloud. Speaking instead
of distance on the plane, the values are slightly better, with 100% of the points
below 50 cm distance. The average distance values, expressed in centimeters, and
the standard deviation values for each point cloud evaluated, both for global and
planar distances, are also shown in Table 5.4 and Table 5.5 .
It can therefore be stated that the geometric accuracy in the 3D Gaussian Splatting
algorithm could be improved, given the results on the different datasets. Figure 5.5
shows the point clouds representing the distances, global and planar, calculated
with respect to the ground-truth LiDAR cloud and particularly the point cloud
representing the central cell of the UseGeo dataset, in its basic configuration.

Figure 5.5: On the left, the point cloud representing the global distance between
the LiDAR reference and the generated point cloud, with the relative distribution
of points on the different distance values; on the right, the same representation but
related to the planar distance.

57

Results and Discussions

The DN-Splatter algorithm works on this limitation of the original implementation
by introducing the possibility of computing normal and depth maps to improve the
geometric accuracy of the generated point cloud. The results are generally better
than those obtained using the original 3D Gaussian Splatting implementation,
shown in Table 5.4 and Table 5.5. Again, global and planar distance values are
shown, with an improvement in the case of planar distance. Table 5.6 and Table
5.7 show the distance-related results obtained by comparing the LiDAR point
cloud with the point cloud generated by DN-Splatter. The values for the different
configurations tested have a rather similar trend for the same dataset. However, it
can be seen that the UseGeo dataset has better results than the H3DG dataset,
on both blocks considered (C1 and C2). This is due to the fact that the point
cloud generated for this dataset is not particularly accurate, especially the one
representing block C1, which has worse distance values compared to block C2.
In particular, as can be seen from Figure 5.6, the point clouds appear to have several
outliers, especially in height at the roofs of buildings. This could be due to the
strong changes in brightness given by the light/dark areas, which are particularly
pronounced in some regions of the scene. If highly emphasized, these could be read
as depth fluctuations, where the bright parts are higher and the dark areas are
lower.

Dataset Config. DNS - C2C Absolute Distance - Global
5 cm 10 cm 20 cm 50 cm 80 cm #gauss. Mean Std.Dev.

D1

Sensor 27,26% 42,31% 60,71% 80,44% 85,44% 5.073.679 28,4 cm 33,0 cm
Base 26.22% 43.12% 61.48% 80.66% 85,44% 5.063.774 28,0 cm 33,1 cm
Edges 28,85% 42,43% 60,49% 79,28% 83,93% 4.644.470 29,2 cm 34,1 cm
Tuning 26,21% 42,80% 60,75% 79,57% 83,96% 9.248.330 29,1 cm 34,1 cm

D1
Central

Sensor 29,84% 48,26% 65,65% 76,24% - 1.586.771 19,4 cm 18,8 cm
Base 32,34% 51,20% 67,96% 77,57% - 1.639.654 18,5 cm 18,5 cm
Edges 31,82% 50,32% 66,83% 76,27% - 1.476.930 19,0 cm 18,9 cm
Tuning 32,02% 50,36% 66,56% 75,77% - 3.053.343 19,1 cm 19,0 cm

C1
H3DG

Base 19,22% 34,61% 56,56% 83,42% 92,04% 8.883.937 26,5 cm 27,2 cm
Edges 19,39% 34,86% 56,61% 82,82% 91,50% 7.313.995 26,8 cm 27,7 cm
Tuning 19,32% 35,15% 57,50% 84,71% 92,95% 5.197.802 25,6 cm 26,3 cm

C2
H3DG

Base 18,70% 34,60% 55,46% 91,33% 95,81% 8.294.564 23,0 cm 21,9 cm
Edges 18,49% 32,82% 53,65% 87,93% 92,05% 6.724.556 25,8 cm 26,2 cm
Tuning 18,76% 33,63% 55,52% 93,46% 96.78% 5.306.580 22,0 cm 20,2 cm

Table 5.6: The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR is displayed
in the table for each tested configuration. The mean and standard deviation global
distance values, both in centimetres, are also displayed.

58

Results and Discussions

Dataset Config. DNS - C2C Absolute Distance - Planar (XY)
5 cm 10 cm 20 cm 50 cm 80 cm #gauss. Mean Std.Dev.

D1

Sensor 36,49% 56,49% 78,11% 97,96% 99,80% 5.073.679 12,8 cm 13,3 cm
Base 37,24% 57,55% 78,93% 98,06% 99,82% 5.063.774 12,5 cm 13,1 cm
Edges 37,32% 57,58% 79,00% 98,09% 99,83% 4.644.470 12,4 cm 13,1 cm
Tuning 37,60% 57,84% 79,77% 98,21% 99,84% 9.248.330 12,3 cm 12,9 cm

D1
Central

Sensor 49,69% 73,41% 93,29% 100% - 1.586.771 7,41 cm 7,12 cm
Base 50,63% 74,53% 93,69% 100% - 1.639.654 7,22 cm 6,97 cm
Edges 50,68% 74,48% 93,68% 100% - 1.476.930 7,24 cm 7,01 cm
Tuning 51,09% 74,86% 93,95% 100% - 3.053.343 7,15 cm 6,89 cm

C1
H3DG

Base 36,57% 57,19% 79,14% 97,26% 99.78% 8.883.937 12,8 cm 13,7 cm
Edges 36,60% 57,42% 79,06% 97,23% 99,76% 7.313.995 12,8 cm 13,8 cm
Tuning 38,64% 59,43% 80,60% 97,81% 99,82% 5.197.802 12,1 cm 13,1 cm

C2
H3DG

Base 50,22% 76,91% 93,79% 99,43% 99,95% 8.294.564 7,52 cm 8,37 cm
Edges 50,45% 75,58% 93,43% 99,30% 99,93% 6.724.556 7,62 cm 8,76 cm
Tuning 52,09% 77,42% 94,98% 99,65% 99,97% 5.306.580 7,00 cm 7,51 cm

Table 5.7: The percentage of gaussians in the point cloud produced by 3DGS
that are below a specific distance threshold in comparison to LiDAR is displayed
in the table for each tested configuration. The mean and standard deviation global
planar distance values, both in centimetres, are also displayed.

Figure 5.6: Point cloud representing block C2 of the H3DG dataset, generated
via DN-Splatter in the basic configuration. In light blue, the LiDAR point cloud is
shown, in RGB the generated point cloud. Clusters of outliers are evident on the
rooftops.

59

Results and Discussions

This would cause issues during gaussian optimization and, consequently, while
creating the final point cloud. In this case, a more homogeneous illumination turns
out to be easier to reconstruct, as shown by the results obtained on the UseGeo
dataset. Figure 5.7 shows the point clouds related to the distance calculated on
block C2 obtained through basic configuration, both globally and in the plane, and
the relative distribution of points shown on the histogram. It is clearly possible to
see that the most distant points, colored red, are located at the roofs of the houses
in the left Figure, which represents the global distance. In the right Figure, on
the other hand, where the distance in the plane is shown, the Z component is not
considered; thus, almost all the points are at a maximum distance of 50 cm from
the LiDAR reference cloud.
However, in order to properly interpret the results obtained from both approaches,
some considerations need to be made. All the point clouds generated by the models
and used for distance calculation were compared with the corresponding LiDAR
reference cloud, which is characterized by a GDS (Ground Sampling Distance)
value of 2 cm, hence with a very high spatial resolution. However, as explained in

Figure 5.7: On the left, the point cloud representing the global distance with the
relative distribution of points; on the right, the same representation but related to
the planar distance.

60

Results and Discussions

Section 4.1, the images of both datasets considered underwent a rescaling operation
that necessarily involved a change in the resolution of the ground images and
consequently affecting the level of detail that the model can learn. Specifically,

• UseGeo images were reduced by a factor of 0.5, bringing the GDS to 4 cm;

• H3DG images were reduced by a factor of 0.28, bringing the GDS to 7cm.

As a result, errors below these thresholds will not be visible because they are below
the single pixel size, thus below the detail capability that the model can generate.
Errors below 10 cm can still be considered acceptable, as they correspond to a
deviation of 1-2 pixels, depending on the dataset. Larger discrepancies, such as
those bigger than 20 cm, may indicate a structural problem caused by the model’s
inaccurate reconstruction of the point cloud.
In general, it can be established that although the results obtained by the two
algorithms are almost comparable from a photometric point of view, the DN-
Splatter is more accurate from a geometric point of view. This algorithm manages
to generate lighter point clouds, consequently reducing the computational impact
given by gaussian optimization. The points, despite being fewer in number, turn
out to be more accurately placed in geometry-critical areas such as edges. As can
be seen from Figure 5.8, the DN-Splatter generates a “cleaner” point cloud in terms
of geometry, with the points concentrated on edge areas and almost absent on
flat surfaces, which are recreated during rendering using the few points available.
In contrast, 3D Gaussian Splatting generates a much more chaotic and poorly
structured cloud, with a large number of points in regions where they would not
be needed. This therefore results in poor geometric accuracy of the algorithm. In
addition, the higher geometric accuracy of the point cloud generated by DN-Splatter
results in better photometric quality of the reconstruction in general. This increase
is not very noticeable however, because although the gaussians are more precisely

Figure 5.8: On the left, the point cloud generated by the 3D Gaussian Splatting
algorithm; on the right, the point cloud generated by the DN-Splatter algorithm,
both in their basic configuration.

61

Results and Discussions

distributed, during the rendering phase they are not treated as discrete points, but
as probability distributions of light in space. This therefore allows for good results
from a photometric point of view, despite the presence of a non-geometrically
accurate point cloud underneath.

62

Chapter 6

Conclusions

This research project was based on the exploration of the 3D Gaussian Splatting
algorithm and its ability to reconstruct urban environments using aerial images
captured by UAVs as input. The presented approach is part of an evolving tech-
nological scenery, where traditional active and passive reconstruction methods,
such as LiDAR, Structure from Motion (SfM) and Multi-View Stereo (MVS), are
progressively integrated with advanced deep learning techniques, including Neural
Radiance Fields (NeRF) and their variants.
The algorithm was assessed photometrically, by comparing the reconstructed scene
with input images, as well as geometrically, by calculating the distance between
the generated point cloud and the ground-truth data, acquired via LiDAR sensor.
On the photometric side, the conducted analyses showed a good reconstruction
capability of the algorithm. The results did not appear as good in term of geom-
etry. This is explained by the fact that the optimization process is based on an
approximation of gaussians, whose primary objective is to make the reconstructed
scene as similar as possible to ground-truth images. The quality of the underlying
point cloud cannot be controlled, even though the final outputs may be of high
quality.
In order to consider this factor as well, we examined the DN-Splatter algorithm,
an extension of 3D Gaussian Splatting that exploits the supervision of depth and
normals to improve the geometric consistency of the reconstruction. Experimental
results showed that the integration of depth and normals maps helps improving
the geometric fidelity of reconstructed scenes. The evaluated results were obtained
following an intensive testing operation, which took place on both algorithms with
different training configurations. Since handling a large number of high-resolution
images involves a large demand in terms of computational resources, the training
phase took place on a Cluster provided by the Politecnico di Torino. However, some
useful optimizations were presented for those who would like to test the capabilities
of these algorithms without specialized hardware resources.

63

Conclusions

Photometric and geometric tests showed that 3D Gaussian Splatting offers com-
petitive results compared to other 3D reconstruction approaches, especially with
regard to visual quality, although it still has room for improvement in point cloud
management and geometric accuracy. The quality of the generated point clouds in
fact proved to be unsatisfactory to obtain a geometrically accurate reconstruction.
This could therefore create problems in all those contexts where having correct
geometry is of critical importance, such as urban mapping or disaster management.
Looking forward, the research work done in this thesis opens up several research
directions. A key improvement could come from optimizing the distribution of
gaussians. Currently, the algorithm distributes gaussians based on an iterative
refinement strategy but does not explicitly take into account geometric consistency
between surfaces or the relative importance of different areas in the scene. A
possible improvement could come from using strategies to assign varying density
to gaussians depending on the local complexity of the scene, reducing the number
of gaussians in less significant regions and increasing resolution in more detailed
areas. This would help improve computational efficiency without compromising
the quality of the reconstruction. This aspect is very relevant, as the approach is
difficult to scale up for large-scale real-world applications. Although 3D Gaussian
Splatting is already more efficient than approaches such as Neural Radiance Fields
(NeRF), processing large datasets remains an open problem. One possible develop-
ment could involve the use of distributed architectures for gaussian training and
optimization, so that the computational load can be spread over multiple nodes.
In summary, the work presented in this thesis is a first step toward the application of
3D Gaussian Splatting for UAV-based reconstruction of urban environments. How-
ever, the possible future developments are numerous and could lead this technology
to become a key element in a wide range of scientific applications.

64

Bibliography

[1] A. Zingoni, M. Diani, G. Corsini, and A. Masini. «REAL-TIME 3D RECON-
STRUCTION FROM IMAGES TAKEN FROM AN UAV». In: The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences XL-3/W3 (2015), pp. 313–319. doi: 10.5194/isprsarchives-
XL-3-W3-313-2015. url: https://isprs-archives.copernicus.org/
articles/XL-3-W3/313/2015/ (cit. on p. 1).

[2] F. Nex and F. Remondino. «UAV for 3D mapping applications: a review». In:
Applied Geomatics 6 (2014), pp. 1–15. doi: 10.1007/s12518-013-0120-x.
url: https://doi.org/10.1007/s12518-013-0120-x (cit. on p. 1).

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Dret-
takis. «3D Gaussian Splatting for Real-Time Radiance Field Rendering».
In: ACM Transactions on Graphics 42.4 (July 2023). url: https://repo-
sam.inria.fr/fungraph/3d-gaussian-splatting/ (cit. on pp. 2, 13).

[4] Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu,
and Juho Kannala. «DN-Splatter: Depth and Normal Priors for Gaussian
Splatting and Meshing». In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV). 2025 (cit. on pp. 2, 22).

[5] Mingda Jia and Mingchuan Zhang. «An Overview of Methods and Applica-
tions of 3D Reconstruction». In: International Journal of Computer Science
and Information Technology 3.1 (June 2024), pp. 16–23. doi: 10.62051/
ijcsit.v3n1.03. url: https://wepub.org/index.php/IJCSIT/article/
view/1981 (cit. on p. 4).

[6] Zhiliang Ma and Shilong Liu. «A review of 3D reconstruction techniques in
civil engineering and their applications». In: Advanced Engineering Informatics
37 (2018), pp. 163–174. issn: 1474-0346. doi: https://doi.org/10.1016/
j.aei.2018.05.005. url: https://www.sciencedirect.com/science/
article/pii/S1474034617304275 (cit. on p. 4).

66

https://doi.org/10.5194/isprsarchives-XL-3-W3-313-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-313-2015
https://isprs-archives.copernicus.org/articles/XL-3-W3/313/2015/
https://isprs-archives.copernicus.org/articles/XL-3-W3/313/2015/
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/10.1007/s12518-013-0120-x
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://doi.org/10.62051/ijcsit.v3n1.03
https://doi.org/10.62051/ijcsit.v3n1.03
https://wepub.org/index.php/IJCSIT/article/view/1981
https://wepub.org/index.php/IJCSIT/article/view/1981
https://doi.org/https://doi.org/10.1016/j.aei.2018.05.005
https://doi.org/https://doi.org/10.1016/j.aei.2018.05.005
https://www.sciencedirect.com/science/article/pii/S1474034617304275
https://www.sciencedirect.com/science/article/pii/S1474034617304275

BIBLIOGRAPHY

[7] Zhizhong Kang, Juntao Yang, Zhou Yang, and Sai Cheng. «A Review of
Techniques for 3D Reconstruction of Indoor Environments». In: ISPRS In-
ternational Journal of Geo-Information 9.5 (2020). issn: 2220-9964. doi:
10.3390/ijgi9050330. url: https://www.mdpi.com/2220-9964/9/5/330
(cit. on p. 4).

[8] Tam Do, Choi Jinwon, Viet Le, Philippe Gentet, Leehwan Hwang, and
Seunghyun Lee. HoloGaussian Digital Twin: Reconstructing 3D Scenes With
Gaussian Splatting for Tabletop Hologram Visualization of Real Environment.
Oct. 2024. doi: 10.20944/preprints202410.1253.v1 (cit. on p. 4).

[9] Ulrich Weiss and Peter Biber. «Plant detection and mapping for agricultural
robots using a 3D LIDAR sensor». In: Robotics and Autonomous Systems
59.5 (2011). Special Issue ECMR 2009, pp. 265–273. issn: 0921-8890. doi:
https://doi.org/10.1016/j.robot.2011.02.011. url: https://www.
sciencedirect.com/science/article/pii/S0921889011000315 (cit. on
p. 5).

[10] Kai-Wei Chiang, Guang-Je Tsai, Yu-Hua Li, and Naser El-Sheimy. «Devel-
opment of LiDAR-Based UAV System for Environment Reconstruction». In:
IEEE Geoscience and Remote Sensing Letters 14.10 (2017), pp. 1790–1794.
doi: 10.1109/LGRS.2017.2736013 (cit. on p. 5).

[11] Yu-Cheng Fan, Li-Juan Zheng, and Yi-Cheng Liu. «3D Environment Mea-
surement and Reconstruction Based on LiDAR». In: 2018 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC). 2018,
pp. 1–4. doi: 10.1109/I2MTC.2018.8409759 (cit. on p. 5).

[12] Niu, Yuandong, Liu, Limin, Huang, Fuyu, Huang, Siyuan, and Chen, Shuangyou.
«Overview of image-based 3D reconstruction technology». In: J. Eur. Opt.
Society-Rapid Publ. 20.1 (2024), p. 18. doi: 10.1051/jeos/2024018. url:
https://doi.org/10.1051/jeos/2024018 (cit. on p. 6).

[13] Linglong Zhou, Guoxin Wu, Yunbo Zuo, Xuanyu Chen, and Hongle Hu.
«A Comprehensive Review of Vision-Based 3D Reconstruction Methods».
In: Sensors 24.7 (2024). issn: 1424-8220. doi: 10.3390/s24072314. url:
https://www.mdpi.com/1424-8220/24/7/2314 (cit. on p. 6).

[14] Mariusz Siudak and Przemyslaw Rokita. «A Survey of Passive 3D Reconstruc-
tion Methods on the Basis of More than One Image». In: Machine Graphics
and Vision 23 (Jan. 2012), pp. 57–117. doi: 10.22630/MGV.2014.23.3.5
(cit. on p. 6).

67

https://doi.org/10.3390/ijgi9050330
https://www.mdpi.com/2220-9964/9/5/330
https://doi.org/10.20944/preprints202410.1253.v1
https://doi.org/https://doi.org/10.1016/j.robot.2011.02.011
https://www.sciencedirect.com/science/article/pii/S0921889011000315
https://www.sciencedirect.com/science/article/pii/S0921889011000315
https://doi.org/10.1109/LGRS.2017.2736013
https://doi.org/10.1109/I2MTC.2018.8409759
https://doi.org/10.1051/jeos/2024018
https://doi.org/10.1051/jeos/2024018
https://doi.org/10.3390/s24072314
https://www.mdpi.com/1424-8220/24/7/2314
https://doi.org/10.22630/MGV.2014.23.3.5

BIBLIOGRAPHY

[15] Xian-Feng Han, Hamid Laga, and Mohammed Bennamoun. «Image-Based
3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning
Era». In: IEEE Transactions on Pattern Analysis and Machine Intelligence
43.5 (May 2021), pp. 1578–1604. issn: 1939-3539. doi: 10.1109/tpami.2019.
2954885. url: http://dx.doi.org/10.1109/TPAMI.2019.2954885 (cit. on
p. 6).

[16] Ives Rey Otero. «Anatomy of the SIFT method». Theses. École normale
supérieure de Cachan - ENS Cachan, Sept. 2015. url: https://theses.hal.
science/tel-01226489 (cit. on p. 7).

[17] Johannes L. Schönberger and Jan-Michael Frahm. «Structure-from-Motion
Revisited». In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 4104–4113. doi: 10.1109/CVPR.2016.445
(cit. on p. 8).

[18] Penjani Nyimbili, Hande Demirel, Dursun Seker, and Turan Erden. «Structure
from Motion (SfM) - Approaches and Applications». In: Sept. 2016 (cit. on
p. 7).

[19] M.J. Westoby, J. Brasington, N.F. Glasser, M.J. Hambrey, and J.M. Reynolds.
«‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geo-
science applications». In: Geomorphology 179 (2012), pp. 300–314. issn:
0169-555X. doi: https : / / doi . org / 10 . 1016 / j . geomorph . 2012 . 08 .
021. url: https://www.sciencedirect.com/science/article/pii/
S0169555X12004217 (cit. on p. 7).

[20] Johannes Lutz Schönberger and Jan-Michael Frahm. «Structure-from-Motion
Revisited». In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 (cit. on p. 8).

[21] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael
Frahm. «Pixelwise View Selection for Unstructured Multi-View Stereo». In:
European Conference on Computer Vision (ECCV). 2016 (cit. on p. 8).

[22] M. Goesele, B. Curless, and S.M. Seitz. «Multi-View Stereo Revisited». In:
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06). Vol. 2. 2006, pp. 2402–2409. doi: 10.1109/CVPR.
2006.199 (cit. on p. 9).

[23] Xiang Wang, Chen Wang, Bing Liu, Xiaoqing Zhou, Liang Zhang, Jin Zheng,
and Xiao Bai. «Multi-view stereo in the Deep Learning Era: A comprehensive
review». In: Displays 70 (2021), p. 102102. issn: 0141-9382. doi: https://doi.
org/10.1016/j.displa.2021.102102. url: https://www.sciencedirect.
com/science/article/pii/S0141938221001062 (cit. on p. 9).

68

https://doi.org/10.1109/tpami.2019.2954885
https://doi.org/10.1109/tpami.2019.2954885
http://dx.doi.org/10.1109/TPAMI.2019.2954885
https://theses.hal.science/tel-01226489
https://theses.hal.science/tel-01226489
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/https://doi.org/10.1016/j.geomorph.2012.08.021
https://www.sciencedirect.com/science/article/pii/S0169555X12004217
https://www.sciencedirect.com/science/article/pii/S0169555X12004217
https://doi.org/10.1109/CVPR.2006.199
https://doi.org/10.1109/CVPR.2006.199
https://doi.org/https://doi.org/10.1016/j.displa.2021.102102
https://doi.org/https://doi.org/10.1016/j.displa.2021.102102
https://www.sciencedirect.com/science/article/pii/S0141938221001062
https://www.sciencedirect.com/science/article/pii/S0141938221001062

BIBLIOGRAPHY

[24] George Fahim, Khalid Amin, and Sameh Zarif. «Single-View 3D reconstruc-
tion: A Survey of deep learning methods». In: Computers Graphics 94 (2021),
pp. 164–190. issn: 0097-8493. doi: https://doi.org/10.1016/j.cag.2020.
12.004. url: https://www.sciencedirect.com/science/article/pii/
S0097849320301849 (cit. on p. 10).

[25] Anny Yuniarti and Nanik Suciati. «A Review of Deep Learning Techniques for
3D Reconstruction of 2D Images». In: 2019 12th International Conference on
Information Communication Technology and System (ICTS). 2019, pp. 327–
331. doi: 10.1109/ICTS.2019.8850991 (cit. on p. 10).

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. «NeRF: representing scenes as neural
radiance fields for view synthesis». In: Commun. ACM 65.1 (Dec. 2021),
pp. 99–106. issn: 0001-0782. doi: 10.1145/3503250. url: https://doi.
org/10.1145/3503250 (cit. on p. 11).

[27] Guikun Chen and Wenguan Wang. A Survey on 3D Gaussian Splatting. 2025.
arXiv: 2401.03890 [cs.CV]. url: https://arxiv.org/abs/2401.03890
(cit. on p. 14).

[28] Martin Hornáček and Gregor Rozinaj. «Exploring 3D Gaussian Splatting: An
Algorithmic Perspective». In: 2024 International Symposium ELMAR. 2024,
pp. 149–152. doi: 10.1109/ELMAR62909.2024.10693978 (cit. on p. 14).

[29] Anurag Dalal, Daniel Hagen, Kjell G. Robbersmyr, and Kristian Muri Knaus-
gård. «Gaussian Splatting: 3D Reconstruction and Novel View Synthesis: A
Review». In: IEEE Access 12 (2024), pp. 96797–96820. doi: 10.1109/ACCESS.
2024.3408318 (cit. on p. 14).

[30] Umme Sara, Morium Akter, and Mohammad Shorif Uddin. «Image Quality
Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study».
In: Journal of Computer and Communications 07 (Jan. 2019), pp. 8–18. doi:
10.4236/jcc.2019.73002 (cit. on p. 19).

[31] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. «Image quality
assessment: from error visibility to structural similarity». In: IEEE Transac-
tions on Image Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.2003.
819861 (cit. on p. 20).

[32] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018.
arXiv: 1801.03924 [cs.CV]. url: https://arxiv.org/abs/1801.03924
(cit. on p. 20).

69

https://doi.org/https://doi.org/10.1016/j.cag.2020.12.004
https://doi.org/https://doi.org/10.1016/j.cag.2020.12.004
https://www.sciencedirect.com/science/article/pii/S0097849320301849
https://www.sciencedirect.com/science/article/pii/S0097849320301849
https://doi.org/10.1109/ICTS.2019.8850991
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://arxiv.org/abs/2401.03890
https://arxiv.org/abs/2401.03890
https://doi.org/10.1109/ELMAR62909.2024.10693978
https://doi.org/10.1109/ACCESS.2024.3408318
https://doi.org/10.1109/ACCESS.2024.3408318
https://doi.org/10.4236/jcc.2019.73002
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924

BIBLIOGRAPHY

[33] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. «Omnidata:
A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets From
3D Scans». In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2021, pp. 10786–10796 (cit. on p. 22).

[34] Gwangbin Bae and Andrew J. Davison. «Rethinking Inductive Biases for
Surface Normal Estimation». In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2024 (cit. on p. 22).

[35] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias
Müller. ZoeDepth: Zero-shot Transfer by Combining Relative and Metric
Depth. 2023. arXiv: 2302.12288 [cs.CV]. url: https://arxiv.org/abs/
2302.12288 (cit. on p. 23).

[36] F. Nex et al. «UseGeo - A UAV-based multi-sensor dataset for geospatial
research». In: ISPRS Open Journal of Photogrammetry and Remote Sensing
13 (2024), p. 100070. issn: 2667-3932. doi: https://doi.org/10.1016/j.
ophoto.2024.100070. url: https://www.sciencedirect.com/science/
article/pii/S2667393224000140 (cit. on p. 25).

[37] UAV-BASED Multi-sensor dataset for geospatial research. url: https://
usegeo.fbk.eu/ (cit. on p. 25).

[38] Michael Kölle, Dominik Laupheimer, Stefan Schmohl, Norbert Haala, Franz
Rottensteiner, Jan Dirk Wegner, and Hugo Ledoux. «The Hessigheim 3D
(H3D) benchmark on semantic segmentation of high-resolution 3D point
clouds and textured meshes from UAV LiDAR and Multi-View-Stereo».
In: ISPRS Open Journal of Photogrammetry and Remote Sensing 1 (2021),
p. 11. issn: 2667-3932. doi: https://doi.org/10.1016/j.ophoto.2021.
100001. url: https://www.sciencedirect.com/science/article/pii/
S2667393221000016 (cit. on p. 26).

[39] Computational resources provided by HCP@POLITO, which is a project
of Academic Computing within the Department of Control and Computer
Engineering at the Politecnico di Torino (http://hpc.polito.it). url: https:
//hpc.polito.it/ (cit. on p. 27).

[40] Singularity Container Documentation. url: https://docs.sylabs.io/
guides/3.5/user-guide/introduction.html (cit. on p. 29).

[41] SLURM Documentation. url: https://slurm.schedmd.com/ (cit. on p. 30).
[42] Matthew Tancik et al. «Nerfstudio: A Modular Framework for Neural Radiance

Field Development». In: ACM SIGGRAPH 2023 Conference Proceedings.
SIGGRAPH ’23. 2023 (cit. on p. 38).

70

https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288
https://doi.org/https://doi.org/10.1016/j.ophoto.2024.100070
https://doi.org/https://doi.org/10.1016/j.ophoto.2024.100070
https://www.sciencedirect.com/science/article/pii/S2667393224000140
https://www.sciencedirect.com/science/article/pii/S2667393224000140
https://usegeo.fbk.eu/
https://usegeo.fbk.eu/
https://doi.org/https://doi.org/10.1016/j.ophoto.2021.100001
https://doi.org/https://doi.org/10.1016/j.ophoto.2021.100001
https://www.sciencedirect.com/science/article/pii/S2667393221000016
https://www.sciencedirect.com/science/article/pii/S2667393221000016
https://hpc.polito.it/
https://hpc.polito.it/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://slurm.schedmd.com/

BIBLIOGRAPHY

[43] Matthew Tancik et al. «Nerfstudio: A Modular Framework for Neural Radiance
Field Development». In: Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Proceedings. SIGGRAPH ’23.
ACM, July 2023, pp. 1–12. doi: 10.1145/3588432.3591516. url: http:
//dx.doi.org/10.1145/3588432.3591516 (cit. on p. 38).

[44] Francesco Fugazzi. 3D Gaussian Splatting Converter. url: https://github.
com/francescofugazzi/3dgsconverter (cit. on p. 46).

71

https://doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516
https://github.com/francescofugazzi/3dgsconverter
https://github.com/francescofugazzi/3dgsconverter

	List of Tables
	List of Figures
	Acronyms
	Introduction
	UAVs for 3D Reconstruction
	Motivations and Goals
	Thesis Structure

	Background
	Active 3D Reconstruction
	LiDAR-Based Reconstruction

	Passive 3D Reconstruction
	Sparse Reconstruction: Structure from Motion
	Dense Reconstruction: Multi-View Stereo

	Deep Learning for 3D Reconstruction
	Neural Radiance Field

	3D Gaussian Splatting
	Introduction to the Algorithm
	Algorithm's Pipeline
	Initialization
	Rasterization
	Loss Computation
	Optimization

	Evaluation Metrics
	PSNR
	SSIM
	LPIPS

	Addressing Limitations
	DN-Splatter: Depth and Normal Supervision
	Normals Estimation
	Depth Maps Generation
	Loss Functions

	Methodology
	Selected Datasets
	Computational Resources
	Software Setup
	Microsoft Visual Studio
	Anaconda Environment
	Singularity
	Slurm Scheduling

	Running with Limited Resources
	Image Rescaling
	Cells Division
	Other Suggestions

	Data Pre-Process
	SfM-sparse Alignment with Camera Poses
	Compute Normal and Depth Maps

	Analysis of Training Hyperparameters
	Evaluated Training Configurations
	3D Gaussian Splatting
	DN-Splatter Algorithm

	Renders and Point Cloud Extraction
	Pointcloud Post-Process
	Alignment
	Outliers Removal
	Downsampling
	Point-to-Point Distance

	Results and Discussions
	Photometric Analysis
	Geometric Analysis

	Conclusions
	Bibliography

