POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Virtual vehicle sensor’s set-up and
synchronous logging from CARLA
Simulator

Supervisors Candidate
Prof. Massimo VIOLANTE
Federico STELLA

Dott. Alessandro TESSUTI
Dott. Simone MARAGLIULO

APRIL 2025

Abstract

Improving road safety is a global priority, with the World Health Organization
identifying human error as the main cause of accidents. In response to this, the Zero
Vision project has been launched with the ambition of completely eliminating road
deaths by the year 2050 through the mandatory introduction of Advanced Driver
Assistance Systems (ADAS) technologies and the development of autonomous
driving systems. Before being deployed in vehicles, these systems must undergo
rigid testing and validation phases to ensure their effectiveness and safety among
the variety of conditions under which they may operate. This process requires the
collection of huge amounts of data, even for complex driving scenarios. As such
collection is costly and risky when dealing with borderline situations, the work
proposed in this thesis aims to develop a fully customizable virtual environment
for the generation of synthetic data which can be used to integrate real-world
data in the validation phase, enabling the safe and controlled reproduction of the
most difficult scenarios to be captured on the road. The platform allows complete
customization of every aspect of the simulation, including weather, traffic conditions
and detailed configuration of each virtual sensor installed on the simulated vehicle.
In addition, the data collected will be organized according to one of the most
widely used automotive standards, ensuring compatibility with validation and
development processes already adopted in the industry. Although synthetic data
can not completely replace real data collected on the road, through this work, an
effective methodology is proposed to accelerate the validation of ADAS systems,
contributing to the progress towards autonomous driving.

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Thesis genesis
1.2 ADAS of interest
1.3 Contribution: Reply - Concept Quality

2 Autonomous Drive:
A New Era of Mobility

2.1 Levels of Automation
2.2 Cooperative Approach for AD
2.3 Benefits
24 Current Gaps

3 ADAS Validation
3.1 Typesoftesting
3.2 The necessity of Virtual Validation
3.2.1 Bridging the Gap Between Virtual and Real
3.3 Proposed Virtual Valdiation Approach

4 The Simulation Environment
4.1 CARLA: Car Learning to Act
4.1.1 Client-Server Architecture
4.1.2 Actors
4.1.3 Traffic Manager

v

VII

11
12
14
14
15

5 The Standard for Dataset

5.1 muScenes
5.1.1 Data collection
5.1.2 Dataformat L
5.1.3 Data annotation 000

6 Synthetic Data Generation

6.1 Overview.
6.1.1 System’s architectureo
6.1.2 Driving modalities 000

6.2 Environment set-upo
6.2.1 Front-end
6.2.2 Ego Vehicleset-up
6.2.3 Weather and Light conditions
6.2.4 Traffic generation oL

6.3 Data Collection
6.3.1 Synchronous configuration
6.3.2 Data structureo Lo
6.3.3 Raw data processing

6.4 Dataset generation
6.4.1 Output samples
6.4.2 JSONfiles

7 Conclusions and Future Developments

7.1 Advantages of using Synthetic Data

7.2 Limitations Found

7.3 Future Developments
7.3.1 Sim2Real gap - NVIDIA Omniverse
7.3.2 Real-Time visualization - CarlaViz plugin

7.3.3 Dataset analysis - Rerun

Bibliography

II1

21
21
22
23
25

27
27
28
30
34
34
38
40
43
46
46
48
50
%)
%)
56

59
60
61
65
66
66
66

67

List of Tables

5.1 nuScenes sensor’s specifications [14]o o000
5.2 Annotations categories in nuScenes [14]

6.1 Maps available in the simulator from CARLA Official documentation
1] . .
6.2 Blueprint attributes of interest L.
6.3 Time of the day presets based on sun position
6.4 Weather condition presets realized by modifying various environmen-
tal parameters.o
6.5 Possible combinations of time and weather conditions
6.6 RGB Camera output attributes [17]
6.7 LiDAR output attributes [17]
6.8 RADAR output attributes [17]
6.9 IMU output attributes [17] L
6.10 GNSS output attributes [17]o

7.1 Synthetic RADAR data missing fields (from nuScenes-devkit) [19] .
7.2 Hardware used for benchmark tests

v

List of Figures

1.1

2.1
2.2

3.1

4.1

4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Implementation phases of General Safety Regulation [4] 2
SAEJ3016 Levels of Driving Automation [5] 6
Vehicle coordination relies on tight interaction between control,

communication, and sensing [6] 8
X-In-The-Loop approaches 13
Some of the configurable elements subjected to different weather

conditions [12]o 17
Client-Server communication in CARLA [13] 18
Sensor’s configuration on the cars used for data collection [14] . . . 22
nuScenes relational database schema [14] 24
Driver’s point of view using Pygame window 28
Set-up of the simulation through Front-End 29
Data generation process through python script 30
Logitech G29 Driving Force Racing Wheel ® 31
configni 32
Joystick initialization and config parser 32
joyControl function for manual drive using steering wheel 33
keyControl function for manual drive using keyboard 34
Virtual vehicle’s sensor configuration from Front-End 35
Configuration parameters for each type of sensor through Front-End 35
Environment settings through Front-End 36
nuScenes sensor’s orientation [14]o 39
Unreal Engine’s left handed coordinate system with rotations.[11] . 40
Screenshot of the different atmospheric conditions 43
Python code to get a shuffled list of spawnpoints 44
Vehicle’s generation code (from trafficGeneration.py) 45
Walker’s generation code (from trafficGeneration.py) 45

\Y%

6.18
6.19
6.20
6.21

6.22
6.23
6.24

6.25
6.26
6.27
6.28
6.29
6.30

7.1
7.2
7.3
7.4

Synchronous mode, fixed-step configuration 47

Datal.og class used to store data in simulation-time 48
Data structure used to collect data in simulation-time 49
Example of storing an IMU output in the corresponding Datal.og

object 50
RGB Camera processing operations 51
LiDAR Sensor processing operations 52
Mapping from Spherical coordinates to three-dimensional Cartesian

coordinates [18] 53
RADAR Sensor processing operations 53
IMU Sensor processing operations 54
Data folder structureo 56
Token generation function 57
Log database table - Python class 57
Log database table - nuScenes scheme [14] 58
nuScenes_mini RADAR output fields (March 2019 [14]) 62
Benchmark test with 60 FPS 64
Benchmark test with 40 FPS 64
Benchmark test with 20 FPS, .. 65

VI

Acronyms

ACC
Adaptive Cruise Control

AD

Autonomous Drive

ADAS

Advanced Driver Assistance Systems

ADDW

Advanced Driver Distraction Warning

Al
Artificial Intelligence

API

Application Programming Interface

AV

Autonomous Vehicles

CARLA
Car Learning to Act

CPU

Central Processing Unit

FPS

Frames per second

VII

GNSS
Global Navigation Satellite Systems

GPS
Global Positioning System

GSR
General Safety Regulation

GPU
Graphics Processing Unit

IMU

Inertial Measurement Unit

LiDAR

Light Detection And Ranging
LKA

Lane Keeping Assistant

NHTSA
National Highway Traffic Safety Administration

RADAR
Radio Detection And Ranging

WHO
World Health Organization

VIII

Chapter 1
Introduction

The automotive industry is experiencing a paradigm shift with the rapid develop-
ment of Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles
(AV). As these technologies evolve, the demand for extensive and high-quality
data to train and validate algorithms that underlie their functionality has grown
exponentially.
Traditional data collection methods, which are based on vehicle sensorization,
present significant challenges, including high costs, logistic complexities, and the
time-consuming nature of collecting real-world data across different driving condi-
tions. In response to these challenges, a data-driven approach has emerged as a
viable solution. By leveraging the power of high-fidelity digital twins, the industry is
now able to simulate real-world environments with unprecedented accuracy. These
digital replicas of physical assets and environments provide a reliable and cost-
effective alternative to physical sensor data, offering the ability to generate huge
amounts of simulation-based data under a wide range of scenarios and conditions.
This thesis explores the pivotal role of digital twins in the development of
ADAS/AV, providing an instrument to improve the performance, safety, and
reliability of traditional data collection methodologies for ADAS validation.

1.1 Thesis genesis

As expressed in the World Health Organization (WHO) Global Status Report on
Road Safety 2018 [1] the number of road traffic deaths reached 1.35 million in
2016, making road traffic injuries the leading cause of death for people aged 5 -
29 years. According to these studies, human errors are estimated to be involved
in about 95% of road accidents causing, in addition to deaths, tens of millions of
non-fatal injuries every year. As the Head of the WHO office in Montenegro said,
"Road traffic injuries are not just ‘accidents’ They have risk factors, predictors and

1

Introduction

determinants and are therefore preventable'[2]. Road safety is thus seen as a shared
responsibility in which urgent action is needed, with the aim of the Vision Zero
project, which prevents zero causalities by 2050. An important step in this direction
is the introduction of technologies on vehicles that can intervene in potentially
risky situations.
Due to the General Safety Regulation (GSR [3]), the demand for ADAS in vehicles
is expected to increase significantly in the coming years. The GSR introduces
stricter safety standards aimed to reduce road accidents and to protect drivers,
passengers, and pedestrians. As a result, automakers are required to integrate more
ADAS technologies.

The GSR will be implemented in three phases from July 2022 to January 2029,
as shown in Figure 1.1:

1% phase of implementation (A/B) 2™ phase of implementation (C) 3™ phase of implementation (D)
v Intelligent speed assistance (ISA)* v Advanced emergency braking for v Direct vision requirements
. pedestrians and cyclists (cars and (trucks and buses)
v Emergency lane keeping (cars and vans) vans)
. X . . v Event data recorder (trucks
v Advanced emergency braking for stationary/moving vehicles v Advanced driver distraction warning and buses)*

(cars and vans)
v Enlarged head impact zone (cars and

v Event data recorder (cars and vans)* vans) e
v Driver drowsiness and attention warning® v Tyres in worn condition series.
: i . Tigsi mid-2028 (new types)
v Alcohol interlock installation facilitation™ v Event data recorder (for automated oo - (,? : ‘
v Emergency stop signal* vehicles) » mid-2034 (new vehicles)
V' Reversing detection* v Driver availability monitoring (for
automated vehicles)
v Blind spot information system (trucks and buses)
v Platooning (for automated trucks)
v Pedestrians and cyclists collision warning (trucks and buses)
v Tyre pressure monitoring system (vans, trucks and buses)
v Cybersecurity & software update
new types new vehicles/parts new types new vehicles/tyres new types new vehicles
6 July 2022 7 July 2024 7 July 2024 7 July 2026 7 Jan 2026 7 Jan 2029
Supplementary legislation to be adopted by: 6 April 2021 7 April 2023 7 September 2024

* Detailed technical requirements to be set out in Delegated Acts.

Figure 1.1: Implementation phases of General Safety Regulation [4]

Each of these systems must undergo validation before being integrated into a
vehicle. The testing and validation process requires a large amount of data to
accurately represent a wide range of possible driving scenarios. These data are
essential for properly training the machine learning algorithms that power the
ADAS functionalities, ensuring their reliability and effectiveness under real world
conditions.

This thesis work focuses on the development of a completely customizable virtual
environment designed for the generation of synthetic data adapted for autonomous

2

Introduction

driving systems. These scenarios are intended to reproduce a wide range of driving
situations, traffic and environmental conditions that can be accurately controlled
and manipulated to simulate real-world driving experiences. The synthetic data
generated within this environment are then properly formatted to comply with
the most widely accepted and standardized datasets used in the validation and
testing sector for autonomous driving systems. The final objective is to obtain data
that can be integrated into existing workflows, enabling comprehensive testing and
validation of autonomous systems under diverse and highly realistic conditions.

1.2 ADAS of interest

This thesis project focuses on ADAS systems that are capable of monitoring and
collecting information about the external environment in which the vehicle operates.
These systems play a critical role in improving safety by continuously detecting and
mitigating potential hazards in real time. This objective is achieved by evaluating
the presence of pedestrians, other vehicles, cyclists and obstacles, reducing risks to
both the driver and other road users, preventing accidents before they occur. For
this reason, in the simulation environment will be collected only data related to
external interaction of the vehicle with the surrounding, neglecting all the in-cabin
information about the driver condition.

The sensors that will be implemented are briefly discussed here and then explored
in depth in later sections:

« RGB Camera: it views the world within the visible spectrum and gives
highly detailed visual information about the environment. It finds a wide
range of applications in computer vision tasks such as object detection, scene
recognition, and semantic

o LiDAR: is a technology that measures the range to an object by sending out
laser pulses and looking at the reflected light. The resulting high-precision
3D point clouds it produces are very useful for mapping, localization, and
obstacle detection in complicated environments.

o Radar: detects the velocity and range of objects in the most adverse weather
conditions, such as rain, fog, or dust, using radio waves. The applications
of radar are unlimited in tracking moving objects, especially vehicles and
pedestrians.

« Global Navigation Satellite System: it is based on satellite signals
and provides data on positioning characterized by accurate geolocation and
navigation information. It plays a very key role in autonomous systems,
including some applications such as global positioning and route planning.

3

Introduction

o Inertial Measurement Unit: it provides information on vehicle acceleration,
rotation, and orientation. It usually includes accelerometers and gyroscopes
and is quite crucial for the estimation of motion and stability of the vehicle,
especially when GPS is not available.

1.3 Contribution: Reply - Concept Quality

The research and developing processes presented in this thesis work was carried out
as part of an internship at the Reply - Concept Quality company, which provided
all the necessary tools for the development of the platform and the achievement
of the set goals. The support and experience of its team of experts, allowed the
project challenges to be addressed with a structured approach. The collaborative
work environment fostered continuous learning, encouraging the adoption of best
practices and the exploration of different methodologies to enhance the simulation
framework.

In addition, the company collaborated on the development of a custom front-end
tool created specifically to meet the implementation requirements that emerged
during project development. This tool played a key role in facilitating interaction
with the simulation environment by providing the ability to customize various
aspects of the simulation in a simple and intuitive manner.

Chapter 2

Autonomous Drive:
A New Era of Mobility

The continuing evolution of automotive technology aims to the objective of com-
pletely autonomous vehicles, where the driver becomes in effect a passenger in the
vehicle, without the need of any manual intervention during its journey, leading
to several benefits in terms of road safety, traffic management, fuel efficiency, and
greater accessibility to mobility.

Although ADAS are not still Autonomous Driving (AD) systems, they play
a crucial role in preparing vehicles for full autonomy. Beyond the direct safety
benefits, ADAS serves as a critical testing ground for core autonomous technologies
such as advanced sensors, machine learning algorithms and vehicle-to-everything
(V2X) communication. In the deployment of ADAS features, automakers and
researchers get valuable data to further improve perception, decision-making, and
control systems. This iterative development process will help to build not only the
transition from partial to full autonomy, but also the consumer trust in automation.
By training drivers to operate on a car with ADAS features, they will be more
prepared to use a vehicle with full autonomy, making ADAS an essential stepping
stone in the evolution of autonomous vehicles.

Autonomous Drive: A New Era of Mobility

2.1 Levels of Automation

The Society of Autonomous Engineers (SAE) ha set 6 levels of Driving Automation,
with the first three levels of support features (levels 0, 1 and 2) that require the
driver to be involved and constantly monitoring the functionalities offered by the
systems installed, and the last three levels (levels 3, 4 and 5) with real automated
driving features.

SAE SAE SAE SAE SAE SAE
LEVELO"§ LEVEL1" § LEVEL 2" LEVEL 3" § LEVEL 4" § LEVEL 5"

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
you are not steering “the driver’s seat”

You must constantly supervise these support features; When the feature These automated driving features
you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving

Figure 2.1: SAEJ3016 Levels of Driving Automation [5]

e Level 0: No Driving Automation
The most basic level of autonomous driving, just a step up from traditional
driving where the car is completely under the control of the driver. There
are no autonomous systems implemented, but just some safety features such
as backup cameras, collision warnings, blind spot warnings, and emergency
breaking that must be constantly supervised and require the intervention of
driver, who remains responsible for all aspects of driving.

e Level 1: Driver Assistance

The car is able to operate autonomously in certain situations, but the driver
is always required to be in control of the vehicle. The features of this level of
automation can provide steering input to keeps the car in the middle of its lane
and brake/acceleration to support the driver on maintaining a set distance
from the car in front of it. Some common examples of Level I autonomous
driving include adaptive cruise control (ACC) and Lane Keeping Assist (LKA).
The vehicle is equipped with sensors aimed to detect objects around the car.
If there is a vehicle or obstacle in the way, ACC will slow down or stop the
car, and LKA will adjust the steering to keep the car in the lane.

e Level 2: Partial Driving Automation
Characterized by the introduction of more advanced ADAS which can now
control the longitudinal and lateral dynamics at the same time. For example,

6

Autonomous Drive: A New Era of Mobility

lane keeping assist and ACC are combined in one system. However, the driver
has still the responsibility for every behavior of the vehicle and must monitor
the system at all times, touching the steering wheel regularly, and being able
to intervene immediately if necessary.

Level 3: Conditional Driving Automation

Starting from this stage, the driver does not need to constantly monitor the
systems while the vehicle temporarily takes over the driving task. Within
certain limits other activities can be engaged by the human (e.g. read a
message, text or drink a cup of coffee) while the car is in autonomous mode.
Even on this level, if the system can no longer operate, the driver will be
warned for a period and must be able to resume all aspects of the driving task.

Level 4: High Driving Automation

Under certain conditions (e.g. defined route, driving on the highway, etc.), the
vehicle operates completely autonomously and does not require anymore the
capability for the human driver to intervene. The vehicle is able to eventually
reach a safe state in autonomous way if a malfunction on the systems equipped
happens, without representing an hazard for the driver or for other road users.
The driver however, has still the possibility to take control of the vehicle
manually.

Level 5: Full Driving Automation

The autonomy of the vehicle is no longer subject to conditions. The car
can operate completely autonomously anywhere in road traffic and under all
conditions while the human can perform any kind of different activities without
any risk. The vehicle is capable to perform a combination of several tasks
simultaneously, such as navigating, changing lanes and avoiding obstacles.
The human input is no longer required, so these vehicles are not anymore
equipped with a steering wheel or a gas or brake pedal. The human driver
becomes in effect a passenger

2.2 Cooperative Approach for AD

Beyond vehicles, a large cooperative ecosystem is needed to realize the full potential
in the field of autonomous driving. This includes seamless interaction with external
infrastructures, such as intelligent traffic signals, roadway sensors, and high defini-
tion mapping systems that provide critical information about the environment and
enable situational awareness in real time. For example, integrated infrastructure
warns the autonomous vehicle about possible hazards, changes in traffic patterns,
or construction zones to maintain or improve its safety and efficiency of operation.
Furthermore, safe operation of autonomous vehicles requires cooperation with other

7

Autonomous Drive: A New Era of Mobility

road users, such as human drivers, cyclists, and pedestrians, in shared environ-
ments. This calls for systems designed to interpret and forecast human behaviors
while properly communicating the vehicle’s intentions. For example, an AV has to
recognize and react to a pedestrian trying to cross the street or understand the
action of a driver changing lanes in close proximity.

O
f] -
e

anger Zone "
* L J
LTI I I I TS T AL == s el

Figure 2.2: Vehicle coordination relies on tight interaction between control,
communication, and sensing [6]

Different types of communication are then required to achieve the completely

AD [6].

 Infrastructure to Vehicle Communication (I2V): AVs can transmit
and receive information from static infrastructure devices in the environment.
[2V communication involves not only monitoring vehicles but also other road
users such as cyclists and pedestrians. Pedestrian monitoring is an essential
element of AD in an urban environment. Many streets today are equipped
with 24/7 surveillance cameras for traffic monitoring and security, and the big
data from these cameras’ networks provide beneficial data for AVs. However,
today, most AV control relies on the vehicle’s onboard sensors alone, yet fusion
with additional external data will increase performance for pedestrian tracking
and accident avoidance.

« Communication Between AVs and Pedestrians (V2P): The com-
munication of the AVs with other road users (especially pedestrians) is a

8

Autonomous Drive: A New Era of Mobility

fundamental step to achieve safe AD within the urban environment. AVs
should be able to recognize pedestrian’s actions and intentions with the help
of enhanced sensors and Al technology while responding with suitable means
such as visual displays, sounds or light patterns. For example, an AV moving
towards a crosswalk could activate external lights to indicate that it has
spotted a pedestrian and is giving way. The necessity of a common standard,
or ‘language’, for this type of communication is still an argument of research.

 Vehicle to Vehicle Communication (V2V) : Because of its decentralized
structure, this communication is more complex to carry out. V2V relies on
the exchange of information among the vehicles located within a certain area.
This turn in necessity of some communications technology and protocol. Issues
that require focus include, but are not limited to, communication latency
losses, incomplete readings, security and safety concerns. Be mindful that AVs
communicating between themselves can greatly benefit traffic performance,
but it does have risks as well concerned to cyber security.

2.3 Benefits

Although vehicles traceable to levels above three (Figure 2.1) are not yet completely
developed and ready to enter the customer market, the benefits that these tech-
nologies can bring to everyday life are well foreseeable, as expressed by National
Highway Traffic Safety Administration (NHTSA) studies [7].

o Safety: this is one of the automation’s biggest benefits. Safety is not intended
only for the passengers of the vehicle but also for every other road user such
as pedestrian, bicyclists and so on. Higher levels of automation will remove
completely the human error from the chain of events that can lead to a crash,
achieving the Vision Zero project [1.1]

o Mobility: access to mobility is expanded to a larger category of users in
autonomy such as for seniors or people with disabilities. The equity will be
considered and addressed throughout the Autonomous Driving infrastructures
and vehicle design processes.

e Economic: motor vehicle crashes cost billions each year. Eliminating the
majority of vehicle crashes through technology these costs will be reduced
significantly.

o Environmental: as the automotive industry continues to evolve toward further
automation and electrification, both are promising ways in which safety and
environmentally friendly practices can improve. Automation in vehicles will

9

Autonomous Drive: A New Era of Mobility

likely alter the need for individualized parking spaces and lots, increasing the
use of automated ride-share and shuttle fleets, which may change land use
drastically. Moreover, electrification of vehicles could bring about opportunities
to enhance efficiency with a decrease in personal driving, leading to further
decreases in air pollutants emitted from the transportation sector.

2.4 Current Gaps

Several gaps must be addressed to advance higher levels of automation seen in
Section 2.1. Starting from 12V communication, the development of advanced
infrastructures is necessary to support the huge amount of data shared, together
with the implementation of data fusion and analysis algorithms able to perform
hazards identification, trajectories prediction and failures recognition. Moreover,
including pedestrian in the communication network is a challenge that requires
further development due to the possibility of receiving information only through
small wearable devices. Furthermore, the presence of wireless communication can
lead to vulnerabilities caused by the risk of cyber attacks, so reliable and secure data
sharing must be applied. Finally, ethical considerations are still an argument of
discussion: since every decision an autonomous vehicle makes has to be intentionally
programmed, how should it respond in a no-win scenario? For example, in a crash
situation where no matter what is done, there is a great likelihood of somebody
being harmed, it can be programmed to prioritize the safety of the driver and
passengers, pedestrians or other drivers.

10

Chapter 3

ADAS Validation

Validation of Advanced Driver Assistance Systems (ADAS) is a critical aspect in the
automotive industry as it directly impacts the safety, reliability, and effectiveness of
these technologies which are based on an intricate combination of sensors, cameras,
radar and algorithms. Due to their complexity, a scientific validation framework is
required to perform an accurate test in order to identify potential failure modes,
improving system robustness before large-scale deployment.

The main points to be followed during validation and test phases are expressed

below (Source [8]).

« Safety Assurance: the most important objective of ADAS validation is to
ensure that the features such as automatic braking, lanekeeping, and collision
avoidance will function safely and accurately within an increasing horizon of
driving scenarios. This involves testing ADAS under variable conditions of
traffic density, road type, and weather conditions to minimize accidents due to
faulty systems, misinterpretation by sensors, or software bugs. By confirming
a system’s handling of edge cases and critical situations, ADAS validation
prevents possibly lethal failures and increases overall vehicle safety.

e Performance evaluation: whatever the influence of external factors, ADAS
must show a high degree of reliability and precision. Performance testing is an
important part of validation since it will include a performance assessment of
the systems by detailed testing that checks the precision of object detection,
the interpretation of sensor information, and the execution of appropriate
timely responses. This ensures that it functions optimally across all operating
conditions and remains highly reliable throughout the vehicle’s life.

» Regulatory Compliance: ADAS are subject to stringent safety standards
and regulations of different national and international regulatory bodies. These
ensure functional safety, reliability, and effectiveness in real-world conditions.

11

ADAS Validation

One of the most important regulations in this field is ISO 26262, which provides
a way to guarantee functional safety and gives methods for estimating the
risk associated with the usage of the E/E parts and then establish a set of
procedures that allows to produce an output of the system that is functionally
safe. Proper validation ensures that these tough safety requirements are
met, helping to avoid possible legal matters, recalls, or penalties, and instills
confidence in stakeholders and consumers.

User Experience: a key part of the ADAS validation process involves the
evaluation of usability and aspects of the human-machine interface. The
goal is to ensure a smooth and intuitive driving experience, allowing users to
interact with the system easily and without distraction. This process includes
extensive testing to ensure that features are easily accessible, interfaces are
clear and responsive, and system warnings are understandable and timely,
thus helping to improve driver safety and confidence in using ADAS.

3.1 Types of testing

Traditionally, validation relies on several well-established methodologies whose
choice depends on both the characteristics of the device under test and the particular
phase of its development. In Figure 3.1 are reported the principal approaches,
ordered according to the typical time sequence of the development process, under
the name convention of X-In-The-Loop. As the terms already suggest, these
methods rely on an iterative process, where the ’X’ describes which component of
the system is under test and validation. That process - from earlier design phases
to actual vehicle testing - is crucial to ensure that the system operates reliably and
efficiently [9].

12

ADAS Validation

Figure 3.1: X-In-The-Loop approaches

Model-In-The-Loop: it is used to optimize the behavior of the designed model
and to verify that it is implementing all the requested functionality. Everything
is running on the development PC that contains both controller and plant
models, defined using the same specification language and they interacts
according with the typical closed-loop chain.

Software-In-The-Loop: the testing entity transitions from a block model to
code and verifies that it is consistent with the specified model. It is co-
simulated on the development PC with the model of the plant, giving an idea
of whether the control logic can be converted to code and if it is hardware
implementable.

Hardware-In-The-Loop: the software is deployed in the real ECU and it is
connected to other cooperating electronic devices that are still simulated in real
time machines. Its possible to verify whether the software is still behaving as
expected on the final hardware that is much less capable than the development

PC.

Vehicle-In-The-Loop: the developed device is deployed and tested directly
in the target vehicle which, inside a laboratory, is stimulated with external
inputs to check the whole behavior.

13

ADAS Validation

3.2 The necessity of Virtual Validation

As ADAS and AD evolves, traditional testing methods have proven to be insuf-
ficient to cover the full range of possible scenarios. The increasing complexity
of these systems, which are characterized by the integration of advanced sensors,
artificial intelligence and increasingly elaborate control algorithms, requires the
adoption of more efficient and secure validation strategies. Within this context,
virtual validation is a fundamental tool that supports traditional approaches in
guaranteeing the system’s reliability and safety before implementing it in an actual
vehicle.

This approach uses high-fidelity simulation environments to measure the per-
formance, reliability and robustness of ADAS functionality in a wide range of
conditions that would be difficult, expensive and dangerous to be replicated in
physical testing. Virtual validation enables comprehensive testing of system be-
havior prior to physical testing by simulating different driving scenarios such as
complex urban environments, adverse weather conditions and rare but critical edge
cases.

3.2.1 Bridging the Gap Between Virtual and Real

Although virtual validation offers many advantages, real-world testing remains a
crucial stage in the verification process of ADAS and AD systems. [10]

Elements such as tire wear, slight sensor misalignments or the unpredictability of
human behavior can represent difficult variables to be completely captured in a
simulated environment. Road tests are therefore critical to ensure the reliability of
systems subjected to real-world conditions.

An innovative approach to reduce the gap between real-world and virtual testing is
Sensor Stimulation. This technique consists of injecting synthetic data directly
into the sensors in order to reproduce the inputs that the vehicle would receive
under real-world driving conditions but in a controlled environment, enabling highly
realistic testing without the risks and limitations of road tests. With this approach
it is possible to analyze system’s response without the need to involve physical
vehicles.

An example would be to check how the vehicle reacts if, inside a laboratory, its
LiDAR sensor is stimulated with artificially generated data to simulate the presence
of moving obstacles, such as a cyclist approaching the vehicle sideways.

14

ADAS Validation

3.3 Proposed Virtual Valdiation Approach

The project presented in this thesis focuses on the generation of synthetic data
using the Driver-In-The-Loop approach. Through the use of a driving simulator,
a virtual sensor-equipped vehicle can be controlled within a virtual environment,
accurately replicating the variety of scenarios required for the validation phase. The
data collected in this environment will then be formatted according to one of the
most popular large-scale data sets for autonomous driving. This makes it possible
to produce realistic synthetic data, which can then be injected into the devices to
be tested, ensuring in-depth analysis of their performance under conditions that
are difficult to replicate in the real world.

To achieve this goal, it was essential to identify two key elements:

1. A simulation environment capable of providing all the necessary compo-
nents to realistically reproduce urban driving scenarios, ensuring accurate
interactions between sensors and environmental elements.

2. A structured data format that allows the generated synthetic data to
be seamlessly integrated with real-world datasets, minimizing the need for
extensive adaptations and ensuring compatibility with existing validation
pipelines.

15

Chapter 4
The Simulation Environment

To ensure the generation of realistic synthetic data, a crucial role is represented
by the choice of the virtual environment in which to conduct the simulation. It
must be able to accurately reproduce real driving conditions, including a variety
of scenarios representative of the different situations that an ADAS system might
face. This involves accurate modeling of elements such as road geometry, dynamic
vehicle behavior, the presence of pedestrians and cyclists, the possibility of varying
weather and lighting conditions. In addition, the simulator must support realistic
interaction between vehicle sensors and the surrounding environment, allowing the
system’s response to different stresses to be accurately assessed. A well-designed
virtual environment allows a wide range of tests to be covered, ensuring a more
comprehensive and effective data generation, while reducing the need for complex
and expensive on-road testing. For the purpose of this thesis, CARLA Simulator
was chosen.

The official CARLA documentation (Source [11]) will be used as reference in
the following sections to describe the main features used in the development of this
project.

4.1 CARLA: Car Learning to Act

CARLA is an open-source simulator for autonomous urban driving [12]. Leveraging
the potential of Unreal Engine 4 enables highly realistic and customizable virtual
environments to support the training, prototyping and development of autonomous
driving systems. The simulation platform provides a flexible configuration for each
element of the offered sensor suite, giving the possibility to generate signals that
are critical to driving strategy development, such as GPS coordinates, IMU data,
LiDAR and RADAR information, comprehensive collision and infraction reports.

16

The Simulation Environment

Moreover, many environmental parameters, such as time of day and weather condi-
tions, can be configured inside the simulation, as illustrated in Figure 4.1.

CARLA is the optimal environment for the purpose of this thesis as it provides a
rich and highly realistic platform for the simulation of complex urban scenarios,
providing a number of fundamental elements for a realistic representation of the
urban system such as pedestrians, which can be configured to move realistically
by following random or predefined trajectories, road signs of various types that
regulate traffic flow and so much more. The simulation also includes road markings
that define lanes, pedestrian crossings, stop lines and everything that is essential
for the proper functioning of autonomous vehicle perception systems. Traffic lights,
which are also fully configurable, allow the testing of algorithms for detecting and
interpreting illuminated signs, while intersection management allows the analy-
sis of interaction between vehicles, pedestrians and road infrastructure. Finally,
CARLA realistically simulates road dynamics, making it possible to reproduce
traffic behavior in different scenarios with different levels of congestion and priority
rules.

Figure 4.1: Some of the configurable elements subjected to different weather
conditions [12]

17

The Simulation Environment

4.1.1 Client-Server Architecture

CARLA is based on a Client-Server architecture in which the server plays the main
role in managing the simulation, rendering scenes, processing data coming from
sensors, computing physics and transmitting information to clients. On the other
hand, the client consists of several modules that control the logic of the agents in
the simulated environment. To implement this client-server architecture, CARLA
makes use of API written in Python that allows communication through the use of
sockets, ensuring dynamic and efficient interaction between the different elements
of the simulation. The interaction takes place through the exchange of commands
and meta-commands. Commands are used to directly control the main vehicle,
while meta-commands are used to modify the behavior of the server, configure
sensors and define the characteristics of the environment.

CARLA Architecture

Server Client

Python API
Scripts
Y
¥
[C++ AP1

Plugins | Traffic Manager

\“ e “ 1y

Figure 4.2: Client-Server communication in CARLA [13]

[CARLA

L —
| ——

Communication can be implemented through two possible modalities [11]:

o Synchronous Mode: the client, through Python code, controls the flow of
the simulation, determining when the server must update the state of the
environment.

o Asynchronous Mode: server runs the simulation as fast as possible, handling
client requests when possible.

The choice of the communication mode has a crucial role for guaranteeing
the synchrony between the data generated from all the sensors involved in the
simulation. Efficient management of information transmission is essential to ensure

18

The Simulation Environment

the consistency and reliability of the acquired data.

This aspect will be explored in detail in Section 6.2, where all elements of the imple-
mented simulation will be explained in depth, with a focus on sensor management,
data synchronization, and environment setup.

4.1.2 Actors

An actor in CARLA is any element able to perform actions within the simulation
and to interact with other elements in the environment. Actors can be dynamic,
such as vehicles and pedestrians, or static, such as traffic lights and traffic signals.
Actors are introduced to the simulation using blueprints, which are predefined
models that contain animations, physical properties and a range of customizable
attributes. Blueprints allow the user to modify specific parameters of each actor,
such as vehicle type, color, driving behavior or pedestrian path, to match the
simulation to the specific needs.

The actors managed through the API developed for this thesis are briefly
introduced below.

o Vehicles: each vehicle that is generated in the CARLA world. A distinction
can be made between:

— Ego Vehicle: refers to the vehicle which is the focus of the simulation. It
is possible to drive it manually via user controls. All the sensors necessary
for data collection are attached to it.

— Traffic Vehicles: all other vehicles in the simulation generated to populate
the roads in order to simulate traffic conditions and the interaction of
Ego vehicle with other vehicles. They can not be controlled manually,
but their behavior is managed in autopilot mode by the Traffic Manager
(4.1.3).

o Sensors: list of sensors attached to the Ego Vehicle which generates raw data.
[11]

— RGB Camera: «Provides clear vision of the surroundings. Looks like a
normal photo of the sceney.

— LiDAR: «Generates a 4D point cloud with coordinates and intensity per
point to model the surroundings».

— RADAR: «2D point map modelling elements in sight and their movement
regarding the sensory.

— IMU: «Comprises an accelerometer, a gyroscope, and a compass».

— GNSS: «Retrieves the geolocation of the sensor.

19

The Simulation Environment

o Spectator: used to move the view of the simulator window. During all
simulations performed it is placed inside the Ego Vehicle providing a driver
point of view, just behind the steering wheel.

o Walkers: pedestrians generated to populate the town. They work in a similar
way to vehicles, but do not have an autopilot mode. Their movement is
handled by AI controllers that allow them to reach random points on the map.

Traffic signs and traffic lights are also actors that could be managed and modified
through API. However, for the simulations performed during this thesis work they
were not modified, maintaining the default characteristics of the reference maps
used.

4.1.3 Traffic Manager

The Traffic Manager is a CARLA module designed to manage vehicles traffic
within the simulation in an autonomous and realistic way. It makes possible to
automatically control the behavior of vehicles not driven by the user, regulating
aspects such as speed, trajectories and compliance with traffic rules. Thanks to the
Traffic Manager, it is possible to simulate complex scenarios with several vehicles
interacting with each other, respecting traffic lights, signals and priorities. In
addition, the user can configure various parameters to customize the behavior of
the vehicles, including safety distance, attitude to overtake, compliance with traffic
rules.

None of these aspects were changed from the default values in the simulations
performed.

20

Chapter 5

The Standard for Dataset

The data generated in the virtual environment introduced in Chapter 4, as widely
discussed, are an essential resource for the validation process of the systems being
developed. However, in order to be effectively used, they must be properly collected,
organized and formatted according to the most widely accepted and standardized
datasets used in the validation and testing sector for autonomous driving systems.
This is crucial as it influences the compatibility of the synthetic data with other
analysis tools and the capability to incorporate them into automated processing
pipelines. Moreover, it makes easier to match the simulation results with real data,
improving the virtual validation accuracy.
For this reason, the choice of format in which to store the synthetic data generated
by simulations plays a central role in the development of this project. Several factors
must be taken into account, such as the ability to faithfully represent the information
collected, the ease of access and manipulation of data and the compatibility with
software and tools already used to analyze and validate autonomous driving systems.
A nuScenes-compliant format will be used to store the synthetic data generated
by the simulations performed in this thesis.

5.1 nuScenes

nuScenes is a large-scale public dataset developed by Motional to support research
in autonomous driving and computer vision. [14]

The dataset consists of 1.000 driving scenes of 20 seconds each, collected in Boston
and Singapore since they are known for being cities with dense traffic and challenging
driving conditions. The scenes collected were then manually selected to include
a wide range of different situations and traffic conditions, providing an highly
representative dataset of real-world driving conditions. With accurate 3D bounding
boxes at a frequency of 2 Hz across the entire dataset, nuScenes also provides

21

The Standard for Dataset

detailed annotations for 23 object classes, giving in addition information on object
attributes, such as visibility, activity and pose, to improve the understanding of the
road’s context. In constrast to the other datasets which focus mainly on specific
sensors (typically for image-based object recognition), a unique feature of nuScenes
is that it aims to provide a more complete picture of autonomous perception by
integrating data from the entire sensor suite of an autonomous vehicle.

5.1.1 Data collection

The data has been collected over a total of 15 hours of driving sessions, during which
a variety of traffic scenarios were recorded. The most significant and diversified
scenes were then manually selected to ensure a wide variety of situations and
improve the representativeness of the dataset. The collection was carried out using
two identical vehicles equipped with a wide range of sensors, as shown in Figure
5.1.

— X-axis
% Downward — Y-axis
® Upward — Z-axis

Figure 5.1: Sensor’s configuration on the cars used for data collection [14]

Within CARLA simulator, the Ego Vehicle used for data collection was configured
to replicate exactly the same layout (in terms of position and orientation) of the
sensors used in the nuScenes dataset. This choice led to synthetic data as close as
possible to the real data, ensuring the consistency of the information collected and
facilitating the integration between simulated and real data.

Each virtual sensor has a set of configurable attributes that can be modified by the
user before each simulation to customize the data collection for specific needs. If no
changes are made, the sensors will maintain their default values, which have been

22

The Standard for Dataset

set to be, within the implementation’s limits, as close as possible to the original
configuration used in the nuScenes data collection, reported in Table 5.1.

Sensor Capture Frequency | Technical specifications
32 beams, 1080 points per ring,
LIDAR 20 Hz 32 channels, 360° Horizontal FOV,
+10°/-30° Vertical FOV, 80 m Range
RADAR 13 Hz 250 m Range
RGB Camera | 12 Hz 1600x 1200 px Resolution

Table 5.1: nuScenes sensor’s specifications [14]

5.1.2 Data format

All the information acquired during the data collection phase are stored in a
relational database (Figure 5.2), which is structured to ensure a consistent and
accessible organization of the data. The different tables in the database are linked
together by means of tokens, which are unique alphanumeric strings that allow
the integrity and traceability of information to be maintained in relation to each
driving session. This approach allows a comprehensive representation of the entire
collected dataset.

23

The Standard for Dataset

Vehicle Extraction Annotation Taxonomy,
log scene® instance* category*
logfile name category_token name
wehicle description —p| NBr_annotations | description
date_captured log_token first_annotstion_token ;o= index
location nbr_samples last_annotation_token E
first_sample_toksn E
last_sample_token E
map* sample* lidarseg*
log_tokens timestamp ferame - f——-
category scens_token sample_data_token rgicilly Eriked
PP wia _bin Ees
filename next -
prev
calibrated_sensor®* sample_data sample_anmotation® attribute
sensor_token sarple_loken sample_token nams
{ranslation £ga_pose_loken - —¥| instance_token ¥ description
. cabbrated_sensor_token atiribuie_tokens
rotation
Tilemarme wisibility_token
camera_intrinsic .
Tiletarinal translation
width size
height rotafion
limestamp num_lidar_pts
is_ ey frame num_radar_pts
el next
prey prev
Sensor ego_pose® visibility*®
channed translation level
modality rotation b description
timestamp

Figure 5.2: nuScenes relational database schema [14]

The structure of the database can be divided into four categories:

o Vehicle: contains all the generic information about the driving session including
date, location, type of vehicle and the suite of sensors installed on the car.

o Extraction: contains information about the scenes collected with references to
each sensor’s output acquired and the global position of the nuScenes vehicle
at every time instance.

» Annotation: contains information related to the bounding boxes of the objects

24

The Standard for Dataset

recognized in the scene, storing dimensions, positions, sensor’s interaction and
attributes to provide an annotation.

« Taxonomy: static attributes that are associated to the objects captured among
the scenes to detail their characteristics.

Each table in the database is represented by a JSON file, providing a clear
and organized structure for the collected data. The same structure is used for
the synthetic data generated by simulations performed in CARLA Simulator. At
the end of each execution, the system automatically generates the JSON files
corresponding to each database table. These files contain information related to
the data collected in the simulation, organized according to the same structure seen
in Figure 5.2. This approach ensures consistency between real and simulated data.

5.1.3 Data annotation

In the nuScenes dataset, annotation is performed after data collection by extracting
synchronized keyframes at 2 Hz and sending them to a team of experienced
annotators for labeling. Each object in the dataset is associated with a semantic
category, a 3D bounding box and specific attributes for each frame in which it
appears. To ensure high accuracy, several validation steps are included in this
process. The list of categories for which annotation is provided in nuScenes is
reported in the Table 5.2.

On the other hand, in the project developed with CARLA simulator, the
annotation phase is managed directly during the simulation, getting information
about the detected objects by reading the attributes of the blueprints present in
the virtual environment. This approach produces an already labeled dataset in an
immediate and structured way, avoiding the need for a successive manual annotation
phase. Moreover, the annotation categories which can be retrived in the virtual
environment are more extensive and detailed, including additional information
such as the specific model of the vehicles and other attributes that would be
difficult to extract by manual annotation. This provides a richer dataset containing
metadata that would be complex and time-consuming to annotate manually, thus
improving the quality and depth of information available for training and validation
of perception algorithms.

25

The Standard for Dataset

Category

animal

human.pedestrian.adult
human.pedestrian.child
human.pedestrian.construction_ worker
human.pedestrian.personal _mobility
human.pedestrian.police officer
human.pedestrian.stroller
human.pedestrian.wheelchair
movable object.barrier
movable object.debris
movable object.pushable pullable
movable object.trafficcone
static_ object.bicycle rack
vehicle.bicycle

vehicle.bus.bendy

vehicle.bus.rigid

vehicle.car

vehicle.construction
vehicle.emergency.ambulance
vehicle.emergency.police
vehicle.motorcycle

vehicle.trailer

vehicle.truck

Table 5.2: Annotations categories in nuScenes [14]

26

Chapter 6
Synthetic Data (zeneration

This chapter aims to analyze in detail all the development phases of the platform
designed for the generation of synthetic data in nuScenes format. Starting with a
general overview of the overall framework, are then explored in detail the technical
choices implemented to allow the end user to generate all the necessary data in
an immediate and automated manner, according with the specific needs. The
goal is to make the process as efficient and accessible as possible, thus facilitating
the validation of autonomous driving systems through an accurate and standards-
compliant synthetic dataset in nuScenes.

6.1 Overview

The purpose of this project is to allow the user to obtain synthetic data related
to customized scenarios. For this reason, the pipeline starts with a front-end that
allows to configure every detail of the simulation. Here it is possible to select the
sensors to be activated on the vehicle, to define their technical parameters and to
precisely manage the virtual environment in which the simulation will take place
(weather and traffic conditions, type of control for the ego vehicle, etc.). Once all
the desired settings have been selected, the simulation can be started.

The simulation can be monitored from a Pygame window, which provides the
driver’s viewpoint and allows to control the vehicle (detailed in section 6.1.2).

27

Synthetic Data Generation

zj‘ CARLA Sensors Viewer

Figure 6.1: Driver’s point of view using Pygame window

6.1.1 System’s architecture

The whole system is based on a modular architecture in which different scripts,
developed in Python, retrieve information from the front-end to handle specific
aspects of the simulation.

A conceptual diagram showing the main modules developed and the inputs they
receive is shown in Figure 6.2.

28

Synthetic Data Generation

Front-end

[Simulation Config.]

vehicleControl.py

- trafficGeneration.py
#ped, #vehic

Environment, duration) worldSettings.py
sensor’s params map, vehicle name.
DriverView.py

Autopilot/DIL

sensorManager.py

Figure 6.2: Set-up of the simulation through Front-End

o DriverView.py: contains the main loop that runs the whole simulation and
provides a driver-in-the-loop view via a Pygame window. This script starts
the simulation, properly initializes the virtual environment and calls the other
Python modules dedicated to specific functions.

o worldSettings.py: manages general information of the running simulation such
as date and time of start. It also maintains global data structures that can be
simultaneously accessed by other scripts to retrieve information needed for
their operation.

o vehicleControl.py: handle the control of the ego vehicle. It manages the activa-
tion of the autopilot mode and implements functions for manual control of the
vehicle via keyboard or steering wheel. It also defines some physical properties
to enhance the realistic interaction of the vehicle with the environment.

o sensorManager.py: it is responsible for generating on the reference vehicle the
sensors according to the configuration set on the front-end and implements
all the functions for extracting and manipulating the raw data provided as
output by each virtual sensor.

o trafficGeneration.py: manages the traffic in the simulation environment. In
particular, it is responsible for generating pedestrians and other vehicles to
populate the scenario in which data are collected. It manages the other
dynamic actors that may interact with the ego vehicle during its journey.

29

Synthetic Data Generation

During simulation, the collected data are progressively processed and stored in
a volatile data structure accurately designed to facilitate its access and subsequent
manipulation in the post-simulation phase. Once the data collection is complete,
the main script (DriverView.py) performs the operations necessary to successfully
terminate the simulation and then invokes the nuScenes.py module. The latter,
developed with reference to the nuScenes database shown in Figure 5.2, reads all
the data stored during the simulation phase and proceeds to create the dataset.
The data are thus organized in the respective folders according to the source sensors,
while the JSON files are generated according to the dataset tables described in
Section 5.1.2.

[Dataset Generation]

CAM_FRONT

CAM_FRONT_LEFT

,,,,,,,,,,,,,,,

RADAR BACK_LEFT
RADAR BACK RIGHT
RADAR _FRONT

RADAR_FRONT_LEFT

- | | === .jpeg, .pcd
uuuuuu e | I —

.json

Figure 6.3: Data generation process through python script

6.1.2 Driving modalities
Two different driving modes have been implemented to control the vehicle:

1. Autopilot: vehicle’s control is fully managed by the Traffic Manager, discussed
in section 4.1.3. In this mode, the vehicle moves autonomously within the
map, following predefined behaviors to respect traffic rules such as the right
of way, traffic lights rules and speed limits.

2. Manual control: the user can directly control the vehicle, managing various
aspects such as acceleration, braking, steering, handbrake and reverse gear.
This mode can be selected during front-end configuration and is managed by
the vehicleControl.py script.

30

Synthetic Data Generation

For a more realistic experience, the vehicle can be manually controlled using a

driver-in-the-loop approach, taking advantage of the Logitech G29 Driving Force
Racing Wheel ® system’s features. !

=
==
E

Figure 6.4: Logitech G29 Driving Force Racing Wheel ®

The interaction between steering wheel and the vehicle in CARLA Simulator
is managed through Pygame. The content of "manual_control_steeringwheel.py”
provided by official CARLA documentation [15] has been used as a starting point.

The association between the steering wheel’s physical buttons (and axes, such
as pedals) is recorded in a configuration file named config.ini (Figure 6.5).
This file is then read through a parser in vehicle Control.py and, after initialization of
the joystick, each index is stored in a variable that is successively used to effectively
send inputs to the Ego Vehicle, as shown in Figure 6.6

L'Logitech, Logi, and their logos are trademarks or registered trademarks of Logitech Europe
S.A. and/or its affiliates in the United States and/or other countries.”

31

Synthetic Data Generation

= config.ini

[CONFIG]

Figure 6.5: config.ini

pygame.joystick.init()
joystick count = pygame.joystick.get count()

if joystick count < 1:
raise Valuekrror("Please Connect a Joy
elif joystick count > 1:
raise ValuekError(“Please Connect only One Jo

self. joystick = pygame.joystick.Joystick(e)
self. joystick.init()

self. parser = ConfigPa
self. parser.read('co
self. steer idx = int(

self. parser.get('CONFIG",
self. throttle idx = int(

self. parser.get('CONFIG', 'throttle’)
self. brake idx = int(self. parser.get(
self. reverse idx = int(self. parser.get(
self. handbrake idx = int(

self. parser.get('CONFIG', 'handbrake®))
self. autopilot idx = int(

self. parser.get('CONFIG', 'autopilot'))

Figure 6.6: Joystick initialization and config parser

32

Synthetic Data Generation

The raw signals provided by the controller required some processing in order to
achieve a realistic response during simulation.
In particular:

o Steering Wheel: a tangent function has been applied to get a more sensitive
control at larger angles, while maintaining a smoother response near zero.

o Pedals: alogarithmic function has been applied to ensure smoother acceleration
at low speeds, avoiding excessively sharp responses, and greater sensitivity at
high speeds.

In both cases, appropriate correction coefficients were applied to maintain the
values in the correct range. These scaling factors were experimentally tuned to
achieve a more reliable interaction between the physical controller and the dynamic
behavior of the vehicle in the simulator. The corresponding code is shown in the
Figure 6.7

joyControl (self):

numAxes = self. joystick.get numaxes()

jsInputs = [fl self. joystick.get axis(i)) for
jsButtons = [f ._joystick.get_button(i))

K1 = 1.8
steercmd = K1 * math.tan(e.8 * jsInputs[self. steer idx])

K2 1.6
throttletmd = K2 + (2.065 * math.logle(-0.7 * jsInputs|[self. throttle idx] + 1.4) - 1.2) / @.92
if throttleCmd <= @:
throttlecmd = @
elif throttlecmd > 1:
throttleCmd = 1

brakecmd = K2 + (5 * math.logle(-1 * jsInputs[self. brake idx] + 1.4) - 1.2) / ©.92
if brakecCmd 2

brakecmd = ©
elif brakecmd > 1:
brakecmd = 1

self._control.steer = steerCmd
self. control.brake = brakeCmd
self. control.throttle = throttleCmd

Figure 6.7: joyControl function for manual drive using steering wheel

A keyboard driving mode is also provided for running simulations when steering
wheel is not available. In this case, the control is carried out by means of directional
arrows or the key combination (W,A,S D). Adjustments have also been made here
to improve the driving experience.

33

Synthetic Data Generation

keyControl (self):
ne.key.get_pressed()

LK _UP] keys[pygame.K w]:
ntrol.throttle = min(self._control.throttle + 0.05, 1.80)

if keys[py {_DOWN] keys

self ntrol.brake = min(self._control.brake + ©.2, 1.0)

else:
self._control.brake = 0.0

if keys[> K_LEFT] keys K_a]:
self. control.steer = max(self. control.steer - ©.05, -1.0)
elif keys[.K_RIGHT] keys[(d]:
self._control.steer = min(self._control.steer + ©.05, 1.0)

self. control.steer = 0.0

Figure 6.8: keyControl function for manual drive using keyboard

6.2 Environment set-up

This section focuses on the initial configuration phase of the simulation environment.
In particular, it describes in detail all the options available via the front-end and
how they are effectively implemented in the simulation through Python scripts.

6.2.1 Front-end

Since the objective is to simulate the nuScenes data collection process described in
Section 5.1.1, the same model of Figure 5.1 is used as a reference for the virtual
vehicle configuration.

Each sensor can be completely customized in its technical characteristics and, if
considered unnecessary for the purposes of the simulation of interest, can also be
deactivated. In this way, the sensor will not be generated on the virtual vehicle,
reducing the computational load of the simulation and improving its performance
by focusing only on the elements of real interest.

An example of this is shown in Figure 6.9, where some of the sensors (highlighted
in red) are disabled.

34

Synthetic Data Generation

X REPLY

CONCEPT

Driver-In-The-Loop

Start simulation Simulation settings

Figure 6.9: Virtual vehicle’s sensor configuration from Front-End

The list of specific characteristics depends on the sensor to be modified: clicking
on it opens a drop-down menu that allows to modify the data acquisition properties
and the position of the sensor itself on the virtual vehicle. Below are the parameters
for the three types of sensor that can be customized for the considered model.
If no changes are made, the values that are most consistent with the nuScenes
configuration will be used by default.

Radar - Front X
CAM - Front right X Lidar - Top X
Not active
Not active @ Active Range
Rotation Range 100 o)
Roll 100 m Horizontal FOV
0 : Number of channels 30 s
Pitch 32 Vertical FOV
-20
Points per second 30
Yaw
56000 Points per second
> 125
Rotation frequency
Resolution 20 Hz
Rotation
Width
Roll
900 BX 0
Height Pitch
600 BX 5

Figure 6.10: Configuration parameters for each type of sensor through Front-End

35

Synthetic Data Generation

All other aspects related to the simulation environment can be selected from
a dedicated menu in which time of day, weather conditions, number of vehicles
and pedestrians to be generated, duration of the simulation and the vehicle driving
mode can be specified. It is also possible to select one of the CARLA Simulator
maps on which the simulation will take place.

Simulation settings X

Map

Town01 - A small, simple town with a river an v

Time of the day

Day v
Weather

Clear v

@D Traffic generation

Number of vehicles

0

Number of pedestrians

0

Vehicle name

Car

Autopilot
Duration g5 seconds

Keyboard controls

Figure 6.11: Environment settings through Front-End

The list of available maps with a brief description is reported in Table 6.1

36

Synthetic Data Generation

Town | Description

TownO1 | "A small, simple town with a river and several bridges."
Town02 | "A small simple town with a mixture of residential and
commercial buildings."

Town03 | "A larger, urban map with a roundabout and large junctions.'
Town04 | "A small town embedded in the mountains with a special
"figure of 8" infinite highway.

"Squared-grid town with cross junctions and a bridge.
Town05 | It has multiple lanes per direction.

Useful to perform lane changes."

Town06 | "Long many lane highways with many highway entrances

and exits. It also has a Michigan left."

Town07 | "A rural environment with narrow roads, corn, barns and hardly
any traffic lights."

Townl0 | "A downtown urban environment with skyscrapers, residential
buildings and an ocean promenade."

Townll | "A Large Map that is undecorated. Serves as a proof of concept
for the Large Maps feature."

Townl2 | "A Large Map with numerous different regions, including
high-rise, residential and rural environments."

Table 6.1: Maps available in the simulator from CARLA Official documentation
[11]

Once all data have been entered according to requirements, the simulation
can be started using the appropriate button. Upon pressing it, the system will
automatically generate two files in JSON format, containing the chosen configuration
parameters:

 sensors.json: collects all information about the sensors selected for simulation.
« simulation.json: includes the general settings of the simulated environment.

These files will then be processed by the worldSettings.py script, which will store
the data within an instance of a dedicated class. In this way, the information will
be simultaneously accessible by other Python scripts, allowing them to customize
the simulation according to the preferences set by the user in the Front-End.

37

Synthetic Data Generation

6.2.2 Ego Vehicle set-up

All aspects related to the integration of the virtual sensors required for the simulation
into the vehicle are handled by the sensorManager.py script.

To match the desired configuration specified in the Front-End, for each sensor two
aspects are managed:

1. Technical characteristics: depending on the type of sensor, the corresponding
blueprint is identified in the library provided by CARLA Simulator. This
allows access to a series of attributes that are modified to configure the
technical specifications for data acquisition according to the configuration
specified in the Front-End. If the user does not make any change, by defaul
the system will provide values corresponding to the real sensors used in the
data acquisition phase of nuScenes, as seen in Table 5.1.

The blueprint attributes modified for each sensor are listed in the following
Table:

Radar Lidar RGB Camera
horizontal fov channels image size x
vertical fov rotation_ frequency | image_size y
points per_second | points_per second
range range

Table 6.2: Blueprint attributes of interest

2. Positioning: concerning the positions in the Ego vehicle, if the user does not
make any changes, the system is designed to automatically apply the default
values to replicate the nuScenes configuration shown in Figure 6.12.

38

Synthetic Data Generation

Figure 6.12: nuScenes sensor’s orientation [14]

Position and orientation of each sensor are precisely imposed by using instances
of the carla. Transform class, belonging to the CARLA Python API.

carla.Transform: «Class that defines a transformation, a combination of
location and rotation, without scaling»

Instance Variables:

e Location: describes a point in the coordinate system.

» Rotation: describes a rotation for an object.
Since CARLA rotations are described according to the Unreal Engine’s ref-
erence system, based on left-hand and Z-up conventions, the rotations must

be adjusted. In particular, the Yaw values must be reversed in sign to ensure
correct alignment with the nuScenes model.

39

Synthetic Data Generation

yaw

roll

Figure 6.13: Unreal Engine’s left handed coordinate system with rotations.[11]

Once the blueprint is correctly configured and the transformation is defined via
the Transform object, the sensor can actually be created using the spawn__actor
method.

world.spawn__actor: «The method will create, return and spawn an actor
into the world. The actor will need an available blueprint to be created and a
transform (location and rotation). It can also be attached to a parent with a certain
attachment type.»

Instance Variables:
e blueprint: "The reference from which the actor will be created."
 transform: "The location and orientation the actor will be spawned with."
o attach_to: "The parent object that the spawned actor will follow around."

In addition to the parameters already described, it is necessary to specify an
attribute indicating the element to which the sensor is attached. In the context of
the simulation, since the goal is to generate a virtual vehicle equipped with sensors,
all devices will be attached to the ego vehicle. The transform.Location variables
are thus referenced to the center of the vehicle.

6.2.3 Weather and Light conditions

Atmospheric conditions play an important role in this project as they have a direct
impact on the quality of the data collected during the simulation. This aspect
is managed through the environment.py module provided by CARLA Simulator
[16]. Any customization specified in the front-end is provided as input to this

40

Synthetic Data Generation

script, which is called at the beginning of DriverView.py. All changes to the entire
simulated world are applied before proceeding with any other operations.

It is given the possibility to select both the time of day, with the resulting changes
in sunlight, and the weather conditions. Each available scenario is obtained by
modifying the world. Weather object provided by CARLA, which includes a set
of parameters accessible from the world that can be modified in order to create
presets that faithfully reproduce the desired conditions.

o Time of the day: lighting of the scene is controlled by the position of the
sun. The parameters used to realize the options available to the user are
shown in the following table.

Preset | Altitude Angle | Azimuth Angle | Description

Day 45.0° 0.0° Represents daylight condi-
tions with the sun positioned
at a high altitude, ensuring
maximum illumination.
Night -90.0° 0.0° Simulates night conditions
where the sun is completely
below the horizon, resulting
in darkness.
Sunset 0.5° 0.0° Creates a sunset effect, with
the sun near the horizon,
generating long shadows and
a warm lighting effect.

Table 6.3: Time of the day presets based on sun position

o« Weather conditions: these are reproduced by accurately tuning a series of
parameters described in the table below.

41

Synthetic Data Generation

Parameter Clear | Overcast | Rain
Cloudiness (%) 10.0 80.0 100.0
Precipitation (%) 0.0 0.0 80.0
Precipitation Deposits (%) | 0.0 0.0 90.0
Wind Intensity (%) 5.0 50.0 100.0
Fog Density (%) 0.0 2.0 7.0
Fog Distance 0.0 0.75 0.75
Fog Falloff 0.2 0.1 0.1
Wetness (%) 0.0 10.0 100.0
Scattering Intensity 0.0 0.0 0.0
Mie Scattering Scale 0.0 0.03 0.03
Rayleigh Scattering Scale | 0.0331 0.0331 0.0331

Table 6.4: Weather condition presets realized by modifying various environmental
parameters.

All the possible atmospheric conditions which can be reproduced by combining
weather conditions with sun position are illustrated in Figure 6.14.
A description of each image is provided in the corresponding cell of the following
table.

Clear Overcast Rain
Day Clear Day Qvercast Day Rainy Day
Sunset | Clear Sunset | Overcast Sunset | Rainy Sunset
Night | Clear Night | Owvercast Night | Rainy Night

Table 6.5: Possible combinations of time and weather conditions

42

Synthetic Data Generation

Figure 6.14: Screenshot of the different atmospheric conditions

6.2.4 Traffic generation

An essential element in ensuring a simulation environment that can realistically
reproduce the dynamics of real driving is the presence of sufficient vehicle and
pedestrian traffic to reproduce complex scenarios in which the ego vehicle interacts
with other road users. This is essential to collect significant data on the interactions
between the vehicle’s sensors and the surrounding elements, which can be used for
testing the perception, planning and control algorithms under realistic and varying
conditions.

During the initial configuration phase, the user can regulate the intensity of the
simulated traffic by selecting the number of pedestrians and vehicles to be generated
in the virtual environment. In this way, it is possible to configure the scenario to
be reproduced according to specific test requirements.

As explained in Section 4.1.2, each generated vehicle or pedestrian represents an
actor associated with a blueprint, so it can be fully configured in terms of appear-
ance parameters, behavior, and interaction with the environment. For example,

43

Synthetic Data Generation

vehicles can follow pre-defined routes or be guided autonomously by the Traffic
Manager, which simulates real traffic behavior, while pedestrians can cross the road
at specific points or move randomly around the map.

In order to correctly generate new actors, the first step is to define the effectively

accessible points at which they can appear. These are different depending on the
map chosen to host the simulation.
Each Town listed in Table 6.1 is a CARLA object that can be accessed using the
command world.get _map() and then consent to extrapolate the list of recommended
spawn points using the .get spawn__points() method, which returns instances of
the carla. Transform class for each of them.

spawn_points = carlawWorld.world.get map().get spawn points()

random.shuffle(spawn points)

Figure 6.15: Python code to get a shuffled list of spawnpoints

Once obtained the list of available spawnpoints for the selected town, is possible
to proceed with the traffic generation:

» Vehicles: all available vehicle blueprints from the CARLA library are filtered.
Then, based on the number of vehicles specified by the user via the front-end,
several blueprints are randomly selected to ensure variety in the simulation.
Each vehicle is then assigned to one of the available spawn points. The
generation process is performed using the try spawn__actor method. This
tries to place the vehicle at the assigned point. However, the generation may
fail if the spawn point is not free. If successful, the vehicle is added to the
list of active vehicles and configured in autopilot mode. Its behavior is thus
automatically managed by the Traffic Manager, as described in Section 4.1.3.
The corresponding code, extracted from trafficGeneration.py script, is reported
on Figure 6.16

44

Synthetic Data Generation

vehicle_blueprints = carlaWorld.blueprint_library.filter

for i in range(min(number_of vehicles, len(spawn_points))):
blueprint random.choice(vehicle blueprints)
transform = spawn_points[i]
vehicle = carlaWorld.world.try_spawn_actor(blueprint, transform)
if vehicle !=
carlaWorld.vehicle_list.append(vehicle)
vehicle.set_autopilot()

% len(carlaWorld.vehicle list))

Figure 6.16: Vehicle’s generation code (from trafficGeneration.py)

o Pedestrians: follows a similar logic seen for vehicles, but introduces a new
type of actor: the carla. WalkerAiController. This component is essential for
assigning control of the walkers to the Al. Each generated pedestrian must be as-
sociated with a WalkerAiController that manages its movement. The effective
control is performed using the .go_to_location() method, which allows a spe-
cific destination to be assigned. Suitable locations for pedestrian traffic, such as
sidewalks, can be obtained using the .get_random__location__ from__navigation()
method, similar to the selection of spawn points.

In addition to route management, the WalkerAiController allows to define the
maximum speed that each pedestrian can reach. To increase the realism and
variability of the simulation, a random value is assigned to each pedestrian.
The code that implements this logic is shown in Figure 6.17.

blueprintswWalkers = carlaworld.world.get blueprint library().filter
walker_controller_bp = carlaWorld.world.get_blueprint_library().find(

for i in range(number_of walkers):
spawn_point = a.Transform()
spawn_point.location = carlawWorld.world.get_random lecation_from_navigation()
if (spawn_point.location !=) H
spawn_points.append(spawn_point)

for spawn_point in spawn_points:
hoice(blueprintsialkers)
1d.world.try_spawn_actor(walker_bp, spawn_point)
if walker !=
carlalWorld.walker list.append(walker)

carlawWorld.world.tick()

for elem in carlaWorld.walker_ list:
controller = carlaWorld.world.spawn actor(walker controller bp,carla.Transform(),elem)
controller.start()
controller.go to location{carlaworld.world.get random location from_navigati
controller.set_max_speed(1 + random.random())
carlaWorld.controller_list.append(controller)

print(“\n Wa ed” % len(carlaWorld.walker list))
Figure 6.17: Walker’s generation code (from trafficGeneration.py)

45

Synthetic Data Generation

6.3 Data Collection

This section examines the data collection mechanisms implemented in simulation
time to directly structure all the collected information in a consistent and accessible
manner, thus facilitating the successive creation of the final dataset. The sensor
synchronization system, which is essential to ensure that no relevant data are lost
during the simulation, is explored. Furthermore, the modeling processes applied to
the acquired raw data are also discussed, with the aim of transforming them into a
format compatible with the nuScenes standard.

6.3.1 Synchronous configuration

The wide presence of actors in the simulation environment requires careful man-
agement of synchronization between them. This aspect becomes essential when
dealing with the effective collection of virtual sensor outputs. In order to obtain
an accurate and coherent dataset, it is necessary to ensure that each sensor data
is related to the same time frame, also avoiding any kind of information loss. A
mismatch in the temporal alignment between sensors could in fact compromise the
integrity of the dataset, causing discrepancies between the information obtained
from different sources, thus complicating the further phases. For this reason, the
synchronization system ensures that all outputs are recorded simultaneously, with
the aim of obtaining a complete and detailed snapshot of the scene at each instant
of the simulation.

As mentioned in Section 4.1.1, the CARLA Simulator is based on a client-server
architecture, where all simulation activities are managed by the server (the CARLA
world), while interaction with it takes place via Python scripts executed by the
client. By default, this type of communication takes place in asynchronous mode,
which means that the server runs as fast as possible, while the client interacts with
it to retrieve information only when it is ready to proceed. However, this approach
presents a significant criticality: if the processing time of the client is longer than
that of the server, some instances of the simulation may be lost, compromising the
consistency and integrity of the collected data.

To avoid this problem, the synchronous communication mode was adopted in the
development of this thesis.

e Synchronous Mode: the server only advances the simulation when it re-
ceives an explicit signal from the client, thus ensuring a perfect time alignment
between the events and the collected data.

After each frame processing, the simulation stops until the client explicitly
requests to continue with the next instance via the world.tick() command. In
this way, the client can carry out all the necessary operations on the data at

46

Synthetic Data Generation

its own rate, and when it is ready, it can invoke the command again to take
the simulation one step ahead. The server will then update the state of the
simulation by processing the operations of all the actors in the scene, such
as the movement of vehicles and pedestrians, or the new set of sensor out-
puts. The world.tick() method also returns an identifier of the processed frame,
which is essential to verify the alignment and completeness of the received data.

Another aspect to take into account is the time interval between two simulation
steps. By default, with each tick received, the server advances the simulation by
a certain amount of time which is determined dynamically on the basis of the
computing time required to complete its operations. While this approach may be
suitable for asynchronous execution, it is inadequate for synchronous mode because
the server has to wait for the client to compute the steps, potentially resulting in
non reliable simulation.

To address this issue, a fixed time-step approach has been adopted, where the
simulation advances in uniform time intervals defined a priori, ensuring that every
update of the simulation progresses by the same predefined duration.

In figure 6.18 is reported the code related to the configuration described above.

set synchronousMode(self,client):
original settings = self.world.get settings()
settings = self.world.get settings()
settings.synchronous mode =
settings.fixed delta seconds = 1/self.FPS
self.world.apply settings(settings)
client.reload world()

return original settings

Figure 6.18: Synchronous mode, fixed-step configuration

The fixed-step value is defined through fized delta_seconds attribute of CARLA
world. Its value is calculated to guarantee a predefined number of frames per second,
so that the simulation advances as far as necessary to meet the requirements.

For example, if a value of 20 FPS is set then, according to

1
fized_ delta_seconds = 20 = 0.05s

for each world.tick(), the server will advance the simulation by 50 ms.

47

Synthetic Data Generation

Through this approach, the speed of the simulation is entirely controlled by
the client, who can adapt it to his own computing capabilities. It also permit to
reconstruct a temporally consistent ground-truth, where all sensor readings, actor
positions, and environmental states are perfectly aligned for each simulation frame.

6.3.2 Data structure

Once the server has been configured to generate new data in accordance with the
client’s dependencies, it is necessary to ensure that all the information required to
build the synthetic dataset is correctly captured and organized.

To provide a graphically clean simulation from a driver-in-the-loop perspective, the
server processes all instances of the simulation without loss of information through
the synchronous approach described above. However, for the purposes of this work,
it is not necessary to record data for every single instant of time. In fact, the official
nuScenes dataset provides annotations at a frequency of 2 Hz. (Source [14])

To align with this configuration and avoid storing superfluous data, the collection
of information will be carried out by imposing a sampling time of 0.5 s, saving
only the data produced at these time intervals. This ensures an optimized dataset
in terms of size and consistency with the nuScenes format, without compromising
the quality and integrity of the information.

Storing procedure: At the beginning of the simulation, an empty vector named
data_list is initialized, which is used as a container for the recorded data instances.
In each instance of interest, determined by the sampling time defined previously,
an object of the DataLog class is created (Figure 6.19). This class is designed to
capture all relevant information, including sensor outputs, the simulation timestamp
and details related to the Ego Vehicle and other actors involved in the scene.

Datalog:
__ipit (self,sample):
self. sample = sample
self. timestamp =
self. IMU val =
self. GNSS val =

self. RAD val = []
self. RGB val = []
self. LID val = []
self. egoTransform =
self. actors = []

Figure 6.19: Datal.og class used to store data in simulation-time

48

Synthetic Data Generation

Before proceeding to the next simulation step with the world.tick() command,
the corresponding DatalLog object is added to the end of the data_list. All data
are thus stored in simulation-time according to the schema reported in Figure 6.20.
This provides a structured and chronologically ordered collection of data, facilitating
subsequent processing and conversion operations.

data list

N/ v v v
Sample Sample Sample Sample Sample
2] 0.5 1 1.5 2
- - NG N

Datalog

sample
timestamp
IMU_val
GNSS_val
RAD_val
RGB_val
LID val

egolransform
actors

YV VVVYVYYVYY

Figure 6.20: Data structure used to collect data in simulation-time

Each virtual sensor always provides a reference to the time at which the raw
data was generated. This is the content of the timestamp attribute, defined as:
«Timestamp of the measurement in simulation seconds since the beginning of the
episode.» (Source [11]).

Time alignment is checked by comparing the timestamp of the acquired data with
the timestamp recorded in the DatalLog object at the time of its creation. This
ensures that all information relating to the same moment in the simulation is
stored consistently, eliminating time discrepancies between different sensors and
guaranteeing the quality of the final dataset. This approach is applied to the output
of all sensors involved in the simulation.

An example, for the case of IMU data, is shown in the figure 6.21.

49

Synthetic Data Generation

it (self.settings.data list[-1]). sample == round(imu_data.timestamp,4):

(self.settings.data list[-1]). IMU val = self.accelerometer

Figure 6.21: Example of storing an IMU output in the corresponding DatalLog
object

6.3.3 Raw data processing

Each sensor introduced into the simulation has a listener method, which is automat-
ically executed each time a new set of data is generated. This mechanism ensures
that no information is lost and that any acquired data is immediately processed.
Each listener invokes a dedicated function for raw data processing, designed to
transform the stream of information received from the sensor into a structured and
usable format. This step is essential to ensure the coherence of the collected data
and to allow effective management of the information for the final creation of the
dataset.

The data processing operations implemented for each sensor are described below.

« RGB Camera: the output provided is a carla.Image object that defines an
image of 32-bit BGRA colors. The list of attributes which can be accessed
through this object is reported in the following table.

Attribute | Type | Description

width int «Image width in pixels.»
height int «Image height in pixels.»
fov float | «Horizontal field of view in degrees.»

raw_data | bytes | «Flattened array of pixel data, use re-
shape to create an image array.»

Table 6.6: RGB Camera output attributes [17]

The image is first converted, preserving the original colors, without any
processing. The raw data are then extracted and transformed into a NumPy
array, properly modeled to correctly reflect the dimensions of the image. At
this point, the alpha channel, which represents transparency, is removed,
leaving only the three basic channels: red, green and blue. Finally, to obtain
an RGB image as a result, the channels are inverted and the processed image
is transformed into a PyGame surface ready to be saved.

The corresponding code is reported below:

50

Synthetic Data Generation

process rgb(self,image):

image.convert(carla.ColorConverter.Raw)

array = np.frombuffer(image.raw data, dtype=np.dty

array = np.reshape(array, (image.height, image.width, 4))

array = array[:, :, :3]

array = array[:, :, ::-1]

self.surface = pygame.surfarray.make surface(array.swapaxes(@, 1))

Figure 6.22: RGB Camera processing operations

LiDAR Sensor: the output provided is a carla. LidarMeasurement containing
a package with all the points generated during a "static picture" of the scene.
The list of attributes which can be accessed through this object is reported in
the following table.

Attribute Type Description

channels int «Number of lasers shot.»

horizontal angle | float (rad) | «Horizontal angle the LIDAR is rotated
at the time of the measurement.»

fov float «Horizontal field of view in degrees.»

raw__data bytes «Received list of 4D points. Each point
consists of [x,y,z] coordinates plus the
intensity computed for that point.»

Table 6.7: LiDAR output attributes [17]

The raw data are initially converted into a NumPy array and reshaped into
four columns, each corresponding to one of the components of the XYZI
format.

The ring index is then calculated, which is a value that identifies the vertical
layer from which each LiDAR point originates. The number of rings depends
on the number of sensor channels selected during sensor configuration. Each
ring represents a different vertical scan layer. To assign the correct index
to each point, each channel is iterated and the number of points acquired is
calculated. The channel index is then replicated for the number of points
belonging to that level and stored in an array. Finally, the LIDAR data are
reorganised into a more complete structure, combining column by column the
spatial information (x, y, z), intensity and ring index.

The code which implements what explained above is reported in the following
figure.

51

Synthetic Data Generation

process_lidar(self,lidar _data):

points = np.frombuffer(lidar_data.raw data, dtype=np.float32).reshape(-1, 4)

num_channels = lidar_data.channels
ring_indices = []

for channel in range(num_channels):
point_count = lidar_data.get_point_count(channel)

ring_indices.extend([channel] * point_count)
ring_indices = np.array(ring_indices)

points with ring = np.column stack((points, ring indices))

Figure 6.23: LiDAR Sensor processing operations

« RADAR Sensor: the output provided is a carla. RadarMeasurement contain-
ing an array of carla. RadarDetection, which specifies their polar coordinates,
distance and velocity.

Attribute Type Description
altitude | float (rad) | «Altitude angle of the detection.»
azimuth | float (rad) | «Azimuth angle of the detection.»
depth float (m) | «Distance from the sensor to the detec-
tion position.»
velocity float (%) | «The velocity of the detected object to-
wards the sensor.»

Table 6.8: RADAR output attributes [17]

The azimuth, elevation and depth values extracted from each detected point are
first mapped into Cartesian coordinates using the polar coordinate conversion
formula showed below

52

Synthetic Data Generation

x = r .* cos(elevation) .* cos(azimuth)

y = r .* cos(elevation) .* sin(azimuth)

z = r .* sin(elevation)
P
4
levat®”
Ameum

Figure 6.24: Mapping from Spherical coordinates to three-dimensional Cartesian
coordinates [18§]

Then the velocity components along the vz__comp and vy _comp axes are also
calculated, using the measured velocity and decomposing it according to the
azimuth and altitude of the object. This provides a more detailed spatial
representation of the movement of objects detected by the radar, which is
essential for analyzing the dynamics of the scene. The Python code which
implements what explained above is showed in figure 6.25

process rad(self,radar data):

for detect in radar data:
velocity = detect.velocity
altitude = detect.altitude
azimuth = detect.azimuth
depth = detect.depth

depth * np.cos(azimuth) * np.cos(altitude)
depth * np.sin(azimuth) * np.cos(altitude)
depth * .sin(altitude)

VX_comp velocity * np.cos(azimuth) * np.cos(altitude)
vy _comp velocity * np.sin(azimuth) * np.cos(altitude)

Figure 6.25: RADAR Sensor processing operations

53

Synthetic Data Generation

e IMU Sensor: provides as output a carla.IMUMeasurement object. This is
accessed to retrive the following information:

Attribute Type Description
accelerometer | carla. VectorSD (73) | «Linear acceleration.»
gyroscope carla. Vector3D (*22) | « Angular velocity.»

S

Table 6.9: IMU output attributes [17]

To ensure the reliability of the data acquired and to avoid values that could
cause inconsistencies in the data set, each measurement is compared with pre-
defined limit values and, if necessary, adjusted so that they are not exceeded.
Accelerometer data (along the x, y and z axes) are acquired and limited using
the min and max function to ensure they remain within a manageable range,
avoiding extreme values. The same process is applied to the gyroscope data,
after converting the angle values from radians to degrees using math.degrees().
The corresponding code is reported in the following figure

process_imu(self,imu_data):
limits = (-99.9, 99.9)
self.accelerometer = (
max(limits[@], min(limits[1], imu_data.accelerometer.x
max(limits[@], min(limits[1], imu data.accelerometer.y))
o

)

max(limits[@], min(limits[1], imu_data.accelerometer

self.gyroscope
max(limits[® limits[1], math.degrees(imu data.gyroscope.
max(limits[@ limits[1], math.degrees(imu_data.gyroscope.
max(limits[® limits[1], math.degrees(imu_data.gyroscope.

Figure 6.26: IMU Sensor processing operations

o GNSS Sensor: the object retrived is a carla. GNSSMeasurement which
reports the position of the sensor through the following attributes:

o4

Synthetic Data Generation

Attribute Type Description
altitude float (m) | «Height regarding ground level.»
latitude | float (deg) | «North/South value of a point on the
map.»

longitude | float (deg) | «West/East value of a point on the
map. »

Table 6.10: GNSS output attributes [17]

No further operations are performed on the raw data provided by this type of
Sensor.

6.4 Dataset generation

This section analyzes the dataset generation procedure. The data collected during
the simulation phase, stored according to the scheme shown in Figure 6.20, are
now reorganized to produce an output consistent with that offered by the nuScenes
dataset. This operation is only performed after the entire simulation has been
completed, ensuring that all necessary information has been correctly captured and
all aspects of the simulation have been properly terminated.

The final dataset will be composed of two main parts. The first one includes every
output sample produced by the sensors involved in the simulation. Data from the
RGB camera, LiDAR and Radar are stored in their appropriate format to maintain
the collected information’s quality and integrity.

A series of JSON files, in the second part, define how the different samples are
linked and introduces additional metadata for annotations. These files organize
the dataset structure to allow coherent reconstruction of each simulated scene.

6.4.1 QOutput samples

A dedicated folder containing all the samples acquired during the simulation is
automatically created for each sensor that needs its output to be stored, as reported
in the following figure.

59

Synthetic Data Generation

CAM_BACK CAM_BACK_LEFT CAM_BACK_RIGH CAM_FRONT CAM_FRONT_LEF CAM_FRONT_RIG

T T HT

LIDAR_TOP RADAR_BACK_LE RADAR_BACK_RI RADAR_FRONT RADAR_FRONT_L RADAR_FRONT_R
FT GHT EFT IGHT

Figure 6.27: Data folder structure

Each sample file is renamed in a structured manner, including essential informa-
tion such as the type of sensor, the vehicle on which it is installed, and the date
and time of acquisition. This ensures a clear organization and allows easy access
to the data.

The choice of output format has been carefully considered for each sensor, taking
into account both data quality and compatibility with the nuScenes dataset:

« LIDAR Output: samples are saved in .pcd.bin format, without further
processing. This is sufficient to accurately represent the information acquired
from the LiDAR sensor and to maintains compatibility with the format used
in the original nuScenes collection.

« RGB Output: images are stored in .jpg format, taking advantage of lossy
compression. This technique reduces the file size, allowing optimized storage
management and improved simulation performance, without significantly
compromising the visual quality required for analysis.

« RADAR Output: data are stored according to the Point Cloud Data v0.7
standard. This format ensures that all essential radar information is retained
and structured in a manner consistent with the reference dataset, facilitating
integration and comparative analysis with real data.

6.4.2 JSON files

All information captured during the simulation is organized in a relational database,
structured according to the schema introduced in Section 5.1.2. For each table in
the schema, a corresponding JSON file is created to store the associated information.
Using the function shown in Figure 6.28, a 32-character alphanumeric token is
generated for all items entered into the database to ensure their unique identification.

56

Synthetic Data Generation

tokenGen(token list):

token_length = 32
sample_str = " efghijklmnopqrstu

generated_string = "'.join(random.choices(sample str, k = token_length))

while generated string token_list:
generated string = ''.join(random.choices(sample str, k = token_length))

token_list.append(generated_string)
return generated string

Figure 6.28: Token generation function

For each table of the schema, a Python class is designed to hold the data of
interest, ensuring consistency with the relational structure of the dataset. In
each class object, the data collected during the simulation are first processed and
reorganized according to the nuScenes format. Then, they are placed in a dictionary
type variable, which facilitates their management and serialization. Each object of
a class represents a row in the corresponding table and it is stored into a dedicated
vector which represents a specific table in the database.

An extraction of this process is reported below, showing a Python class (Figure
6.29) designed for reconstruction of the Log Table belonging to the nuScenes scheme
(Figure 6.30)

__init (self,carlaworld):
self.token = tokenGen(carlawWorld.token list)
self.logfile = f"{carlanorld.vehicleName}-{carlaWorld.date}"
self.vehicle = carlaWorld.vehicleName
self.date captured = str(date.today())

1

self.location = carlaWorld.map

self.table di {
n": self.token,
self.logfile,
self.vehicle,
: self.date captured,
self.location

Figure 6.29: Log database table - Python class

57

Synthetic Data Generation

log {

"token": <str> -- Unique record identifier.

"logfile": <str> -- Log file name.

"vehicle": <str> -- Vehicle name.

"date_captured": <str> -- Date (YYYY-MM-DD).

"location": <str> -- Area where log was captured, e.g. singapore-onenorth.
)

Figure 6.30: Log database table - nuScenes scheme [14]

For each element, the content of the Dictionary variable is extracted and written
to the corresponding JSON file.
The whole dataset is implemented by iterating this procedure on all the other
tables specified in the nuScenes schema.

58

Chapter 7

Conclusions and Future
Developments

The final objective maintained during the development phases of this thesis was
to replicate in a virtual environment the data collection process adopted by the
Motional team of nuScenes, and to develop a methodology that would allow stan-
dardized datasets to be obtained in a safe and controlled manner. This approach
has been studied for integration with existing validation platforms, ensuring com-
patibility with methodologies already used to deal with real data. The implemented
process includes a structured pipeline that handles the generation, organization and
annotation of data acquired in the simulation. The collected data are converted into
a format consistent with industry standards, enabling efficient management and
easy integration into existing validation workflows. During the development phases,
analysis of the system’s performance and capabilities identified both the strengths
and limitations of this approach compared to traditional data acquisition. The use
of synthetic data revealed a promising solution for improving ADAS technology
development and testing processes, but also highlighted some critical issues that
need to be addressed for effective integration with real data. The results obtained,
reported in the following sections, suggest that the developed framework can be
a valid support for the validation of ADAS, reducing the need for road tests and
offering greater flexibility in the creation of test scenarios. However, in order for
this technology to be adopted on a large scale, some aspects need to be further
investigated by improving the fidelity of the simulation and by exploring strategies
to better combine synthetic data with real data.

59

Conclusions and Future Developments

7.1 Advantages of using Synthetic Data

Compared to traditional data collection on the road, at each stage of the devel-
opment process, the approach presented in this thesis has highlighted numerous
advantages, providing effective solutions to overcome many of the limitations of
real-world data collection. The benefits emerged not only improve the efficiency
and security of the process but also ensure greater flexibility of the generated
datasets, making them more suitable for the ADAS validation use cases.

The main benefits include:

o Cost-efficiency: the significant cost reduction compared to real-world data
collection is one of the main advantages that emerged. The latter requires a
significant investment in resources, including vehicles equipped with advanced
sensors, data acquisition hardware, fuel and specialized personnel to operate
and maintain the entire system. For example, the vehicle used to collect the
data in the nuScenes dataset is equipped with an expensive suite of sensors,
including six RGB cameras, five radars and a 32-channel LiDAR.

In contrast, synthetic data generated in virtual environments eliminate the
need to physically purchase and integrate such sensors, thus avoiding high
sensorization costs.

Furthermore, simulation allows detailed data sets to be obtained without
the expense of sensor maintenance, periodic calibration and component wear,
further reducing operational costs.

The absence of physical vehicles also eliminates fuel consumption and logistics
costs, making synthetic data generation a cost-effective and highly scalable
solution.

o Safety: the use of virtual scenarios completely eliminates the dangers asso-
ciated with road testing, including the possibility of collisions, unexpected
malfunctions and dangerous interactions with other road users that could
expose to risks not only the operating team, but also pedestrians, cyclists
and other vehicles. Through the virtual approach presented, these dangers
are completely eliminated, allowing rigorous and repeatable testing to take
place in a controlled and safe environment, without any risk to people or
property. In addition, using simulations it is also possible to reproduce and
then test rare or dangerous situations, such as extreme weather conditions,
sensor failures or emergency scenarios that would be risky and difficult to
recreate in the real world.

o Time saving: real world data collection, as already discussed, is a long and
complex process, requiring the organization of road test sessions with vehicles
and personnel management, and the subsequent analysis of acquired data.

60

Conclusions and Future Developments

In contrast, in a virtual environment, data generation is fast and scalable,
allowing large amounts of information to be collected in drastically reduced
time. With synthetic data, it is also possible to extrapolate all the information
necessary for data annotation, as the simulation has direct access to the
characteristics of each object in the scene. This makes it possible to automate
the annotation process, generating ready-to-use datasets and thus significantly
accelerating the model development and validation cycle.

Diversity and Flexibility: through the front-end described in Section
6.2.1, it is possible to customize every aspect of the simulation, allowing it
to vary in a controlled manner. This approach overcomes one of the main
limitations of real-world data collection, where the variability of conditions is
linked to external factors that cannot always be controlled. Furthermore, the
integration of the Driver-In-The-Loop mode allows the user to actively interact
with the simulation and replicate specific scenarios according to validation
needs. Thanks to this flexibility, it is possible to obtain a diverse and balanced
dataset, including both realistic scenarios and edge cases that are difficult
to capture in the real world. This is particularly effective for the training
and validation of ADAS systems, which require a wide range of situations to
ensure robustness and effectiveness in real-world operational contexts.

Standardization: the reorganization process according to the nuScenes
standard ensures compliance with one of the most widely used formats in the
automotive industry, making the generated datasets easily usable in existing
validation pipelines that are already optimized for working with real data,
without requiring substantial changes to processing and analysis systems. The
ability to take advantage of a standardized format also reduces the risk of
conversion errors and facilitates comparison between synthetic and real data.
This improves the reliability of validation process but also highlights the
aspects where further optimization work is needed.

7.2 Limitations Found

During the development and final testing of the platform, several limitations of
this approach were identified. Due to the virtual nature of the environment, the
level of detail in some aspects of the information generated resulted to be less than
that provided by real data.

Virtual sensors operate under ideal and perfectly calibrated conditions, regardless
of slight misalignment due to mounting tolerances, vibrations, or small shocks.
This leads to a discrepancy between synthetic and real data, reducing the ability to
validate perception algorithms in more realistic scenarios, where calibration errors

61

Conclusions and Future Developments

are inevitable.

Moreover, technical limitations related to the simulator used and to the compu-
tational capabilities of the hardware on which the simulation run, also affect the
fidelity and complexity of the scenes reproduced.

In particular, for the CARLA version used in the development of this thesis (v0.9.15)
the following limitations have emerged:

o Parked vehicles: vehicles parked at the side of the road are represented as
static meshes, unlike the dynamic vehicles used to simulate traffic, which are
instead actors in their own right and associated with blueprints. This means
that it is impossible to extract any information about them, such as position,
size or orientation. This limitation has a significant impact on the generation
of virtual ground truth, as the bounding boxes of parked vehicles are not
captured by the simulation. The virtual dataset will therefore be incomplete
compared to one generated in the real world, where static objects along the
road can provide crucial information for validating ADAS.

« RADAR output: by analyzing the RADAR sensor output provided by
nuScenes emerged that the information generated by the corresponding virtual
sensor in CARLA is not sufficient to reconstruct in detail all aspects of
sampling. From the dataset released by Motional Team in March 2019, an
example of nuScenes radar output is reported in the following figure.

.PCD v@.7 - Point Cloud Data file format
VERSION 0.7
%

y vx_comp vy_comp is_quality valid ambig_state x_rms y_rms invalid_state pdh@ vx_rms vy_rms
111
III

VIEWPOINT © © © 1 0 0 0
POINTS 125
DATA binary

Figure 7.1: nuScenes mini RADAR output fields (March 2019 [14])

The file format used for each RADAR sample is PCD v0.7. 1t is composed
of different fields needed to add more details in the recorded output. Most
of these do not have a reference in CARLA and consequently in each virtual
output they have been set with a null value.

In particular, the missing information concerns the following fields:

62

Conclusions and Future Developments

Field Description
invalid_state | state of Cluster validity state.
dynProp Dynamic property of cluster to indicate

if is moving or not.

ambig state | State of Doppler (radial velocity) ambi-
guity solution.

pdhO0 False alarm probability of cluster (i.e.
probability of being an artefact caused
by multipath or similar).

Table 7.1: Synthetic RADAR data missing fields (from nuScenes-devkit) [19]

« Hardware performance: by default, simulations are set to replicate the
nuScenes sensor configuration seen in figure 5.1. This involves the simultaneous
use of six RGB sensors plus an additional one inserted inside the vehicle to
provide the driver’s point of view. Computing this kind of sensors in CARLA
simulator is a very expensive operation done by the server which necessarily
compromise the performance of the simulation.

When using camera sensors, images are generated in the GPU and then they
are copied to the CPU in order to be sent to the client. The GPU to CPU copy
is an expensive operation which stalls both devices. The larger the images or
number of them, the longer the stall occurs. For this reason, each RGB sensor
spawned in the CARLA world causes a significant FPS drop in the simulation,
leading to the risk of sampling loss.

In order to analyze this behaviour, a series of tests were carried out in which
a certain FPS value was imposed on the server (via synchronous mode) and
then a series of RGB sensors were progressively introduced to check the FPS
drop they caused.

The hardware used for the benchmark tests and the results obtained are
reported below.

CPU | RAM GPU
i9-14th | 32GB | RTX 4080 12GB

Table 7.2: Hardware used for benchmark tests

63

Conclusions and Future Developments

STARTING BENCHMARK TEST running the simulation to 60.8 FPS
Running for 5.0 seconds

Mean Server FP5: 32.61091200224539
I-1-1-1-1-1-1-1-1-1-1-1-1-[-1=1-1-1-1-1-]

Time: 42664 adding: BACH_CAMERA

Running 5.0 seconds
Mean Serve : 29.910951884U6559

I-1-1-1-1-1
Time: 47749 adding: FRONT_CAMERA

Running for 5.8 seconds
Mean Server FPS5: 29.5U5226U62678585

ISISISISIS == ===I=l=
52807 adding: LEFT_CAMERA

Running for 5.8 seconds

Mean Server FPS: 26.71439161763221
I==l=l=l=== == == ===
Time: 57882 adding: RIGHT_CAMERA

Running for ds

Mean Server : 26.127948164248089
I=1=1=1=1=1=1=1=1=1=1=1-1=1=1=1=1=1-1-1-]

BENCHMARK TEST COMPLETED

Running for 5.8 s
Mean Server FPS

I=1=1-1-1-1

Time: 48427 adding: BACK_CAMERA
Mean Server F

I-1-1-1-1-1

Time: 45429 adding: FRONT_CAMERA

Running for
Hean Server

adding: LEFT_CAMERA
5.0 seconds

r FPS: 24.75

IEEIEEEEEEEEEEEIE

Time: 55455 adding: RIGHT_CAMERA
Running for 5.8 s
Mean Server FPS:

EENCHMARK TEST COMPLETED

Figure 7.3: Benchmark test with 40 FPS

64

Conclusions and Future Developments

STARTING BENCHMARK TEST running the simulation to 20.8 FPS
Running for 5.0 seconds
Mean Server FPS: 19.569841892446097

I=1-1=-1=1=1=1=-1=1-1=1-1=1=-1=1=1=1-1-1-1-]
Time: UPOT3

Running for 5
Hean Server

I=1-1-1-1-1-
Time: U5887 adding: FRONT_CAMERA

Running for 5 seconds
Mean Server : 19.136710971951174

1= == ===

Time: 50187
Running for 5.0
Mean Server

[=1=1=1=1-1=
Time: 55122 adding: RIGHT_CAMERA

Running for 5.8 nds
Mean Server S: 9.83109628083228

BENCHMARK TEST COMPLETED

Figure 7.4: Benchmark test with 20 FPS

Results: With only one RGB sensor (used for driver’s point of view) the
server immediately drops to 30 FPS. By adding other four RGB sensors (used
for data logging) the server can run around to 20/25 FPS.

Since, as explained, the bottleneck is GPU to CPU communication, a possible
solution to improve the performances (even adding more RGB sensors) is to
use the Carla Multi-GPU feature [20] in which the user can launch multiple
secondary servers, each utilizing a dedicated GPU to handle rendering tasks for
the primary server which is responsible for managing the distribution of user-
defined sensors across the available secondary servers, optimizing workload
allocation.

7.3 Future Developments

In order to maximize its potential, the project presented in this thesis leaves room
for future developments that can overcome the identified limitations.

A key aspect will be to reduce the discrepancy between the synthetic data generated
in the virtual environment and the real data collected in the field, also known as the
Sim2Real gap. This will be essential in order to make optimal use of the synthetic
datasets in validation processes without the need for complex adjustments.

65

Conclusions and Future Developments

Another goal will be the implementation of real-time visualization for collected
data during simulation, enabling immediate analysis and facilitating the debugging
and optimization of generated scenarios.

Finally, the possibilities for analysis and use of the collected data can be extended
by implementing integration with some external frameworks to ensure greater
interoperability with established tools in the field.

7.3.1 Sim2Real gap - NVIDIA Omniverse

Through the Omniverse Unreal Engine plug-in [21], it will be possible to easily
introduce SimReady content into the simulation, i.e., 3D objects with precise
physical properties, behaviors and associated data streams to accurately represent
the real world [22]. In this way, vehicles already configured with working lights,
doors and wheels, as well as props, can be used immediately to decorate CARLA
maps, allowing virtual scenarios to be generated with much greater visual fidelity,
improving the quality of images perceived by virtual sensors. In addition, support
for co-simulation with NVIDIA DriveSim enables more accurate simulation of
dynamic vehicle and sensor behaviour, ensuring the generation of increasingly
representative synthetic data.

7.3.2 Real-Time visualization - CarlaViz plugin

CarlaViz is a plugin that allows the simulation to be viewed in a web browser.
The integration of CARLAviz into this project would allow for direct real-time
monitoring of all the actors involved in the simulation, thus improving the debugging
efficiency. The ability to simultaneously view data from sensors such as LIDAR,
cameras, RADAR and GPS provides a clear overview of the information captured,
making it easier to detect anomalies. (Source [23])

7.3.3 Dataset analysis - Rerun

Rerun is an open source framework designed for multi-sensor data visualization
and analysis. Providing an efficient infrastructure to handle large amounts of data,
it can be integrated into this project for a dynamic exploration of the collected
data, filtering and navigating the information through the advanced graphical
representation tools offered.(Source [24])

66

Bibliography

World Health Organization. Global Status Report on Road Safety 2018. Dec.
2018. URL: https://www.who.int/publications/i/item/9789241565684
(cit. on p. 1).

Vlatko Otasevic. Road traffic injuries are not accidents. They are preventable.

Nov. 2018. URL: https://montenegro.un.org/en/41896-road-traffic-
injuries-are-not-accidents-they-are-preventable (cit. on p. 2).

Vehicle General Safety Regulation. Nov. 2019. URL: https://eur-1lex.
europa.eu/eli/reg/2019/2144/0j (cit. on p. 2).

United Nations Economic Commission for Furope. URL: https://wiki .
unece.org (cit. on p. 2).

SAE International. SAFE Levels of Driving Automation. May 2021. URL:
https://www.sae.org/blog/sae-j3016-update (cit. on p. 6).

Shlomi Hacohen, Oded Medina, and Shraga Shoval. « Autonomous Driving: A
Survey of Technological Gaps Using Google Scholar and Web of Science Trend
Analysis». In: IEEE Transactions on Intelligent Transportation Systems 23.11
(2022), pp. 21241-21258. DOI: 10.1109/TITS.2022.3172442 (cit. on p. 8).

NHTSA. The Evolution of Automated Safety Technologies. URL: https://
www . nhtsa.gov/vehicle-safety/automated-vehicles-safety (cit. on
p. 9).

Dorleco. ADAS Testing and Validation. May 2024. URL: https://dorleco.
com/adas-testing-and-validation/ (cit. on p. 11).

Michal Pietruch, Andrzej Mlyniec, and Andrzej Wetula. « An overview and
review of testing methods for the verification and validation of ADAS, ac-
tive safety systems, and autonomous driving». In: Mininig - Informatics
Automation and Electrical Engineering 1 (541) (Jan. 2020), pp. 19-36. DOI:
10.7494/miag.2020.1.541.19 (cit. on p. 12).

67

https://www.who.int/publications/i/item/9789241565684
https://montenegro.un.org/en/41896-road-traffic-injuries-are-not-accidents-they-are-preventable
https://montenegro.un.org/en/41896-road-traffic-injuries-are-not-accidents-they-are-preventable
https://eur-lex.europa.eu/eli/reg/2019/2144/oj
https://eur-lex.europa.eu/eli/reg/2019/2144/oj
https://wiki.unece.org
https://wiki.unece.org
https://www.sae.org/blog/sae-j3016-update
https://doi.org/10.1109/TITS.2022.3172442
https://www.nhtsa.gov/vehicle-safety/automated-vehicles-safety
https://www.nhtsa.gov/vehicle-safety/automated-vehicles-safety
https://dorleco.com/adas-testing-and-validation/
https://dorleco.com/adas-testing-and-validation/
https://doi.org/10.7494/miag.2020.1.541.19

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[18]
[19]

[20]

Vaibhav. ADAS Validation: Challenges and Methodologies in Advanced Driver
Systems Testing. Feb. 2024. URL: https://www.embitel.com/blog/emb
edded - blog/adas-validation- challenges - and - methodologies-in-
advanced-driver-systems-testing (cit. on p. 14).

CARLA Team. CARLA Documentation. URL: https://carla.readthedocs.
io/en/latest (cit. on pp. 16, 18, 19, 37, 40, 49).

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. « CARLA: An Open Urban Driving Simulator». In: Pro-
ceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1-16
(cit. on pp. 16, 17).

Sumbal Malik, Manzoor Ahmed Khan, and Hesham El-Sayed. « CARLA:
Car Learning to Act — An Inside Out». In: Procedia Computer Science
198 (2022). 12th International Conference on Emerging Ubiquitous Systems
and Pervasive Networks / 11th International Conference on Current and
Future Trends of Information and Communication Technologies in Healthcare,
pp. 742-749. 1sSsN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.
2021.12.316. URL: https://www.sciencedirect.com/science/article/
pii/S1877050921025552 (cit. on p. 18).

Holger Caesar et al. «nuScenes: A multimodal dataset for autonomous driving».
In: arXiv preprint arXiv:1903.11027 (2019) (cit. on pp. 21-24, 26, 39, 48, 58,
62).

CARLA Simulator. Manual Control with Steering Wheel Script. Accessed:
2025-01-10. 2025. URL: https://github.com/carla-simulator/carla/
blob/master/PythonAPI/examples/manual control_steeringwheel.py
(cit. on p. 31).

CARLA Simulator. Environment Control Script. Accessed: 2025-01-10. 2025.
URL: https://github. com/carla-simulator/carla/blob/master/
PythonAPI/util/environment.py (cit. on p. 40).

CARLA Team. CARLA Sensor Reference. Accessed: February 10, 2025. 2024.
URL: https://carla.readthedocs.io/en/latest/ref_sensors/ (cit. on
pp. 50-52, 54, 55).

The MathWorks Inc. sph2cart. Accessed: 2025-03-07. 2025. URL: https:
//it.mathworks.com/help/matlab/ref/sph2cart.html (cit. on p. 53).

nuTonomy. nuScenes DevKit. Accessed: 2025-03-25. 2025. URL: https://
github.com/nutonomy/nuscenes-devkit (cit. on p. 63).

CARLA Team. Advanced Multi-GPU Rendering in CARLA. Accessed: March
25, 2025. 2024. URL: https://carla.readthedocs.io/en/latest/adv_
multigpu/ (cit. on p. 65).

68

https://www.embitel.com/blog/embedded-blog/adas-validation-challenges-and-methodologies-in-advanced-driver-systems-testing
https://www.embitel.com/blog/embedded-blog/adas-validation-challenges-and-methodologies-in-advanced-driver-systems-testing
https://www.embitel.com/blog/embedded-blog/adas-validation-challenges-and-methodologies-in-advanced-driver-systems-testing
https://carla.readthedocs.io/en/latest
https://carla.readthedocs.io/en/latest
https://doi.org/https://doi.org/10.1016/j.procs.2021.12.316
https://doi.org/https://doi.org/10.1016/j.procs.2021.12.316
https://www.sciencedirect.com/science/article/pii/S1877050921025552
https://www.sciencedirect.com/science/article/pii/S1877050921025552
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control_steeringwheel.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control_steeringwheel.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/util/environment.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/util/environment.py
https://carla.readthedocs.io/en/latest/ref_sensors/
https://it.mathworks.com/help/matlab/ref/sph2cart.html
https://it.mathworks.com/help/matlab/ref/sph2cart.html
https://github.com/nutonomy/nuscenes-devkit
https://github.com/nutonomy/nuscenes-devkit
https://carla.readthedocs.io/en/latest/adv_multigpu/
https://carla.readthedocs.io/en/latest/adv_multigpu/

BIBLIOGRAPHY

[21]

[22]

23]

[24]

CARLA Simulator. Fcosystem SimReady. Accessed: 2025-03-05. 2025. URL:
https://carla.readthedocs.io/en/latest/ecosys_simready/ (cit. on
p. 66).

NVIDIA. Omniverse SimReady Assets. Accessed: 2025-03-05. 2025. URL:
https://developer .nvidia.com/omniverse/simready-assets (cit. on
p. 66).

CARLA Team. CARLAviz Plugin Documentation. Accessed: March 5, 2025.
2024. URL: https://carla.readthedocs.io/en/latest/plugins_carlav
iz/ (cit. on p. 66).

Rerun Development Team. Rerun: A Visualization SDK for Multimodal Data.

Available from https://www.rerun.io/ and https://github.com/rerun-io/rerun.
Online, 2024. URL: https://www.rerun.io (cit. on p. 66).

69

https://carla.readthedocs.io/en/latest/ecosys_simready/
https://developer.nvidia.com/omniverse/simready-assets
https://carla.readthedocs.io/en/latest/plugins_carlaviz/
https://carla.readthedocs.io/en/latest/plugins_carlaviz/
https://www.rerun.io

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis genesis
	ADAS of interest
	Contribution: Reply - Concept Quality

	Autonomous Drive: A New Era of Mobility
	Levels of Automation
	Cooperative Approach for AD
	Benefits
	Current Gaps

	ADAS Validation
	Types of testing
	The necessity of Virtual Validation
	Bridging the Gap Between Virtual and Real

	Proposed Virtual Valdiation Approach

	The Simulation Environment
	CARLA: Car Learning to Act
	Client-Server Architecture
	Actors
	Traffic Manager

	The Standard for Dataset
	nuScenes
	Data collection
	Data format
	Data annotation

	Synthetic Data Generation
	Overview
	System's architecture
	Driving modalities

	Environment set-up
	Front-end
	Ego Vehicle set-up
	Weather and Light conditions
	Traffic generation

	Data Collection
	Synchronous configuration
	Data structure
	Raw data processing

	Dataset generation
	Output samples
	JSON files

	Conclusions and Future Developments
	Advantages of using Synthetic Data
	Limitations Found
	Future Developments
	Sim2Real gap - NVIDIA Omniverse
	Real-Time visualization - CarlaViz plugin
	Dataset analysis - Rerun

	Bibliography

