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Abstract

Information theory has been crucial to develop modern digital communications. As quantum
computing is evolving and getting increasing attention, the development of communication
between quantum devices appears as a natural consequence. Researchers around the world have
defined quantum versions of classical information theory concepts and explored their differences.
Not only the community has found new version of the classical concepts, but has also defined many
new concept that arise from the laws of quantum mechanics— and so have no classical analogous.
In this work, we present two main topics: a study of the evolution of quantum entropies during
a decoherence process and the analysis of entanglement fidelity for different quantum channels
acting on one qubit messages, both in a general case and a concrete example. We show how
relaxing the Markovianity assumption on the evolution of a system complicates the study of long
time bounds of its von Neumann entropy. We report our attempts in generalizing such bounds to
quantum Rényi and Tsallis entropies assuming Markovian evolution— even though they did not
lead to crisp results. We compute the Entanglement fidelity for Random Pauli-X, Dephasing,
Depolarizing, Werner-Holevo, Generalized Pauli and Amplitude damping channels. The quantity
is computed first for a general density matrix and then for a particular two letter message. This
computation allows to find guidelines on how to choose the optimal letters or channel in a real
case scenario. To conclude, we obtain the time derivative of Entanglement fidelity assuming that
the letter undergoes different types of decoherence, both Markovian and non-Markovian. For the
case of pure decoherence we also compute the time derivative for all the studied channels.





Abstract

La théorie de l’information a joué un rôle crucial dans le développement des communications
numériques modernes. Avec l’essor de l’informatique quantique et l’attention croissante qu’elle
suscite, le développement de la communication entre dispositifs quantiques apparaît comme une
conséquence naturelle. Des chercheurs du monde entier ont défini des versions quantiques des
concepts classiques de la théorie de l’information et ont exploré leurs différences. Non seulement
la communauté a découvert de nouvelles versions des concepts classiques, mais elle a également
défini de nombreux nouveaux concepts issus des lois de la mécanique quantique—et qui n’ont
donc pas d’analogues classiques. Dans ce travail, nous présentons deux thèmes principaux :
une étude de l’évolution des entropies quantiques au cours d’un processus de décohérence et
l’analyse de la fidélité d’intrication pour différents canaux quantiques agissant sur des messages
d’un qubit, à la fois dans un cas général et dans un exemple concret. Nous montrons comment
la relaxation de l’hypothèse de markovianité sur l’évolution d’un système complique l’étude
des bornes à long terme de son entropie de von Neumann. Nous rapportons nos tentatives de
généralisation de ces bornes aux entropies de Rényi et de Tsallis quantiques sous l’hypothèse d’une
évolution markovienne—même si elles n’ont pas abouti à des résultats précis. Nous calculons la
fidélité d’intrication pour les canaux de Pauli-X aléatoire, de déphasage, de dépolarisation, de
Werner-Holevo, de Pauli généralisé et d’amortissement d’amplitude. Cette quantité est d’abord
calculée pour une matrice de densité générale, puis pour un message particulier à deux lettres. Ce
calcul permet d’établir des lignes directrices sur le choix optimal des lettres ou du canal dans un
scénario réel. Enfin, nous obtenons la dérivée temporelle de la fidélité d’intrication en supposant
que la lettre subit différents types de décohérence, tant markovienne que non markovienne. Pour
le cas de la décohérence pure, nous calculons également la dérivée temporelle pour tous les canaux
étudiés.
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Summary

Nowadays, Quantum technologies are one of the most popular topics in the field of information
technologies. The promise for computations that would not be possible in reasonable time with
classical computers and recent progress in the hardware are getting them more and more
attention. Nevertheless, there are still many limits we have to overcome before this devices reach
their potential. One of the biggest problem to be solved is the interaction of the devices with the
environment that causes them to degenerate to a classical behavior.

In the attempt to understand and overcome this problem we need to study the interaction
between the devices and the external word. This is part of the study of Open quantum systems.
Quantum computers are nothing but systems that cannot be perfectly isolated, so that studying
how these behave is strictly related to the general study of quantum systems.

One of the topics we studied in this thesis is the modeling of interaction between quantum
systems. Many models have been proposed to describe different scenarios and they can be
divided in two main groups: Markovian [1, 2] and non-Markovian processes [3]. Both types of
evolution describe the presence of system-environment correlations that lead to an irreversible
loss of coherence. The main difference stands in the presence of memory effects and backflow of
information from the environment to the system. These last properties are used to define the
non-Markovianity of a process [3].

The first two chapters serve as an introduction to the subject of Quantum Shannon theory and
present some mathematical background useful for the following work.

In Chapter 3, we tried to replicate the results obtained by Kohei Kobayashi in [2] removing the
assumption of Markovian evolution. Kobayashi found a lower bound on the von Neumann
entropy S of a quantum system with density matrix ρS(t) in the limit t → ∞:

S∞ ≥ Tr(L†Lρ∞) − Tr(Lρ∞L
†ρ∞)

||L||2F
, (0.0.1)

where ||A||2F :=
ð

Tr (A†A) is the Frobenius norm of the operator A, Tr is the matrix trace and
L is the Lindblad operator representing the decoherence process.

Von Neumann entropy is a generalization of Shannon entropy for random variables. It measures
the uncertainty of in quantum state and is therefore associated to its pureness: a pure quantum
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state will have zero entropy while a maximally mixed one has S(ρ) = ln d, if d is the dimension
of the associated Hilbert space. This quantity is also associated to Entanglement, a property of
quantum systems that will be discussed later.

In Kobayashi’s work, the evolution is assumed to be Markovian and described by Lindblad
master equation:

dρS

dt
= −i [HS , ρS ] + D[L](ρS), (0.0.2)

where HS represents the Hamiltonian of the system of interest.

To find the bound, Kobayashi exploited the behavior of the derivative of von Neumann entropy.
He showed that this derivative can be lower bounded by a monotonically decreasing function
f(x) of von Neumann entropy itself that has alternated sign when computed in the extreme
values of S— namely f(0) ≥ 0 and f(ln d) < 0. Because the limit t → ∞ implies that the
decoherence process must have stopped and thanks to Bolzano’s theorem on uniqueness of the
root, we can conclude that the lower bound presented above must hold. If this was not the case,
we could prove that von Neumann entropy is increasing as its derivative would be positive.

We tried to apply the same procedure to two non-Markovian models described by Breuer et al.
in [3]. The first is called Pure decoherence model and described by the equation:

d

dt
ρS = γ(t) [σzρSσz − ρS ] . (0.0.3)

The second represents a Two-level system in a dissipative environment and the evolution of the
state is given by:

d

dt
ρS = − i

4S(t)[σz, ρS ] +γ(t)
5
σ−ρSσ+ − 1

2 {σ+σ−, ρS}
6
. (0.0.4)

Both models led to constraints that did not allow us to apply Kobayashi’s procedure. In the first
case, the derivative is a function of S but the dependence on the decay rate γ(t), whose sign is
not constant in time, leads to a derivative that is not monotonic with respect to von Neumann
entropy. For the second case, the derivative is not even a function of S and the dependence on
γ(t) still appears. Again, the sign of the derivative is not well defined and we cannot conclude
anything.

Our work does not rule out the existence of lower bounds for the von Neumann entropy under
non-Markovian evolution but shows how Kobayashi’s procedure cannot be applied to any
possible type of evolution of a quantum state.

In Chapter 4, we tried to apply Kobayashi’s idea while preserving the Markovian assumption. In
this case, we wanted to find a lower bound on two generalizations of von Neumann entropy: the
quantum versions of Rényi and Tsallis entropies. These two quantities are defined respectively by
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Rα(ρ) := 1
1 − α

ln Tr(ρα) (0.0.5)

and

Tα(ρ) := 1
1 − α

[Tr(ρα) − 1] . (0.0.6)

Unfortunately, deriving these quantities lead to functions that do not directly depend on the
associated entropies making it difficult to apply directly Kobayashi’s idea. We have not found
analogous bounds but we still present in this thesis some of the inequalities we applied to try to
solve the problem.

One of the new quantities that were introduced to study quantum communications is the
Entanglement fidelity. Introduced by Schumacher in 1996 [4], is a measure of how well a quantum
channel preserves the entanglement between a system of interest and a reference system we do
not have access to. Entanglement fidelity has applications in many fields of Quantum information
theory: it appears in the definition of distortion in the Quantum rate distortion problem [5], is
involved in the study of Quantum error correction [6], in the description of desirable quantum
communication scenarios and the study of other entanglement related quantities [7, 8].

In Chapter 5, we studied the value of Entanglement fidelity for some common quantum channel.
Here, we considered the general scenario of sending a general one-qubit state over a quantum
channel. The density matrix associated to such state is

ρ =
C
a c

c b

D
, (0.0.7)

where a, b ∈ R and c ∈ C. The number c is the complex conjugate of c.

In order to compute the Entanglement fidelity it is useful to know its operator-sum
representation, we give here the ones for the channels we studied:

• Random Pauli-X channel: Nu(ρ) = u ·XρX† + (1 − u)ρ ; u ∈ [0, 1]

• Dephasing channel: Nu(ρ) = u · ZρZ† + (1 − u)ρ ; u ∈ [0, 1]

• Depolarizing channel: Nu(ρ) = (1 − u)ρ+ u · I
2 ; u ∈ [0, 1]

• Werner-Holevo channel: ΛW H(ρ) = Y ρY

• Generalized Pauli channel: p00 · ρ+ p01 · ZρZ + p10 ·XρX + p11 ·XZρZX

• Amplitude damping channel: N (ρ) = A0ρA
†
0 +A1ρA

†
1

Where the matrices for the Amplitude damping channel are defined as follows: A0 = √
γ · |0⟩ ⟨1|

and A1 = |0⟩ ⟨0| +
√

1 − γ · |1⟩ ⟨1|.
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Schumacher proved that Entanglement fidelity is a function of the density matrix of the system
and the quantum channel, that is, it does not depend on the state of the reference system. By
exploiting this, we computed the following entanglement fidelities:

• Random Pauli-X channel: Fe(ρ,Nu) = 1 + u
#
4 · ℜ2(c) − 1

$
• Dephasing channel: Fe(ρ,Nu) = 1 + u

#
(a− b)2 − 1

$
• Depolarizing channel: Fe(ρ,Nu) = 1 + u ·

è
ℜ2(c) + ℑ2(c) + (a−b)2

4 − 3
4

é
• Werner-Holevo channel: Fe(ρ,∆W H) = 4 · ℑ2(c)

• Generalized Pauli channel: Fe(ρ,N ) = p00 + p10 · 4 · ℜ2(c) + p01(a− b)2 − p11 · ℑ2(c)

• Amplitude damping channel: Fe(ρ,N ) = γ · |c|2 + (a+ b ·
√

1 − γ)2

In Chapter 6, we applied these results to a case of a two letter message. The two letters are
parametrized by p ∈ [0, 1] and defined as

|ψ+⟩ = √
p |0⟩ +

ð
1 − p |1⟩

|ψ−⟩ = √
p |0⟩ −

ð
1 − p |1⟩ .

(0.0.8)

The state of the letter sent through a channel is a probability mixture of the two given by the
density matrix

ρ = q · |ψ+⟩ ⟨ψ+| + (1 − q) · |ψ−⟩ ⟨ψ−| . (0.0.9)

That is, the sent letter is |ψ+⟩ with probability q or |ψ−⟩ with probability 1 − q.

Observing that in this case the values of a, bandc are given by

a = p

b = 1 − p

c = (2q − 1) ·
ð
p(1 − p).

(0.0.10)

The obtained fidelities are summarized in Table 1.
Since we have some control on the value of p but not on the other parameter, the table above can
be used to choose the set of letters that works best for the problem at hand. Moreover, because
the channels Random Pauli-X, Dephasing and Depolarizing depend on the same parameters, we
ranked them based on the relationship between such values. To complete the discussion, we
added the ranking of these entanglement fidelities when sending commonly used states like
|0⟩ , |1⟩ , |+⟩ , |−⟩. As these last results cannot be briefly summarized we invite the interested
reader to read Section 4.5.
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Channel N Fe(ρ,N )

Pauli-X 1 + u ·
#
4 · (2q − 1)2 · p(1 − p) − 1

$
Dephasing 1 + u [4 · p(p− 1)]

Depolarizing 1 + u
4 ·
)#

4 · (2q − 1)2 · p(1 − p) − 1
$

+ [4 · p(p− 1)] − 1
*

Generalized Pauli p00 + p10 · [4 · (2q − 1)2 · p(1 − p) − 1] + p01 · (2p− 1)2

Amplitude damping p2 + (1 − γ)(1 − p)2 + p(1 − p)
#
2
√

1 − γ + γ(2q − 1)2$
Werner-Holevo 0

Table 1: Entanglement fidelity for the studied quantum channels and ρ as defined in Equation
0.0.9.

In Chapter 7 we presented a discussion on the meaning of "entanglement preservation". Some
objections to the definition given by Schumacher in [4] were raised in two articles [9, 10]. We
described our take on the topic and presented some counter-arguments to the objections. To
conclude the discussion we pointed out how Entanglement fidelity does not capture the simple
preservation fo the amount of entanglement between two systems, but seems to take into account
the difference in the structure of the initial and final state.

Our last work consists in the computation of the time derivative of Entanglement fidelity under
the assumption of different type of decoherence processes. The quantity is computed for a
general channel with operator sum representation

N (ρ) =
Ø

µ

AµρA
†
µ. (0.0.11)

Because of the length of the resulting equations, we omit them here but we invite the reader to
take view of the results in Chapter 8 of this thesis. The computation of this derivatives allows us
to study how the information measure changes in time if the associated letter is a open quantum
system interacting with a reference system that we cannot access.

For the special case of the Pure decoherence model, we proceeded to compute the time derivative
of Entanglement fidelity for the different quantum channels studied in the previous chapters.
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Chapter 1

Introduction

The interest for Quantum computing is constantly growing. Many countries and companies have
devolved several projects to the study of Quantum devices, Quantum algorithms and Quantum
communication. Since the first ideas about quantum computers, the supremacy over classical
computing and a wide range of new applications to exact sciences have kept the hope alive. The
debate on the practical usefulness of this technology and its real potential is still very active.
Nonetheless, the international community is making more and more progress in all of such
aspects. It is in this spirit of research and innovation that this work was conducted.

One of the key concept that differentiates Quantum computing from the classical one is the
information unit: the Qubit is the most elementary form of quantum information used in modern
quantum devices and it differs greatly from a classical bit. Not only the qubit presents new
properties but it also contains the ones already present in classical bits. That is, we can use
qubits to transmit both classical and quantum information. They can be used to send one or the
other and studies about simultaneous transmission of both types of information [8] were
developed. Moreover, the usage of qubits presents the possibility of communication protocols
that cannot be achieved with classical bits: Quantum teleportation [11] and Superdense coding
[12] are two of the most popular examples.

Since this novelty promises a more powerful type of communication, it is natural to believe in the
possibility of building connections between quantum computers. In fact, many have already
made speculations about the road to a Quantum internet [13, 14, 15].

Most of modern classical communication is built on top of the revolutionary work from Claude
Shannon "A Mathematical Theory of Communication" (1948) [16]. This article set the
groundings for the field of Information theory, a theory that studies the limits of reliable
communication and strategies to achieve the best communication possible using limited resources.
Since the 1970s, researchers have been studying an equivalent of this theory for quantum
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information. Many of the results where adapted and extended to the usage of qubits and a lot of
new properties and measures arose from the laws of quantum mechanics. This new theory is
generally called Quantum Shannon theory.

Even though very promising, modern Quantum computers still have many limitations. One of
the biggest issues that scientists are trying to overcome is the degeneration of physical qubits to
classical ones. Because of the inevitable interaction with the environment these computers tend
to lose their quantum properties. In order to address this problem is therefore necessary to study
how quantum devices interact with the environment and take this interaction into account. This
is the purpose of the study of Open quantum systems that will be presented in following chapters.

During the years, many models describing the evolution of a quantum system were presented. In
analogy to the classical theory of Random processes this models were divided in Markovian and
non-Markovian models [3]. Although the distinction between the two in the quantum scenario is
not uniquely defined, the second class involves memory effects in the interaction and a relaxation
of assumptions made in the Markovian case.

The main goal of this thesis work is to explore the behavior of Quantum information measures,
like von Neumann entropy and Entanglement fidelity, when complex interaction with the
environment is present. We started our work based on an article from Kohei Kobayashi [2] about
the evolution of von Neumann entropy under Markovian decoherence. We tried to obtain
analogous results when considering more complex interactions and to extend the result to
quantum Rényi and Tsallis entropies.

Expanding our research on quantum information measures we decided to dive deeper in the
analysis of Entanglement fidelity [4]: a key measure in the description of interaction between
system and environment when transmitting information with quantum channels. We encountered
this measure while studying the quantum version of the Rate distortion theory defined by Datta
et al. [5]. The goal of this study was to analyze the value of the measure for different quantum
channels and compare them. Moreover, it led us to investigate its meaning and the wider concept
of Entanglement preservation: a notion that does not have a single accepted definition.

To conclude our work, we decided to put together the two topics by studying the evolution of
Entanglement fidelity taking into account the interaction between the system of interest and the
environment. To do this, we studied the time derivative of the quantity using different models for
the evolution of a quantum state, covering both Markovian and non-Markovian cases. For the
case of pure decoherence we computed the derivative also for the specific channels previously
studied.
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Chapter 2

Preliminaries

We present in this section some necessary concepts to understand our work. We tried to present
the concepts that cannot be overlooked and that are the foundations for the theories studied in
this thesis. This section is not a complete description of the theories and we do not present here
all the concepts use throughout our work. All those definitions and notations that are specific to
a smaller part of our study are introduced as soon as they become necessary.

The laws and the postulates of Quantum mechanics, together with the mathematical tools
associated to them, have many formulations, in the following discussion we will use and refer to
those given by Nielsen and Chuang in their book "Quantum Computation and Quantum
Information" [17] and by Jhon Preskill in his lecture notes [18].

2.1 Mathematical prelude

2.1.1 Bra-Ket notation

In Quantum mechanics is a common practice to indicate the column vectors of an n-dimensional
vector space V on C with a ket:

|ψ⟩ =


ψ1

ψ2
...
ψn

 . (2.1.1)

The vector ⟨ψ| is called a bra, is the dual of the ket |ψ⟩ and is defined as the row vector

⟨ψ| =
è
ψ1 ψ2 · · · ψn

é
. (2.1.2)
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2.1.2 Hilbert spaces

An inner product is a function that maps two vectors of a vector space |ψ⟩ , |φ⟩ ∈ V to a number
in C and satisfies the following properties:

1. ⟨ψ|ψ⟩ > 0 ∀ |ψ⟩ /= 0H

2. ⟨φ| (a |ψ1⟩ + b |ψ2⟩) = a ⟨φ|ψ1⟩ + b ⟨φ|ψ2⟩

3. ⟨φ|ψ⟩ = ⟨φ|ψ⟩

where with c we indicate the complex conjugate of a number c ∈ C. In this work, we will use
ℜ(c) to refer to the real part of c and ℑ(c) to refer to its imaginary part.

A vector space on the complex numbers C equipped with an inner product is called an Hilbert
space.

2.1.3 Hermitian and Unitary operators

It is a known fact from Linear algebra that linear operators can be described by matrices and any
matrix represents a linear operator. In Quantum mechanics, there are two classes of operators
that are particularly useful: Hermitian operators and Unitary operators.

Given an operator A on an Hilbert space H, we define the adjoint of A as the operator A† such
that ∀ |ψ⟩ , |φ⟩ ∈ H

⟨ψ|Aφ⟩ = ⟨A†ψ|φ⟩ . (2.1.3)

If the operator A is equal to its adjoint A†, then A is called Hermitian.

Given a matrix U , this is said to be unitary if and only if U†U = UU† = I, where with I we
indicate the identity matrix.

2.1.4 Operator functions

Another interesting class of operators is the one of Normal operators. An operator A is normal if
and only if AA† = A†A. Any normal operator A can be written using its spectral decomposition

A =
Ø

i

ai |ai⟩ ⟨ai| , (2.1.4)

where ai represents the i-th eigenvalue of A and |ai⟩ the associated eigenvector.

For normal operators we can define the result of the application of a function f : C → C. With
the notation f(A) we refer to a new operator obtained as follows:
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Ø
i

f(ai) |ai⟩ ⟨ai| . (2.1.5)

2.1.5 Tensor product

Given two Hilbert spaces HA and HB with orthonormal bases respectively {|i⟩A} and {|µ⟩B},
the tensor product HA ⊗ HB is an Hilbert space with dimension
dim(HA ⊗ HB) = dim(HA) · dim(HB) and with basis

{|i, µ⟩AB := |i⟩A ⊗ |µ⟩B} . (2.1.6)

Given an operator MA acting on the space HA and an operator NB acting on HB , the tensor
product operator MA ⊗ NB on HA ⊗ HB , is an operator that applies MA on system A and NB

to system B.

2.2 Quantum systems

Quantum mechanics is a mathematical framework that allows to describe a physical system. For
physical system we generally refer to a portion of the universe we want to study. Loosely
speaking, describing a system means that we have a way to quantify all its properties we are
interested in, define how it evolves in time and make measurements to get to know more about it.
For Quantum mechanics, the way this is achieved is defined by the Axioms or Postulates of
Quantum mechanics.

The State of a system is a mathematical object that describes everything we know about such
system. In Quantum mechanics, this is described by the following postulate:

Postulate 1. The state of any isolated physical system is described by a unitary norm state
vector. Such vector belongs to a Hilbert space known as state space of the system.

We will refer to the state space of a system with the letter H unless stated otherwise. The letter
H instead is used to describe the Hamiltonian of a system, an operator involved in the
quantification of the total energy of a system. We will not add details about it as it is not in the
scope of our work. Anyway, attention must be paid to not confuse these two notations.

This postulate only applies to isolated quantum systems and these state vectors are called pure
states. However, if a system interacts with another one we cannot generally describe its state
with a single vector. These interactions or loss of information about the exact state of a system
lead to a scenario where the system could be in one of many possible pure states.

Whenever this happens, we define an ensemble of pure states {pi, |ψi⟩} and describe the state of
the system with a matrix
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ρ :=
Ø

i

pi |ψi⟩ ⟨ψi| . (2.2.1)

This matrix is called density operator of density matrix and we can interpret it by saying that
the system is in the state |ψi⟩ with probability pi. If the sum is composed by just one element,
than we know for sure the state of the system and we say it is in a pure state. Otherwise, the
system is said to be in a mixed state.

Not all matrices can represent the state of a quantum system. In fact, an operator ρ is a density
matrix only if it satisfies the following properties:

1. Trace unitarity: Tr(ρ) = 1

2. Positivity: ⟨ψ| ρ |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H

These two properties are of fundamental importance and will be widely used in the following
chapters.

2.3 State evolution

Once we know how to describe the state of a system, we want to know how it evolves in time. If
we assume our system to be closed, we can define the following postulate:

Postulate 2. The evolution of a closed quantum system is described by a unitary
transformation. If |ψ1⟩ the state of the system at time t1 and |ψ2⟩ is the state at time t2, then
there exist a unitary operator U(t1, t2) such that

|ψ2⟩ = U(t1, t2) |ψ1⟩ (2.3.1)

.

This defines how a quantum system evolves under the assumption of being closed, i.e. when it
exchanges energy with other systems but does not exchange matter or information. As we
mentioned in Chapter 1, this assumption is often too strong and we are interested in
understanding what happens to an open quantum system.

A system is said to be open when it can exchange both energy and information with its
surroundings. When this happens, the definition of evolution given in Postulate 2 does not hold
anymore: the evolution of the system is not unitary but it can be described with the derivative of
the associated density matrix. Many models for this evolution exist and a deeper discussion
about the topic can be found in Chapter 3.
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2.4 Composite systems

So far, we have presented some of the most important aspects of the description of a single
quantum system. Anyway, in most applications this is too limiting and we need to be able to
describe the state of a composite system.

As described by Nielsen and Chuang [17], the postulate of quantum mechanics can be presented
both in terms of state vectors and density matrices. In this case, it is more useful to present the
postulate describing composite systems with the second approach. This postulate is generally
considered the Fourth postulate of quantum mechanics and we decided to preserve this
numbering.

Postulate 4. The state space of a composite system is the tensor product of the state spaces of
the component sub-systems. Moreover, if we have sub-systems numbered by 1 through n, and the
system i is prepared in the state ρi, then the joint state of the total system is ρ1 ⊗ ρ2 ⊗ ...⊗ ρn

Once we know how to describe the state a composite system, it is important to be able to
retrieve from it the state of one of its subsystems. Given two systems A,B and indicating the
state of the composite system with ρAB , the state of the sub-system A is obtained through the
partial trace over B:

ρA = TrB(ρAB). (2.4.1)

If we define Tr(·) as the trace of a matrix and consider any two vectors |a1⟩ , |a2⟩ ∈ HA and
|b1⟩ , |b2⟩ ∈ HB , the partial trace over B is defined as follows:

TrB (|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) := |a1⟩ ⟨a2| Tr (|b1⟩ ⟨b2|) . (2.4.2)

Thanks to the linearity of the matrix trace, the partial trace is linear and its computation for
more complex density matrices is easily obtained.

2.5 Entanglement

One of the most peculiar and important properties of composite quantum systems is
Entanglement. This concept is related to the presence of correlations between the sub-systems of
a composite system that causes many of the non-intuitive behaviors in Quantum mechanics.
Entanglement between two systems is a desirable property and is exploited in many applications
like Quantum teleportation and Superdense coding[11, 12]. Moreover, it arises in the interaction
between systems and their environment complicating the study of open quantum systems.
Preserving this property is one of the goals of quantum communication as it is regarded as an
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additional source of information. A more detailed explanation of this concepts is given in
Chapters 5, 6 and 7.

A way of defining Entanglement is through the concept of separability of a quantum state. Given
a bipartite system AB, its state is said to be separable if it can be written in the form

|ψ⟩AB = |φ⟩A ⊗ |χ⟩B . (2.5.1)

In this case, the reduced density matrices of the sub-systems A and B can be written simply as

ρA = |φ⟩ ⟨φ| ρB = |χ⟩ ⟨χ| . (2.5.2)

Any state that cannot be written this way is called Entangled.

2.6 Quantum Shannon theory

As introduced in Chapter 1, Quantum Shannon theory is an extension of classical Information
theory to the framework of Quantum mechanics. We present in this section only the necessary
concepts needed to understand the following chapters.

2.6.1 Qubits

The fundamental unit of Quantum information is the Qubit. We call Qubit a two-dimensional
quantum system whose basis is generally defined by the pair

|0⟩ =
C

0
1

D
|1⟩ =

C
1
0

D
. (2.6.1)

Many parametrization for the state of a Qubit appear in the literature, for our purpose it is
enough to know that any state can be written in terms of a density matrix of the form

ρ =
C
a c

c b

D
, (2.6.2)

where a, b ∈ R must satisfy a+ b = 1 and c is a complex number.

2.6.2 Quantum channels

We have already defined in Section 2.2 how the state of a quantum system can in general
expressed by a density matrix defined as in Equation 2.2.1. If the state of the system is not pure,
its evolution cannot be described by Postulate 2. The most general way to describe the evolution
of a quantum system is through Quantum channels.
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A simple description of Quantum channels was given by M. Wilde in his book "From Classical to
Quantum Shannon Theory" [19], we will summarize it in this section.

Let denote the space of density operators acting on a Hilbert space H with D(H), let L(H)
denote the space of linear operators acting on H and L(HA,HB) denote the space of linear
operators taking vectors of the Hilbert space HA to a Hilbert space HB .

A linear map M : L(HA) → L(HB) is said to be positive if M(ρ) is positive semi-definite for all
positive semi-definite ρ ∈ L(HA). Where a matrix ρ is positive semi-definite if and only if

⟨ψ| ρ |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H. (2.6.3)

A Quantum channel is a linear map N : D(HA) → D(HB) that is also:

1. Trace preserving: Tr(ρ) = Tr[N (ρ)] ∀ρ ∈ D(HA)

2. Completely positive: IdR ⊗ N is a positive map for any reference system R of arbitrary
dimension

where IdR is the identity channel that leaves the system R unchanged. This two properties are
necessary to guarantee that the map N describes a reasonable physical evolution.

A fundamental result for our work is the Choi-Kraus decomposition of a quantum channel, also
know as operator-sum representation. It can be proven that a map N : L(HA) → L(HB) is a
quantum channel if and only if it can be written as follows:

N (ρ) =
Ø

µ

AµρA
†
µ, (2.6.4)

where ρ ∈ D(H), Aµ ∈ L(HA,HB) ∀µ and the following equality is satisfied:

Ø
µ

A†
µAµ = IA. (2.6.5)

The operators Aµ are called Kraus operators of the channel N .

2.6.3 Von Neumann Entropy

In classical Information theory, the Entropy of a random variable X : Ω → X is defined as

H(X) := −
Ø
x∈X

p(x) log2(x), (2.6.6)
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where p(x) represents the probability of X having value x. The function H(X) quantifies the
amount of information carried by the random variable X.

An analogous concept was defined for a quantum state ρ, describing the amount of information
carried by it— both classical and quantum. Moreover, it is important to quantify the
Entanglement of a bipartite system as described by Preskill in [18]. The von Neumann Entropy
of a state ρ is defined as

S(ρ) = −Tr(ρ ln ρ). (2.6.7)

Sometimes we will refer to it as VNE.

In our work, the most important properties of this metric are the following:

• A pure state ρ = |φ⟩ ⟨φ| have S(ρ) = 0

• If ρ = I
d , i.e. is maximally mixed, than its S is maximal and given by S(ρ) = ln d.

where d is the dimension of the Hilbert space associated to ρ.
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Chapter 3

Evolution of Quantum Entropies
under non-Markovian interaction

3.1 Introduction

In this chapter we study the evolution of von Neumann Entropy under the assumption of
non-Markovian interaction. K. Kobayashi proved the existence of a lower bound to this quantity
for a particular case: a quantum system subject to a specific Markovian evolution [2]. The lower
bound is valid for the VNE of the state when time approaches infinity. This time limit
guarantees that the decoherence process reached a stable point.

In this chapter, we will mostly use the notation adopted by Breuer et al. in [3]. We will call the
subsystem of interest S and the environment E, the Hilbert space of the total system S + E is

HSE = HS ⊗ HE . (3.1.1)

A state of the total system can be described by a density matrix ρSE ∈ S(HSE), the set of
physical states of S + E. Such state is a function of time, we will not explicit this relationship
unless necessary.

The corresponding state of a subsystem is obtained by partial trace over the other subsystem:

ρS = TrE (ρSE) ρE = TrS (ρSE) . (3.1.2)

The von Neumann Entropy of the open system at time t is

St = −Tr [ρS(t) ln ρS(t)] . (3.1.3)
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We suppose that the evolution of the total system is governed by the Hamiltonian

H = Hs ⊗ IE + IS ⊗HE +HI , (3.1.4)

where HS and HE are the Hamiltonians of the system and the environment while HI is an
interaction Hamiltonian.

In Kobayashi’s example, the evolution of the open system is governed by the Lindblad master
equation [1, 20, 21]

dρS

dt
= −i [HS , ρS ] + D[L](ρS). (3.1.5)

L is called the Lindblad operator and it represents the decoherence process. Setting the reduced
Planck constant ℏ = 1, we define

D[L](ρS) = LρSL
† − 1

2L
†LρS − 1

2ρSL
†L. (3.1.6)

Kobayashi’s result is the following:

S∞ ≥ Tr(L†Lρ∞) − Tr(Lρ∞L
†ρ∞)

||L||2F
, (3.1.7)

where

S∞ = lim
t→∞

St ρ∞ = lim
t→∞

ρS(t).

In the cases where Tr(L†Lρ∞) − Tr(Lρ∞L
†ρ∞) > 0, Equation 3.1.7 states that the von

Neumann Entropy of the open system does not vanish in the decoherence process.

Even if interesting, Markovian evolution is often the wrong model to describe real world
applications [3]. Our goal is to verify if the techniques used by Kobayashi in [2] can be useful to
get similar results for non-Markovian evolution.

3.2 Non-Markovian evolution

According to the Second postulate of quantum mechanics [17], the unitary evolution of ρSE is
given by

ρSE(t) = U(t)ρSE(0)U†(t), (3.2.1)

where the unitary operator is U(t) = exp (−iHt), ℏ = 1 and ρSE = ρS(0) ⊗ ρE(0) by assumption.
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For every t ≥ 0, the open system evolution is given by

ρS = TrE

)
U(t)ρS(0) ⊗ ρE(0)U†(t)

*
. (3.2.2)

Given an initial environment state ρE(0), Equation 3.2.2 defines a quantum dynamical map

Φt : S(H) → S(H). (3.2.3)

This map describe the time evolution of an initial state of the open system:

ρS(0) → ρS = ΦtρS(0). (3.2.4)

We decided to focus on the set of dynamical maps Φt for which the inverse Φ−1
t exists for each

t ≥ 0. If the evolution of the open system is described by one of these maps, its quantum master
equation has the general structure

d

dt
ρS = −i [HS(t), ρS ] +

Ø
i

γi(t)
5
Ai(t)ρSA

†
i (t) − 1

2

î
A†

i (t)Ai(t), ρS

ï6
. (3.2.5)

If A, B are two operators: [A,B] = AB −BA represents their Commutator and
{A,B} = AB +BA represents their Anti-Commutator [17].

The evolution described by such maps can be either Markovian or non-Markovian. Lindblad
master equation described in 3.1.5 is a particular case of Equation 3.2.5 that describes a
Markovian evolution.

Our idea is to substitute Lindblad equation with versions of Equation 3.2.5 describing
non-Markovian evolution to see if bounds analogous to Equation 3.1.7 can be found.

3.2.1 Non-Markovianity criteria

Many criteria to distinguish Markovian and non-Markovian evolution have been proposed. This
work is based on the definition given by Breuer et al. in [3]: if Φt is always invertible, the
evolution is Markovian if and only if Φt is P-divisible.

An interesting subset of the P-divisible maps is the set of CP-divisible ones. For maps with the
form of Equation 3.2.5, a simple criteria for CP-divisibility is introduced by Breuer et al.: Φt is
CP-divisible if and only if γi(t) ≥ 0 ∀t.

The authors also introduce criteria based on the physical interpretation of quantum
non-Markovianity in Section C. The definition of P-divisibility and the other criteria is outside
the scope of our work, we invite the reader to refer to the cited references for a detailed
explanation.
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3.3 Analysis of some non-Markovian models

All the master equations studied in this section are associated to non-Markovian evolution. In
fact, it can be proved that the related dynamical maps are not P-divisible. The definition of the
models and the study of their non-Markovianity can be found in Section III of Breuer et al. [3].

3.3.1 Pure decoherence model

This model is associated to a single Lindblad operator and has the following master equation

d

dt
ρS = γ(t) [σzρSσz − ρS ] , (3.3.1)

where the time dependent decay rate

γ(t) = − 1
G(t)

d

dt
G(t) (3.3.2)

is related to the decoherence function

G(t) = exp
5
−
Ú ∞

0
dωJ(ω) coth

3
βω

2

4
1 − cos (ωt)

ω2

6
. (3.3.3)

The matrix σz is the Pauli-Z matrix:

σz =
C

1 0
0 −1

D
. (3.3.4)

The first step to apply Kobayashi’s idea is to find the derivative of VNE with respect to time.
This function is independent from the Markovianity of the process and we can prove that it has
the form

dSt

dt
= −Tr

3
dρS

dt
ln ρS

4
. (3.3.5)

Then, we substitute dρS

dt with the master equation in Equation 3.3.1 and we obtain

dSt

dt
= −γ(t) · [Tr (σzρSσz ln ρS) + St] =

= −γ(t)St − γ(t) · Tr (σzρSσz ln ρS) .

(3.3.6)

A fundamental step in Kobayashi’s work is to study the sign of dSt
dt to find constraints on the

possible values of St when the decoherence process reaches a stable point. Following his
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procedure we observe that the derivative is a linear function of St. Kobayashi exploits the
monotonicity of such function to derive the lower bound on VNE.

In the case of Equation 3.3.6, the monotonicity is strictly related to the sign of γ(t).
Unfortunately, the sign of γ(t) oscillates because of the sinusoidal nature of the decoherence
function. Such behavior is discussed in Section III.A.1 of Breuer et al. [3] and is associated to
the non-Markovianity of the process. It follows that dSt

dt is not a monotonic function of St.
Therefore, the procedure that Kobayashi uses to find a lower bound on VNE cannot be applied
to this model.

The only case where we can be sure of the sign of γ(t) is when time tends to infinity. The decay
rate γ(t) has already been studied by Addis et al. in [22]. From their work it emerges that γ(t)
only has two possible behaviors when t → ∞:

• lim
t→∞

γ(t) = λ > 0

• lim
t→∞

γ(t) = 0

In the first case, the decoherence process is Markovian and is not interesting for our study.
In the second case, the convergence of the decay rate implies the convergence of dSt

dt to zero. We
can interpret this by saying that the VNE converges to a fixed value in the long time limit, but
we cannot tell anything about this value. As γ(t) → 0, the second factor in Equation 3.3.6 could
have any value.

Because of this, even when t → ∞, we can state that the procedure used by Kobayashi in [2] is
not useful to find a lower bound on the VNE when the evolution of the state is governed by
Equation 3.3.1.

3.3.2 Two-level system in a dissipative environment

The second model we studied has the following master equation:

d

dt
ρS = − i

4S(t)[σz, ρS ] + γ(t)
5
σ−ρSσ+ − 1

2 {σ+σ−, ρS}
6
, (3.3.7)

where S(t) represents the time dependent Lamb shift and is given by S(t) = −2ℑ(Ġ/G(t)).

The matrices σ+ and σ− have the following forms:

σ+ =
C

0 1
0 0

D
σ− =

C
0 0
1 0

D
. (3.3.8)

The operators [·, ·] and {·, ·} represent the Commutator and Anti-Commutator described in
Section 3.2.
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For this model, the decay rate is defined as

γ(t) = − 2
|G(t)| · d

dt
|G(t)|. (3.3.9)

The form of the decoherence function G(t) depends on the studied scenario. In particular, it
depends on the value of a parameter γ0 that quantifies the strength of the system-environment
coupling. Its behavior has been studied in Section III.A.2 of Breuer et al. [3]. The case we are
interested in is the one where γ0 >

λ
2 . Here, λ represents the width of the spectral density

function J(ω). Such function is fundamental in determining the decoherence function G(t).

It turns out that when γ0 >
λ
2 , the decoherence process is non-Markovian and the sign of γ(t)

oscillates. Moreover, in this case, the resulting dynamical map Φt is not always invertible. This
means that the previously used criteria are not strictly applicable. Nevertheless, the
non-Markovianity can be proved using the measure-based criteria we cited in Section 3.2.1.

As we did for the previous model, it is necessary to compute the derivative of the VNE.
Substituting Equation 3.3.7 inside Equation 3.3.5 we obtain

dSt

dt
= γ(t) · [Tr (σ+σ−ρS ln ρS) − Tr (σ−ρSσ+ ln ρS)] . (3.3.10)

None of the trace terms is a monotonic function of VNE. Even if they were, because of the
oscillation of the sign of γ(t), dSt

dt would not be a monotonic function of St. Again, Kobayashi’s
procedure could not be applied as it relies on the monotonicity with respect to VNE.

When considering the limit for t → ∞, even if γ(t) → λ /= 0, the lack of relationship with St

would not allow us to draw any constraint on the value of VNE. If γ(t) → 0 instead, the analysis
would be analogous to the one in Section 3.3.1.
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Chapter 4

Time evolution of Quantum Rényi
and Tsallis Entropies

4.1 Introduction

Quantum Rényi entropies are a family of function that generalize von Neumann entropy. This
functions were defined by Müller-Lennert et al. in [23] and the Rényi entropy of order
α ∈ (0,1) ∪ (1,+∞) for the density matrix ρ is defined as follows:

Rα(ρ) := 1
1 − α

ln Tr(ρα). (4.1.1)

A quantity that is strictly related to this family of functions is the Quantum Tsallis entropy of
order α ∈ (0,1) ∪ (1,+∞):

Tα(ρ) := 1
1 − α

[Tr(ρα) − 1] . (4.1.2)

Both functions can be expressed in terms of the other:

Rα(ρ) = 1
1 − α

ln [(1 − α) · Tα(ρ) + 1]

Tα(ρ) = 1
1 − α

1
e(1−α)·Rα − 1

2
.

(4.1.3)

Thanks to the non-negativity of Rα and Tα and to the monotonicity of the logarithm and
exponential functions, we can show that any bound found for Rényi entropy results in a bound
for Tsallis entropy— and vice-versa. This allows us to study one of them to find bounds for both.

Some bounds for these quantities are known [24], but we have not found any result about a
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system undergoing Markovian evolution and time approaching infinity. Hence, we decided to try
if the methodology applied by Kobayashi to von Neumann entropy [2], and discussed in Chapter
3, could be useful to find analogous results. Unfortunately, the derivatives of Renyi and Tsallis
entropy are not as simple to deal with as the one for von Neumann entropy, and we have not
found a useful lower bound for these quantities. Nevertheless, in the following sections we present
the tests we devised in the hope of laying the groundwork for a generalization of Kobayashi’s
result.

4.2 Rényi and Tsallis time derivatives

The first step in Kobayashi’s process is the derivation of the von Neumann Entropy with respect
to time and the application of Lindblad master equation to it. We proceed here to do the same
for quantum Rényi entropy.

The first derivative of Rényi entropy is

dRα(ρ)
dt

= d

dt

5
1

1 − α
ln Tr(ρα)

6
. (4.2.1)

Thanks to the linearity of the trace and of the derivative

dRα(ρ)
dt

= 1
1 − α

· d
dt

ln Tr(ρα). (4.2.2)

By applying twice the chain rule of calculus we get

dRα(ρ)
dt

= 1
1 − α

· 1
Tr(ρα) · d

dt
Tr(ρα) =

= 1
1 − α

· 1
Tr(ρα) · Tr

3
dρα

dt

4
=

= α

1 − α
· 1

Tr(ρα) · Tr
3
ρα−1 dρ

dt

4
.

(4.2.3)

Now, we substitute Equation 3.1.5 and obtain

dRα(ρ)
dt

= α

1 − α
· 1

Tr(ρα) · Tr
5
ρα−1

3
−i[H, ρ] + LρL† − 1

2L
†Lρ− 1

2ρL
†L

46
. (4.2.4)

Because of the linearity of the trace and the fact that Tr
#
ρα−1[H, ρ]

$
= 0, we can write

dRα(ρ)
dt

= α

1 − α
· 1

Tr(ρα) ·
5
Tr(ρα−1LρL†) − 1

2Tr(ρα−1L†Lρ) − 1
2Tr(ραL†L)

6
. (4.2.5)
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Finally, thanks to the cyclic property of the matrix trace, the last two terms in the parenthesis
sum together to give

dRα(ρ)
dt

= α

1 − α
· 1

Tr(ρα) ·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
. (4.2.6)

With analogous steps, we can show that the time derivative for Tsallis entropy is:

dTα(ρ)
dt

= α

1 − α
·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
. (4.2.7)

The second step in Kobayashi’s procedure is to find a lower bound on the derivative. This lower
bound has a particular structure: it is a monotonic decreasing function that is non-negative when
von Neumann entropy is zero. Moreover, the bounding function must also be negative when
computed in ln(d)— d ≥ 3 is the rank of the quantum system. The final lower bound on VNE is
found thanks to this property and Bolzano’s theorem. These conditions enforce the lower bound
when t → ∞ for otherwise the entropy would be monotonically increasing and the decoherence
process would not be stable— condition that is assumed in the limit condition.

Differently for the case of von Neumann entropy, the derivatives in Equations 4.2.6 and 4.2.7
present two problems. The derivative for Rényi does not contain ln (ρα) that makes it harder to
find an explicit lower bound that depends on Rényi entropy. Similarly, the derivative for Tsallis
does not contain a "−1" term as in 4.1.2. To complicate things, the derivatives are multiplied by
the term α

1−α that changes sign depending on the interval in which α is. This implies that
inequalities that allow to lower bound the derivatives when α ∈ (0, 1) cannot be used when
α ∈ (0,+∞) and vice-versa.

4.3 ln x inequality

As described in the previous section, when using inequalities for the derivatives we have to be
careful in considering the value of α for which the right inequality sign holds. In this section, we
assume that α ∈ (0, 1).

It is a known result that

1
x

≥ 1 − ln x ∀x > 0. (4.3.1)

Since Tr(ρα) > 0, we can apply the inequality to Equation 4.2.6 to get

dRα(ρ)
dt

≥ α

1 − α
·
5
1 − ln

3
1

Tr(ρα)

46
·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
. (4.3.2)
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By computing the product and recalling the definition of Rényi entropy given in Equation 4.1.1,
we obtain the following lower bound

dRα(ρ)
dt

≥ − α ·Rα(ρ) ·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
+

+ α

1 − α
·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
.

(4.3.3)

We have obtained a lower bound that is a monotonically decreasing function of Rα(ρ) as
described in Section 4.2. As in Kobayashi’s procedure, we now define a lower bounding function
and compute it in 0 and ln d. The author explains that these two values are associated
respectively to ρ being a pure state and ρ being maximally mixed.

f(x) = − α · x ·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
+

+ α

1 − α
·
#
Tr(ρα−1LρL†) − Tr(ραL†L)

$
.

(4.3.4)

Since x = 0 means that ρ is a pure state, and if ρ is pure than it is trivial to show that ρα = ρ,
the previous equation simplifies to

f(0) = α

1 − α

#
Tr(LρL†ρ) − Tr(L†Lρ)

$
. (4.3.5)

Unfortunately, in his equation (7), Kobayashi proved that the term in the parenthesis is
non-positive and so the whole function is. Because f(0) ≤ 0, it does not matter what the value of
f(ln d) is, we cannot conclude the anything about the existence of a single root and the sign of
f(x). For this reason, Kobayashi’s argument cannot be applied to this lower bounding function.
Anyway, this result does not rule out the existence of a possible lower bound on Rα(ρ) when
t → ∞.

4.4 Adding and subtracting ||L||2F
We mentioned in Section 4.1 that finding a lower bound on Tsallis entropy is the same as finding
a lower bound on Rényi entropy. In this section, we tried to manipulate the derivative of Tsallis
entropy to find such bound. Again, we assume α ∈ (0, 1).

By definition, the density matrix ρ is positive semi-definite. Writing its spectral decomposition
and taking the power α of every eigenvalue we obtain the matrix ρα. Because the power of a
positive number is another positive number, the matrix ρα has only positive eigenvalues and is
by definition positive. Moreover, the product L†L is a positive operator for every possible
operator L as mentioned in Nielsen and Chuang [17].
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Thanks to the positivity of these two matrices, we can write the following inequalities

Tr(L†Lρα) ≤ ||L||2F · Tr(ρα) =⇒ −Tr(L†Lρα) ≥ −||L||2F · Tr(ρα), (4.4.1)

where ||A||2F :=
ð

Tr (A†A) is the Frobenius norm of the operator A. The fact that
Tr(AB) ≤ Tr(A)Tr(B) for all A,B ≥ 0 was used.

If we add and subtract ||L||2F to Equation 4.4.1 we obtain

−Tr(L†Lρα) ≥ −||L||2F · Tr(ρα) + ||L||2F − ||L||2F

≥ −||L||2F [Tr(ρα) − 1] − ||L||2F .
(4.4.2)

We substitute inside Equation 4.2.7 and obtain the lower bound

dTα(ρ)
dt

≥ α

1 − α
·
)

Tr(ρα−1LρL†) − ||L||2F [Tr(ρα) − 1] − ||L||2F
*
. (4.4.3)

Rearranging the terms we are able to obtain a lower bounding function that is monotonically
decreasing in Tα(ρ):

dTα(ρ)
dt

≥ −α||L||2F · Tα(ρ) + α

1 − α

#
Tr(ρα−1LρL†) − ||L||2F

$
. (4.4.4)

Again, we define the lower bounding function

f(x) = −α||L||2F · x+ α

1 − α

#
Tr(ρα−1LρL†) − ||L||2F

$
. (4.4.5)

From the observations in Section 4.3 about the case x = 0 it follows that

f(0) = α

1 − α

#
Tr(LρL†ρ) − ||L||2F

$
. (4.4.6)

Moreover, using the aforementioned property of the product of the trace of positive definite
matrices and Equation (7) from [2], we can prove

Tr(LρL†ρ) ≤ Tr(L†Lρ) ≤ Tr(L†L) · Tr(ρ) = ||L||2F , (4.4.7)

where the last equation follows from the definition of density matrix.

From this inequality it follows that f(0) ≤ 0 and a conclusion analogous to the one in Section 4.3
can be drawn.

21



Time evolution of Quantum Rényi and Tsallis Entropies

4.5 ρα > ρ − I

In this case, we analyze a possible lower bound on Tsallis entropy but we consider the interval
α ∈ (1,+∞). This implies that the multiplicative term α

1−α is negative. We start by presenting
two results that are then applied to Equation 4.2.7.

Using analogous steps as done by Kobayashi in his Appendix A of [2], we can prove that

ρα > ρ− I ∀α ∈ R. (4.5.1)

The relationship follows from the trivial proof that if x ∈ (0, 1), then xα > x− I no matter what
the value of α is. From this, we can prove the following chain of inequalities

Tr(L†Lρα) ≥ Tr
#
L†L(ρ− I)

$
=⇒ − Tr(L†Lρα) ≤ −

#
Tr(L†Lρ) − ||L||2F

$
=⇒ − α

1 − α
Tr(L†Lρα) ≥ − α

1 − α

#
Tr(L†Lρ) − ||L||2F

$
.

(4.5.2)

For the second result, we exploit the positivity of AA† for an operator A to prove the positivity
of the matrix LρL†. We can write the density matrix as

ρ = ρ
1
2 ρ

1
2 . (4.5.3)

Substituting in the product matrix and observing that (ρ 1
2 )† = ρ

1
2 we obtain

LρL† = (Lρ 1
2 )(ρ 1

2L†) = (Lρ 1
2 )(Lρ 1

2 )† ≥ 0, (4.5.4)

where the property of the Hermitian (AB)† = B†A† was used.

Applying this and the inequality for the product of positive matrices we get

Tr(ρα−1LρL†) ≤ Tr(LρL†) · Tr(ρα−1)

≤ ||L||2F · Tr(ρα−1)

≤ ||L||2F ·
#
Tr(ρα−1) − 1

$
+ ||L||2F .

(4.5.5)

In the last inequality we added and subtracted ||L||2F .

Recalling that α
1−α < 0 and multiplying on both sides:
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α

1 − α
Tr(ρα−1LρL†) ≥ α

1 − α
·
)

||L||2F ·
#
Tr(ρα−1) − 1

$
+ ||L||2F

*
≥ α

1 − α
· 1 − (α− 1)

1 − (α− 1) ·
)

||L||2F ·
#
Tr(ρα−1) − 1

$
+ ||L||2F

*

≥ α(2 − α)
1 − α

· ||L||2F · Tα−1(ρ) + α

1 − α
||L||2F .

(4.5.6)

Substituting the results of Equations 4.5.2 and 4.5.6 in Tsallis entropy’s derivative we find the
inequality

dTα(ρ)
dt

≥ α(2 − α)
1 − α

||L||2F · Tα−1(ρ) + α

1 − α
||L||2F − α

1 − α

#
Tr(L†Lρ) − ||L||2F

$
≥ α(2 − α)

1 − α
||L||2F · Tα−1(ρ) + α

1 − α

#
2 · ||L||2F − Tr(L†Lρ)

$
.

(4.5.7)

From which follows the definition of the lower bounding function

f(x) = α(2 − α)
1 − α

||L||2F · x+ α

1 − α

#
2 · ||L||2F − Tr(L†Lρ)

$
. (4.5.8)

We observe that in the previous equations the quantum Tsallis entropy of parameter α− 1 was
found instead of the one of parameter α. Nonetheless, studying this quantity for α > 2 is the
same as studying Tα for α ∈ (1,+∞).

Contrary to what happened in the previous tests, if α > 2, the lower bounding function in
Equation 4.5.8 is a monotonically increasing function of x. With a dual approach of Kobayashi’s
one, we could use these property to find an upper bound for Tsallis entropy in the long time
limit t → ∞. Thanks to the result in Equation 4.4.7 we can prove that f(0) < 0 which would
help the claim about the upper bound. Nevertheless, when computing such upper bound we
obtain that it is bigger than the maximum value of Tsallis entropy. This means that even
applying this inequalities no useful bound can be found.
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Chapter 5

Entanglement Fidelity of common
Quantum Channels

5.1 Introduction

In quantum Shannon theory, a source message can be described as a sequence of letters, where
each letter is a pure state drawn from the ensemble {|ϕ⟩ , q(x)} [18].

Regardless of the choice of the ensemble, the sent letter will be represented by a density matrix

ρ =
C
a c

c b

D
, (5.1.1)

where the elements a, b ∈ R and c ∈ C.

In practice, the system representing the letter will interact with the environment. This
interaction is represented by the introduction of a Reference system we cannot access. From this
interaction, correlations between the two system generally arise in the form of Quantum
entanglement. Once a letter is sent through a noisy quantum channel, its associated state is
changed and this is reflected in a change of the correlations with the environment.

In many applications, it is in our interest to preserve the entanglement between the sub-system
of interest and the reference system— or another system in general. M. A. Nielsen described how
the maximization of this fidelity is fundamental for Quantum error correction[6], a corner-stone
technique that allowed to build modern quantum devices. This concept can also be found in the
study of Quantum channels capacity [8, 7], where different definitions of quantum capacity appear
depending on whether we want to preserve entanglement or not. Datta et al. [5] revised the
definition of the Quantum rate distortion problem where the distortion measure is based on
Entanglement fidelity. Moreover, many quantum communication protocols, like Quantum
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teleportation and Superdense coding involve sending one or more qubits through a channel while
not acting on other correlated systems [11, 12, 25, 26].

To quantify how faithfully a quantum channel preserves this entanglement we use the
Entanglement fidelity. Introduced by Schumacher in [4], he proved that the metric is a function
of the density matrix ρ and the quantum channel N we apply to it— it can be computed without
any relation to the reference system. For more details about the different type of fidelities and
the meaning of Entanglement fidelity we invite the reader to refer to Chapter 7.

If we call Aµ a generic Kraus operator of the channel, the associated Entanglement fidelity can
be computed as follows:

Fe(ρ,N ) =
Ø

µ

Tr(Aµρ)Tr(A†
µρ). (5.1.2)

The following inequalities hold

0 ≤ Fe(ρ,N ) ≤ 1. (5.1.3)

If all the Kraus operators are hermitian, the equation above can be simplified to:

Fe(ρ,N ) =
Ø

µ

Tr2(Aµρ). (5.1.4)

In the following sections we compute and analyze the value of Entanglement fidelity for different
1-qubit quantum channels, namely: Random Pauli-X, Dephasing, Depolarizing, Werner-Holevo,
Generalized Pauli and Amplitude damping channels. The quantity is computed for the general
density matrix defined in Equation 5.1.1.

All the examples will have the same structure: definition of the channel through Kraus operators,
computation of Tr(Aµρ) and Tr(A†

µρ), computation of Entanglement fidelity.

5.2 Fe computation

In this section, the value of Entanglement fidelity for different channels is computed.
The channels are separated in two sections: the first three all depend on a parameter u ∈ [0,1]
and are based on Pauli matrices, the fourth one has no parameters, the fifth one depends on a
matrix of parameters P and the last one depends on a parameter usually called γ.
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5.2.1 Pauli channels

Random Pauli-X

The Random Pauli-X channel is defined as follows:

Nu(ρ) = u ·XρX† + (1 − u)ρ ; u ∈ [0, 1]. (5.2.1)

It can be described with two Kraus operators:

)√
uX,

√
1 − uI

*
. (5.2.2)

The Entanglement fidelity for this channel and the density matrix defined above is given by:

Fe(ρ,Nu) = Tr2(
√
u ·Xρ) + Tr2(

√
1 − u · Iρ)

= u · Tr2(Xρ) + (1 − u).
(5.2.3)

The las inequality holds because of the linearity of the trace and the fact that density matrices
have unitary trace.
Now, we need to compute the matrix in the first factor of the sum:

Xρ =
C

0 1
1 0

D
·

C
a c

c b

D
=
C
c b

a c

D
. (5.2.4)

Its trace is given by:

Tr(Xρ) = 2 · ℜ(c). (5.2.5)

We can now compute the Entanglement fidelity:

Fe(ρ,Nu) = 1 + u
#
4 · ℜ2(c) − 1

$
, (5.2.6)

where we recall from Section 2.1.2 that ℜ(c) represents the real part of c.

Dephasing channel

The Dephasing channel is defined as follows:

Nu(ρ) = u · ZρZ† + (1 − u)ρ ; u ∈ [0, 1]. (5.2.7)

It can be described with two Kraus operators:

27



Entanglement Fidelity of common Quantum Channels

)√
uZ,

√
1 − uI

*
. (5.2.8)

The Entanglement fidelity for this channel and the density matrix defined above is given by:

Fe(ρ,Nu) = Tr2(
√
u · Zρ) + Tr2(

√
1 − u · Iρ)

= u · Tr2(Zρ) + (1 − u).
(5.2.9)

We need to compute the matrix in the first factor of the sum:

Zρ =
C

1 0
0 −1

D
·

C
a c

c b

D
=
C
a c

−c −b

D
. (5.2.10)

Its trace is given by:

Tr(Zρ) = a− b. (5.2.11)

We can compute the Entanglement fidelity:

Fe(ρ,Nu) = 1 + u
#
(a− b)2 − 1

$
. (5.2.12)

Depolarizing channel

The Depolarizing channel is defined as follows:

Nu(ρ) = (1 − u)ρ+ u · I2 ; u ∈ [0, 1]. (5.2.13)

According to Nielsen and Chuang [17], we can write the channel with the following operator-sum
representation:

Nu(ρ) =
3

1 − 3u
4

4
ρ+ u

4 (XρX + Y ρY + ZρZ) . (5.2.14)

It follows that the channel has the following Kraus operators:Iò
1 − 3u

4 · I,
√
u

2 ·X,
√
u

2 · Y,
√
u

2 · Z

J
. (5.2.15)

We already computed Tr(Xρ) and Tr(Zρ) in the previous two sections.

Y ρ =
C

0 −i
i 0

D
·

C
a c

c b

D
=
C

−ic −ib
ia ic

D
. (5.2.16)

So that the third trace is
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Tr(Y ρ) = −2 · ℑ(c), (5.2.17)

where we recall from Section 2.1.2 that ℑ(c) represents the imaginary part of c.

It follows that the Entanglement fidelity for this channel is:

Fe(ρ,Nu) =
3

1 − 3u
4

4
+ u

4 Tr2(Xρ) + u

4 Tr2(Y ρ) + u

4 Tr2(Zρ) =

=
3

1 − 3u
4

4
+ u

4 · 4 · ℜ2(c) + u

4 · 4 · ℑ2(c) + u

4 (a− b)2 =

= 1 + u ·
5
ℜ2(c) + ℑ2(c) + (a− b)2

4 − 3
4

6

= 1 + u ·
5
|c|2 + (a− b)2

4 − 3
4

6
.

(5.2.18)

Werner-Holevo channel

Werner and Holevo ([27]) showed that for any dimension d, the map

ρ → ΛW H(ρ) = 1
d− 1(tr(ρ)I − ρT ). (5.2.19)

is a valid quantum channel.
When d = 2, the channel degenerates to the simple form

ΛW H(ρ) = Y ρY. (5.2.20)

In this case the only Kraus operator is Y and the Entanglement fidelity is given by

Fe(ρ,∆W H) = Tr2(Y ρ) = 4 · ℑ2(c). (5.2.21)

Generalized Pauli channel

In their article "Detecting positive quantum capacities of quantum channels" [28], Singh and
Datta studied the capacity of the Generalized Pauli channel. This channel is defined for every
dimension d of the Hilbert space of a system. Moreover, its definition depends on a d× d matrix
P such that

q
i,j

pij = 1. For a single qubit, its Kraus operators simplify to

)√
p00I,

√
p10X,

√
p01Z,

√
p11XZ

*
With an appropriate choice of P and letting u = 1, the channels presented in Sections 5.2.1,
5.2.1, 5.2.1 can be derived.
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Exploiting the results of Section 5.2.1, we obtain the entanglement fidelity for this channel:

Fe(ρ,N ) = p00Tr2(Iρ) + p10Tr2(Xρ) + p01Tr2(Zρ) + p11Tr2(XZρ) =

= p00 + 4 · p10 · ℜ2(c) + p01(a− b)2 − 4 · p11 · ℑ2(c),
(5.2.22)

where Tr(XZρ) can be obtained observing that XZ = −i · Y .

5.2.2 Amplitude damping channel

The Amplitude damping channel is defined through the following Kraus operators:

î
A0 = √

γ · |0⟩ ⟨1| , A1 = |0⟩ ⟨0| +
ð

1 − γ · |1⟩ ⟨1|
ï

; γ ∈ [0, 1]. (5.2.23)

The two associated matrices are:

A0 =
C

0 √
γ

0 0

D
; A1 =

C
1 0
0

√
1 − γ

D
. (5.2.24)

The Entanglement fidelity for this channel and the density matrix defined above is given by:

Fe(ρ,N ) = Tr(A0ρ)Tr(A†
0ρ) + Tr2(A1ρ). (5.2.25)

We compute the traces in the sum:

Tr(A0ρ) = Tr
AC

0 √
γ

0 0

D
·

C
a c

c b

DB

= Tr
AC

c · √
γ b · √

γ

0 0

DB

= c · √
γ,

(5.2.26)

Tr(A†
0ρ) = Tr

AC
0 0

√
γ 0

D
·

C
a c

c b

DB

= Tr
AC

0 0
a · √

γ c · √
γ

DB

= c · √
γ,

(5.2.27)
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Tr(A1ρ) = Tr
AC

1 0
0

√
1 − γ

D
·

C
a c

c b

DB

= Tr
AC

a c

c ·
√

1 − γ b ·
√

1 − γ

DB

= a+ b ·
ð

1 − γ.

(5.2.28)

Now, we can compute the Entanglement fidelity:

Fe(ρ,N ) = γ · |c|2 +
1
a+ b ·

ð
1 − γ

22
. (5.2.29)

5.3 Summary

To better visualize the results obtained in this chapter we summarize them in the following table:

Channel N Fe(ρ,N )

Random Pauli-X 1 + u
#
4 · ℜ2(c) − 1

$
Dephasing 1 + u

#
(a− b)2 − 1

$
Depolarizing 1 + u ·

è
ℜ2(c) + ℑ2(c) + (a−b)2

4 − 3
4

é
Generalized Pauli p00 + 4 · p10 · ℜ2(c) + p01(a− b)2 − 4 · p11 · ℑ2(c)

Amplitude damping γ · |c|2 + (a+ b ·
√

1 − γ)2

Werner-Holevo 4 · ℑ2(c)

Table 5.1: Entanglement fidelity for the studied quantum channels and ρ as defined in Equation
5.1.1.
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Chapter 6

Entanglement Fidelity for a
two-letter Quantum Message

6.1 Introduction

Now we apply the results of Chapter 5 to a scenario where we want to send a message of two
possible quantum letters. The goal is to show how choosing appropriate pairs of letters can lead
to an optimal preservation of entanglement between the letter and the reference system.

Let’s consider the following pair of letters:

|ψ+⟩ = √
p |0⟩ +

ð
1 − p |1⟩

|ψ−⟩ = √
p |0⟩ −

ð
1 − p |1⟩ .

(6.1.1)

The following density matrix describe a system that has probability q of being in state |ψ+⟩ and
1 − q of being in state |ψ−⟩:

ρ = q · |ψ+⟩ ⟨ψ+| + (1 − q) · |ψ−⟩ ⟨ψ−| . (6.1.2)

Here is the explicit form of the density matrix:

ρ =
C

p (2q − 1) ·
ð
p(1 − p)

(2q − 1) ·
ð
p(1 − p) 1 − p

D
. (6.1.3)

Depending on the values of p and q we obtain different source messages. There are 5 extreme
cases that are not relevant to real world applications and lead to special behavior:
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• If p = 0 or p = 1, regardless of the value of q, we obtain a one letter alphabet which cannot
convey any meaning.

• The cases q = 0 and q = 1 are analogous to the above ones.

• If p = 1
2 the two letters |ψ+⟩ and |ψ−⟩ are orthogonal and so the message could as well be

classical— as stated by Preskill in [18].

The remaining cases describe relevant scenarios of messages built with an alphabet of two
non-orthogonal letters, each occurring with non-zero probability.

6.2 Fe computation

In the case of Equation 6.1.3, the parameters a, b, c defined in 5.1 are all real and have the
following values:

a = p

b = 1 − p

c = (2q − 1) ·
ð
p(1 − p).

(6.2.1)

Using the results obtained in Section 5.2, we can compute the value of the Entanglement fidelity
for different channels when using a message composed of the letters in Equation 6.1.1. The
results are summarized in Table 6.1.

Channel N Fe(ρ,N )

Random Pauli-X 1 + u ·
#
4 · (2q − 1)2 · p(1 − p) − 1

$
Dephasing 1 + u [4 · p(p− 1)]

Depolarizing 1 + u
4 ·
)#

4 · (2q − 1)2 · p(1 − p) − 1
$

+ [4 · p(p− 1)] − 1
*

Generalized Pauli p00 + p10 · [4 · (2q − 1)2 · p(1 − p) − 1] + p01 · (2p− 1)2

Amplitude damping p2 + (1 − γ)(1 − p)2 + p(1 − p)
#
2
√

1 − γ + γ(2q − 1)2$
Werner-Holevo 0

Table 6.1: Entanglement fidelity for the studied quantum channels and ρ as defined in Equation
6.1.2.
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6.3 Fe Analysis

In general, the Entanglement fidelity of the studied channels depends on three parameters: one
that defines the channel— like u or γ — and two that define the letters, namely p and q.
In this section, some graphs that study the fidelities in terms of p and some values of q and u or
γ are given. To get a better understanding on the relationship between Fe and the three
parameters we added a 3D plot of the Entanglementfidelity a the end of the sections related to
the Pauli channels and the Amplitude damping channel.

In a real case scenario, we might not have the possibility to choose all of them. In fact, the
parameter that defines the channel might depend on problem specification that we cannot
control. The value of q depends on the specific messages the source produces and we may not be
able to control it.

Luckily, the parameter p determines the particular states we use as letters and in principle we
could prepare the states determined by every possible value. Even if in practice there might be
some restrictions, this means that we have some freedom in the choice of the letters. With this
tool, we could choose the letters that behave the best given the properties of the channel at hand.

6.3.1 Pauli channels

All the Pauli channels depend on a parameter u. When the parameter is zero, the channels act as
an identity and they do not change the state. On the other hand, when u = 1, they fully affect
the input state applying a Pauli matrix to it or combining more types of these applications. For
this reasons, we expect the entanglement fidelity to be generally higher the smaller the u. In
these cases more of the initial state is unchanged thanks to the identity.

Random Pauli-X channel

Recall from Table 6.1 that Fe for this channel is

Fe(ρ,Nu) = 1 + u ·
#
4 · (2q − 1)2 · p(1 − p) − 1

$
.

For Fe is between 0 and 1 as stated in equation 5.1.3, the second operand in the sum must be
negative. Moreover, as we were expecting, the smaller the value of u the more of the initial state
is preserved. This is reflected in the fact that Fe might have a lower bound bigger then zero and
the channel might not be able to completely destroy the entanglement.

Once the value of u and q is fixed, we are interested in studying which value of p would be the
best to preserve entanglement as much as possible. From Figure 6.3.1 we can state that, no
matter what the value of u and q are, the highest values of entanglement fidelity are achieved
when p is close to 0.5.
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As discussed in Section 6.1, when p = 0.5 the message degenerates to a classical one. Anyway, we
can preserve the interesting properties of quantum messages by choosing p as close to 0.5 as
possible given the constraints we might have.

The choice of p is influenced by the probability q of sending one of the two letters: the closer q
gets to 0.5, the more values of p we could choose without affecting too much the value of the
Entanglementfidelity.

Figure 6.3.1: Random Pauli-X channel’s Fe(p) for fixed values of u and q

Figure 6.3.2: Random Pauli-X channel’s Fe(p) for fixed values of u

Dephasing channel

The Entanglement fidelity for the Dephasing channel is given by Table 6.1:

Fe(ρ,N ) = 1 + u [4 · p(p− 1)]

In this case, it is a function of only u and p. Once u is fixed, for every value of q, Fe will be a
convex quadratic function of p (Figure 6.3.3). This implies that the function has only one
minimizer: p = 0.5.

Contrary to what happens for the Pauli-X channel (Section 6.3.1), the best values of Fe are
obtained when p approaches one of the extremes of the interval. These extreme values represent
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Figure 6.3.3: Dephasing channel’s Fe(p) for fixed values of u and q

cases where the two letter states are the same and therefore are not useful. We can keep p as
close as possible to these values in order to get the most entanglement preservation.

Even if it may not be feasible in practice, letting p → 0 or p → 1 , we could theoretically achieve
values of Fe arbitrarily close to 1.

Figure 6.3.4: Dephasing channel’s Fe(p) for fixed values of u

Depolarizing channel

The Entanglement fidelity for the Depolarizing channel is given by Table 6.1:

Fe(ρ,N ) = 1 + u
4 ·
#
4 · (2q − 1)2 · p(1 − p) + (2p− 1)2 − 3

$
When the value of u and q is fixed, Fe is a convex quadratic function of p (Figure 6.3.5). As in
the case of the Dephasing channel (Section 6.3.1), the function has one minimizer in p = 0.5 and
the best values are achieved as p approaches the extremes of its range.

The big difference between the two channels lies in the maximum value of the Entanglement
fidelity. When using a Depolarizing channel, it does not matter what value of p we choose, we
cannot achieve Fe = 1 if u /= 0.

On the other hand, differently from the Pauli-X channel case of Section 6.3.1, even if u = 1 the
channel never completely destroys the entanglement— Fe has a non-zero minimum for every
value of p and q.
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As we could expect from the interpretation of the behavior of the channel, the bigger u is, the
lower the maximum achievable Entanglement fidelity is— the closer u gets to 1 the bigger is the
contribution of the maximally mixed state I

2 in the output state.

Figure 6.3.5: Depolarizing channel’s Fe(p) for fixed values of u and q

Figure 6.3.6: Depolarizing channel’s Fe(p) for fixed values of u

Amplitude damping channel

The Amplitude damping channel’s fidelity (Table 6.1) has the form

Fe(ρ,N ) = p2 + (1 − γ)(1 − p)2 + p(1 − p)
#
2
√

1 − γ + γ(2q − 1)2$
Differently from the previous cases, the function shows an asymmetrical behavior with respect to
p = 0.5 (see Figure 6.3.7). Moreover, its convexity changes for different values of q. Nonetheless,
when p gets close to 1 the same happens to Fe.

The extreme scenario is not interesting in practical applications as discussed before (see Section
6.1). Anyway, we can conclude that when using an Amplitude damping channel, it is better to
choose letters from Equation 6.1.1 where the main component in the superposition is |0⟩.
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Figure 6.3.7: Amplitude damping channel’s Fe(p) for fixed values of u and q

Figure 6.3.8: Amplitude damping channel’s Fe(p) for fixed values of γ

6.4 Pauli channels ranking

The Pauli channels described in the previous sections have a similar structure that depends on
the parameter u. Using one channel or the other introduces different types of noise in the state
we send. In Section 6.3 we described how, once the channel is fixed, we can choose our letters to
get the best Entanglement fidelity possible. In this section instead, we rank the three channels
for a fixed value of q and for every possible value of p.
Recalling the results in Table 6.1 and fixing the value of u and q we define the following
quantities:

• Pauli-X channel: FX
e (p) = 1 + u ·

#
4 · (2q − 1)2 · p(1 − p) − 1

$
• Dephasing channel: FZ

e (p) = 1 + u [4 · p(p− 1)]

• Depolarizing channel: FD
e (p) = 1 + u

4 ·
)#

4 · (2q − 1)2 · p(1 − p) − 1
$

+ [4 · p(p− 1)] − 1
*

To simplify the notation in the following discussion we set

c = (2q − 1)2

Moreover, we consider u /= 0 as no real application will include an identity channel.
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By solving the inequalities, we can prove that the following results hold:

FX
e (p) ≥ FZ

e (p) ∀p ∈ [ 12 − 1
2

ò
c

1 + c
,

1
2 + 1

2

ò
c

1 + c
], (6.4.1)

FD
e (p) ≥ FZ

e (p) ∀p ∈ [ 12 − 1
2

ò
1 + c

3 + c
,

1
2 + 1

2

ò
1 + c

3 + c
]. (6.4.2)

When studying FD
e (p) ≥ FX

e (p), two cases must be distinguished. The subdivision is due to the
nonexistence of real-valued solutions when q ∈

1
3−

√
3

3+
√

3 ,
3+

√
3

3+
√

3

2
.

Whenever q ∈
1

3−
√

3
3+

√
3 ,

3+
√

3
3+

√
3

2
:

FD
e (p) ≥ FX

e (p) ∀p ∈ [0,1]. (6.4.3)

Otherwise:

FD
e (p) ≥ FX

e (p) ∀p ∈ [0, 1
2 − 1

2

ò
3c− 1
1 + 3c ] ∪ [ 12 + 1

2

ò
3c− 1
1 + 3c , 1]. (6.4.4)

p Rankingè
0, 1

2 − 1
2

ñ
1+c
3+c

2
FZ

e (p) ≥ FD
e (p) ≥ FX

e (p)è
1
2 − 1

2

ñ
1+c
3+c ,

1
2 − 1

2

ñ
c

1+c

2
FD

e (p) ≥ FZ
e (p) ≥ FX

e (p)è
1
2 − 1

2

ñ
c

1+c ,
1
2 − 1

2

ñ
3c−1
1+3c

2
FD

e (p) ≥ FX
e (p) ≥ FZ

e (p)è
1
2 − 1

2

ñ
3c−1
1+3c ,

1
2 + 1

2

ñ
3c−1
1+3c

2
FX

e (p) ≥ FD
e (p) ≥ FZ

e (p)è
1
2 + 1

2

ñ
3c−1
1+3c ,

1
2 + 1

2

ñ
c

1+c

2
FD

e (p) ≥ FX
e (p) ≥ FZ

e (p)è
1
2 + 1

2

ñ
c

1+c ,
1
2 + 1

2

ñ
1+c
3+c

2
FD

e (p) ≥ FZ
e (p) ≥ FX

e (p)è
1
2 + 1

2

ñ
1+c
3+c , 1

é
FZ

e (p) ≥ FD
e (p) ≥ FX

e (p)

Table 6.2: Ranking of Entanglement fidelity for Pauli-X (FX
e ), Dephasing (FZ

e ) and Depolarizing
channel (FD

e ); q ∈
è
0, 3−

√
3

3+
√

3

é
∪
è

3+
√

3
3+

√
3 , 1
é

We can prove the following inequalities that are useful to define the relationships between the
identified intervals of p:
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ò
3c− 1
1 + 3c ≤

ò
c

1 + c
≤
ò

1 + c

3 + c
∀c ∈ [0,1] (i.e. ∀q ∈ [0,1]) . (6.4.5)

6.4.1 Commonly used states

Instead of using two letter messages, many quantum communication protocols involve sending
one state over a channel [25, 26, 12, 11]. The results presented so far, can be used to study this
scenario by considering q = 0 or q = 1. The reason behind this is briefly described in Section 6.1.

With these values of q, the intervals in Tables 6.2 and 6.3 get simplified and the ranking of the
channels can be found in Table 6.4.

Varying p and q, we can obtain the performance comparison for different states. We list in Table
6.5 the cases of some of the most common qubit states.
When dealing with composite systems, a set of ubiquitous states is the one of Bell states:

• |Φ+⟩ = 1√
2 (|00⟩ + |11⟩)

• |Φ−⟩ = 1√
2 (|00⟩ − |11⟩)

• |Ψ+⟩ = 1√
2 (|01⟩ + |10⟩)

• |Ψ−⟩ = 1√
2 (|01⟩ − |10⟩)

p Rankingè
0, 1

2 − 1
2

ñ
1+c
3+c

2
FZ

e (p) ≥ FD
e (p) ≥ FX

e (p)è
1
2 − 1

2

ñ
1+c
3+c ,

1
2 − 1

2

ñ
c

1+c

2
FD

e (p) ≥ FZ
e (p) ≥ FX

e (p)è
1
2 − 1

2

ñ
c

1+c ,
1
2 + 1

2

ñ
c

1+c

2
FD

e (p) ≥ FX
e (p) ≥ FZ

e (p)è
1
2 + 1

2

ñ
c

1+c ,
1
2 + 1

2

ñ
1+c
3+c

2
FD

e (p) ≥ FZ
e (p) ≥ FX

e (p)è
1
2 + 1

2

ñ
1+c
3+c , 1

é
FZ

e (p) ≥ FD
e (p) ≥ FX

e (p)

Table 6.3: Ranking of Entanglement fidelity for Pauli-X (FX
e ), Dephasing (FZ

e ) and Depolarizing
channel (FD

e ); q ∈
1

3−
√

3
3+

√
3 ,

3+
√

3
3+

√
3

2
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p Rankingè
0, 1

2 − 1
2

√
2

2
FZ

e (p) ≥ FD
e (p) ≥ FX

e (p)5
1
2 − 1

2
√

(2)
, 1

2 + 1
2

√
2

4
FX

e (p) ≥ FD
e (p) ≥ FZ

e (p)è
1
2 + 1

2
√

2 , 1
é

FZ
e (p) ≥ FD

e (p) ≥ FX
e (p)

Table 6.4: Ranking of Entanglement fidelity for Pauli-X (FX
e ), Dephasing (FZ

e ) and Depolarizing
channel (FD

e ); q = 0 ∨ q = 1

q p State Ranking

1 1 |0⟩ FZ
e (p) ≥ FD

e (p) ≥ FX
e (p)

1 0 |1⟩ FZ
e (p) ≥ FD

e (p) ≥ FX
e (p)

1 1
2 |+⟩ = 1√

2 (|0⟩ + |1⟩) FX
e (p) ≥ FD

e (p) ≥ FZ
e (p)

0 1
2 |−⟩ = 1√

2 (|0⟩ − |1⟩) FX
e (p) ≥ FD

e (p) ≥ FZ
e (p)

Table 6.5: Ranking of Entanglement fidelity for Pauli-X (FX
e ), Dephasing (FZ

e ) and Depolarizing
channel (FD

e ) when sending common qubit states.

If the composite system given by the letter state and reference system is in one of these states,
the entanglement between the two system is maximal. By computing the density matrices

|Φ+⟩ ⟨Φ+| , |Φ−⟩ ⟨Φ−| , |Ψ+⟩ ⟨Ψ+| , |Ψ−⟩ ⟨Ψ−|

and tracing out the reference system, we can show that each one of these states is a purification
of the density matrix

ρ = 1
2(|0⟩ ⟨0| + |1⟩ ⟨1|) = 1

2(|+⟩ ⟨+| + |−⟩ ⟨−|). (6.4.6)

Additionally, it is trivial to prove that if we set q = 1
2 and p = 1

2 , the density matrix in Equation
6.4.6 can be rewritten in terms of the letter states |ψ+⟩ and |ψ−⟩:

ρ = 1
2(|ψ+⟩ ⟨ψ+| + |ψ−⟩ ⟨ψ−|). (6.4.7)
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Notice that in this case a message of two possible letters is being sent. Because of these results
and according to Table 6.3, if the initial state describing the composite system of letter and
reference is a Bell states, the ranking between the Pauli channels applied to the letter state is:

FD
e ≥ FX

e ≥ FZ
e .
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Chapter 7

A brief discussion about
Entanglement Preservation

In the evolution of Quantum Shannon theory many types of fidelities where defined. In Chapter
5 we introduced the Entanglement fidelity which is the main subject of the second part of this
work. To dive deeper into the different fidelities definitions and their relationships we suggest the
reading of the article "The entanglement fidelity and quantum error correction" from M.A.
Nielsen [6].

Even though the meaning of the Entanglement fidelity is clearly stated by Schumacher in [4] and
Nielsen and Chuang [17], the notion of "preserving entanglement" is not that straightforward. In
this chapter, we explore some objections to this definition and give possible counter-arguments to
them. In this discussion we will use the notation adopted by Datta, Hsieh and Wilde in [5] as
this article is the reason we decided to study more about the topic.

Both Schumacher and Nielsen-Chuang descriptions refer to the same setting: a quantum system
A is prepared in a state ρ that can be pure or mixed, the state is assumed to be entangled with a
system R such that their joint state |ψρ

RA⟩ is a pure state, a channel N is applied to A while the
reference system R is left unchanged. The evolution of the joint state is described by the channel
Id ⊗ N .

In this scenario, the authors introduce the Entanglement fidelity Fe:

Fe(ρ,N ) = ⟨ψρ
RA| Id ⊗ N (|ψρ

RA⟩ ⟨ψρ
RA|) |ψρ

RA⟩ . (7.0.1)

The state |ψρ
RA⟩ is pure by construction, if we use the notation ρ′ = Id ⊗ N (|ψρ

RA⟩ ⟨ψρ
RA|) to

indicate the state of the joint system after the channel evolution, we can write Fe in terms of the
fidelity between a density matrix and a pure state:
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Fe = F (|ψρ
RA⟩ ⟨ψρ

RA| , ρ′)2 = ⟨ψρ
RA| ρ′ |ψρ

RA⟩ . (7.0.2)

We will refer to the quantity F as the Static fidelity.

This is how Nielsen and Chuang describe the meaning of Fe[17]:

"The entanglement fidelity provides a measure of how well the entanglement between
R and A is preserved by the process N , with values close to 1 indicating that the
entanglement has been well preserved, and values close to 0 indicating that most of
the entanglement has been destroyed."

Both Schumacher and Nielsen and Chuang give this definition of Entanglement fidelity and then
proceed to prove two facts about it: Fe does not depend on the purification of the system we
choose and it is upper-bounded by the Average fidelity F . If the initial state is described by
ρ =

q
j

pjρj , the average fidelity for the channel N is:

F =
Ø

j

pjF (ρj ,N (ρj))2. (7.0.3)

The authors describe F as a measure of how faithfully a channel conveys an ensemble of pure
states. According to them, the relationship Fe(ρ,N ) ≤ F shows how a channel that preserves the
entanglement between the reference and the system is a channel that well preserves an ensemble
source ρ.

The relationships we presented are proved in the mentioned resources and seem to be correct.
Nevertheless, in our opinion, the description of the operational meaning of this quantities is
ambiguous, especially for the concept of "entanglement preservation". Both authors just assign
Entanglement fidelity the meaning of measuring entanglement preservation but do not describe
what this preservation means.

7.1 Existing work on entanglement preservation meaning

The problem of describing the meaning of entanglement preservation has already been addressed
by V.A. Mousolou in [10]. This article builds on top of an idea from Xiang [9]. In his work,
Mousolou claims that Entanglement fidelity fails to measure entanglement preservation through
quantum channels. If this was to be true, we could say that the distortion measure d(ρ,N ) used
in Datta et al. [5] fails to take into account the preservation of entanglement in the
encoding-decoding process.
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Mousolou’s argument is the following: if we start from a Bell state as a purification and apply a
Pauli channel to the subsystem, the channel turns it into an orthogonal Bell state and the
Entanglement fidelity will be equal to 0. As both states are maximally mixed, Fe fails to describe
that the amount of entanglement has not changed.

7.1.1 Formalization of Mousolou’s example

Let’s consider a system in a maximally mixed state ρ = 1
2 (|0⟩ ⟨0| + |1⟩ ⟨1|) and its purification

|ψρ
RA⟩ = |Φ+⟩ = 1√

2 (|00⟩ + |11⟩). The initial state of the composite system will be:

|Φ+⟩ ⟨Φ+| = 1
2 (|00⟩ ⟨00| + |00⟩ ⟨11| + |11⟩ ⟨00| + |11⟩ ⟨11|)

Let’s define the channel N (ρ) = XρX† as the evolution of system A. Because X†X = I, such
channel is valid according to Choi-Kraus theorem. According to convention, we define the Bell
state

|Ψ+⟩ = 1√
2 (|01⟩ + |10⟩).

We can show that Id ⊗ N (|Φ+⟩ ⟨Φ+|) = |Ψ+⟩ ⟨Ψ+|. This means that the Entanglement fidelity
for the evolution of A under N is given by:

Fe = ⟨Φ+| |Ψ+⟩ ⟨Ψ+| |Φ+⟩ = 0

We believe that this inconsistency is caused by the ambiguity in the definitions of "preserving
entanglement" and "preserving a statistical ensemble".

7.2 Preserving a source ensemble

Nielsen and Chuang [17] define that a density matrix ρ =
q
i

pi |ψi⟩ ⟨ψi| represent a partially

unknown state of a system that is in state |ψi⟩ with probability pi. When they talk about
"preserving the state" they refer to two distinct quantities we already introduced:

• Static fidelity: F (ρ,N (ρ))

• Average fidelity: F =
q
j

pjF (ρj ,N (ρj))2

The example in Section 7.1.1 shows how important it is to distinguish the meaning of this two
measures. In the presented case, the initial system has 1

2 probability of being in the state |0⟩ and
1
2 probability of being in |1⟩. As the channel flips the value of the state, after the evolution, the
density matrix representing the state is unchanged. This translates to the static fidelity being
equal to 1—the state has been perfectly preserved.
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Anyway, if we measure the fidelity for the individual pure states we will always get zero. This
behavior follows from the definition of static fidelity for two orthogonal pure states. Such result
leads to an average fidelity equal to zero.

It is not the same thing to have a channel that keeps the density matrix identical and to have a
channel that preserve the single states from the ensemble that we are sending.
When it comes to reliable communication, we believe that what we want to refer to is the
Average fidelity. It is true that the proposed channel does not change the density matrix but we
have to take into account what would happen in a real system. Even if we have incomplete
knowledge about the system’s state, before the channel it will be in either |0⟩ or |1⟩. After the
evolution, this state will be flipped and it will be maximally different to the sent one—situation
that seems undesirable to us.

The definition based on Average fidelity is the one we think should be associated to the concept
of "faithfully convey an ensemble of pure states".

7.3 Preserving entanglement

To describe what it means to "preserve entanglement" is a tougher problem than it is to describe
the preservation of an ensemble of states.
Neither Schumacher [4] or Nielsen and Chuang [17] do not really state what it means. On the
other hand, Mousolou [10] and Xiang [9] takes a clear position on the concept: a channel
preserves entanglement if it turns an entangled state into one with an amount of entanglement
close to the initial one. That is why Mousolou considers a channel to perfectly preserve
entanglement when it turns a Bell state into an orthogonal one.

We think that Entanglement fidelity is not measuring the difference in the amount of
entanglement.
Entanglement fidelity captures the preservation of the amount of entanglement taking into
account the structure of the state. Fe is saying that the entanglement represented by |Φ+⟩ is
maximally different from the one described by |Ψ+⟩.
If we look at the two Bell states, we can see that the state of one system when we know the state
of the other is opposite in the two cases.

Despite of the two Bell states encoding a very different information about the joint system, it is
true that the amount of information they are related to is the same. We find it crucial to
understand whether maintaining this amount of information in the encoding-decoding process is
enough, or if it is also necessary to keep the state of the joint system close to the initial one.

Our first hypothesis is that both things have to be taken into account. Luckily, it seems that
Entanglement fidelity is a good measure to capture them.
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In any case, the definition of the concept of preservation given until now is very loose and it
could be important to give a well rounded explanation.

There is another point where Xiang [9] is wrong in trying to confute the meaning of
Entanglement fidelity. In his paper he states the following:

"Schumacher has noted that the EF can be lowered by a local unitary operation but
the entanglement cannot be so"

This statement is false: it is known that entanglement cannot be increased via Local operation or
classical communication (LOCC) but it is not true that it cannot be preserved or decreased.
The example of Section 7.1.1 shows a situation where a local operation preserves the amount of
entanglement between two systems. Moreover, if we apply a local Depolarizing channel to the
subsystem we obtain a state that is less entangled than the initial one.

7.3.1 Depolarizing channel example

As in Section 7.1.1 we take ρ = 1
2 (|0⟩ ⟨0| + |1⟩ ⟨1|) and its maximally entangled purification

|ψρ
RA⟩ = |Φ+⟩ = 1√

2 (|00⟩ + |11⟩). The joint state density matrix is |Φ+⟩ ⟨Φ+|.

We apply the local operation N (σ) = 1
2σ + 1

4 I2 to the subsystem A. The joint state density
matrix is affected as follows:

Id⊗ N (|ψρ
RA⟩ ⟨ψρ

RA|) = 1
2 |Φ+⟩ ⟨Φ+| +

C
1 1
1 1

D
⊗ I2. (7.3.1)

The state in Equation 7.3.1 is not maximally entangled and so is less entangled then the initial
one. This proves that entanglement between two systems can indeed be lowered by local unitary
operations.
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Chapter 8

Time Evolution of Entanglement
Fidelity

8.1 Introduction

In Chapter 1 we introduced the concept of Open quantum system and in Chapter 5 the
Entanglement fidelity measure. In Equation 5.1.2, it is explicit how Fe is dependent on the
density matrix ρ associated to the sent letter. As a letter is a quantum system, all the concepts
described in Chapter 1 apply. Especially, in a real application, the letter could interact with an
environment and be subject to a time evolution. As the density matrix of a letter change in time
before being sent, the Entanglement fidelity associated with it might change.

In this chapter, we compute the time derivative of Entanglement fidelity under different evolution
models of the density matrix ρ.

8.2 Evolution under always-invertible maps

We introduced the quantum master equation associated to an always invertible dynamical map in
Equation 3.2.5. We first compute the derivative of Fe assuming this general form of evolution.

Following from the linearity of the derivative and the rule for the derivative of a product of two
functions, from Equation 5.1.2 we obtain

dFe(ρ,N )
dt

=
Ø

µ

d

dt

#
Tr(Aµρ)Tr(A†

µρ)
$

=
Ø

µ

C
dTr(Aµρ)

dt
· Tr(A†

µρ) + Tr(Aµρ) ·
dTr(A†

µρ)
dt

D
.

(8.2.1)
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Because of the linearity of the trace of a matrix and since Aµ does not depend on time, using
Equation 3.2.5 the first derivative in the sum can be computed as

dTr(Aµρ)
dt

= Tr
3
Aµ · dρ

dt

4

= Tr

Aµ

−i[HS , ρ] +
Ø

j

γj(t)
5
Lj(t)ρL†

j(t) − 1
2{L†

j(t)Lj(t), ρ}
6

=
;

− i · Tr (Aµ[HS , ρ])

+
Ø

j

γj(t)
5
Tr
1
AµLj(t)ρL†

j(t)
2

− 1
2Tr

1
Aµ{L†

j(t)Lj(t), ρ}
26<

.

(8.2.2)

The second derivative in the sum can be obtained by substituting Aµ with A†
µ. We substitute the

derivatives in Equation 8.2.1 and obtain our final result:

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ)
5

− i · Tr (Aµ[HS , ρ])

+
Ø

j

γj(t)
3

Tr
è
AµLj(t)ρL†

j(t)
é

− 1
2Tr

è
Aµ{L†

j(t)Lj(t), ρ}
é46

+ Tr(Aµρ)
5

− i · Tr
!
A†

µ[HS , ρ]
"

+
Ø

j

γj(t)
3

Tr
è
A†

µLj(t)ρL†
j(t)
é

− 1
2Tr

è
A†

µ{L†
j(t)Lj(t), ρ}

é46J
.

(8.2.3)
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If all the operators Aµ and A†
µ commute with ρ, Equation 8.2.3 simplifies to

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ)
Ø

j

γj(t)
è
Tr
1
AµLj(t)ρL†

j(t)
2

− Tr
1
AµρL

†
j(t)Lj(t)

2é

+ Tr(Aµρ)
Ø

j

γj(t)
è
Tr
1
A†

µLj(t)ρL†
j(t)
2

− Tr
1
A†

µρL
†
j(t)Lj(t)

2éJ
.

(8.2.4)

since Tr (Aµ[HS , ρ]) = Tr
!
A†

µ[HS , ρ]
"

= 0, Tr(Aµ{L†
j(t)Lj(t), ρ}) = 2 · Tr(AµρL

†
j(t)Lj(t)) and

similarly we can prove Tr(A†
µ{L†

j(t)Lj(t), ρ}) = 2 · Tr(A†
µρL

†
j(t)Lj(t)). Recalling that if A, B are

two operators: [A,B] = AB −BA represents their Commutator and {A,B} = AB +BA

represents their Anti-Commutator [17], all the previous equalities can be proved by using the
cyclic property of the trace.

If all the operators Aµ are Hermitian, i.e. Aµ = A†
µ, Equation 8.2.3 turns into

dFe(ρ,N )
dt

=
Ø

µ

I
2 · Tr(Aµρ)

5
− i · Tr (Aµ[HS , ρ])

+
Ø

j

γj(t)
3

Tr
è
AµLj(t)ρL†

j(t)
é

− 1
2Tr

è
Aµ{L†

j(t)Lj(t), ρ}
é46J

.

(8.2.5)

The implication of both conditions happening at the same time is trivial.

8.3 Evolution under Lindblad master equation

Lindblad master equation defined in Equation 3.1.5 is a particular case of Equation 3.2.5 where
only one decoherence operator L appears and is time independent. The time derivative of
Entanglement fidelity under this type of Markovian evolution follows from the results in Section
8.2.

The derivative in Equation 8.2.2 simplifies to:

dTr(Aµρ)
dt

=
;

− i · Tr (Aµ[HS , ρ]) + Tr(AµLρL
†)

− 1
2
#
Tr(AµL

†Lρ) + Tr(AµρL
†L)
$<

.

(8.3.1)

So, the derivative in Equation 8.2.1 in this case is

53



Time Evolution of Entanglement Fidelity

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ)
5

− i · Tr (Aµ[HS , ρ]) + Tr(AµLρL
†)

− 1
2
#
Tr(AµL

†Lρ) + Tr(AµρL
†L)
$ 6

+ Tr(Aµρ)
5

− i · Tr
!
A†

µ[HS , ρ]
"

+ Tr(A†
µLρL

†) − 1
2
#
Tr(A†

µL
†Lρ) + Tr(A†

µρL
†L)
$ 6J

.

(8.3.2)

If all the operators Aµ and A†
µ commute with ρ we get

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ)
5
Tr(AµLρL

†) − Tr(AµρL
†L)
6

+ Tr(Aµρ)
5
Tr(A†

µLρL
†) − Tr(A†

µρL
†L)
6J

.

(8.3.3)

Instead, if all the operators Aµ are Hermitian

dFe(ρ,N )
dt

=
Ø

µ

2 · Tr(Aµρ)
5

− i · Tr (Aµ[HS , ρ]) + Tr(AµLρL
†)

− 1
2
#
Tr(AµL

†Lρ) + Tr(AµρL
†L)
$ 6
.

(8.3.4)

8.4 Evolution under Pure decoherence model

The same procedure used in the previous two sections can be applied to non-Markovian evolution.
The only requirement is to have a well defined time derivative of ρ. We compute here the time
derivative of Entanglement fidelity assuming a time evolution of the state as in Equation 3.3.1.
This time, Equation 8.2.2 becomes

dTr(Aµρ)
dt

= Tr [Aµ (σzρσz − ρ)] . (8.4.1)

The the time derivative of Fe is given by:

dFe(ρ,N )
dt

=
Ø

µ

γ(t)
;

Tr(A†
µρ) · Tr [Aµ (σzρσz − ρ)]

+ Tr(Aµρ) · Tr
#
A†

µ (σzρσz − ρ)
$<

.

(8.4.2)
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In this case, having all the Aµ and A†
µ to commute with ρ does not change anything but if they

are Hermitian we obtain

dFe(ρ,N )
dt

=
Ø

µ

2 · γ(t)Tr(Aµρ) · Tr [Aµ (σzρσz − ρ)] . (8.4.3)

This last equality can be proved using properties of operators analogous to the ones discussed at
the end of Section 8.2.

8.4.1 Evaluation for common quantum channels

Since the time derivative in Equation 8.4.2 depends on the Kraus representation of the channel
and on the known matrix

σz = Z =
C

1 0
0 −1

D
. (8.4.4)

We can develop it further to obtain its value for the channels introduced in Chapter 5.

We consider again the general case of the density matrix in Equation 5.1.1 and proceed to
evaluate the term

σzρσz − ρ =
C

1 0
0 −1

DC
a c

c b

DC
1 0
0 −1

D
−

C
a c

c b

D

=
C
a c

−c −b

DC
1 0
0 −1

D
−

C
a c

c b

D

=
C
a −c

−c b

D
−

C
a c

c b

D

= −2
C

0 c

c 0

D
.

(8.4.5)

To simplify the following computations we define

C =
C

0 c

c 0

D
(8.4.6)

and observe that C is a particular case of ρ where a = b = 0. Thanks to this and the results
obtained in Chapter 5, we can prove the following useful results:
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Tr(C) = 0

Tr(XC) = Tr(Xρ) = 2 · ℜ(c)

Tr(ZC) = 0

Tr(Y C) = Tr(Y ρ) = −2 · ℑ(c)

Tr(XZC) = Tr(XZρ) = 2 · i · ℑ(c).

(8.4.7)

Given these results, we can rewrite Equation 8.4.2 as

dFe

dt
= −2 · γ(t)

Ø
µ

#
Tr(A†

µρ)Tr(AµC) + Tr(Aµρ)Tr(A†
µC)

$
(8.4.8)

and whenever all the operators Aµ are Hermitian we get

dFe

dt
= −4 · γ(t)

Ø
µ

Tr(Aµρ)Tr(AµC). (8.4.9)

By substituting the Kraus operators for the different channels and using the results presented
above we can compute the derivative of Fe for the different quantum channels.

Random Pauli-X channel

The Kraus operators for this channel are)√
uX,

√
1 − uI

*
and are both Hermitian. This implies that the time derivative of Entanglement fidelity can be
obtained from Equation 8.4.3 and is given by

dFe

dt
= −4 · γ(t) [u · Tr(Xρ)Tr(XC) + (1 − u)Tr(ρ)Tr(C)]

= −4 · u · γ(t)Tr(Xρ)Tr(XC)

= −16 · u · γ(t) · ℜ2(c).

(8.4.10)

Dephasing channel

The Kraus operators for this channel are)√
uZ,

√
1 − uI

*
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and are both Hermitian. This implies that the time derivative of Entanglement fidelity can be
obtained from Equation 8.4.3 and is given by

dFe

dt
= −4 · γ(t) [u · Tr(Zρ)Tr(ZC) + (1 − u)Tr(ρ)Tr(C)]

= −4 · u · γ(t)Tr(Zρ)Tr(ZC)

= 0.

(8.4.11)

Then, we can state that if the letter is sent through a Dephasing channel, the associated
Entanglement fidelity is constant in time. This does not imply that the letter is preserved during
the decoherence process but that the capacity of the channel to preserve the entanglement
between letter and reference system is not affected.

Depolarizing channel

The Kraus operators for this channel areîñ
1 − 3

4uI,
√

u
2 X,

√
u

2 Y,
√

u
2 Z

ï
The time derivative of Entanglement fidelity can be obtained from Equation 8.4.3 and is given by

dFe

dt
= −4 · γ(t)

5
u

4 Tr(Xρ)Tr(XC) + u

4 Tr(Y ρ)Tr(Y C)

+ u

4 Tr(Zρ)Tr(ZC) +
3

1 − 3
4u
4

Tr(ρ)Tr(C)
6

= −4 · u · γ(t)
#
ℜ2(c) + ℑ2(c)

$
= −4 · u · |c|2.

(8.4.12)

Werner-Holevo channel

This channel has only one Kraus operator given by the Pauli Y matrix that is Hermitian.
Again, the time derivative of Entanglement fidelity can be obtained from Equation 8.4.3 and is
given by

dFe

dt
= −4 · γ(t) · Tr(Y ρ)Tr(Y C)

= −16 · γ(t) · ℑ2(c).

(8.4.13)
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Generalized Pauli channel

The Kraus operators for this channel are)√
p00I,

√
p10X,

√
p01Y,

√
p11XZ

*
.

The time derivative of Entanglement fidelity can be obtained from Equation 8.4.3 and is given by

dFe

dt
= −4 · γ(t)

5
p10Tr(Xρ)Tr(XC) + p01Tr(Zρ)Tr(ZC)

+ p11Tr(XZρ)Tr(XZC) + p01Tr(ρ)Tr(C)
6

= −16 · γ(t)
#
p10 · ℜ2(c) − p11 · ℑ2(c)

$
.

(8.4.14)

Amplitude Damping channel

To avoid confusion with the decay rate function let’s define the Kraus operator of the channel in
terms of the parameter u:)

A0 =
√
u · |0⟩ ⟨1| , A1 = |0⟩ ⟨0| +

√
1 − u · |1⟩ ⟨1|

*
where the matrices will take the form

A0 =
C

0
√
u

0 0

D
; A1 =

C
1 0
0

√
1 − u

D
. (8.4.15)

We recall from Section 5.2.2 that the following results hold:

Tr(A0ρ) = c ·
√
u

Tr(A†
0ρ) = c ·

√
u

Tr(A1ρ) = a+ b
√

1 − u.

(8.4.16)

Since the C can be seen as a particular case of ρ with a = b = 0 we obtain also

Tr(A0C) = c ·
√
u

Tr(A†
0C) = c ·

√
u

Tr(A1C) = 0.

(8.4.17)
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We can now compute the time derivative of Fe using Equation 8.4.8

dFe

dt
= −2 · γ(t)

è
Tr(A†

0ρ)Tr(A0C) + Tr(A0ρ)Tr(A†
0C) + 2Tr(A1ρ)Tr(A1C)

é
= −4 · u · γ(t) · |c|2.

(8.4.18)

8.5 Evolution for two-level system in a dissipative
environment

Similarly to what we did in Section 8.4 we proceed to compute the time derivative of Fe

assuming a non-Markovian evolution given by Equation 3.3.7.
The derivative of Tr(Aµρ) is:

dTr(Aµρ)
dt

=
;

− i

4 · S(t) · Tr (Aµ[σz, ρ]) + γ(t)
è
Tr (Aµσ−ρσ+)

− 1
2Tr (Aµ {σ+σ−, ρ})

é<
.

(8.5.1)

By substituting this and the time derivative of Tr(A†
µρ) in Equation 8.2.1 we get:

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ)
5

− i

4 · S(t) · Tr (Aµ[σz, ρ]) + γ(t)
è
Tr (Aµσ−ρσ+)

− 1
2Tr (Aµ {σ+σ−, ρ})

é6
+ Tr(Aµρ)

5
− i

4 · S(t) · Tr
!
A†

µ[σz, ρ]
"

+ γ(t)
è
Tr
!
A†

µσ−ρσ+
"

− 1
2Tr

!
A†

µ {σ+σ−, ρ}
" é6J

.

(8.5.2)

This time, if all the Aµ and A†
µ commute with ρ the derivative get simplified to

dFe(ρ,N )
dt

=
Ø

µ

I
Tr(A†

µρ) · γ(t)
è
Tr (Aµσ−ρσ+) − Tr (Aµρσ+σ−)

é

+ Tr(Aµρ) · γ(t)
è
Tr
!
A†

µσ−ρσ+
"

− Tr
!
A†

µρσ+σ−
" éJ

.

(8.5.3)
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If Aµ is Hermitian, Equation 8.5.2 simplifies to

dFe(ρ,N )
dt

=
Ø

µ

2 · Tr(Aµρ)
5

− i

4 · S(t) · Tr (Aµ[σz, ρ])

+ γ(t)
1

Tr [Aµσ−ρσ+] − 1
2Tr [Aµ {σ+σ−, ρ}]

26
.

(8.5.4)

Again, these results follow from properties analogous from those described at the end of Section
8.2.
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Chapter 9

Conclusions and Future work

In this work, we investigated various aspects of two of the main information measures used in
Quantum Shannon theory: von Neumann Entropy and Entanglement fidelity. We analyzed the
time evolution of both when measured on the state of an open quantum system undergoing
Markovian and non-Markovian decoherence processes. Additionally, we briefly discussed a
possible extension of already existing results on VNE to its generalizations: quantum Rényi and
Tsallis entropies.

We tried to apply the procedure previously described by K. Kobayashi [2] to search a bound on
von Neumann entropy in the case of non-Markovian evolution. We chose to use two
non-Markovian evolution models: one representing a case of pure decoherence and one
representing a two-level system in a dissipative environment [3]. Our work shows how the
removal of the Markovian assumption, present in Kobayashi’s work, does not allow to draw the
same conclusion by replicating its procedure. In the models we studied, this seems to be strongly
associated to the presence of a sign-varying decay rate in the evolution of ρ associated to
non-Markovianity.

In the following chapter, we studied the same idea but applying it to Rényi and Tsallis
entropies— this time keeping the Markovian evolution assumption. We computed the time
derivatives of these two quantities using the Lindblad master equation and described the most
relevant tests we made to find a possible lower bound. Unfortunately, the more complicated
structure of the derivatives complicates the usage of Kobayashi’s idea and we have not found
similar results for the two generalizations.

In the second part of the thesis we studied the Entanglement fidelity of some of the most
common quantum channels. We computed its values in two different scenarios: the case of a
density matrix in a general form and the one of a probabilistic mixture of two parametrized
states |ψ+⟩ and |ψ−⟩. Defining a two-letters alphabet parametrized on p allowed us to compare
how the choice of this parameters— and so of the letters— affects the capacity of a noisy
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quantum channel to preserve the entanglement between the sent letter and an inaccessible
reference system. We then ranked the Fe of Random Pauli-X, Dephasing and Depolarizing
channel depending on the relationship between the parameter p and the probability q of having a
letter in the state |ψ+⟩.

To complement this analysis of the Entanglement fidelity, we presented some objections to the
meaning given to it by Schumacher in his definition [4]. We gave our perspective on the meaning
of "entanglement preservation" and presented some counter-arguments to the objections.

To conclude, we put together the two main topics of our work by computing the time derivative
of Entanglement fidelity under different types of evolution, describing how this metric is affected
by decoherence if the letter is considered to interact with a reference system. We worked on four
different models: a general form of Lindblad master equation with an arbitrary number of
time-dependent decoherence operators, the simplified Lindblad equation with one
time-independent operator and the two non-Markovian ones presented before. For the Pure
decoherence model we also computed the time derivative for all the quantum channels studied in
the previous chapters.

Our work suggests many possibilities for additional research. Given the results of applying
Kobayashi’s ideas to non-Markovian evolution and to quantum Rényi and Tsallis entropies it is
clear that more work could be done in order to verify the existence, or not, of lower bounds on
such quantities in the long time limit. The same work we did for the presented quantum channels
can be extended to more complex channels like Gaussian Bosonic channels that present the
difficulty of including sums of an infinite number of terms in the definition of their Kraus
operators. The idea of having a parametrized letters can be further explored to find optimal
alphabets in practical applications. This can be motivated by the fact that using quantum states
as letters gives us more freedom than the classical counterpart where mostly we just consider 0
and 1. Moreover, the study of the time derivative of Entanglement fidelity could suggest to study
the evolution of other quantum information measures under the assumption of different
decoherence processes— both Markovian or not.
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