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Summary 

The thesis hereby presented aims at implementing a safety strategy, capable of 

bringing an automated level 4 vehicle, to a minimum risk condition in case a 

performance related failure occurs, 2 different software’s are used to generate the 

model-based algorithm, MATLAB and Qt using state machine xml. 

Chapter 1 gives insight into what is autonomous driving, the difference between each 

level of autonomy in an automated vehicle and a brief explanation of the CARLA 

autonomous driving simulator. 

Chapter 2 explains the design and the equipped sensors of the automated vehicle 

Chapter 3 describes how the autonomous driving simulator CARLA can connect and 

interact with the different software used in this thesis. 

Chapters 4 and 5 explains what the scenario definition for the implementation of the 

DDT-Fallback strategy is, and how it is modeled in MATLAB and Qt using State Chart 

XML, insight in each function that forms the algorithm is given. 

Chapter 7 the most relevant results associated with the proposed DDT Fallback 

strategy are analyzed. 

Chapter 6 concludes the work, summarizing the main objectives and results of this 

thesis. 
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Chapter 1 

1. Introduction 

With the advancements of new technologies, the automotive industry is one that 

has seen lots of improvements towards adapting new safety systems that aid the 

driver during normal driving, but in the recent years many companies have been 

developing software aiming at having a full autonomous vehicle, at the present 

moment no vehicle is fully autonomous, but technology is slowly approaching this 

goal. 

Therefore this thesis focuses on developing a DDT fallback strategy to be 

implemented in an autonomous vehicle and reach a further level of autonomy and 

rely less and less on the driver taking the controls, this fallback strategy is a safety 

feature that aims to bring the vehicle to a minimum risk condition, that is, putting 

the vehicle out of the active traffic lanes in a safe manner, without being a thread 

for other road users. 

This thesis uses the CARLA simulator, an open source software that is used to 

implement autonomous driving software, facilitating the definition of sensors such 

as Lidars, RGB cameras, depth cameras, GNSS, Inertial sensors and others, that 

are a fundamental part on the development of autonomous driving software, 

because they allow to test the algorithms before being implemented in a real self-

driving car. 

 

1.1. What is autonomous driving 

An autonomous car, also called self-driving car or driverless car, is defined as one 

that uses technology to partially or entirely replace the human driver in navigating 

a vehicle from an origin to a destination while avoiding road hazards and 

responding to traffic conditions. Autonomous vehicles are responsible for all driving 

activities, such as perceiving the environment, monitoring important systems, and 

controlling the vehicle, which includes navigating its surroundings. 

Self-driving cars (Figure 1.1) will bring many advantages, one of the most important 

of them is the ability to reduce the chance of accidents due to loss of attention 

during heavy traffic conditions, and their ability to react very fast to changes in road 

conditions. 

Initial tests in the 80s and 90s demonstrated that vehicles could move 

autonomously under certain conditions, during this time development in GPS and 
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sensor technology allowed vehicles to more accurately locate and perceive objects 

around them, as of late of 2024 no system has achieved full autonomy (SAE level 

5). 

 

Whit the advancements in the development of technologies such as cameras, 

radars, lidars and artificial intelligence algorithms in vehicles, allowed them to 

navigate in complex traffic scenarios, many car manufacturers and technologies 

companies are now accelerating their efforts to develop fully autonomous vehicles, 

the goal of these vehicles is to reduce traffic accidents, increase transport efficiency 

and provide greater independence for people. However technical challenges as 

well as ethical. And safety issues continue to shape the advancement in this field. 

The future of autonomous driving depends on overcoming these challenges and 

gaining social acceptance of this technology. 

However, incidents and casualties involving vehicles equipped with Automated 

Driving Systems (ADS) are still rising. For the merits of autonomous vehicles to be 

recognized more extensively, the immediate problem of ADS must be appropriately 

dealt with, namely, the perception and sensing ability in adverse weather 

conditions. [1] 

 

1.2. SAE Levels of automation 

The Society of Automotive Engineers (SAE) has published a standard (J3016) to 

classify the different levels of automation and functionality in an automated driving 

system (ADS) (Figure 1. 2), the levels range from 0 to 5, being “0” a vehicle with 

no automation at all, while a level ”5” corresponds to a high level automation or fully 

driverless vehicle, This classification is based on the role of the driver, rather than 

the vehicle's capabilities, at the present time, no vehicle has achieved full autonomy 

Figure 1.1  Bylogix VeGA autonomous vehicle 
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(Level 5), there are currently level 3 vehicles, which have been commercialized and 

it is expected that level 5 vehicles will be commercialized in the near future. [2] 

 

Figure 1. 2 SAE Levels of automation from [2] 

• Level 0, No driving automation: 

Full-time performance by the driver of all aspects of driving, even when "enhanced 

by warning or intervention systems, no automation. 

• Level 1, Driver assistance: 

The current driver assistance systems support drivers on the road and help ensure 

additional safety and comfort. Examples of this include the Active Cruise Control, 

driver is responsible for the DDT fallback. 

• Level 2, Partial Driving automation: 

The driving automation systems is capable of performing both lateral and 

longitudinal motion, but there are some events is not capable of recognizing or 

responding to; therefore the driver supervises the feature performance by 

completing the subtask of the DDT fallback. 

• Level 3, Conditional driving automation: 

With conditional automation systems, the automated driving system will be able to 

drive autonomously over the entire DDT under routine/normal conditions, in 

certain traffic situations, such as on motorways. With the expectation that the DDT 
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fallback user is receptive to request to intervene and take over control within a few 

seconds, such as at road construction sites. 

 

• Level 4, High driving automation: 

Level 4 is fully autonomous driving, although a human driver can still request 

control, and the car still has a cockpit. In level 4, the car can handle most driving 

situations independently such as performing the DDT fallback by itself. The 

technology in level 4 is developed to the point that a car can handle highly complex 

urban driving situations, such as the sudden appearance of construction sites, 

without any driver intervention, the car has the authority to move into minimal risk 

conditions. 

• Level 5, Full driving automation: 

Unlike levels 3 and 4, the “Full Automation” of level 5 is where true autonomous 

driving becomes a reality: Drivers don’t need to be fit to drive and don’t even need 

to have a license. The car performs any and all driving tasks – there isn’t even a 

cockpit. Therefore every person in the car becomes a passenger, opening up new 

mobility possibilities for people with disabilities, for example. 

Cars at this level will clearly need to meet stringent safety demands, and will only 

drive at relatively low speeds within populated areas. They are also able to drive 

on highways but initially, they will only be used in defined areas of city centres. [3] 

 

1.3. The Importance of simulation in Autonomous 

driving 

One very important tool for software development, and in particular for 

autonomous driving applications is the difference choice of simulators available 

in the market, these simulators provide us with many advantages, one of the 

most important parts in software development is testing and validation, the 

testing phase allows us to determine if our application fulfills its intended 

function, and whether it is safe for deployment in the target hardware. 

In industries like aviation and automotive testing and simulation are very critical 

parts during the development process, specifically in model-based software 

applications after the model is created, it moves to the verification stage (Figure 

1. 3), before being loaded in the target hardware it must go through a series of 

verification steps such as Model in the loop (MIL), Software in the loop (SIL) and 

hardware in the loop (HIL). 

https://www.bmw.com/en/innovation/mapping.html
https://www.bmw.com/en/innovation/mapping.html
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• Model in the loop 

MIL testing is a simulation technique used in all stages of a product’s controller 

development cycle. It involves testing a controller model at the component, 

composition, or system level within a simulation environment, before 

downloading the code into a physical Electronic Control Unit (ECU) and testing 

on a vehicle 

 

• Software in the loop 

Software-in-the-Loop testing, also called SiL testing, means testing embedded 

software, algorithms or entire control loops with or without environment model 

on a PC. In fact, SiL Testing is an integral part of automotive software testing. 

The source code for the embedded system is compiled for execution on the PC 

and then tested on the PC. 

• Hardware in the loop 

HIL is a technique that is used in the development and testing of embedded 

systems. The complexity of the plant under control is included in testing and 

development by adding a mathematical representation of all related dynamic 

systems. These mathematical representations are referred to as the "plant 

simulation". The embedded system to be tested interacts with this plant 

simulation. 

 

Figure 1. 3 V&V cycle validation process from [15] 

https://en.wikipedia.org/wiki/Representation_(mathematics)
https://en.wikipedia.org/wiki/Dynamic_systems
https://en.wikipedia.org/wiki/Dynamic_systems
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Simulators fall under the SIL testing, the SIL testing method has many 

advantages, these benefits explain why SIL tests are an important part during 

the software development process, the main advantages are: 

• Cost efficiency 

• Rapid feedback loop 

• Risk reduction 

• Broad test scenarios 

• Acceleration of the development process 

• Preparation for integration and system test 

• Flexibility in the development process 

 

1.4. Autonomous driving simulators 

1.4.1. CARLA Simulator 

CARLA (Figure 1. 4) is an open-source autonomous driving simulator. It was 

built from scratch to serve as a modular and flexible API to address a range of 

tasks involved in the problem of autonomous driving. 

One of the main goals of CARLA is to help democratize autonomous driving 

R&D, serving as a tool that can be easily accessed and customized by users. To 

do so, the simulator has to meet the requirements of different use cases within 

the general problem of driving (e.g. learning driving policies, training perception 

algorithms, etc.). CARLA is grounded on Unreal Engine to run the simulation 

and uses the ASAM OpenDRIVE standard (1.4 as today) to define roads and 

Figure 1. 4 CARLA Simulator Logo from [4]. 
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urban settings. Control over the simulation is granted through an API handled 

in Python and C++ that is constantly growing as the project does. [4] 

 

1.4.2. The Simulator 

CARLA simulator consists of a scalable client-server architecture (Figure 1. 5). 

The server is responsible for everything related with the simulation itself: sensor 

rendering, computation of physics, updates on the world-state and its actors 

and much more. As it aims for realistic results, the best fit would be running the 

server with a dedicated GPU, especially when dealing with machine learning. 

 

The client side consists of a sum of client modules controlling the logic of actors 

on scene and setting world conditions. This is achieved by leveraging the 

CARLA API (in Python or C++), a layer that mediates between server and client 

that is constantly evolving to provide new functionalities. 

That summarizes the basic structure of the simulator. Understanding CARLA 

though is much more than that, as many different features and elements coexist 

within it. Some of these are listed hereunder, as to gain perspective on the 

capabilities of what CARLA can achieve.  

• Traffic manager. A built-in system that takes control of the vehicles besides the 

one used for learning. It acts as a conductor provided by CARLA to recreate 

urban-like environments with realistic behaviors.  

• Sensors. Vehicles rely on them to dispense information of their surroundings. 

In CARLA they are a specific kind of actor attached the vehicle and the data 

they receive can be retrieved and stored to ease the process. Currently the 

project supports different types of these, from cameras to radars, lidar and 

many more.  

 

Figure 1. 5 Carla client-server architecture from [4] 
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• Recorder. This feature is used to reenact a simulation step by step for every 

actor in the world. It grants access to any moment in the timeline anywhere in 

the world, making for a great tracing tool.  

 

• ROS bridge and Autoware implementation. As a matter of universalization, 

the CARLA project ties knots and works for the integration of the simulator 

within other learning environments.  

 

• Open assets. CARLA facilitates different maps for urban settings with control 

over weather conditions and a blueprint library with a wide set of actors to be 

used. However, these elements can be customized and new can be generated 

following simple guidelines.  

 

• Scenario runner. In order to ease the learning process for vehicles, CARLA 

provides a series of routes describing different situations to iterate on.  

 

In recent years CARLA has been growing and receiving active development, about 

once a year the simulator receives a major update, fixing bugs and adding new 

functionality with each update, it does so while never forgetting its open-source 

nature. The project is transparent meaning that anyone can have access to the tools 

and the development community, everybody is free to explore with CARLA, find 

their own solutions and then share their achievements with the rest of the 

community. [4] 

Figure 1. 6 Carla development build in Unreal engine 4 
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Chapter 2 

2. Physical system design 

2.1. Sensors 

2.1.1. Lidar 

Lidar sensors (Figure 2. 1) (Light detection and ranging) are used for determining 

distances, their working principle is based in targeting an object or surface with a 

laser and measuring the time the reflected light takes to return to the receiver. 

In autonomous driving applications Lidar sensors are mounted in the top of the car 

in order to have a full view, and they generate a 3D point cloud data (Figure 2. 2) in 

the form of x, y and z coordinates of the surroundings, that data can be further 

processed to extract the information given by the sensor, such as distance and 

angle to a detected object. 

CARLA offers a wide range of customization options for the different types of 

sensors available and to adapt the simulated sensors to their real-world 

counterparts some of these customization options are: 

Figure 2. 1 Lidar in an autonomous vehicle from [16] 

Figure 2. 2 Point cloud data of a Lidar sensor from [4]. 
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• Channels: Numbers of lasers 

• Range: maximum distance Lidar can measure 

• Rotating frequency: Lidar rotation frequency 

• Upper and lower FOV: angle in degrees of higher and lower lasers 

• Horizontal FOV: horizontal field of view in degrees 

 

2.1.2. GNSS sensor 

Another of the most relevant pieces of equipment in an autonomous car is its GNSS 

sensor, this device connects to GPS satellites to obtain latitude and longitude data 

for position calculation of the autonomous car. 

GNSS performance is assessed using four criteria: 

• Accuracy: the difference between a receiver’s measured and real position, 

speed or time. 

• Integrity: a system’s capacity to provide a threshold of confidence and, in the 

event of an anomaly in the positioning data, an alarm. 

• Continuity: a system’s ability to function without interruption. 

• Availability: the percentage of time a signal fulfils the above accuracy, integrity 

and continuity criteria. 

This performance can be improved using regional Satellite-based Augmentation 

Systems (SBAS), such as the European Geostationary Navigation Overlay Service 

(EGNOS). 

In CARLA GNSS sensors reports the current GNSS position of the self-driving car, 

this is calculated by adding the metric position to an initial geo reference location 

defined within the OpenDRIVE map definition. 

Some properties of the GNSS sensors in CARLA that can be customized to test the 

sensor in different scenarios are,  

• standard deviation for latitude, longitude and altitude: Standard deviation 

parameter in the noise model  

• noise bias for latitude longitude and altitude: Mean parameter in the noise model 

  

https://www.euspa.europa.eu/eu-space-programme/egnos/what-sbas
https://www.euspa.europa.eu/eu-space-programme/egnos


20 
 

Chapter 3 

3. Preparing for the development environment 

The development and testing for autonomous driving software technologies 

requires a robust simulation environment, such as to represent the real world as 

closely as possible, the simulator is in charge of simulating the physics, vehicles, 

pedestrians, environmental conditions while also providing support for simulating 

the different types of sensors available in autonomous driving applications and 

allowing to connect and interact with different analytical tools such as MATLAB and 

Qt that will be used later in this thesis. 

For our research project the ability to integrate the simulation data with MATLAB 

and other software through the Python API that CARLA offers was an important 

consideration for choosing the simulator platform, CARLA simulator’s advanced 

graphics, physics engine, traffic and pedestrian simulation set and important base 

for this autonomous driving research, its compatibility with different software make 

it a versatile simulator for testing different driving scenarios. 

 

3.1. Setting up CARLA with a virtual environment  

CARLA allows to communicate and control de simulation through the Python API, 

in order to have a working connection to the simulator it is necessary to have the 

proper python version to work with the specific version of CARLA we want to use, 

to make the process of connecting to CARLA and having different python versions 

in our OS without affecting other applications, a virtual environment tool called 

anaconda will be used, this tools allows us to have different python versions through 

different environments in our OS, thus we can have multiple environments and 

CARLA models on the same PC that run in separated environments without 

affecting the others, the steps to set up anaconda are as follows (Figure 3. 1 

Development environment.Figure 3. 1). 
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1. The first step is to get CARLA from the developer website, there will be two 

versions to download, a precompiled version and a build version for 

development purposes, in our case the precompiled version is sufficient for our 

purposes. 

 

2. Download the anaconda software from its website. 

3. Create the virtual environment, we specify the name of the virtual environment 

(Carla-sim) and the python version we will be using (3.7). 

 

 

4. Activate the virtual environment with the command 

 

5. We can install some python libraries to be available for our scripts with the pip 

command. 

 

 

3.2. Running CARLA with MATLAB 

Since there is no a direct method to interface MATLAB with CARLA the first option 

available to allow communication is using the ROS bridge to connect to MATLAB 

with CARLA, this option requires more compatibilities with the operating system 

Conda create --name Carla-sim python=3.7 

Activate carla-sim 

Pip install carla 

Pip install numpy 

CARLA 0.9.15 Python 3.7 

Figure 3. 1 Development environment. 
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and is more appropriate for Linux operating systems, or as a second choice and 

the one used in this thesis, is to rely on the python bridge, being simpler to set up 

and use, we must use a MATLAB version compatible with the python version we 

are using, in our case Python 3.7 

 

1. Download and install MATLAB R2021B, this is the last version of MATLAB 

compatible with python 3.7. 

 

2. To make MATLAB and CARLA communicate we must tell MATLAB to use 

correct python version we created in our virtual environment (Figure 3. 2). 

 

Pyversion("C:\Users\salva\anaconda3\envs\carla-sim\python.exe") 

 

 

insert(py.sys.path,int32(0),'C:\CARLA_0.9.15\WindowsNoEditor\PythonAP

I\carla\dist\carla-0.9.15-py3.7-win-amd64.egg'); 

 

py.importlib.import_module('carla'); 

 

These last two steps must be added to each script, so the necessary connections 

and libraries are included with the script. 

This is the standard initialization step to connect to CARLA from MATLAB 

1. insert(py.sys.path, 
int32(0),['C:\CARLA_0.9.15\WindowsNoEditor\PythonAPI\carla\dist\carla-
0.9.15-py3.7-win-amd64.egg']); 

2. py.importlib.import_module('carla'); 
3.  
4. port = int16(2000); 
5. client = py.carla.Client('localhost', port); 
6. client.set_timeout(10.0); 
7. world = client.get_world(); 

Figure 3. 2 MATLAB 2021 running python 3.7. 
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This section of code spawns a specific vehicle (model3) in the map at a specified 

spawn point. 

8. % Spawn Vehicle 
9. blueprint_library = world.get_blueprint_library(); 
10. car_list = py.list(blueprint_library.filter("model3")); 
11. car_bp = car_list{1}; 
12. spawn_point = world.get_map().get_spawn_points(); 
13. start_point = spawn_point{72}; 
14. tesla = world.spawn_actor(car_bp, start_point); 
15. %tesla.set_autopilot(true); 

 

And finally, we move the spectator camera behind the vehicle to have a better 

view, (Figure 3. 3). 

16. %%Move spectator behind the car 
17. spectator = world.get_spectator(); 
18. vehicle_transform = tesla.get_transform(); 
19. location_offset = py.carla.Location(-10, 0, 2.5); 
20. transform = 

py.carla.Transform(vehicle_transform.transform(location_offset),vehicle_tra
nsform.rotation); 

21. spectator.set_transform(transform); 

 

  

Figure 3. 3 Result of running the code in MATLAB. 
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3.3. Running CARLA with Qt SCXML state machine  

Qt is a cross-platform application development framework for desktop, embedded 

and mobile devices, some  supported platforms include Linux, OS X, Windows, 

Android, iOS and others.  

Qt is not a programming language on its own. It is a framework written in C++. In 

this thesis Qt is used to develop a Qt python application that interfaces with a state-

machine application in the SCXML language, which is a general-purpose event-

based state machine language that combines concepts from CCXML and Harel 

State Tables, Qt offers a user interface that allows to create the state machines. [5] 

The first step is to download Qt from https://www.qt.io/download-qt-installer-oss 

and add the Qt state machines library from the Qt maintenance tool. 

Connecting Qt to CARLA is simpler, since Qt allows us to write in python language, 

we just need to point Qt to our python executable in the virtual environment (Figure 

3. 4). 

 

To run our scripts to CARLA we just need to run the initialization steps in our python 

script 

1. try: 
2.     sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( 
3.         sys.version_info.major, 
4.         sys.version_info.minor, 
5.         'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) 
6. except IndexError: 
7.     pass 
8.  
9. import carla 
10. # Starting the simulation 

Figure 3. 4 Qt running in virtual environment with python 3.7. 

https://wiki.qt.io/Supported_Platforms
https://www.qt.io/download-qt-installer-oss
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11. client = carla.Client('localhost', 2000) 
12. world = client.get_world() 
 

Then the script to spawn a car and move the spectator behind the car 

1. # Spawning the car 
2. bp_lib = world.get_blueprint_library() 
3. vehicle_bp = bp_lib.filter('*mini*')[0] 
4. spawn_points = world.get_map().get_spawn_points() 
5. #start_point = spawn_points[60] 
6. start_point = carla.Transform(carla.Location(x=-27,y=69.7, 

z=0.5),carla.Rotation(yaw=0.073)) 
7. vehicle = world.spawn_actor(vehicle_bp, start_point) 
8.  
9. spectator = world.get_spectator() 
10. transform = 

carla.Transform(vehicle.get_transform().transform(carla.Location(x=-10, 
z=2.5)),vehicle.get_transform().rotation) 

11. spectator.set_transform(transform) 

 

Giving a similar result to that obtained with MATLAB (Figure 3. 5). 

 
Figure 3. 5 Example of code execution using Qt. 
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Chapter 4 

4. Problem definition for DDT fallback strategy 

In the following section the case study to evaluate the DDT fallback strategy is 

presented, first the driving scenario is defined, followed by the parameters for the 

decision and control are mentioned. 

The objective of this section is to evaluate the behavior of an automated driving 

system experiencing a DDT performance relevant system failure. 

 

4.1.1. Scenario and road network 

An autonomous vehicle is driving in an urban environment when it experiences a 

DDT performance-related system failure. 

A dual carriageway (Figure 4. 1) with one lane for each direction of travel, having 

an emergency lane, or road shoulder on its right side. The road was chosen from 

one of the CARLA maps specifically called town 10, having the required 

characteristics to test the DDT fallback strategy that will be proposed. 

 

4.1.2. Failure 

The Automated Driving System experiences a DDT performance relevant failure, 

that requires itself to be removed from the active lanes of traffic to a minimum risk 

condition. 

 

Figure 4. 1 Dual carriageway with emergency lanes. 
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4.2 Fallback strategy 

A fallback strategy usually entails automatically bringing the vehicle to a stop within 

its current travel path but could also pertain to a more extensive maneuver 

designed to remove the vehicle from an active lane of traffic, it is assumed that 

bringing the vehicle to a hard stop is risky for other road users. 

Nowadays, most automated driving systems rely on a DDT fallback-ready user to 

achieve a minimal risk condition, however a human driver may not respond to a 

request to intervene appropriately and in good time, which is why a fallback strategy 

is to be defined regardless of the presence of a human driver and his ability to 

intervene. The dynamic driving task fallback must also be defined for ADS-

dedicated vehicles, designated to be operated exclusively by level 4 or level 5 ADS 

for all trips. [6] 

In the case of a failure, the DDT fallback strategy starts, first the velocity is instantly 

reduced to a degraded value, and the current path is kept unchanged, the route is 

not modified until a safe parking spot, a road shoulder is found, empty without other 

cars occupying it, in this case the self-driving car is allowed to park in the road 

shoulder. 

Figure 4. 2 Flow chart for DDT fallback strategy, from [6] 
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As an additional issue, the case is considered in which the emergency shoulder 

cannot be used (Figure 4. 3), as another vehicle is already parked on it, requiring 

driving a longer distance to the next permitted stop. 

 

4.3. Testing platform  

A standard city vehicle has been selected as the test platform for the case study. 

This way the test platform has been modeled in CARLA simulator, interfaced with 

MATLAB and later on with Qt state machine, using the unreal engine for graphics 

and physics simulation and with the CARLA Python API, the sensors have been 

simulated in each platform adding GNSS sensor and lidar sensor for object 

detection with a maximum range of 50m. 

 

 

 

 

 

Figure 4. 3 DDT fallback scenarios, from [18]. 
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4.4. Different approaches for model-based DDT-fallback 

strategies 

4.4.1. Model based modeling of the DDT-fallback in 

MATLAB 

In order to model the CARLA environment with MATLAB and communicate with it, 

a connection must be established first, as shown in previous chapters. 

To be able to control the car inside an urban environment we must ensure both the 

longitudinal control and lateral control, this is the first step to control and implement 

a DDT-fallback strategy, longitudinal control deals with throttle, braking and reverse, 

while lateral control deals with navigation acting on the steering wheel of the ADS 

vehicle. 

The way MATLAB communicates with CARLA in Simulink, is through a main block, 

which is CARLA environment on the image above, this block is essential to run the 

simulations since it outputs and inputs data to the simulation, and for MATLAB to 

process and generate a control signal, all the function blocks (Figure 4. 4) in this 

application will be further described below, and the same image is shown enlarged 

in appendix D. 

 

 

Figure 4. 4 Model based approach in MATLAB for DDT fallback. 
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4.5. CARLA environment 

Creating the CARLA environment is done through the MATLAB s-function block, in 

our model, it has 3 outputs and 4 inputs, the outputs are, velocity, which is the 

current velocity of the car, car_det, being a Boolean signal coming from the lidar 

sensor, and curr_pos is the current position of the vehicle in x, y coordinates. 

The inputs to the simulation are: 

• Throttle, that is a value in the range from 0 to 1, controls the throttle of the 

vehicle. 

• Brake, similarly, is a value in the range 0 to 1 that controls braking.  

• Steering angle is a value in the range from -1 to 1, that controls the amount 

of steering. 

• Lidar search is a Boolean value that activates the lidar sensor to search for 

vehicles when the parking position is approaching, 

To apply, the commands control.throttle, control.brake and 

control.steer are used in the code. 

In the first section, the car is spawned at our specified location, after this we move 

the spectator behind the car to follow the vehicle through the simulation, we 

initialize and define the sensors properties, this section of the code is run only once, 

the main function inside is used to apply the control commands, calculate the 

speed, and output the data required to compute the algorithms such as the x, y 

position of the vehicle, below is shown a portion of the script, the full code is shown 

in appendix A. 

At the end of the simulation all actors, including vehicles and sensors are destroyed 

from the world. 

1. classdef CarlaEnvironment < matlab.System & matlab.system.mixin.Propagates 
2.      
3.     function [velocity, car_det, curr_pos] = stepImpl(obj, throttle_input, 

brake_input, steering_angle_input, lidar_search) 
4.         %  
5.         pause(0.001); 
6.         x_vel = obj.car.get_velocity.x; 
7.         y_vel = obj.car.get_velocity.y; 
8.         z_vel = obj.car.get_velocity.z; 
9.         velocity = 3.6 * sqrt((x_vel)^2 + (y_vel)^2 + (z_vel)^2); 
10.  
11.         v_vec = obj.car.get_transform().get_forward_vector(); 
12.         % v_vec = [v_vec.x v_vec.y 0] 
13.         ego_trans = obj.car.get_transform().location; 
14.         x_pos = ego_trans.x; 
15.         y_pos = ego_trans.y; 
16.         % ego_loc= [x_pos y_pos 0] 
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17.         curr_pos = [x_pos y_pos 0 v_vec.x v_vec.y 0]; 
18.  
19.         control = obj.car.get_control(); 
20.         control.steer = 0; 
21.         control.throttle = throttle_input; 
22.         control.brake = brake_input; 
23.         control.steer = steering_angle_input; 
24.         obj.car.apply_control(control); 
25.  
26.         lidarData = single(py.getattr(obj.moduleLidar, 'array')); 
27.         lidarData = double(lidarData(:, 1:3)); % Convert to double and 

extract x, y, z coordinates 
28.         point_cloud = lidarData; % Output the LIDAR data 
29.         [m, n] = size(point_cloud); 
30.         within_range_mask = (point_cloud >= obj.lower_thresholds) & 

(point_cloud <= obj.upper_thresholds); 
31.  
32.         % Filter out elements not meeting the threshold (optional: set to 

NaN or zero) 
33.         valid_rows = all(within_range_mask, 2); 
34.         filtered_rows = point_cloud(valid_rows, :); 
35.         distances = sqrt(sum(filtered_rows.^2, 2)); 
36.  
37.         if (distances < 25) & (obj.car_det == 0) 
38.             obj.car_det = 1; 
39.         elseif lidar_search == 0 && obj.car_det == 1 
40.             obj.car_det = 0;             
41.         end 
42.  
43.         car_det = obj.car_det; 
44.     end 
45. end 
46.  

 

 

4.6. PID Controllers 

A proportional–integral–derivative controller (PID controller) is a feedback-based 

control loop mechanism commonly used to manage machines and processes that 

require continuous control and automatic adjustment. It is typically used in 

industrial control systems. The PID controller automatically compares the desired 

target value (setpoint or SP) with the actual value of the system (process variable 

or PV). 

It then applies corrective actions automatically to bring the PV to the same value as 

the SP using three methods: The proportional (P) component responds to the 

current error value by producing an output that is directly proportional to the 

magnitude of the error. The integral (I) component, in turn, considers the cumulative 

sum of past errors to address any residual steady-state errors that persist over time. 

Lastly, the derivative (D) component predicts future error by assessing the rate of 

change of the error.  

https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Output_(computing)
https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Steady-state


32 
 

A common example is a vehicle’s cruise control system. When a vehicle encounters 

a hill, its speed may decrease due to constant engine power. The PID controller 

adjusts the engine's power output to restore the vehicle to its desired speed, doing 

so efficiently with minimal delay and overshoot. [7]  

The balance of these effects is achieved by loop tuning to produce the optimal 

control function. The tuning constants are shown below as "K" and must be derived 

for each control application, as they depend on the response characteristics of the 

physical system, external to the controller. These are dependent on the behavior of 

the measuring sensor, the final control element (such as a control valve), any control 

signal delays, and the process itself. Approximate values of constants can usually 

be initially entered knowing the type of application, but they are normally refined, 

or tuned, by introducing a setpoint change and observing the system response. 

The overall control function is. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

Where Kp, Ki and Kd, are all non-negative, denote the coefficients for the 

proportional, integral and derivative terms. 

 

4.6.1. Longitudinal control 

The main control strategy for the longitudinal axis of the vehicle is through a PID 

controller that acts directly on the throttle or braking (Figure 4. 6) to reach a 

constant velocity in the ADS vehicle. 

 

Figure 4. 5 PID block diagram, from [7] 

https://en.wikipedia.org/wiki/Cruise_control
https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller#Loop_tuning
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In the DDT fallback strategy the target velocity is set based on conditions, such as 

is there is any ADS performance relevant failure, the velocity is reduced to a 

degraded value, or if the vehicle has reached the parking position it will apply 

braking to stop the vehicle, first the target velocity is fed to the control system 

initially is 20 km/h. It calculates the error between the current velocity and the target 

velocity, and it generates a control signal that must be between 0 and 1 since the 

PID controller can output a value greater than 1 we must ensure the value fed to 

the ADS car is inside the range 0 - 1 so a saturation block is added, this will be the 

amount of throttle applied in the vehicle. 

 

1. function [target_vel, brake] = fcn(ddt_flag, car_det, wp_idx) 
2.  
3. target_vel = 20; 
4. brake = 0; 
5.  
6. if ddt_flag == 1 
7.     target_vel = 10; 
8. end 
9.  
10. if ddt_flag == 0 || car_det == 1 
11.     %no parking in shoulder 
12. elseif ddt_flag == 1 && wp_idx > 38 && wp_idx < 50 
13.     target_vel = 0; 
14.     brake = 0.3; 
15. end 

 

This function block sets the target velocity the vehicle must follow based on the 

conditions, if there is any performance relevant failure, the target velocity is instantly 

reduced to 10km/h 

• ddt_flag: is a variable used to tell the ADS a failure has been detected, and it 

must perform the DDT-fallback as soon as possible. 

• car_det: is a variable given by filtering the lidar point cloud data to detect if a 

vehicle is parked in the road shoulder. 

Figure 4. 6 Schematic of longitudinal control in MATLAB. 
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10. if ddt_flag == 0 || car_det == 1 
11.     %no parking in shoulder 
12. elseif ddt_flag == 1 && wp_idx > 38 && wp_idx < 50 
13.     target_vel = 0; 
14.     brake = 0.3; 
15. end 
 

This sets of conditions determine if the vehicle is allowed to stop at the road 

shoulder if no vehicles are detected, there is a performance relevant issue and we 

are in the road shoulder, the vehicle will stop, the position of the road shoulder must 

be known at priory since the ADS vehicle is not equipped with vision system, it 

relies on GPS waypoints to navigate. 

 

4.6.2. Lateral control 

The lateral control similarly to the longitudinal control is realized though a PID 

controller to fed the steering value to the ADS car (Figure 4. 7), the goal of lateral 

control is to navigate the vehicle through a determined set of waypoints that form a 

route, the function Navigation plays an important role, generating the error between 

the current position of the car and the waypoint it is tracking, to feed the PID 

controller. 

 

1. function [c, err] = Navigation(route, curr_pos) 
2.  
3. ego_loc = curr_pos(1:3); %x,y,z coordinates 
4. v_vec = curr_pos(4:6); 

 

Route: is a matrix [N x 3] containing the set of waypoints that form the route in the 

form [x, y, yaw] 

• Curr_pos: this input denotes the actual position of the vehicle with at least the x 

and y coordinate. 

Figure 4. 7 Schematic of Lateral control in MATLAB. 
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• v_vec: represents the forward vector of the vehicle in the form [x, y, 0], is obtained 

from CARLA with the command, 

v_vec= obj.car.get_transform().get_forward_vector(); 

1. Calculate the number of waypoints in the route. 

N = size(route,1); 

 

2. Matrix containing the distance from the current position to the next 

waypoints in the route, this line computes the Euclidean distance between 

each waypoint in the route. 

dis = vecnorm(route(:,1:2)'-curr_pos(1:2)'.*ones(1,N))'; 

 

3. Identify the closest waypoint. 

[~,c] = min(dis); 

 

4. Switch to the next waypoint if the vehicle is within a threshold, this is done 

to prevent the vehicle from tracking a waypoint that is very near and could 

cause issues in the PID controller. 

 

% Add threshold to switch to the next waypoint if close enough 
min_distance_threshold = 1; % Distance threshold in meters 
if dis(c) < min_distance_threshold && c < N 
    c = c + 1; % Move to the next waypoint if within threshold 
end 

 

5. First the tracking waypoint is selected in w_loc, then the difference w_loc-

ego_loc is calculated and finally wv_linalg computes the product of the 

magnitudes of w_vec and v_vec. 

 

w_loc = route(c,:); 
w_vec = [w_loc(1) - ego_loc(1), w_loc(2) - ego_loc(2), 0]; 
wv_linalg = norm(w_vec) * norm(v_vec); 

 

6. Compute the heading error angle between vectors. 

 

% Compute dot product 
dot_product = dot(w_vec, v_vec); 
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if wv_linalg == 0 
    cos_theta = 1; % Use a small positive value 
else 
% Calculate the angle (clipping between -1 and 1 to avoid numerical 
issues) 
cos_theta = min(max(dot_product / wv_linalg, -1), 1); 
end 

 

7. Compute the error angle and determine the sign, if vehicle is on the left of 

the reference trajectory the error is negative, if it is on the right the error is 

positive. 

 

err = acos(cos_theta); 
cross_product = cross(v_vec, w_vec); 
 
if cross_product(3) < 0 
   err = -err; 
end 

 

The MATLAB function navigation provides the error for path tracking which is 

essential to steer the vehicle along a route, provides essential metrics for 

correction, allows the PID controller to correct and adjust the position of the vehicle, 

which is critical for navigation precision and efficiency in ADS vehicles. [8] [9] [10] 

[11] 
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4.7. MATLAB functions for DDT-fallback 

The previous section focused on the algorithm that controls the car both laterally 

and longitudinally. These controllers are essential to implement a DDT-fallback 

strategy to the ADS vehicle, next the following functions aims at having a set of 

conditions to control the behavior of the car under a DDT-fallback scenario. 

 

4.7.1. MATLAB function get_route. 

This function aims at feeding the navigation algorithm with the appropriate route 

given the situation the ADS vehicle is in, 2 routes are designed at priori (Figure 4.8 

and Figure 4.9), one route is used under normal navigation of the ADS vehicle, 

while the other route, is used only under DDT-fallback and this route contains the 

road shoulders. 

 

Figure 4. 9 Route under normal navigation (note road shoulder is not present). 

Figure 4. 8 Route under DDT fallback (note road shoulder is present). 
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When the vehicle enters in DDT-fallback, it will switch and follow the ddt_route and 

will park in the road shoulder if no other vehicle is occupying the place, if a vehicle 

is present, meaning it was detected by the lidar, the route is changed to the original 

one, before the car enters in the road shoulder, thus continuing on the main route, 

until a safe free road shoulder is found. 

5. function current_route = get_route(ddt_flag, route, route_ddt, car_det) 
6.  
7. if ddt_flag == 1 && car_det == 0 
8.         current_route = route_ddt; 
9. elseif ddt_flag == 1 && car_det == 1 
10.         current_route = route; 
11. else 
12.         current_route = route; 
13. end 

 

 

4.7.2. MATLAB function dis2shoulder 

This MATLAB function has a simple objective, its main goal is to compute the 

distance the ADS vehicle is from the road shoulder, it is important to know how far 

is the vehicle, because in this manner the filtering of the data from the lidar is 

enabled when the vehicle is at a specific distance from the road shoulder, and 

determine whether a vehicle is present or not. 

Its inputs are curr_pos (current position), route (to store the position of the road 

shoulder), and output lidar_search (variable to enable the filtering of the lidar data) 

 

1. function lidar_search  = dis2shoulder(curr_pos, route) 
2.  
3. wp = route(35,1:2); 
4. dis = vecnorm(curr_pos(1:2)'-wp(1:2)'); 
5.  
6. lidar_search = 2; 
7.  
8. if dis < 25 && dis > 22 
9.     lidar_search = 1; 
10. elseif dis > 50  
11.     lidar_search = 0;   
12. end 

 

• wp: stores the position of the road shoulder 

• dis: computes the distance between the ADS vehicle and the road shoulder 

The conditional statements turn on and off the filtering of the lidar, when the vehicle 

is between 25 and 22 meters from the road shoulder the filtering of the lidar data 

is enabled to detect for vehicles. 
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4.7.3. Getting Lidar data 

For autonomous driving, Lidar is pretty much a standard. It allows the car to view 

its surroundings using a point cloud. CARLA also allows to simulate it by using ray 

cast (think of it as a laser) and generating the 3D points. For transferring the data 

between CARLA and Simulink, a Python script will used. Depending on the sensors 

and the settings chosen, it automatically generates the Python files behind the 

scenes. 

We start by launching MATLAB, initialize the CARLA environment and add some 

vehicle to the CARLA world The next step is to add the sensor. It is typically 

attached to an actor. A sensor is also an actor, the way it is spawned is similar to 

vehicle. We start by getting the blueprints from the world and filtering it for Lidar 

sensor: 

 

1. % Lidar 
2. blueprint = world.get_blueprint_library().find('sensor.lidar.ray_cast'); 

 

Before spawning the Lidar, we can change the attributes. 

• Number of points generated per second 

• How far the lidar can see 

• Time for one complete rotation 

• Field of view 

• Sensor location relative to the actor it will be attached to 

 

3. blueprint = world.get_blueprint_library().find('sensor.lidar.ray_cast'); 
4. blueprint.set_attribute('points_per_second', '250000'); 
5. blueprint.set_attribute('range', '50'); 
6. blueprint.set_attribute('upper_fov', '45.0') 
7. blueprint.set_attribute('lower_fov', '-30.0') 
8. blueprint.set_attribute('rotation_frequency','20') 
9. blueprint.set_attribute('channels','64') 
10. transform = py.carla.Transform(py.carla.Location(pyargs('x',0.8, 

'z',1.7))); 

 

The way CARLA publishes the sensor data is through callback functions. Now, 

here is the tricky part. As Python and MATLAB run asynchronously, it is not so 

straightforward to exchange data between them. The solution for this is to make 

globally scoped variables on the Python side and let MATLAB read from it 
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asynchronously. This way, the Python part is responsible for writing to the buffer 

(variable), whereas MATLAB just reads from it, in appendix D the complete python 

script used to exchange data is shown. 

Basically, sensor is the sensor object we created in the block before. It is required 

to bind it to the callback function. The argument file_name specifies the generated 

python file name that contains the callback function. Depending on the sensor 

chosen, sensor_mode allows different outputs formats. The data that the sensor 

returns need to be stored somewhere. The parameter var_name allows us to give 

name to that variable. The function returns a module that can be queried later for 

the value of var_name. So, for this example: 

1. moduleLidar = sensorBind(sensor, 'lidar_file', 'lidar', 'array'); 
 

in our case 

 

2. obj.moduleLidar = sensorBind(obj.sensor, 'sensor', 'lidar', 'array'); 
             

 

In the following section of code, the 3d point cloud data obtained from the lidar 

sensor is processed and filtered to scan for a particular region around the car 

(Figure 4. 10). 

• Upper_threshlods: [1 x 3] matrix containing the upper limits in meters for 

filtering the lidar data in x, y, z coordinates, In our case [25, 3, 0], the lidar is 

allowed to scan, 25m ahead 3m to the right side, and 0m from the heigh of 

the lidar, lidar is at 1.7m from the ground 

 

• Lower_threshold: [1 x 3] matrix containing the lower limits in meters for 

filtering the lidar data in x, y, z coordinates, In our case [0, -3, -1.5], the lidar 

Figure 4. 10 Bounding box used in object detection for the Lidar 

point cloud data. 



41 
 

is allowed to scan starting from, 0m ahead, 3m to the left side, and 1.5m 

down from the heigh of the lidar, lidar is at 1.7m from the ground. 

Extract x, y, z coordinates from the point cloud data obtained from the lidar sensor. 

1. lidarData = single(py.getattr(obj.moduleLidar,'array')); 
2.             lidarData = double(lidarData(:, 1:3)); % extract x, y, z 

coordinates 

 

• within_range_mask: is a matrix that stores 1 if the condition is true, and 

zeros if the condition is false, if they are within the thresholds we defined 

earlier. 

• Valid_rows: is a vector of zeros or ones, ones if in the given row the 

condition was met, that is x,y,z coordinates from the lidar are inside the 

threshold. 

• Filtered_rows: stores the x,y,z coordinates of the measurement that are 

inside the threshold 

• Distances: Computes the distance between the lidar sensor and the object 

the laser hit. 

If a measurement is inside 25 meters given the current filter for the lidar sensor an 

object is detected, in this case, a car is detected in the shoulder and the ADS 

vehicle is not allowed to park. 

3.             point_cloud = lidarData; % Output the LIDAR data 
4.             [m,n]=size(point_cloud); 
5.             within_range_mask = (point_cloud >= obj.lower_thresholds) & 

(point_cloud <= obj.upper_thresholds); 
6.      
7.              
8.             valid_rows = all(within_range_mask, 2); 
9.             filtered_rows = point_cloud(valid_rows, :); 
10.             distances = sqrt(sum(filtered_rows.^2, 2)); 
11.              
12.             if (distances < 25) & (obj.car_det == 0) 
13.                obj.car_det = 1; 
14.             elseif lidar_search == 0 && obj.car_det == 1 
15.                 obj.car_det = 0;             
16.             end 
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Chapter 5 

5. Qt SCXML model-based  

In the following section the DDT-fallback strategy is implemented using State Chart 

XML, with a graphical approach to model the state charts in the Qt application and 

using Qt for python Pyside 6 module that provides functionality to create and 

connect our script to the State Chart XML file 

The Qt SCXML module provides classes for embedding state machines created 

from State Chart XML (SCXML) files in Qt applications. The SCXML files can be 

created using any suitable tool, such as a text editor or a simulator, as long as they 

comply to the SCXML Specification, with the restrictions and extensions described 

in SCXML Compliance. 

The basic state machine concepts, state, transition, and event are based on those 

in the SCXML Specification. State charts provide a graphical way of modeling how 

a system reacts to stimuli. This is done by defining the possible states that the 

system can be in, and how the system can move from one state to another 

(transitions between states). A key characteristic of event-driven systems (such as 

Qt applications) is that behavior often depends not only on the last or current event, 

but also the events that preceded it. With state charts, this information is easy to 

express. [5] [12] 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.w3.org/TR/scxml/
https://doc.qt.io/qt-6/qtscxml-scxml-compliance.html
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5.1. Functions 

Since Qt allows for creating applications using the python language with the Pyside 

6 module, connecting and getting data from CARLA is more straightforward, below 

is shown the state chart (Figure 5. 1) used to run the main loop and trigger call of 

events in the python side. 

 

5.2. How variables are sent and received with events 

The way Qt with pyside 6 interacts with the State Chart XML, is through events and 

transition, every time a transition or event is triggered in the state chart, that is, 

every time we move from one state to the other, or by calling events inside the state 

we can trigger a call to exchange data for further processing. [5] [13] 

The working principle in this state chart is the following, first there are 2 main states, 

run and stop, the run state is active while the ADS vehicle is under normal operation 

and all the main control algorithms are executed there, PID for lateral control and 

longitudinal control, as well as exchanging variables with CARLA and python, the 

run state is run continuously by calling the transition update, it is a transition to the 

same state, similar to running inside a loop, it is executed every 10 ms. 

Figure 5. 1 State Chart XML used in Qt to run the main control loop and trigger 

calls to send/read data between python and CARLA. 
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• Sendspeed: command used to send the speed value from python to the 

State Chart XML 

• Getspeed: command used to trigger the event in python and get the 

speed value from python to the State Chart XML 

• SendCommand: applies the control signals to CARLA every time the 

event is called in the SCXML. 

The following section of code shows how the state machine is initialized and 

how the events are handled. 

First a class called ScxmlHandler is created and it contains a QObject, then the 

SCXML file is stored in self.stateMachine, then we create the events we want to 

read from the SCXML file with the command self.stateMachine.connectToEvent, 

we must give the following parameters, scxmlEventSpec – str, receiver 

qobject, method – str, and finally we start the state machine with the 

command self.stateMachine.start() 

17. class ScxmlHandler(QObject): 
18.     def __init__(self, scxml_file, parent=None): 
19.         super().__init__(parent) 
20.         self.stateMachine = QScxmlStateMachine.fromFile(scxml_file) 
21.  
22.         # Check if the state machine is initialized properly 
23.         if not self.stateMachine: 
24.             print("Failed to initialize the state machine. Check SCXML file 

and syntax.") 
25.             return  # Exit initialization if state machine failed to load 
26.  
27.         # Connect event from SCXML to a slot in Python using the correct 

signature 
28.         self.stateMachine.connectToEvent("GetSpeed", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
29.         self.stateMachine.connectToEvent("sendCommand", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
30.         self.stateMachine.connectToEvent("GetSteer", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
31.         # Connect the state machine's "log" signal to the outputReceived 

slot 
32.         #self.stateMachine.log.connect(self.outputReceived) 
33.  
34.         # Start the state machine before connecting slots to ensure all 

signals are caught 
35.         self.stateMachine.start() 
 

The next section of code shows when a event is intercepted by the python script, 

that is, when an event is triggered in the SCXML state chart, for example, if we want 

to connect to the event ‘GetSpeed’, first we must send an event from the SCXML 

state chart with the name ‘GetSpeed’, this event is used to compute the speed of 

the vehicle, and then is sent to the SCXML state chart with the command 



45 
 

‘SendSpeed’, this command is read in the state chart and assign to a variable for 

further processing, in appendix C the complete code is shown. 

 

1.     @Slot(QScxmlEvent) 
2.     def handleDataFromScxml(self, event: QScxmlEvent): 
3.         #print("Received SCXML event:", event.name()) 
4.         data = event.data()  # data() returns a QVariantMap, accessed like 

a dictionary in Python 
5.  
6.         #prt(data) 
7.         #print(data["cmd_throttle"]) 
8.         if event.name() == 'GetSpeed': 
9.             current_speed = compute_speed(vehicle) 
10.             #print(f'Entered get speed, Speed is [{current_speed}]') 
11.             self.send_event_with_data(current_speed,"SendSpeed") 
12.  
13.         #if event.name() == 'GetSteer': 
14.         #    indx = dist_to_wp(vehicle, route) 
15.         #    cmd_steer = lateral_control(vehicle, route[indx], k_p_s=0.4, 

k_d_s=0, k_i_s=0) 
16.  
17.         if event.name() == 'sendCommand': 
18.             global route, ddt_flag  # Declare global variables 
19.             cmd_throttle = data["cmd_throttle"] 
20.             cmd_brake = data["cmd_brake"] 
21.             ddt_flag = data["ddt_flag"] 
22.             #print('recieved cmd throttle', cmd_throttle) 
23.  
24.             if ddt_flag == 1: 
25.                 route = route_ddt 
26.                 print("route fallback!") 
27.  
28.             indx = dist_to_wp(vehicle, route) 
29.             self.send_event_with_data(indx,"Index") 
30.             cmd_steer = lateral_control(vehicle, route[indx], k_p_s=0.4, 

k_d_s=0, k_i_s=0) 
31.             vehicle.apply_control(carla.VehicleControl(throttle = 

cmd_throttle, steer = cmd_steer, brake = cmd_brake)) 
32.             #print(cmd_brake) 
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5.3. Pid controllers 

5.3.1. Longitudinal control PID 

The longitudinal control algorithm in Qt is implemented in the following way, first 

inside our main loop the run state, the variables such as current_speed, error, 

target_speed, cmd_throttle and cmd_brake are initialized. 

Every time the control state is run by calling the event update every 10ms, an event 

GetSpeed is called, this event is read in the python script and gets the current 

speed of the car using the function compute speed and then the variable is sent to 

the state machine with the event SendSpeed 

 

1. if event.name() == 'GetSpeed': 
2.             current_speed = compute_speed(vehicle) 
3.             #print(f'Entered get speed, Speed is [{current_speed}]') 
4.             self.send_event_with_data(current_speed,"SendSpeed") 

 

The function compute_speed, reads the current velocity from CARLA in the form 

[x,y,s] (m/s) and then it computes the resultant vector and converts the velocity to 

km/h.  

The SendSpeed event is read by the state machine and is assigned to the variable 

current speed 
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Following this, we compute the current error  

Then we assign the command to the throttle value  

 

In this way we have a simple proportional controller that tracks the target velocity, 

finally we set the upper and lower limits for the throttle command that must be 

between 0 and 1. 

Once the value for the throttle is computed it is sent back to the python script so it 

can also be applied to CARLA, a sendCommand event on exit is created with the 

following data. 

Finally, the control variables are applied to CARLA with the command 

vehicle.apply_control  

 

1.         if event.name() == 'sendCommand': 
2.             global route, ddt_flag  # Declare global variables 
3.             cmd_throttle = data["cmd_throttle"] 
4.             cmd_brake = data["cmd_brake"] 
5.             ddt_flag = data["ddt_flag"] 
6.  
7.             vehicle.apply_control(carla.VehicleControl(throttle = 

cmd_throttle, steer = cmd_steer, brake = cmd_brake)) 
8.  
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5.3.2. Lateral control PID 

The lateral control pid is realized in a similar manner to that one in matlab, in this 

case the algorithm to compute the error is run directly in the python script, given 

the complexity of it 

First we get the current location of the vehicle with the command 

vehicle.get_transform().location and the values [x, y] are assigned to 

ego_loc. 

 

1. def lateral_control(vehicle, waypoint, k_p_s, k_d_s, k_i_s): 
2.     ego_loc = vehicle.get_transform().location 
3.     ego_loc = np.array([ego_loc.x, ego_loc.y, 0]) 
4.  
5.     v_vec = vehicle.get_transform().get_forward_vector() 
6.     v_vec = np.array([v_vec.x, v_vec.y, 0.0]) 

 

• w_loc: stores the current waypoint being tracked by the algorithm in [x,y] form. 

• w_vec: computes the vector from the car to waypoint. 

• wv_linalg: is used to compute the error in radians between the target waypoint 

vector and the forward vector 

• _dot: is the error in radians that is calculated using the dot product and the 

magnitudes of w_vev and v_vec: 

 

7.         w_loc = carla.Location(x=waypoint[0], y=waypoint[1]) 
8.  
9.         w_vec = np.array([w_loc.x - ego_loc[0], w_loc.y - ego_loc[1], 0.0]) 
10.  
11.         wv_linalg = np.linalg.norm(w_vec) * np.linalg.norm(v_vec) 
12.  
13.         _dot = math.acos(np.clip(np.dot(w_vec, v_vec) / (wv_linalg), -1.0, 

1.0)) 

 

To determine whether the vehicle is to the left or right of the desired path (i.e., the 

sign of the error), the cross product between the forward vector and waypoint 

vector is calculated: 

The sign of the third component of the cross product (z-component) determines 

whether the angle should be positive (to the right) or negative (to the left). If the z-

component is negative, the angle is inverted: 
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Thus, the lateral error (_dot) is a signed angle representing how much the vehicle 

needs to steer to align itself with the waypoint 

14. cross = np.cross(v_vec, w_vec) 
15.     if cross[2] < 0: 

16.         _dot *= -1.0 

 

5.4. Qt SCXML Functions for DDT fallback 

5.4.1. Distance to shoulder 

This function has a simple objective, its main goal is to compute the distance the 

ADS vehicle is from the road shoulder, it is important to know how far is the vehicle, 

because in this manner the filtering of the data from the lidar is enabled when the 

vehicle is at a specific distance from the road shoulder, and determine whether a 

vehicle is present or not. 

Its inputs are wp (Waypoints in the route) used to store the position of the shoulder 

and vehicle (to get the current position) 

 

17. def distance_to_shoulder(wp, vehicle): 
18.     v_pos = vehicle.get_transform().location 
19.     wp = wp[35] 
20.     wp = wp.location 
21.  
22.     w_vec = np.array([wp.x - v_pos.x,wp.y - v_pos.y, 
23.                           0.0]) 
24.      
25.     dist = math.sqrt(w_vec[0] **2 + w_vec[1] **2 + w_vec[2] ** 2) 

 

5.4.2. Get route. 

This function aims at feeding the navigation algorithm with the appropriate route 

given the situation the ADS vehicle is in, 2 routes are designed at priori, one route 

is used under normal navigation of the ADS vehicle, while the other route is used 

only under DDT-fallback, and this route contains the road shoulders. 

When the vehicle enters in DDT-fallback, it will switch and follow the ddt_route and 

will park in the road shoulder if no other vehicle is occupying the place, if a vehicle 

is present, meaning it was detected by the lidar, the route is changed to the original 

one, before the car enters in the road shoulder, thus continuing on the main route, 

until a safe free road shoulder is found. 
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1. def get_route(ddt_flag, route, route_ddt, car_det): 
3.  
4.     if ddt_flag == 1 and car_det == 0: 
5.         current_route = route_ddt 
6.     elif ddt_flag == 1 and car_det == 1: 
7.         current_route = route 
8.     else: 
9.         current_route = route 
10.  
11.     return current_route 

 

5.4.3. Lidar data 

Getting lidar data from the sensor in Qt is more straightforward since we are 

working in python, manipulating the data is simpler, the first step to get the 3D point 

cloud data is to initialize the and its properties. 

 

12. lidar_blueprint = bp_lib.find('sensor.lidar.ray_cast') 
13.     lidar_blueprint.set_attribute('channels', str(64)) 
14.     lidar_blueprint.set_attribute("points_per_second",str(56000)) 
15.     lidar_blueprint.set_attribute("rotation_frequency",str(100)) 
16.     lidar_blueprint.set_attribute("range",str(50)) 

 

In the following section the sensor is spawned and attached to our vehicle, the next 

step is reading the data. 

17. lidar_init_trans = carla.Transform(carla.Location(z=2.5)) 
18.     lidar = world.spawn_actor(lidar_blueprint, lidar_init_trans, 

attach_to=vehicle) 

 

The information of the LIDAR measurement is encoded 4D points. Being the first 

three, the space points in xyz coordinates and the last one intensity loss during the 

travel. 

In the following line of code we enable the sensor and we can start reading 

information from it 

19. lidar.listen(lambda point_cloud_data: lidar_data(point_cloud_data)) 
 

Inside the function lidar_data the 3D point cloud data is processed and filtered to 

detect other vehicles inside our region of interest, being it the road shoulder. 

First we store all the points in separate coordinates x,y and z and compute the 

distance from the lidar to the object the ray hit. 
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20. def lidar_data(point_cloud_data): 
21.     global car_det 
22.     distance_name_data = {} 
23.     for detection in point_cloud_data: 
24.         x = detection.point.x 
25.         y = detection.point.y 
26.         z = detection.point.z  # z can be used for elevation if needed 
27.              
28.         # Calculate the distance (optional, for reference) 
29.         distance = math.sqrt(x**2 + y**2 + z**2) 
30.  
 

In a similar manner to that used in matlab we filter the data in each coordinate, 

being it our box of detection. 

31. if ((0 < angle_deg < 45) and (-2.2 < z < 0) and (0 < y < 3.25) and (22 < 
dist < 25) and (car_det == 0)): 

32.             car_det = 1 
33.             print('Distance: ', distance, ' Angle: ', angle_deg, ' Car Det 

= 1') 
34.         elif ((dist > 50) and (car_det == 1)): 
35.             car_det = 0 
36.             print('Car_det = 0 ') 
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6. Results 

In this section the most relevant results associated with the proposed DDT fallback 

strategy are analyzed. The proposed fallback strategy performance is evaluated in 

two scenarios, stopping when the road shoulder is free and continuing to the next 

permitted stop due to no space availability. 

In all scenarios the performance relevant failure is triggered at the same time for 

each test, after this point the fallback strategy will take control of the automated 

vehicle and lead it to a minimum risk condition.  

The performance data in the 2 scenarios are shown in figures 6.1 throuh 6.4, In 

figures 6.1 and 6.2 which represent the vehicle velocity during the complete 

fallback manouver, the vertical dashed lines represent the starting point of the DDT 

fallback strategy at about 20s, trigering the vehicle to enter in degraded mode for 

velocity reducing its velocity from 20 km/h to 10km/h and the initialization of the 

braking phase when the vehicle has reached the emergency shoulder. 

Second, the velocity and distance figures 6.1 6.2 and 6.3 show that when the failure 

occurs, the vehicle enters degraded mode for velocity, reducing its target speed to 

10 km/h, in this state the control algorithm will look for the next permitted stop, and 

park if the emergency shoulder is free. 

 

 

The next performance data used to evaluate the fallback strategy is the distance 

from the vehicle to the emergency shoulder used for stopping, these distances are 

computed by the control algorithm to ensure the vehicle stopped at the required 

location. 

Figure 6. 1 Velocity when parking is permitted vs velocity when parking is not permitted. 
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The computational cost to run the control algorithm for MATLAB and Qt are shown, 

specifically the CPU time and the framerate of the CARLA simulator during the 

simulation, which are important metrics to deploy the control algorithm in specific 

hardware, it can be noted also that Qt was about 20% faster than MATLAB while 

running the control algorithm under the proposed DDT Fallback scenario. 

In figure 6.4, Qt showed to be lighter and have more stable framerate, having 825 FPS 

as maximum, 741 FPS as minimum and average of 789 FPS, while MATLAB had higher 

swings in performance, having 730 FPS as maximum, 556 FPS as minimum and 

average of 650 FPS. 

It is important to remember that both the simulator and the control algorithm are 

running in the same system (CPU: R5600x, GPU: 3060ti and 16Gb of ram), which can 

show higher CPU times than expected, a further test could be running the control 

algorithm and the simulator in separated hardware for further testing and demonstrate 

that this approach can be implemented in real time. 

Figure 6. 2 Comparison of CPU time and framerate 

Figure 6. 3 Distance from vehicle to emergency shoulder. 
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From these figures several conclusions can be drawn, first, the design and 

implementation of the fallback strategy with MATLAB was able to complete and follow 

the required strategy to park, as well as detecting for other vehicles in the emergency 

shoulder, this design was then ported to Qt with python and SCXML a lighter program 

in which the same control strategy was used, and giving similar results to MATLAB but 

with a lower computational cost as seen in figure 6.4. 

 

  

Figure 6. 4 Avg, max, min and std deviation. 
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7. Conclusion and Future developments 

7.1 Conclusion 

Although the research and development in automated driving systems has 

considerably helped the implementation of higher SAE automation levels, current 

control architectures rely on the driver as a backup in case of systems failures. 

Moreover, hardware redundancy is the usual plan of action to mitigate problems 

derived from failures in software or hardware. 

The present work targets the issue of the vehicle bringing itself to a safe state, and 

reach a minimum risk condition in degraded mode, meaning not all systems are 

operational, the vehicle reduces its speed in the current lane, and the system 

focuses on following the route until it reaches a road shoulder, and executes a safe 

stop, in case the road shoulder is occupied the vehicle continues the main route 

until the road shoulder is free, and performs a safe stop. 

The first scenario (parking when the emergency shoulder is free), is the simplest 

one to perform by the automated vehicle, once degraded mode is enabled the 

control algorithm looks for the next emergency shoulder and moving through until 

the maneuver is complete, in the second scenario (vehicle is occupying the road 

shoulder), the degraded state is activated at the same time but in this case the 

vehicle will continue to drive to the next available shoulder and park if it is free. 

The control architecture is based by lateral and longitudinal PIDs are capable of 

maneuvering the vehicle and the model based approach designed in MATLAB and 

then ported to Qt with python and SCXML proved itself robust against different 

scenarios, following the DDT fallback proposed, first, when the parking place is 

completely free the vehicle is capable of performing the lane change maneuver and 

stopping, as well as when there is a car parked in the road shoulder, the ADS 

vehicle was capable of continuing the route. 

 

7.2 Future developments 

There are still several possible ways to keep improving and advancing in DDT 

fallback strategies, the first is to test the proposed strategy in Bylogix’s VeGA to 

analyze how the proposed strategy behaves in a real urban environment, next, is 

to add more functionality to the DDT fallback strategy to try to adapt to more 

diverse scenarios and types of failures, this would make the vehicle more 

redundant in its systems and mitigate the damage a failure could cause during 

normal driving. 
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On the software side, more complexity could be added to some functions to make 

them even more robust and to rely less on sensor data, for example in the 

navigation control algorithm, instead of using GNSS data, a position estimator 

could be implemented, in cases where connectivity is low, but being aware that 

the estimated position will drift over time and corrections would be needed if the 

vehicle drives for a long time. 

As a closing remark, this thesis marks the ending of a long journey at Politecnico 

di Torino, as any new task, it faced a lot of difficulties at the beginning that were 

tackled one by one with a good amount of success to keep advancing on the 

project and addressing all problems. 
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Appendix A: CARLA environment 

1.     classdef CarlaEnvironment < matlab.System & 
matlab.system.mixin.Propagates  
2.     % 
3.     % This template includes the minimum set of functions required 
4.     % to define a System object with discrete state. 
5.  
6.     % Public, tunable properties 
7.     properties 
8.         throttle_input = 0; 
9.         brake_input = 0; 
10.         steering_angle_input = 0; 
11.         upper_thresholds = [25, 3, 0]; % Must have the same number of columns 

as 'matrix' 
12.         lower_thresholds = [0, 0, -1.5]; 
13.     end 
14.  
15.     properties(DiscreteState) 
16.     end 
17.  
18.     % Pre-computed constants 
19.     properties(Access = private) 
20.         car; 
21.         car2; 
22.         sensor; 
23.         moduleLidar; 
24.         car_det=0; 
25.     end 
26.  
27.     methods(Access = protected) 
28.         function setupImpl(obj) 
29.             insert(py.sys.path, 

int32(0),'C:\CARLA_0.9.14\PythonAPI\carla\dist\carla-0.9.14-py3.7-win-
amd64.egg') 

30.             py.importlib.import_module('carla') 
31.  
32.             % Perform one-time calculations, such as computing constants 
33.             port = int16(2000); 
34.             client = py.carla.Client('localhost', port); 
35.             client.set_timeout(10.0); 
36.             world = client.get_world(); 
37.              
38.             blueprint_library = world.get_blueprint_library(); 
39.             car_list = py.list(blueprint_library.filter("model3")); 
40.             car_bp = car_list{1}; 
41.             spawn_point = world.get_map().get_spawn_points(); 
42.             start_point = spawn_point{73}; 
43.             start_point.location.x = -27; 
44.             start_point.location.y = 69.7; 
45.             start_point.rotation.yaw = 0.073; 
46.             obj.car = world.spawn_actor(car_bp, start_point); 
47.             pause(1) 
48.              
49.             car2_transform = py.carla.Transform(py.carla.Location(7.97, 72.75, 

0.5),obj.car.get_transform().rotation); 
50.             obj.car2 = world.spawn_actor(car_bp, car2_transform); 
51.  
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52.             %% Move spectator behind the car 
53.             spectator = world.get_spectator(); 
54.             vehicle_transform = obj.car.get_transform(); 
55.             location_offset = py.carla.Location(-10, 0, 2.5); 
56.             transform = 

py.carla.Transform(vehicle_transform.transform(location_offset), 
vehicle_transform.rotation); 

57.             spectator.set_transform(transform); 
58.  
59.             % Lidar 
60.             blueprint = 

world.get_blueprint_library().find('sensor.lidar.ray_cast'); 
61.             blueprint.set_attribute('points_per_second', '250000'); 
62.             blueprint.set_attribute('range', '50'); 
63.             blueprint.set_attribute('upper_fov', '45.0') 
64.             blueprint.set_attribute('lower_fov', '-30.0') 
65.             blueprint.set_attribute('rotation_frequency','20') 
66.             blueprint.set_attribute('channels','64') 
67.  
68.             transform = py.carla.Transform(py.carla.Location(pyargs('x',0.8, 

'z',1.7))); 
69.             obj.sensor = world.spawn_actor(blueprint, transform, 

pyargs('attach_to',obj.car)); 
70.             pause(0.5) 
71.             obj.moduleLidar = sensorBind(obj.sensor, 'sensor', 'lidar', 

'array'); 
72.              
73.             obj.car_det = 0; 
74.         end 
75.          
76.         function [velocity, car_det, curr_pos] = stepImpl(obj, throttle_input, 

brake_input, steering_angle_input, lidar_search) 
77.             pause(0.001); 
78.             x_vel = obj.car.get_velocity.x; 
79.             y_vel = obj.car.get_velocity.y; 
80.             z_vel = obj.car.get_velocity.z; 
81.             velocity = 3.6*sqrt((x_vel)^2 + (y_vel)^2 + (z_vel)^2); 
82.  
83.             v_vec = obj.car.get_transform().get_forward_vector(); 
84.             ego_trans = obj.car.get_transform().location; 
85.             x_pos = ego_trans.x; 
86.             y_pos = ego_trans.y; 
87.             curr_pos = [x_pos y_pos 0 v_vec.x v_vec.y 0]; 
88.  
89.             control = obj.car.get_control(); 
90.             control.steer = 0; 
91.             control.throttle = throttle_input; 
92.             control.brake = brake_input; 
93.             control.steer = steering_angle_input; 
94.             obj.car.apply_control(control); 
95.              
96.             lidarData = single(py.getattr(obj.moduleLidar,'array')); 
97.             lidarData = double(lidarData(:, 1:3)); % Convert to double and 

extract x, y, z coordinates 
98.             point_cloud = lidarData; 
99.             [m,n]=size(point_cloud); 
100.             within_range_mask = (point_cloud >= obj.lower_thresholds) & 

(point_cloud <= obj.upper_thresholds); 
101.      
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102.             % Filter out elements not meeting the threshold 
103.             valid_rows = all(within_range_mask, 2); 
104.             filtered_rows = point_cloud(valid_rows, :); 
105.             distances = sqrt(sum(filtered_rows.^2, 2)); 
106.              
107.             if (distances < 25) & (obj.car_det == 0) & lidar_search == 1 
108.                obj.car_det = 1; 
109.             elseif lidar_search == 0 && obj.car_det == 1 
110.                 obj.car_det = 0;             
111.             end 
112.                                                
113.           car_det = obj.car_det; 
114.         end 
115.          
116.         function [velocity, car_det, curr_pos] = getOutputSizeImpl(~) 
117.             velocity = [1 1]; 
118.             car_det = [1 1]; 
119.             curr_pos = [1 6]; 
120.         end 
121.  
122.         function [velocity, car_det, curr_pos] = getOutputDataTypeImpl(~) 
123.             velocity = 'double'; 
124.             car_det = 'double'; 
125.             curr_pos = 'double'; 
126.         end 
127.  
128.         function [velocity, car_det, curr_pos] = isOutputComplexImpl(~) 
129.             velocity = false; 
130.             car_det = false; 
131.             curr_pos = false; 
132.         end 
133.  
134.         function [velocity, car_det, curr_pos] = isOutputFixedSizeImpl(~) 
135.             velocity = true; 
136.             car_det = true; 
137.             curr_pos = true; 
138.         end 
139.          
140.         function resetImpl(~) 
141.         end 
142.     end 
143.      
144.     methods(Access= public) 
145.         function delete(obj) 
146.             % Delete the car from the Carla world 
147.             if ~isempty(obj.car) 
148.                 obj.car.destroy(); 
149.             end 
150.             if ~isempty(obj.car2) 
151.                 obj.car2.destroy(); 
152.             end 
153.             if ~isempty(obj.sensor) 
154.                 obj.sensor.destroy(); 
155.             end 
156.         end 
157.     end 
158. end 
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Appendix B: SCXML code generated with Qt state machine 

1. <?xml version="1.0" encoding="UTF-8"?> 
2. <scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0" binding="early" 

xmlns:qt="http://www.qt.io/2015/02/scxml-ext" name="testcarla" 
qt:editorversion="15.0.1" datamodel="ecmascript" initial="Run"> 

3.     <qt:editorinfo initialGeometry="459.12;107;-20;-20;40;40"/> 
4.     <datamodel> 
5.         <data id="current_speed" expr="0"/> 
6.         <data id="error" expr="0"/> 
7.         <data id="target_speed" expr="20"/> 
8.         <data id="cmd_throttle" expr="0"/> 
9.         <data id="k_p" expr="0.4"/> 
10.         <data id="ddt_flag" expr="0"/> 
11.         <data id="cmd_brake" expr="0"/> 
12.         <data id="WpIndex" expr="0"/> 
13.         <data id="car_det" expr="0"/> 
14.     </datamodel> 
15.     <state id="Run"> 
16.         <qt:editorinfo geometry="174.82;323.56;-178;-50;924.59;505.54" 

scenegeometry="174.82;323.56;-3.18;273.56;924.59;505.54"/> 
17.         <state id="Control"> 
18.             <qt:editorinfo geometry="86.54;70.77;-60;-50;259.03;368.51" 

scenegeometry="261.36;394.33;201.36;344.33;259.03;368.51"/> 
19.             <onentry> 
20.                 <send event="GetSpeed"/> 
21.                 <assign location="error" expr="target_speed-current_speed"/> 
22.                 <assign expr="(k_p*error)" location="cmd_throttle"/> 
23.                 <send event="GetSteer"/> 
24.                 <send event="ddt_flag" delay="20s"/> 
25.                 <send event="GetRouteAndLidar"/> 
26.                 <send event="GoToStop"/> 
27.                 <send event="Update" delay="10ms"/> 
28.             </onentry> 
29.             <onexit> 
30.                 <if cond="cmd_throttle &gt; 1"> 
31.                     <assign location="cmd_throttle" expr="1"/> 
32.                     <elseif cond="cmd_throttle&lt;0"/> 
33.                     <assign location="cmd_throttle" expr="0"/> 
34.                 </if> 
35.                 <send event="sendCommand"> 
36.                     <param name="cmd_throttle" expr="cmd_throttle"/> 
37.                     <param name="cmd_brake" expr="cmd_brake"/> 
38.                     <param name="ddt_flag" expr="ddt_flag"/> 
39.                 </send> 
40.                 <if cond="ddt_flag == 1"> 
41.                     <send event="GoToParkState"/> 
42.                 </if> 
43.             </onexit> 
44.             <transition type="external" event="ddt_flag" target="ddt_flag" 

cond="ddt_flag != 1"> 
45.                 <qt:editorinfo startTargetFactors="93.43;37.12"/> 
46.             </transition> 
47.             <transition type="external" event="GoToStop" target="Stop" 

cond="WpIndex &gt; 38 &amp;&amp; WpIndex &lt; 50 &amp;&amp; car_det == 0 
&amp;&amp; ddt_flag == 1"> 

48.                 <qt:editorinfo endTargetFactors="20.99;7.01"/> 
49.             </transition> 
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50.         </state> 
51.         <transition type="internal" event="Update" target="Run"/> 
52.         <transition type="internal" event="SendSpeed"> 
53.             <assign location="current_speed" expr="_event.data['var']"/> 
54.         </transition> 
55.         <transition type="internal" event="Index"> 
56.             <assign location="WpIndex" expr="_event.data['var']"/> 
57.         </transition> 
58.         <state id="ddt_flag"> 
59.             <qt:editorinfo geometry="515.85;123.46;-60;-50;172;188" 

scenegeometry="690.67;447.02;630.67;397.02;172;188"/> 
60.             <onentry> 
61.                 <assign location="target_speed" expr="10"/> 
62.                 <assign location="ddt_flag" expr="1"/> 
63.                 <send event="RunControl"/> 
64.                 <log label="ddt flag" expr="ddt_flag"/> 
65.                 <log label="Target Speed:" expr="target_speed"/> 
66.             </onentry> 
67.             <transition type="external" event="RunControl" target="Control"> 
68.                 <qt:editorinfo endTargetFactors="89.18;66.14" 

startTargetFactors="44.77;86.13"/> 
69.             </transition> 
70.         </state> 
71.         <transition type="internal" event="car_det"> 
72.             <assign expr="_event.data['var']" location="car_det"/> 
73.         </transition> 
74.     </state> 
75.     <state id="Stop"> 
76.         <qt:editorinfo geometry="355.67;1010.62;-60;-50;189.03;142" 

scenegeometry="355.67;1010.62;295.67;960.62;189.03;142"/> 
77.         <onentry> 
78.             <assign location="cmd_throttle" expr="0"/> 
79.             <assign location="cmd_brake" expr="0.5"/> 
80.             <send event="sendCommand"> 
81.                 <param name="cmd_brake" expr="cmd_brake"/> 
82.                 <param name="cmd_throttle" expr="cmd_throttle"/> 
83.                 <param name="ddt_flag" expr="ddt_flag"/> 
84.             </send> 
85.         </onentry> 
86.     </state> 
87. </scxml> 
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Appendix C: Python code used to run CARLA with Qt 

1. from PySide6.QtCore import QObject, QCoreApplication, Slot, QTimer, SLOT 
2. from PySide6.QtScxml import QScxmlStateMachine, QScxmlEvent 
3. import time 
4. import numpy as np 
5. from collections import deque 
6. import sys 
7. import glob 
8. import os 
9. import math 
10.  
11. waypoint_index = 1 
12.  
13. try: 
14.     sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( 
15.         sys.version_info.major, 
16.         sys.version_info.minor, 
17.         'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) 
18. except IndexError: 
19.     pass 
20.  
21. import carla 
22.  
23. # Starting the simulation 
24. client = carla.Client('localhost', 2000) 
25. world = client.get_world() 
26.  
27. # Spawning the car 
28. bp_lib = world.get_blueprint_library() 
29. vehicle_bp = bp_lib.filter('*mini*')[0] 
30. spawn_points = world.get_map().get_spawn_points() 
31. #start_point = spawn_points[60] 
32. start_point = carla.Transform(carla.Location(x=-27,y=69.7, 

z=0.5),carla.Rotation(yaw=0.073)) 
33. vehicle = world.spawn_actor(vehicle_bp, start_point) 
34.  
35. spectator = world.get_spectator() 
36. transform = 

carla.Transform(vehicle.get_transform().transform(carla.Location(x=-10, 
z=2.5)),vehicle.get_transform().rotation) 

37. spectator.set_transform(transform) 
38.  
39. #vehicle2_transform = carla.Transform(carla.Location(x=7.97,y=72.75, 

z=0.5),vehicle.get_transform().rotation) 
40. #vehicle2 = world.spawn_actor(vehicle_bp, vehicle2_transform) 
41.  
42. route = np.loadtxt('route.txt') 
43. route_ddt = np.loadtxt('route_ddt.txt') 
44. current_route = route 
45. e_buffer = deque(maxlen=10) 
46. offset = 0 
47. k_p_s = 0.4 
48. k_d_s = 0 
49. k_i_s = 0 
50. car_det = 0 
51. current_velocity = 0 
52. target_velocity = 20 
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53. ddt_flag = 0 
54. foo = 0 
55. error_buffer = deque(maxlen=10) 
56. k_p=0.4 
57. k_d=0 
58. k_i=0 
59. dt=0.01 
60. collisions_data = 0 
61. car_det=0 
62.  
63.  
64. def lateral_control(vehicle, waypoint, k_p_s, k_d_s, k_i_s): 
65.     ego_loc = vehicle.get_transform().location 
66.     ego_loc = np.array([ego_loc.x, ego_loc.y, 0]) 
67.  
68.     v_vec = vehicle.get_transform().get_forward_vector() 
69.     v_vec = np.array([v_vec.x, v_vec.y, 0.0]) 
70.  
71.         # Get the vector vehicle-target_wp 
72.     if offset != 0: 
73.         # Displace the wp to the side 
74.         w_tran = waypoint#.location#transform 
75.         r_vec = w_tran.get_right_vector() 
76.         w_loc = w_tran.location + carla.Location(x=offset*r_vec.x, 
77.                                                              

y=offset*r_vec.y) 
78.     else: 
79.         w_loc = carla.Location(x=waypoint[0], y=waypoint[1]) 
80.  
81.         w_vec = np.array([w_loc.x - ego_loc[0], w_loc.y - ego_loc[1], 0.0]) 
82.  
83.         wv_linalg = np.linalg.norm(w_vec) * np.linalg.norm(v_vec) 
84.  
85.     if wv_linalg == 0: 
86.         _dot = 1 
87.     else: 
88.         _dot = math.acos(np.clip(np.dot(w_vec, v_vec) / (wv_linalg), -1.0, 

1.0)) 
89.  
90.         cross = np.cross(v_vec, w_vec) 
91.     if cross[2] < 0: 
92.         _dot *= -1.0 
93.  
94.         e_buffer.append(_dot) 
95.     if len(e_buffer) >= 2: 
96.         de = (e_buffer[-1] - e_buffer[-2]) / dt 
97.         ie = sum(e_buffer) * dt 
98.     else: 
99.         de = 0.0 
100.         ie = 0.0 
101.  
102.     steer_cm = np.clip((k_p_s * _dot) + (k_d_s * de) + (k_i_s * ie), 

-1.0, 1.0) 
103.  
104.     return steer_cm 
105.  
106. def compute_speed(vehicle): 
107.  
108.     current_speed = vehicle.get_velocity() 
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109.     current_speed = 3.6 * (current_speed.x**2 + current_speed.y**2 + 
current_speed.z**2)**0.5 

110.  
111.     return current_speed 
112.  
113. def dist_to_wp(vehicle,waypoint): 
114.  
115.     global waypoint_index 
116.  
117.     if waypoint_index == (len(waypoint) - 1): 
118.         waypoint_index = 1 
119.  
120.     if 

vehicle.get_location().distance(carla.Location(x=waypoint[waypoint_index,0]
, y=waypoint[waypoint_index,1])) < 2.0: 

121.         waypoint_index += 1 
122.  
123.     return waypoint_index 
124.  
125. def get_route(ddt_flag, route, route_ddt, car_det): 
126.  
127.     if ddt_flag == 1 and car_det == 0: 
128.             current_route = route_ddt 
129.  
130.     elif ddt_flag == 1 and car_det == 1: 
131.             current_route = route 
132.  
133.     else: 
134.             current_route = route 
135.  
136.     return current_route 
137.  
138. def distance_to_shoulder(wp, vehicle): 
139.     global dist 
140.     v_pos = vehicle.get_transform().location 
141.     wp = wp[35] 
142.         #print(wp) 
143.         #wp = wp.location 
144.  
145.     w_vec = np.array([wp[0] - v_pos.x, 
146.                         wp[1] - v_pos.y, 
147.                         0.0]) 
148.  
149.     dist = math.sqrt(w_vec[0] **2 + w_vec[1] **2 + w_vec[2] ** 2) 
150.  
151.     #print(dist) 
152.     return dist 
153.  
154. def lidar_data(point_cloud_data): 
155.     global car_det, dist 
156.  
157.     dist = distance_to_shoulder(route_ddt, vehicle) 
158.  
159.     #distance_name_data = {} 
160.     for detection in point_cloud_data: 
161.         x = detection.point.x 
162.         y = detection.point.y 
163.         z = detection.point.z  # z can be used for elevation if 

needed 
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164.  
165.         # Calculate the distance (optional, for reference) 
166.         distance = math.sqrt(x**2 + y**2 + z**2) 
167.  
168.         # Calculate the angle (in radians) 
169.         angle_rad = math.atan2(y, x)  # atan2(y, x) gives the angle 

from the x-axis 
170.  
171.         # Convert angle to degrees 
172.         angle_deg = math.degrees(angle_rad) 
173.  
174.         if ((0 < angle_deg < 45) and (-2.2 < z < 0) and (0 < y < 

3.25) and (22 < dist < 25) and (car_det == 0)): 
175.             car_det = 1 
176.             print('Car detected at, Distance: ', distance, ' Angle: 

', angle_deg, ' Car Det = 1') 
177.         elif ((dist > 50) and (car_det == 1)): 
178.             car_det = 0 
179.             print('No car detected, (Car_det = 0) ') 
180.  
181.  
182. # Set Up sensors 
183. lidar_blueprint = bp_lib.find('sensor.lidar.ray_cast') 
184. lidar_blueprint.set_attribute('channels', str(64)) 
185. lidar_blueprint.set_attribute("points_per_second",str(56000)) 
186. lidar_blueprint.set_attribute("rotation_frequency",str(100)) 
187. lidar_blueprint.set_attribute("range",str(50)) 
188.  
189. lidar_init_trans = carla.Transform(carla.Location(z=2.5)) 
190. lidar = world.spawn_actor(lidar_blueprint, lidar_init_trans, 

attach_to=vehicle) 
191.  
192. lidar.listen(lambda point_cloud_data: lidar_data(point_cloud_data)) 
193.  
194. class ScxmlHandler(QObject): 
195.     def __init__(self, scxml_file, parent=None): 
196.         super().__init__(parent) 
197.         self.stateMachine = QScxmlStateMachine.fromFile(scxml_file) 
198.  
199.         # Check if the state machine is initialized properly 
200.         if not self.stateMachine: 
201.             print("Failed to initialize the state machine. Check 

SCXML file and syntax.") 
202.             return  # Exit initialization if state machine failed to 

load 
203.  
204.         # Connect event from SCXML to a slot in Python using the 

correct signature 
205.         self.stateMachine.connectToEvent("GetSpeed", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
206.         self.stateMachine.connectToEvent("sendCommand", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
207.         self.stateMachine.connectToEvent("GetSteer", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
208.         self.stateMachine.connectToEvent("GetRouteAndLidar", self, 

SLOT("handleDataFromScxml(QScxmlEvent)")) 
209.         # Connect the state machine's "log" signal to the 

outputReceived slot 
210.         #self.stateMachine.log.connect(self.outputReceived) 
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211.  
212.         # Start the state machine before connecting slots to ensure 

all signals are caught 
213.         self.stateMachine.start() 
214.  
215.         # Timer to check active states every second 
216.         #self.timer = QTimer(self) 
217.         #self.timer.timeout.connect(self.printActiveStates) 
218.         #self.timer.start(2000)  # Check every 1000 milliseconds (1 

second) 
219.  
220.     @Slot(QScxmlEvent) 
221.     def handleDataFromScxml(self, event: QScxmlEvent): 
222.         global foo, ddt_flag, get_route, current_route, car_det, 

dist 
223.         #print("Received SCXML event:", event.name()) 
224.         data = event.data()  # data() returns a QVariantMap, 

accessed like a dictionary in Python 
225.  
226.         #prt(data) 
227.         #print(data["cmd_throttle"]) 
228.         if event.name() == 'GetSpeed': 
229.             current_speed = compute_speed(vehicle) 
230.             #print(f'Entered get speed, Speed is [{current_speed}]') 
231.             self.send_event_with_data(current_speed,"SendSpeed") 
232.  
233.         #if event.name() == 'GetSteer': 
234.         #    indx = dist_to_wp(vehicle, route) 
235.         #    cmd_steer = lateral_control(vehicle, route[indx], 

k_p_s=0.4, k_d_s=0, k_i_s=0) 
236.  
237.         if event.name() == 'GetRouteAndLidar': 
238.             current_route = get_route(ddt_flag, route, route_ddt, 

car_det) 
239.  
240.         if event.name() == 'sendCommand': 
241.             #global route, ddt_flag  # Declare global variables 
242.  
243.             cmd_throttle = data["cmd_throttle"] 
244.             cmd_brake = data["cmd_brake"] 
245.             ddt_flag = data["ddt_flag"] 
246.             #print('recieved cmd throttle', cmd_throttle) 
247.  
248.             """if ddt_flag == 1 and foo == 0: 
249.                 foo = 1 
250.                 route = route_ddt 
251.                 print("route fallback!")""" 
252.  
253.  
254.             indx = dist_to_wp(vehicle, current_route) 
255.             self.send_event_with_data(indx,"Index") 
256.             self.send_event_with_data(car_det,"car_det") 
257.             cmd_steer = lateral_control(vehicle, 

current_route[indx], k_p_s=0.4, k_d_s=0, k_i_s=0) 
258.             vehicle.apply_control(carla.VehicleControl(throttle = 

cmd_throttle, steer = cmd_steer, brake = cmd_brake)) 
259.             #print(cmd_brake) 
260.  
261.     @Slot(str, str) 
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262.     def outputReceived(self, label, msg): 
263.         #Slot that handles the 'log' signal from the state machine 
264.         print(f"Log event - Label: {label}, Message: {msg}") 
265.  
266.     def printActiveStates(self): 
267.         #Prints the currently active states of the state machine 
268.         active_states = self.stateMachine.activeStateNames() 
269.         print("Current active states:", active_states) 
270.  
271.     def send_event_with_data(self, value, name): 
272.         """Send a custom event with data.""" 
273.         event = QScxmlEvent() 
274.         event.setName(name) 
275.         event.setData({"var": value}) 
276.  
277.         # Submit the event with data 
278.         self.stateMachine.submitEvent(event) 
279.         #print(f"Sent event with value: {value}") 
280.  
281.     def EventUpdate(self): 
282.  
283.             event = QScxmlEvent() 
284.             event.setName("Update") 
285.             # Submit the event with data 
286.             self.stateMachine.submitEvent(event) 
287.  
288.  
289. if __name__ == "__main__": 
290.     import sys 
291.  
292.     app = QCoreApplication(sys.argv) 
293.     handler = ScxmlHandler("testcarla.scxml") 
294.  
295.  
296.     #handler.send_event_with_data(19) 
297.     #handler.EventUpdate() 
298.  
299.     if not handler.stateMachine: 
300.         sys.exit(-1) 
301.     sys.exit(app.exec()) 
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Appendix D: Model based design in MATLAB 
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Appendix F: MATLAB function for callback of lidar sensor 

through a python script 

1. function pyModule = sensorBind(sensor, fileName, sensorType, varName) 
2.  
3.     %% Function signature 
4.     % --------------------------------------------------------------------- 
5.     %                               Inputs 
6.     % --------------------------------------------------------------------- 
7.     % sensor        ---> The sensor  
8.     % fileName      ---> Name of the python file that will be produced for 
9.     %                    sensor binding 
10.     % 
11.     % varName       ---> Name of the variable that will store the sensor 

data 
12.     %  
13.     % sensorType    ---> Choose from sensors 
14.     %                 1. rgb                      ---> Normal camera 
15.     %                 2. grayScale                ---> grayScale image 
16.     %                 3. depth                    ---> Gives distances in 

m 
17.     %      4. depthRGB      ---> RGB 

coded distance 
18.     %                 5. semantic_segmentation    ---> Classifies objects 
19.     %                                                   and tags them 

with id 
20.     %      6. semantic_segmentation_rgb ---> Map the id 

to RGB for  
21.     %             

   visualization  
22.     %                 7. lidar                  ---> Gives 3d 

points array  
23.     %                                                    along with 

intensity values 
24.     % 
25.     % --------------------------------------------------------------------- 
26.     %                               Output 
27.     % --------------------------------------------------------------------- 
28.     % pyModule ---> Returns a python module that is responsible for 
29.     %               acquring the sensor data  
30.      
31.     %% Check if the sensor is valid 
32.     if ~isa(sensor, 'py.carla.libcarla.ServerSideSensor') 
33.         error("The provided sensor is not valid\n") 
34.     end 
35.      
36.     %% Create sensor callback binder 
37.     if strcmp(sensorType, "rgb") || strcmp(sensorType, "grayScale") || 

strcmp(sensorType, "depthRGB") 
38.         rgb(fileName, sensorType, varName); 
39.     elseif strcmp(sensorType, "depth") 
40.         depth(fileName, sensorType, varName); 
41.     elseif strcmp(sensorType, "semantic_segmentation") 
42.         semantic_segmentation(fileName, sensorType, varName); 
43.     elseif strcmp(sensorType, "semantic_segmentation_rgb") 
44.         semantic_segmentation_rgb(fileName, sensorType, varName); 
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45.     elseif strcmp(sensorType, "lidar") 
46.         lidar(fileName, sensorType, varName); 
47.     end 
48.      
49.     pyModule = py.importlib.import_module(fileName); 
50.     eval(strcat("py.", fileName, ".bindSensor(sensor)")); 
51.      
52.     % Takes time for the sensor to recieve first data 
53.     pause(0.25); 
54. end 

 

Function to generate the python for the lidar sensor, script from MATLAB 

1. function lidar(fileName, sensorType, varName) 
2.      
3.     %% Check if input is valid 
4.     if ~isstring(fileName) && ~ischar(fileName) 
5.         error("File name must a string or char array\n") 
6.     end 
7.      
8.     if ~strcmp(sensorType, "lidar") 
9.        error("Wrong sensor selected\n")  
10.     end 
11.  
12.     if ~isvarname(varName) 
13.         error("Invalid variable name\n") 
14.     end 
15.      
16.     %% Generate the python file  
17.     file = fopen(strcat(fileName, '.py'), 'w'); 
18.      
19.     % Automatically genrates a python file containing the sensor call back 
20.     % bindings 
21.     fprintf(file, 'import numpy as np\n'); 
22.     fprintf(file, '\n'); 
23.     fprintf(file, 'def bindSensor(sensor):\n'); 
24.     fprintf(file, '    sensor.listen(lambda _image: 

do_something(_image))\n'); 
25.     fprintf(file, '\n'); 
26.     fprintf(file, 'def do_something(_image):\n'); 
27.     fprintf(file, '    global %s\n', varName); 
28.     fprintf(file, '    data = np.frombuffer(_image.raw_data, 

dtype="float32")\n'); 
29.     fprintf(file, '\n'); 
30.     fprintf(file, '    # Pair up in [x,y,z] format\n'); 
31.     fprintf(file, '    data = np.reshape(data, (-1,4))\n'); 
32.     fprintf(file, '\n'); 
33.     fprintf(file, '    # Convert the data into MATLAB cast compatible 

type\n'); 
34.     fprintf(file, '    %s = np.ascontiguousarray(data)\n', varName); 
35.      
36.     fclose(file); 
37. end 
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Result python script 

1. import numpy as np 
2.  
3. def bindSensor(sensor): 
4.     sensor.listen(lambda _image: do_something(_image)) 
5.  
6. def do_something(_image): 
7.     global array 
8.     data = np.frombuffer(_image.raw_data, dtype="float32") 
9.  
10.     # Pair up in [x,y,z] format 
11.     data = np.reshape(data, (-1,4)) 
12.  
13.     # Convert the data into MATLAB cast compatible type 
14.     array = np.ascontiguousarray(data) 
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