
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Fault Detection Metrics in Image
Segmentation Neural Networks

Supervisors

Dr. Annachiara RUOSPO

Prof. Ernesto SANCHEZ

Candidate

Lorenzo FEZZA

April 2025

Abstract

Faults that occur on weights of semantic segmentation networks can significantly
compromise the final result of the output mask. In particular determining the
degree of such criticality is not a trivial task and, in some cases, it is also extremely
crucial. For this purpose, various techniques have been developed to evaluate the
output mask. The state of the art methods consist in the comparison between
the faulty and faultless output of the network, based on two main segmentation
metrics: mean intersection over union (mIoU) and pixel accuracy (PA). These
methods, which turns out to be very effective, actually hides several problems
and in particular, the main one is that, in real cases, there is no guarantee to
have access to the faultless output. In addition, subjective thresholds used for the
classification do not always provide the desired results. Other techniques rely on
the usage of an auxiliary neural network, also subject to faults and their latency
is not always sufficiently low to guarantee the real time requirement, which is a
fundamental constraint in many fields such as the automotive one.

This thesis describes the application of state of the art methods on a specific
image segmentation network and proposes a new metric, applicable in environments
where real time constraint is mandatory, aimed at evaluating and identifying
criticalities in segmentation masks, when the network is subject to hardware faults.
The advantage introduced by this metric is that it is able to evaluate a single
output without having access to the clean one and the temporal coherence across
input frames is not required. The latter is a significant detail because masks are
evaluated individually, without considering the previous frames, potentially affected
by critical faults. The metric involves a statistical approach with an initial overhead
that depends on the size of the dataset partition used to produce statistics on the
clean network inferences. A labeled dataset is also proposed to evaluate results
obtained with the developed metric, compared with the state of the art metrics
used for this kind of classification.

The network employed is known as Fast-SCNN, an open source semantic seg-
mentation network, developed in python with the PyTorch library, pre-trained and
tested on Cityscapes. A fault injector is also used to simulate the faulty network by
injecting stack-at faults on a specific bit of the weight. The output masks are then
analyzed with the developed metric, composed by different units, each involved in
identifying whether a fault is critical or not (binary task). Additionally, a deeper
study is performed on each metric unit to investigate the impact on the final results
and performances are compared to the state of the art methods, highlighting the
fact that identifying a critical fault is a problem that is far from solved and that
metrics actually available are not always reliable.

Acknowledgements

I wanted to thank all those people who have been by my side on this unbelievable
and magical journey, people who have constantly supported me and believed in me
even in the most difficult moments.

A special thanks goes to my family, who made all this possible, taking care of
me and doing everything to give me access to the knowledge that I have acquired
from when I was a child until today.

To my friends, who have made my entire life an unforgettable adventure and
who brought color into my world, even when everything around me faded to gray.

From an academic point of view, I express my gratitude to all my professors,
whose availability and patience have allowed me to develop strong skills across the
board.

I would especially like to thank my supervisors, Annachiara Ruospo and Ernesto
Sanchez, whose support has enriched me in countless ways, starting with the
academic aspect, where they have been invaluable guides, helping me to overcome
even the most difficult obstacles of this research, also allowing me to give vent
to my creativity, to always explore new approaches and innovative methods, up
to the human one, where they have always been available to create a beneficial
environment, favorable to growth and learning.

Finally, I would like to thank Vittorio Turco, a very kind and enterprising PhD
student who has been a constant source of support throughout every stage of this
research.

ii

Table of Contents

List of Tables vi

List of Figures ix

Acronyms xiii

1 Introduction 1

2 Background 3
2.1 Image Segmentation . 3

2.1.1 Task: Image Segmentation 3
2.1.2 Dataset: Cityscapes . 4
2.1.3 Network: Fast-SCNN . 5

2.2 Hardware faults . 7
2.2.1 Weight Encoding and Precision Details 8
2.2.2 Fault Injection . 8
2.2.3 Statistical Fault Injection 11

2.3 Fault Detection . 12
2.3.1 Pixel Accuracy . 13
2.3.2 Mean Intersection over Union 13

3 Proposed Approach 16
3.1 Faulty Output Dataset . 16

3.1.1 Dataset Overview . 17
3.2 Metrics . 20

3.2.1 Area . 20
3.2.2 Position . 20
3.2.3 Symmetries . 22
3.2.4 Right Angles . 23

3.3 Thresholds computation . 24

iv

4 Experimental Results 26
4.1 Metric Set Up . 26

4.1.1 Area . 27
4.1.2 Position . 27
4.1.3 Symmetries . 33
4.1.4 Right Angles . 33
4.1.5 Final Set Up . 36

4.2 Units Combinations . 37
4.3 Computational Costs . 38
4.4 Comparison and Safety Costs . 40

4.4.1 Combinations Comparison 40
4.4.2 State-of-the-art Comparison 41

5 Conclusions 53

Bibliography 54

v

List of Tables

2.1 A comparison among the different FI methodologies from [10] . . . 10

3.1 Some examples of Faulty Output Dataset (FOD) entries (only
<frame, fault>, mean Intersection over Union (mIoU) and Pixel
Accuracy (PA) for better readability of the table) with faulty mask
compared to the clean one; C states for Critical, while NC states for
Non-Critical . 18

4.1 Per-Class area thresholds expressed in percentage terms 29

4.2 Accuracy and costs of the usage of the training and test partition for
threshold computation in the Area Unit (The first column states for
the dataset partition employed for boundaries computation, the sec-
ond states for accuracy obtained on the FOD dataset (corresponding
Confusion Matrix (CM)s are shown in Figure 4.3 and 4.4). The last
column states for Clean Output (CO)s classified as critical even if
the mask is taken from the faultless network over a dataset partition 29

4.3 Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition
are wrongly classified as critical for the Position Unit with the
Incremental Position Weight Matrix (PWM) 30

4.4 Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition are
wrongly classified as critical in the position unit with probabilistic
PWMs taken from a different partition for the Position Unit 32

vi

4.5 Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition are
wrongly classified as critical in the Symmetry Metric with different
Symmetry Weight Matrix (SWM)s. The (p) label is used to identify
the SWMs that uses the probability that a pixel is vertically or
horizontally symmetric. The (1 − p) label is used to identify the
SWMs that uses the probability that a pixel is NOT vertically or
horizontally symmetric . 33

4.6 Performances on FOD and and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition
are wrongly classified as critical with the usage of different values of
n aligned pixels for the Right Angles Unit 35

4.7 Performances on FOD and costs of the usage of the training partition
for thresholds, when COs of a dataset partition are wrongly classified
as critical with the usage of all the metrics combined with different
values of n aligned pixels for the Right Angles Unit 35

4.8 Performances on FOD and and costs of each metric combination
(with the specific setup proposed in the previous section), when COs
of a dataset partition are wrongly classified as critical. 37

4.9 Fault Detection methods requirements in comparison 42
4.10 Accuracy of different Fault Detection methods with different binary

class aggregations . 43
4.11 Examples of masks wrongly classified as non-critical (False Negative

(FN)s) by the developed metric, supplemented by mIoU and PA
metrics . 45

4.12 Examples of masks wrongly classified as critical (False Positive (FP)s)
by the developed metric, supplemented by mIoU and PA metrics . . 46

4.13 Examples of masks wrongly classified as non-critical (FNs) by the
mIoU metric, grouping Warning, Accepted and Masked faults into
non-critical, supplemented by mIoU and PA metrics 47

4.14 Examples of masks wrongly classified as critical (FPs) by the mIoU
metric, grouping Warning, Accepted and Masked faults into non-
critical, supplemented by mIoU and PA metrics 48

4.15 Examples of masks wrongly classified as non-critical (FNs) by the
mIoU metric, grouping Accepted and Masked faults into non-critical
and Critical and Warning into critical, supplemented by mIoU and
PA metrics . 49

4.16 Examples of masks wrongly classified as critical (FPs) by the mIoU
metric, grouping Accepted and Masked faults into non-critical and
Critical and Warning into critical, supplemented by mIoU and PA
metrics . 50

vii

4.17 Examples of masks wrongly classified as non-critical (FNs) by the
PA metric, grouping Tolerable, No-Impact SDC and Masked faults
into non-critical, supplemented by mIoU and PA metrics 51

4.18 Examples of masks wrongly classified as critical (FPs) by the PA
metric, grouping Tolerable, No-Impact SDC and Masked faults into
non-critical, supplemented by mIoU and PA metrics 52

viii

List of Figures

2.1 List of Cityscapes Classes . 5
2.2 Cityscapes example of picture (on the left) with the corresponding

ground truth (on the right) taken from the validation partition . . . 5
2.3 Fast-SCNN model representation from [4] 6
2.4 Different weight representations . 8
2.5 A taxonomy for the FI methodologies developed for the resilience

assessment of DNNs and DNN-based systems from [10] 10
2.6 Taxonomy of semantic segmentation faults proposed in [2] 14
2.7 Taxonomy of semantic segmentation faults proposed in [1] 15

3.1 FOD masks variability representation: on x-axis the number of masks
characterized by groupings defined basing on the tuple <number of
unique classes contained in the mask (from 2 to 9), top 3 classes
with largest number of occupied pixels> 19

3.2 Position feature extraction process 21
3.3 Incremental PWM . 21
3.4 Probabilistic PWMs using probability to find the class in a specific

pixel (p) . 21
3.5 Probabilistic PWMs using probability to not find the class in a

specific pixel (1 − p) . 21
3.6 Probabilistic PWMs computation 22
3.7 Vertical symmetry extraction process with incremental vertical SWM 23
3.8 Thresholds computation (minimum and maximum boundaries) pro-

cess using metric values retrieved from Clean Outputs from the
Golden (Faultless) Network processing a set of data 25

4.1 Per-class area bounding box plots with statistics from COs from the
training partition of Cityscapes . 28

4.2 Per-class area bounding box plots with statistics from COs from the
test partition of Cityscapes . 28

4.3 CM of the area unit with threshold made from training partition . . 28

ix

4.4 CM of the area unit with threshold made from test partition 28
4.5 CM of the position unit with threshold made from training partition

using the incremental PWM . 30
4.6 CM of the position unit with threshold made from test partition

using the incremental PWM . 30
4.7 CM of area and position metrics with incremental PWM and bound-

aries from training set (accuracy of 97.92 %). 31
4.8 CM of position metric with probabilistic PWM (probabilities p from

training set) and boundaries from test set 32
4.9 CM of position metric with probabilistic PWM (probabilities p from

test set) and boundaries from training set 32
4.10 CM of position metric with probabilistic PWM (probabilities 1 − p

from training set) and boundaries from test set 32
4.11 CM of position metric with probabilistic PWM (probabilities 1 − p

from test set) and boundaries from training set 32
4.12 CM of the right angles unit with thresholds from training set and

n = 3 . 34
4.13 CM of the right angles unit with thresholds from test set and n = 3 34
4.14 CM of the right angles unit with thresholds from training set and

n = 5 . 34
4.15 CM of the right angles unit with thresholds from test set and n = 5 34
4.16 CM of the right angles unit with thresholds from training set and

n = 7 . 34
4.17 CM of the right angles unit with thresholds from test set and n = 7 34
4.18 CM of the final method (accuracy of 98.95 %) using widest partition

for threshold computation (training set), the cheapest weight matri-
ces (incremental weight matrices) and the lowest possible n aligned
pixel for the right angles unit (n=3) 36

4.19 Normalized Detection Cost Function (DCF) of each metric combina-
tion varying Cfn (and Cfp) cost . 41

4.20 Top four metric combinations with respect to Normalized DCF
varying Cfn (and Cfp) cost . 41

4.21 PA metric CM, made merging ’t’ and ’ni’ with ’m’ faults 42
4.22 PA metric CM, made merging ’t’ with ’c’ faults and ’ni’ with

’m’ faults . 42
4.23 PA metric CM, made merging ’t’ and ’ni’ with ’c’ faults 42
4.24 mIoU metric CM, made merging ’w’ and ’a’ with ’m’ faults . . . 42
4.25 mIoU metric CM, made merging ’w’ with ’c’ faults and ’a’ with

’m’ faults . 42
4.26 mIoU metric CM, made merging ’w’ and ’a’ with ’c’ faults . . . 42
4.27 Normalized DCF of each method varying Cfn (and Cfp) cost 43

x

4.28 Top four methods with respect to Normalized DCF varying Cfn (and
Cfp) cost . 43

xi

Acronyms

AI
Artificial Intelligence

DNNs
Deep Neural Networks

CNN
Convolutional Neural Network

SDC
Silent Data Corruptions

ABFT
Algorithmic Based Fault Tolerance

DNA
Distribution of Neuron Activations

PA
Pixel Accuracy

mIoU
mean Intersection over Union

fps
frames per second

FI
Fault Injection

xiii

FOD
Faulty Output Dataset

PWM
Position Weight Matrix

SWM
Symmetry Weight Matrix

CO
Clean Output

CM
Confusion Matrix

FP
False Positive

FN
False Negative

DCF
Detection Cost Function

xiv

Chapter 1

Introduction

Technological development of the last few years allowed to design increasingly
innovative Artificial Intelligence (AI) systems, which are able to learn to solve very
complex tasks indeed, that go beyond the simple binary or multiple classification.
Among these, image segmentation, which consists in the pixel wise annotation of
an image, has become a task of common interest for different fields, like medical,
security and automotive. However, it is precisely in these areas that reliability of
the segmentation network becomes a primary requirement.

The analysis of the behavior of the network in presence of faults highlights how
much these systems are not particularly reliable and resilient. For this reason it
is necessary to improve the fault management and guarantee greater operational
continuity. In the context of fault detection, for instance, the state-of-the-art
methods include the usage of Pixel Accuracy (PA) [1], a metric which, as for
the mean Intersection over Union (mIoU) [2], is widely adopted to evaluate the
performance of semantic segmentation networks. However, these metrics require the
use of the mask produced by the faultless network, which is not always guaranteed
to be available. It would be possible to use additional segmentation networks
that are assumed to be fault-free, but what ensures that they are truly faultless?
Another option would be to train networks to classify the mask as either faulty or
clean, but this would also lead to a circular issue, as it has been observed that even
these networks are subject to critical faults [3] and additionally, the final output
is not even interpretable. As a result, finding a metric that allows to evaluate
semantic segmentation masks without the usage of a ground truth is still an open
question.

Furthermore, it must be considered that semantic segmentation networks often
require a real-time response as a fundamental constraint, therefore the metrics
should also be efficient. A concrete example is given by the autonomous driving
scenario, in which real-time urban scene recognition is a fundamental task and if a
fault is critical for the network, elements such as roads, cars or people may not be

1

Introduction

properly identified and this can trigger even catastrophic accidents.
However, to exhaustively access the reliability of such networks, it is necessary

to inject one fault for each single bit for every weight and since parameters of
current Deep Neural Networks (DNNs) have significantly increased, doing so is
extremely expensive. To reduce analysis times, it is possible to perform statistical
fault injection [2], which involves injecting a limited number of faults instead of all
of them, ensuring an error margin in the accuracy of the analysis.

In this thesis, the behavior of the Fast-SCNN [4], a segmentation network
trained on Cityscapes [5], is investigated through statistical fault injection. The
approach involves the use of an additional dataset developed within this thesis,
containing a series of masks obtained from the faulty network, with faults injected
on bit 30, each manually labeled as critical or not. This dataset allows to have
a general perspective on the behavior of the network and allows to evaluate the
metric developed in the following sections. The metric is created with the aim
of evaluating the quality of the mask, as for mIoU and PA and unlike these, it
does not require the use of the clean mask during its use and relies on a statistical
approach to establish thresholds defined in advance to identify potential anomalies.

As a whole, the thesis is organized as follows: the first section is aimed to
describe the fundamental elements on which the research is based upon, including
the task and related problems, starting from faults and going through the methods
adopted to access the reliability of Neural Networks, concluding with the state
of the art metrics employed to detect such faults. Subsequently, the proposed
approach lays down the description of the new labeled dataset and the set of
metrics designed to identify anomalies from the network output. Afterwards, the
experimental results section contains a study of the developed metric with accuracy
and risk that the usage of the latter reaches on the developed dataset. Results are
then compared to the state of the art fault detection methods, concluding with
a summary of the executed work and achieved results with a look towards future
developments.

2

Chapter 2

Background

The following section provides an exhaustive explanation of the foundational el-
ements that lay the groundwork for this thesis. The first subsection is aimed to
describe the basic components of the analyzed system, starting from the task and
going through the dataset and network adopted. The next subsection introduces
hardware faults related to the network weights and their impact on the correspond-
ing output. In addition, faults can critically compromise the final prediction and
it is possible to identify and measure the degree of such damage with different
methods. For this purpose, the following subsection describes metrics that are
currently available, relying on mIoU and PA.

2.1 Image Segmentation
In the context of computer vision, a task refers to a specific problem which requires
image processing and interpretation. More in general, it is a problem that a model
is designed to solve. Neural networks are widely employed to address such tasks,
learning complex patterns and representations from large datasets. These models,
particularly deep learning architectures, have proven to be surprisingly powerful in
solving such tasks.

The following subsections will provide a brief discussion of these basic compo-
nents, such as task, dataset, and network employed in the research.

2.1.1 Task: Image Segmentation
Image segmentation is a computer vision task which consists in dividing a digital
picture into distinct pixel clusters (or segments), in order to organize a complex
image content into well-defined sections [6].

Since the purpose is to precisely detect distinct regions, this is a common task

3

Background

for various fields [6] such as medical, where it is used for tumor detection or brain
segmentation, automotive, allowing autonomous driving, as well as agriculture,
surveillance systems and many others.

Image segmentation includes various categories [6], varying according to a specific
objective, namely:

• Semantic segmentation: The simplest case, it consists in the pixel wise
annotation of the image. A label, chosen from a list of different classes, is
assigned to each image pixel. Classes can represent object categories which are
separable in different instances (things), e.g. cars, animals or people, but also
undivided entities (stuffs), e.g. sky, terrain or sea. The further subdivision
into single instances, in this case, is not provided.

• Instance segmentation: It aims to detect only things, dividing them in
single instances.

• Panoptic segmentation: It combines the semantic and instance segmenta-
tion tasks, in order to identify stuffs and things, further divided into single
instances, resulting to be the most complex and detailed among them.

The focus of this thesis is semantic segmentation, which represents the base
for many practical applications and one of the most consolidated and studied
variants.

2.1.2 Dataset: Cityscapes
Cityscapes constitutes a widely used resource for semantic segmentation and urban
scene comprehension, finding large application in image processing research and
deep learning. Introduced in 2016, Cityscapes offers an extended collection of high
resolution scenes taken from 50 European cities, including a variety of architectural,
climatic and light conditions [5].

The dataset consists of 5000 high-quality images with pixel-level manual anno-
tations and it divided into 3 different partitions, respectively:

• Training set: 2975 annotated images.

• Validation set: 500 annotated images.

• Test set: 1525 images without annotations.

In addition, other kinds of images with different forms of annotations are also
available, supporting complementary applications to semantic segmentation.

The complexity of the dataset is given by the number of classes considered.
In particular, it includes 30 different classes, categorized in 8 principal groups,

4

Background

respectively flat, construction, nature, vehicle, sky, object, human, and void. Only
19 of them (listed in Figure 2.1) are actually available in the dataset, while the
remaining ones, rarer with respect to the others, are merged into the void class
(identified as -1). Figure 2.2 shows a Cityscape image with the corresponding
annotation on the right.

Figure 2.1: List of Cityscapes Classes

Figure 2.2: Cityscapes example of picture (on the left) with the corresponding
ground truth (on the right) taken from the validation partition

2.1.3 Network: Fast-SCNN
Fast-SCNN [4] is a Convolutional Neural Network (CNN) employed for real-time
semantic segmentation tasks. This network allows to process high resolution images
(1024 × 2048 pixels) efficiently from the computational point of view and it requires
low memory consumption. In particular, using a GPU Nvidia Titan Xp (Pascal),
this network allows to process 123.5 frames per second (fps) with an accuracy,
measured in terms of mIoU, of 68% on Cityscapes [4].

As shown in Figure 2.3, the architecture is combination of two structures:

• The encoder-decoder architecture, originally and specifically developed
for image segmentation tasks, consists of an encoder, which deeply extracts

5

Background

features information from the input image and a decoder which decodes it,
providing the final result;

• The two-branch structure, which allows to obtain a notable increase in
performance compared to traditional architecture, by extracting low and high
level features in two separate branches and combining them into a single
feature map, the one that is finally decoded.

Entirely, the architecture is divided in four principal components:

Figure 2.3: Fast-SCNN model representation from [4]

• Learning to Downsample: This first block deals with extracting, through
three convolutional units, low level features, such as edges, gradient orientation,
texture and color.

• Global Feature Extractor: Block where features are processed, it is made
of the above mentioned two-branch: the first one is deeper, responsible to
extract the global context of the image, while the other one, shallow, handles
the extraction of the spatial information.

• Feature Fusion Module: It is used to merge global context and spatial
information produced by the preceding block.

• Classifier: Adopted at the end of the network, it improves the accuracy of
the output by exploiting three additional convolutional units, producing the
final prediction.

The network is open source, available online pre-trained on Cityscapes with a
mIoU of 54.84% and PA of 92.37%. Morover it is developed with the PyTorch
framework and its weights are represented in the FP32 format. While this detail may
seem supplementary at this stage, it becomes relevant in considerations discussed
in the following section.

6

Background

2.2 Hardware faults

The development of DNNs enabled their growing employment in critical use cases,
proving to be extremely promising at solving a large variety of tasks. However,
DNNs have been developed focusing on performance and efficiency, neglecting
reliability [3], which is a fundamental constraint for such fields. In particular, for
reliability is intended the probability of a system to properly behave in presence
of faults. For this reason, the latter cannot be overlooked and they are currently
the subject of studies aimed at enabling the proper use of the network in the real
world, minimizing risks.

Faults are anomalies in a system that potentially lead to errors if the output is
different from the expected one. In this case, faults are named active [7], while if
the fault is present but it does not trigger any error, it is referred to as dormant [7].
When the error prevents the system from performing its intended task, it causes a
failure [7].

Faults arise from several factors and manifest in different ways [3]: process
variations, timing errors, but also voltage scaling and near-threshold computing are
some examples. The taxonomy proposed by Mittal et. al. [3] reports a classification
based on the source and the types of faults. Depending on the number of bits
affected, a fault can be defined as single-bit or multi-bit. Another taxonomy [7]
is based on the time interval in which the fault affects the network. A fault is
considered permanent if it persists in the network for an extended and indefinite
period. In contrast, a fault is called transient, if it lasts for a short time. One
of the most studied ones is the stack-at, a permanent fault characterized by data
or control lines fixed at a specific value (e.g., 0 or 1). This kind of fault is able to
emulate, with sufficient accuracy, transistor and interconnection level irregularities
[8], allowing to study the behavior of the network in presence of faults, without
considering the physical structure of the network. In particular, considering the
abstract model of a neuron, a stack-at-0 or a stack-at-1 model interconnections and
synaptic weights faults, while a stack-at-value reproduces faults in the summation
and the activation function.

This subsection contains initially a description of the DNNs model parameters,
where stack-at faults studied in this research take place, with a special emphasis
on the weight representation and specific characteristics that make the network
more or less robust. To study faults and the behavior of the network in their
presence, it is possible to simulate them in different ways, as discussed subsequently.
Finally, it is explained how the number of DNNs parameters impacts the study of
its reliability and how statistical fault injection [9] comes to the rescue.

7

Background

2.2.1 Weight Encoding and Precision Details
DNNs consist of millions of interconnected weights organized in various ways to
process the input and generate the final output. Weights are contemporary the key
and most basic components of DNNs: they constitute parameters that models are
able to learn during the training process to finally perform inferences during the
test phase and it is precisely on these parameters that permanent faults possibly
occur, compromising the reliability of the system.

Depending on how the network is designed, it is possible to adopt different
representations for them, as shown in Figure 2.4.

Figure 2.4: Different weight representations

For each representation, the parameter can take on different value ranges.
As noted in [3], the choice of format directly influences the network reliability,
just as other components—such as activation functions, convolutional layers, and
datasets—do. However, these aspects are not the focus of this thesis. Nonetheless,
they provide useful context for understanding why faults affecting certain bits may
have a more critical impact than others.

2.2.2 Fault Injection
To study the reliability of a network, it is possible to analyze the behavior the
model in presence of faults by simulating them. This process, known as Fault
Injection (FI), can be performed using various approaches [10], divided into three
macro categories:

• Simulation based FI: It consists in simulating faults without considering the
physical device on which the network is employed. This approach is further
distinguished in two abstraction levels:

8

Background

– Software level: This process involves injecting the faults on the high-
level model of DNNs via software, independently from the hardware where
the model is adopted, not considered in the assessment. Using frameworks
such as PyTorch it is possible to develop an injector in a simple and robust
way, allowing to replicate the experiments deterministically. However,
results are not particularly accurate since the hardware is completely not
taken into account;

– Hardware level: Faults are injected by simulating the target hardware
on which the network is employed at Register Transfer Level or at Gate
Level. Differently from Software level FI, this process not only involves the
Application level, but also the Architecture of the network at Hardware
level;

• Platform based FI: The process is similar to the Simulation based FI, but
injections are directly performed on the platform (GPUs, CPUs or FPGAs)
on which the network is employed. As for the Hardware level FI, this process
takes into account the Hardware abstraction level, but faults are injected
physically on the Hardware and not simulated in the architecture.

• Radiation based FI: It requires specific facilities and devices to simulate
the external conditions of the application network environment. It consists in
radiating neuron particles on the physical hardware on which the network is
adopted without considering the application level. Results of this assessment
are particularly accurate but experiments are more difficult to reproduce
and sepcific devices are required for these experimetns. In addition, model
components which are not exposed to radiations cannot be injected.

Figure 2.5 reveals a visual representation of the aforementioned methods, while
Table 2.1, likewise taken from [10], shows in summary advantages and disadvantages
introduced by each method is terms of different metrics.

Although it is more computationally expensive and requires additional techniques
to ensure acceptable results (e.g. statistical fault injection), software level fault
injection is much more practical, since the equipment required for beam-radiation
is available in few laboratories and if there are model components that are not
exposed to radiations, there is no guarantee to obtain significant results.

The impact of such faults vary significantly depending on multiple factors,
including the number of bits affected, the specific weights involved, the layers in
which the faults occur, and the overall architecture of the network. In this study,
stuck-at faults are injected by flipping a single bit at a time (single-bit fault) in
the weights of a specific layer. Each fault involves forcing a bit to the inverse of its
original value, with only one bit altered per injection, to isolate its effect on the
network behavior.

9

Background

Figure 2.5: A taxonomy for the FI methodologies developed for the resilience
assessment of DNNs and DNN-based systems from [10]

Table 2.1: A comparison among the different FI methodologies from [10]

Metric Simulation-Based
Software Level

Simulation-Based
Hardware Level

Platform
Based

Radiation
Based

Cost Low Low Medium–high High
Development effort Medium–high Medium–high High Low–medium
Exactness* Low Medium–high Low–medium Very high
Controllability High High Medium Low
Observability High Medium** Low** Low**
Repeatability High High High Medium–low
Early availability High Medium High Medium–low
FI time Low High Medium–low Low
Principal advan-
tages

Cheap and fast Good FI exactness Portability Best FI exact-
ness; realistic

Principal draw-
backs

Low FI exactness Time consuming; the
HDL must be available

Limited FI exact-
ness

Expensive

*Closeness to reality.
**The observability depends on the complexity of the hardware, which is used for
the implementation of the FI process.

10

Background

2.2.3 Statistical Fault Injection
Technological advancements have enabled the development of increasingly deeper
CNNs, characterized by a significantly higher number of model parameters. The
exhaustive study of the reliability of a model would necessitate the injection of a
particularly high number of faults, depending from the representation of the weights,
and how many of them constitute the network. Specifically, the total number of
faults to consider for an exhaustive FI campaign is given by the trivial formulation
N = Np · b · 2, where Np is the total number of model parameters and b is the
number of bits derived from the weight representation. For example, a network like
ResNet-20, consisting of 268346 parameters, would demand to take into account
17174144 faults [9]. Unfortunately, executing a large number of software FIs takes a
significant amount of time, memory and, in some cases, it may become impractical.

However it is possible to obtain results close to an exhaustive analysis by using
different techniques, thus significantly shortening the times. One such method,
Statistical FI [9], involves, under some particular assumptions, the injection of a
specific sample n of the entire pool N (n << N), with the guarantee of having a
maximum error margin e.

As mentioned in [9], the sample size n is determined according to statistical
inference, in order to generalize results of the sample n to the entire population N .
In summary, a maximum error margin e is chosen on a specific metric, assuming
that, for the total population N , the actual estimate has mean µ and variance
σ2 and, for an estimation x, the mean is µx and variance σ2

x. Since the entire
population N is finite, it is possible to apply a correction factor, that keeps into
account the fact that the computed estimate is given by only a sample of the whole
population and finally n is chosen according to the assumptions:

e = t ∗ σ√
n

→ n = N

1 + e2 · N−1
t2·p∗(1−p)

(2.1)

where t is a constant depending on desired confidence level and p is probability
of a successful event (0 ≤ p ≤ 1). Selecting a value of 0.5 for the a-priori estimate
p yields the maximum sample size n. However, in specific contexts, it is possible to
choose a different value for p, leading to a reduction in the required sample size n.

Formulation 2.1 ([9], [2]) is based upon different assumptions:

• Each trial, corresponding to a single fault injection, follows a Bernoulli distri-
bution X ∼ B(p), with p, the probability of the fault to become a failure;

• For n repeated experiments, the discrete random variable X follows a Binomial
distribution X ∼ B(n, p);

• The Central Limit Theorem, which states that the distribution of the sum (or
average) of a large number n of independent, identically distributed random

11

Background

variables tends to a normal distribution, enables the computation of the
variance σ2 = n · p · (1 − p), the correction factor used in formulation 2.1 to
compute n.

When assuming the binomial distribution, it is required that each trial satisfies
certain conditions [9]:

1. Each trial (fault injection) must result in one of two possible outcomes (e.g.,
Critical/Non-Critical)

2. The outcomes of the trials are mutually independent

3. The number n of trials is fixed

4. The probability of an outcome remains constant for each trial

Unfortunately, in CNNs, the fourth assumption does not hold, since, as seen
in section 2.2.1 and deeply in [3], the probability that a fault becomes a critical
failure, p, is influenced by many different factors. However, despite this method
does not allow to identify the weakest units of the network, which besides is not the
goal of this thesis, it is able to outline the general behavior of the faulty network,
by considering it as black box [2].

2.3 Fault Detection
As seen in the previous sections, fault tolerance and the study of reliability of
Neural Networks is a fundamental task, which aims to enable their employment in
that specific cases where faults are particularly expensive. In the last few years,
a big variety of methods, oriented to fault detection and mitigation, have been
developed to access the reliability of such networks.

Recently, Turco et. al. [11] exploit metrics to evaluate the output feature maps
from different Neural Network layers, in order to predict the potential impact of
anomalies at inference time. By analyzing feature maps, it is possible to detect
faults early, preventing their propagation, thus mitigating errors. This idea of
prediction and prevention is also present in another approach [12], that focuses
on Silent Data Corruptions (SDC), faults which remain silent until they occur in
an error. The method consists in profiling the Distribution of Neuron Activations
(DNA) from the faultless network, allowing to detect and mitigate the error from
traces left by the SDC.

Robustness and resiliency of DNNs are highly investigated in [13], where clipping
the activation function output into well defined ranges reveals to improve the error
resilience efficiently.

12

Background

Moreover the output of a CNN is provided by a series of matrix operations, which
can be parallelized on specific hardware, allowing to obtain significant improvements
in terms of computational cost. However, as explained in [14], improvements
introduced by these high performance systems make matrices operations less robust.
Thanks to the usage of Algorithmic Based Fault Tolerance (ABFT) [14], a method
developed in 1984 and still in use today, it is possible to make these operations
more robust without negatively affect the hardware performance by detecting
and masking permanent and transient hardware failures efficiently. In addition,
checksum-based ABFT is deeply investigated in [15], where the method is compared
with recomputation for error correction, revealing that multiple error correction
negatively impacts performances, evaluated in terms of computation capacity.

However, despite these advancements, fault detection for image segmentation
tasks is still an area of early research. Actually the state of the art involves
metrics such as mIoU and PA, widely adopted in evaluating the quality of image
segmentation maps (masks). These metrics, combined with specific thresholds,
allow to classify faults into different categories. The two metrics are described in
the following subsections, while criteria and thresholds to detect faults are listed
immediately after.

2.3.1 Pixel Accuracy

The metric PA allows to evaluate a predicted segmentation mask, by computing the
percentage of pixels classified with the same label of a mask deemed as a ground
truth. Simply put, it is the number of pixels correctly predicted over the total
number of pixels.

As denoted in [2], achieving high PA is not always a reliable indicator of
segmentation quality, particularly in cases of class imbalance, where one or a subset
of classes dominates the mask over others. To better understand this problem,
consider for example to have a model that segments brain scans to detect tumors.
If the model predicts a mask in which no pixels are classified as tumors, but in
reality the tumor exists and occupies only 1% of the total mask, then the pixel
accuracy would be 99%, but the tumor mass would not be detected.

2.3.2 Mean Intersection over Union

The mIoU is another metric used to quantify the discrepancy between two seman-
tic segmentation masks. The procedure involves calculating, for each class, the
intersection of pixel regions having the same label in both the predicted mask (Pc)
and the ground truth mask (Gc), dividing each value by the union of the respective
regions:

13

Background

IoUc = Pc ∩ Gc

Pc ∪ Gc

(2.2)

The final value is then computed by averaging the IoU scores across all the
classes. The mIoU of the last example (present in section 2.3.1) drops drastically
to the 50 %, proving to be more sensitive to prediction errors and less vulnerable
to class imbalance.

Both metrics are widely applied to measure the performance of segmentation
networks, but they are also adopted in [1] and [2] to classify the impact of a fault
on the final prediction.

Taxonomy of [1] is reported in Figure 2.7 and the method involves, only in the
first step, the entire network output, to check whether the fault is masked or not.
If the output is not bit-wise equivalent to the clean (faultless) one, the final mask
is compared with the corresponding clean mask in terms of PA.

Differently, the classification method proposed in [2] relies on the computation
of the difference between mIoUs of predicted and clean mask, as shown in Figure
2.6. This metric not only requires the faultless network mask, but also the ground
truth with which the image should be properly labeled.

Figure 2.6: Taxonomy of semantic segmentation faults proposed in [2]

14

Background

Figure 2.7: Taxonomy of semantic segmentation faults proposed in [1]

15

Chapter 3

Proposed Approach

The following chapter contains a detailed description of the method adopted to
identify critical faults from the masks produced by segmentation networks.

The first section describes the Faulty Output Dataset (FOD), developed as part of
this thesis. This dataset contains masks obtained from the faulty network, providing
a general overview of the impact that bit 30 stack-at faults have on the network
masks. Each mask is manually labeled with one of two categories, respectively
critical or non-critical, allowing to evaluate and compare results obtained with
different fault detection methods. In particular, the next subsection focuses on
the developed technique, which aims to detect critical faults through the use of
four units, each one employed for the analysis of specific characteristics of the
mask in an interpretable and efficient way. Note that unlike the state-of-the-art
metrics, this technique does not require the use of a ground truth to be computed,
but in order to properly work, it relies on a setup phase, in which a statistical
approach allows to set boundaries used to identify anomalies in a precise manner.
This profiling process becomes necessary to understand the general behavior of the
network in standard conditions.

3.1 Faulty Output Dataset
Depending on the input image and the fault injected inside the network, the final
output mask can be labeled as critical or not, since some faults can be masked by
mathematics operations through the convolutional layers, without having grave
impacts on the final outcome [3]. To exhaustively evaluate the behavior of the
metric, it should be known a priori whether all the faulty outputs are corrupted,
but injection of all the possible faults on all the bits of each weight in every layer
of the network for the whole dataset and the corresponding manual labelling (if
critical or not) is unfeasible. Therefore, a reduced number of faults and partition

16

Proposed Approach

of the Cityscapes dataset are employed to design FOD. Since the purpose of this
thesis is the metric evaluation and not the pure study of the vulnerabilities of the
architecture, the network is injected with 8439 stack-at-params faults at bit 30,
filtered from a fault list generated through statistical fault injection. The choice of
this particular bit traces back to the fact that weights of this network are represented
in FP32 and a change in that position drastically changes the parameter value,
narrowing the search field, so as to obtain a critical output with more likelihood.
As input for the network, only the validation set is selected, since it represents the
smallest partition of Cityscapes, characterized by the highest variability of scenes.
In addition, the ground truth is available for additional analysis, in contrast to
the test set, which instead contains only unsegmented images. However, manually
classify 8439 × 500 faulty outputs is expensive as well, for this reason a random
sample of 68001 couples <image, fault> are selected and labeled. The sample still
contains all the validation set frames and each fault of the statistical FI fault list.
Some examples of masks present in FOD are shown in Table 3.1.

Note that PA and mIoU are not used for the labeling process, even if they are
part of the dataset and comparing the labels with the state-of-the-art methods, they
do not always match because the thresholds adopted in [1] and [2] are particularly
stringent, classifying uncompromised outputs as critical and, similarly, failing to
classify critical ones correctly. Results of this comparison are present in chapter 4.

In the following section, specifications of FOD are presented in more detail,
supported by a brief statistical description.

3.1.1 Dataset Overview
The dataset is formed by the following columns:

• Frame: It is an integer value which identifies the input image index of the
Cityscapes validation partition;

• Injection: It is an integer identifier assigned to a stack-at fault;

• Layer: It specifies the Fast-SCNN layer where the fault injection takes place;

• TensorIndex: It is a tuple of 4 values identifying the position of the weight
inside the layer;

• Bit: It is an integer value identifying the bit to flip in the stack-at fault
injection;

• mIoU: Mean interseciton over union computed between the clean and faulty
output;

• PA: Pixel accuracy computed between the clean and faulty output;

17

Proposed Approach

Table 3.1: Some examples of FOD entries (only <frame, fault>, mIoU and PA
for better readability of the table) with faulty mask compared to the clean one; C
states for Critical, while NC states for Non-Critical

Frame Injection mIoU PA Label Clean Faulty

479 595 0.02 0.19 C

295 9729 0.00 0.08 C

331 7844 0.02 0.11 C

10 1184 0.01 0.04 C

191 12040 0.99 1.00 NC

394 6867 0.02 0.18 C

422 10192 0.01 0.02 C

203 13188 0.01 0.05 C

236 191 1.00 1.00 NC

361 12499 0.02 0.24 C

18

Proposed Approach

• Label: Integer/binary value representing critical or not critical (binary task),
manually attributed to the pair <fault, frame>.

The columns relating to fault and frame allow anyone to reproduce the fault
in a deterministic way, while the rest of the data is supportive and usable for the
final evaluation.

FOD dataset is unbalanced, since the percentage of non-critical entries is only
11.90%, against the 88.10% labeled as critical.

Regarding the class distributions in the faulty masks, a portion of 43.07% of the
dataset consists of masks where all pixels share the same value and for the 99.53%
of them, this value is referred to the class ’road’. The remaining 56.93% is made
of critical and non-critical masks with higher variability in the class distributions.
Excluding the 43.07% portion, Figure 3.1 shows the variability of FOD masks. In
particular, each grouping is defined basing on the tuple: number of unique classes
contained in the mask (from 2 to 9) and the top 3 classes with largest number of
occupied pixels.

Figure 3.1: FOD masks variability representation: on x-axis the number of masks
characterized by groupings defined basing on the tuple <number of unique classes
contained in the mask (from 2 to 9), top 3 classes with largest number of occupied
pixels>

19

Proposed Approach

3.2 Metrics
The overall metric combines four different methods, each one employed in the
extraction of a different feature. The set of information obtained from each unit
allows to evaluate the spatial coherence at the level of surfaces occupied by the
individual classes, the positions they assume and their degree of symmetry, as
well as the regularity of the contours between things and stuffs. Fundamental
requirements are that the features must be extracted in real time and in a reliable
and interpretable way. Although neural networks allow to reach very low latency
times, the outputs are result of deep and complex interconnections between the
weights of the network, so they are not easily interpretable and as explained in
[3], they are far from reliable, given that a single change in a bit of a weight
can change the final result. Therefore, the proposed extraction algorithms are
particularly efficient and straightforward. Furthermore, they do not involve the
use of input or golden mask, in contrast to the state of the art metrics, since there
is no guarantee of having access to these data outside the context of reliability
studies. The following section provides a detailed description of each method.

3.2.1 Area
The surface covered by a class in an image segmentation mask is bearishly computed
with the sum of pixels labeled with that specific class. This feature does not
represent a strong indicator of criticality, since the information acquired takes into
account only the number of occupied pixels and although in some domains things
and stuffs occupy well-defined spaces without too many variations, in other cases
this assumption does not hold. However, assuming that the network is trained
and used in an environment where the surfaces of the classes are distributed in a
sufficiently similar way, this method is able to identify anomalies in a very simple
and efficient manner.

3.2.2 Position
This feature is extracted by computing the element-wise product of the class
mask with a Position Weight Matrix (PWM) and the final result is given by the
summation of all the product values. The generic process is described in Figure
3.2.

PWM is a particular data structure where each pixel is assigned to one or more
values which represent the position weight. There are infinitely many possible
combinations of values that can be used to produce this data structure and the
choice of construction method comes with different advantages and disadvantages.
A simple technique consists in the usage of the same PWM, built with incremental

20

Proposed Approach

weights that vary from 1 to H × W (Figure 3.3), with H and W dimensions of the
mask.

Figure 3.2: Position feature extraction process

When high resolution is required, the pixel count is significantly large, therefore,
the maximum value achievable if a class is assigned to each pixel of the mask (worst
case) is given by the Gauss formula (H×W)·(H×W +1)

2 . For this reason, depending on
the representation used for the final (integer) value, overflow cases must be taken
into account.

Figure 3.3: Incremen-
tal PWM

Figure 3.4: Probabilis-
tic PWMs using proba-
bility to find the class in
a specific pixel (p)

Figure 3.5: Probabilis-
tic PWMs using probabil-
ity to not find the class
in a specific pixel (1 − p)

The shortcoming of the incremental PWM is given by the fact that summing
many elements in low values cells is equivalent to adding few elements placed in
high values cells, located in opposite positions inside the PWM. Even so, whenever
a fault is critical for the network, if the position value is not anomalous for one class,
it is not necessarily the same for the other ones. Nonetheless, the computational
cost to produce this matrix is extremely low, no memory is required to store it
persistently and its adoption requires products that does not involve floating point
operations.

21

Proposed Approach

Figure 3.6: Probabilistic PWMs computation

Another method consists in the usage of multiple PWMs depending on how
much memory is available. Using different PWMs allows to take into account the
probability of having a class in a specific pixel-position. This method involves c
different PWMs (where c is the number of assignable classes) and for each cell of
the per-class PWM, the probability to find or not that class in that specific pixel
is assigned. These probability values can be chosen ad-hoc, based on the prior
knowledge about the position of a certain class, or they can be gathered with a
statistical approach that involves computing the probabilities from the clean output
over a dataset partition. Some examples are shown in Figures 3.4, 3.5, while the
entire gathering process is shown in Figure 3.6.

The computation of the final value is similar to the incremental PWM, but in
this case the product is computed for each class with the corresponding probabilistic
PWM and since the values are floating point, products and summations are costlier
and if the prior knowledge is not available, an additional overhead to obtain the
probability values is needed before the position value computation.

3.2.3 Symmetries
As for the position unit, also symmetries are exploited through the usage of a
single Symmetry Weight Matrix (SWM) or multiple SWMs. The feature extraction
process requires the following steps for each class:

1. extract the class mask from the overall one obtaining a binary matrix

2. split the mask in half (horizontally or vertically, depending on the symmetries
exploited)

3. flip the right half or the bottom half and overlap it on the corresponding half,
doing an element-wise logic-and

22

Proposed Approach

4. compute the element-wise product of the half matrix with the corresponding
SWM

5. sum all the elements in a single value

Figure 3.7: Vertical symmetry extraction process with incremental vertical SWM

The overall process to exploit vertical symmetry is shown in Figure 3.7 and the
equivalent is possible for horizontal symmetry with a longitudinal split. Note that
this process is similar to the above mentioned in section 3.2.2, but it requires three
additional steps, involving the mask splitting, flipping and logic-and.

Regarding the SWMs, there are several alternatives. As for the position metric,
an efficient and basic method consists in creating two simple matrices: one, for
horizontal symmetry, of size H

2 × W with incremental integer values from 1 to
H
2 ×W , the other one, to evaluate vertical symmetries, of shape H × W

2 , always with
incremental values. To take into account the per-class-pixel symmetry probability,
it is also possible to create probabilistic SWMs for each single class in which each
cell is associated with the probability that a pixel of a class is horizontally (or
vertically) symmetric. The process is same described in 3.6 for the positions, with
the only difference that the probability is computed considering the vertically
and horizontally folded masks computed immediately after the logic-and with the
technique described in Figure 3.7. The higher the value is, the higher the class is
symmetric, taking into account the pixel position.

3.2.4 Right Angles
Generally, segmentation networks produce masks, whose shapes have a certain
degree of regularity. Measuring such feature is not a trivial task and there are
various methods to do it. One possible way is to extract a pseudo-contour which

23

Proposed Approach

separates groups of pixels labeled with the same class to those others labeled with
another class and count the number of right angles identified on this contour.

There are several ways to construct this pseudo-contour. The method adopted
in this thesis involves a simple mask mapping from the predicted mask P to a new
matrix M described by the following formula:

mi,j =
1 if pi,j /= pi+1,j ∨ pi,j /= pi,j+1

0 otherwise
, ∀ i, j ∈ H × W (3.1)

where mi,j is the mapped pixel in position i, j, with i ∈ {0, . . . , H − 1}, ∀ j ∈
{0, . . . , W − 1} and H, W dimensions of the network mask, while p is the mask
pixel.

The final number of right angles, instead, is computed through the following
steps:

1. from the contour mask M , extract two matrices: the first containing the
segments of at least n pixels horizontally aligned, and the second one equivalent
with at least n pixels vertically aligned

2. compute the intersection of masks obtained in steps 1

3. compute the sum of all the intersections (the final value is given by summing
the mask from step 2)

The value obtained by this metric represents only an approximate but efficient
count of the number of right angles formed by at least n aligned pixels. In addition,
the final value depends on the selected n parameter. A possible way to set this
value (nmin = 3) is comparing different performances on a specific partition of a
dataset of interest.

3.3 Thresholds computation
The decision process is made possible with the usage of thresholds used to define
whether a fault is critical or not. A metric value is considered anomalous if it
is not contained within a lower and upper bound defined for that metric. These
thresholds can be set based on prior knowledge, when available, but in more
complex situations, when this data are not accessible, the simplest strategy relies
on a statistical approach, described in Figure 3.8, in which a set of images large
enough to capture greater variability in the input scenes is selected for processing.

24

Proposed Approach

Figure 3.8: Thresholds computation (minimum and maximum boundaries) process
using metric values retrieved from Clean Outputs from the Golden (Faultless)
Network processing a set of data

Images are processed through the faultless network and minimum and maximum
values are computed and set as boundaries in order to outline the standard behavior
of the network.

25

Chapter 4

Experimental Results

This section is aimed to describe different possible set-ups of the developed metric
and it contains the analysis of experimental results obtained applying each method
to the clean masks and the FOD, in addition to a comparison with state of the art
performance.

Stuck-at faults of this thesis are simulated through the usage of SFIadvanced-
models [16], a software fault injector, originally adopted for image classification
and appropriately modified for image segmentation purposes.

Regarding materials and resources adopted in this section: experiments have
been executed remotely on a GPU NVIDIA GeForce RTX 3060 Ti; the software is
written in Python and the framework used for the network, Fast-SCNN, is PyTorch,
compatible with the fault injector adopted. The usage of Numpy, Matplotlib,
Seaborn and Pandas libraries allowed to simplify loading, saving and graphic
representation of results. The dataset on which experiments were performed is
Cityscapes, on which the pre-trained network obtains a performance of 54.84% in
terms of mIoU and 92.37% for PA over the Cityscapes validation partition.

Each component is first evaluated individually, considering multiple possible
configurations to assess their specific contributions and costs. Unit by unit, per-
formance variations are analyzed incrementally, showing how each unit affects the
overall system. Finally, the metric is compared with techniques using mIoU and
PA, in order to identify differences, vulnerabilities and advantages introduced by
the proposed metric.

4.1 Metric Set Up
As described in chapter 3, the metric requires a set-up process to operate. In par-
ticular, this procedure involves the computation of statistics, to define discriminant
thresholds used to identify anomalies in the segmentation mask and probabilities,

26

Experimental Results

when probabilistic weight matrices for position and symmetry metrics are employed.
Note that since the Cityscapes validation set is adopted in the FOD dataset, which
is used to evaluate the performance of each metric, this partition is never used for
any parameter selection and threshold computation.

The results for each individual metric, with various configurations, are explored
section by section. Then, from each unit, the final metric is progressively built,
with results shown incrementally at the end.

4.1.1 Area
Starting from the first unit, per class area statistics are computed over the Clean
Output (CO) of the Cityscapes partitions in order to compute boundaries used to
discriminate critical faults. A visual representation of per-class areas distribution is
present in the bounding box plots in Figures 4.1 and 4.2. The same representation
is also used for the other metrics in order to better understand each feature
distribution. Table 4.1 shows the boundaries (as percentages of occupied pixels to
facilitate understanding) employed. However, these are not the actual values used,
since comparing directly the number of occupied pixels is sufficient. Boundaries
vary for several reasons, e.g. training set size and scenes differ from the test set
ones. In addition, the training partition is used to train the network, in contrast
with the test set which contains unseen data.

Different performances and costs of using the two partitions are shown in Table
4.2 and the corresponding Confusion Matrix (CM) of each one is shown respectively
in Figures 4.3 and 4.4. For the latter, a positive value corresponds to a Critical
faulty output.

Comparing the performances obtained with the two partitions, using the training
one turns out to be more suitable, since, although the accuracy with the test set
is higher, the corresponding costs on COs are sufficiently large to make the test
boundaries less effective. Furthermore, considering False Positive (FP) and False
Negative (FN), the usage of the test set causes an increase of almost 10 times of
FP values against a 1.7-fold decrease in FN.

4.1.2 Position
For the position unit, threshold computation is the same: feature extraction method
is applied on COs over a dataset partition and maximum and minimum boundaries
are computed accordingly. The method requires usage of one or multiple PWMs
and each configuration comes with its own pros and cons.

Applying the incremental PWM over training and test partitions (as made for
the area unit), allows to achieve different outcomes, as shown in Table 4.3 and
Figures 4.5 and 4.6.

27

Experimental Results

Figure 4.1: Per-class area bounding
box plots with statistics from COs from
the training partition of Cityscapes

Figure 4.2: Per-class area bounding
box plots with statistics from COs from
the test partition of Cityscapes

Figure 4.3: CM of the area unit
with threshold made from training
partition

Figure 4.4: CM of the area unit with
threshold made from test partition

28

Experimental Results

Table 4.1: Per-Class area thresholds expressed in percentage terms

Class Training Bound (%) Test Bound (%)
Min Max Min Max

road 0.06 58.30 6.79 57.24
sidewalk 0.00 38.47 0.00 29.67
building 0.00 74.00 0.00 85.05
wall 0.00 42.87 0.00 14.03
fence 0.00 31.81 0.00 18.18
pole 0.00 6.94 0.00 5.11
traffic light 0.00 2.02 0.00 1.84
traffic sign 0.00 6.48 0.00 5.03
vegetation 0.00 59.14 0.00 60.39
terrain 0.00 26.54 0.00 18.13
sky 0.00 25.15 0.00 22.92
person 0.00 35.22 0.00 22.58
rider 0.00 3.65 0.00 5.08
car 0.00 40.08 0.00 48.18
truck 0.00 33.48 0.00 23.62
bus 0.00 26.91 0.00 47.70
train 0.00 60.72 0.00 43.34
motorcycle 0.00 9.85 0.00 2.66
bicycle 0.00 13.78 0.00 9.15

Table 4.2: Accuracy and costs of the usage of the training and test partition for
threshold computation in the Area Unit (The first column states for the dataset
partition employed for boundaries computation, the second states for accuracy
obtained on the FOD dataset (corresponding CMs are shown in Figure 4.3 and
4.4). The last column states for COs classified as critical even if the mask is taken
from the faultless network over a dataset partition

Boundaries Partition Accuracy FP Cost

Training 96.77% 0.46% on test set
0.2% on val set

Test 97.87% 2.08% on training set
2.6% on val set

29

Experimental Results

Table 4.3: Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition are wrongly
classified as critical for the Position Unit with the Incremental PWM

Boundaries Partition Accuracy FP Cost

Training 96.24% 0.46% on test set
0.2% on val set

Test 98.00% 2.22% on training set
1.8% on val set

Figure 4.5: CM of the position unit
with threshold made from training
partition using the incremental PWM

Figure 4.6: CM of the position unit
with threshold made from test parti-
tion using the incremental PWM

30

Experimental Results

As for the area unit, it is convenient to use the training partition for threshold
computation, even if the corresponding accuracy is inferior.

The union of the two methods allows to obtain an improvement in the accuracy,
keeping FP low and reducing the number of FN. CM with contributes of area and
position unit with the chosen setup is shown in Figure 4.7.

Figure 4.7: CM of area and position metrics with incremental PWM and bound-
aries from training set (accuracy of 97.92 %).

To take into account probabilities to find or not a class in a specific pixel,
it is possible to substitute the incremental PWM, with probabilistic per-class
PWMs. Probabilities are collected from training and test partitions and for this
step, different PWMs are taken into account: the first ones, namely (p)-PWMs,
are made of 19 matrices where each value is associated to the probability that a
pixel is labeled with that class, while the other one, (1 − p)-PWMs, computed by
subtracting (p)-PWMs to 1, take into account the probability to not find that class
in that specific pixel. Performances achieved with the two possible configurations
are shown in Table 4.4 and the corresponding CMs are shown respectively in Figures
4.8, 4.9, 4.10 and 4.11.

Using the probabilities (1 − p) instead of (p) is much more functional, since a
pixel labeled with an unlikely class has an impact on the metric result, while in
the other case, considering a critical mask with classes located in both probable
and non-probable pixels, the contribution of the latter is completely canceled.
Combining each method with the area metric does not allow to improve the
accuracy on the FOD dataset, providing even higher costs on COs. In addition,

31

Experimental Results

Table 4.4: Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition are wrongly
classified as critical in the position unit with probabilistic PWMs taken from a
different partition for the Position Unit

Probabilistic-PWMs Boundaries Partition Accuracy Cost
(p) from Training Test 89.93% 2.40% on val set
(p) from Test Training 83.49% 0.80% on val set
(1 - p) from Training Test 98.17% 2.60% on val set
(1 - p) from Test Training 97.86% 0.10% on val set

Figure 4.8: CM of position metric
with probabilistic PWM (probabili-
ties p from training set) and bound-
aries from test set

Figure 4.9: CM of position metric
with probabilistic PWM (probabili-
ties p from test set) and boundaries
from training set

Figure 4.10: CM of position met-
ric with probabilistic PWM (proba-
bilities 1 − p from training set) and
boundaries from test set

Figure 4.11: CM of position metric
with probabilistic PWM (probabili-
ties 1 − p from test set) and bound-
aries from training set

32

Experimental Results

probabilities computation requires an additional overhead, therefore these methods
reveal inefficient in this case.

4.1.3 Symmetries
Regarding the symmetry unit, the computation of boundaries over training and
test partition allows to reach higher values of accuracy, as shown in Table 4.5.

Table 4.5: Accuracy achieved on the FOD and costs of the usage of the training
and test partition for thresholds, when COs of a dataset partition are wrongly
classified as critical in the Symmetry Metric with different SWMs. The (p) label is
used to identify the SWMs that uses the probability that a pixel is vertically or
horizontally symmetric. The (1 − p) label is used to identify the SWMs that uses
the probability that a pixel is NOT vertically or horizontally symmetric

SWM Boundaries Partition Accuracy FP Cost

Incremental Training 97.87% 0.66% on test set
1.00% on val set

Incremental Test 98.72% 0.66% on tr. set
3.80% on val set

(p) from Training Test 89.37% 2.00% on val set
(p) from Test Training 80.34% 1.00% on val set
(1 − p) from Training Test 98.03% 3.00% on val set
(1 − p) from Test Training 97.16% 1.20% on val set

As for the position unit, the incremental SWM with boundaries made on the
training partition outperforms all the other methods.

Combining the three most basic setups seen until now, with boundaries made on
the training set for all the metrics and the usage of incremental PWM and SWM,
the accuracy reaches the 98.64% with a cost of 1.05 % and 1.40 % respectively on
test and validation set.

4.1.4 Right Angles
The final component to be set up is the right angles unit, which, like the initial
ones, requires calculating the maximum and minimum thresholds, basing on the
parameter n (number of pixels aligned, described in chapter 3).

As shown in Table 4.6, accuracy reached with n = 3 is ≈ 45% higher than with
n = 5, 7. The origin of this discrepancy relies on the fact that lower values of n
allows to capture a higher number of right angles: analyzing the boundaries, with
n = 5, 7 the lower bound is 0, while with n = 3, the minimum is different from 0

33

Experimental Results

Figure 4.12: CM of
the right angles unit with
thresholds from training
set and n = 3

Figure 4.13: CM of
the right angles unit with
thresholds from test set
and n = 3

Figure 4.14: CM of
the right angles unit with
thresholds from training
set and n = 5

Figure 4.15: CM of
the right angles unit with
thresholds from test set
and n = 5

Figure 4.16: CM of
the right angles unit with
thresholds from training
set and n = 7

Figure 4.17: CM of
the right angles unit with
thresholds from test set
and n = 7

34

Experimental Results

Table 4.6: Performances on FOD and and costs of the usage of the training and
test partition for thresholds, when COs of a dataset partition are wrongly classified
as critical with the usage of different values of n aligned pixels for the Right Angles
Unit

n Partition Boundaries Accuracy FP Cost

3
Training (13, 1220) 61.89% 0.07% on test set

0.20% on val set

Test (34, 1446) 62.47% 0.27% on training set
0.00% on val set

5
Training (0, 118) 16.08% 0.07% on test set

0.00% on val set

Test (0, 132) 15.71% 0.00% on training set
0.00% on val set

7
Training (0, 32) 15.70% 0.00% on training set

0.00% on val set

Test (0, 29) 15.97% 0.10% on training set
0.20% on val set

Table 4.7: Performances on FOD and costs of the usage of the training partition
for thresholds, when COs of a dataset partition are wrongly classified as critical
with the usage of all the metrics combined with different values of n aligned pixels
for the Right Angles Unit

n Accuracy FP Cost

3 98.95% 1.11% on test set
1.60% on val set

5 99.12% 1.11% on test set
1.40% on val set

7 99.00% 1.05% on test set
1.40% on val set

35

Experimental Results

for both the partitions. Therefore, all those masks where the fault causes the effect
of having the same class for all pixels (as seen in the chapter 3, they represent the
43.07 % of the FOD), are not labeled as critical, since having a value of right angles
up to 0, this value falls within the limits. Nonetheless, considering the fact that
the objective of this metric is not to identify that kind of masks and every metric
has an impact on detection of different anomalies, Table 4.7 shows results reached
by adding this unit with the previous set up, using different values of n as before.
For consistency with the other metrics, only the training partition is adopted for
thresholds of this metric. Results reveal that the usage of n = 5 allows to improve
the performances in terms of accuracy and costs.

4.1.5 Final Set Up
Since FOD must not be used for any parameter selection, the proposed final metric
is characterized by boundaries from training set for each unit, incremental weight
matrices for position and symmetry and right angles with n = 3, which are the
simplest and less expensive set ups, with statistics made on COs belonging to the
same partition employed to train the network and most likely similar to the ground
truth (consider that the ground truth of the test set is not available, differently
from training and validation partition). Final results are shown in Figure 4.18.

Figure 4.18: CM of the final method (accuracy of 98.95 %) using widest partition
for threshold computation (training set), the cheapest weight matrices (incremental
weight matrices) and the lowest possible n aligned pixel for the right angles unit
(n=3)

36

Experimental Results

4.2 Units Combinations

As soon as the setup is complete, method combinations are exploited in order to
identify the units that allow obtaining greater accuracy and those that instead
worsen results. The complete combinations study with the final setup is shown in
Table 4.8.

Table 4.8: Performances on FOD and and costs of each metric combination (with
the specific setup proposed in the previous section), when COs of a dataset partition
are wrongly classified as critical.

Combination Accuracy Cost

(’area’, ’pos’) 97.92 % 0.59 % on test set
0.40 % on val set

(’area’, ’symm’) 98.56 % 0.92 % on test set
1.20 % on val set

(’area’, ’ra3’) 97.44 % 0.52 % on test set
0.40 % on val set

(’pos’, ’symm’) 98.44 % 0.92 % on test set
1.20 % on val set

(’pos’, ’ra3’) 97.00 % 0.52 % on test set
0.40 % on val set

(’symm’, ’ra3’) 98.34 % 0.72 % on test set
1.20 % on val set

(’area’, ’pos’, ’symm’) 98.64 % 1.05 % on test set
1.40 % on val set

(’area’, ’pos’, ’ra3’) 98.42 % 0.66 % on test set
0.60 % on val set

(’area’, ’symm’, ’ra3’) 98.89 % 0.98 % on test set
1.40 % on val set

(’pos’, ’symm’, ’ra3’) 98.81 % 0.98 % on test set
1.40 % on val set

(’area’, ’pos’, ’symm’, ’ra3’) 98.95 % 1.11 % on test set
1.60 % on val set

Results show that the combination of all the units is more suitable in terms of
accuracy. In particular, as long as metrics are combined, the accuracy generally
increases, implying that each metric contributes in the identification of critical
faults.

37

Experimental Results

4.3 Computational Costs
The computational cost due to the use of this metric is evaluated at different levels:

• Single metric

• Final metric

• Statistics computation

– With incremental weight matrices
– With probabilistic weight matrices

• Final decision

Regarding the single metrics, computation of the area costs:

TA(c, H, W) = O(c × H × W) (4.1)
where c = 19 (number of classes), H = 1024 and W = 2048 (dimensions of the

final mask) and it does not involve any floating point operation;
the position metric incurs a cost:

TP (c, H, W) = 2 × O(c × H × W) = O(c × H × W) (4.2)
since for each class an element-by-element product is performed and the final

value is given by the summation of all the values. Depending on the position
weight matrix, if the incremental one is employed, no floating point operations are
required; with the probabilistic ones, the number of floating point operations is
79691776;

the computation of the symmetry unit cost is:

TS(c, H, W) = 4 × O
3

c × H × W

2

4
+ 4 × O

3
c × H

2 × W
4

=

= O (c × H × W) (4.3)

one contribute is given by the flipping operation, one by the logical-and between
the half masks, the other one for the products and the last one for the whole
summation. The same cost is required for both horizontal and vertical symmetry.
Also here, depending if probabilistic weight matrices are used, the floating point
operations are given by the product and the summation of the values. Considering
both horizontal and vertical symmetries with probabilistic weight matrices, the
total number of floating point operation required is 79691776 (the same of the
position metric);

38

Experimental Results

the right angles unit cost is:

TRA = O(H × W) + 2 × O(H × W) =
= O(H × W) (4.4)

given by the perimeter computation and the right angles count. This unit does
not involve any floating point operation.

The cost of the final metric considering all the units is

TF M(c, H, W) = TA + TP + TS + TRA =
= O(c × H × W) (4.5)

and no floating point operations are needed with incremental weight matrices.
The usage of the probabilistic ones requires a cost of 159383552 floating point
operations, however low, compared to the operations that a deep neural network
trained to detect the fault would require.

In total, considering all the metrics, they provide 4 × c + 1 values, therefore, the
cost to check if each value is contained in the boundaries is:

TC(c) = 2 × O(4 × c + 1) = O(c) (4.6)
Regarding the statistics computation (SC) to define boundaries, the final cost is

given by:

TSCi
(N, c, H, W) = O(N × c × H × W) + 2 × O(N × c) =

= O(N × c × H × W) (4.7)
where N is the size of the chosen dataset partition, which in this case is the

training one (N = 2975) and i states for the usage of incremental weight matrices.
When probabilistic weight matrices are employed, an additional overhead of

O(M × c×H ×W) for the probabilities computation is required. Depending on the
dataset partition adopted, M = 1525 for the test set or N = 2975 for the training
one:

TSCp(c, H, W, N, M) = O(M × c × H × W) + TSCi
=

= O(M × c × H × W) + O(N × c × H × W) + 2 × O(N × c) =
= O ((M + N) × c × H × W) (4.8)

The final decision (FD) is given by the computation of each metric and the
comparison of each value with minimum and maximum values:

TF D = TF M + TC = O(c × H × W) (4.9)

39

Experimental Results

4.4 Comparison and Safety Costs
Choosing to classify a mask as genuine when it is actually critically compromised
by a fault (FN) has a different cost than classifying a genuine mask as critical
(FP). In general, an autonomous driving system, in order to properly work, must
minimize the risk of incorrectly identifying critical objects, as this could lead to fatal
accidents. At the same time, it should avoid reporting genuine masks as critical
with too high frequency, otherwise autonomous driving would not be possible.

This section presents an analysis of the various methods previously set up, each
one compared basing on the normalized Detection Cost Function (DCF), which
measures the risk of making a wrong decision, where the decision in this case is
to classify the mask as critical or not. This measure is much more reliable than
evaluating accuracy alone, especially in cases where costs and the dataset are
unbalanced, allowing to take into account different costs and prior probabilities
that the mask is critical or not.

The formula adopted for binary classification is the following:

DCFu(Cfn, Cfp, πT) = πT CfnPfn + (1 − πT)CfpPfp

DCF(πT , Cfn, Cfp) = DCFu(πT , Cfn, Cfp)
min(πT Cfn, (1 − πT)Cfp) (4.10)

where DCFu is the un-normalized DCF, also known as empirical Bayes risk,
DCF is the normalized Bayes risk, the prior πT , in this case, is the probability
that a mask is critical with a stack-at-fault at bit 30, Cfn and Cfp are the costs
for FNs and FPs and Pfn and Pfp are FN and FP rates, respectively computed as
FNR = F N

F N+T P
and FPR = F P

F P +T N
.

The first subsection provides a further comparison of each metric combination,
from the point of view of the risk, while the second one compares the final set up
with the state-of-the-art metrics. Each method is compared varying Cfn from 1 up
to 100 and setting Cfp = (100 − Cfn) + 1. In addition, πT is set with πemp = 0.88,
which is empirically computed as the frequency of critical faults in FOD.

4.4.1 Combinations Comparison
Combining each metric not only allows to obtain a higher accuracy, but also to
decrease the Bayes risk. As shown in Figure 4.19, as each metric is added to the
final evaluation, DCF values decrease. In particular, while in cases where the cost
of misclassification is approximately the same, the difference is not particularly
noticeable, in cases where Cfn is much higher than Cfp, the risk decreases signifi-
cantly. However, as the Cfn increases with respect to the Cfp, the DCF increases
significantly, with an almost exponential trend. The top four metric combinations

40

Experimental Results

are shown in Figure 4.20. Note that ’area’, ’pos’, ’symm’ and ’ra3’ represent
the methods used for the final metric (with bounds taken from training set and
incremental weight matrices).

Figure 4.19: Normalized DCF of
each metric combination varying Cfn

(and Cfp) cost

Figure 4.20: Top four metric com-
binations with respect to Normalized
DCF varying Cfn (and Cfp) cost

4.4.2 State-of-the-art Comparison
Each method analyzed in this thesis is compared from different perspectives. At
first, a summary comparison, presented in Table 4.9, evaluates them based on their
requirements, highlighting how the developed metric, although an initial overhead,
does not involve the ground truth or a fault-free network. Since the state-of-the-art
methods classify the fault with more than two classes, these methods are adapted to
the developed metric by defining different groupings, in order to make the multiclass
classifications binary. CMs for each grouping are represented in Figures 4.21, 4.22
and 4.23 for the method relying on PA, while in Figures 4.24, 4.25 and 4.26 for
the method with mIoU. The corresponding accuracy values are present in Table
4.10. Note that for greater visual clarity in graphs and tables, each class has been
replaced with its initials as follows: ’c’ states for Critical, ’nc’ for Non-Critical,
’t’ for Tolerable, ’ni’ for No-impact SDC, ’w’ for Warning, ’a’ for Accepted
and ’m’ for Masked.

As for the combinations, the overall risk of various methods is evaluated on
FOD in term of normalized DCF.

Results show that even if the accuracy of the PA method is lower with respect
to the mIoU, it reveals to be the safest when Cfn is particularly higher with respect
to the Cfp. The developed metric (DM in Figures 4.27 and 4.28) is the riskiest,
but results are still comparable with the state of the art and most importantly,

41

Experimental Results

Table 4.9: Fault Detection methods requirements in comparison

Method Requirements
Developed Metric Statistics for thresholds computation,

metrics extraction and comparison of
each value with the corresponding
threshold at test phase

PA Metric CO at test phase and comparison with
thresholds defined in [1]

mIoU Metric Ground truth at test phase and compar-
ison of mIoUs difference with thresholds
defined in [2]

Figure 4.21: PA metric
CM, made merging ’t’
and ’ni’ with ’m’ faults

Figure 4.22: PA metric
CM, made merging ’t’
with ’c’ faults and ’ni’
with ’m’ faults

Figure 4.23: PA metric
CM, made merging ’t’
and ’ni’ with ’c’ faults

Figure 4.24: mIoU met-
ric CM, made merging
’w’ and ’a’ with ’m’
faults

Figure 4.25: mIoU met-
ric CM, made merging
’w’ with ’c’ faults and
’a’ with ’m’ faults

Figure 4.26: mIoU met-
ric CM, made merging
’w’ and ’a’ with ’c’
faults

42

Experimental Results

Table 4.10: Accuracy of different Fault Detection methods with different binary
class aggregations

Method Accuracy
Developed Metric (c vs nc) 98.95%
PA (c vs (t + ni + m)) 98.66%
PA ((c + t) vs (ni + m)) 89.59%
PA ((c + t + ni) vs m) 89.53%
mIoU (c vs (w + a + m)) 99.45%
mIoU ((c + w) vs (a + m)) 99.61%
mIoU ((c + w + a) vs m) 89.60%

Figure 4.27: Normalized DCF of
each method varying Cfn (and Cfp)
cost

Figure 4.28: Top four methods with
respect to Normalized DCF varying
Cfn (and Cfp) cost

43

Experimental Results

this metric does not use COs in the inference phase, but only beforehand for the
statistical calculation of boundaries. The developed metric decision depends on
thresholds, which can significantly improve or worsen the performance if varied.
Tables 4.12, 4.11, 4.14, 4.13, 4.16, 4.15, 4.18, 4.17 show the wrong predictions for
the top four safest methods (in terms of DCF) from Figure 4.28.

44

Experimental Results

Table 4.11: Examples of masks wrongly classified as non-critical (FNs) by the
developed metric, supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

455 13347 0.03 0.29 FN

350 6093 0.04 0.29 FN

444 13012 0.02 0.17 FN

475 16013 0.82 0.99 FN

136 12549 0.02 0.17 FN

45

Experimental Results

Table 4.12: Examples of masks wrongly classified as critical (FPs) by the developed
metric, supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

49 15870 0.87 0.99 FP

114 15870 0.93 0.99 FP

9 15279 0.99 1.00 FP

9 15223 0.66 0.96 FP

265 10431 1.00 1.00 FP

46

Experimental Results

Table 4.13: Examples of masks wrongly classified as non-critical (FNs) by the
mIoU metric, grouping Warning, Accepted and Masked faults into non-critical,
supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

22 15626 0.82 0.96 FN

374 15934 0.70 0.93 FN

460 16226 0.87 0.93 FN

62 16311 0.92 0.98 FN

283 15765 0.72 0.94 FN

47

Experimental Results

Table 4.14: Examples of masks wrongly classified as critical (FPs) by the mIoU
metric, grouping Warning, Accepted and Masked faults into non-critical, supple-
mented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

306 15451 0.62 0.99 FP

487 15479 0.63 0.99 FP

370 15946 0.72 0.99 FP

64 15290 0.67 0.98 FP

282 15378 0.77 0.99 FP

48

Experimental Results

Table 4.15: Examples of masks wrongly classified as non-critical (FNs) by the
mIoU metric, grouping Accepted and Masked faults into non-critical and Critical
and Warning into critical, supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

402 15964 0.62 0.94 FN

335 16013 0.86 0.98 FN

494 15751 0.79 0.83 FN

325 15765 0.75 0.96 FN

108 15946 0.87 0.99 FN

49

Experimental Results

Table 4.16: Examples of masks wrongly classified as critical (FPs) by the mIoU
metric, grouping Accepted and Masked faults into non-critical and Critical and
Warning into critical, supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

370 15946 0.72 0.99 FN

397 15634 0.60 0.97 FP

289 15541 0.81 1.00 FP

136 16276 0.64 0.93 FP

275 15661 0.79 0.99 FP

50

Experimental Results

Table 4.17: Examples of masks wrongly classified as non-critical (FNs) by the PA
metric, grouping Tolerable, No-Impact SDC and Masked faults into non-critical,
supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

18 16257 0.98 0.99 FN

293 16257 0.98 0.99 FN

273 16013 0.86 0.99 FN

296 16257 0.99 1.00 FN

183 15997 0.86 0.99 FN

51

Experimental Results

Table 4.18: Examples of masks wrongly classified as critical (FPs) by the PA
metric, grouping Tolerable, No-Impact SDC and Masked faults into non-critical,
supplemented by mIoU and PA metrics

Frame Injection mIoU PA Result Mask

480 15654 0.79 0.97 FP

95 450 0.80 0.99 FP

383 2806 0.91 1.00 FP

156 15317 0.88 0.99 FP

61 15502 0.85 0.99 FP

52

Chapter 5

Conclusions

Overall, this study explores different metrics to measure the quality of semantic
segmentation masks. These metrics act measuring specific properties of a mask
produced by the network. Comparing them with boundaries representing what is
expected to be obtained from the network in the absence of faults it is possible to
adopt them for fault detection purpose. While state-of-the-art methods require a
comparison with the faultless network output or the ground truth to be computed,
the proposed metrics imprint, within specific thresholds, the characteristic patterns
of each class of the segmentation masks. However, unlike mIoU and PA, the method
requires an initial overhead for the statistical calculation of unknown bounds, but
at classification phase, the computational cost is equivalent to that of mIoU. The
proposed metrics are tested on FOD, a dataset specifically developed within this
thesis, also available for potential future research.

Results obtained on the FOD with the various combinations of metrics and the
final one show that performances are very close to those of mIoU and PA, even if
the number of FN obtained is considerably higher than the latter, which however,
in cases where ground truth or CO is not available, cannot be used, not allowing
to identify the fault.

The proposed approach can be extended using additional metrics that analyze
appropriate characteristics of the segmentation masks. Furthermore, thresholds,
which are currently linked to a single dataset, can be varied through different
techniques that involve adapting the statistics obtained basing on the horizon line
or generalizing from a single domain to another, in order to better describe the
classes and allow the correct identification of the fault even when there is not
enough data or in cases where the network is used in different domains than the
one on which the network is trained or tested.

53

Bibliography

[1] Stéphane Burel, Adrian Evans, and Lorena Anghel. «Techniques for detecting
and masking faults in semantic segmentation applications». In: Microelec-
tronics Reliability 157 (2024), p. 115397. issn: 0026-2714. doi: 10.1016/j.
microrel.2024.115397. url: https://www.sciencedirect.com/science/
article/pii/S0026271424000775 (cit. on pp. 1, 14, 15, 17, 42).

[2] G. Govarini, A. Ruospo, and E. Sanchez. «A Fast Reliability Analysis of
Image Segmentation Neural Networks Exploiting Statistical Fault Injections».
In: 2023 IEEE 24th Latin American Test Symposium (LATS). 2023, pp. 1–6.
doi: 10.1109/LATS58125.2023.10154488 (cit. on pp. 1, 2, 11–14, 17, 42).

[3] Sparsh Mittal. «A survey on modeling and improving reliability of DNN
algorithms and accelerators». In: Journal of Systems Architecture 104 (2020),
p. 101689. issn: 1383-7621. doi: https://doi.org/10.1016/j.sysarc.
2019.101689. url: https://www.sciencedirect.com/science/article/
pii/S1383762119304965 (cit. on pp. 1, 7, 8, 12, 16, 20).

[4] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. «Fast-scnn: Fast
semantic segmentation network». In: arXiv preprint arXiv:1902.04502 (2019)
(cit. on pp. 2, 5, 6).

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
«The Cityscapes Dataset for Semantic Urban Scene Understanding». In: Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016 (cit. on pp. 2, 4).

[6] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtar-
navaz, and Demetri Terzopoulos. «Image Segmentation Using Deep Learning:
A Survey». In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 44.7 (2022), pp. 3523–3542. doi: 10.1109/TPAMI.2021.3059968
(cit. on pp. 3, 4).

[7] Cesar Torres-Huitzil and Bernard Girau. «Fault and Error Tolerance in
Neural Networks: A Review». In: IEEE Access 5 (2017), pp. 17322–17341.
doi: 10.1109/ACCESS.2017.2742698 (cit. on p. 7).

54

https://doi.org/10.1016/j.microrel.2024.115397
https://doi.org/10.1016/j.microrel.2024.115397
https://www.sciencedirect.com/science/article/pii/S0026271424000775
https://www.sciencedirect.com/science/article/pii/S0026271424000775
https://doi.org/10.1109/LATS58125.2023.10154488
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.101689
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.101689
https://www.sciencedirect.com/science/article/pii/S1383762119304965
https://www.sciencedirect.com/science/article/pii/S1383762119304965
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/ACCESS.2017.2742698

BIBLIOGRAPHY

[8] J.A. Abraham and W.K. Fuchs. «Fault and error models for VLSI». In:
Proceedings of the IEEE 74.5 (1986), pp. 639–654. doi: 10.1109/PROC.1986.
13528 (cit. on p. 7).

[9] A. Ruospo et al. «Assessing Convolutional Neural Networks Reliability
through Statistical Fault Injections». In: 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2023, pp. 1–6. doi: 10.23919/
DATE56975.2023.10136998 (cit. on pp. 7, 11, 12).

[10] Annachiara Ruospo, Ernesto Sanchez, Lucas Matana Luza, Luigi Dilillo,
Marcello Traiola, and Alberto Bosio. «A Survey on Deep Learning Resilience
Assessment Methodologies». In: Computer 56.2 (2023), pp. 57–66. doi: 10.
1109/MC.2022.3217841 (cit. on pp. 8–10).

[11] V. Turco, A. Ruospo, E. Sanchez, and M. Sonza Reorda. «Early Detection
of Permanent Faults in DNNs Through the Application of Tensor-Related
Metrics». In: 2024 27th International Symposium on Design & Diagnostics
of Electronic Circuits & Systems (DDECS). 2024, pp. 13–18. doi: 10.1109/
DDECS60919.2024.10508918 (cit. on p. 12).

[12] Dongning Ma, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore, Sri-
ram Sankar, and Xun Jiao. «Dr. DNA: Combating Silent Data Corruptions
in Deep Learning using Distribution of Neuron Activations». In: Proceed-
ings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. ASPLOS ’24.
La Jolla, CA, USA: Association for Computing Machinery, 2024, pp. 239–
252. isbn: 9798400703867. doi: 10.1145/3620666.3651349. url: https:
//doi.org/10.1145/3620666.3651349 (cit. on p. 12).

[13] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. «FT-
ClipAct: Resilience Analysis of Deep Neural Networks and Improving their
Fault Tolerance using Clipped Activation». In: 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 2020, pp. 1241–1246. doi:
10.23919/DATE48585.2020.9116571 (cit. on p. 12).

[14] Kuang-Hua Huang and Jacob A. Abraham. «Algorithm-Based Fault Tolerance
for Matrix Operations». In: IEEE Transactions on Computers C-33.6 (1984),
pp. 518–528. doi: 10.1109/TC.1984.1676475 (cit. on p. 13).

[15] A.A. Al-Yamani, N. Oh, and E.J. McCluskey. «Performance evaluation of
checksum-based ABFT». In: Proceedings 2001 IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems. 2001, pp. 461–466. doi:
10.1109/DFTVS.2001.966800 (cit. on p. 13).

[16] SFIadvancedmodels. https://https://github.com/cad- polito- it/
SFIadvancedmodels (cit. on p. 26).

55

https://doi.org/10.1109/PROC.1986.13528
https://doi.org/10.1109/PROC.1986.13528
https://doi.org/10.23919/DATE56975.2023.10136998
https://doi.org/10.23919/DATE56975.2023.10136998
https://doi.org/10.1109/MC.2022.3217841
https://doi.org/10.1109/MC.2022.3217841
https://doi.org/10.1109/DDECS60919.2024.10508918
https://doi.org/10.1109/DDECS60919.2024.10508918
https://doi.org/10.1145/3620666.3651349
https://doi.org/10.1145/3620666.3651349
https://doi.org/10.1145/3620666.3651349
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/DFTVS.2001.966800
https://https://github.com/cad-polito-it/SFIadvancedmodels
https://https://github.com/cad-polito-it/SFIadvancedmodels

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Image Segmentation
	Task: Image Segmentation
	Dataset: Cityscapes
	Network: Fast-SCNN

	Hardware faults
	Weight Encoding and Precision Details
	Fault Injection
	Statistical Fault Injection

	Fault Detection
	Pixel Accuracy
	Mean Intersection over Union

	Proposed Approach
	Faulty Output Dataset
	Dataset Overview

	Metrics
	Area
	Position
	Symmetries
	Right Angles

	Thresholds computation

	Experimental Results
	Metric Set Up
	Area
	Position
	Symmetries
	Right Angles
	Final Set Up

	Units Combinations
	Computational Costs
	Comparison and Safety Costs
	Combinations Comparison
	State-of-the-art Comparison

	Conclusions
	Bibliography

