
Remote Control von Peripheriekomponenten in
einem Fahrzeugnetz

Kamel Fakih

Masterarbeit 2025

Masterarbeit | Master’s Thesis

Remote Control von Peripheriekomponenten in einem
Fahrzeugnetz

Remote Control of Peripheral Components in an
Automotive in-vehicle Network

Author: Kamel Fakih

Matriculation number: 428403

Submission date: 4. März 2025

Chair of Electronic Design Automation

Examiner: Prof. Dr.-Ing. Wolfgang Kunz

Prof. Dr. Matteo Sonza Reorda

Supervisor: Dr. Naresh Nayak

Adriaan Neiß

Eidesstattliche Erklärung | Declaration on oath

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, die vorliegende Arbeit gemäß BPO/MPO Elektrotechnik

und Informationstechnik bis auf die durch meinen Betreuer gewährte Unterstützung ohne Hil-

fe Dritter selbstständig angefertigt, alle benutzten Quellen und Hilfsmittel einschließlich des

Internets vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Ar-

beiten anderer unverändert, mit Abkürzung oder sinngemäß übernommen wurde.

Kaiserslautern, den 4. März 2025

Kamel Fakih

Page II

Kurzfassung | Abstract

Kurzfassung

Die Automobilindustrie bewegt sich in Richtung softwaredefinierter Fahrzeuge (SDV) — Ein

neues Paradigma, bei dem die Kernfunktionen und Merkmale eines Fahrzeugs durch Software

definiert werden. Dieser Übergang geht einher mit dem Übergang zu zentralisierten elektri-

schen und elektronischen Architekturen (EEA), wie der zonale Architektur. Eine Schlüsselei-

genschaft der Zentralisierung ist die Konsolidierung von Rechenressourcen im Fahrzeugcom-

puter, die darauf abzielt, das Systemdesign zu vereinfachen und gleichzeitig fortschrittliche

Funktionen wie Over-the-Air-Updates zu ermöglichen. Die Zentralisierung ermöglicht die Ver-

einfachung der Fahrzeug-Peripheriegeräten, indem Softwarekomponenten, die auf speziellen

Sensor-/Aktor-Steuergeräten (ECUs) laufen, in dieFahrzeugcomputer und/oderdie zonaleSteu-

ergeräte verlagert werden. Infolgedessen werden diese Steuergeräte durch vereinfachte Edge

Nodes ersetzt, auf denen minimale Software läuft und die als Gateways zwischen der Anwen-

dungslogik unddenSensoren/Aktuatoren fungieren.DieEdgeNodes führenLow-Level-Befehle,

wie SPI-Transaktionen aus, die sie vom Fahrzeugcomputer/zonalen Controller erhalten. Ein Re-

mote Control-Protocol (RCP) wird zur Interaktion mit diesen Knoten über Ethernet verwendet.

Das Protokoll definiert einheitliche Methoden für den Zugriff auf und die Steuerung von Pe-

ripheriegeräten, die an Edge Nodes angeschlossen sind. RCP befindet sich noch in der Stan-

dardisierungsphase und ist nicht vollständig definiert. Daher wurden in dieser Arbeit Remote

Control Use-Cases innerhalb der zonalen Architektur untersucht, um ein Framework für RCP

zu erstellen, das Systemmodell zu definieren und die Anforderungen für das Kommunikations-

protokoll abzuleiten.

DieseForschungwurdebei derRobertBoschGmbHunter derAufsicht vonDr.NareshNayak

und Adriaan Neiß von Bosch, Professor Wolfgang Kunz von der RPTU und Professor Matteo

Sonza Reorda von Polito durchgeführt.

Page III

Kurzfassung | Abstract

Abstract

The automotive industry is shifting towards software-defined vehicles — A new paradigm in

which software defines the core functions and features of a vehicle. This transition is accompa-

nied by the move towards centralized electrical and electronic architectures (EEA), such as the

zonal architecture. A key property of centralization is the consolidation of compute resources

in the vehicle computer, which aims to simplify the system design while enabling advanced fea-

tures such as over-the-air updates. Centralization simplifies the vehicle peripherals by moving

software from dedicated sensor/actuator electronic control units (ECUs) to the vehicle com-

puters and/ or zonal controllers. As a result, these ECUs could be replaced by simplified edge

nodes that act as gateways between the application logic and the sensors/actuators. The edge

nodes execute low-level commands, like SPI transactions, received from the vehicle comput-

er/zonal controller. A remote control protocol (RCP) interacts with these nodes over Ether-

net. The protocol defines uniform methods for accessing and controlling the peripherals con-

nected to the edge nodes. RCP is still under standardization and is not fully defined. Therefore,

in this thesis, we explored remote control use cases within the zonal architecture to establish

a framework for RCP, defining the system model and deriving the requirements for its com-

munication protocol. Then, we evaluated two candidate transport protocols — IEEE1722 and

SOME/IP — and how they would fit into the RCP framework. We learned that while IEEE1722 is

more suitable as a transport mechanism for RCP because it is lightweight andmore compatible

with time-sensitive networking, it failed short of satisfying the service-oriented nature of some

RCP requirements as interface discovery. Therefore, we defined a new concept that combines

components from each protocol to realize a feature-complete remote control protocol.

This research was conducted at Robert Bosch GmbH under the supervision of Dr. Naresh

Nayak and Mr. Adriaan Neiß from Bosch, Professor Wolfgang Kunz from RPTU, and Professor

Matteo Sonza Reorda from Polito.

Page IV

Inhaltsverzeichnis

Inhaltsverzeichnis

Eidesstattliche Erklärung | Declaration on Oath II

Kurzfassung | Abstract III

1 Introduction 1

2 State of the art 9

2.1 electrical and electronic architectures . 9

2.1.1 Traditional decentralized electrical and electronic architectures 9

2.1.2 Centralized electrical and electronic architectures 12

2.2 Automotive Ethernet and Time-Sensitive Networks 13

2.3 In-vehicle communication protocols . 15

2.3.1 AVTP (Audio Video Transport Protocol) . 15

2.3.2 SOME/IP . 19

3 Framework for a Remote Control Protocol 23

3.1 System model . 23

3.2 Use-cases . 28

3.2.1 Use-case 1: Controlling Ambient lighting Systems 28

3.2.2 Use-case 2: Camera streaming and control 30

3.2.3 Use-case 3: Controlling I2C peripherals . 31

3.2.4 Use-case 4: Controlling SPI peripherals . 38

3.3 Requirements . 42

3.3.1 Interaction model . 42

3.3.2 Resource usage . 44

3.3.3 Timing requirements . 44

3.3.4 Discovery . 45

3.3.5 Operation and transport protocol . 45

3.4 Standardization . 48

4 RCP implementation using existing communication protocols 49

4.1 Measurement Methodology . 49

4.1.1 Timing measurements . 49

Page V

Inhaltsverzeichnis

4.1.2 Additional measurement tools . 51

4.1.3 CPU usage measurement . 52

4.2 Head-to-head Comparison . 52

4.2.1 Evaluation setup . 52

4.2.2 IEEE1722 Talker/Listener Implementation 52

4.2.3 SOME/IP Talker and Listener Implementation 54

4.2.4 Evaluation scenarios . 55

4.2.5 Evaluation results . 56

4.3 End-to-End Performance . 61

4.3.1 Evaluation setup . 61

4.3.2 Implementation . 61

4.3.3 Evaluation scenarios . 63

4.3.4 Evaluation Results . 65

4.4 Discussion . 67

5 Concept for a new remote control protocol 69

5.1 Introduction . 69

5.2 System model . 69

5.3 Protocol operation . 70

5.3.1 Setup phase . 70

5.3.2 Communication phase . 72

5.3.3 Teardown phase . 72

6 Conclusion and Future Prospects 73

bibliography 80

Abbreviations 81

List of tables 83

List of figures 85

Page VI

1 Introduction

Trends in automotive industry

The automotive industry is undergoing a paradigm shift in which vehicles are no longer conside-

red a basic means of transportation but rather a fully adaptable experience that caters to the

different needs of drivers and passengers. When looking for a new vehicle, today’s customers

are less influenced by performance metrics, such as horsepower and torque. Instead, they are

more interested in the availability of digital functions like driver assistance, infotainment, and

connectivity [1]. Studies have shown that 36% of customers are willing to switch to a different

car manufacturer if it offers improved digital and connected services [2].

With digital devices becoming an integral part of the end users’ lives, they now demand

seamless integration of their vehicles into their digital lifestyle. Users expect regular updates

to improve the driver and passenger experience, along with the ability to add or remove fea-

tures on demand. In a fully connected world, vehicles are expected to automatically sync with

schedules, routes, and preferences, like adjusting the driver’s seating position or playing their

favorite music upon entry [3]. In other words, assuming the availability of the required hard-

ware, any vehicle should adapt itself to a given driver profile, similar to how smartphones adjust

to individual user settings. The shift towards designing driver experience-oriented vehicles will

make software a key player in the automotive industry. While hardware components are still

necessary for vehicles to operate, they are no longer sufficient for providing the needed flexi-

ble and improved user experience [4]. In traditional vehicles, software components were only

the enabler for mechanical functions. Software was deployed on statically configured hardware

to implement basic functionality, and it remains unchanged throughout the vehicle’s lifetime.

In contrast, software in future vehicles will become the sufficient condition required to define

the vehicle’s main functionalities. The software will dynamically change a vehicle’s functionality

while accommodating new releases and changes in hardware components. The global software

market is estimated to have a faster growth rate than thewhole automotivemarket as it doubles

in value from 2020 to 2030 [2].

This trend has led to the rise of a new term: the SDV (software defined vehicle), which is, by

definition, a vehicle that has its main features and functionalities driven by software [1]. SDVs

represent a ground-breaking approach to transportation, utilizing software integration and vir-

tualization to improve vehicle functionality, connectivity, and autonomy [5]. The popularity of

Page 1

1 Introduction

SDVs is driven by factors like over the air updates, driver assistance systems, and connectivity:

1. OTA(overtheair)updates: Theability toperformOTAupdates is oneof the keyenablers

for SDVs. It allowsOEMs to deliver software updates and patches and add new features to

a vehicle remotely without the need to roll it back into the shop. Performing these updates

has several advantages, such as efficiency and cost savings. Manufacturers greatly redu-

ce downtime and operational costs by remotely updating a large fleet of vehicles. Regular

bug fixes and patches for newly discovered security vulnerabilities also help protect the

vehicle from evolving threats, enhancing the overall security of the vehicle and its pas-

sengers. An SDV can continue to adapt to new technologies and users’ needs long after

it leaves the factory. [5]

2. ADAS (advanced driver assistance system): Architectural changes brought by SDVs

led to the fast-paced evolution of technologies assisting the driver. Features such as ad-

aptive cruise control, lane assist, automatic braking, and blind-spot detection all rely on

complex software algorithms and need to process huge amounts of data coming from a

variety of sensors [5]. These features underscore the role of software in ensuring a safe

and smooth driving experience.

3. Connectivity: Modern vehicles rely on connectivity to integrate seamlessly into their

ecosystem. V2V communication (vehicle-to-vehicle communication) improves road safe-

ty by enabling cooperative functionalities like platooning and exchanging critical safety

data. V2I communication (vehicle-to-infrastructure communication) improves efficiency

and convenience by allowing vehicles to communicate with smart infrastructure, impro-

ving route planning. Finally, V2C communication (vehicle-to-cloud communication) gives

the vehicle access to navigation data, real-time traffic information, and personalized ser-

vices [5]. Connectivity makes SDVs a part of an adaptive, efficient, and intelligent eco-

system.

4. Economic and Competitive Edge Due to the differences in regional regulatory frame-

works, it is difficult to harmonize and develop uniform technical regulations for vehicles;

for instance, the US automotive safety standards are regulated by the NHTSA, which fo-

cuses more on compliance with federal regulations, while the European safety standards

are set by the European Commission, and are based on government regulatory approval

before manufacturing [6]. This often leads to different vehicle designs and adaptations

Page 2

1 Introduction

to meet the respective local/regional regulations (e.g., the US regulations require vehic-

les to be locked in ”Park”before key removal to prevent roll-away, while other countries

permit the removal of the keys while in neutral to make it possible to roll the vehicle while

keyed-off in automated parking garages [7]). OEMs aims to boost profitability by cutting

costs and shortening the time to market. The high number of variants in vehicles is still a

major cost driver for development that is promised to be reduced by prioritizing software

at the core of vehicle design [3]. Additionally, SDVs can bring extra revenue streams after

the initial purchase by offering connectivity features using a subscription-based model,

given that such features offer adequate value and improve the driving experience [8].

Changes Enabled by software defined vehicles

SDVs represents a shift from traditional vehicles’ tightly integrated software and hardware ar-

chitecture to a layered and decoupled architecture. Software in a traditional vehicle’s compo-

nent subsystem (e.g., engine control system) is directly embedded within its hardware com-

ponents, leading to a solidified and more robust vehicle implementation. However, to promote

flexibility and modularity, SDVs adopts a layered architecture on which the cross-dependency

between different technical elements is reduced. Figure 1.1 summarizes the technical compon-

ents of an SDV. The key components include functional hardware, the EEA (electrical and elec-

tronic architecture), computing platform, OS (operating system), communication middleware,

service layer, functional and service applications, and the cloud service platform. The onboard

hardware encompasses functional hardware, including sensors for data generation and actua-

tors for carrying out commands. The electrical and electronic architecture defines the IVN (in-

vehicle network) that interconnects all functional hardware to the computing platform, which is

responsible for most data processing inside the vehicle. The onboard software consists of the

OS kernel, the communication middleware, and the service layer, with the kernel managing the

components’ low-level hardware, while the middleware facilitates communication across the

system by providing a unified data aggregation platform. The service layer abstracts the dis-

crete and repeated vehicle functions as services that can be accessed by the upper software

layers, namely the functional and service applications. Functional applications involve hardware

control and security, while service applications usually take care of infotainment and other ser-

vices, such as charging. Finally, the cloud service platform is responsible for sending some of

the data generated inside the vehicle to the cloud for further analysis to improve the user ex-

perience [4].

Page 3

1 Introduction

Fig. 1.1: Technical elements of an SDV (adapted from [4])

The primary value of traditional vehicles originated from their hardware components, as the

software was only embedded in hardware to complement its functionality. However, for SDVs,

hardware becomes only a shared resourcewith itsmain functionality defined by software [4]. To

implement the complex features required by today’s vehicles, system components require ac-

cess to various sensors and actuators, some of which may belong to other subsystems. Thus, it

is necessary to move from the current paradigm where component subsystems are often trea-

ted as black boxes and implement open and standardized interfaces for these components in-

stead. Abstracting the functional hardware facilitates continuous software updates and allows

the hardware to be upgraded or exchanged in the future.

Another change introduced by SDVs is the adoption of new in-vehicle electrical and elec-

tronic architectures. Traditional decentralized EEAs are increasingly struggling to meet the de-

mands of the complex functional requirements of modern vehicles. In a decentralized EEA, ad-

vanced vehicle functions are achieved by a high number of interconnected ECUs (electronic

control units) such that each ECU is responsible for processing its own set of information and

communicating with other ECUs using point-to-point communication. Such a design adds too

much complexity and suffers from many pitfalls regarding flexibility and scalability. It cannot

handle the high data exchange bandwidth required by advanced features like ADAS. For this

reason,modern vehicles are shifting towards a centralized EEA, a novel systemdesign that con-

Page 4

1 Introduction

solidates the computation of functions at various levels, such as individual domains or zones

within the vehicle [7]. Figure 1.2 highlights the shift from the traditional decentralized EEA to

a zonal EEA. While we are going to explore the progression of electrical and electronic archi-

tectures in the automotive industry in more detail, in short, a zonal EEA, consolidates ECUs by

grouping functions and connections into zones based on the vehicle’s physical layout. For in-

stance, the vehicle in Figure 1.2 is grouped into four zones: front left, front right, rear left, and

rear right zone. In contrast to the decentralized network on the left, the zonal controllers on the

right communicate with the central compute platform using automotive Ethernet. Communi-

cation in traditional EEAs is based on legacy communication protocols, such as CAN (controller

area network), LIN (local interconnect network), FlexRay, and MOST (media oriented system

transport); however, these protocols are becoming inadequate against the increased data volu-

me required bymodern vehicles. On the other hand, automotive Ethernet is getting increasingly

adopted due to its ability to handle high volumes of data and its development to support time-

sensitive communication [7].

Fig. 1.2: Transition to a centralized electrical and electronic architecture

The centralization of software presents a significant opportunity to simplify system design.

By concentrating software in the central compute platform, the complexity of edge nodes,

which include the sensors and actuators distributed through the vehicle, is significantly redu-

ced. Edge nodes are no longer required to have extensive processing power or complete soft-

ware stacks, as their primary role is to collect and send raw data to the central ECU. Reducing

complexity also creates the opportunity for seamless OTA updates. To perform an OTA up-

date, the OEM releases a new service pack containing the latest software version. The service

pack is then downloaded wirelessly over the network by the vehicle’s CCU (connectivity control

Page 5

1 Introduction

unit) and passed on to the central computing unit, which hosts the onboard update server that

is responsible for performing the firmware updates on the various ECUs across the in-vehicle

network [9]. The simplification of the edge nodes further facilitates the process, as the nodes

requireminimal to no adjustments during updates. Reducing the number of ECUsmakes the en-

tire vehicle feature deployment process more efficient and less prone to errors. This also offers

promising cost savings and enables potential reductions in wiring harness length.

However, relying on low-cost edge nodes with minimal software creates the need for a new

and reimagined approach to interaction between the functional hardware and the compute

platform within the vehicle. As sensors and actuators become simpler and less powerful, the

central computing platform takes on the responsibility ofmanaging their operation, creating the

need to implement a new approach for controlling vehicle’s peripherals. The central ECU is then

required to transparently manage interfaces like SPI, I2C, and GPIO over Ethernet. This setup

can be described as a remote control system containing a set of nodes, where one node, the

controller, is capable of accessing the peripherals connected to other nodes, the edge nodes

while relying on Ethernet as theirmain communication channel. Considering the variety of inter-

faces and their different configurations, it is logical to define a standard that describes system

operation, including initialization, configuration, diagnostics, communication, and error hand-

ling. This standard can be implemented through a remote control protocol that defines a uni-

form method for accessing and controlling the remote interfaces. The protocol should govern

the data formats and interactions between nodes in the remote control system. Eventually, the

controller must be able to perform various operations on the remote interfaces, such as re-

ading their current state, getting/setting configuration parameters, and executing their core

functionality.

Figure 1.3 shows an example use case of an RCP (remote control protocol). In this setup,

the SPI interface on the edge node is connected to 3 different SPI sensors. The application

logic for handling and processing sensor data is relocated to the central ECU. The applicati-

on expects to seamlessly access the SPI interface as if directly connected to the central ECU.

Therefore, the edge node must act as a gateway, forwarding commands from the central ECU

over the Ethernet interface to the SPI interface. RCP standardization is still a work in progress,

meaning that in this scenario, the exact behavior and communication between the edge node

and the central ECU is still undefined. However, a set of requirements for RCP can be outlined

by considering use cases from OEMs and potential remote control system architectures. RCP

definition is met with a variety of challenges, including identifying the interfaces that need to be

Page 6

1 Introduction

Fig. 1.3: Example of an RCP application

remotely controlled, specifying the type of operations, and addressing communication proper-

ties. Additionally, a remote control systemmust meet performance requirements, including low

latency and quick startup times, along with stringent security and functional requirements. As a

communication protocol, RCP is expected to define a set of messages that govern the system

behavior. For example, the protocol might include a data polling message that the controller

uses to perform a read operation on the remote interface. Additionally, the protocol will need

an underlying transport mechanism that facilitates the delivery of thesemessages between the

different participants of the system.

Amajor decision when defining RCP is whether to come up with a completely new transport

mechanism or to rely on existing communication protocols that meet these requirements. Se-

veral candidates for an underlying transportmechanism already exist, including IEEE1722, which

is a steaming protocol designed for low-latency communication over Ethernet, and SOME/IP,

which is a communication middleware that supports message-based communication and ser-

vice discovery over Ethernet/IP networks. This thesis aims to evaluate these protocols based on

a feature-to-cost analysis. The thesis aims to identify the suitability of existing communication

protocols as underlying transport mechanisms for RCP by examining their unique features and

applying them to different RCP use cases. Furthermore, the thesis will identify the main fea-

tures required for an efficient and functional remote control system, exploring the possibility of

combining existing protocols to create a complete RCP solution. Finally, the thesis will provide

recommendations to support the ongoing standardization efforts for RCP

The thesis is organized as follows: Chapter 2 presents the state of the art of automotive

Page 7

1 Introduction

networks, protocols, and RCP. Chapter 3 presents a framework for remote control protocols,

defining the systemmodel, use cases, and requirements. Chapter 4 discussed the implementa-

tion of existing in-vehicle communication protocols as RCP. Chapter 5 presents a concept for a

new remote control protocol based on our evaluation results, and finally, Chapter 6 concludes

the thesis.

Page 8

2 State of the art

2.1 electrical and electronic architectures

To address the ambiguity around the definition of the vehicle’s electrical and electronic archi-

tectures, the paper in [9] relies on IEEE’s general definition of an architecture to describe it

as:

”the fundamental organization of vehicle electrical and electronic components,

including ECUs, sensors, actuators, wiring, power distribution, onboard and wireless

communication, etc., to realize the desired function and performance goals, with

emphasis on the interactions and interdependencies among the components and

with the environment, as well as the principles guiding the design and evolution.”

This means that the EEAs serves as the foundational blueprint for developing the vehicle’s

E/E components. A well-designed architecture allows the vehicle to achieve its performance

goals and adapt to future requirements while enabling seamless refinement and expansion of

its functions. It also affects the overall systemdesign process, which includes requirements, de-

sign considerations, objectives, and development strategies [9]. The rapid increase in modern

vehicle’s functional requirements has led to a surge in the number of components that need to

interact within the vehicle. For instance, modern vehicles may include over a hundred ECUs and

up to 100million lines of codes [10]. This increase in complexity has introduced significant chal-

lenges in designing the in-vehicle network. To fully understand these challenges, it is imperative

to examine the evolution of the electrical and electronic architectures over time and to explore

their future developement path.

2.1.1 Traditional decentralized electrical and electronic architectures

Vehicles till the 1960s relied on minimal electrical components with no electronics. Electrical

connections were mainly required for basic functions like operating the headlights and sound

systems. It was not until the 1970s that vehicles started to includemore electronic components.

During this phase, the positioning of the wiring harness — which includes the wires, connectors,

and terminals that transmit power and data signals within the vehicle - started to become a

concern for the system designers. Driven by new requirements for safety, emissions, and ener-

gy savings from regulators, electronic component growth maintained momentum through the

Page 9

2 State of the art

1980s and 1990s. This growth was coupled with an increase in the vehicle’s data signals, which

reached bandwidths of up to 25MB/s. As a result, it becamemore important to define standards

for electrical architectures that would help optimize the vehicle’s performance and reduce the

design complexity [11].

These two decades witnessed the introduction of an extensive amount of electronic con-

trol systems, such as electronic fuel injection, ignition and emission systems, anti-lock braking,

airbags, anti-collision systems, GPS navigation, and fault diagnosis systems.Many of these sys-

temsuseddedicatedECUs,with eachECUhandling a specific application(e.g., electronic power

steering). Figure 2.1 shows an example of such architecture. The communication between ECUs

Fig. 2.1: Example of a point-to-point EEA

was limited to a few use cases, on which ECUs relied on point-to-point connections like analog

and PWM signals to exchange information about sensors shared across multiple components.

However, with the demand formore shared information and diagnostics data, thewiring harness

started to become unmaintainable and less reliable. In response, manufacturers opted for field

bus technologies as an alternative to point-to-point communication, reducing the number of

communication lines inside the vehicle. The communication between multiple ECUs would be

carried over a limited number of buses capable of interconnecting more than two devices and

can ensure their proper coordination. This has led to the introduction of multiple fieldbus tech-

nologies, including the CAN-bus, LIN, MOST, and FlexRay, which served different uses within

the in-vehicle network. Vehicle functions were then categorized into various domains, such as

powertrain, chassis, body, and infotainment. Eventually, ECUs and sensors of a common do-

main were connected to a serial bus, forming a subnetwork as shown in Figure 2.2. Inter-domain

communication was still limited but possible as ECUs could act as gateways when needed. This

Page 10

2 State of the art

Fig. 2.2: Example of a distributed EEA integrated with vehicle bus

approach facilitated function design and implementation by confining thedevelopement of clo-

sely related functions to their domain. However, as more coordination was required from diffe-

rent functional domains, the system later evolved to rely on a central gateway that handles all

the inter and intra-domain communication. Figure 2.3 illustrates themain concept of this type of

EEA. The central gateway allowed communication between different bus types andwas respon-

Fig. 2.3: Example of an EEA with centralized gateway

sible for additional tasks such as message routing, rate adaptation, network management, and

diagnostics. This architecture was implemented by major OEMs including Volkswagen, BMW,

and Audi, and remained in use until recently[9, 12].

Up until this point, vehicle control was still fully decentralized. Although inter-ECU commu-

nication became a thing, generally, ECUs was limited to mainly one function per ECU. This ap-

porach presented some advantages—for example, decentralized architectures allowed for the

Page 11

2 State of the art

seperation of concerns. By deploying tightly related functions into a single ECU, it became ea-

sier to integrate that ECU into the network as the bandwidth and timing requirements on the

bus became simpler (i.e. eliminates the need for synchronization between multiple ECUs). Ho-

wever, this approach also faced several drawbacks. Adding more ECU for each function soon

proved unmaintainable and expensive. As the number of functions within the vehicle increased,

so did the number of ECUs, which led to bulkier wiring harnesses. Additionally, bus technologies

started to reach their upper limit, as the volume of data between ECUs started to increase [7].

2.1.2 Centralized electrical and electronic architectures

The traditional decentralized approach for EEA could no longer support the growth in content

and complexity of modern vehicles. New technical trends in automated driving and connectivi-

ty significantly increased the demand for communication within and across different functional

domains, placing more load on the central gateway. Excessive decentralization of vehicle func-

tions resulted in complex wiring and poor network performance. As a result, the vehicles EEAs

required a fundamental change, which led to the introduction of new architectures focusing on

centralization. Initially, domain-oriented architectures were introduced to reduce the number

of ECUs and improve the gateway load. Followed by the development of zone-oriented archi-

tectures to further consolidate vehicle functions [12].

Domain-oriented architectures

Figure 2.4 presents a typical domain architecture layout. In a domain-oriented architecture,

software components are grouped based on their functional domain. For example, the system

could be organized into the following domains:

• Body andCabin: Includes user-related functionality such as lighting and climate control.

• Infotainment: Includes cabin displays, entertainment, and information systems such as

navigation and connectivity features.

• Vehicle Motion and Safety: Includes chassis safety and driver assistance functions.

• Powertrain: Includes drive systems, transmission, and energy management.

Each domain is composed of a domain control unit (DCU) and one or more subdomain ECUs

connected to it. The DCU is a powerful computing unit that hosts domain-specific functionali-

ties and serves as an abstraction layer for the underlying ECUs, facilitating inter-domain com-

Page 12

2 State of the art

munication. On the other hand, subdomain ECU abstracts the functionalities of the sensors and

actuators they are connected to. The subdomain ECU, along with their corresponding sensor

and actuators, are usually referred to as smart sensors and actuators [7].

Fig. 2.4: Typical domain-oriented EEA

Zone-oriented architectures

Figure 2.5 presents the layout of a zonal architecture. Zone-oriented architectures divide

the car into zones based on their proximity. For example, a zonal architecture could be split into

front right, front left, rear right, and rear left zones. Similarly, a Zone consists of a Zone ECU

(ZCU) and on or more ECUs. However, A key difference between Zonal and Domain-oriented

architectures is that the sub-zone ECUs performs less processing than sub-domain ECUs. Ins-

tead, theymainly pre-process data and transmit it to amore powerful central computing unit for

further processing. Zonal architectures are regarded as the most efficient electrical and elec-

tronic architecture [7].

2.2 Automotive Ethernet and Time-Sensitive Networks

Page 13

2 State of the art

Fig. 2.5: Typical zone-oriented EEA

Automotive Ethernet

The automotive industry is adopting Ethernet technologies to handle the increasing com-

munication bandwidth required by driver assistance and infotainment systems. Modern EEA ar-

chitectures are organized hierarchically, with Ethernet as the backbone that connects domain

controllers or links zonal controllers to the central computing platform [13]. ’Automotive Ether-

net’ refers to any Ethernet-based communication within the in-vehicle network, which may in-

clude different Ethernet standards such as 10BASE-TX and 100BASE-TX. For instance, modern

vehicles rely on high-speed Ethernet for infotainment networks but on legacy networks such as

CAN for control functions, especially time-critical ones. Consequently, 10BASE-T1S [14] Ether-

net was introduced as a low bandwidth, low latency, multi-drop, Ethernet bus technology to

replace legacy communication protocols and unify the in-vehicle network. This development is

driven by implementing the zonal architecture, which aims to provide Ethernet connectivity to

edge sensors and actuators [15].

Time-sensitive networks

Time-sensitive networking refers to the set of standards that enable reliable, bounded low-

latency communication within the vehicle. TSN works with other IEEE technologies to provide

Page 14

2 State of the art

timing synchronization, reduce jitter, and traffic scheduling, guaranteeing that bounded low la-

tency messages meet their deadlines [16]. TSN standards include protocols such as:

• IEEE 802.1AS that provides timing synchronization for time-sensitive applications, such

as audio, video, and time-sensitive control, across the network [17].

• IEEE 802.1Qat SRP (Stream Reservation Protocol) that specifies mechanisms to reserve

network resources for specific traffic streams [18].

2.3 In-vehicle communication protocols

In the following section, we provide an overview of two in-vehicle communication protocols:

IEEE1722 and SOME/IP

2.3.1 AVTP (Audio Video Transport Protocol)

AVB (Audio/Video Bridging) refers to a set of specifications that enable time-synchronized,

low-latency streaming services over IEEE802 networks. It includes protocols such as gPTP (ge-

neralized Precision Time Protocol) described in IEEE Std 802.1AS, as well as protocols such as

SRP (Stream Reservation Protocol) and FQTSS (Forwarding and Queuing Enhancements for

Time-Sensitive Streams). AVTP (Audio Video Transport Protocol), which is defined by IEEE Std

1722, takes advantage of these standards to define a layer 2 transport protocol used for trans-

mitting audio, video streams, and control data over a TSN network. An AVTP stream is made

up of a talker and one or more listeners. The protocol provides methods to transport data and

timing information so that audio, video, or control data sent by the Talker can be reproduced

on the Listener’s side. The protocol was originally designed to transport audio/video streams

and their synchronization clocks. However, AVTP’s scope was expanded in its 2016 spec [19]

to include data formats for the serialization of automotive field buses, such as CAN, LIN, and

FlexRay, by introducing a new control format that supports the transmission of various control

messages over TSN. The next amendment to the protocol, proposed by IEEE P1722b working

group [20], is going to be released in early 2025 and will further expand the protocol to include

additional control formats, including I2C and SPI, which are relevant to the automotive indus-

try. IEEE1722 is a Layer 2 transport protocol with its own EtherType (0x22f0) but also provides

UDP/IP encapsulation. The standard mainly focuses on the definition of data formats and en-

capsulation for streaming applications

An AVTP frame presented in Figure 2.6 consists of the following components :

Page 15

2 State of the art

Fig. 2.6: Ethernet packet with AVTP frame as payload

• Header: contains information on the formatting of the frame. AVTP defines four different

types of headers:

1. Common Header: contains basic fields shared by all formats, such as the subtype

and version.

2. CommonControl Header: expands the Common Header to all the fields shared by

streaming formats.

3. CommonStreamHeader: expands the Common Header to all the fields shared by

control formats.

4. Alternative Header: defined for formats that do not fall into the two previous ca-

tegories.

• SubtypeHeader: Identifies the subtype. Subtypes define the formatting and purpose of

the payload. Each subtype has unique encapsulation and processing rules. One example is

theAAF subtype,which is a streaming subtype that provides amechanism for transporting

audio over the network.

• Payload: contains actual media/data content such as a compressed audio stream or ACF

messages.

AVTPdefines theACF (AVTPControl Format) frame for transmitting control signals. It relies

on two types of headers: time-synchronous and non-time-synchronous. The time-synchronous

header, referred to as TSCF (Time-Synchronous Control Format) header in Figure 2.8, includes

an extra presentation time field used to achieve timing synchronization between the Talker and

Listener(s) application. Presentation time represents the gPTP time on which the data con-

tained in a AVTP frame will be available to the Listener (i.e., the Listener starts processing the

Page 16

2 State of the art

data when the presentation time is reached). Presentation time accounts for the variability of

transit times between the Talker and Listener(s). The other header type, the NTSCF (Non-

Time-Synchronous Control Format) in Figure 2.7, does not include this field.

Fig. 2.7: Non-Time-Synchronous Control Format structure

An NTSCF frame includes the following fields :

• version: specifies the version of the format.

• sv: specifies whether the stream ID is valid.

• NTSCF data length: specifies the ACF payload length in octets.

• sequence number: sets the sequence number of the AVTP frames in the stream, which

is incremented by one on every transaction.

• streamID:used for stream identification/trafficmanagement (defined IEEEStd. 802.1Q).

• ACF payload: contains one or more ACF messages.

While TSCF frame includes the following fields that were previously not defined:

• stream data length: length in octets of the ACF payload

An example of control messages is the GBB (Generic Byte Bus) message that allows the

transport of SPI, I2C, and similar byte-oriented buses over the network. It is important to note

thatGBBmessages are not included in IEEE1722-2016 butwill be introduced in the next amend-

ment to the protocol [21]. The proposed structure of a GBBmessage is presented in Figure 2.9.

The message includes the following relevant fields:

• ACF Message type: Defines the message type contained in the payload of the ACF

frame. ACF supports multiple message types for various control applications, including

CAN, LIN, and SENSOR messages.

Page 17

2 State of the art

Fig. 2.8: Time-Synchronous Control Format structure

• ACF Message length: Indicates the length of the message in quadlets (multiples of 4

Bytes)

• pad: Defines the padding length at the end of the messages in octets. ACF frames must

end at the boundary of the quadlets.

• mtv: Indicates that the message timestamp is valid/

• Byte bus ID: Provides an identifier for the byte bus associated with the message. Imple-

mentation of this field is application-specific.

• Message timestamp: Acquisition time in nanoseconds of the data contained in the con-

trol message (i.e., the time on which the Talker generated the message).

• evt: Reserved for application specific events.

• Transactionnumber: Indicates the sequence number of theGBBmessages in a stream.

Its value is incremented by one with every message. It could be used by the Listener to

detect message loss and to associate the response with the original request.

• op: Specifies whether the operation is a read or write.

• rsp: Indicates if the operation is a request or response.

• err: Indicates whether an error occured.

• ms: Signals to the Listener that the payload is segmented into multiple messages.

Page 18

2 State of the art

Fig. 2.9: Generic Byte Bus message structure

• Read size / Segment number: Specifies the segment number for the fragmentedmes-

sage or the data size to read from the bus in case of a read operation.

To recap, IEEE1722 already provides efficient transport methods for legacy communication

protocols like CAN and LIN via Ethernet-based vehicle networks. A planned amendment aims

to support additional control signals in the future. The protocol is also integrated into AUTOSAR

specifications [22] and could be potentially implemented in hardware.

2.3.2 SOME/IP

SOME/IP (Scalable service-Oriented MiddlewarE over IP) is an automotive middleware and

communication protocol for control messages. It supports remote procedure calls and event

notifications and defines a custom serialization format for on-wire representation. Additionally,

it includes a service discoverymechanism that enables dynamic identification of functionalities.

It is designed towork on various devices and operating systemplatforms, frombasic devices like

cameras to more advanced ones like head units. It serves as a replacement for MOST protocol

in infotainment applications and also replaces traditional CAN in some use cases [23].

SOME/IP specification is defined by AUTOSAR [24]. The protocol enables service-oriented

communication over the network. Each service provides a list of functionalities that combine

zero or multiple events, methods, and fields. The Client subscribes to the services that it needs

to interact with. Themiddleware offers a customAPI to provide an abstraction layer for the user

applications from the underlying platform’s network stack (Figure 2.10). Applications only need

Page 19

2 State of the art

Fig. 2.10: SOME/IP middleware

to know the IDs of the clients or services they’re communicating with; themiddleware manages

the low-level network transport details.

Figure 2.11 presents the supported communication patterns by SOME/IP:

• Request-Response: The Client sends a request message, which the server receives and

answers.

• Fire-and-Forget:TheClient sends a request without expecting a response from the ser-

ver. This applies to error messages, too, as the server will not send any form of response,

and error handling happens locally at the Client.

• Notfication Events: Follows a publish/subscribe pattern on which the Client subscribes

to a specific event. The server sends an update once that event occurs. The update could

be either an updated value or a flag for the event that occurred. Event notifications are

useful for scenarios when the Client needs to poll a value (e.g., periodically read tempera-

ture sensor value) or needs to be notified when a value changes or a condition is reached

(e.g., temperature increased over a certain limit).

• Fields: Provides a combination of getters, setters, and event notifications. The Client

subscribes to a field, which represents a status and has a valid value. The Client can send

a message to read or update the field, and the server notifies the Client when its value

changes.

Page 20

2 State of the art

Fig. 2.11: SOME/IP communication patterns

SOME/IP’s discoverymechanism is defined in the SOME/IP-SD (Scalable service-Oriented

MiddlewarE over IP - Service Discovery) specification [25]. Service discovery establishes a

communication path during runtime, which enables the flexible design of Talker and Listener

applications as they are no longer required to know information on who will receive or send the

desired data. In other words, a server can offer a service, and the Client finds and subscribes

to it without statically knowing its location in the network. Figure 2.12 showcases SOME/IP’s

service discovery mechanism. Clients and Services broadcast ’find’ and ’offer’ messages that

allow them to locate each other and establish communication. Service discovery relies on the

Service and Instance IDs of each service. The service ID distinguishes between services, while

the instance ID distinguishes between different instances of the same service.

Fig. 2.12: SOME/IP service discovery

SOME/IP defines a custom serialization format that describes how data fields are encoded

into a byte stream for transport over the network. SOME/IP messages can either be unreliable,

transported over UDP, or reliable, transported over TCP. Unreliable messages are limited by the

maximum transmission unit of a UDP packet. For this reason, SOME/IP-TP (Scalable service-

Oriented MiddlewarE over IP - Transport Protocol) specification [26] defines a mechanism to

segment unreliable SOME/IP packets that do not fit into a single UDP packet. Figure 2.13 com-

Page 21

2 State of the art

pares the regular and transport protocol headers of a SOME/IPmessage. Themessage includes

the following fields:

• Message ID: composed of two fields, the Service ID and the Method ID. The Method ID

distinguishes between methods and/or events within the service.

• Length: Length in Bytes of the remaining part of the message.

• Request ID: is used to identify a request-response pair to distinguish between multiple

calls from the same message. It consists of two fields: the client ID and the session ID.

The client ID is mapped to the Client that issued the request, while the session ID is an

identifier incremented with every request.

• Protocol Version: Identifies the header format version.

• Interface Version: Identifier the interface version of the service.

• MessageType:Selectsmessage type,which includes requests, fire-and-forget requests,

responses, and error messages.

• Return Code: Indicates if the request was successful. Includes one of the pre-defined or

custom error codes.

Page 22

(a) Regular

(b) Transport Protocol

Fig. 2.13: SOME/IP header formats

3 Framework for a Remote Control Protocol

This chapter establishes a concept of remote control protocols. Section 3.1 defines the system

model of a remote control system. Section 3.2 explores some use cases for remote control.

Followed by Section 3.3, which extracts the core requirements for a remote control protocol,

and finally Section 3.4 shines the light on ongoing RCP standardization and their role in defining

the protocol.

3.1 Systemmodel

A remote control system enables efficient control of edge nodes over the network. It minimizes

the software running on these nodes, thus reducing their hardware complexity and cost while

allowing the further concentration of software in the central computing unit(s) of the vehicle.

The standardization makes edge nodes commodity IP (pre-designed intellectual properties).

The system consists of a set of nodes interconnected by a switched or routed network. One

node exposes interfaces, such as SPI, I2C, and GPIO, that other nodes can access transpar-

Page 23

3 Framework for a Remote Control Protocol

ently over the network. A node can either act as a server (exposing an interface) or a client

(controlling an interface), allowing the system to adopt a variety of architectures. A client/ser-

ver architecture is one possible manifestation of a remote control system.

The system’s operation can be defined by an RCP (remote control protocol) that defines

the system initialization, configuration of remote interfaces, diagnostics, communication bet-

ween nodes, and error handling. Therefore, a remote control protocol defines a standardized

method for accessing and controlling interfaces on remotely connected nodes. It governs the

data formats and rules of interaction between nodes in the system.

Fig. 3.1: Remote control system architecture

Figure 3.1 presents a high-level overview of the remote control system architecture. Access

to a remote interface is achieved through an endpoint that exposes a set of operations defined

by the interface. These operations include:

• Reading the interfaces’s current state (e.g., monitoring the interface for errors or failures)

• Configuring the interface (e.g., configuring the clock speed of an I2C interface - changing

between standard and fast I2C modes)

• Handling the interface’s core functionality (e.g. performing I2C read or write operations

on the device(s) connected to the interface)

These operations can be described by remote control messages, which are carried over the

network by a remote control frame between the RCP client and the RCP node. The rest of this

section defines the components of a remote control system in more detail:

• Remote Control Node:

The adoption of the remote control concept leads to the introduction of a new catego-

ry of edge nodes known as the remote control nodes (or RCP nodes). Edge nodes are

Page 24

3 Framework for a Remote Control Protocol

no longer required to abstract the functionality of connected sensors and actuators. Ins-

tead, they are required to act as gateways that enable the exchange of data/commands

between the central ECU and sensors/actuators. As a result, an RCP node replaces the

traditional edge node. The exact definition of the internal architecture of the RCP node

is still an open question. Addressing this question mainly depends on the specific requi-

rements for RCP and how they are implemented. For example, a node can rely entirely on

a custom hardware implementation to perform its function (MCU-less). However, some

more complex requirements may necessitate using a basic MCU with a lightweight soft-

ware stack.

Fig. 3.2: example of a basic remote control scenario

Having not explored the requirements for remote control yet, this section focuses on de-

fining the high-level concept of an RCP node. Figure 3.2 shows an example of a basic

remote control scenario. At a minimum, an RCP node may include at least one peripheral

such as I2C, SPI, GPIO, and at least one Ethernet interface, alongside a compute unit or

hardware logic that handles the operation of the node. The remote control protocol ma-

nages the peripherals and the node facilitating access to the devices attached to these

peripherals. To simplify its implementation, the RCP node should not require any know-

ledge of the operation of these devices. The application solely handles the peripheral’s

operation, and the RCP node acts as a gateway between the application and the peri-

pheral. Additionally, the operation of the remote control system should be transparent to

the application. The client could provide an abstraction layer that allows the application to

access the interfaces as if they are local, which makes it easier to port legacy applications

to the new system.

• Remote Control Endpoint:

Page 25

3 Framework for a Remote Control Protocol

By definition, A device of a software module connected to a computer network is con-

sidered an endpoint of ongoing data exchange with other devices on the network [27]. In

this context, a remotely controlled interface can be defined as an endpoint of an ongoing

data or command exchange with the remote control client. In other words, the endpoint

is an access point for controlling the devices connected to the interface. Since an RCP

node may host multiple interfaces, the node should provide more than one endpoint that

the client can independently address. Let us consider an SPI peripheral as an example of

a remote control endpoint. The endpoint should expose a set of status parameters and

flags associated with the interface. For an SPI interface, this would include error flags to

indicate an overrun condition error, which would be valuable for the application when ma-

naging faults. It is essential to point out that implementing a remote control node should

be generic and independent of the devices to which it is connected. For instance, the sa-

me node can connect to two different SPI devices on the same bus. For this reason, the

client would need to modify the peripheral’s internal configuration to work with the tar-

get device; this would involve setting parameters such as the SPI clock frequency, clock

polarity and phase, data order, chip select management, and data frame size. Finally, the

endpoint should allow the client to execute the peripheral’s core functionality, such as

sending SPI write or read commands.

• Remote Control Messages:

In the context of RCP, which is a communication protocol, a remote control message is a

piece of data or information exchanged between the RCP client and the RCP endpoint

or node. A message describes an operation requested by the client, or a notification by

raised by the server. For instance, messages can be classified into queries, configuration,

and control. A querymessageenables the client to read the current state of theperipheral.

A configuration message allows the client to change the configuration of the peripheral,

and a control message triggers the core functionality of the interface. Messagesmay also

include reporting messages such as acknowledgments and error reports. Each message

holds an exact meaning and may or may not elicit a response from the endpoint. For an

SPI interface, the messages include operations such as SetClockFrequency, SetMode,

ReadNByte, WriteNByte, and others. The exact structure and format of these messages

will be defined by the remote control protocol

• Remote Control Frame:

Page 26

3 Framework for a Remote Control Protocol

Fig. 3.3: Remote control frame structure

A remote control frame refers to the structured set of messages sent over the network.

Figure 3.3 shows the structure of a remote control frame. It includes a header that contains

information about themessage and network transport (such as the network address) and

a payload that encapsulates one or more remote control messages.

• Network:

The remote control network serves as the medium on which different nodes exchange

RCP messages. In the context of automotive applications, this refers to the in-vehicle

network, whichmay be a switched or routed Ethernet network. The RCP protocol requires

a transport mechanism to deliver its frames between nodes on the network.

Ideally, the protocol’s transport mechanism should be flexible enough to operate on top of

any network layer. For instance, an RCP frame could be encapsulated in a UDP packet, or the

same frame could be encapsulated in a raw Ethernet frame, resulting in a remote control pro-

tocol that is independent of the underlying transport mechanism. However, depending on the

system and network requirements, the remote control protocol could offload certain function-

ality to the transport mechanism, simplifying the implementation of its logic. For instance, if the

underlying transport mechanism supports segmentation (splitting a frame into smaller chunks

when larger than theminimum transfer unit size), the remote control protocol would not need to

handle this task. In essence, creating a ’Swiss knife’ solution for the given problem is not always

necessary. Instead, it is essential to examine the requirements for a remote control system in

more detail, which acts as a base for the protocol definition and the selection of its transport

mechanism. This thesis addresses the issue of selecting a transport mechanism by evaluating

potential candidates of underlying transport protocols and how they would align with the RCP

model discussed in this section. To achieve this, we must first define a set of requirements and

identify the challenges associated with implementing RCP. In the next section, we will explore

some use cases for RCP, which will later act as a basis for defining the requirements for the

protocol and its transport mechanism.

Page 27

3 Framework for a Remote Control Protocol

3.2 Use-cases

Vehicles usually contain a wide range of peripherals controlled by interfaces like GPIO, I2C, SPI,

and UART. For example, GPIO interfaces manage basic functions such as turning on indicators

or activating windshield wipers. SPI and I2C interfaces are also used to read data from trans-

ceiver modules, such as tire temperature and pressure sensors. Other applications may include

streaming video or audio from interior and exterior cameras. Such peripherals usually handle

both non-critical applications, like adjusting exterior mirrors, and critical applications, such as

controlling brake-by-wire systems. In this section, we will examine some scenarios in which a

remote control mechanism can be used to adapt certain applications to work in a centralized

EEA. Then, we will go deeper into the interface level and discuss the requirements for control-

ling remote I2C and SPI peripherals.

3.2.1 Use-case 1: Controlling Ambient lighting Systems

Car makers are experimenting with dynamic ambient lighting as an innovative solution to in-

creasing the driver’s situational awareness. Adding dynamic interior lights to a vehicle’s cabin

adds a new dimension to communication between the car and its occupants. Animated opti-

cal effects can be used to communicate crucial information to the driver. For example, a light

strip at the top of the door panel can warn a passenger of potential danger in the path of their

door when they attempt to open it. Ambient lighting can also contribute to the overall interior

aesthetics of the cabin [28]. Studies have shown that the driver’s performance is enhanced by

using ambient lighting as an emotional feedback mechanism (e.g., switching the interior light

color to orange to increase the driver’s alertness in certain driving conditions [29]).

To align with the centralization trend, it is essential to design a flexible, scalable, and easy-

to-maintain and update ambient lighting system. Customization is an essential requirement for

such a system, as drivers would likely have different preferences as to how these animations

work. Manufacturers can allow customers to select from a predefined set of functions and ani-

mation patterns or even design custom ones. This flexibility can be achieved by moving all the

lighting software to the central ECU and using a remote control mechanism to control the light-

ing elements. A proof of concept of such a system is presented in [30]. Figure 3.4 presents

its system architecture. The system uses custom gateways to translate communication over

10Base-T1S Ethernet to ILaS. ILaS, which stands for ISELED Light and Sensor network, is a

smart RGB LED solution from Microchip to expand the use of the ISELED protocol to other

Page 28

3 Framework for a Remote Control Protocol

Fig. 3.4: Ambient lighting system architecture (adapted from [30])

components, such as sensors and actuators, while ISELED is a protocol designed for dynamic

ambient and functional lighting control applications. It simplifies color design and connectivity

for managing a high number of LEDs [31].

The lighting software on the central ECU uses the switched network to remotely control the

ILaS interfaces, which are driving the interior ambient lighting strips. This is done using propriety

hardware-based Ethernet edge nodes (i.e., remote control nodes) from Analog Devices. Par-

ticularly, the AD3300X family of edge nodes [32] that includes a 10BASE-T1S E2B (Ethernet

to the Edge Bus) transceiver which supports simultaneous operation of several standard sen-

sor/actuator interfaces, including SPI, I2C, UART, PWM, GPIO, Flexible I/O, and bridge to LIN,

in addition to a bridge to ILAS and ISELED interfaces. E2B edge nodes were used to eliminate

the requirement of dedicated MCUs on the edge. Consequently, performing an OTA, update

would only be required to update the lighting control application on the central ECU. Using de-

dicated hardware also ensures deterministic control of the remote peripherals as it eliminates

the unpredictability introduced by the software stack of anMCU. The system also provides con-

Page 29

3 Framework for a Remote Control Protocol

nectivity diagnostics to the central ECU and offers a higher level of security due to the reduced

attack vector of hardware-based implementations.

Two key requirements presented in [30] for their proof-of-concept ambient lighting remote

control system are the synchronization of lighting animations and cross-application integration.

Lighting animations must be stable, achieving a minimal jitter (e.g., updating lighting elements

at a consistent and perceivable refresh rate with jitter below 2ms), and accurate (e.g. executing

an animation precisely after 500ms secondwith a timing precision of approximately 20ms). Ad-

ditionally, with the distribution of the lighting elements and control signals across the network,

the applications generating these animations should communicate within a certain delay th-

reshold with other system functions to ensure consistent operation (e.g., The delay between

turning on the hazard indicator and starting its associated lighting animation should not exceed

150ms to ensure a smooth user experience). With these requirements in mind, it is clear that in

some scenarios, the system has to meet strict latency requirements. It is also evident that the

system must implement a time synchronization mechanism to align all of its actors on a unified

timebase to reduce jitter and improve overall stability. This could also be achieved by offloading

some basic functions to the remote control logic. For instance, the remote control nodes can

offer the ability to schedule operations for future execution.

3.2.2 Use-case 2: Camera streaming and control

With automotive networks shifting to an Ethernet backbone, data from cameras used in ADAS

features, such as lane departure warning, traffic sign recognition, night vision, and bird’s-eye

view, will be transmitted via Ethernet. Protocols such as AVTP are going to replace existing

ones like the MOST protocol, which is currently used in such applications [33]. Camera-based

ADAS currently use point-to-point connections to ECUs through Voltage Differential Signaling

(LVDS) or newer interfaces like MIPI-CSI. However, Ethernet connections to the zonal ECUs

are set to replace the traditional point-to-point links. In this case, Ethernet camera gateways

could tunnel point-to-point camera streams from the edge to the central ECU over ethernet

[34].

Besides video streaming, automotive camera modules typically rely on other serial proto-

cols for initialization/configuration. For example, the TIDA-01130 camera module from Texas

Instruments [35] includes a MIPI CSI-2 interface for raw video streaming, in addition to an I2C

interface to initialize themodule. Figure 3.5 showcases an example scenario of integrating a ca-

mera module into a remote control system. In this case, the RCP node controls two interfaces

Page 30

3 Framework for a Remote Control Protocol

Fig. 3.5: Example scenario for remotely controlling a camera module

associated with the same camera module. If enough bandwidth is available, an RCP node could

potentially connect to more camera modules, requiring additional interfaces on the node.

In-vehicle video streams, particularly the ones used for critical systems, such as pedestri-

an detection and collision avoidance, mandate strict real-time requirements. Performing object

detection on the central ECU poses some concerns about the bandwidth and latency demands

from the remote nodes. This approach requires the transmission of raw or pre-processed vi-

deo streams to the central ECU, which can be bottlenecked by bandwidth limitations and intro-

duce latency. Experimental results [36] highlight a trade-off between the accuracy of object

detection models, their speed, and the required bandwidth. Object detection models are mo-

re effective with higher bitrate video streams. Also, detecting objects earlier gives the vehicle

enough time to respond to potential hazards. Therefore, constrained communication between

the camera module and the detection software could compromise or reduce the effectiveness

of object detection, which implies that the remote control system must ensure minimal latency

and bandwidth overhead on the video stream.

Initializing the cameramodule via I2Cprovides the advantage ofmanagingmultiplemodules

using a single I2C interface. For example, two camera modules located near each other can be

initialized over the same I2C bus, provided that their I2C interfaces have distinct addresses. The

next section/use case dives deeper into the interface level, exploring the challenges of remotely

controlling an I2C peripheral.

3.2.3 Use-case 3: Controlling I2C peripherals

The Inter-Integrated Circuit bus [37], commonly known as the I2C bus, is a simple bidirectional

2-wire bus designed byPhillips Semiconductors (nowNXPSemiconductors) to enable commu-

nication between Integrated circuits andmicrocontrollers. It is a multi-controller, multi-receiver,

synchronous, bidirectional, half-duplex serial communication bus. It operates over two lines: a

Serial Data Line (SDL) for transmitting data and a Serial Clock Line (SCL) for synchronizing the

communication. Figure 3.6 shows an example of an I2C bus application on which a microcon-

Page 31

3 Framework for a Remote Control Protocol

troller communicates with different types of peripherals over I2C. The SDA and SCL lines are

Fig. 3.6: Example of I2C bus application

HIGH by default and need to be connected to a positive supply voltage, typically done using

pull-up resistors. Devices connected to the bus pull the voltage LOW to transmit a 0 bit and

leave the lines HIGH to transmit a 1 bit. Each device is identified by a unique address and can

both transmit (write) or receive (read) data—devices on the bus act either as controllers or re-

ceivers. The controllers initiate data transfers with the designated receivers. The bus supports

a multi-controller configuration, and It implements collision detection and arbitration mecha-

nisms to prevent data corruption if two or more controllers simultaneously initiate data transfer.

Figure 3.7 presents a complete I2C data transfer. All I2C transactions begin with a START (S)

Fig. 3.7: I2C data transfer

condition and end with a STOP (P) condition. Additionally, the controller, which is responsible

for generating these conditions, has the option to keep hold of the bus by generating a repea-

ted START (Sr) condition in between transactions. The start condition is then followed by the

target address and an extra bit to indicate the direction of the transaction - a ’zero’ indicates

Page 32

3 Framework for a Remote Control Protocol

data transmission from the controller to the receiver while a ’one’ indicates a data request. The

receiver acknowledges that it is ready for the transfer by pulling the data line low. Data is then

transmitted sequentially, 1 byte at a time, with each byte followed by an acknowledgment (ACK)

or a non-acknowledgment (NACK). In a write operation, the receiver acknowledges the receipt

of each byte, while in a read operation, the controller sends the acknowledgment. The control-

ler determines when to end the transaction when the required number of bytes sent/received

is reached.

Receivers can pause the transaction by holding the SCL line low after receiving and acknow-

ledging a byte. The transaction is halted until the SCL line is released. This process is known as

clock stretching. The target devices can force the controller to wait until the device finishes

processing the received or requested data. In this section, we will briefly describe the proper-

ties of the I2C bus and explore the challenges and requirements for remotely controlling an I2C

peripheral.

Peripheral Configuration

The I2C bus specification [37] defines a set of mandatory and optional parameters. Explo-

ring all the possible configuration parameters of an I2C bus can be complex and is not the main

focus of this work. For this reason, we will only consider a subset of these parameters. As an

example, we will examine the I2C peripheral definition from an STM32H7 microcontroller [38].

Table 3.1 outlines the main configuration parameters of this peripheral. These parameters can

be classified into two groups: initialization parameters and runtime parameters. Initialization

parameters are the parameters that are set before a peripheral starts its operation, while run-

time parameters are the parameters that change during operation based on the requirements

of the next transaction. For instance, to initialize the STM32H7’s I2C peripheral, the user must

configure the clock frequency, analog/digital filters, timing parameters, and clock stretching

options before enabling the peripheral. On the other hand, the user has to set the addressing

mode every time a new transaction is started (i.e., Receivers with different address lengths can

coexist on the same bus, it is up to the controller to select what addressing mode to use when

initiating a transaction). RCP should define both a mechanism to set the initial configuration

parameters and update the runtime settings of the peripheral. A key challenge is determining

the abstraction level provided by the remote control protocol. Is RCP expected to provide di-

rect access to the internal registers of the peripheral, or are the inner workings of the periphe-

ral solely handled by the RCP node? Constantly sending requests over the network to update

Page 33

3 Framework for a Remote Control Protocol

Tab. 3.1: Configuration parameters of an I2C peripheral

Parameter Applies to Description

Peripheral enable Both Enables the peripheral

Mode (Role) Both Defines whether the device is a controller or a receiver

Clock frequency Controller Defines I2C clock speed (e.g. 100KHz, 400KHz, 1MHz,

3.4MHz)

Clock stretching Receiver Enables clock stretching (e.g., allows the receiver to hold

the SCL line low to slow down the communication)

Addressing mode Both Selects between using 7-bit and 10-bit addresses

Address Receiver Sets own device address

Dual addressing mode Receiver Enables the receiver to use multiple addresses

General call Receiver Enables the receiver to respond to general call address

ACK control Both Receiver sends an acknowledgment after the reception of

each byte / Controller signals that it is ready to receive the

next byte

Noise filters Both Sets up Analog/Digital noise filters on the SCL and the

SDA lines

Setup time Both Sets the minimum time for SDA to remain stable before

SCL rising edge

Hold time Both Sets the minimum time for SDA to be held stable after

SCL falling edge

Software reset Both Releases SCL/SDA lines and cancels ongoing operation

Interrupts Both Enabes interrupts for event/error handling

DMA Both Transfer data to MCU using direct memory address

every register is slow and inefficient. Instead, a more practical approach is for RCP to provide

a minimal level of abstraction. It could define a set of automatic operations that group related

configuration parameters into a single RCP message. For instance, it could define a single in-

itialization operation to set all the required parameters and enable the peripheral. A reasonable

approach is to compare the abstraction provided by RCP to the level of abstraction provided

by a microcontroller’s hardware abstraction layer. For instance, STM32’s HAL [39] provides a

HAL_I2C_Init() method that reads configuration parameters such as clock frequency, duty

cycle, and clock stretching mode, then internally handles the low-level initialization of the inter-

face. RCP should follow a similar communication model on which the RCP stack sits between

the peripheral’s HALon the controller node and the actual interface on the remote control node.

RCP could define more specific initialization operations for certain runtime parameters in ad-

Page 34

3 Framework for a Remote Control Protocol

dition to offloading the transaction-specific parameters to the operations related to the actual

transaction. Some settings related to the peripheral’s operation can be entirely abstracted by

the RCP node. For example, I2C peripherals have the option to perform direct memory access

(DMA) to directly transfer data for a transaction from and to the memory, instead of waiting

for the processor to manually write it to the peripheral. This type of interaction is not defined in

the context of RCP and should not be managed by the protocol. DMA enables communication

between the peripheral and the node’s internal system components rather than between the

peripheral and user applications.

Operations

The I2C bus supports two primary operations: transmit and receive. The Transmit operation

governs data transfers from the controller to the receiver, while the Receive operation handles

data transfers from the receiver to the controller. The protocol only defines a low-level trans-

port mechanism for data exchange between the controller and the receiver. The application

manages higher-level communication details, such as data formatting. For example, I2C-based

memory devices define read and write operations. A read operation is performed by transmit-

ting the data address to thememory controller, followed by a receive operation to read the data

stored at that address. Similarly, a write operation consists of transmitting the address first, fol-

lowed by transmitting the data to be stored at that address. The same concept is used when

interfacing sensors/actuators; the controller transmits a command first, followed by a trans-

mit or receive operation. While RCP is only responsible for handling the low-level operations, a

possible optimization could involve defining these communicationmodels as a single operation.

RCP could implement the following operations: transmit, receive, and transmit_receive. Each

operation is targetted at a specific I2C bus and is defined by its direction (transmit/receive),

target address, payload, and payload length or the length of data to read. In a transmit ope-

ration, the controller sends a single RCP message containing the I2C payload. The RCP node

receives themessages, extracts the payload, and performs the transmit operation locally. Then,

based on the communication model between the controller and the I2C device, the RCP node

can send back the operation status to the receiver or directly end the operation. In contrast, in

a transmit_receive operation. The controller sends a message containing the transmitted da-

ta and the time it takes to read it. In this case, the RCP node must respond with the received

data or an error message after locally executing both the transmit and the receive operations.

A receive operation, shown in Figure 3.8, is similar to this operation except that the controller

Page 35

3 Framework for a Remote Control Protocol

Fig. 3.8: I2C receive operation communication model

sends a message with no payload.

Error handling

I2C failures could be associated with improper configuration, transmission, or arbitration er-

rors. STM32H7’s I2C peripheral defines the following error conditions:

• Bus error: raised when an improper START or STOP condition is detected. It only occurs

if the peripheral is involved in the communication (i.e., a controller or a receiver after the

addressing phase).

• Arbitration loss: raised when another controller is holding the bus.

• Overrun/underrun error: raised when clock stretching is disabled and the receiver cannot

process the received/transmitted data in time.

These errors occur during a transaction, meaning that the RCP node is not expected to send an

unsolicited error message. Instead, it responds to a request already initiated by the controller. A

bus error is caused by a signal integrity failure on the wire, potentially caused by misconfigured

filters or pull-up resistors. However, the peripheral configuration is handled by the controller;

the RCP node is only responsible for reporting this error to the controller. On the other hand,

the RCP node could try to handle errors, such as the arbitration loss, locally. The delay between

the initiation of the operation on the controller and its execution in the bus is affected by the

Page 36

3 Framework for a Remote Control Protocol

remote control protocol ’s latency, which is further impacted by the network conditions. Ad-

dressing arbitration loss by re-attempting the transaction at the controller level would greatly

increase the latency. Instead, the RCP node could retry the transmission locally within a defined

timeout.

Example scenario: controlling a PWM/Servo driver

Fig. 3.9: Controlling an I2C-based device using RCP

In this section, we describe a basic example of controlling an I2C-based device. The system

presented in Figure 3.9 consists of a PWM/Servo driver connected to one of the I2C peripherals

of an RCP node. The driver is free-running. It uses an internal clock to generate a PWM signal

on each of its output channels. The controller configures the device over I2C. To start its opera-

tion, the controller first verifies that the chip ID of the driver matches the predefined software

ID, then initializes the driver by setting the PWM frequency and output status of each PWM

channel. After initialization, the controller can update the duty cycle of individual channels by

performing an I2C write operation on the driver’s internal registers. We define a use case in

which we blink an LED at a constant rate of 1 ms. This is achieved by continuously updating the

PWM duty cycle of the signal controlling the LED between 0% and 100%. The LED’s state is

incompetent, meaning that the controller does not need to know the current state of the LED

to send an update. This allows for fire-and-forget communication. The RCP node does not no-

tify the controller when an update is successful. It can optionally reply with error messages if

case of a failure for diagnostic purposes only. However, this doesn’t apply to the initialization

process, as the controller needs to verify the device’s correct startup. Therefore, the remote

control protocol should support both acknowledged and fire-and-forget operations. Another

distinction could be made between synchronous and asynchronous operations. During start-

up, all operations must be synchronous to follow the correct initialization order. For instance,

the controller cannot update the PWM frequency before verifying that it is communicating with

the correct device. In contrast, the controller can asynchronously send multiple update messa-

ges before receiving any response from the RCP mode. In this scenario, operation order is not

Page 37

3 Framework for a Remote Control Protocol

critical. If a message is lost, or if two messages are executed in the wrong order, the system

operation may be disrupted, but it will not lead to complete failure.

3.2.4 Use-case 4: Controlling SPI peripherals

The SPI interface [40] is another serial bus designed for short-distance communication bet-

ween integrated circuits. It was designed by Motorolla in the 1980s and has since become a de-

facto standard. It is designed for point-to-point communication between a master (controller)

and a slave (receiver). Multiple receivers are supported on a single bus. However, the specifi-

cation does not implement an addressing mechanism; instead, a chip select (CS) signal is used

to select the current receiver. It operates using four main signals:

• SCK (Serial clock): clock generated by the controller

• MOSI (Master Out Slave In): Data line for controller to receiver communication

• MISO (Master In Slave Out): Data line for the receiver to controller communication

• CS (Chip Select): Selects individual receiver

In addition to half-duplex communication, the SPI bus also supports full-duplex communicati-

on. Data is transferred simultaneously between controller and receiver over theMOSI andMISO

lines. A message consists solely of the transferred data, without aknowledgement mechanism

like in I2C. To start a transmission, the controller pulls theCS line low, anddata is shiftedbetween

the internal registers of the controller and the receiver in both directions. Once the communi-

cation is done, the controller releases the chip select line.

Peripheral Configuration

Wealsoexamine someof the configurationparameters of anSPI interface fromtheSTM32H7

microcontroller family, as shown in Table 3.2. Similarly, these parameters can be classified in-

to initialization configuration parameters and runtime parameters. An SPI_init RCP operation

can be used to initialize an SPI peripheral, and ideally, other operations could be defined to

individually update each parameter and reset the peripheral to its default settings.

Peripheral operation

The SPI bus also supports two operations: transmit and receive. Similar to the I2C bus, the-

se operations can be combined into a transmit_receive operation where the controller issues

Page 38

3 Framework for a Remote Control Protocol

Tab. 3.2: Configuration parameters of an SPI peripheral

Parameter Applies to Description

Clock frequency Controller Sets the clock frequency

Frame size Controller Defines the number of bits transmitted per

transaction

Clock polarity (CPOL) Both Determines the idle state of the clock

Clock phase (CPHA) Both Determines the data sampling edge of the

clock

chip select (CS) Controller Sets the chip select signal

Bus mode Both Selects between half-duplex and full-duplex

communication

a command or address to the receiver before transferring data. An SPI transaction is less com-

plex as the controller only has to set the chip select signal, followed directly by transmitting the

payload. Some SPI peripherals automatically manage the chip-select signals, while others do

not. In this case, the application must manually control the chip-select signal using GPIO pins.

Additionally, standard SPI devices define an extra DC (data/command) signal, which is not

part of the base SPI protocol. This signal is used to indicate whether the receiver must interpret

the received transaction as a command or as data. RCP must handle the control of this signal

either by making it a part of the SPI transaction itself or designating it as an extra GPIO opera-

tion. Handling it as an additional GPIO operation introduces some challenges. First, the order

of the GPIO and SPI transactions must be consistent to ensure the correct operation of the

device. Also, the timing behavior, namely the time between setting the DC signal and the start

of the SPI transaction, must meet the timing requirements of the SPI device.

Example scenario: controlling an OLED display

In this section, we will describe a practical application of a remote control system on which

a small OLED display is controlled remotely by managing the SPI peripheral it is connected

to. The display is used to render basic animations, images, and patterns. Both the initialization

and the streaming of raw frames to the display are done using the SPI bus. A frame is defined

by a matrix where each element contains color information for one pixel. For this example, let

us consider a 128x128 pixel, 16-bit depth grayscale OLED module. The module consists of an

internal controller and an OLED panel. The controller is interfaced over SPI and is responsible

for displaying the imageson thepanel. To keep it simple, let us assume that thedisplay controller

Page 39

3 Framework for a Remote Control Protocol

uses horizontal scanning to display the image. The frame is sent row-by-row as a byte stream

starting from the top left corner of the display and finishing at the bottom right corner. For

our display, where each pixel is represented by 4 bits, the total size of the frame is 8192 bytes

(≈ 8KB).

In a traditional decentralized architecture, a dedicated ECU feeds the frame to the display

over the SPI link. For this use case, we define a software function running on the ECU that is

responsible for rendering the images to the display. We refer to this function as the rendering

logic. The ECU receives high-level commands from other system components (other ECUs)

containing details about the elements of the image to be rendered. For example, a square is

described by its coordinates, width, height, and additional information about its color and out-

line. Similarly, a polygon is defined by a list of coordinates of its vertices. The final image is

created by superimposing these objects on an empty frame. We refer to the application gene-

rating these commands as the control logic. In addition to generating the initial list of objects,

the controller could also add or remove objects from the list, which implies that the rendering lo-

gic should maintain a record of the current state of the rendered objects. The application could

also implement more complex features, such as associating an animation with a given object.

For example, the control logic could define a fade-in animation from point x to point y for a

specific square. The rendering logic is then responsible for correctly rendering this animation.

The control logic only needs to know the commands for the definition of objects, their proper-

ties, and the different types of animations. Details related to the actual rendering and drawing
1 of the image, which is abstracted by the control logic. Implementing the same application in a

remote control system implies that the rendering logic is moved to the zonal or central ECU. Fi-

gure 3.10 compares the OLED’s use case system architecture in a traditional architecture to its

implementation in a remote control system. The edge node is replaced by an RCP node and it

no longer abstracts the rendering operations. Instead, the full frame is generated by the appli-

cation and sent to the display using RCP. With RCP enabling transparent access to the SPI bus,

the same rendering logic can be combined with the control logic to generate the frames. This

approach introduces a few challenges. Compared to sending drawing commands, transmitting

raw frames over the network demands additional bandwidth. Let us consider an example where

we draw an 8x8 checkerboard pattern; the first implementation would require sending the de-
1In computer graphics, rendering is the process of generating an image from a 2D or 3D model. In this context,

drawing refers to the stage on which the rendered image is displayed on the OLED display. For simplicity, we use the

term ”rendering”to describe the whole operation, including drawing

Page 40

3 Framework for a Remote Control Protocol

(a) Traditional

RCP Node

(b) RCP

Fig. 3.10: Comparison between different implementations of the OLED control use case

tails of 64 squares to the edge ECU. For example, on our display, a square can be described by

the following parameters :

X coordinate : 7 bits

Y coordinate : 7 bits

Width : 7 bits

Height : 7 bits

Color : 4 bits

Background opacity : 8 bits

Border color : 4 bits

Border width : 7 bits

Border opacity : 8 bits

The object representing a square is approximately 8 bytes in size. The command to draw the

frame is encoded using variable length encoding. Assuming the overhead from the encoding

is negligible, the command to draw the checkerboard pattern takes up to 64 ∗ 8 bytes, which is

equal to 512 bytes. This accounts for only 6.25% of the raw frame size. Note that the length of

the command increaseswith the complexity of the drawn pattern, but it generally requires fewer

bytes than transmitting a raw video or streaming a compressed video in applications where the

Page 41

3 Framework for a Remote Control Protocol

drawn image is relatively simple. For example, the display could be integrated into the ambient

lighting systemdescribed in Section 3.2.1 to display basic navigation commands, such as turning

left/right arrows or a stop signal. Additionally, using compression introduces the need for amore

advanced LED module capable of decompressing the video stream, adding complexity to the

system.

In contrast, transmitting a raw frame, as described in the remote control system, requires

sending at least 8 KB per frame and the overhead added by RCP and its transport mechanism.

Since 8 KB exceeds the typical minimum transfer unit of Ethernet, each framemust be segmen-

ted into multiple messages. An 8 KB frame, including the RCP header, needs 6 to 7 Ethernet

frames when transmitted with an MTU of 1500. When going through the network, these frames

will experience different queuing delays or take alternate paths, which leads to an out-of-order

arrival at the receiver. A reorderingmechanism at the RCP or transport protocol level is required

to construct the complete frame before processing. The RCP stream must ensure the reliable

delivery of messages by guaranteeing the availability of the required bandwidth and properly

handling frame loss. In our use case, the loss of a single packet results in the loss of an en-

tire image. Furthermore, although the in-vehicle network should provide sufficient bandwidth

to accommodate traffic from multiple interfaces, this approach introduces more latency and

jitter than the traditional implementation. Essentially, RCP must rely on a lightweight and relia-

ble transport mechanism to ensure message delivery to the RCP nodes within the firm system

requirements.

3.3 Requirements

In this section, we highlight the high-level requirements for RCP and examine the requirements

and characteristics of the protocol’s transport mechanism.

3.3.1 Interactionmodel

RCP should support different interaction models to cater to the diverse requirements of its use

cases. Figure 3.11 presents an overview of the different communication patterns in automotive

networks. We make the distinction between service-oriented communication patterns and tra-

ditional signal-oriented patterns. Service-oriented communication is driven by the client. Tran-

sactions are only initiated by the client when needed. Client/Server interaction is dynamically

established at startup or runtime. The client relies on service discovery mechanisms to loca-

te the appropriate service and establish communication with one of its endpoints. In contrast,

Page 42

3 Framework for a Remote Control Protocol

data in signal-oriented communication is published, disregarding the presence of a subscriber.

The communication is configured at design time, with all identifiers and communication chan-

nels statically defined [41]. RCP does not align properly with both concepts. RCP operations

Fig. 3.11: Communication patterns in automotive networks (adapted from [41])

are mainly initiated by the client (controller or subscriber); however, RCP transports low-level

operations, which misaligns with the definition of a service-oriented architecture. In SOA, ser-

vices provide an abstraction of low-level functions, enabling the interactionwith these functions

through a higher-level interface. Modern EEAs consists of both service-oriented and signal-

oriented communication associated with a signal-to-service communication mechanism. RCP

exists at an intermediate point within the signal-to-service communication but cannot be de-

scribed as a signal-based communication. Additionally, the operation and configuration of the

RCP endpoints could be seen as service-based communication where the RCP node provides

access to the nodes and their underlying functionality through an abstraction layer. In essence,

RCP could be considered a bridge, combining low-level operations with service-like functiona-

lity.

By considering the use cases of Section 3.2, it is evident that RCP must rely on all the

service-oriented communication mechanisms described in Figure 3.11:

1. R1 Request-response : for acknowledged transactions, such as I2C and SPI read and

write operations

2. R2 Fire-and-forget: for streaming use-cases such as the PWM output control

3. R3 publish-subscribe: for notification-based use cases, such as handling interrupts on a

GPIO pin. The controller subscribes to the interrupt service; then, the publisher sends an

unsolicited message either once or every time an interrupt is triggered.

Page 43

3 Framework for a Remote Control Protocol

3.3.2 Resource usage

The implementation of RCP is driven by the software centralization trend and the need to sim-

plify edge node complexity, ultimately reducing their production cost. As a result, RCP nodes

will have limited resources. They are expected to run minimal software with a limited flash and

internal memory to buffer operations and handle the decoding and decoding of RCP frames.

The node must maintain little to no state. Additionally, RCP should be simple enough to enable

hardware or hardware-accelerated implementations R4 .

The choice is between implementingRCPnodes entirely in hardware or utilizing a basicMCU

with a minimal software stack. A hardware-based implementation offers higher performance,

but it introduces challenges when implementing complex features such as service discovery.

In contrast, an MCU-based implementation provides more design flexibility but comes at the

cost of increased latency, overhead, and price. The MCU-based approach may also allow for

limited software updates but is more likely to maintain a fixed software version throughout the

node’s lifetime. There exists a tradeoff between the two approaches. The choice depends on

the system requirements. A hybrid approach that combines MCU with hardware accelerators

might offer a balanced solution. Additionally, RCPcould define complex features such as service

discovery as an optional layer on top of the regular RCP operation. Therefore, this allows the

implementation of statically configured hardware-based nodes and more feature-rich MCU-

based nodes. The decision of what node to use depends on the manufacturer’s cost analysis

and the type of the controlled device.

3.3.3 Timing requirements

Automotive control signals need to meet stringent timing requirements. Relying on a remote

control system implies moving the control loops to the central computing unit or the zonal con-

trollers. This comes at the cost of increased latency and jitter, which significantly deteriorates

the quality of the control signals. Therefore, it is a must to optimize the end-to-end latency of

the system. The latency is mainly affected by the in-vehicle network, transport protocol, and

the overhead from the zonal controller and RCP node implementation. Additionally, the system

must ensure proper coordination between its various components to maintain consistency and

determinism. Applications should be able to interface actuators and sensors across different

vehicle zones in a well-defined order of operations. Thus, RCP should add a minimal latency

overhead R5 and must inherently support features synchronization between its endpoints

Page 44

3 Framework for a Remote Control Protocol

R6 .

3.3.4 Discovery

Traditionally, communication links within the vehicles are statically configured. In the context

of RCP, this means that the address and identifiers of the RCP endpoint are configured during

design time. Automotive production lines are subject to significant variability. A peripheral or

RCP node and its peripheral combination may differ slightly from one facility to another. As

a result, the application is required to handle these variations, adding more complexity to its

implementation since its configuration must match the actual deployment in the system. The-

se could be avoided by implementing a discovery mechanism that detects the deployment of

RCP nodes and their peripherals at runtime. It would also mitigate the risk of misconfigurati-

on. Consider an example on which an RCP application interfaces with an I2C sensor. In a static

configuration, the application is pre-configured with RCP node’s ID and the specific interface

the sensor is connected to. If the sensor is moved to another interface or even to another RCP

node with a different address, the application needs to adapt to that change. By implementing

a discovery mechanism, it is possible to assign a global identifier to the sensor, which remains

statically configured at the edge node. When the application starts up, it relies on the discovery

process to locate and initiate communication with the sensor. However, it is important to note

that a discovery mechanism comes at the cost of increased resource usage, thus more complex

and expensive edge nodes. It is preferable that RCP supports service discovery while satisfying

other performance and implementation requirements R7 .

3.3.5 Operation and transport protocol

In this section we will highlight some of the low-level requirements of the protocol’s operation

and its relation to the transport mechanism.

Operations and Acess control

Identification R8 AnRCPmessage is sent to a specific RCPendpoint. The routingof the

message requires the endpoint to process a unique identifier. However, this ID could possibly be

unique only locally to the node it belongs to. This is possible because part of the identification

could also be delegated to the node itself. With the protocol transported over Ethernet, each

network node will be identified by its MAC address, which could be combined with the local

endpoint ID to identify it uniquely. The same applies if a higher-level transport protocol (e.g.,

Page 45

3 Framework for a Remote Control Protocol

UDP) is considered, except that IP addresses are used instead of MAC addresses. In general,

the choice of endpoint IDs in RCP will depend on the system design. There are two options:

assigning a unique system ID to each node or offloading part of the ID responsibility to the RCP

node, thus depending on the transport mechanism.

Multicast and Broadcast operations R9 Multicast operations could occur at various

levels: The controller may directly address multiple RCP nodes or send the same operation to

multiple endpoints on the same or different RCP nodes. In the latter case, the protocol itself

must handlemulticast operations.However, in the former scenario, the transport protocol needs

to support multicasting/broadcasting.

Compound and atomic operations R10 An atomic operation refers to an uninterrup-

tible action that is either executed or is not executed at all. For example, the transmit_receive

operation is atomic because it can not be split into two separate transmit and receive opera-

tions. The received data depends on the command/address in the last transmit operation. If

another transmission occurs in between, the operation outcome is incomplete. Atomic operati-

ons are not limited to one interface;multiple operations on different interfaces could share their

atomicity relationship. Consider 2 GPIO pins on separate interfaces that should remain consis-

tent. These pins are updated using a compound RCP operation. The system must ensure that

all operations are executed successfully. The failure of one GPIO operation means the failure

of the whole operation. Handling a failed operation depends on the type of peripheral. For a

GPIO operation, the RCP node can revert any changes made to the output of a pin; however,

for bus operations, failures can not be reverted as the RCP node lacks the context of the overall

communication state. Thus, it is only required to notify the controller of the operation failure

and allow it to handle the error. In essence, RCP should support the grouping of operations into

a compound operation, which can either be atomic or not.

Scheduling and periodic operations R11 RCP could define a mechanism to perform

periodic operations locally to reduce the overall network traffic. For example, if an application is

polling a temperature sensor every 1 ms, it needs to send the same transmitreceive operation

over and over again. Instead, the RCP node could automatically replicate the request and send

a response to the controller, eliminating the need for redundant messages over the network.

It could implement basic operations locally, such as performing the same operation every ’t’

seconds for ’n’ times. Operations could also be bound by conditions, such as performing the

Page 46

3 Framework for a Remote Control Protocol

same operation every ’t’ seconds until a GPIO input changes.

Additionally, RCP could define a mechanism to schedule operations to be performed at a

specific point in time. This is helpful in two scenarios: first, scheduling operations allows for the

flexibility to schedule multiple operations to be executed concurrently at the same time. Two,

the jitter could be reduced by slightly delaying the execution of the operation to account for the

discrepancy in transmission times.

In the next section, we provide a short overview of the requirements from the perspective

of transport protocol.

Message handling

Messagemapping R12 The transport protocol, or RCP, shouldmap responsemessages

to their corresponding requests. This ensures multiple requests/responses are sent, received,

and processed, irrespective of their order.

Aggregation R13 RCP should support aggregation of multiple operations, or RCPmes-

sages, into a single RCP frame. This allows the implementation of compound and atomic ope-

rations and reduces the protocol’s network overhead.

Communication and synchronization

Transport layer R14 Ideally, RCP frames should be transported over any network layer:

Layer 2 (Ethernet), Layer 3 (IP), or Layer 4 (TCP/UDP); however, the protocol should at least

support Layer 2 transport for it to operate over an Ethernet network.

Encoding R15 The transport protocol for RCP operations must use a suitable encoding

for all of its operations, with the option to use a fixed or variable length encoding.

Timestamping R16 The transport protocol for RCP should include timestamps in its

frames to ensure that it is compatible with synchronizationmechanisms, such as gPTP, for sche-

duling and consistency of RCP operations.

Traffic handling R17 The protocol should be compatible with traffic shaping and poli-

cing mechanisms for time-sensitive networks.

Page 47

3 Framework for a Remote Control Protocol

Error handling R18 While the protocol should implement error handling in cases of fail-

ure of an RCP operation, the transport mechanisms should handle errors related to communi-

cation. This includes the detection of bit errors, packet loss, connection loss, and packet reor-

dering. The transport mechanism should ensure reliable transport of RCP messages.

Segmentation R18 Used in case of unreliable communication to transport messages

that exceed Ethernet’s MTU.

Additional requirements

We establish the following extra requirements that are important for the transport protocol

from an implementation and usage perspective:

• Network overhead R20

• SW availability R21

• Compute load R22

• Startup time R23

3.4 Standardization

RCP is currently under standardization by Open Alliance, a consortium of leading industry com-

panies that aim to promote the adoption of Ethernet-based networks as the standard for au-

tomotive applications. RCP is currently defined under the TC18 committee of Open Alliance.

The standardization focuses on meeting the industry’s requirements for RCP, including desig-

ning the overall system on which the protocol is deployed and defining a specification for the

protocol messages and interaction model [42].

Page 48

4 RCP implementation using existing communicati-

on protocols

In this section we provide a detailed implementation of the two use-cases discussed in Sec-

tion 3.2: The PWM/Motor driver control and the OLED display control scenarios. We perform

qualitative and quantitative analysis of IEEE1722 and SOME/IP and their suitablity to be used

as a transport mechanism for a remote control protocol.

4.1 MeasurementMethodology

All of our evaluations were done using off-the-shelf components. This includes devices such

as the Raspberrypi 4B [43] and the Raspberrypi 5[44], in addition to SPI and I2C devices. We

measured the following parameters:

• Latency : refers to the time between two points in our program. It could represent the

time between the initiation of an operation and its arrival at its destination. For instance,

the Latency between point A, when a request is sent from the Talker application, and point

B when the Listener application completes processing the request.

• RTT(round-trip time): refers to the total time it takes to execute anoperation, including

sending a request and receiving a response. It only applies to request-response operati-

ons.

• CPU usage%: refers to the percentage of the total CPU capacity used by an application

to perform a single operation. It could be measured between two points in the program,

allowing us to measure the CPU usage for certain implementation components.

• Rate: refers to the frequency at which a certain event happens. It is measured by calcu-

lating the period between consecutive occurrences of the event over a period of time.

4.1.1 Timingmeasurements

In most of our evaluated scenarios, the Talker and Listener applications are executed on diffe-

rent nodes on the network (e.g., the Talker is running on the vehicle computer, and the Listener

is running on the edge node). To achieve correct measurements, we ensured that all nodes we-

re synchronized to the same time. This allowed us to measure Latency, or round-trip time, by

Page 49

4 RCP implementation using existing communication protocols

inserting timing probes that record the current system time. The collected time points are then

post-processed to extract the timing data. Since all our devices are based on Linux, we opted

for LinuxPTP [45], an open-source software implementation of the generalized Precision Time

Protocol for synchronization. gPTP works by selecting one node as the GM clock to provide ti-

ming information to all other nodes in the network. The selection is made using the Best Master

ClockAlgorithm (BMCA), which establishes the best clock in the network basedonmetrics such

as clock quality, accuracy, and the stability of the local oscillator, in addition to user-set para-

meters such as the clock priority. Synchronization is achieved by measuring the offset between

the GM clock and other devices on the network using timestamps from the gPTP message ex-

change. The system clock is then adjusted to match the GM clock [46]. Timestamps are either

generated in software or hardware using specialized NICs (network interface cards). Hardware

timestamping generally provides better synchronization as it eliminates the jitter introduced by

the network stack. However, we opted for software timestamping in our setup because not all

our NICs support it. As presented in Figure 4.1, all of our devices are connected to the same

100BASE-TX Ethernet network through a layer 2 switch. We configured a Linux service to start

LinuxPTP over the Layer 2 network. Synchronization is done using the ptp4l program included

in the Linuxptp package. When operating in software timestamping mode, ptp4l directly syn-

chronizes the system clock to the GM clock [47].

Fig. 4.1: Ethernet network for time synchronization

We experimented with different configuration settings for ptp4l. The application provides

multiple algorithms for synchronization, which are set by the clock_servo option.We experimen-

ted with the default pi option and the adaptive linreg option. We ran each option for around

15 − 20 minutes and recorded their clocks. Figure 4.2a shows the system clock’s offset of one

of the nodes to the GM clock when using the pi servo, while Figure 4.2a shows the rms and

Page 50

4 RCP implementation using existing communication protocols

(a) pi servo

(b) linreg servo

Fig. 4.2: System clock offset to the GM clock

maximum values of the clock offset when using the linreg servo. In both cases, the clocks are

synchronized to ±15µs, which is deemed enough for our measurements, so we decided to use

the default pi option. A timepoint is recorded by reading the current value of the system’s

CLOCK_REALTIME, which represents the system-wide clock [48] and is adjusted to match

the GM clock. The application reads the clock in seconds and nanoseconds and then logs the

timestamp.

4.1.2 Additional measurement tools

To measure the load between two points in the program, we log the number of jiffies used by

both theCPU and the application during this interval. A jiffy represents the basic time unit in the

Kernel, which is determined by the Kernel’s tick rate [49].We can determine the processing time

of an application by tracking the number of jiffies it uses. CPU usage percentage is calculated

using the following equation:

CPU usage (%) =
(
Jiffies used by the application
Total jiffies used by the CPU

)
× 100 (4.1)

Page 51

4 RCP implementation using existing communication protocols

4.1.3 CPU usagemeasurement

We used additional measurement tools to help debug our applications and gather additional

information, such as capturing the network packets. This includes the following tools:

• PicoScope5000Series:AUSBoscilloscope allowing high-resolution capture for analog

and digital signals [50].

• ProfiShark 1G+: an Ethernet TAP, designed to accurately capture network traffic without

altering it and affecting its performance [51].

4.2 Head-to-head Comparison

For a head-to-head comparison between the two protocols, we implemented the PWM/Motor

control scenario presented in use-cases 3 of Section 3.2.3.

4.2.1 Evaluation setup

Figure 4.3 shows our evaluation setup. We drive the LED using an Adafruit PCA9685 module

[52], a 16-channel 12-bit PWM/Servo driver with an I2C interface, connected to two Raspberry

PI devices which are linked via a point-to-point Ethernet connection. We developed two appli-

cations: A Talker application that contains the LED control logic and sends I2C control com-

mands and a Listener application, which receives and executes the commands locally.

Fig. 4.3: Head-to-head evaluation setup

4.2.2 IEEE1722 Talker/Listener Implementation

We used the open-source implementation of the IEEE1722 protocol - Open1722 2. Figure 4.4

describes the execution flow of the Talker and Listener applications. To perform I2C operations,

e.g., transmit operation, the Talker creates an AVTP frame that encodes the I2C parameters and
2https://github.com/COVESA/Open1722

Page 52

4 RCP implementation using existing communication protocols

Fig. 4.4: IEEE1722 I2C Talker and Listener applications execution flow

payload. This frame is sent over the network using Linux sockets. When received by the Liste-

ner, the frame is decoded, and the I2C operation is executed locally. If a response is expected,

the Talker blocks while waiting for the Listener’s response. We used Open1722 to encode and

decode the AVTP frames. The I2C operations are mapped to GBB frames. We defined two

operations, transmit and transmit_receive. In the transmit operation, the Talker sends a GBB

request containing the I2C payload, and the Listener responds with an emptyGBBmessage for

acknowledgment. In the transmit_receive operation, the Talker sends a GBB request with the

I2C payload, and the Listener replies with a GBBmessage containing the received I2C payload.

To perform an I2C receive operation, the transmit_receive operation is used with no payload

from the Talker. We mapped the I2C fields to a GBB frame as follows :

• Target I2C bus: In Linux I2C, are automatically assigned numbers by the kernel. We used

the bus number to map the request to the correct I2C peripheral. The I2C bus number is

stored in the Byte Bus ID field.

• Operation type:mapped to the op field. A (’1’) indicates a transmit operation and a (’0’)

indicates a transmit_receive operation.

• Message type: used the rsp field to specify whether the message is a request (’0’) or a

response (’1’).

• Status: In case of a response, we use the err field to indicate if the operation failed. The

field is cleared if the operation is successful.

• Response: IEEE1722doesnotdifferentiatebetween fire-and-forgot and request-response

communication, so we used the least significant bit of the evt field to indicate whether a

Page 53

4 RCP implementation using existing communication protocols

response is required (’xx1’) or not (’xx0’).

• Address length: used the 2nd least significant bit of the evt field to specify the target

address length (’x0x’ for 7-bit addresses and ’x1x’ for 10-bit addresses).

• Target address:mapped the target address to the first two bytes of the payload.

• Read size: stored the number of Bytes to read in the Read size field. This only applies to

transmit_receive operations; otherwise, this field is not used.

• I2C payload: Stored in the remaining part of the payload.

4.2.3 SOME/IP Talker and Listener Implementation

For the SOME/IP, we used the open-source implementation vsomeip 3. The SOME/IP Talker

and Listener applications work the same way as the IEEE1722 Talker and Listeners. The main

difference is that the Listener is implemented as a service that exposes the I2C bus, and the

Talker uses service discovery to establish communication with the Listener. Our latency me-

asurements are taken after the service discovery process finishes. In our implementation, we

mapped the (service ID, instance ID) pair to the corresponding I2C bus number (e.g., (1,0) re-

fers to the first instance of I2C bus one service). The Service ID was always set to 0, as each bus

had one dedicated service. Figure 4.5 shows the execution flow of the Talker and Listener ap-

plications. The vsomeip implementation is multi-threaded. The Talker sends a request and then

blocks while waiting for a response. The on_repsonse() callback is triggered when a response is

received. Similarly, on the Listener side, the on_transmit and on_transmit_receive callback are

triggered when a request is received.

Fig. 4.5: SOME/IP I2C Talker and Listener applications execution flow

3https://github.com/COVESA/vsomeip

Page 54

4 RCP implementation using existing communication protocols

In contrast to IEEE1722, SOME/IP does not provide formats for encapsulating control si-

gnals such as I2C. Therefore, we described the operations using custom formatting. The I2C

parameters are directly stored in the payload as an object:

{

Target address,

Read/Write size,

I2C payload

}

SOME/IP serialization allows the use of variable-length fields. In this case, the target address is

either represented by a one-byte or two-byte field, depending on the address length used. To

put everything together, We mapped the operation to a SOME/IP message as follows:

• Service ID:Mapped to the I2C bus number

• Method ID:Mapped to theoperation type.Wedefined the transmit and transmit_receive

operations as methods; each method is associated with a unique method ID (transmit

method ID = 1, and transmitreceivemethod ID = 2).

• Message Type: Indicates whether a response is required or not (can be set to REQUEST

or REQUEST_NO_RETURN).

• Return Code: Indicates whether an operation is succesful. SOME/IP specifies a set of

predefined status and error codes. We used the E_OK code to indicate a successful ope-

ration and the E_NOT_OK code to indicate failure.

• Message payload: Include the I2C operation parameters and payload.

4.2.4 Evaluation scenarios

We defined two scenarios:

• Scenario 1: The Talker sends an update every 1 ms and waits for a response from the

Listener (request-response communication). The next update is delayed if a response is

not received within the specified period.

• Scenario 2: The Talker sends an update every 1ms but does not expect a response from

the Listener (fire-and-forget operations).

Page 55

4 RCP implementation using existing communication protocols

Both scenarios were evaluated over a 100BASE-TX Ethernet link and a 10BASE-T1S link.

For the IEEE1722 implementation, we tested the implementation over both Layer2 and UDP,

while the SOME/IP implementation was tested with UDP and TCP. In the next section, we de-

scribe the implementation details of the Talker and Listener application using both IEEE1722

and SOME/IP as transport protocols for RCP. We discuss how I2C operations are mapped to

RCP message. It is important to note that our focus is only on the transmit/receive operati-

ons, excluding the bus initialization process, which is directly managed by the Listener in this

implementation.

4.2.5 Evaluation results

This section presents our evaluation results, which include Latency, RTT, and overhead measu-

rements for both scenarios discussed in the previous section.

vsomeip version comparison

Initially, we selected the latest version at the time of vsomeip, version 3.5.1. However, during

our initial measurements, we noticed that the vsomeip-based implementation is significantly

slower than the IEEE1722 implementation 4. In addition to the achieved RTT not aligning wi-

th previous evaluations of vsomeip [53]. To further investigate the issue, we used the same

benchmarking utility in [53] to replicate RTT measurement for different versions of the library
5. We noticed that RTT increased with the major update from version 2 to version 3. Running

the benchmark with version 2.10.11 over a 100BASE-TX connection produced an RTT value ran-

ging from 300 to 400 µs; however, when using version 3.5.1, this range increased to around

12,000-13,000 µs. The reason behind this discrepancy in performance is unknown and is out of

the scope of this work, so we opted for using version 2.10.11 for the remainder of our evaluations,

which we will refer to as vsomeip2.

Scenario 1

Figure 4.6 presents the round-trip time and load measurements for the open1722 and vso-

meip implementationsof scenario 1. Themeasurementswere collected from 10, 000 I2C transmit

operations. RTT was measured as the average time between a transmit operation is sent until
4https://github.com/COVESA/vsomeip/discussions/785
5https://github.com/kamelfakihh/vsomeip-docker-benchmark

Page 56

4 RCP implementation using existing communication protocols

its response is received. Therefore, RTT represented the average execution time of the whole

operation, which was measured using probe ’A’ shown in figures 4.4 and 4.5.

For the open1722 implementation, our evaluations show a slight increase in the round-trip

time when encapsulating the AVTP frame in a UDP packet compared to an Ethernet packet.

The results present approximately a 6% increase in RTT when sending the packets over both

1000BASE-TX and 10BASE-T1S Ethernet. However, the partial overlap in the error bars indi-

cates that the difference is insignificant. The same could be said about the increase in RTT

observed in the vsomeip2 implementation between UDP and TCP encapsulation.

Comparing the open1722 and vsomeip2 implementations, we observed that the open1722

performed better over both Ethernet links, with approximately 20% improvement in perfor-

mance. The open1722 and someip2 implementations met the 1ms deadline when transported

over 100BASE-TX except for the SOME/IP TCP encapsulation. On the other hand, both appli-

cations failed to meet the deadline when relying on 10BASE-T1S, which runs at a slower speed.

To further investigate the factors contributing to the overall round-trip times, we measured

the contribution of the following operations to the RTT:

• Encoding/Decoding time:The time required to serialize and deserialize the request and

response at both the Talker and Listener. It was measured between probes ’A’-’B’ and ’C’-

’D’ shown in figures 4.4 and 4.5.

• Transmission time: The time required to send the request and response frames, which

includes the time the frame is processed by the protocol stack, the network stack, and the

on-wire transmission time. It was measured between probes ’B’ and ’C’.

• I2C operation time: The time required to write a command to the I2C bus.

Figure 4.7 shows the contribution of each of these values to the 10BASE-T1S evaluation. We

observe that both protocols’ encoding/decoding operations are in the same ballpark. The main

performance difference between the two implementations is caused by the protocol’s trans-

mission time. Finally, we can observe that the vsomeip2 implementation consumes more than

double the CPU usage of the open1722 implementation. This could be observed for both the

Talker application (2nd row) and Listener (3rd row) applications in Figure 4.6.

Scenario 2

Figure 4.8 presents the latency and load measurements for the open1722 and vsomeip im-

plementations of scenario 2. The measurements were also collected from 10, 000 I2C transmit

Page 57

4 RCP implementation using existing communication protocols

open1722 vsomeip2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·1,000

m
ic
ro
se
co
nd
s
(µ
s)

open1722 vsomeip2
0

0.2

0.4
·10

C
P
U
(%
)

open1722 vsomeip2
0

0.1

0.2 ·10

C
P
U
(%
)

Layer 2 UDP TCP

(a) 100BASE-TX

open1722 vsomeip2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·1,000

open1722 vsomeip2
0

0.2

0.4
·10

open1722 vsomeip2
0

0.1

0.2 ·10

Layer 2 UDP TCP

(b) 10BASE-T1S

Fig. 4.6: Head-to-head RTT and CPU usage % for scenario 1 over 100BASE-TX and

10BASE-T1S.

Page 58

4 RCP implementation using existing communication protocols

open1722-L2 open1722-UDP vsomeip2-UDP vsomeip2-TCP
0

500

1,000

1,500
m
ic
ro
se
co
nd
s
(µ

s)

I2C operations Transmission Encoding/Decoding

Fig. 4.7: In depth Head-to-head RTT comparison between scenario 1 implementations over

10BASE-T1S

operations. We measured the Latency as the duration between the moment a transmit ope-

ration is started and the time the I2C message starts to be written to the bus. It is measured

betweenprobes ’A’ and ’D’. Similarly, we can observe a slight increase in Latency fromL2 toUDP

encapsulated AVTP frames and from UDP to TCP encapsulated SOME/IP message. However,

we observed a more significant performance difference between vsomeip and open1722 appli-

cations, where the open1722 implementation is approximately 30− 40% faster. This percentage

increase is expected as we did not account for the I2C operation in the Latency measurements.

The goal is to measure the protocol’s Latency without the influence of the I2C operation.

Page 59

4 RCP implementation using existing communication protocols

open1722 vsomeip2
0

1

2

3

4
·100

m
ic
ro
se
co
nd
s
(µ
s)

open1722 vsomeip2
0
2
4
6

C
P
U
(%
)

open1722 vsomeip2
0
1
2
3

C
P
U
(%
)

Layer 2 UDP TCP

(a) 100BASE-TX

open1722 vsomeip2
0

1

2

3

4

·100

open1722 vsomeip2
0
2
4
6

open1722 vsomeip2
0
1
2
3

Layer 2 UDP TCP

(b) 10BASE-T1S

Fig. 4.8: Head-to-head latency and CPU usage % measurements for scenario 2 over

100BASE-TX and 10BASE-T1S.

Page 60

4 RCP implementation using existing communication protocols

4.3 End-to-End Performance

For an end-to-end comparison between the two protocols, we implemented the OLED control

scenario presented in use-case 4 of Section 3.2. We used off-the-shelf components to crea-

te a make-shift zonal architecture. Then, we evaluated the end-to-end performance of both

IEEE1722 and SOME/IP as transport mechanisms for RCP.

4.3.1 Evaluation setup

Fig. 4.9: End-to-end evaluation setup

For the display, we selected a 128x128Waveshare OLED display [54]. The display provides a

4-wire SPI interface with the exact specifications discussed in Section 3.2.4. The vehicle com-

puter is represented by aRaspberry PI 5, and both the zonal controller and theRCP (edge) node

are represented by two Raspberry PI 4s. The zonal controller is linked to the vehicle computer

by a 100BASE-TX Ethernet connection, while the RCP node is linked to the zonal controllers

via a 10BASE-T1S connection. The 10BASE-T1S bus consists of only two nodes and uses two

USB-to-10BASE-T1S adapters from Microchip (EVB-LAN8670-USB [55]). The components

used are not of automotive grade but are close enough to what is expected in an automotive

network. The processing power of the Raspberry PI 5 is comparable to the processing power

of a vehicle computer. However, the Raspberry Pi 4 used for the controllers and edge nodes is

more powerful than their typical automotive equivalent. The selection of these nodes was limi-

ted by the available software implementation for SOME/IP, which is POSIX compatible only so

that we couldn’t use non-POSIX devices (e.g., a microcontroller).

4.3.2 Implementation

We implemented the following components:

Page 61

4 RCP implementation using existing communication protocols

• OLED controller: The application is responsible for issuing drawing commands. (e.g.,

drawing a rectangle with width w and height h at coordinates (x,y)). It can either directly

interface a local instance of the Renderer or use the Renderer client/service to commu-

nicate with a remote instance of the Renderer.

• Renderer: A library to process the drawing commands. It receives a list of commands and

renders the corresponding image, resulting in a raw 128x128 image output. The image is

rendered using the lightweight embedded graphics library, LVGL 6.

• Renderer service/client: SOME/IP client/service pair used to establish communication

between the OLED controller and the Renderer. The drawing commands are sent using a

customencoding that describes each shape to be drawn. Therefore, drawing functionality

is provided as a service that abstracts the rendering to the display. We refer to this service

as the Drawing service.

• Display driver: A custom driver implementation to operate the display. It can work with

a locally connected display, or use IEEE1722 and SOME/IP Talkers/Listeners to remotely

operate the display.

• SPI Talker/Listener: Used by the driver to send RCP messages to the edge node con-

nected to the display.

The SPI Talker and Listener applications were implemented in a similar fashion to the I2C

implementation of Section 4.2.3. For this use case, it was only required to implement the SPI

write operation. An image is drawn to the display by sending a command containing its start-

ing coordinates (row, column), followed by a byte stream containing the actual image data. To

achieve this, we implemented a transmit operation that includes both the command and data

message payload. For the IEEE1722 Talker/Listener, the SPI write command is similarly mapped

to a GBB frame, and the fields are used in the same manner. There are three differences:

• evt: All of the display operations are using a fire-and-forget mechanism, so this field is

changed to define the command length, such that when the Listener receives themessa-

ge, it can split the command and data payloads and locally handle the DC line of the SPI

peripheral.

• Byte Bus ID: Both the SPI bus number and the CS line number are mapped to the Byte

Bus ID, such that the LSB half of the field represents the chip select number, and theMSB
6https://lvgl.io/

Page 62

4 RCP implementation using existing communication protocols

half represents the SPI bus number. The chip select signal is also handled locally by the

Listener.

• Payload: The command and data payload are stored directly in the GBB payload.

As for the SOME/IP Talker and Listener, the vsomeip version we are using does not sup-

port SOME/IP-TP, meaning that it is not possible to use segmentation, which is required in this

scenario as the raw frame is up to 8 KB. For this reason, we used SOME/IP to encapsulate and

transport GBB messages, relying on Open1722’s encoding and segmentation mechanism wit-

hout the need to define a new encoding for SPI operations. We defined an avtprequestmethod

that tunnels the IEEE1722 operations.

Finally, we defined a custom encoding for each drawable that can be drawn on the display.

A drawable could be a label, rectangle, circle, or a generic acute polygon. These encodings are

based on the LVGL properties of the drawables. The drawables are added to a list, which is

sent from the OLED controller to the Renderer. The Renderer then sequentially decodes the

properties of each drawable and puts it into the image. For example, A rectangle drawable is

encoded using the following object:

{ /* Dimensions */
u in t8_ t x ,

u in t8_ t y ,

u in t8_ t w,

u in t8_ t h ,

/* Border */
u in t8_ t BorderColor ,

i n t 1 6 _ t BorderWidth ,

u in t8_ t BorderOpacity ,

/* Shadow */
u in t8_ t ShadowColor ,

i n t 1 6 _ t ShadowWidth ,

i n t 1 6 _ t ShadowOffsetX ,

i n t 1 6 _ t ShadowOffsetY ,

i n t 1 6 _ t ShadowSpread ,

u in t8_ t ShadowOpacity } ;

The Renderer implementation does not support LVGL animations, so the complete image

encoding is updated with every frame. The image drawn in our evaluation consisted of 32 squa-

res arranged into a checkerboard pattern, which is moved slowly across the screen with every

frame.

4.3.3 Evaluation scenarios

We evaluated the performance in four different scenarios:

Page 63

4 RCP implementation using existing communication protocols

• Scenario I:The baseline scenario involves theOLEDcontroller andRenderer applications

directly running on the edge node without relying on the display service. In this scenario,

the drawing operation has the least overhead.

Fig. 4.10: End-to-end comparison scenario I

• Scenario II: In the traditional scenario, theRendering service runs on the edge node, while

the OLED control application runs on the vehicle computer. The controller relies on the

Renderer client/service to send drawing commands to the Renderer.

Fig. 4.11: End-to-end comparison scenario II

• Scenario III: Using IEEE1722 as RCP. The Renderer and display driver are both moved to

the vehicle computer. The raw image is now generated on the vehicle computer and sent

to the Edge node using RCP.

Fig. 4.12: End-to-end comparison scenario III and IV

Page 64

4 RCP implementation using existing communication protocols

• Scenario IV:Using SOME/IP as RCP. It follows the same implementation of the previous

scenario. However, the Listener and Talker applications are replaced by their SOME/IP

version.

It is important to emphasize that the zonal controller acts as a bridgebetween the 100BASE-

TX and the 10BASE-T1S Ethernet segments. Ideally, the zonal controller could be replaced by a

switch; however, we didn’t have any replacement available, so we used a Raspberry PI and set

up a bridge in software using Linux bridge-utils.

4.3.4 Evaluation Results

Wemeasured the end-to-end Latency for each scenario in Figure 4.13. The Latency is defined

as the time between themoment a drawing command is issued and the time the frame is drawn

to the display. We observe that the traditional ECU setup (Scenario II) achieves a similar per-

formance to the baseline measurement (Scenario I). Meanwhile, for the RCP scenarios III and

IV, the Latency increased by 40 to 45% compared to the baseline scenario. This is attributed

to the increased size of data to be transmitted over the network. Additionally, we observe that

the open1722 implementation is slightly faster than the vsomeip2 version. However, the results

are still comparable, indicating that the performance difference observed in our head-to-head

evaluations is less evident as the data size increases. This is because messages are segmented

and processed parallel to their transmission, thus reducing the protocol stack overhead.

We measured the target and achieved framerates in Figure 4.14. The target framerate is

measured as the rate at which the Talker application sends drawing commands/frames, while

the achieved framerate is measured as the rate at which frames are drawn to the display on

the Listener’s end. All scenarios successfully achieved the target average frame rate of 80 fps.

However, we observed a higher frame rate jitter when using the SOME/IP implementation.

Finally, we calculate the overhead for each of our RCP implementations using the following

equation:

Overhead = Total header length · ⌈ Data length
MTU − Total header length

⌉ (4.2)

For the IEEE1722 as RCP implementation, the total header length is:

Total header length = Heth +Hntscf +Hgbb = 14 + 12 + 16 = 42 Bytes (4.3)

While for the SOME/IP as RCP implementation, the total header length is:

Page 65

4 RCP implementation using existing communication protocols

Total header length = Heth+Hip+Hudp+HSOME/IP+Hgbb = 14+20+8+16+16 = 74 Bytes

(4.4)

Assuming the MTU is set to 1500 Bytes, the transmission overhead for our 8,192-byte mes-

sage is 1.75 % in the open1722 implementation, compared to 5.41 % in the vsomeip2 implemen-

tation. With a bigger header, the vsomeip2 overhead becomes higher for smaller payloads.

I II III IV

0.6

0.8

1

1.2

1.4

1.6

1.8
·104

m
ic
ro
se
co
nd
s
(µ

s)

End-to-end latency

Fig. 4.13: End-to-end frame latencies for scenarios I to VI

Page 66

4 RCP implementation using existing communication protocols

I II III IV
77

78

79

80

81

82

83

fr
am

es
pe
rs
ec
on
d
(f
ps
)

Target Achieved

Fig. 4.14: End-to-end frame rates for scenarios I to VI

4.4 Discussion

In this chapter, we looked into implementing IEEE1722 and SOME/IP as remote control proto-

cols for I2C and SPI peripherals. We covered the interaction model, mapping the remote peri-

pheral’s operations to protocolmessages and performance analysis. Our latency and round-trip

time evaluations show approximately a 50 % increase in transmission latency when using SO-

ME/IP with UDP encapsulation over IEEE1722 with Layer 2 encapsulation. We observe that the

end-to-end latency of our request-response operations was mainly bottlenecked by other fac-

tors, such as the network transmission time and the blocking delay when writing/reading to and

from the interface, rather than the overhead introduced by the protocol stack. We also obser-

ved an insignificant change in performance when encapsulating the same protocol on different

network layers (i.e., L2/UDP and UDP/TCP). Therefore, we conclude that while IEEE1722 offers

better latency, both IEEE1722 and SOME/IP are still good candidates from a latency perspec-

tive, as long as the underlying network provides sufficient bandwidth. We also infer that rely-

ing on higher network layers imposes a minor performance penalty which allows the protocol

to be transported on any layer based on the specific application requirements. For instance,

TCP encapsulation can be used for reliable communication, while UDP and Layer2 encapsula-

tion is preferred for critical applications, given that the protocols are agnostic of the transport

layer. IEEE1722 offers this flexibility as it is a Layer 2 protocol with a UDP encapsulation (that

can be extended to TCP encapsulation), while SOME/IP demands the use of UDP/TCP trans-

port. We also observed that the computational load of SOME/IP applications was significantly

higher than the IEEE1722 applications across all evaluated scenarios. Additionally. while we did

Page 67

4 RCP implementation using existing communication protocols

not implement any scheduling mechanisms, we observed higher jitters when using SOME/IP

compared to IEEE1722. This could be attributed to the bulkier implementation of SOME/IP,

highlighting the requirement for hardware-accelerated solutions.

Finally, we present a side-by-side comparison of SOME/IP and IEEE1722 in Table 4.1 con-

sidering the requirements outlined in Section 3.3 and the challenges we faced during the im-

plementation.

Tab. 4.1: Side-by-side comparison of SOME/IP and IEEE1722 in the context of remote control

protocols. ”+”represents better performance, ”presents worse performance, and -ïndicates

comparable performance

Requirement Description IEEE1722 SOME/IP

R1 Request-response communication ~ ~
R2 Fire-and-forget communication ~ ~
R3 Publish-subscribe communication 7 - +
R4 Hardware acceleration + -
R5 Latency overhead + -
R6 Synchronization + -
R7 Service discovery - +
R8 Identification ~ ~
R9 Multicast and Broadcast operations ~ ~
R10 Compound and atomic operations + -
R11 Scheduling and periodic operations + -
R12 Message mapping ~ ~
R13 Aggregation + -
R14 Transport Layer 8 + -
R15 Encoding + -
R16 Timestamping + -
R17 Traffic handling + -
R18 Error handling ~ ~
R19 Segmentation ~ ~
R20 Network Overhead + -
R21 Software availability ~ ~
R22 Compute load + -
R23 Startup time + -

7IEEE1722 is a connectionless protocol, it does not support subscription mechanisms
8SOME/IP is limited to UDP/TCP, while IEEE1722 can operate on top of any network Layer

Page 68

5 Concept for a new remote control protocol

In this section, we provide a concept for a remote control protocol that combines parts from

SOME/IP and IEEE1722 to implement a feature-complete remote control system.

5.1 Introduction

While our evaluations show comparable performance in terms of latency and round-trip times

between the SOME/IP and IEEE1722 implementations, we can infer from the comprehensive

analysis of the two protocols presented in Table 4.1 that IEEE1722 is more suitable for the strea-

ming and control applications required by RCP. It already supports control formats for key auto-

motive buses and peripherals, and it integrates well into time-sensitive networks by supporting

important features such as traffic management and synchronization. It is also lightweight and

potentially easier to implement in hardware. However, these features alone fall short of satis-

fying the service-oriented nature of some RCP requirements. For instance, since IEEE1722 is a

connectionless protocol, it does not support publish-subscribe operations. It is also statically

configured and does not support service discovery. For these reasons, we suggest combining

the twoprotocols into a newprotocol that integrates their best features into a feature-complete

remote control protocol. The concept protocol relies on SOME/IP for discovery and initialization

of the peripherals, while it uses IEEE1722 for streaming control messages. In the next sections,

we provide the systemmodel and operation, in addition to practical insights into the implemen-

tation of this protocol and the key design considerations, using the I2C bus as an example.

5.2 Systemmodel

Figure 5.1 presents the system model. We define two types of configuration:

• RCP client to Endpoint communication: Carried over SOME/IP. Handles service dis-

covery, peripheral initialization, and configuration through the SOME/IP service.

• RCP client to Device communication: Carried over IEEE1722 control frames. The RCP

node acts as a gateway tunneling operations sent from the RCP client to the device con-

nected to an endpoint on the node, including operations such as I2C_transmit and

I2C_transmit_receive.

Figure 5.3 illustrates the remote control node’s operation. The operation is divided into 4

Page 69

5 Concept for a new remote control protocol

phases. Phase 1, Service Discovery, involves locating the devices connected to the node and

their corresponding endpoints. Phase 2, Initialization, includes subscribing to an interface field

or its corresponding service. Phase 3, Communication, the client uses discovery information

from Phase 1 to establish direct communication with the IEEE1722 gateway. Finally, Phase 4,

Teardown, involves terminating any subscriptions and terminating the communication. The ser-

vice discovery and configurationmechanisms can be viewed as an additional layer on top of the

gateway operation, which may be omitted in critical applications to improve performance. In

this case, the peripherals are statically configured.

Fig. 5.1: RCP proposal system model

5.3 Protocol operation

In this section, we describe the operation of each phase, starting from the discovery phase and

ending at the teardown phase following the communication flow presented in Figure 5.2.

5.3.1 Setup phase

Service discovery

At its core, service discovery allows the RCP client to locate endpoints and the node they

belong to on the network. All devices are typically identified by a global ID (GID), which is uni-

que across the network. TheGIDs could be flashed onto the node during production of the RCP

node, e.g., by Tier1 company or during integration by theOEM.With service discovery, the same

device can be connected to any combination of nodes and remain discoverable on the network.

Page 70

5 Concept for a new remote control protocol

Fig. 5.2: RCP proposal communication flow

The implementation of the service discovery mechanism could vary, as the node could either

implement a single service representing the node itself or implementmultiple services such that

each service ismapped to an endpoint. The latter solution ismore straightforward to implement

as endpoint IDs could be directly mapped to service IDs. Figure 5.3 shows an example service

discovery scenario. The RCP nodes interface two devices with GIDs #100 and #101, which are

respectively connected to endpoints #1 and #2. The discovery service(s) reads the local GIDs

and broadcasts offer requests to the networking containing information on how to directly ac-

cess the devices through the IEEE1722 gateway.

Peripheral initializaton

After the discovery, the RCP client can establish a connection with the SOME/IP service to

configure the interface. Configuration parameters could be implemented as fields set/read by

the client. Additionally, event notifications can be used for events such as interrupt signals and

error handling.

Page 71

5 Concept for a new remote control protocol

Fig. 5.3: RCP proposal operation and service discovery

5.3.2 Communication phase

AVTP operations

The client uses the identification parameters provided by the discovery mechanism to send

RCP operations to the IEEE1722 gateway. For IEEE1722, these include the network address and

other parameters, such as the bye bus ID in case of communication with a field. Additionally,

the service could use the Stream Reservation Protocol (SRP) to reserve the necessary network

resources for the IEEE1722 stream and provide the client with the stream ID.

Configuration updates

The client remains connected to the service throughout the whole communication process.

It can still send configuration updates to the service if needed.

5.3.3 Teardown phase

Finally, to terminate communication, the client revokes its subscriptions to the service, and the

service releases the reserved streams. Furthermore, the client can send a shutdown command

to the service to power down the peripheral.

Page 72

6 Conclusion and Future Prospects

Summary

This thesis presented the concept of remote control protocols and explored various remote

control use cases, including ambient lighting control, camera streaming, and control, as well as

a detailed low-level examination of I2C and SPI peripherals control. The use cases were used

to extract a list of functional and non-function requirements for RCP. It presented two exam-

ple use-cases for RCP: PWM/Motor driver control over I2C, demonstrating a low latency, low

bandwidth control application, and OLED display control over SPI, representing a high band-

width streaming application. Both use cases were implemented using state-of-the-art automo-

tive communication protocols, SOME/IP and IEEE1722, candidate transport protocols for RCP.

The thesis presented a detailed comparison between the two protocols based on the RCP re-

quirements defined earlier.

The evaluations indicate that neither of the two protocols fully satisfies the requirements

of RCP. IEEE1722 covers most of these requirements and is better suited for the streaming

and control applications required by RCP. It supports control formats for the most common

automotive peripherals and integrates well into time-sensitive networks. The evaluations of the

two proposed use cases show that IEEE1722 outperformedSOME/IP inmetrics such as latency,

overhead, and load. However, SOME/IP was more favorable for implementing service-oriented

communication and service discovery, which IEE1722 does not support. It became clear that

while there is no clear winner, the two protocols complement each other’s functionality.

Finally, the thesis provided a proposal for a new RCP that combines SOME/IP and IEEE1722

into a feature-complete remote control protocol. The concept protocol relies on SOME/IP to

discover and initialize the peripherals, while it uses IEEE1722 to stream control messages. The

thesis carefully detailed the interaction model of the system, its operation, and a description of

its different phases.

Limitations and Future work

This thesis does not implement the use cases from initialization and configuration perspecti-

ves. Future work could focus on evaluating the startup times and scalability of the RCP system

in more detail. Furthermore, evaluating protocols such as Data Distribution Service (DDS) and

Zenoh, prominent protocols making their way to the automotive networks, and E2B, a proprie-

Page 73

6 Conclusion and Future Prospects

tary protocol, could provide additional insights on the design of remote control protocols.

Page 74

bibliography

[1] Aptiv, “What Is a Software-Defined Vehicle?” March 2020. [Online]. Verfügbar: https:

//www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle [Zugriff am:

2024-12-16]

[2] R. Argolini, O. Burkacky, S. Johnston, S. Pellegrinelli, und G. Wachter, “Automo-

tive software should costing: A new procurement tool for automotive companies

| mckinsey,” McKinsey’s Advanced Electronics Practice, Sep. 2020. [Online]. Ver-

fügbar: https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/

software-should-costing-a-new-procurement-tool-for-automotive-companies#/ [Zu-

griff am: 2024-12-16]

[3] G. Keßler, D. Sieben, A. Bhange, und E. Börner, “The Software Defined Vehicle – Tech-

nical and Organizational Challenges and Opportunities,” in 23. Internationales Stuttgarter

Symposium, A. C. Kulzer, H.-C. Reuss, und A. Wagner. Wiesbaden: Springer Fachmedien,

2023, Seite 414–426.

[4] Z. Liu, W. Zhang, und F. Zhao, “Impact, Challenges and Prospect of Software-Defined

Vehicles,” Automotive Innovation, Band 5, Nr. 2, Seite 180–194, Apr. 2022. [Online].

Verfügbar: https://doi.org/10.1007/s42154-022-00179-z [Zugriff am: 2024-12-03]

[5] JamaSoftware, “Software defined vehicles: Revolutionizing the future of transportati-

on.” [Online]. Verfügbar: https://www.jamasoftware.com/whitepaper/software-defined-

vehicles-revolutionizing-the-future-of-transportation-whitepaper [Zugriff am: 2025-

01-07]

[6] B. Canis und R. K. Lattanzio, “U.S. and EU Motor Vehicle Standards: Issues for

Transatlantic Trade Negotiations,” Feb. 2014. [Online]. Verfügbar: https://crsreports.

congress.gov/product/pdf/R/R43399 [Zugriff am: 2025-03-01]

[7] V. Bandur, G. Selim, V. Pantelic, und M. Lawford, “Making the Case for Centralized

Automotive E/E Architectures,” IEEE Transactions on Vehicular Technology, Band 70,

Nr. 2, Seite 1230–1245, Feb. 2021. [Online]. Verfügbar: https://ieeexplore.ieee.org/

document/9337216/ [Zugriff am: 2024-07-05]

Page 75

https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/software-should-costing-a-new-procurement-tool-for-automotive-companies#/
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/software-should-costing-a-new-procurement-tool-for-automotive-companies#/
https://doi.org/10.1007/s42154-022-00179-z
https://www.jamasoftware.com/whitepaper/software-defined-vehicles-revolutionizing-the-future-of-transportation-whitepaper
https://www.jamasoftware.com/whitepaper/software-defined-vehicles-revolutionizing-the-future-of-transportation-whitepaper
https://crsreports.congress.gov/product/pdf/R/R43399
https://crsreports.congress.gov/product/pdf/R/R43399
https://ieeexplore.ieee.org/document/9337216/
https://ieeexplore.ieee.org/document/9337216/

bibliography

[8] futuremobilitymedia, “SUBSCRIPTIONS AND THE SDV: Where is the value proposition,”

Sep. 2024. [Online]. Verfügbar: https://futuremobilitymedia.com/subscriptions-and-

the-sdv-where-is-the-value-proposition/ [Zugriff am: 2025-01-07]

[9] S. Jiang, “Vehicle E/E Architecture and Its Adaptation to New Technical Trends.” SAE

International, Apr. 2019. [Online]. Verfügbar: https://saemobilus.sae.org/papers/vehicle-

e-e-architecture-adaptation-new-technical-trends-2019-01-0862 [Zugriff am: 2025-

01-08]

[10] W. Wang, K. Guo, W. Cao, H. Zhu, J. Nan, und L. Yu, “Review of Electrical and Elec-

tronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators,”

Automotive Innovation, Band 7, Nr. 1, Seite 82–101, Feb. 2024. [Online]. Verfügbar:

https://doi.org/10.1007/s42154-023-00266-9 [Zugriff am: 2024-12-16]

[11] Aptiv, “Evolution of Vehicle Architecture,” June 2018. [Online]. Verfügbar: https://www.

aptiv.com/en/insights/article/evolution-of-vehicle-architecture [Zugriff am: 2024-12-

16]

[12] H. Zhu, W. Zhou, Z. Li, L. Li, und T. Huang, “Requirements-Driven Automotive

Electrical/Electronic Architecture: A Survey and Prospective Trends,” IEEE Access,

Band 9, Seite 100096–100 112, 2021, conference Name: IEEE Access. [Online]. Verfügbar:

https://ieeexplore.ieee.org/abstract/document/9466854 [Zugriff am: 2024-08-30]

[13] P. Hank, T. Suermann, und S. Müller, “Automotive Ethernet, a Holistic Approach for a Next

Generation In-Vehicle Networking Standard,” in Advanced Microsystems for Automotive

Applications 2012, G. Meyer. Berlin, Heidelberg: Springer, 2012, Seite 79–89.

[14] 10BASE-T1S System Implementation Specification, OPEN ALLIANCE, 2023, 1.0. [Online].

Verfügbar: https://opensig.org/wp-content/uploads/2023/12/20230215_10BASE-T1S_

system_implementation_V1_0.pdf

[15] “Why use 10BASE-T1S instead of CAN?” [Online]. Verfügbar: https://www.keysight.com/

blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can [Zugriff am: 2025-

02-14]

[16] I. . L. , “TSN for Automotive.” [Online]. Verfügbar: https://www.ieee802.org/1/files/

public/docs2024/admin-tsn-automotive-flyer-1124.pdf [Zugriff am: 2025-02-14]

Page 76

https://futuremobilitymedia.com/subscriptions-and-the-sdv-where-is-the-value-proposition/
https://futuremobilitymedia.com/subscriptions-and-the-sdv-where-is-the-value-proposition/
https://saemobilus.sae.org/papers/vehicle-e-e-architecture-adaptation-new-technical-trends-2019-01-0862
https://saemobilus.sae.org/papers/vehicle-e-e-architecture-adaptation-new-technical-trends-2019-01-0862
https://doi.org/10.1007/s42154-023-00266-9
https://www.aptiv.com/en/insights/article/evolution-of-vehicle-architecture
https://www.aptiv.com/en/insights/article/evolution-of-vehicle-architecture
https://ieeexplore.ieee.org/abstract/document/9466854
https://opensig.org/wp-content/uploads/2023/12/20230215_10BASE-T1S_system_implementation_V1_0.pdf
https://opensig.org/wp-content/uploads/2023/12/20230215_10BASE-T1S_system_implementation_V1_0.pdf
https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can
https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can
https://www.ieee802.org/1/files/public/docs2024/admin-tsn-automotive-flyer-1124.pdf
https://www.ieee802.org/1/files/public/docs2024/admin-tsn-automotive-flyer-1124.pdf

bibliography

[17] “Ieee standard for local and metropolitan area networks–timing and synchronization for

time-sensitive applications,” IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011),

Seite 1–421, 2020.

[18] “Ieee standard for local and metropolitan area networks–virtual bridged local area net-

works amendment 14: Stream reservation protocol (srp),” IEEE Std 802.1Qat-2010 (Revi-

sion of IEEE Std 802.1Q-2005), Seite 1–119, 2010.

[19] “Ieee standard for a transport protocol for time-sensitive applications in bridged local area

networks,” IEEE Std 1722-2016 (Revision of IEEE Std 1722-2011), Seite 1–233, 2016.

[20] “Ieee standard for a transport protocol for time-sensitive applications in bridged local

area networks.” [Online]. Verfügbar: https://standards.ieee.org/ieee/1722/5979/ [Zugriff

am: 2025-02-11]

[21] “Ieee p1722b draft 1.8 contribution – i2c.” [Online]. Ver-

fügbar: https://grouper.ieee.org/groups/1722/contributions/2022/1722b-I2C-contrib-

bwy-v10-2022-10-11_RevAfterFinal.pdf [Zugriff am: 2025-02-11]

[22] “Requirements on IEEE1722.” [Online]. Verfügbar: https://www.autosar.org/fileadmin/

standards/R24-11/FO/AUTOSAR_FO_RS_IEEE1722.pdf [Zugriff am: 2025-02-11]

[23] L. Völker, “Scalable service-Oriented MiddlewarE over IP (SOME/IP).” [Online]. Verfüg-

bar: http://some-ip.com/ [Zugriff am: 2025-02-11]

[24] SOME/IP Protocol Specification, AUTOSAR, r22-11. [Online]. Verfügbar: https://www.

autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf

[25] SOME/IP Service Discovery Protocol Specification, AUTOSAR, r22-11. [Online].

Verfügbar: https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_

SOMEIPServiceDiscoveryProtocol.pdf

[26] Specification on SOME/IP Transport Protocol, AUTOSAR, r21-11. [Online].

Verfügbar: https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_

SOMEIPTransportProtocol.pdf

[27] “What is an endpoint? | Endpoint definition.” [Online]. Verfügbar: https://www.cloudflare.

com/learning/security/glossary/what-is-endpoint/ [Zugriff am: 2025-02-03]

Page 77

https://standards.ieee.org/ieee/1722/5979/
https://grouper.ieee.org/groups/1722/contributions/2022/1722b-I2C-contrib-bwy-v10-2022-10-11_RevAfterFinal.pdf
https://grouper.ieee.org/groups/1722/contributions/2022/1722b-I2C-contrib-bwy-v10-2022-10-11_RevAfterFinal.pdf
https://www.autosar.org/fileadmin/standards/R24-11/FO/AUTOSAR_FO_RS_IEEE1722.pdf
https://www.autosar.org/fileadmin/standards/R24-11/FO/AUTOSAR_FO_RS_IEEE1722.pdf
http://some-ip.com/
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.cloudflare.com/learning/security/glossary/what-is-endpoint/
https://www.cloudflare.com/learning/security/glossary/what-is-endpoint/

bibliography

[28] H. Senninger, “Car makers to use intelligent ambient lighting to create

new functions – and a new feeling – inside the cabin,” Oct. 2023. [On-

line]. Verfügbar: https://ams-osram.com/news/blog/car-makers-to-use-intelligent-

ambient-lighting-to-create-new-functions-and-a-new-feeling-inside-the-cabin [Zu-

griff am: 2025-01-26]

[29] M. Hassib, M. Braun, B. Pfleging, und F. Alt, “Detecting and Influencing Driver Emotions

Using Psycho-Physiological Sensors and Ambient Light,” in Human-Computer Interaction

– INTERACT 2019, D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, und P. Zaphiris.

Cham: Springer International Publishing, 2019, Seite 721–742.

[30] F. Hurley und P. Wilms, “Centralized software and zonal architectures for future

innovative ambient lighting enabled by e2b 10base-t1s,” Nov. 2022. [Online]. Verfüg-

bar: https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-

brochures/centralized-software-and-zonal-architectures-e2b-10base-t1s.pdf [Zugriff

am: 2024-08-30]

[31] “ISELED Protocol Ambient Lighting.” [Online]. Verfügbar: https://www.microchip.com/

en-us/solutions/automotive-and-transportation/body-electronics/iseled-protocol-

ambient-lighting [Zugriff am: 2025-01-26]

[32] Optimized all Hardware Edge Node, 10BASE-T1S Ethernet to the Edge Bus (E2B)

Transceiver, Analog Devices, 2024, rev. Sp0. [Online]. Verfügbar: https://www.analog.

com/media/en/technical-documentation/data-sheets/ad3300-01-04-05.pdf

[33] L. L. Bello, “Novel trends in automotive networks: A perspective on Ethernet and the IEEE

Audio Video Bridging,” in Proceedings of the 2014 IEEE Emerging Technology and Factory

Automation (ETFA), Sep. 2014, Seite 1–8, iSSN: 1946-0759. [Online]. Verfügbar: https:

//ieeexplore.ieee.org/document/7005251/?arnumber=7005251 [Zugriff am: 2025-01-

26]

[34] C. Ruth, “Ethernet Camera Bridge for Software-Defined Vehicles,” Jan. 2023, section:

Beyond Standards. [Online]. Verfügbar: https://standards.ieee.org/beyond-standards/

ethernet-camera-bridge-for-software-defined-vehicles/ [Zugriff am: 2024-07-09]

[35] Automotive 2-MP Camera Module Reference Design With MIPI CSI-2 Vi-

deo Interface, FPD-Link III and POC, Texas Instruments, 2018. [Online]. Ver-

Page 78

https://ams-osram.com/news/blog/car-makers-to-use-intelligent-ambient-lighting-to-create-new-functions-and-a-new-feeling-inside-the-cabin
https://ams-osram.com/news/blog/car-makers-to-use-intelligent-ambient-lighting-to-create-new-functions-and-a-new-feeling-inside-the-cabin
https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/centralized-software-and-zonal-architectures-e2b-10base-t1s.pdf
https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/centralized-software-and-zonal-architectures-e2b-10base-t1s.pdf
https://www.microchip.com/en-us/solutions/automotive-and-transportation/body-electronics/iseled-protocol-ambient-lighting
https://www.microchip.com/en-us/solutions/automotive-and-transportation/body-electronics/iseled-protocol-ambient-lighting
https://www.microchip.com/en-us/solutions/automotive-and-transportation/body-electronics/iseled-protocol-ambient-lighting
https://www.analog.com/media/en/technical-documentation/data-sheets/ad3300-01-04-05.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad3300-01-04-05.pdf
https://ieeexplore.ieee.org/document/7005251/?arnumber=7005251
https://ieeexplore.ieee.org/document/7005251/?arnumber=7005251
https://standards.ieee.org/beyond-standards/ethernet-camera-bridge-for-software-defined-vehicles/
https://standards.ieee.org/beyond-standards/ethernet-camera-bridge-for-software-defined-vehicles/

bibliography

fügbar: https://www.ti.com/lit/ug/tidud51a/tidud51a.pdf?ts=1737931035346&ref_url=

https%253A%252F%252Fduckduckgo.com%252F

[36] H. Hsiang, K.-C. Chen, P.-Y. Li, und Y.-Y. Chen, “Analysis of the Effect of Automotive

Ethernet Camera Image Quality on Object Detection Models,” in 2020 International

Conference onArtificial Intelligence in Information andCommunication (ICAIIC), Feb. 2020,

Seite 021–026. [Online]. Verfügbar: https://ieeexplore.ieee.org/document/9065232/

[Zugriff am: 2025-01-27]

[37] I2C-bus specification and user manual, NXP Semiconductors, 2021, rev. 7.0. [Online].

Verfügbar: https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[38] STM32H745/755 and STM32H747/757 advanced Arm ® -based 32-

bit MCUs, STMicroelectronics, 2023, rev 4. [Online]. Verfüg-

bar: https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-

stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

[39] Description of STM32H7 HAL and low-layer drivers, STMicroelectronics, 2022, rev 6. [On-

line]. Verfügbar: https://www.st.com/resource/en/user_manual/um2217-description-of-

stm32h7-hal-and-lowlayer-drivers-stmicroelectronics.pdf

[40] Using the Serial Peripheral Interface to Communicate Between Multiple Microcomputers,

NXP Semiconductors, 2002, rev. 1. [Online]. Verfügbar: https://www.nxp.com/docs/en/

application-note/AN991.pdf

[41] M. Rumez, D. Grimm, R. Kriesten, und E. Sax, “An Overview of Automotive Service-

Oriented Architectures and Implications for Security Countermeasures,” IEEE Access,

Band 8, Seite 221 852–221 870, 2020. [Online]. Verfügbar: https://ieeexplore.ieee.org/

document/9285284/ [Zugriff am: 2024-07-05]

[42] “Home - Open Alliance,” Dec. 2023. [Online]. Verfügbar: https://opensig.org/ [Zugriff

am: 2025-02-14]

[43] R. P. Ltd, “Raspberry Pi 4 Model B.” [Online]. Verfügbar: https://www.raspberrypi.com/

products/raspberry-pi-4-model-b/ [Zugriff am: 2025-02-11]

[44] ——, “Raspberry Pi 5.” [Online]. Verfügbar: https://www.raspberrypi.com/products/

raspberry-pi-5/ [Zugriff am: 2025-02-11]

Page 79

https://www.ti.com/lit/ug/tidud51a/tidud51a.pdf?ts=1737931035346&ref_url=https%253A%252F%252Fduckduckgo.com%252F
https://www.ti.com/lit/ug/tidud51a/tidud51a.pdf?ts=1737931035346&ref_url=https%253A%252F%252Fduckduckgo.com%252F
https://ieeexplore.ieee.org/document/9065232/
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2217-description-of-stm32h7-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2217-description-of-stm32h7-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.nxp.com/docs/en/application-note/AN991.pdf
https://www.nxp.com/docs/en/application-note/AN991.pdf
https://ieeexplore.ieee.org/document/9285284/
https://ieeexplore.ieee.org/document/9285284/
https://opensig.org/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-5/

bibliography

[45] “Welcome to The Linux PTP Project.” [Online]. Verfügbar: https://linuxptp.nwtime.org/

[Zugriff am: 2025-02-11]

[46] “Overview of IEEE 802.1AS Generalized Precision Time Protocol (gPTP) — ECI documen-

tation.” [Online]. Verfügbar: https://eci.intel.com/docs/3.0/development/tsnrefsw/tsn-

overview.html [Zugriff am: 2025-02-11]

[47] PTP4l (8), Debian, 2023, linux User Manual. [Online]. Verfügbar: https://manpages.

debian.org/unstable/linuxptp/ptp4l.8.en.html

[48] clock_gettime (3), Linux man-pages project, 2020, linux Programmer’s Manual. [Online].

Verfügbar: https://www.man7.org/linux/man-pages/man3/clock_gettime.3.html

[49] time(7), Linuxman-pages project, 2024, linux Programmer’s Manual. [Online]. Verfügbar:

https://www.man7.org/linux/man-pages/man7/time.7.html

[50] “Flexible resolution oscilloscope specifications.” [Online]. Verfügbar: https://www.

picotech.com/oscilloscope/5000/picoscope-5000-specifications/ [Zugriff am: 2025-

02-11]

[51] “ProfiShark 1G+ | Gigabit Ethernet TAPwith GPS Features | Profitap.” [Online]. Verfügbar:

https://www.profitap.com/profishark-1g-plus/ [Zugriff am: 2025-02-11]

[52] PCA9685 16-channel, 12-bit PWM Fm+ I2C-bus LED controller, Adafruit, 2015, rev. 4.

[Online]. Verfügbar: https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf

[53] M. Iorio, A. Buttiglieri, M. Reineri, F. Risso, R. Sisto, und F. Valenza, “Protecting In-Vehicle

Services: Security-Enabled SOME/IP Middleware,” IEEE Vehicular Technology Magazine,

Band 15, Nr. 3, Seite 77–85, Sep. 2020. [Online]. Verfügbar: https://ieeexplore.ieee.org/

document/9085373/ [Zugriff am: 2024-07-09]

[54] “1.5inch OLED Module - Waveshare Wiki.” [Online]. Verfügbar: https://www.waveshare.

com/wiki/1.5inch_OLED_Module#Hardware_Interface [Zugriff am: 2025-02-11]

[55] “EV08L38A.” [Online]. Verfügbar: https://www.microchip.com/en-us/development-

tool/ev08l38a [Zugriff am: 2025-02-11]

Page 80

https://linuxptp.nwtime.org/
https://eci.intel.com/docs/3.0/development/tsnrefsw/tsn-overview.html
https://eci.intel.com/docs/3.0/development/tsnrefsw/tsn-overview.html
https://manpages.debian.org/unstable/linuxptp/ptp4l.8.en.html
https://manpages.debian.org/unstable/linuxptp/ptp4l.8.en.html
https://www.man7.org/linux/man-pages/man3/clock_gettime.3.html
https://www.man7.org/linux/man-pages/man7/time.7.html
https://www.picotech.com/oscilloscope/5000/picoscope-5000-specifications/
https://www.picotech.com/oscilloscope/5000/picoscope-5000-specifications/
https://www.profitap.com/profishark-1g-plus/
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://ieeexplore.ieee.org/document/9085373/
https://ieeexplore.ieee.org/document/9085373/
https://www.waveshare.com/wiki/1.5inch_OLED_Module#Hardware_Interface
https://www.waveshare.com/wiki/1.5inch_OLED_Module#Hardware_Interface
https://www.microchip.com/en-us/development-tool/ev08l38a
https://www.microchip.com/en-us/development-tool/ev08l38a

Abbreviations

Abbreviation Meaning

ACF AVTP Control Format

ADAS advanced driver assistance system

AVB Audio/Video Bridging

AVTP Audio Video Transport Protocol

AAF AVTP Audio Format

BMCA Best Master Clock Algorithm

CAN controller area network

CCU connectivity control unit

CPU central processing unit

EEA electrical and electronic architecture

ECU electronic control unit

E2B Ethernet to the Edge Bus

FQTSS Forwarding and Queuing Enhancements for Time-Sensitive Streams

GBB Generic Byte Bus

GM Grand Master

gPTP generalized Precision Time Protocol

IEEE Institute of Electrical and Electronics Engineers

IVN in-vehicle network

LIN local interconnect network

MOST media oriented system transport

NHTSA National Highway Traffic Safety Administration

NTSCF Non-Time-Synchronous Control Format

NIC network interface card

OEM original equipment manufacturer

OS operating system

OTA over the air

RCP remote control protocol

RTT round-trip time

Page 81

Abbreviations

Abbreviation Meaning

SDV software defined vehicle

SOA service oriented architecture

SOME/IP Scalable service-Oriented MiddlewarE over IP

SOME/IP-SD Scalable service-Oriented MiddlewarE over IP - Service Discovery

SOME/IP-TP Scalable service-Oriented MiddlewarE over IP - Transport Protocol

SPI serial peripheral interface

SRP Stream Reservation Protocol

TSCF Time-Synchronous Control Format

V2C communication vehicle-to-cloud communication

V2I communication vehicle-to-infrastructure communication

V2V communication vehicle-to-vehicle communication

TSN time-sensitive networks

Page 82

Tabellenverzeichnis

3.1 Configuration parameters of an I2C peripheral . 34

3.2 Configuration parameters of an SPI peripheral . 39

4.1 Side-by-side comparison of SOME/IP and IEEE1722 in the context of remote

control protocols. ”+”represents better performance, ”presents worse perfor-

mance, and -ïndicates comparable performance 68

Page 83

Abbildungsverzeichnis

1.1 Technical elements of an SDV (adapted from [4]) 4

1.2 Transition to a centralized electrical and electronic architecture 5

1.3 Example of an RCP application . 7

2.1 Example of a point-to-point EEA . 10

2.2 Example of a distributed EEA integrated with vehicle bus 11

2.3 Example of an EEA with centralized gateway . 11

2.4 Typical domain-oriented EEA . 13

2.5 Typical zone-oriented EEA . 14

2.6 Ethernet packet with AVTP frame as payload . 16

2.7 Non-Time-Synchronous Control Format structure 17

2.8 Time-Synchronous Control Format structure . 18

2.9 Generic Byte Bus message structure . 19

2.10 SOME/IP middleware . 20

2.11 SOME/IP communication patterns . 21

2.12 SOME/IP service discovery . 21

2.13 SOME/IP header formats . 23

3.1 Remote control system architecture . 24

3.2 example of a basic remote control scenario . 25

3.3 Remote control frame structure . 27

3.4 Ambient lighting system architecture (adapted from [30]) 29

3.5 Example scenario for remotely controlling a camera module 31

3.6 Example of I2C bus application . 32

3.7 I2C data transfer . 32

3.8 I2C receive operation communication model . 36

3.9 Controlling an I2C-based device using RCP . 37

3.10 Comparison between different implementations of the OLED control use case . 41

3.11 Communication patterns in automotive networks (adapted from [41]) 43

4.1 Ethernet network for time synchronization . 50

4.2 System clock offset to the GM clock . 51

4.3 Head-to-head evaluation setup . 52

4.4 IEEE1722 I2C Talker and Listener applications execution flow 53

Page 84

Abbildungsverzeichnis

4.5 SOME/IP I2C Talker and Listener applications execution flow 54

4.6 Head-to-headRTTandCPUusage% for scenario 1 over 100BASE-TXand 10BASE-

T1S. 58

4.7 In depth Head-to-head RTT comparison between scenario 1 implementations

over 10BASE-T1S . 59

4.8 Head-to-head latencyandCPUusage%measurements for scenario 2over 100BASE-

TX and 10BASE-T1S. 60

4.9 End-to-end evaluation setup . 61

4.10 End-to-end comparison scenario I . 64

4.11 End-to-end comparison scenario II . 64

4.12 End-to-end comparison scenario III and IV . 64

4.13 End-to-end frame latencies for scenarios I to VI 66

4.14 End-to-end frame rates for scenarios I to VI . 67

5.1 RCP proposal system model . 70

5.2 RCP proposal communication flow . 71

5.3 RCP proposal operation and service discovery . 72

Page 85

	Eidesstattliche Erklärung | Declaration on Oath
	Kurzfassung | Abstract
	Introduction
	State of the art
	electrical and electronic architectures
	Traditional decentralized electrical and electronic architectures
	Centralized electrical and electronic architectures

	Automotive Ethernet and Time-Sensitive Networks
	In-vehicle communication protocols
	AVTP (Audio Video Transport Protocol)
	SOME/IP

	Framework for a Remote Control Protocol
	System model
	Use-cases
	Use-case 1: Controlling Ambient lighting Systems
	Use-case 2: Camera streaming and control
	Use-case 3: Controlling I2C peripherals
	Use-case 4: Controlling SPI peripherals

	Requirements
	Interaction model
	Resource usage
	Timing requirements
	Discovery
	Operation and transport protocol

	Standardization

	rcp implementation using existing communication protocols
	Measurement Methodology
	Timing measurements
	Additional measurement tools
	cpu usage measurement

	Head-to-head Comparison
	Evaluation setup
	IEEE1722 Talker/Listener Implementation
	SOME/IP Talker and Listener Implementation
	Evaluation scenarios
	Evaluation results

	End-to-End Performance
	Evaluation setup
	Implementation
	Evaluation scenarios
	Evaluation Results

	Discussion

	Concept for a new remote control protocol
	Introduction
	System model
	Protocol operation
	Setup phase
	Communication phase
	Teardown phase

	Conclusion and Future Prospects
	bibliography
	Abbreviations
	List of tables
	List of figures

