
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

3D Bin Packing: A New Heuristic
Approach for Real-Case Scenarios

Supervisors
Prof. Federico Della Croce di Dojola

Candidate
Riccardo Zanchetta

Academic Year 2024-2025

Acknowledgements

I would like to express my gratitude to Professor Federico Della Croce di Dojola for
giving me the opportunity to explore this field of study in greater depth, guiding me with
advices and expertise throughout this journey.

A special thank you goes to my parents, whose unwavering support has always made
me feel confident in the choices I have made. Their trust and encouragement have been
a constant source of strength at every stage of my path.

I extend my heartfelt appreciation to my brother, whose example and continuous
support serve as both an inspiration and a fundamental point of reference in my life.

I am also deeply grateful to my grandparents, from whom I have inherited intellectual
curiosity and determination—values that have accompanied me throughout this journey
and will continue to guide me in the future.

Lastly, I cannot fail to thank all those who have shared this experience with me,
making it even more meaningful, and my dear friends, whose presence and support have
been truly invaluable: Marta, Gaia, Dario, Emilio, Bianca and many others.

2

Abstract

The 3D bin packing problem (3D-BPP) is one of the most challenging problems in the lo-
gistics industry. The objective of this Thesis is to explore the optimization of the 3D-BPP
within a logistics context, focusing on several critical goals: maximizing space utilization,
minimizing object fragility, and ensuring balanced weight distribution. We present a novel
GRASP (Greedy Randomized Adaptive Search Procedure) algorithm tailored to address
the 3D-BPP. The proposed method integrates several novel elements and builds upon the
contributions of key researchers in the field. It also identifies potential improvements to
the algorithm and suggests directions for future research to advance the state-of-the-art
in solving the 3DPP.

Contents

1 Introduction 5
1.1 Background and motivation . 5
1.2 Description of the 3D bin packing problem 6
1.3 Thesis Objectives . 6
1.4 Structure of the Thesis . 7

2 Literature Review 9
2.1 The Bin Packing Problem: 1D, 2D, and 3D versions 9

2.1.1 Traditional Bin Packing Problem 9
2.1.2 The 2D Bin Packing Problem . 11
2.1.3 The 3D Bin Packing Problem . 12
2.1.4 Evolution of the 3D Bin Packing Problem 14
2.1.5 Formulations in Literature . 14
2.1.6 Notable Works in 3D Bin Packing 14
2.1.7 Recent Advances and Challenges 15

2.2 Multi-Objective Optimization: Concepts and Methods 16
2.2.1 Concepts in Multi-Objective Optimization 17
2.2.2 Scalarization Methods . 18
2.2.3 Pareto-Based Approaches . 19
2.2.4 Comparative Overview of Multi-Objective Methods 19
2.2.5 Methods for Multi-Objective Optimization 20

3 Computational Complexity and 3D Bin Packing 21
3.1 Computational Complexity: An Overview 21
3.2 NP-hard nature of the 3D bin packing problem 22
3.3 Computational complexity of Heuristics approaches 25

4 Heuristic Concepts for 3D Bin Packing 29
4.1 Overview of Heuristic Approaches . 29

4.1.1 First Fit Decreasing (FFD) . 30
4.1.2 Best Fit Decreasing (BFD) . 31
4.1.3 Bottom-Left (BL) and Bottom-Left-Fill (BLF) 32
4.1.4 Metaheuristic Approaches . 34
4.1.5 Implemented Heuristics in the Thesis 38

2

4.2 Priority-Based Item Sorting . 39
4.3 Handling Empty Maximal Spaces . 39

4.3.1 Generation of Maximal Spaces . 40
4.3.2 Overlap Resolution . 40
4.3.3 Selection of Maximal Spaces . 41

4.4 Pivot Point Selection for Item Placement 41
4.4.1 Definition of Pivot Points . 41
4.4.2 Stability Requirements . 42
4.4.3 Orientation Optimization . 42

4.5 Advantages and Challenges of the Implemented Heuristics 43
4.5.1 Advantages . 43
4.5.2 Challenges . 43

5 The proposed approach 45
5.1 Preprocessing Steps . 45
5.2 Constructive Phase: Initial Packing Strategy 46

5.2.1 Improvement Phase: Refining the Solution 50
5.2.2 Diversification Phase: Avoiding Local Optima 54
5.2.3 Stopping Criteria . 54
5.2.4 Key Innovations and Contributions 54

6 Experimental Results and Analysis 55
6.0.1 Challenges in Comparing 3D Bin Packing Algorithms 55

6.1 Dataset Description . 56
6.1.1 Benchmark Dataset . 56
6.1.2 Integration with Custom High-Density Packing Scenarios 57

6.2 Performance Metrics and Evaluation Methods 59
6.3 Analysis of Results . 60
6.4 Experimental Setup and Performance Metrics 60
6.5 Parameter Tuning Process . 62
6.6 Results and Analysis . 64

6.6.1 Performance Analysis on the Custom Dataset 66
6.7 Analysis of Initial and Improved Solutions 67

6.7.1 Execution Time Comparison . 69
6.7.2 Utilization and Packed Volume . 70

6.8 Center of Mass Analysis . 71
6.8.1 Improvement Curve Analysis . 72

6.9 Further remarks . 74
6.10 Strengths and Weaknesses of the Algorithm 75

6.10.1 Potential Future Improvements . 77

7 Conclusions and Future Work 79
7.1 Summary of Contributions . 79
7.2 Potential Improvements to the Algorithm 80

3

Bibliography 83

4

Chapter 1

Introduction

1.1 Background and motivation

During the last decades the global trade has faced a constant growth that was sup-
ported by the supply chain architecture. The European Union covers a pivotal role in
the worldwide economy and is nowadays the largest trader of manufactured goods and
services [1]. The massive industry of transportation and logistics involves several players,
contributing to the development of our economies, at the same time, this compulsive
growth has a lot of drawbacks on the environmental side. According to the European
commission, logistics activities, including freight transportation and warehousing, are re-
sponsible for 6-10% of global CO2 emissions [2]. There are several ways to adress this
problem, one of those, analyzed in this thesis is reduce the inefficiences in the supply
chain. Within this massive industry, inefficiencies in space utilization, suboptimal route
planning, and poorly managed warehouse operations contribute significantly to opera-
tional costs and environmental degradation. Among the many processes within logistics
that can be optimized, 3D bin packing stands out as a key area where improvement can
lead to substantial reductions in both costs and environmental impact. By optimizing
how goods are packed into containers, trucks, or storage spaces, companies can minimize
the number of trips required for transportation, reduce fuel consumption, and lower car-
bon emissions. Additionally, better packing efficiency translates into less material waste
in packaging, fewer resources required for storage, and reduced damage to goods in tran-
sit, further contributing to sustainability goals. With growing pressure from governments
and international bodies to reduce carbon footprints, the logistics industry faces a crit-
ical need to innovate and adopt optimization techniques that improve both operational
efficiency and environmental sustainability. Studies show that up to 20-30% of space in
transport containers is often underutilized [3], leading to increased transportation costs
and unnecessary environmental impacts. Optimizing these processes through advanced
algorithms and intelligent systems can save companies 5-15% in transportation costs,
which translates into significant economic benefits given the scale of the industry.

5

Introduction

1.2 Description of the 3D bin packing problem
In its simplest form, the bin packing problem was first introduced as a one-dimensional
problem. Over time, it has evolved to address higher-dimensional variations, with the 3D
bin packing problem (3D BPP) emerging as one of the most complex and practical ex-
tensions. The 3D BPP is particularly relevant in applications such as container loading,
palletization, and warehouse management, where objects of varying sizes, shapes, and
fragility must be packed efficiently into three-dimensional spaces. Solving the 3D BPP
optimally can lead to significant savings in transportation and storage costs while improv-
ing sustainability through the efficient use of space. Moreover, in real-world scenarios,
additional constraints and objectives come into play. For instance, the fragility of objects
must be considered to prevent damage, and weight distribution is critical for maintaining
load stability. These factors introduce new several constraints, requiring algorithms that
can optimize several conflicting criteria simultaneously . This thesis seeks to explore and
address these challenges, focusing on new ways to solve 3D bin packing, where the goals
include maximizing space utilization, minimizing object fragility, and ensuring balanced
weight distribution.

1.3 Thesis Objectives
The objective of this thesis is to explore the optimization of the 3D bin packing problem
within a logistics context, focusing on several critical goals.

• First, the maximization of space utilization aims to reduce the number of con-
tainers or trucks required for transportation, thereby lowering operational costs and
decreasing environmental impact through reduced fuel consumption and emissions.

• Second, the minimization of fragility-related risks focuses on ensuring that
items are packed in a manner that minimizes the chance of damage during transit,
addressing both economic losses and customer satisfaction by reducing product
damage and returns.

• Third, the optimization of weight distribution ensures balanced loads to main-
tain stability during transportation, which is essential for avoiding accidents, en-
suring compliance with transportation regulations, and improving overall vehicle
efficiency.

In addition to addressing the 3D bin packing problem itself, this thesis aims to il-
lustrate the broader impact that such optimizations can have on the Italian
transportation market. Given Italy’s dependence on efficient logistics for economic
growth, optimized packing solutions have the potential to significantly reduce transporta-
tion costs, improve operational efficiency, and contribute to more sustainable business
practices in the logistics sector.

A long-term vision of this thesis is that the developed solver could form the foundation
for a startup in the logistics technology sector. Such a startup could leverage the
solver to provide innovative, cost-effective solutions for companies seeking to optimize

6

1.4 – Structure of the Thesis

their supply chain operations. Demonstrating the scalability and practical viability of this
approach could lead to significant business opportunities and contribute to the growing
demand for advanced logistics optimization technologies.

Finally, this thesis will explore both traditional optimization approaches, such as
heuristic and exact methods, alongside modern techniques. By applying advanced al-
gorithms and evaluating their performance through real-world simulations, this research
aims to contribute to the growing need for logistics solutions that reduce costs, improve
efficiency, and minimize environmental impact.

1.4 Structure of the Thesis
This thesis is structured into seven main chapters, each addressing a different aspect of
the research on the 3D BPP, from foundational concepts to practical implementation and
future prospects.

• Chapter 1 introduces the research problem, outlines the objectives of the thesis,
and provides the motivation for the study, focusing on the potential impact of
optimized logistics solutions in the transportation market..

• Chapter 2 presents a comprehensive literature review, covering the evolution of
the bin packing problem across 1D, 2D, and 3D versions. It explores key concepts in
multi-objective optimization, traditional techniques for solving the 3D bin packing
problem, and modern approaches such as reinforcement learning. The chapter also
investigates problem reduction strategies and their relevance to solving broader
optimization problems.

• Chapter 3 addresses the computational complexity of the multi-objective 3D bin
packing problem. It examines its NP-hard nature, explores complexity considera-
tions in the presence of constraints such as load fragility and weight distribution to
evaluate their impact on the problem’s complexity.

• Chapter 4 delves into heuristic concepts specifically designed for the 3D bin pack-
ing problem. It begins with an overview of heuristic approaches, followed by a
detailed discussion of the heuristics implemented in this thesis. These include the
constructive, improvement, and diversification phases, each addressing specific as-
pects of the packing process. The chapter also introduces priority-based item sorting
strategies, methods for handling empty maximal spaces through generation, overlap
resolution, and selection mechanisms. It concludes by explaining pivot point selec-
tion, emphasizing stability requirements and orientation optimization, and evaluates
the advantages and challenges of the implemented heuristics.

• Chapter 5 provides a comprehensive description of the algorithm proposed in this
thesis. It outlines the constructive phase, focusing on initial packing strategies,
and explains the improvement phase, which utilizes Variable Neighborhood De-
scent (VND) approach to refine solutions. Additionally, the diversification phase is
introduced to handle unpacked items effectively. The chapter also discusses decision
rules and implementation details critical for the algorithm’s functionality.

7

Introduction

• Chapter 6 analyzes the experimental results obtained by the proposed algorithm.
It describes the datasets used, evaluates performance metrics such as space uti-
lization and runtime, and compares the algorithm’s performance with existing ap-
proaches. The chapter terminates with a discussion of the results, highlighting the
algorithm’s strengths and weaknesses.

• Chapter 7 summarizes the key contributions of the thesis, emphasizing the pro-
posed heuristics and algorithm’s practical implications. It also identifies potential
improvements to the algorithm and suggests directions for future research to ad-
vance the state-of-the-art in solving the 3D bin packing problem.

8

Chapter 2

Literature Review

2.1 The Bin Packing Problem: 1D, 2D, and 3D versions

2.1.1 Traditional Bin Packing Problem

The Bin Packing Problem (BPP) is a classical combinatorial optimization problem that
has been studied for over 80 years. Its origins trace back in 1939, when it was introduced
by L.V. Kantorovich in [4] and since then, it has remained one of the most challenging
and influential problems in the field. BPP models a wide range of real-world applications,
from logistics [5] and resource allocation to scheduling and data storage optimization [6].
Over the years, researchers have expanded the basic model, studied more comprehensive
versions, and developed new algorithmic approaches to improve performance and solution
quality. The basic idea behind the Bin Packing Problem is to determine the most efficient
way (that means using less space) to pack a set of items into a finite number of containers
(or bins), ensuring a certain amount of constraints are respected; such as weight or space
limits. The goal is typically to minimize the number of bins used, while ensuring that no
bin exceeds its capacity. One of the first mathematical formulations of the problem was
proposed in [4] and is reported as follows:

Given a set of n items, each with a non-negative integer weight wi (where i =
1, 2, . . . , n), and an unlimited number of bins, each with a capacity C, the objective
is to assign all items to the minimum number of bins such that the total weight of the
items in each bin does not exceed C.

This can be expressed mathematically through the following integer linear program
(ILP):

9

Literature Review

min
m∑︂

j=1
yj (2.1)

s.t.
n∑︂

i=1
wixij ≤ Cyj , ∀j = 1, 2, . . . , m (2.2)

m∑︂
j=1

xij = 1, ∀i = 1, 2, . . . , n (2.3)

xij ∈ {0, 1}, ∀i = 1, 2, . . . , n; ∀j = 1, 2, . . . , m (2.4)
yj ∈ {0, 1}, ∀j = 1, 2, . . . , m (2.5)

Where:

• xij is a binary decision variable that equals 1 if item i is placed in bin j, and 0
otherwise.

• yj is a binary variable that equals 1 if bin j is used, and 0 otherwise.

The objective function minimizes the number of bins used, while the constraints ensure
that each item is placed in exactly one bin, and that the total weight of items in any bin
does not exceed its capacity C.

Figure 2.1. Visualization of the 1D Bin Packing Problem. The left panel illustrates the
initial objects to be packed. The right panel displays the resulting bin allocation, where
the objects have been packed into bins of maximum capacity 8.

10

2.1 – The Bin Packing Problem: 1D, 2D, and 3D versions

2.1.2 The 2D Bin Packing Problem

The Two-Dimensional Bin Packing Problem (2D BPP) generalizes the 1D problem by
introducing an additional dimension: item height and width. The goal is to pack a set of
rectangular items into the minimum number of rectangular bins, ensuring that no item
exceeds the bin’s sizes and no two items overlap.

In the finite 2D Bin Packing Problem (2BP), we are given a finite set of n rectangular
items j ∈ J = {1, 2, . . . , n}, each item having a width wj and height hj , and an unlimited
number of identical rectangular bins, each with a width W and height H. The objective
is to allocate all the items into the fewest number of bins, ensuring that no two items
overlap and their edges remain parallel to those of the bins. In this version of the problem,
it is assumed that the items have a fixed orientation, meaning they cannot be rotated.

Initial formulations of two-dimensional bin packing were proposed by Gilmore and
Gomory, who extended their column generation approach from 1BP to develop a model
for 2BP [7,8]. Subsequent works, such as that of Beasley, have contributed integer linear
programming (ILP) models for specific variations of the 2BP, such as the cutting stock
problem, by using discrete coordinates to position items [9]. More recent approaches have
introduced alternative modeling techniques, such as graph-theoretical representations by
Fekete and Schepers, and ILP models developed by Lodi et al., which optimize solutions
by packing items "by levels," significantly reducing the number of required variables and
constraints [10,11].

The 2D BPP can be thus represented by eans of the following constraints:

min
m∑︂

j=1
yj (2.6)

s.t.
n∑︂

i=1
(wixij) ≤Wyj , ∀j = 1, 2, . . . , m (2.7)

n∑︂
i=1

(hixij) ≤ Hyj , ∀j = 1, 2, . . . , m (2.8)

Non-overlapping constraints: Ensure no two items overlap within any bin (2.9)
Fixed orientation: Items cannot be rotated within the bins (2.10)
xij ∈ {0, 1}, ∀i = 1, 2, . . . , n; ∀j = 1, 2, . . . , m (2.11)
yj ∈ {0, 1}, ∀j = 1, 2, . . . , m (2.12)

Where:

• xij is a binary decision variable that equals 1 if item i is placed in bin j, and 0
otherwise.

• yj is a binary variable that equals 1 if bin j is used, and 0 otherwise.

• The width and height constraints ensure that the total width and height of items
packed in each bin do not exceed the bin’s sizes W and H, respectively.

11

Literature Review

One of the key challenges in 2D BPP is ensuring that items are packed without
overlapping while respecting their fixed orientation. The non-overlapping constraint can
be mathematically represented by ensuring that no two items in the same bin share any
common area. For any two items i and k placed in the same bin, one of the following
conditions must hold:

• Item i is placed entirely to the left or right of item k.

• Item i is placed entirely above or below item k.

These conditions ensure that items do not overlap in the bin.
In many applications, such as cutting stock, sheet metal cutting, and cargo loading, the

2D BPP offers a practical model to optimize resource utilization. Though the assumption
of fixed orientation simplifies the problem, it may lead to suboptimal packing efficiency,
especially when rotation could lead to better space utilization.

Figure 2.2. Visualization of the 2D Bin Packing Problem. The upper part of the image
shows the elements to be packed with their width(W) and height(H). In the lower part is
shown a finite bin solution found by FBSOG and FFFOG

2.1.3 The 3D Bin Packing Problem

As we already mentioned in the previous sections the Three-Dimensional Bin Packing
Problem (3D BPP) is a problem with numerous practical applications, including container
loading, warehouse management, and logistics. The problem involves packing a set of
items into a finite number of bins with fixed dimensions, aiming to maximize space
utilization or minimize the number of bins used. Compared to the 1D and 2D versions,
the 3D BPP introduces additional complexities, such as spatial arrangement, orientation,

12

2.1 – The Bin Packing Problem: 1D, 2D, and 3D versions

and adherence to real-world constraints like weight distribution and item fragility. In
the real world there are several case studies of this problem, for example as reported
in [12]. We experimented this in the last months also in projects related to the startup
mentioned before, where a client wanted to implement a software to optimize the loading
of the trucks.

Several factors need to be considered in 3D BPP:

• Item Rotation: Allowing items to be rotated along one or more axes can sig-
nificantly improve packing efficiency by enabling better utilization of bin space.
However, this increases the complexity of the problem, as the number of feasible
placements grows exponentially.

• Item Fragility: Certain items have constraints related to their fragility, requiring
specific orientations or positions within the bin to avoid damage. For example,
fragile items might need to be placed upright or isolated from heavier objects.

• Weight Distribution: Ensuring an even distribution of weight across the bin
is critical in many logistics applications to prevent structural instability or issues
during transportation.

• Stacking Constraints: Many practical applications require items to be stacked in
specific orders, such as placing heavier items below lighter ones or avoiding stacking
on fragile objects.

Figure 2.3. A viable output of the 3D bin packing algorithm tackled in the thesis.

13

Literature Review

2.1.4 Evolution of the 3D Bin Packing Problem

The 3D BPP has evolved significantly over the years, with early research focusing on the-
oretical formulations and exact solution methods. Early approaches modeled the problem
as an extension of the 1D and 2D BPP, incorporating additional constraints to account for
the three-dimensional nature of the items and bins. Initial mathematical models included
constraints for geometric fit, non-overlap, and basic item orientation.

One of the first notable formulations was proposed by Martello et al. [13], who ex-
tended the branch-and-bound framework to handle the 3D case. The model included
decision variables to represent the position and orientation of each item in the bin, along
with constraints ensuring that no items overlap:

xi + li ≤ L, yi + wi ≤W, zi + hi ≤ H, ∀i ∈ I, (2.13)
Non-overlap: (xi ≥ xj + lj) ∨ (xj ≥ xi + li)∨ (2.14)

(yi ≥ yj + wj) ∨ (yj ≥ yi + wi)∨ (2.15)
(zi ≥ zj + hj) ∨ (zj ≥ zi + hi), ∀i, j ∈ I, i /= j. (2.16)

Here, xi, yi, zi represent the coordinates of item i, and li, wi, hi are the length, width, and
height of the item.

2.1.5 Formulations in Literature

The mathematical formulation of the 3D BPP typically includes:

• Geometric Fit Constraints: Ensure that the dimensions of each item fit within
the bin, considering allowable rotations.

• Non-Overlap Constraints: Guarantee that no two items occupy the same space
within the bin.

• Weight Distribution Constraints: Ensure even distribution of weight across
the bin.

• Stacking Order Constraints: Enforce stacking rules, such as placing heavier
items below lighter ones.

Bortfeldt and Wäscher [14] contributed a comprehensive review of exact and heuristic
approaches, emphasizing the need for realistic models that account for stacking and weight
constraints. They highlighted how ILP formulations evolved to include problem-specific
constraints such as fragile item handling and complex weight balancing.

2.1.6 Notable Works in 3D Bin Packing

Several key papers have contributed significantly to the understanding and advancement
of the 3D BPP. Below, we summarize some of the most influential works and their con-
tributions:

• Martello et al. : The authors presented one of the earliest exact algorithms for
the 3D BPP, using branch-and-bound techniques to find optimal solutions. Their

14

2.1 – The Bin Packing Problem: 1D, 2D, and 3D versions

work laid the foundation for mathematical modeling of the problem, incorporating
constraints like item orientation and non-overlap. [13]

• Crainic et al. : The authors developed a hybrid heuristic combining tabu search
with greedy algorithms. Their method addressed large-scale instances and empha-
sized balancing computational efficiency with solution quality. [15]

• Bortfeldt and Wäscher : This comprehensive review summarized existing al-
gorithms for the 3D BPP and proposed a new benchmark dataset for evaluating
algorithm performance. Their work highlighted the importance of considering real-
world constraints like stacking and weight distribution. [14]

• Gomes and Oliveira : This paper introduced reinforcement learning for the
3D BPP, where agents learned to pack items through trial-and-error interactions
with a simulation environment. Their work paved the way for combining artificial
intelligence with traditional optimization techniques. [16]

2.1.7 Recent Advances and Challenges

Recent advancements in the field of 3DBPP have been driven by the need to incorporate
real-world constraints and leverage modern computational techniques. One of the most
significant developments in this area is the application of reinforcement learning (RL). RL-
based methods enable agents to learn optimal packing strategies through trial-and-error
interactions within simulated environments. This adaptive approach allows for flexibility
in dynamic situations where the input parameters or constraints may change frequently.
For example, Gomes and Oliveira [16] demonstrated how reinforcement learning could
effectively tackle the 3D BPP by training agents to iteratively improve their packing
strategies, which proved beneficial in complex and high-dimensional scenarios.

Deep learning has also emerged as a powerful tool for solving the 3D BPP, particularly
for predicting efficient packing configurations. Neural networks, such as Convolutional
Neural Networks (CNNs), have been utilized to analyze spatial relationships among items
and suggest feasible arrangements. Graph Neural Networks (GNNs), in particular, have
shown promise in modeling the connectivity and geometric properties of items, thereby
improving the accuracy of placement predictions. These methods are often integrated
with traditional optimization techniques to handle the combinatorial complexity of the
problem while maintaining computational efficiency.

Hybrid algorithms have gained traction as they combine heuristic approaches with
machine learning techniques to achieve a balance between solution quality and runtime
efficiency. In many cases, heuristics are employed to generate an initial feasible solution,
which is then refined using more sophisticated machine learning models. For instance,
Zhang et al. [17] proposed a hybrid genetic algorithm that incorporates machine learning
to enhance the crossover and mutation processes, leading to better exploration of the
solution space and improved packing results.

15

Literature Review

Distributed and parallel computing frameworks have also been instrumental in ad-
vancing the scalability of 3D BPP solutions. These frameworks distribute the compu-
tational load across multiple processors, enabling the simultaneous evaluation of numer-
ous packing configurations. By leveraging cloud-based systems and high-performance
computing clusters, researchers have significantly reduced the time required to solve
large-scale instances of the 3D BPP. This progress is particularly important in real-
time applications, such as warehouse management and automated logistics, where rapid
decision-making is crucial.

Despite these advancements, several challenges persist in the study of 3D BPP. One
of the primary issues is the need to balance multiple objectives, such as minimizing the
number of bins used while ensuring proper weight distribution and adhering to fragility
constraints. Addressing these conflicting goals often requires sophisticated multi-objective
optimization techniques. Furthermore, uncertainties in item dimensions, weights, or avail-
ability pose additional difficulties, particularly in dynamic environments where real-time
adjustments are required. Another critical challenge lies in developing algorithms that
are not only accurate but also scalable, capable of handling the high-dimensionality and
complexity of real-world instances.

Future research should aim to further integrate heuristic methods with advanced ma-
chine learning techniques, creating hybrid models that capitalize on the strengths of both
approaches. Additionally, incorporating domain-specific knowledge, such as industry-
specific constraints or operational requirements, into algorithm design could lead to more
robust and practical solutions. Exploring new areas, such as quantum computing and
neuromorphic computing, may also provide breakthroughs in addressing the inherent
complexity of the 3D BPP. These directions will likely enhance the applicability and
effectiveness of solutions in diverse real-world scenarios, driving further progress in this
challenging and impactful field. Additionally, incorporating domain-specific knowledge
into algorithm design could further enhance the applicability of solutions in real-world
scenarios.

2.2 Multi-Objective Optimization: Concepts and Methods

Multi-objective optimization (MOO) is a branch of mathematical optimization focused
on solving problems that involve multiple, often conflicting objectives. Unlike single-
objective optimization, where a single optimal solution is pursued, multi-objective op-
timization seeks a set of Pareto-optimal solutions, where no objective can be improved
without degrading another. This concept is essential in practical scenarios where com-
peting goals, such as cost, quality, and efficiency, must be balanced to find a feasible
solution.

A generic multi-objective design optimization problem, as proposed by [18] is reported
below:

16

2.2 – Multi-Objective Optimization: Concepts and Methods

min J(x, p)
s.t. g(x, p) ≤ 0,

h(x, p) = 0,

xi,LB ≤ xi ≤ xi,UB (i = 1, . . . , n),
x ∈ S,

(2.17)

where

J =
[︂
J1(x) · · · Jz(x)

]︂T
,

x =
[︂
x1 · · · xi · · · xn

]︂T
,

g =
[︂
g1(x) · · · gm1(x)

]︂T
,

h =
[︂
h1(x) · · · hm2(x)

]︂T
.

In this formulation, J represents a vector of z objectives Ji(x, p), each dependent on
a vector of n design variables x and fixed parameters p. The aim is to simultaneously
minimize each objective in J within a feasible domain S defined by m1 inequality con-
straints g(x, p) ≤ 0 and m2 equality constraints h(x, p) = 0. The design variables xi are
bounded by upper and lower limits xUB

i and xLB
i , respectively, ensuring a solution space

that respects both operational limitations and design freedoms.
In the context of the 3D bin packing problem, multi-objective optimization becomes

particularly significant as it introduces constraints that align with real-world concerns,
such as maximizing space utilization while minimizing load fragility and ensuring bal-
anced weight distribution. These objectives are inherently conflicting, as maximizing
space utilization might result in a configuration that does not adequately protect fragile
items, or achieving a stable weight distribution might require extra bins, reducing space
efficiency. MOO techniques allow for these competing criteria to be balanced, providing
solutions that optimize one or more objectives without disregarding others.

2.2.1 Concepts in Multi-Objective Optimization

A fundamental concept in multi-objective optimization is the Pareto frontier, or Pareto-
optimal set. The Pareto frontier represents solutions where any improvement in one
objective results in the degradation of another, making these solutions equally valuable
depending on the decision-maker’s preferences. Selecting from the Pareto-optimal set
involves trade-offs between objectives, which decision-makers must weigh based on the
specific requirements of the problem. For instance, in bin packing applications for lo-
gistics, reducing fragility might be prioritized over minimizing bins when dealing with
delicate items.

To navigate these trade-offs, decision-making approaches in MOO often rely on meth-
ods such as scalarization, where multiple objectives are transformed into a single-objective

17

Literature Review

function using weighted sums, allowing for a traditional optimization approach. [19] Al-
ternatively, methods like epsilon-constraint are used, wherein one objective is minimized
while the others are transformed into constraints with specified limits. [20]

0 2 4 6 8 100

2

4

6

8

10

A
B

C
D

E
F

G
H

N
K

Quantity of Item 1

Q
ua

nt
ity

of
It

em
2

Figure 2.4. A Pareto frontier in multi-objective optimization. The red line rep-
resents Pareto-efficient solutions, where improving one objective requires sacrific-
ing another. Red points are Pareto-optimal, while gray points, like N and K, are
dominated by frontier solutions.

2.2.2 Scalarization Methods

Broadly, multi-objective optimization methods are categorized into two main approaches:
scalarization and Pareto-based methods. Scalarization techniques convert multi-objective
problems into a single-objective problem by aggregating individual objectives into an
overarching scalar function. This transformation often relies on assigning weights to each
objective based on their relative importance, a process referred to as apriori preference
expression. This requires setting preferences or weights for each objective in advance,
which shapes the final solution’s outcome based on predetermined priorities [20,21].

The weighted sum approach is one of the most common scalarization methods, com-
bining each objective into a single function weighted by its relative importance. Other
techniques include Compromise Programming, which uses non-linear combinations to
achieve a balance between objectives, and Lexicographic Approaches, where objectives
are ranked in order of importance and solved sequentially. Multiattribute Utility Analy-
sis (MAUA), based on utility theory, integrates subjective preferences in decision-making,
allowing for more nuanced prioritization of objectives. Physical programming and fuzzy
logic methods, such as acceptability functions, introduce additional flexibility by allowing
preferences to vary within acceptable bounds, thus handling real-world variability more

18

2.2 – Multi-Objective Optimization: Concepts and Methods

effectively [22,23].
Although scalarization methods provide a clear path to optimizing complex problems,

they rely heavily on the assumption that decision-makers can accurately assign preferences
beforehand. This may not always reflect real-world complexities, where priorities can shift
based on the outcomes seen during optimization. Nonetheless, scalarization approaches
are powerful for problems where objectives can be reasonably prioritized and quantified
at the outset.

2.2.3 Pareto-Based Approaches

In contrast to scalarization, Pareto-based methods do not aggregate objectives into a
single scalar function but instead treat each objective independently throughout the op-
timization process. These methods identify a set of Pareto-optimal solutions, where
improving one objective cannot occur without degrading another, making these solutions
equally optimal in terms of trade-offs. This is known as a-posteriori preference expression,
as preferences are not explicitly defined until the solution set is generated.

One prominent Pareto-based method is Exploration and Pareto Filtering, which eval-
uates solutions based on their dominance in the objective space. Pareto Genetic Al-
gorithms, like the Multi-Objective Genetic Algorithm (MOGA), are often used in this
approach, leveraging natural selection to evolve a diverse set of Pareto-optimal solutions.
Similarly, Multi-Objective Simulated Annealing (MOSA) applies iterative improvement
to search for Pareto solutions, focusing on diverse solutions in the Pareto frontier rather
than a single optimum [24,25].

The Normal Boundary Intersection (NBI) method is another prominent Pareto ap-
proach, particularly effective in problems with convex Pareto fronts. NBI produces an
evenly distributed set of Pareto solutions, enhancing the decision-maker’s ability to view
trade-offs comprehensively across the solution space [20]. These methods allow for adap-
tive exploration and weight adjustment during the optimization process, accommodating
real-world complexities more naturally than scalarization.

2.2.4 Comparative Overview of Multi-Objective Methods

Table 2.1 summarizes various multi-objective methods, emphasizing the dichotomy be-
tween scalarization and Pareto approaches and their practical applications in optimiza-
tion. Scalarization methods, while efficient for predefined preferences, may lack flexibility
in dynamic environments. Pareto approaches, although computationally more demand-
ing, are suited to applications where real-time preferences or trade-offs are critical.

Ultimately, both approaches aim to present decision-makers with a diverse set of
“near-optimal” solutions, which can be selected based on additional qualitative or prac-
tical considerations not encapsulated in the original objectives. For this thesis, multi-
objective optimization provides a fundamental approach to modeling and solving the 3D
bin packing problem, reflecting the real-world dynamics and trade-offs of this problem
within the Italian transportation and logistics sector.

19

Literature Review

Table 2.1. Overview of Multiobjective Optimization Methods

Scalarization Methods Pareto Methods
Weighted Sum Approach Exploration and Pareto Filtering
Compromise Programming Weighted Sum Approach (with weight scanning)
Multiattribute Utility Analysis (MAUA) Adaptive Weighted Sum Method (AWS)
Physical Programming Normal Boundary Intersection (NBI)
Goal Programming Multiobjective Genetic Algorithms (MOGA)
Lexicographic Approaches Multiobjective Simulated Annealing (MOSA)
Acceptability Functions, Fuzzy Logic

2.2.5 Methods for Multi-Objective Optimization

A variety of algorithms have been developed to handle MOO problems, each with unique
strengths depending on the nature of the objectives and constraints. Evolutionary al-
gorithms, such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and
Multi-Objective Particle Swarm Optimization (MOPSO), are commonly employed due
to their ability to explore large search spaces and provide diverse Pareto-optimal so-
lutions. NSGA-II, for instance, uses a ranking and crowding distance mechanism to
maintain solution diversity and minimize dominance violations, making it particularly
useful for combinatorial problems like 3D bin packing where feasible configurations are
sparse [22,24].

Genetic algorithms are also valuable in MOO, where they help approximate Pareto-
optimal sets in complex spaces. The inherent flexibility of genetic algorithms allows for
encoding multiple objectives into a fitness function, and their crossover and mutation
operators facilitate diverse solution generation. Techniques such as Differential Evolution
(DE) have also been adapted to multi-objective contexts, proving effective in navigating
continuous and combinatorial solution spaces in industrial applications [22,26].

In recent years, metaheuristic methods such as simulated annealing and tabu search
have been adapted for multi-objective use. These methods leverage iterative improvement
to search the solution space, allowing them to tackle the challenges of NP-hard problems
like 3D bin packing. While slower than some heuristic approaches, they offer reliable
convergence toward Pareto-optimal solutions when tuned properly [25].

Another class of methods, often referred to as decomposition-based approaches, breaks
down multi-objective problems into simpler sub-problems. Methods such as Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) address each sub-problem
individually and aggregate results to approximate the Pareto frontier. Decomposition
is particularly suited to multi-objective bin packing because it allows optimization on
different layers, such as packing efficiency and fragility constraints, before combining the
results for a balanced solution [23].

These multi-objective optimization techniques have paved the way for flexible and
efficient solutions in complex logistical scenarios.

20

Chapter 3

Computational Complexity and
3D Bin Packing

3.1 Computational Complexity: An Overview

Computational complexity is a fundamental aspect of theoretical computer science that
deals with classifying computational problems based on the resources required for their
solution. These resources primarily include time and space, measured as functions of
the size of the input. For any given problem, time complexity quantifies the number of
basic operations an algorithm must perform to reach a solution, while space complexity
evaluates the memory usage during computation.

Formally, let T (n) represent the time complexity of an algorithm, where n is the size
of the input. An algorithm runs in polynomial time if there exists a constant k such that:

T (n) = O(nk),

where O(nk) denotes the asymptotic upper bound, indicating that the algorithm’s run-
ning time grows at most proportionally to nk as n→∞. Polynomial time is opposed to
exponential time T (n) = O(2n), which grows significantly faster and is generally imprac-
tical for large inputs.

Problems are grouped into complexity classes, such as P (problems solvable in poly-
nomial time) and NP (nondeterministic polynomial time problems, where a solution can
be verified in polynomial time). Among these, NP-hard problems are at least as diffi-
cult as the hardest problems in NP. If a problem is NP-complete, it implies that while
a proposed solution can be verified efficiently, finding the solution itself is believed to
require non-polynomial time in the general case.

To formally define P, let L be a language (a set of strings) and D a deterministic
Turing machine. Then, L ∈ P if there exists a polynomial p(n) such that for all x ∈ L,
the Turing machine D decides x in O(p(n)) time. Similarly, for NP, a language L is in
NP if there exists a nondeterministic Turing machine N and a polynomial p(n) such that
for all x ∈ L, there exists a certificate y (of size polynomial in n) that N can verify in
O(p(n)) time.

21

Computational Complexity and 3D Bin Packing

The distinction between P and NP remains one of the most profound open questions
in computer science, famously posed as the P vs NP problem. This question asks
whether every problem whose solution can be verified in polynomial time can also be
solved in polynomial time. Despite significant effort, no proof has conclusively settled
whether P equals NP or P /= NP.

The implications of computational complexity extend beyond theoretical boundaries.
Real-world applications include cryptographic systems, where security relies on the com-
putational difficulty of problems such as integer factorization (believed to be in NP,
but not P). Similarly, advancements in approximation algorithms aim to address NP-
hard optimization problems by producing near-optimal solutions within reasonable time
bounds.

Another important concept is the notion of reductions, which are used to relate
the complexity of different problems. If problem A can be reduced to problem B in
polynomial time, denoted A ≤p B, solving B efficiently implies a solution to A. This
property is central to classifying problems as NP-complete; a problem C is NP-complete
if C ∈ NP and every problem in NP can be reduced to C in polynomial time.

The study of computational complexity provides valuable insights into algorithm de-
sign, computational feasibility, and the inherent difficulty of problems. By understanding
the boundaries of what can be computed efficiently, researchers can focus on developing
innovative techniques for tackling computational challenges in both theory and practice.

3.2 NP-hard nature of the 3D bin packing problem

The 3D-BPP is a natural extension of the 1D and 2D bin packing problems, both of which
are known to be NP-hard. Establishing the NP-hardness of the 3D variant is critical for
understanding its computational limitations.

Formal Problem Definition

The 3D bin packing problem can be formally defined as follows:

Input:

• A set I = {1, 2, . . . , n} of n items, where each item i is characterized by its dimen-
sions (wi, hi, di): width, height, and depth, respectively.

• A set of bins J = {1, 2, . . . , m}, each with fixed sizes (W, H, D): width, height, and
depth, respectively.

Variables:

• xijk ∈ {0, 1}: A binary variable that equals 1 if item i is placed in bin j with
orientation k, and 0 otherwise.

• yj ∈ {0, 1}: A binary variable that equals 1 if bin j is used, and 0 otherwise.

22

3.2 – NP-hard nature of the 3D bin packing problem

Objective: Minimize the total number of bins used:

min
m∑︂

j=1
yj

Constraints:

1. Item assignment: Each item must be placed in exactly one bin and assigned one
orientation:

m∑︂
j=1

o∑︂
k=1

xijk = 1, ∀i ∈ I

where o is the number of allowed orientations for each item.

2. Non-overlapping within bins: Items placed in the same bin must not overlap.
For any two distinct items i and i′ assigned to bin j, at least one of the following
must hold:

xijk(xmax
i + wi) ≤ xmin

i′ (no overlap in width), (3.1)
xijk(ymax

i + hi) ≤ ymin
i′ (no overlap in height), (3.2)

xijk(zmax
i + di) ≤ zmin

i′ (no overlap in depth). (3.3)

3. Bin sizes: The total dimensions of items in each bin must not exceed the bin sizes:∑︂
i∈I

xijk · wi ≤W,
∑︂
i∈I

xijk · hi ≤ H,
∑︂
i∈I

xijk · di ≤ D, ∀j ∈ J.

Proof of NP-Hardness

The 3D bin packing problem (3BP) is NP-hard as it generalizes the 2D bin packing
problem (2BP), which is already known to be NP-hard [11]. More precisely, since 2BP is
a restricted version of 3BP where the third dimension is always zero, any instance of 2BP
can be trivially transformed into an instance of 3BP without altering its computational
complexity.

A common approach in complexity theory is to show that a problem remains NP-hard
even when restricted to a lower-dimensional case. In this context, it has been established
that 1D bin packing (1BP) is strongly NP-hard, which implies that 2BP inherits this
complexity, as noted in [11]. By the same reasoning, since 3BP extends 2BP by intro-
ducing an additional dimension, it must also be NP-hard. This observation eliminates
the need for a direct reduction from another NP-hard problem, as the complexity follows
naturally from the generalization.

Therefore, instead of constructing a separate proof via a reduction , it is sufficient to
note that 3BP generalizes 2BP and thus retains its NP-hardness.

23

Computational Complexity and 3D Bin Packing

Implications of NP-Hardness

The NP-hard nature of the 3D bin packing problem implies that finding an exact solution
is computationally infeasible for large instances. This necessitates the use of alternative
approaches, such as:

• Approximation algorithms: These provide solutions with guaranteed bounds
on their optimality.

• Heuristics: Strategies such as greedy algorithms, genetic algorithms, or simulated
annealing, which aim to find near-optimal solutions efficiently.

• Integer programming relaxations: Relaxing constraints to linear or quadratic
forms for faster computation.

Understanding the computational limits of the 3D bin packing problem is crucial for
designing practical and scalable solutions in applications such as logistics, manufacturing,
and resource allocation.

In real-world applications, the 3D bin packing problem often involves multiple objec-
tives, such as:

• Minimizing the number of bins used (f1).

• Minimizing the total packing height or volume (f2).

• Balancing weight distribution across bins (f3).

These additional objectives significantly increase the problem’s complexity, as the
solution space must be evaluated across multiple dimensions. Let X denote the set of
all feasible solutions. For a given solution x ∈ X , the objective vector can be defined as
f(x) =

(︁
f1(x), f2(x), f3(x)

)︁
, where each fi(x) represents a specific objective function.

Multi-Objective Optimization and Pareto Optimality

Multi-objective optimization introduces the concept of Pareto optimality. A solution
x∗ ∈ X is Pareto optimal if there does not exist another solution x ∈ X such that:

∀i ∈ {1, 2, 3}, fi(x) ≤ fi(x∗) and ∃j ∈ {1, 2, 3}, fj(x) < fj(x∗). (3.4)

The set of all Pareto optimal solutions forms the Pareto front, a curve or surface in
the objective space that represents trade-offs between competing objectives. Constructing
the Pareto front involves evaluating an exponentially large set of potential solutions, as
the number of feasible configurations grows combinatorially with the number of items,
bins, and dimensions.

24

3.3 – Computational complexity of Heuristics approaches

Pareto Front Computation

Constructing the Pareto front efficiently requires advanced techniques due to the prob-
lem’s inherent computational complexity. Two common approaches include:

• Scalarization: Transforming the multi-objective problem into a single-objective
problem by combining objectives into a weighted sum:

fscalarized(x) =
3∑︂

i=1
wifi(x), (3.5)

where wi are user-defined weights reflecting the importance of each objective. How-
ever, scalarization is sensitive to the choice of weights and may not capture all
Pareto optimal solutions.

• Evolutionary Algorithms (EAs): Algorithms such as the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) or the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) maintain a population of solutions and itera-
tively refine them to approach the Pareto front. These methods are stochastic and
capable of exploring diverse regions of the solution space, but they often require
extensive computational resources.

Complexity Analysis

The computational complexity of these methods can be expressed in terms of the number
of objectives, m, and the size of the solution space, |X |. For example:

• Scalarization methods typically require O(|X |) evaluations per weight configuration,
and a dense sampling of the weight space increases computational demands.

• Evolutionary algorithms, with a population size of P and G generations, require
O(P · G · |X |) evaluations to converge, where P · G often scales with m and the
problem size.

3.3 Computational complexity of Heuristics approaches

First Fit Decreasing (FFD)

The First Fit Decreasing (FFD) heuristic is one of the most widely used methods for
3DBPP due to its simplicity and efficiency. The algorithm operates in two stages. First,
all boxes are sorted in non-increasing order of their volumes, vi = wihidi. Then, each box
is placed into the first bin where it fits. The steps of the FFD heuristic can be described
formally as follows:

1. Sort the set of boxes B in descending order of their volumes.

2. Initialize an empty set of bins C.

25

Computational Complexity and 3D Bin Packing

3. For each box bi ∈ B, place it into the first bin Cj ∈ C where it fits. If no such bin
exists, create a new bin and add bi to it.

The computational complexity of FFD arises from two primary operations: sorting
the boxes, which has a complexity of O(n log n), and placing the boxes into bins, which
involves checking up to m bins for each of the n boxes, leading to a complexity of O(nm).
Thus, the overall complexity is O(n log n + nm). Here, m represents the number of bins
used, which is typically much smaller than n in practical scenarios.

In terms of performance, FFD provides an approximation guarantee. Let OPT denote
the optimal number of bins required. For the 1D and 2D variants of bin packing, it is
known that:

FFD(B) ≤ 3
2OPT + 2.

While exact bounds for the 3D case are more complex due to spatial constraints, FFD
remains a practical choice for many applications.

Best Fit Decreasing (BFD)

The Best Fit Decreasing (BFD) heuristic improves upon FFD by placing each box into
the bin where it leaves the least remaining space, thereby attempting to utilize bin space
more efficiently. The algorithm proceeds similarly to FFD, with the primary difference
being the selection criterion for placing boxes. Specifically, for each box bi, BFD evaluates
all bins where bi fits and selects the bin that minimizes the unused space after placement.

The computational complexity of BFD is similar to that of FFD. Sorting the boxes
requires O(n log n), and placing each box involves scanning up to m bins, leading to a
placement complexity of O(nm). Thus, the overall complexity is O(n log n + nm).

Empirical studies suggest that BFD often outperforms FFD in terms of bin utilization,
particularly for instances with diverse box dimensions. However, the improvement comes
at the cost of slightly increased computational overhead during placement.

Hybrid Genetic Algorithms (HGA)

Hybrid Genetic Algorithms (HGAs) represent a class of metaheuristic approaches that
combine evolutionary strategies with local search heuristics to tackle 3DBPP. These algo-
rithms maintain a population of candidate solutions, which evolve over successive genera-
tions through genetic operations such as selection, crossover, and mutation. Additionally,
local search techniques are employed to refine solutions within each generation, enhancing
the overall quality of the results.

The computational complexity of HGA depends on several factors:

• The population size p.

• The number of generations g.

• The cost of evaluating the fitness of each solution, which is proportional to O(nm).

26

3.3 – Computational complexity of Heuristics approaches

Combining these factors, the overall complexity of HGA is O(pgnm). While this complex-
ity is significantly higher than that of simpler heuristics like FFD and BFD, HGAs often
achieve superior solutions, particularly for large and complex instances. The trade-off
between computational cost and solution quality makes HGAs suitable for applications
where computational resources are not a limiting factor.

Comparison of Heuristics

To provide a comprehensive comparison of the discussed heuristics, we summarize their
computational complexities and performance characteristics. FFD and BFD are straight-
forward to implement and have polynomial-time complexities, making them suitable for
real-time applications. However, their performance may not suffice for instances requir-
ing high-quality solutions. On the other hand, metaheuristics like HGA offer greater
flexibility and solution quality but are computationally expensive and less scalable.

We summarize the complexities and performance in Table 3.1.

Heuristic Complexity Scalability
FFD O(n log n + nm) Moderate
BFD O(n log n + nm) Moderate
HGA O(pgnm) Low
GRASP O(knm) Low
BnB Exponential Low
SA Problem-Dependent Moderate

Table 3.1. Comparison of 3DBPP Heuristics.

27

28

Chapter 4

Heuristic Concepts for 3D Bin
Packing

Since many complex problems requires solution in a reasonable amount of time, it is
crucial to find good solutions not so far from the optimum that could be reached with
an exact method, that can be computed in shorter time. The field of applicability of
3D bin packing are wide, and the time in wich a solution is required varies in each of
them. We will focus from now on to the sector of logistics operations, carried out in many
small medium enterprises around Italy. The choice of this target is not random, but is
supported by the pratical utility of this thesis in future work that aims to optimize this
kind of operation in several companies. Typically this logistics operators need to load
a lot of parcels or pallets, stored in their depots, in a short time interval that could be
generalized around 6 hours. Since the number of trucks that have to be loaded is in the
range 100-400 is crucial to have a good solution in a very short time interval that we can
estimate around 1-2 minutes. In this chapter we will try to analyze the concepts and
methods of heuristic approaches for 3D Bin Packing.

4.1 Overview of Heuristic Approaches

The study of heuristics for 3D bin packing has its roots in the broader field of combi-
natorial optimization. Traditional approaches to the one-dimensional bin packing prob-
lem, such as First Fit and Best Fit, provided the initial framework for tackling multi-
dimensional extensions. These algorithms rely on a greedy principle, where each item
is placed in the first available bin that satisfies its constraints. While efficient, these
methods often produce suboptimal solutions because they focus on immediate benefits
without considering long-term spatial utilization.

Despite their simplicity, First Fit Decreasing (FFD) and Best Fit Decreasing (BFD)
have shown strong performance for the 1D Bin Packing Problem 1D-BP, as highlighted
by Martello and Toth [27]. Their extension to 3D bin packing appears promising but in-
troduces significant challenges. In the 1D-BP case, sorting and bin selection are straight-
forward, as both items and bins are characterized by a single attribute: volume. In

29

Heuristic Concepts for 3D Bin Packing

3D-BP, however, additional dimensions—width, height, and depth—complicate the pro-
cess. Sorting can no longer rely solely on volume, as the orientation of items and their
faces also play a critical role in determining feasible placements.

Furthermore, the definition of the "best" bin in the BFD heuristic becomes ambiguous
in 3D-BP. The spatial arrangement of items within a bin can vary significantly depend-
ing on how items are placed, even when their ordering and the best-bin selection rules
remain unchanged. This dependency necessitates the development of more sophisticated
placement strategies. The transition to two-dimensional and three-dimensional packing
introduced additional complexities, requiring more sophisticated heuristics. Early works
by Martello et al. [13] introduced the concept of corner points as candidate locations
for placement, laying the groundwork for the development of spatially aware heuristics.
Later, Crainic et al. [15] extended this idea to maximal spaces, which represent the
largest contiguous empty regions within a bin. These concepts revolutionized the field by
enabling more efficient space management, a critical factor in multi-dimensional packing.

The development of metaheuristic frameworks like GRASP (Greedy Randomized
Adaptive Search Procedure) and VND (Variable Neighborhood Descent) further advanced
the field. GRASP, introduced by Feo and Resende [28], combines greedy construction with
randomized exploration to diversify the solution space. VND, proposed by Hansen and
Mladenović [29], complements this by systematically exploring multiple neighborhoods of
a solution, facilitating the escape from local optima.

These heuristic techniques have been adapted to a wide range of applications, from
container loading in logistics to warehouse management and product packaging. Their
flexibility and efficiency make them essential for addressing the time-sensitive demands
of real-world operations.

4.1.1 First Fit Decreasing (FFD)

The First Fit Decreasing (FFD) heuristic is a widely used algorithm for solving the 3D-
BPP. It follows a greedy approach where items are sorted in descending order of size before
being placed into the first available bin that can accommodate them. This heuristic aims
to minimize the number of bins used while maintaining computational efficiency.

The FFD algorithm operates in two main phases:

1. Sorting Phase: Items are sorted in decreasing order based on a predefined crite-
rion, typically the largest dimension or volume.

2. Packing Phase: Items are placed sequentially into the first available bin that can
accommodate them while respecting the bin’s capacity constraints.

This strategy ensures that larger items, which are more difficult to place, are assigned
first, reducing fragmentation and improving space utilization. The following pseudocode
outlines the FFD working principle.

30

4.1 – Overview of Heuristic Approaches

Algorithm 1 First Fit Decreasing (FFD) for 3D Bin Packing
Require: List of items I = {i1, i2, . . . , in} with dimensions (wi, hi, di), bin capacity

(W, H, D)
Ensure: Packed bins minimizing the total count

0: Sort items in descending order based on volume Vi = wi × hi × di

0: Initialize empty list of bins B = {b1, b2, . . . }
0: for each item i ∈ I do
0: placed ← False
0: for each bin b ∈ B do
0: if item i fits in bin b at any valid position then
0: Place i in b
0: placed ← True
0: Break
0: end if
0: end for
0: if placed = False then
0: Open a new bin bnew

0: Place i in bnew

0: Add bnew to B
0: end if
0: end for
0: return B (final packing solution) =0

The FFD heuristic provides a balance between computational efficiency and solution
quality. While it does not guarantee an optimal packing, it is a widely used heuris-
tic method in practical applications due to its simplicity and effectiveness. The algo-
rithm performs well when combined with additional space optimization techniques such
as bottom-left (BL) or extreme points (EP) heuristics.

4.1.2 Best Fit Decreasing (BFD)

The Best Fit Decreasing (BFD) heuristic is a variation of the First Fit Decreasing (FFD)
algorithm, designed to improve space utilization by placing items in the bin where they fit
best. Like FFD, BFD first sorts items in decreasing order before placement, but instead
of choosing the first available bin, it selects the bin that results in the least amount of
remaining free space after placement.

The BFD algorithm follows these main steps:

1. Sorting Phase: Items are sorted in descending order based on a predefined crite-
rion, typically the largest dimension or volume.

2. Packing Phase: Each item is placed in the bin where it leaves the least residual
space after placement, reducing fragmentation and maximizing packing density.

By prioritizing the bin that minimizes unused space, BFD can often yield better pack-
ing efficiency than FFD. However, this comes at the cost of slightly higher computational

31

Heuristic Concepts for 3D Bin Packing

complexity.
The following pseudocode outlines the BFD heuristic for 3D BPP

Algorithm 2 Best Fit Decreasing (BFD) for 3D Bin Packing
Require: List of items I = {i1, i2, . . . , in} with dimensions (wi, hi, di), bin capacity

(W, H, D)
Ensure: Packed bins minimizing the total count

0: Sort items in descending order based on volume Vi = wi × hi × di

0: Initialize empty list of bins B = {b1, b2, . . . }
0: for each item i ∈ I do
0: best_bin ← None
0: min_remaining_space ←∞
0: for each bin b ∈ B do
0: if item i fits in bin b at any valid position then
0: Compute remaining space in b after placing i
0: if remaining space < min_remaining_space then
0: best_bin ← b
0: min_remaining_space ← updated remaining space
0: end if
0: end if
0: end for
0: if best_bin is not None then
0: Place i in best_bin
0: else
0: Open a new bin bnew

0: Place i in bnew

0: Add bnew to B
0: end if
0: end for
0: return B (final packing solution) =0

The BFD heuristic improves upon FFD by selecting the most space-efficient bin for
each item, thereby reducing wasted space. While this increases computational effort
slightly due to the additional comparison steps, it often leads to a lower total bin count
compared to FFD. BFD is particularly useful in applications where space optimization is
a priority, such as warehouse storage or logistics.

4.1.3 Bottom-Left (BL) and Bottom-Left-Fill (BLF)

The Bottom-Left (BL) and Bottom-Left-Fill (BLF) heuristics focus on efficiently posi-
tioning items inside a bin to minimize wasted space while ensuring a stable packing
structure.

Both BL and BLF heuristics follow a similar principle: items are placed as close as
possible to the bottom of the bin first, then as close to the left, and finally towards the
back. However, they differ in their placement refinement:

32

4.1 – Overview of Heuristic Approaches

• Bottom-Left (BL): Places each item at the lowest available position and as far
left as possible in the bin. It does not attempt to optimize horizontal placement
beyond this simple rule.

• Bottom-Left-Fill (BLF): An extension of BL that attempts to further fill hori-
zontal gaps by considering alternative leftmost positions before moving an item to
a higher level.

These heuristics improve space utilization compared to simple greedy algorithms but
do not guarantee an optimal solution. Their efficiency depends on how items are sorted
before placement. A common approach is to sort items in decreasing order of volume or
height.

The following pseudocode outlines the Bottom-Left (BL) heuristic:

Algorithm 3 Bottom-Left (BL) for 3D Bin Packing
Require: List of items I = {i1, i2, . . . , in} with dimensions (wi, hi, di), bin sizes

(W, H, D)
Ensure: Packed bins minimizing empty space

0: Sort items in descending order based on height or volume
0: Initialize empty bin B
0: for each item i ∈ I do
0: Find the lowest available position in the bin where i fits
0: Place i at the lowest possible z-coordinate
0: Adjust x and y coordinates to be as close to the left and back walls as possible
0: end for
0: return B (final packing solution) =0

The Bottom-Left-Fill (BLF) heuristic refines this strategy by ensuring better hori-
zontal filling before stacking items higher. Its pseudocode is as follows:

Algorithm 4 Bottom-Left-Fill (BLF) for 3D Bin Packing
Require: List of items I = {i1, i2, . . . , in} with dimensions (wi, hi, di), bin dimensions

(W, H, D)
Ensure: Packed bins minimizing empty space

0: Sort items in descending order based on height or volume
0: Initialize empty bin B
0: for each item i ∈ I do
0: Find the lowest available position in the bin where i fits
0: Identify alternative leftmost positions at the same height
0: Choose the position that maximizes space utilization
0: Place i at the best position found
0: end for
0: return B (final packing solution) =0

33

Heuristic Concepts for 3D Bin Packing

The BL and BLF heuristics provide an efficient way to arrange items within a bin
while maintaining a stable structure. These methods are particularly useful in practical
applications such as warehouse storage and logistics. The computational complexity
depends on the number of placement checks performed per item, typically ranging from
O(n2) to O(n3) in worst-case scenarios.

BLF tends to outperform BL in space utilization by reducing gaps between items.
However, neither heuristic guarantees an optimal packing configuration. These heuris-
tics are often combined with other optimization techniques to further enhance packing
efficiency.

4.1.4 Metaheuristic Approaches

Metaheuristic algorithms [25] are advanced optimization techniques that provide near-
optimal solutions to complex combinatorial problems such as the 3D-BPP. These ap-
proaches explore the solution space efficiently by balancing exploration (diversification)
and exploitation (intensification).

Simulated Annealing (SA) [30] is a probabilistic optimization method inspired by the
annealing process in metallurgy, where a material is gradually cooled to reach a stable
state. It is widely applied in 3D-BPP to refine initial packing solutions generated by
heuristic methods.

SA starts with an initial feasible solution and iteratively modifies it by making small
perturbations (e.g., swapping items between bins or repositioning items within a bin). If
the new solution improves the objective function (e.g., reduces the number of bins used),
it is accepted. Otherwise, it is accepted with a probability that decreases over time,
allowing the algorithm to escape local optima.

The following paragraph, describes in detail the SA-based algorithm used in this thesis
to compare results obtained by our algorithm. The algorithm begins with an initial so-
lution generated using the First-Fit Decreasing (FFD) heuristic. The initial temperature
T is set to 500.0 and gradually decreases using an exponential cooling schedule:

Tk+1 = αTk, (4.1)

where α = 0.99 is the cooling rate. The process continues until T reaches a minimum
threshold Tmin = 0.1 or the maximum number of iterations (1000) is reached.

A key aspect of SA is the generation of neighboring solutions. The proposed algorithm
employs enhanced moves including:

• Multi-item swaps between bins,

• Block movement to optimize space utilization,

• Removal and reinsertion of inefficiently packed items.

The acceptance probability P of a new solution with score Snew compared to the current
solution with score Scurrent is computed using an adaptive criterion:

P = exp
(︃

Scurrent − Snew

T

)︃
, (4.2)

34

4.1 – Overview of Heuristic Approaches

where worse solutions (i.e., those with Snew > Scurrent) may still be accepted with dimin-
ishing probability as T decreases.

The SA-based 3D Bin Packing procedure follows these steps:

1. Generate an initial solution using FFD.

2. Set initial temperature T and parameters.

3. While T > Tmin and iteration count is below the limit:

(a) Generate a neighboring solution using improved heuristics.

(b) Compute its score and compare with the current solution.

(c) Accept the new solution probabilistically based on P .

(d) Update the best solution found so far if necessary.

(e) Reduce the temperature according to the cooling schedule.

4. Return the best solution found.

To improve convergence and escape poor local minima, the neighbor generation step
incorporates:

• Targeted Item Relocation: Selecting inefficiently placed items and attempting to
reposition them within other bins.

• Bin Pairing and Merging: Combining bins with low utilization to optimize space.

• Block-Based Adjustments: Moving multiple items together to improve packing den-
sity.

At the end of the optimization process, the best solution encountered throughout
the annealing iterations is selected as the final output. The effectiveness of SA in this
context depends on the balance between exploration (accepting worse solutions early on)
and exploitation (converging to a refined solution as temperature decreases).

Overall, this SA-based approach introduces a structured way to refine bin packing
solutions, improving space utilization and reducing wasted volume compared to baseline
heuristics such as FFD alone.

35

Heuristic Concepts for 3D Bin Packing

Algorithm 5 Simulated Annealing for 3D Bin Packing
Require: Initial solution S, initial temperature T , cooling rate α, stopping criteria
Ensure: Optimized bin packing configuration

0: Initialize Sbest ← S
0: while stopping criteria not met do
0: Generate a neighboring solution S′ by slightly modifying S
0: Compute cost difference ∆C = C(S′)− C(S)
0: if ∆C < 0 or e−∆C/T > random(0,1) then
0: Accept S′ as the new solution
0: if C(S′) < C(Sbest) then
0: Update Sbest ← S′

0: end if
0: end if
0: Update temperature T ← αT
0: end while
0: return Sbest (final optimized solution) =0

Genetic Algorithms (GA) [31] are evolutionary computation techniques inspired by
natural selection. In the context of 3D-BPP, GA maintains a population of packing solu-
tions and evolves them over multiple generations using selection, crossover, and mutation
operators.

The GA framework follows these steps:

1. Initialization: Generate an initial population of feasible packing solutions.

2. Selection: Choose the fittest solutions based on an objective function (e.g., mini-
mizing the number of bins used).

3. Crossover: Combine features of parent solutions to create offspring.

4. Mutation: Introduce small modifications in offspring to enhance diversity.

5. Termination: Repeat until a convergence criterion is met (e.g., no improvement
for a certain number of generations).

36

4.1 – Overview of Heuristic Approaches

Algorithm 6 Genetic Algorithm for 3D Bin Packing
Require: Population size P , crossover rate Cr, mutation rate Mr, generations G
Ensure: Optimized packing solution

0: Initialize population P0 with feasible solutions
0: for generation g = 1 to G do
0: Evaluate fitness of each solution
0: Select parents using tournament or roulette selection
0: Apply crossover with probability Cr to generate offspring
0: Apply mutation with probability Mr to introduce variation
0: Form the new population Pg+1 by selecting the best individuals
0: end for
0: return Best solution found =0

Tabu Search (TS) [32] is a memory-based optimization technique that iteratively
explores the solution space while maintaining a list of previously visited solutions (the
"tabu list") to prevent cycling and enhance exploration.

TS starts from an initial solution and iteratively explores the neighborhood by making
local moves (e.g., repositioning or swapping items). If a move improves the solution, it
is accepted. Otherwise, it is only accepted if it is not in the tabu list. The tabu list is
updated dynamically to ensure diversification.

Algorithm 7 Tabu Search for 3D Bin Packing
Require: Initial solution S, tabu list size L, iterations I
Ensure: Optimized packing solution

0: Initialize Sbest ← S
0: Initialize empty tabu list
0: for iteration i = 1 to I do
0: Generate neighborhood solutions N(S)
0: Select the best solution S′ from N(S) not in tabu list
0: Update tabu list with recent moves
0: if C(S′) < C(Sbest) then
0: Update Sbest ← S′

0: end if
0: end for
0: return Sbest (final optimized solution) =0

Particle Swarm Optimization (PSO) [33] is a bio-inspired algorithm based on the
collective movement of particles in a search space. In 3D-BPP, PSO models packing solu-
tions as particles that move toward optimal configurations based on both their individual
and collective best positions.

Each particle (solution) updates its velocity and position based on:

• Its own best position found so far.

• The best position found by any particle in the swarm.

37

Heuristic Concepts for 3D Bin Packing

Algorithm 8 Particle Swarm Optimization (PSO) for 3D Bin Packing
Require: Population size P , inertia weight w, cognitive and social factors c1, c2
Ensure: Optimized packing solution

0: Initialize particle positions and velocities
0: Evaluate fitness of each particle
0: Identify personal and global best solutions
0: for each iteration do
0: for each particle do
0: Update velocity based on inertia, cognitive, and social terms
0: Update position
0: Evaluate fitness and update best positions
0: end for
0: end for
0: return Best solution found =0

Comparison and Hybrid Approaches

Metaheuristic approaches offer significant advantages in terms of flexibility and perfor-
mance. However, no single method is universally superior. Hybrid techniques, such
as combining Genetic Algorithms with Simulated Annealing or Tabu Search, often yield
superior results by leveraging the strengths of multiple approaches.

4.1.5 Implemented Heuristics in the Thesis

The heuristic algorithm developed in this thesis for solving the 3D Bin Packing Prob-
lem (3DBPP) is built upon well-established principles of combinatorial optimization and
spatial reasoning. The algorithm is structured into three distinct phases: constructive,
improvement, and diversification. Each phase addresses specific challenges and integrates
advanced concepts, including maximal spaces, pivot points, and metaheuristics such as
Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood
Descent (VND).

The constructive phase is responsible for generating an initial feasible packing solution
by placing items into bins while optimizing space utilization. It employs maximal space
strategies to ensure efficient item placement and minimize wasted bin volume.

The improvement phase refines the initial solution by iteratively adjusting the item
placements within the bins. This phase incorporates neighborhood-based heuristics from
the VND framework to systematically explore different solution variations, focusing on
local optimizations to reduce the number of bins used and enhance packing efficiency.

The diversification phase ensures that the algorithm does not become trapped in
local optima by introducing controlled perturbations to the solution space. This phase
leverages randomized mechanisms to reintroduce variability in the packing arrangement,
enabling the discovery of alternative, potentially superior configurations.

A more detailed description of each phase, including the preprocessing steps, specific
heuristic techniques, and the stopping criteria, is presented in Chapter 5. The next
chapter provides a comprehensive breakdown of the algorithm’s functionality, highlighting

38

4.2 – Priority-Based Item Sorting

key innovations and contributions that enhance its performance and applicability to real-
world bin packing scenarios.

4.2 Priority-Based Item Sorting
Sorting items before their placement plays a pivotal role in the efficiency of heuristic
packing algorithms for the 3DBPP. The fundamental idea of prioritizing items by specific
attributes originated from early bin packing strategies, such as the Next Fit Decreasing
Height (NFDH) heuristic [34]. This heuristic focuses on sorting items by decreasing height
to minimize fragmentation and optimize packing density. In the context of 3DBP, this
principle has evolved to encompass more complex criteria, leveraging multiple sizes of the
problem.

In this thesis, item sorting is a multi-criteria process designed to address the intricacies
of 3D packing. The primary sorting metric is the volume of the items (vi = wi · hi · di),
which ensures that larger items, likely to create unfillable gaps if deferred, are tackled
first. Sorting by volume reduces fragmentation, particularly in cases where smaller items
cannot efficiently occupy the residual spaces left by larger ones. However, volume alone
does not capture the full complexity of the packing problem.

Secondary criteria include load-bearing capacity and priority levels. Load-bearing
capacity is critical in scenarios where stability is a constraint, as heavier or sturdier
items must provide a foundation for lighter or fragile items. The priority level reflects
application-specific constraints, such as the need to pack fragile items with care or to
prioritize high-value goods for transport. These additional attributes are essential in
real-world scenarios, particularly in logistics operations where constraints vary across
industries and applications.

The sorting algorithm employs a lexicographical ordering framework, combining these
criteria to create a structured queue of items. Mathematically, the sorting problem can
be expressed as:

Sort I such that i < j ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
vi > vj , if vi /= vj ,

loadi > loadj , if vi = vj ,

priorityi > priorityj , if vi = vj and loadi = loadj .

(4.3)
While the preprocessing step introduces additional computational overhead, the ben-

efits are substantial. By reducing fragmentation and simplifying placement decisions, this
sorting framework significantly improves overall packing efficiency. Furthermore, the use
of lexicographical ordering ensures consistency and reproducibility, which are critical in
applications requiring stringent quality control.

4.3 Handling Empty Maximal Spaces
The concept of maximal spaces is a cornerstone of modern heuristic methods for 3D-BPP.
First introduced by Crainic et al. [15], maximal spaces extend the earlier idea of corner
points, offering a more comprehensive framework for managing free space within a bin.

39

Heuristic Concepts for 3D Bin Packing

Maximal spaces are defined as the largest contiguous regions of available volume where
an item can potentially be placed without overlapping existing items or exceeding bin
boundaries.

Figure 4.1. Representation of maximal spaces, generated after the insertion
of a box into the Bin

4.3.1 Generation of Maximal Spaces

When an item is placed in a bin, the remaining free volume is decomposed into a set
of maximal spaces. Mathematically, let S denote the set of maximal spaces, where each
space s ∈ S is defined by its origin (xs, ys, zs) and sizes (ws, hs, ds). After placing an item
i with sizes (wi, hi, di) at position (xi, yi, zi), new maximal spaces are generated along the
edges of the item. For example, if i is placed in a corner of the bin, three maximal spaces
are created, corresponding to the regions above, in front of, and to the right of the item.

Formally, for each new maximal space s, its dimensions are computed as:

(xs, ys, zs) = (xi + wi, yi, zi), (W − (xi + wi), hi, di), (4.4)
(xs, ys, zs) = (xi, yi + hi, zi), (wi, H − (yi + hi), di), (4.5)
(xs, ys, zs) = (xi, yi, zi + di), (wi, hi, D − (zi + di)). (4.6)

4.3.2 Overlap Resolution

Overlapping maximal spaces often occur in 3D packing as new spaces are generated.
The algorithm resolves overlaps by merging or adjusting affected spaces to maintain

40

4.4 – Pivot Point Selection for Item Placement

consistency. Let s1 and s2 be two overlapping spaces. The intersection of these spaces is
calculated as:

Intersection(s1, s2) = max(0, min(xs1 + ws1, xs2 + ws2)−max(xs1, xs2))· (4.7)

similar terms for y and z. If the intersection volume is non-zero, the algorithm
adjusts s1 and s2 by removing the overlapping region and recalculating their boundaries.

4.3.3 Selection of Maximal Spaces

The selection of the next maximal space to fill involves balancing spatial efficiency and
computational simplicity. The algorithm prioritizes maximal spaces closest to the bin’s
corners, as these regions are less likely to be usable once central spaces are occupied. The
selection criterion can be formalized as:

s = arg min
s∈S

(xs + ys + zs), (4.8)

where (xs, ys, zs) are the coordinates of the maximal space’s origin.
By systematically exploiting available space, the algorithm minimizes wasted volume

and reduces the number of bins required. This approach ensures high packing efficiency
and adaptability to varying item dimensions.

4.4 Pivot Point Selection for Item Placement

Pivot points are critical in determining the position of an item within a maximal space.
The selection of pivot points significantly influences the stability and compactness of the
packing. This thesis adopts the extreme point rule proposed by Crainic et al. (2008),
which identifies candidate points based on the geometry of existing items and the dimen-
sions of the maximal space.

4.4.1 Definition of Pivot Points

A pivot point is defined as a reference coordinate (xp, yp, zp) within a maximal space
(xs, ys, zs, ws, hs, ds) where an item can be placed. The pivot point is chosen to align
the item with the edges or corners of the maximal space, reducing fragmentation and
ensuring stability. For an item i with dimensions (wi, hi, di), a valid pivot point satisfies:

xp ≥ xs, xp + wi ≤ xs + ws, (4.9)
yp ≥ ys, yp + hi ≤ ys + hs, (4.10)
zp ≥ zs, zp + di ≤ zs + ds. (4.11)

41

Heuristic Concepts for 3D Bin Packing

Initial Pivot Point: p = (0,0,0)

p1 = (x + d, y, z)

p2 = (x, y + w, z)

p3 = (x, y, z + h)

x

y

z

Figure 4.2. Illustration of the Bottom-Left-Fill Packing Strategy in a three-
dimensional bin. The initial pivot point (p = (0, 0, 0)) is located at the back-left-
bottom corner of the bin, where the first item is placed. Once the item is positioned,
new potential pivot points (p1 = (x + d, y, z), p2 = (x, y + w, z), p3 = (x, y, z + h)) are
generated for the placement of subsequent items.

4.4.2 Stability Requirements

Stability is a critical consideration in logistics, particularly when items are subject to
motion during transport. To ensure stability, a minimum support surface ratio σ is
enforced. This ratio represents the fraction of the item’s base area that must be supported
by underlying items or the bin floor. Let Ai denote the base area of item i, and Asupport
denote the area of i’s base in contact with a stable surface. The stability condition is:

Asupport
Ai

≥ σ. (4.12)

4.4.3 Orientation Optimization

In many cases, items can be rotated to better fit the available space. The algorithm eval-
uates all feasible orientations of each item and selects the one that maximizes alignment
with the dimensions of the maximal space. Let Oi represent the set of valid orientations
for item i. The optimal orientation o∗ is chosen as:

o∗ = arg max
o∈Oi

Utilization(s, o), (4.13)

where Utilization measures the volume of the maximal space occupied by the item.
By incorporating these principles into the pivot point selection process, the algorithm

achieves a balance between stability, compactness, and computational efficiency. This
approach ensures robust performance across diverse packing scenarios.

42

4.5 – Advantages and Challenges of the Implemented Heuristics

4.5 Advantages and Challenges of the Implemented Heuris-
tics

The implemented heuristics combine the strengths of GRASP (Greedy Randomized Adap-
tive Search Procedure) and VND (Variable Neighborhood Descent) frameworks to achieve
high-quality solutions. This hybrid approach offers significant advantages but also presents
challenges, particularly in balancing computational efficiency with solution quality and
adapting to the intricacies of real-world problem constraints.

4.5.1 Advantages

The hybrid GRASP/VND algorithm provides a flexible structure that adapts to diverse
problem instances. The constructive phase dynamically generates solutions using maxi-
mal spaces, while the improvement phase iteratively refines these solutions through mul-
tiple neighborhood explorations. This adaptability ensures that the algorithm performs
well across a variety of packing scenarios, including those with highly irregular or con-
strained items.

The robust [35] constructive phase, ensures efficient initial packing. The use of max-
imal spaces minimizes fragmentation, while stability constraints guarantee practical so-
lutions. Additionally, the incorporation of randomization in the restricted candidate list
(RCL) introduces diversity in the search process, reducing the likelihood of stagnation in
local optima.

The Variable Neighborhood Descent framework systematically explores multiple neigh-
borhood structures, allowing for significant improvements in packing efficiency and bin
utilization. This phase is particularly effective in reducing the total number of bins
required. The inclusion of pairwise bin optimizations and targeted re-packing further
enhances solution quality.

The diversification phase leverages unpacked frequency data to prioritize items that
are frequently left out during packing. This mechanism ensures that the search explores
new regions of the solution space, preventing the algorithm from becoming trapped in
local optima. Such diversification strategies align with principles from Reactive GRASP
[36], further enhancing solution robustness.

The algorithm demonstrates strong scalability, efficiently handling large problem in-
stances with hundreds or thousands of items. The preprocessing steps, including clus-
tering similar items and eliminating infeasible configurations, significantly reduce the
problem size, allowing the algorithm to focus on feasible and high-priority items.

4.5.2 Challenges

While the hybrid algorithm achieves high-quality solutions, the combination of GRASP
and VND increases computational complexity. The iterative nature of both phases, par-
ticularly the exploration of multiple neighborhoods in VND, can lead to high runtime
for large-scale instances. Striking a balance between solution quality and computational
efficiency remains a challenge, particularly when real-time decision-making is required.

43

Heuristic Concepts for 3D Bin Packing

The algorithm’s performance is sensitive to key parameters, such as the size of the
restricted candidate list (α) in GRASP and the neighborhood exploration strategy in
VND. Determining optimal parameter values requires extensive experimentation and may
vary depending on the problem instance, making the algorithm less straightforward to
implement for new datasets.

Incorporating stability and load-bearing constraints introduces additional complexity
in the constructive phase. These constraints often limit feasible placements, increasing
the likelihood of unpacked items. Balancing the trade-off between ensuring stability and
maximizing space utilization is a non-trivial challenge.

The use of maximal spaces to guide item placement can lead to fragmentation, par-
ticularly when items are packed in irregular shapes or orientations. While the algorithm
updates and recalculates maximal spaces dynamically, handling overlaps and maintaining
consistency in space representation is computationally expensive and prone to errors in
edge cases.

The preprocessing steps, such as clustering similar items and eliminating infeasible
configurations, significantly impact the algorithm’s overall performance. Poor preprocess-
ing can result in suboptimal initial configurations, reducing the effectiveness of subsequent
phases. Ensuring robust and accurate preprocessing is critical but requires careful tuning
and validation.

The algorithm assumes idealized conditions, such as uniform item properties and
consistent bin sizes. Adapting the heuristics to real-world constraints, such as varying
item fragility, multi-compartment bins, or dynamic packing scenarios, poses additional
challenges. Further research is needed to extend the algorithm’s applicability to such
scenarios.

44

Chapter 5

The proposed approach

In this thesis, we present a novel GRASP (Greedy Randomized Adaptive Search Procedure)
algorithm tailored to address the three-dimensional bin packing problem. One of the
core innovations of our approach is the integration of a cutting-edge visualization tool,
which enables users to explore packing solutions in three dimensions interactively. This
tool provides an intuitive and detailed view of the packing scheme, empowering users to
analyze and refine results with ease.

The constructive phase of our algorithm builds upon the heuristic developed by Par-
reño et al. [37], originally designed for the container loading problem. This heuristic was
adapted and enhanced to meet the specific requirements of the three-dimensional bin
packing scenario, ensuring robust and efficient initialization of solutions.

To refine these initial solutions, the improvement phase introduces a series of novel
moves that are systematically tested and incorporated into a VND (Variable Neighbor-
hood Descent) framework [29]. These moves leverage diverse neighborhood structures to
iteratively enhance packing efficiency and stability.

The resulting hybrid GRASP/VND algorithm stands out for its simplicity, compu-
tational efficiency, and versatility. Extensive computational experiments show that the
proposed method consistently produces solutions that are equivalent or superior to those
achieved by the most advanced and complex procedures currently available. This combi-
nation of high-performance optimization and user-friendly visualization marks a signifi-
cant contribution to the field.

5.1 Preprocessing Steps

The preprocessing phase plays a critical role in reducing the complexity of the 3D-BPP,
by transforming the original instance into a more manageable equivalent. This transfor-
mation aims to eliminate certain items or configurations that would otherwise lead to
unnecessary computational overhead during the constructive and improvement phases of
the algorithm. The first step in preprocessing involves identifying items with dimensions
exceeding half the corresponding bin sizes (wj > W/2, hj > H/2, dj > D/2), which
are identified as "dominant items." For each dominant item j, a subset Sj is defined,

45

The proposed approach

consisting of items that can feasibly coexist with j, based on the conditions:

Sj = {i | wi ≤W − wj ∨ hi ≤ H − hj ∨ di ≤ D − dj}. (5.1)

If Sj , combined with j, forms a feasible packing, verified by computing the total volume
vj + Vj where Vj =

∑︁
i∈Sj

vi and vj = wj · hj · dj , and checking vj + Vj ≤ W ·H ·D, the
bin is added to the solution and the corresponding items are removed from the problem.
If this test fails, a refinement is applied by excluding the smallest item k from Sj and
recalculating feasibility using S′

j = Sj\{k} and vj + Vj − vk ≤W ·H ·D.
Large or awkwardly shaped items, such as those occupying an entire bin dimension

(wj = W , hj = H, or dj = D), are assigned to separate bins during preprocessing to
avoid fragmenting the solution space. Items with identical or similar dimensions are
grouped into clusters, reducing redundancy and accelerating decision-making in subse-
quent phases. Clustering is achieved using a similarity threshold ϵ to group items i and
j if |wi − wj | < ϵw, |hi − hj | < ϵh, and |di − dj | < ϵd. Furthermore, infeasible items
that exceed the bin sizes (wi > W , hi > H, di > D) or violate weight constraints are
discarded before the packing process begins.

These preprocessing steps enhance the algorithm’s efficiency by reducing the number
of items to consider, minimizing computational overhead, and focusing the algorithm’s
resources on generating high-quality solutions. By transforming the original problem
into an equivalent but simplified instance, preprocessing contributes significantly to the
scalability and effectiveness of the hybrid GRASP/VND approach.

5.2 Constructive Phase: Initial Packing Strategy

The constructive phase establishes the foundation of the 3D Bin Packing heuristic by ef-
ficiently generating an initial feasible packing configuration. This phase is responsible for
defining maximal spaces, dynamically updating them after item placement, and ensuring
adherence to stability constraints. The packing strategy is designed to maximize space
utilization while minimizing fragmentation within bins.

At the beginning of each iteration, the set of items to be packed, denoted as I =
{i1, i2, . . . , in}, is initialized and sorted based on priority. Prioritization criteria include
item volume, load-bearing capacity, and stability considerations. Similarly, each bin
B = {b1, b2, . . . , bm} is initialized with a list of maximal spaces S = {E}, where E
represents the entire bin volume. As items are placed, maximal spaces are continuously
subdivided to reflect available space, ensuring efficient space utilization. This process is
mathematically formulated as:

Sk = {s | s ⊆ Vb, ItemFit(i, s)} (5.2)

where Sk represents the maximal spaces at iteration k, s is an available space, and
ItemFit(i, s) ensures that item i fits within space s without exceeding bin sizes.

To maximize bin utilization, the algorithm selects a maximal space S∗ ∈ S for place-
ment based on proximity to the bin’s corners. [15] If multiple spaces satisfy this criterion,

46

5.2 – Constructive Phase: Initial Packing Strategy

the one with the largest volume is prioritized. Items are then evaluated for placement in
S∗ using two main objectives:

• Best Volume Utilization:Maximizes the volume occupied within S∗.

• Best Fit Strategy:Prioritizes item placement with minimal distance to space
boundaries.

If multiple items satisfy the placement conditions, layers of identical items are con-
sidered to enhance packing efficiency [10]. The sorting of items before placement is
determined using the following priority function:

Priority(i) = (pi,−vi,−li) (5.3)

where pi, vi, and li represent the priority level, volume, and load-bearing capacity of
item i, respectively.

To maintain structural stability, the algorithm verifies the support ratio r before
placement:

Support Ratio = Supported Area
Base Area ≥ 0.75 (5.4)

If an item satisfies stability and fit constraints, it is placed, and S∗ is subdivided
accordingly. Non-disjoint maximal spaces are recalculated dynamically, and infeasible
spaces are discarded to enhance computational efficiency. Additionally, a diversification
mechanism is incorporated to improve solution robustness. Items are selected from a
restricted candidate list (RCL), which contains the top 100δ% feasible configurations.
The parameter δ is adjusted adaptively using principles from Reactive GRASP, balancing
exploration and exploitation based on previous iterations.

To ensure numerical precision, all dimensions undergo rounding based on a predefined
decimal format before packing. The bins are then sorted in descending order by volume,
helping larger bins to accommodate a greater range of items, while items are sorted
by decreasing volume to prioritize large-item placement first. If binding constraints are
present, a secondary sorting function ensures that dependent items are packed together.

The core packing operation follows a structured placement routine. Each item is
first tested in its original orientation. If a valid placement is found, it is inserted at a
pivot point within the bin using the function putItem(). Following placement, maximal
spaces are updated to reflect the new occupancy. If an item does not fit in its default
orientation, all six possible rotations are evaluated sequentially. If a feasible rotated
placement is found, the item is placed and its orientation recorded. If no valid placement
exists, the item is marked as unfit and set aside for later consideration.

To further refine packing efficiency, a heuristic-based candidate selection approach is
introduced. Instead of evaluating every possible packing option, the algorithm maintains
a limited pool of top candidate placements, dynamically updated based on the feasibility
of solutions. This strategy significantly reduces computation time while still ensuring an
optimized configuration. Additionally, bin compaction is periodically enforced, ensuring
that partially filled bins are re-evaluated to improve packing density.

47

The proposed approach

To track execution efficiency, the algorithm records computation time for each major
step. A performance log stores placement times, space updates, and sorting operations,
enabling further optimization of the algorithm. The systematic use of maximal space
partitioning, rotational feasibility checking, and adaptive placement heuristics ensures
that the constructive phase produces an optimized initial packing layout while adhering
to constraints on volume, stability, and binding dependencies.

48

5.2 – Constructive Phase: Initial Packing Strategy

Pseudocode for the Constructive Phase

Algorithm 9 Constructive Phase
0: Input: Set of items I, set of bins B
0: Output: Initial packing solution
0: Sort B by decreasing volume if bigger_first = True
0: Sort I by decreasing volume vi = wi · hi · di with priority level as a tiebreaker
0: for each i ∈ I do
0: for each b ∈ B do
0: Generate maximal spaces in b
0: if i is already assigned to a different bin then
0: continue
0: end if
0: if i is already packed in b then
0: continue
0: end if
0: for each maximal space s in b do
0: if i fits in s in original orientation then
0: Place i at the pivot point in b
0: Update maximal spaces in b
0: Mark i as packed and remove from I
0: break
0: end if
0: end for
0: if i was packed successfully then
0: break
0: end if
0: end for
0: if i is not packed in any bin then
0: for each rotation r = 1, . . . , 6 of i do
0: Generate rotated version ir

0: for each b ∈ B do
0: for each maximal space s in b do
0: if ir fits in s then
0: Place ir at the pivot point in b
0: Update maximal spaces in b
0: Mark i as packed with rotation r
0: break
0: end if
0: end for
0: end for
0: end for
0: end if
0: if i still cannot be packed then
0: Mark i as unfit and add to b.unfitted_items
0: end if
0: end for=0

49

The proposed approach

The constructive phase relies on the concept of maximal spaces, that was introduced on
the previous chapter. The pivot point, chosen within a maximal space, ensures compact
and stable placements.

5.2.1 Improvement Phase: Refining the Solution

Building on the initial solution, the improvement phase employs a Variable Neighborhood
Descent (VND) approach [29]. The objective is to explore multiple neighborhoods of the
current solution to identify configurations that reduce the number of bins or improve
packing density. Bins with utilization below a predefined threshold are selected. Items
from these bins, along with any unpacked items, are repacked using the constructive
heuristic. Random percentages k ∈ [30, 90] of items may also be removed and reprocessed.
Two primary neighborhood structures are defined:

1. Repacking Underutilized Bins: Bins with utilization u < 0.5 are paired for
repacking. Items are removed and repacked using a greedy heuristic to optimize
space utilization.

2. Item Reordering: Items within a bin are reordered based on stability and space
efficiency metrics to identify alternative packing configurations.

For solutions with more than two bins, pairs of bins are selected, emptied, and
repacked with the goal of creating complementary configurations. Items that were previ-
ously difficult to pack are prioritized during this process. The neighborhoods are explored
in a sequential manner (VNDseq), restarting from the first neighborhood only when
no improvement is achieved. This ensures a comprehensive exploration of the solution
space. [38] The VND algorithm iteratively applies neighborhood structures, accepting a
new solution only if it improves the overall objective:

U =
∑︁

i∈PackedItems vi∑︁
b∈Bins Vb

(5.5)

The process begins by initializing an iteration counter and tracking the last improve-
ment step. The algorithm performs a predefined number of iterations, stopping early if
no improvements have been made in a given number of consecutive steps. During each
iteration, the algorithm attempts to refine the solution by applying a set of predefined
neighborhood moves. Each neighborhood technique is explained in detail below.

Removing the Least Occupied Bins

This technique identifies and removes the least occupied bin if it is significantly less filled
than the other bins. The algorithm first determines the bin with the lowest utilization
and checks if its utilization is below 40%. If this condition is met, the items from the
underfilled bin are repacked into the remaining bins. If repacking is successful, the bin is
cleared and removed from the solution, reducing the total number of bins used.

50

5.2 – Constructive Phase: Initial Packing Strategy

Selective Removal from Bins

In this method, a small fraction of items is selectively removed from the least occupied
bin to test whether they can be repacked more efficiently. The bin with the lowest volume
utilization is identified, and a fixed percentage (typically 20%) of items are removed from
it. These items are then attempted to be repacked into other bins. If successful, this
improves the overall packing efficiency and balances the load across bins.

Splitting Bins

This strategy attempts to split bins based on a randomly selected spatial dimension
(width, height, or depth). The algorithm selects a bin with nonzero utilization and
determines a splitting axis. Items that occupy more than half of the bin’s space along the
selected axis are removed and repacked into other bins. This technique helps exploring
alternative packing arrangements that might lead to better space utilization.

Compacting Bins

This neighborhood move focuses on consolidating items into fewer bins by redistributing
the contents of underutilized bins. Bins are sorted by their utilization in descending order,
and those with utilization below 50% are considered for compaction. The algorithm iter-
ates through the items in these bins and attempts to repack them into higher-utilization
bins. If an item is successfully relocated, it is removed from its original bin. If a bin
becomes empty after this process, it is removed, reducing the overall bin count.

Pairwise Bin Merging

Pairwise bin merging is an aggressive optimization strategy that attempts to merge two
existing bins into a single bin while minimizing unnecessary repacking. The algorithm
checks whether the combined volume of two bins can fit into one without exceeding its
capacity. If feasible, items from both bins are repacked into a single bin, and the original
bins are cleared. This technique is particularly useful in reducing fragmentation and
improving packing density.

To evaluate the effectiveness of each move, the algorithm maintains a deep copy of
the current best packing solution. The initial solution is evaluated and compared to the
others solutions using various metrics stored in a dictionary, structured as follows:

• Total number of bins (total_bins): The total number of bins used in the so-
lution.

• Total volume (total_volume): The cumulative volume of all bins.

• Packed volume (packed_volume): The total volume occupied by successfully packed
items.

51

The proposed approach

• Utilization percentage (utilization_percent): The proportion of occupied
bin space, calculated as:

utilization_percent =
(︃packed_volume

total_volume

)︃
× 100 (5.6)

• Total number of items (total_items): The sum of packed and unpacked items.

• Packed items (packed_items): The number of items that have been successfully
placed within bins.

• Packing efficiency percentage (packing_efficiency_percent): The propor-
tion of items successfully packed, computed as:

packing_efficiency_percent =
(︃packed_items

total_items

)︃
× 100 (5.7)

• All items packed (all_items_packed): A boolean flag indicating whether all
items have been successfully packed.

• Number of unfit items (unfit_items): The count of items that could not be
placed in any bin.

These metrics allow the algorithm to compare different packing configurations and
determine whether an improvement has been achieved. The objective is to maximize
space utilization and packing efficiency while minimizing the number of bins used.

The evaluation function provides insight into how well the packing configuration per-
forms relative to the optimization goals.

Each neighborhood move is applied sequentially. Before executing a move, a deep
copy of the current packing solution is created to ensure that changes can be reverted
if necessary. Once a move is applied, the resulting configuration is re-evaluated, and its
performance metrics are compared against the best-known solution. If the new solution
is strictly better, it is accepted, and the best solution is updated. If the new solution
is not strictly better but falls within an acceptable threshold based on a random ac-
ceptance probability, it may still be chosen to prevent the algorithm from getting stuck
in local optima. If a neighborhood move fails to improve the solution, the algorithm
proceeds to the next neighborhood move in the list. However, if a successful improve-
ment is found, the process resets to the first neighborhood move, allowing for further
exploration of alternative configurations. This adaptive mechanism ensures that the al-
gorithm continuously searches for improvements rather than following a rigid sequence
of moves. The improvement phase also includes mechanisms for tracking execution times
for each step. The algorithm logs the time required for deep copying solutions, evaluating
packing configurations, applying neighborhood moves, and updating the best solution.
These timing statistics provide insights into computational performance and potential
bottlenecks in the optimization process. At the end of the improvement phase, the best
solution discovered is restored, ensuring that the final configuration represents the most
optimized packing arrangement obtained during the iterations. By systematically refining

52

5.2 – Constructive Phase: Initial Packing Strategy

the packing layout, adjusting item placements, and exploring alternative configurations,
the improvement phase enhances the efficiency and effectiveness of the algorithm.

Algorithm 10 ImproveSolution Function
0: Input: Current packing solution S
0: Output: Boolean indicating whether an improvement was found
0: best_solution← S
0: best_metrics← EvaluateSolution(S)
0: improved← False
0: Define neighborhood moves: N = {RemoveLeastOccupiedBins, SelectiveRemoval, SplitBins, etc.}
0: neighborhood_index← 0
0: while neighborhood_index < |N | do
0: move_function← N [neighborhood_index]
0: current_solution← DeepCopy(S)
0: current_metrics← EvaluateSolution(current_solution)
0: move_successful← move_function()
0: if move_successful then
0: new_metrics← EvaluateSolution(S)
0: if IsNewSolutionBetter(new_metrics, best_metrics) then
0: best_solution← DeepCopy(S)
0: best_metrics← new_metrics
0: improved← True
0: neighborhood_index← 0 {Restart neighborhood search}
0: else
0: With probability 0.1, accept the new solution randomly
0: if Accepted then
0: best_solution← DeepCopy(S)
0: best_metrics← new_metrics
0: improved← True
0: neighborhood_index← 0
0: else
0: S ← current_solution {Revert to previous state}
0: neighborhood_index← neighborhood_index + 1
0: end if
0: end if
0: else
0: neighborhood_index← neighborhood_index + 1 {Move to next neighborhood}
0: end if
0: end while
0: Restore best solution: S ← best_solution
0: Return improved =0

53

The proposed approach

5.2.2 Diversification Phase: Avoiding Local Optima

Following several iterations without improvement, the algorithm enters a diversification
phase. This phase avoids the algorithm getting trapped in local optima by prioritizing
items that frequently remain unpacked. Items that remain unpacked most frequently are
identified using a frequency vector F (i), where:

F (i) =
T∑︂

t=1
I(i ∈ UnpackedItemst), (5.8)

and I is an indicator function. These items are prioritized for placement in subsequent
iterations, ensuring a broader exploration of the search space [39]. Only one difficult-to-
pack item is placed in each bin during this phase to prevent poor solutions. Unpacked
items are sorted adaptively based on their frequency and priority:

SortKey(i) = (F (i), pi,−vi) (5.9)

This approach increases the likelihood of packing previously problematic items.

5.2.3 Stopping Criteria

The algorithm terminates when one of the following criteria is met:

• Maximum iterations reached.

• No further improvement in utilization.

• All items are successfully packed.

5.2.4 Key Innovations and Contributions

The proposed algorithm integrates several novel elements and builds upon the contri-
butions of key researchers in the field. Maximal space management extends the work
of Parreño et al. [37] with dynamic recalculations to minimize fragmentation. Dynamic
randomization implements Reactive GRASP principles [36] to balance exploration and
exploitation. Stability and load-bearing checks introduce explicit constraints for stabil-
ity, ensuring feasible and practical packing solutions. Neighborhood diversity combines
neighborhood structures inspired by Hansen and Mladenović [29] and Crainic et al. [15]
to achieve robust improvements.

54

Chapter 6

Experimental Results and
Analysis

6.0.1 Challenges in Comparing 3D Bin Packing Algorithms

Evaluating and comparing algorithms for the 3D-BPP presents numerous challenges
due to the diversity of problem constraints, optimization objectives, and computational
methodologies. While the literature provides a vast range of heuristic, metaheuristic, and
hybrid approaches, meaningful comparisons are hindered by inconsistencies in benchmark
datasets, performance metrics, and problem formulations.

One of the primary challenges in comparing 3D-BPP algorithms arises from the var-
ious constraints considered in different studies. Many existing approaches focus solely
on geometric constraints such as item dimensions and bin capacities, whereas real-world
applications impose additional practical constraints. For instance, our algorithm incor-
porates weight distribution, fragility, item priority, and incompatibility, which are often
overlooked in other works. According to [39], only a limited number of studies address
load-bearing constraints, despite their significance in industrial applications.

Moreover, the literature reveals a lack of standardized constraint sets. Some al-
gorithms allow arbitrary item orientations, while others restrict rotations to maintain
structural integrity. Additionally, [14] highlights that real-world problems frequently in-
volve stacking constraints, stability requirements, and weight limits, yet many benchmark
instances fail to include these aspects.

Benchmark Dataset Inconsistencies

Standardized datasets are crucial for fair algorithmic comparisons, yet the 3D-BPP lit-
erature lacks universally accepted benchmarks. Many studies rely on synthetic instances
with randomly generated item sizes, while others utilize real-world datasets that intro-
duce additional complexity. Furthermore, some benchmark datasets, such as those used
in [40], focus solely on packing efficiency without considering real-world constraints.

Furthermore, algorithmic implementations may leverage different optimization tech-
niques, such as simulated annealing, tabu search, or genetic algorithms [41], each with
distinct computational trade-offs. The selection of stopping criteria, parameter tuning,

55

Experimental Results and Analysis

and search strategies can significantly impact results, making direct comparisons chal-
lenging.

Future Directions for Standardized Comparisons

To enhance comparability among 3D-BPP algorithms, future research should focus on
developing standardized benchmark datasets that incorporate practical constraints, such
as weight distribution, fragility, and item compatibility. Moreover, consensus on evalua-
tion metrics is needed to ensure that comparisons are meaningful across different studies.
Initiatives such as the ones suggested by [42] advocate for open-access repositories of
benchmark instances, allowing researchers to evaluate algorithms under consistent con-
ditions.

Additionally, reporting detailed experimental conditions, including computational re-
sources and parameter settings, can improve reproducibility and facilitate fair compar-
isons. By addressing these challenges, the research community can move toward more
robust and reliable evaluations of 3D-BPP algorithms.

6.1 Dataset Description

The experimental evaluation of the proposed algorithm in this thesis has been conducted
using a combination of standard benchmark datasets and custom-designed instances. The
standard dataset used in this study is a well-known benchmark proposed by Osaba et
al. [43], which consists of 12 instances designed to capture various complexities inherent to
real-world 3D-BPP scenarios. Additionally, a set of custom test instances was generated
to evaluate the algorithm’s performance under extreme conditions.

6.1.1 Benchmark Dataset

The benchmark dataset consists of 12 different instances, each characterized by a varying
number of items (ranging from 38 to 53), bin sizes, weight constraints, package affinity
requirements, ordering preferences, and load balancing constraints. These instances were
originally developed to assess quantum solvers but have been adapted here for heuristic-
based optimization.

• Instance Generation: All packages composing each instance have been randomly
generated using the in-house instance generator, Q4RealBPP-DataGen. This ap-
proach avoids any potential bias inherent in manual instance creation and ensures
a diverse and representative sample of real-world problems.

• Synthetic Data Generation Script: Along with the 12 benchmark instances, the
dataset includes a Python script that enables the generation of synthetic datasets.
This tool allows researchers to create customized instances for benchmarking pur-
poses, thereby facilitating the extension and adaptation of the benchmark to various
research needs.

56

6.1 – Dataset Description

• Open Source Availability: Both the benchmark instances and the Q4RealBPP-DataGen
script are released as open source. This not only allows for transparency and re-
producibility but also enables modifications or extensions to accommodate other
variants of the Bin Packing Problem, further promoting research in this field.

• Baseline Solver Results: The dataset package includes results obtained using the
Leap Constrained Quadratic Model Hybrid Solver (LeapCQMHybrid) by D-Wave.
These results are provided in both image and text formats, serving as a valuable
baseline for comparing the performance of other solvers.

Each of the 12 instances in the dataset incorporates several realistic constraints that
reflect industrial requirements:

• Item and Bin sizes: As a three-dimensional problem, each instance defines the
sizes of bins ([X, Y, Z]) and the corresponding dimensions (length, width, height) for
the items. An item can be packed only if it fits within these predefined dimensions.

• Overweight Restrictions: In certain instances, every item has an associated
weight, and bins have a maximum weight capacity. This ensures that the total
weight of the items packed in a bin does not exceed its capacity.

• Affinities Among Package Categories: The dataset introduces both positive
affinities and incompatibilities. Items with a positive affinity are required to be
packed together, whereas items that are incompatible must be placed in separate
bins.

• Preferences in Relative Positioning: The benchmark allows for the specifica-
tion of relative positioning rules. For example, load-bearing items might be required
to be placed beneath lighter items (with respect to the Z-axis), or items may be
sorted along the X-axis to reflect a delivery schedule.

• Load Balancing: Certain instances also incorporate load balancing constraints
by specifying a center of mass. This encourages a balanced distribution of items
within the bin, contributing to overall stability.

The details of each benchmark instance are provided in Table 6.1.

6.1.2 Integration with Custom High-Density Packing Scenarios

In addition to the benchmark instances, custom instances have been created to test the
algorithm’s ability to improve an initial solution by repacking items and exploring the
neighborhood. For these custom cases:

• High-Density Packing: The custom instances simulate scenarios where bins are
densely packed, with item sizes approaching the bin capacities. This stresses the
algorithm’s capability to exploit minimal available space.

57

Experimental Results and Analysis

Table 6.1. Characteristics of Benchmark Dataset Instances

Instance Items Dimensions Weight Limit Affinities Ordering Load Balance
3dBPP_1 51 Yes No No No No
3dBPP_2 51 Yes Yes No No No
3dBPP_3 52 Yes No No No No
3dBPP_4 52 Yes No No Yes No
3dBPP_5 53 Yes No No No No
3dBPP_6 53 Yes No Yes No No
3dBPP_7 46 Yes No No No No
3dBPP_8 46 Yes No Yes No No
3dBPP_9 47 Yes No No No Yes
3dBPP_10 51 Yes No No No Yes
3dBPP_11 38 Yes Yes Yes Yes Yes
3dBPP_12 38 Yes Yes Yes Yes Yes

• Relaxed Constraints: To focus on repacking performance, some constraints (e.g.,
fragility and strict weight limits) are relaxed. This allows the algorithm to concen-
trate on optimizing the spatial arrangement and improving the overall packing
efficiency.

• Neighborhood Exploration: The high-density scenarios serve as a testing ground
for the neighborhood exploration mechanisms in the Grasp/VND algorithm. By
starting from an initial, densely packed solution, the algorithm is challenged to
identify subtle repositioning opportunities that can lead to significant performance
improvements.

Each instance was designed to capture different packing challenges by varying the
number of items and the distribution of their dimensions and weights. The bins were
kept constant in size at 1200×1200×1200 units, ensuring that variations in performance
could be attributed solely to item configurations rather than bin capacity changes. The
instances are described as follows:

• Instance 1: 50 items with moderate size variations, having dimensions ranging
from (120,150,160) to (300,400,320) units. The weight distribution was relatively
uniform, between 10 and 55 units.

• Instance 2: 60 items with a wider range of sizes, including elongated structures
such as (150,250,200). The weight distribution varied more significantly, requiring
better balance optimization.

• Instance 3: 70 items, including a large number of small objects (e.g., (50,50,50)
units), creating a challenge in efficiently utilizing available space.

• Instance 4: 80 items with heavier objects, some weighing up to 100 units. Larger
items such as (900,900,900) were introduced to test weight distribution handling.

58

6.2 – Performance Metrics and Evaluation Methods

• Instance 5: 90 items with extreme variations in weight. Small objects could be
significantly heavier than larger ones, adding complexity to weight balancing.

• Instance 6: 100 items with diverse dimensions, including highly asymmetric ob-
jects such as (380,470,390). Strategic placement was required to minimize wasted
space.

• Instance 7: 110 items with a mixture of extremely light and extremely heavy
objects. Weight balancing played a crucial role in optimizing the packing configu-
ration.

• Instance 8: 115 items featuring many long, thin items (e.g., (210,240,280)). This
case required careful orientation decisions to improve bin utilization.

• Instance 9: 120 items with a higher number of irregularly shaped packages, such
as (410,500,420). The challenge was to find optimal stacking configurations.

• Instance 10: 95 items with a balanced distribution in terms of size and weight.
This test case served as a baseline to evaluate general algorithmic efficiency.

• Instance 11: 105 items where items of similar dimensions had significantly different
weights (e.g., (330,290,210) could weigh 55 or 80 units). This required the algorithm
to adapt its weight management strategy dynamically.

• Instance 12: 110 items simulating real-world warehouse packing scenarios, includ-
ing pallet-sized objects and small cubic packages.

• Instance 13: 120 items representing the most complex case, with the highest
variation in item dimensions. High-density items such as (350,310,230) required
careful spatial optimization.

Overall, the combination of the benchmark dataset and the custom high-density in-
stances offers a comprehensive framework for assessing the effectiveness of the proposed
heuristic approach. This dual strategy not only facilitates performance evaluation on
standardized, real-world inspired cases but also challenges the algorithm under extreme
conditions, thus highlighting its potential for practical applications in industrial settings.

6.2 Performance Metrics and Evaluation Methods

The performance of the proposed heuristic algorithm for the 3D-BPP is evaluated using
key metrics that assess both solution quality and computational efficiency. Given its
application in a startup setting, execution time is a critical factor alongside packing
efficiency.

The primary metric is the total packed volume, representing the sum of item volumes
successfully placed in bins. Higher packed volume indicates better space utilization. The
utilization percentage measures space efficiency and is calculated as:

59

Experimental Results and Analysis

U = Vp

Vb
× 100 (6.1)

where Vp is the total packed volume and Vb is the total available volume. A higher U
implies improved space utilization.

Another key metric is the total number of bins used, crucial for minimizing logistics
and operational costs. A balance must be struck between maximizing utilization and
minimizing bin usage.

Additionally, the total number of packed items and total unfitted items are
recorded, along with their corresponding total unfitted volume, to track packing ef-
fectiveness.

To ensure robustness, multiple test runs are conducted, with results averaged to ac-
count for variations.

Scalability is evaluated by testing the algorithm on larger datasets, measuring how
execution time and packing efficiency change with problem size.

Overall, this evaluation framework ensures a balance between solution quality and
efficiency, aligning with real-world performance requirements.

6.3 Analysis of Results

This section presents a comprehensive analysis of the experimental results obtained by
comparing our proposed heuristic algorithm with the First Fit (FF) and Simulated An-
nealing (SA) methods for the Three-Dimensional Bin Packing Problem (3D-BPP). The
analysis is structured into several sections, including an overview of the experimental
setup and performance metrics, an examination of the initial solution and its subsequent
improvement through local search, a detailed graphical representation of the results, and
a statistical discussion of the findings.

6.4 Experimental Setup and Performance Metrics

All experiments were conducted under controlled conditions on a dedicated machine (Intel
Core i7, 8 GB RAM). The test instances include both benchmark cases and custom high-
density scenarios generated using Q4RealBPP-DataGen. Each algorithm was executed
multiple times to mitigate variability, and the results were averaged over these runs.

The performance of the algorithms is evaluated based on the following key metrics:

• Total Packed Volume (Vp): The sum of the volumes of all items successfully
placed into bins.

• Utilization (U): The efficiency of space usage, calculated as

U = Vp

Vb
× 100,

where Vb is the total available volume of the bins.

60

6.4 – Experimental Setup and Performance Metrics

• Total Bins Used (B): The number of bins required to pack the items.

• Total Items Packed (Ip): The number of items that have been successfully
packed.

• Execution Time (T): The time, measured in seconds, required to compute the
solution.

In addition, the evolution of the solution from the initial configuration to the improved
state after the local search phase is tracked to assess how additional computation time
translates into enhanced packing efficiency.

61

Experimental Results and Analysis

6.5 Parameter Tuning Process
The effectiveness of the GRASP/VND packing algorithm is heavily influenced by its pa-
rameter choices. Several key hyperparameters control how the items are sorted, how they
are placed into bins, and how the local search mechanism refines the solution. The tun-
ing process was conducted iteratively, balancing computational efficiency with packing
effectiveness. Initial tests demonstrated that certain constraints, such as stability re-
quirements and extensive improvement iterations, significantly increased execution time
without substantial gains in solution quality. To address this, several adjustments were
made to improve the trade-off between performance and efficiency, particularly for the
custom dataset, where some constraints such as weight limitations and item priority were
relaxed to better reflect practical applications.

The primary parameters used in the algorithm are:

• bigger_first: A boolean that determines whether bins and items should be sorted
in descending order of volume before packing. Sorting by larger volumes first helps
prioritize the placement of bulkier items early in the process.

• distribute_items: Controls whether items should be evenly distributed across bins
rather than greedily packed into the first available bin. This can lead to better load
balancing.

• fix_point: Determines whether items are placed at a fixed reference point within
the bin during packing, reducing computational overhead for placement validation.

• check_stable: If enabled, ensures that placed items have sufficient support to main-
tain stability, preventing unrealistic or infeasible packings.

• support_surface_ratio: Specifies the minimum fraction of an item’s base that must
be in contact with another object or the bin’s surface to be considered stable.

• number_of_decimals: Defines the precision level for numerical calculations. A
higher number of decimals improves accuracy but increases computational com-
plexity.

• max_iterations: Sets the maximum number of iterations for the improvement phase,
determining how extensively the algorithm refines initial solutions through VND.

One of the primary adjustments made was to prioritize larger items first by setting
bigger_first=True. This sorting strategy ensures that bulkier objects are placed early in
the process, reducing the likelihood of fragmentation and making more effective use of
available space. Without this sorting step, smaller items often occupy crucial packing
regions, forcing larger objects to be placed inefficiently or rejected altogether. Addition-
ally, distribute_items=True was enabled to ensure a more balanced allocation of items
across bins. This modification prevents overloading specific bins and mitigates uneven
load distribution, which is especially relevant when weight constraints are considered. Al-
though weight limitations were relaxed in the custom dataset, the distribution mechanism
remains beneficial for enhancing the practical feasibility of the packing solutions.

62

6.5 – Parameter Tuning Process

The handling of stability constraints also required careful calibration. In the initial
tuning phase, check_stable=True with a high support_surface_ratio (above 0.5) led to
a sharp increase in rejected placements, causing unnecessary bin usage. While stability
is an essential consideration, particularly in real-world applications where items should
not topple, a rigid enforcement of support constraints resulted in excessive computational
overhead. Through experimentation, support_surface_ratio was lowered to 0.25, allowing
for more flexible placement while still maintaining reasonable stability. Furthermore,
check_stable was ultimately disabled in the custom dataset to reduce execution time, as
the dataset did not include scenarios where precise stability calculations were critical.
The fix_point parameter was retained, ensuring that items are placed at a fixed reference
point within the bin to streamline placement verification and enhance computational
efficiency.

The iterative improvement phase plays a key role in refining the packing solution.
Initially, the max_iterations parameter was set to 1000, but it became evident that
excessive iterations provided diminishing returns. While an extended local search can
marginally improve the packing configuration, the computational cost quickly escalates.
To address this, an adaptive stopping criterion was introduced, where the improvement
phase terminates if no better solution is found after five consecutive iterations. This
strategy significantly reduces runtime while preserving solution quality. Ultimately, for
the custom dataset, max_iterations was set to 10, relying on the initial placement strategy
without extensive refinement, as the relaxed constraints diminished the need for aggressive
local search improvements.

Another critical aspect of parameter tuning was managing computational trade-offs.
Increasing constraints, such as enforcing strict stability checks or running excessive it-
erations, prolonged execution time without yielding substantial packing efficiency gains.
A balance was achieved by selecting a parameter configuration that ensured high space
utilization while keeping runtime manageable. The final configuration used for the custom
dataset was: bigger_first=True, distribute_items=True, fix_point=True, check_stable=False,
support_surface_ratio=0.25, number_of_decimals=3, and max_iterations=10. This setup
maintains efficient packing without unnecessary computational overhead, ensuring that
the algorithm performs optimally given the adjusted dataset constraints. Future im-
provements could explore dynamic parameter tuning, where algorithm settings adapt to
instance characteristics in real time, further enhancing robustness and efficiency.

63

Experimental Results and Analysis

Figure 6.1. Impact Of Iteration Count On Execution Time

6.6 Results and Analysis

The experiments were conducted on a series of test instances (Tests 1 through 12) where
key performance metrics were recorded for each algorithm. These metrics include exe-
cution time (in seconds), the number of bins used, and the utilization percentage (i.e.,
the ratio of the total packed volume to the available bin volume). To facilitate a clearer
presentation, the performance data is summarized in Table 6.6.

Summary of Performance Metrics for GRASP/VND, FFD, and SA across Tests 1-12.
The table above presents a concise summary of the performance metrics. However,

to truly understand the efficacy of the GRASP/VND algorithm, it is imperative to an-
alyze these results in depth, discussing the underlying trends, strengths, and potential
weaknesses.

One of the most striking observations is the consistent bin consolidation achieved
by the GRASP/VND algorithm. In almost all tests, GRASP/VND manages to pack
items using only a single bin, with the only exception being Test 5 where two bins were
employed. This is a significant advantage over FFD, which frequently requires two bins to
accommodate the same set of items. In a real-world scenario, reducing the number of bins
translates directly into lower logistical and storage costs, as well as improved operational
efficiency. SA, while competitive in some tests, also sometimes resorts to using two bins,

64

6.6 – Results and Analysis

Table 6.2. Performance Comparison of GRASP/VND, FFD, and SA on the
Benchmark Dataset

TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 TEST 6 TEST 7 TEST 8 TEST 9 TEST 10 TEST 11 TEST 12

GRASP/VND
Exec. time 182.23 191.09 165.32 87.29 181.84 158.97 132.33 133.07 142.14 138.13 212.63 66.19
Bins Used 1 1 1 1 2 1 1 1 1 1 1 1
Utilization (%) 64.58 60.19 63.68 45.39 33.23 80.2 75.18 72.14 47.29 56.83 78.12 66.17

FFD
Exec. time 153.29 67.38 102.53 53.38 90.29 68.29 99.14 83.13 101.58 126.24 82.4 89.36
Bins Used 2 1 2 1 2 1 1 1 1 2 2 1
Utilization (%) 19.54 22.9 31.53 16.71 17.68 34.28 42.67 39.87 17.16 19.45 18.76 41.34

SA
Exec. time 139.09 148.29 254.51 200.33 202.12 255.53 171.15 121.59 162.35 153.59 149.67 175.01
Bins Used 1 1 2 1 2 1 1 1 1 2 1 1
Utilization (%) 55.47 60.23 33.12 55.23 34.58 75.23 81.98 49.16 35.44 22.49 62.59 57.87

thereby reinforcing the superior space consolidation capability of GRASP/VND.
The utilization percentage further supports the effectiveness of the GRASP/VND

algorithm. Utilization reflects how efficiently the available bin space is used, and in
this regard, GRASP/VND consistently outperforms FFD and often matches or exceeds
the performance of SA. For instance, in Test 6, GRASP/VND achieves an outstanding
80.20% utilization compared to 34.28% for FFD, and even SA, despite reaching 75.23%,
shows more variability across different tests. High utilization percentages are indicative
of an algorithm’s ability to pack a larger volume of items within the constraints of the
bin sizes, which is critical in applications where maximizing space is a priority.

Execution time is another critical metric, especially in environments where rapid
decision-making is essential. Although GRASP/VND does not always register the lowest
execution times—occasionally being outperformed by FFD in tests such as Test 2 (191.09
s vs. 67.38 s) and Test 4 (87.29 s vs. 53.38 s)—its execution times are competitive when
considering the quality of the solution delivered. SA, in contrast, shows a high degree
of variability in execution time, with some tests taking significantly longer (e.g., 254.51
s in Test 3) without a consistent advantage in terms of utilization or bin reduction.
The trade-off observed here is a classic one in optimization: faster execution times can
sometimes result in lower-quality solutions, as seen with FFD. GRASP/VND strikes a
more favorable balance by achieving high utilization and minimal bin usage, even if the
execution time is slightly longer in certain tests.

An additional strength of the GRASP/VND algorithm is its robustness across dif-
ferent test instances. The algorithm demonstrates a consistent performance profile, par-
ticularly in terms of bin usage and utilization, across a wide range of test conditions.
This robustness is essential for industrial applications where input data may vary widely
in characteristics. In contrast, FFD tends to show lower performance consistency, with
significant fluctuations in utilization, and SA, while sometimes competitive, exhibits un-
predictability in both execution time and utilization.

Despite these strengths, there are areas where the GRASP/VND algorithm may be
further optimized. The execution time, while acceptable given the quality of the results,
does show room for improvement. In tests where the computational time is considerably
higher (e.g., Test 11 with 212.63 s), further optimization of the local search procedures

65

Experimental Results and Analysis

or parallelization strategies could potentially yield faster convergence without sacrificing
the quality of the solution. Additionally, although the algorithm is highly effective in
minimizing the number of bins used, there are a few test cases (such as Test 5) where
the solution required two bins. A deeper analysis of these specific instances may reveal
particular characteristics or constraints that challenge the algorithm, providing avenues
for targeted improvements.

In summary, the detailed analytical examination of the results reveals that the GRASP/VND
algorithm offers significant advantages in terms of space consolidation and utilization effi-
ciency. Its capacity to consistently pack items in a single bin and achieve high utilization
percentages makes it an attractive solution for practical applications where cost efficiency
and optimal use of space are critical. While there is a trade-off in execution time in some
instances, this is offset by the superior quality of the solution. The comparative analysis
clearly demonstrates that the GRASP/VND algorithm not only meets the demands for
high-quality packing solutions but also does so in a manner that is competitive with,
and in many cases superior to, established methods such as FFD and SA. This balance
of efficiency, quality, and consistency positions the GRASP/VND algorithm as a highly
effective tool for real-world three-dimensional bin packing applications.

6.6.1 Performance Analysis on the Custom Dataset

The performance of the GRASP/VND, FFD, and SA algorithms was also evaluated
on a custom dataset, presenting a different set of packing challenges compared to the
benchmark dataset. Table 6.6.1 summarizes the results obtained across various test
instances, measuring execution time, bin usage, and utilization efficiency.

Table 6.3. Performance Comparison of GRASP/VND, FFD, and SA on the Custom Dataset

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12

GRASP/VND
Exec. time (s) 36.66 49.26 35.48 39.21 103.03 40.88 134.44 73.15 53.03 19.94 83.83 164.63
Bins Used 5 6 6 3 6 7 6 4 3 3 1 1
Utilization (%) 56.38 53.87 46.92 20.2 42.4 46.9 31.45 16.53 35.26 23.71 21.82 58.05

FFD
Exec. time (s) 22.96 27.71 18.89 25.27 45.82 18.86 55.48 30.67 24.88 8.86 38.4 80.12
Bins Used 7 8 8 5 7 8 7 6 5 4 1 2
Utilization (%) 29.78 38.95 35.16 14.62 32.12 38.95 28.03 18.38 15.24 15.39 28.95 37.49

SA
Exec. time (s) 77.82 101.02 65.79 78.18 125.21 83.45 146.32 95.74 96.85 32.37 112.81 262.76
Bins Used 6 5 7 4 6 7 5 6 4 4 2 2
Utilization (%) 47.39 72.34 33.86 17.5 40.19 40.24 40.76 11.87 28.48 22.45 17.58 51.3

One of the key observations from these results is the increased difficulty of the packing
instances in the custom dataset, which leads to higher bin usage compared to the bench-
mark dataset. Unlike the previous tests where GRASP/VND often packed all items into a
single bin, the custom dataset presents significantly more challenging instances, requiring
multiple bins in most cases. Despite this, GRASP/VND consistently outperforms FFD
in terms of bin efficiency. For example, in Test 11, GRASP/VND successfully packed
all items into a single bin, whereas FFD required two bins, reaffirming its superior ability
to consolidate space.

66

6.7 – Analysis of Initial and Improved Solutions

The utilization percentages further demonstrate GRASP/VND’s advantage in space
efficiency. Although the values are generally lower than in the benchmark dataset,
GRASP/VND achieves significantly better utilization than FFD. For instance, in Test
6, GRASP/VND attains a utilization rate of 46.9%, which is much higher than FFD’s
18.86%. This pattern is consistently observed across multiple tests, highlighting GRASP/VND’s
robustness in maximizing bin space under more constrained conditions.

Execution time remains an important factor in evaluating the feasibility of these al-
gorithms in practical applications. While FFD generally achieves lower execution times,
GRASP/VND demonstrates a favorable trade-off between computational time and so-
lution quality. In Test 4, for example, GRASP/VND runs in 39.21s, whereas FFD
completes in 25.27s. However, this increase in computation time allows for significantly
better packing efficiency. SA, in contrast, exhibits high variability in execution time, with
some tests requiring a significantly longer runtime, such as Test 7, which takes 134.44s.

An important takeaway is that GRASP/VND remains the most effective algorithm
in terms of bin minimization and utilization, despite the increased complexity of the
dataset. However, certain instances reveal opportunities for improvement. In Test 5,
for example, GRASP/VND required six bins, indicating a scenario where the heuristic
might struggle to optimize packing efficiency. Investigating such edge cases could lead to
further refinements in the local search strategies to enhance performance in particularly
challenging instances.

The results from the custom dataset further validate the strengths of GRASP/VND
in solving complex bin packing problems. While the dataset presents greater challenges,
leading to a higher number of bins required across all methods, GRASP/VND consis-
tently achieves superior space utilization and bin consolidation. Its ability to outperform
FFD and SA in most instances makes it a highly competitive choice for real-world appli-
cations where optimizing storage space is crucial. Future work may focus on refining the
algorithm’s search strategies to improve performance in particularly difficult test cases
while maintaining competitive execution times.

6.7 Analysis of Initial and Improved Solutions

As observed in the results tables for both the Benchmark and Custom datasets, processing
times vary significantly, with our algorithm sometimes requiring excessive time to produce
a high-quality solution. Since this algorithm was originally designed for fast applicability
in practical scenarios, we aimed to provide users with control over the trade-off between
speed and solution quality. Users can prioritize either rapid computation, yielding a
quick but potentially suboptimal solution, or allow for longer processing to achieve a
more optimized result.

Our algorithm follows a two-stage approach: it first generates an initial solution
rapidly, ensuring near-instant usability for time-sensitive applications, and then refines
it through local search. This refinement phase systematically explores the solution’s
neighborhood to identify and incorporate further improvements. Figure 6.9 illustrates the
improvement curve, where the x-axis represents elapsed computation time and the y-axis
denotes cumulative packed volume (or utilization). The curve highlights that substantial

67

Experimental Results and Analysis

improvements are achieved early on, with further refinements occurring progressively
over extended processing time. This approach ensures that a usable solution is always
available immediately while allowing for additional optimization when time constraints
permit.

Given that this algorithm was developed for integration into Insightfully, our startup
focused on data-driven optimization in logistics and transportation, we prioritized a bal-
ance between computational efficiency and practical performance. Our approach enhances
algorithmic decision-making while offering users the flexibility to adjust computational
strategies based on their specific operational constraints. This adaptability is crucial in
real-world applications, where decision-makers must navigate the trade-off between speed
and solution quality to maintain efficiency while achieving optimal outcomes.

VND - 1 VND - 2

VND - 3 VND - 4

Figure 6.2. Stepwise visualization of VND Packing.

68

6.7 – Analysis of Initial and Improved Solutions

FFD - 1 FFD - 2

FFD - 3 FFD - 4

FFD - Final

Figure 6.3. Stepwise visualization of First Fit Decreasing Packing.

6.7.1 Execution Time Comparison

Figure 6.4 presents a bar chart comparing the average execution time (in seconds) for FF,
SA, and our proposed algorithm. This figure shows that the proposed algorithm is slower
than other traditional algorithms such as FFD but at the same time is capable of produc-
ing a good solution under 180 seconds. The execution times of the three algorithms on the
custom dataset show that FFD consistently exhibits the shortest execution times, with
an average execution time of approximately 32.98 seconds across all tests, GRASP/VND

69

Experimental Results and Analysis

has moderate execution times, averaging 64.22 seconds, and SA is the slowest method,
with an average execution time of 106.42 seconds, demonstrating its high computational
cost; FFD consistently outperforms both GRASP/VND and SA in terms of execution
time, making it preferable for time-sensitive applications, GRASP/VND provides a bal-
ance between execution time and quality of solution, making it a feasible choice when
computational resources are available, and SA incurs the highest computational cost,
likely due to its iterative nature and probabilistic search mechanism. The execution
time comparison across the custom and benchmark datasets reveals distinct performance
characteristics among the three algorithms, with FFD consistently demonstrating the
fastest execution times due to its greedy heuristic nature, GRASP/VND showing mod-
erate execution times as a result of its iterative improvement strategy, and SA exhibiting
the highest computational cost due to its probabilistic exploration of the solution space;
while FFD is the most efficient in terms of runtime, its solution quality may not always be
optimal, whereas GRASP/VND strikes a balance between execution time and effective-
ness, and SA, despite being computationally intensive, can yield high-quality solutions
at the cost of increased processing time, making it less suitable for time-sensitive ap-
plications; however, it is important to acknowledge that this analysis is not exhaustive,
as it focuses solely on comparing GRASP/VND with FFD and SA, while other poten-
tially more efficient algorithms exist but were either not easily implementable or not open
source, limiting their inclusion in our study, which highlights the need for future work to
explore additional algorithms and compare their performance under similar conditions.

Figure 6.4. Average Execution Time Comparison for FF, SA, and the Proposed Algorithm.

6.7.2 Utilization and Packed Volume

Figure 6.8 illustrates both utilization percentage and total packed volume for each algo-
rithm. Our method not only achieves higher packed volume but also utilizes bin space
more efficiently than competing approaches.

70

6.8 – Center of Mass Analysis

GRASP/VND consistently outperforms FFD and SA, achieving an average utilization
of 38.8% on the custom dataset, compared to 27.6% (FFD) and 38.6% (SA). While SA
occasionally peaks, such as in Test 2 (72.34%), its performance is inconsistent. In contrast,
GRASP/VND maintains stable utilization, ensuring reliable solutions. For instance, in
Test 9, it achieves 35.26% utilization, whereas FFD, hindered by its greedy nature, reaches
only 15.24%, using five bins instead of three. Similarly, in Test 12, GRASP/VND achieves
58.05% utilization with one bin, whereas FFD requires two bins but only reaches 37.49%,
highlighting its inefficiency.

On the benchmark dataset, GRASP/VND further demonstrates its superiority with
61.9% average utilization, surpassing FFD (27.6%) and SA (53.3%). In Test 6, it achieves
80.2% utilization using one bin, while FFD, using two bins, attains only 34.28% per
bin, leading to wasted space. SA, though generally better than FFD, struggles with
consistency, as seen in Test 10, where it reaches only 22.49% compared to 56.83% for
GRASP/VND. Additionally, SA’s higher computational complexity results in longer ex-
ecution times, making it less practical.

Beyond overall utilization, GRASP/VND ensures better load balancing. FFD often
leads to uneven bin distributions, impacting logistics. In Test 5 of the benchmark dataset,
FFD distributes items across two bins (17.68% utilization each), while GRASP/VND
consolidates packing into one bin (33.23%). This efficiency trend is consistent across
multiple tests, confirming that GRASP/VND optimally distributes load, minimizes bin
usage, and avoids unnecessary fragmentation.

6.8 Center of Mass Analysis

To further evaluate the packing efficiency and weight distribution of the different algo-
rithms, a visualization of the center of mass for the bins was generated.6.5 This analysis
provides insight into how well each algorithm balances the packed load within each bin,
which is crucial for practical applications such as logistics and transportation.

The results indicate that the GRASP/VND algorithm achieves a well-balanced and
centralized load distribution, comparable to Simulated Annealing (SA), which also main-
tains a stable center of mass. This suggests that both GRASP/VND and SA successfully
place items in a way that prevents excessive tilting or imbalanced loads. In contrast, the
First Fit Decreasing (FFD) heuristic exhibits significantly worse load balancing, with a
more scattered distribution of the center of mass. This is likely due to FFD’s greedy
nature, where items are placed into the first available space without considering long-
term balance optimization. The visual discrepancy between the algorithms highlights the
advantage of GRASP/VND’s more refined placement strategy, which helps in achieving
stable bin packing solutions.

This analysis reinforces the quantitative findings, showing that FFD sacrifices struc-
tural stability for faster execution, whereas GRASP/VND strikes a balance between
computational efficiency and high-quality packing. Future improvements could focus
on further refining the weight distribution within bins by integrating dynamic balanc-
ing constraints into the packing process, potentially improving real-world applicability in
load-sensitive environments.

71

Experimental Results and Analysis

Figure 6.5. Center of mass distribution over the different algorithms

Figure 6.6. Visual output of Grasp/VND algorithm

6.8.1 Improvement Curve Analysis

The improvement curve shown in Figure 6.9 tracks the progression from the initial solu-
tion to the refined solution after the local search phase. This graph clearly demonstrates
that while a substantial improvement is achieved quickly, further refinement is possible
with additional computation time.

Since we obtained these results, we were able to develop a "fast" version of the algo-
rithm that can be used by companies when rapid decision-making is required, providing
an efficient yet approximate solution. Conversely, when additional time is available, the
more accurate solver can be employed to achieve better optimization. This approach
offers a trade-off between accuracy and execution time, allowing operators to choose the

72

6.8 – Center of Mass Analysis

Figure 6.7. Visual output of FFD algorithm

Figure 6.8. Comparison of Utilization Percentage and Total Packed Volume.

best strategy based on their specific constraints and operational needs.

73

Experimental Results and Analysis

Figure 6.9. Improvement Curve: Progression from Initial to Improved Solution Over Time.

6.9 Further remarks

The experimental results demonstrate a clear trade-off between solution quality and com-
putational time. In scenarios where immediate results are necessary, the initial solution
provided by our algorithm offers a robust and efficient outcome. In contrast, when addi-
tional computational time is available, the local search phase enables further refinements
that lead to higher packing efficiency. This flexibility is a significant asset in real-world ap-
plications, where the balance between speed and optimality often varies with the specific
operational requirements.

Moreover, the comparative analysis underscores the superiority of our approach in
terms of both execution time and packing effectiveness. The lower execution times ob-
served not only enhance the responsiveness of the solution but also reduce operational
costs in environments with high throughput demands.

In conclusion, the detailed analysis of results confirms that our proposed heuristic
algorithm for the 3D-BPP achieves a compelling balance between speed and solution
quality. The method’s ability to rapidly generate an effective initial solution, followed
by significant improvements through local search, positions it as an ideal candidate for
real-time industrial applications. The comprehensive evaluation, supported by statistical
validation and graphical analyses, substantiates the algorithm’s competitive performance
relative to established methods such as First Fit and Simulated Annealing. Future work
will focus on further optimizing the algorithm and exploring its scalability on larger
problem instances.

The experimental results reveal significant insights into the performance of the GRASP/VND
algorithm in solving the 3D-BPP. By comparing its efficiency against FFD and SA, it
becomes evident that GRASP/VND offers a strong balance between solution quality and

74

6.10 – Strengths and Weaknesses of the Algorithm

computational efficiency.
A key observation is the algorithm’s ability to minimize the number of bins used.

Across both the benchmark and custom datasets, GRASP/VND consistently required
fewer bins than FFD, demonstrating superior space consolidation. For instance, in several
tests, FFD required nearly twice as many bins, leading to inefficient use of available
space. Although SA performed competitively in certain scenarios, its inconsistency in
bin utilization made GRASP/VND the more reliable option.

Space utilization is another crucial metric, where GRASP/VND consistently outper-
formed FFD and often matched or exceeded SA. High utilization percentages indicate the
algorithm’s ability to effectively arrange items to minimize wasted space, a vital feature
in logistics applications. Notably, in Test 6 of the benchmark dataset, GRASP/VND
achieved an 80.2% utilization rate compared to FFD’s 34.28%, underscoring its efficiency
in space management.

While execution time varies across instances, GRASP/VND maintains a competitive
runtime given the quality of its solutions. In some cases, FFD executes faster, but this
comes at the cost of increased bin usage and lower utilization. SA, while occasionally
providing high utilization, exhibits unpredictable execution times, making it less reliable
for real-time applications.

The custom dataset further highlights GRASP/VND’s robustness in handling com-
plex packing scenarios. Unlike the benchmark dataset, which features well-structured in-
stances, the custom dataset introduces more challenging conditions. Here, GRASP/VND
still demonstrated a clear advantage in utilization and bin minimization, reaffirming its
adaptability to varying input conditions.

Despite its strong performance, some instances reveal areas for improvement. In
particular, Test 5 of both datasets shows that GRASP/VND occasionally struggles with
certain configurations, leading to higher bin usage. A deeper analysis of these cases could
guide future refinements in the local search procedure.

Overall, the results confirm that GRASP/VND is a reliable and efficient approach to
3D bin packing. Its ability to consistently reduce bin usage and optimize space utilization
makes it well-suited for real-world logistics and storage applications.

6.10 Strengths and Weaknesses of the Algorithm
The GRASP/VND algorithm demonstrates several significant advantages in tackling the
3D bin packing problem. However, certain trade-offs emerge, particularly regarding ex-
ecution speed and sensitivity to instance characteristics. This section provides a critical
analysis of the strengths and weaknesses of the approach.

• Efficient Packing Strategy: GRASP/VND achieves high space utilization by effec-
tively arranging items to maximize volume usage while minimizing wasted space.
The local search mechanism in VND refines initial solutions, leading to a more
compact packing arrangement compared to simple greedy heuristics like FFD.

• Bin Minimization: The algorithm is particularly effective in reducing the number
of bins used, which is crucial for cost-efficient storage and logistics. By iteratively

75

Experimental Results and Analysis

improving placements through VND, GRASP/VND consistently finds near-optimal
solutions where fewer bins are needed compared to alternative methods.

• Balanced Load Distribution: Unlike greedy approaches that may lead to unbalanced
distributions, GRASP/VND maintains a more uniform load across bins. This not
only improves stability in physical packing scenarios but also contributes to better
real-world applications such as transportation efficiency.

• Adaptability Across Problem Instances: The algorithm demonstrates robust per-
formance across different datasets, including both structured benchmark cases and
real-world-inspired custom datasets. This suggests that GRASP/VND effectively
generalizes to a variety of packing challenges.

• Exploration and Exploitation Balance: The hybrid nature of GRASP (providing
diversification) and VND (performing localized refinement) allows the algorithm to
avoid premature convergence and reach high-quality solutions. This is particularly
advantageous over purely greedy methods, which often get stuck in suboptimal
configurations.

• High Execution Time: Despite its strong performance in terms of packing efficiency,
GRASP/VND suffers from relatively long execution times. The iterative nature of
the algorithm, combined with the computational cost of repeated local search steps
in VND, makes it significantly slower than heuristic-based approaches like FFD.

• Sensitivity to Problem Complexity: While GRASP/VND is adaptable to different
problem instances, its performance varies depending on item distribution and con-
straints. In cases with highly irregular or extreme item dimensions, the method
may require additional bins or fail to achieve optimal compactness.

• Parameter Sensitivity and Tuning Effort: As with many metaheuristic-based so-
lutions, fine-tuning parameters such as the number of iterations, neighborhood
structures, and GRASP randomness levels is crucial for performance. However,
identifying the best parameter settings is time-consuming and may require exten-
sive empirical testing.

• Computational Scalability Limitations: While GRASP/VND performs well on mod-
erately large instances, scalability remains a challenge when handling exceptionally
large datasets. The increasing number of local search operations and evaluations
leads to non-negligible runtime overhead, making the algorithm impractical for real-
time or large-scale applications without further optimization.

• Potential Weakness in Highly Fragmented Spaces: In cases where items have ex-
treme size variations, the local search mechanism may not fully optimize the layout,
leading to suboptimal packing. The reliance on neighborhood-based improvements
limits the extent of global restructuring within highly fragmented spaces.

76

6.10 – Strengths and Weaknesses of the Algorithm

6.10.1 Potential Future Improvements

Overall, GRASP/VND remains a highly effective approach for 3D bin packing. Future
research could focus on:

• Accelerating Execution Time: Implementing parallelized local search or leveraging
GPU-based optimization could significantly reduce computational overhead.

• Adaptive Parameter Tuning: Machine learning techniques could be integrated to
dynamically adjust search parameters, optimizing performance across different in-
stances without manual fine-tuning.

• Hybridization with Reinforcement Learning: Introducing a reinforcement learning
component could improve decision-making in item placement, particularly in chal-
lenging instances with extreme size variation.

• Metaheuristic Enhancements: Further exploration of adaptive large neighborhood
search (ALNS) or tabu-based modifications could improve both solution quality and
computational efficiency.

By addressing these limitations, GRASP/VND could evolve into a more scalable and
computationally efficient approach while maintaining its advantages in bin minimization
and high space utilization.

77

78

Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions
This thesis has presented a novel approach to the Three-Dimensional Bin Packing Prob-
lem (3D-BPP), focusing on heuristic and metaheuristic methodologies to improve packing
efficiency while maintaining computational feasibility. The research has explored various
techniques for space utilization, packing stability, and weight distribution, contributing
significantly to both theoretical and practical advancements in logistics optimization. The
primary contributions of this work can be summarized as follows:

• Development of a Hybrid Heuristic Algorithm: A hybrid approach was de-
signed, integrating constructive, improvement, and diversification phases. This
method enhances initial solution quality and refines it through iterative improve-
ments, balancing efficiency and computational cost.

• Efficient Space Utilization Strategies: The algorithm optimizes the placement
of items by effectively managing empty maximal spaces, prioritizing item stability,
and employing pivot point selection techniques. This ensures that space is utilized
to its maximum potential while maintaining a structurally sound packing configu-
ration.

• Incorporation of Real-World Constraints: Unlike many theoretical models,
this algorithm takes into account weight distribution, fragility constraints, and
stacking orders, which are critical for practical applications in transportation and
warehouse logistics.

• Comparative Performance Analysis: Through extensive experimental evalu-
ation, the proposed algorithm has been demonstrated to outperform traditional
heuristics like First Fit (FF) and Simulated Annealing (SA) in terms of execution
time, packing efficiency, and adaptability to various input distributions.

• Scalability and Industrial Application: The proposed heuristic showcases its
applicability to large-scale packing scenarios, particularly in logistics operations
where rapid and effective packing solutions are essential. The algorithm’s flexibility
allows for easy adaptation to different industries with varying constraints.

79

Conclusions and Future Work

• Contribution to Insightfully: The research conducted in this thesis aligns di-
rectly with the objectives of Insightfully, our startup focused on optimizing trans-
portation and logistics operations through data science and machine learning. The
findings and algorithms developed here contribute to Insightfully’s mission of de-
livering cutting-edge optimization solutions to logistics companies, ensuring bet-
ter packing efficiency, reduced transportation costs, and enhanced sustainability
through intelligent space utilization. Furthermore, the heuristic methodology pro-
posed in this thesis can serve as a foundation for Insightfully’s broader suite of
logistics analytics tools.

7.2 Potential Improvements to the Algorithm

While the developed algorithm has demonstrated strong performance, several aspects can
be refined to enhance its efficiency, adaptability, and robustness:

• Adaptive Parameter Tuning: The current implementation employs fixed param-
eters for various operations, such as the number of iterations and search intensity
in local optimization. Future work should explore adaptive strategies that dynami-
cally adjust these parameters based on instance characteristics to improve solution
quality and runtime efficiency.

• Enhanced Diversification Mechanism: The diversification phase, which aims
to prevent stagnation in local optima, could be further improved through tech-
niques such as Reinforcement Learning (RL)-based exploration. By incorporating
a learning-based approach, the algorithm can refine its strategies based on past
performance, leading to better long-term solutions.

• Parallelization for Large-Scale Instances: Given the computational cost of
some heuristic operations, integrating parallel computing techniques could signif-
icantly reduce execution time, making the algorithm more suitable for real-time
applications. This would allow for faster decision-making in logistics operations
where timing is critical.

• Hybridization with Machine Learning Models: Incorporating deep learn-
ing techniques, such as Graph Neural Networks (GNNs) and Convolutional Neural
Networks (CNNs), to predict effective packing configurations could refine the initial
solution phase and improve overall packing efficiency. These models can learn from
past packing data to anticipate optimal configurations more effectively.

• Integration with Real-Time Data: The current implementation assumes static
input data. Enhancing the algorithm to dynamically adapt to real-time changes,
such as fluctuating package dimensions, weight variations, and new customer de-
mands, would significantly improve its practical applicability in dynamic logistics
environments.

80

7.2 – Potential Improvements to the Algorithm

• Implementation within Insightfully’s Platform: One of the most promising
avenues for improvement is integrating this algorithm within Insightfully’s logis-
tics platform, allowing for direct application in optimizing freight and warehouse
operations. By leveraging Insightfully’s real-world data and insights, the packing
algorithm can continuously refine its strategies, adapting to industry trends and
operational constraints.

• Incorporating Sustainability Metrics: Future enhancements should consider
sustainability factors such as CO2 emissions and fuel consumption minimization. By
optimizing load distribution with sustainability constraints in mind, the algorithm
could contribute to more environmentally friendly logistics practices.

By addressing these areas, future research can further enhance the efficiency, scal-
ability, and applicability of 3D bin packing solutions, ultimately contributing to more
sustainable and cost-effective logistics operations. The direct contributions of this work
to Insightfully reinforce the importance of innovative approaches in real-world logistics
optimization, ensuring continued advancements in the field and strengthening Insight-
fully’s market position as a leader in AI-driven logistics solutions.

81

82

Bibliography

[1] United Nations Conference on Trade and Development (UNCTAD), “World
Investment Report 2023,” 2023. [Online]. Available: https://unctad.org/publication/
world-investment-report-2024

[2] S. Greene. (2023) Freight transportation. [Online]. Available: https://climate.mit.
edu/explainers/freight-transportation

[3] Flexport, “Analysis of PIERS and ImportGenius Data for Full Container Loads
(FCLs) Imported into the US in 2018,” 2018. [Online]. Available: https://www.
flexport.com/blog/filling-up-half-empty-ocean-containers-with-oceanmatch/

[4] L. V. Kantorovich, “Mathematical methods of organizing and planning production,”
Management Science, vol. 6, no. 4, pp. 366–422, 1960.

[5] G. Bonet Filella, A. Trivella, and F. Corman, “Modeling soft unloading constraints
in the multi-drop container loading problem,” European Journal of Operational Re-
search, vol. 308, no. 1, pp. 336–352, 2023.

[6] D. Bein, W. Bein, and S. Venigella, “Cloud storage and online bin packing.”
Springer, 2011, pp. 63–68.

[7] P. Gilmore and R.Gomory, “Multi-stage cutting stock problems of two or more di-
mensions,” Operations Research, vol. 13(1), pp. 94–120, 1965.

[8] P. Gilmore and R. Gomory, “A linear programming approach to the cutting stock
problem—part ii,” Operations Research, vol. 11(6), pp. 863–888, 1963.

[9] J. E. Beasley, “An exact two-dimensional non-guillotine cutting tree search proce-
dure,” Operations Research, vol. 33, no. 1, pp. 49–64, 1985.

[10] S. Fekete, J. Schepers, and J. van der Veen, “An exact algorithm for higher-
dimensional orthogonal packing,” Operations Research, vol. 55(3), pp. 569–587, 2007.

[11] A. Lodi, S.Martello, and D.Vigo, “Recent advances on two-dimensional bin packing
problems,” Discrete Applied Mathematics, vol. 123, no. 1, pp. 379–396, 2002.

[12] J. Kaabi, Y. Harrath, H. Bououdina, and A. Qasim, “Toward smart logistics: A new
algorithm for a multi-objective 3d bin packing problem,” Bahrain, pp. 1–5, 2018.

[13] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin packing problem,”
Operations Research, vol. 48, no. 2, pp. 256–267, 2000.

[14] A. Bortfeldt and G. Wäscher, “Constraints in container loading – a state-of-the-art
review,” European Journal of Operational Research, vol. 229, no. 1, pp. 1–20, 2013.

[15] T. G. Crainic, G. Perboli, and R. Tadei, “Ts2pack: A two-level tabu search for the
three-dimensional bin packing problem,” European Journal of Operational Research,
vol. 195, no. 3, pp. 744–760, 2009.

83

https://unctad.org/publication/world-investment-report-2024
https://unctad.org/publication/world-investment-report-2024
https://climate.mit.edu/explainers/freight-transportation
https://climate.mit.edu/explainers/freight-transportation
https://www.flexport.com/blog/filling-up-half-empty-ocean-containers-with-oceanmatch/
https://www.flexport.com/blog/filling-up-half-empty-ocean-containers-with-oceanmatch/

Bibliography

[16] J. Gomes and J. Oliveira, “A reinforcement learning approach for the three-
dimensional bin packing problem,” Computers Industrial Engineering, vol. 128, pp.
192–204, 2019.

[17] X. Zhang, H. Zhang, and Y. Shi, “A hybrid genetic algorithm for the three-
dimensional bin packing problem,” Computers and Operations Research, vol. 76,
pp. 53–66, 2016.

[18] O. de Weck, “Multiobjective optimization: History and promise,” Invited Keynote
Paper, GL2-2, the Third China-Japan-Korea Joint Symposium on Optimization of
Structural and Mechanical Systems, vol. 2, 2004.

[19] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, ser. Wiley In-
terscience Series in Systems and Optimization. Wiley, 2001.

[20] K. Miettinen, Nonlinear Multiobjective Optimization, ser. International Series in Op-
erations Research & Management Science. 3Island Press, 1998.

[21] J. Olvander, “Multiobjective optimization in engineering design: Applications to
fluid power systems, phd thesis,” 2001.

[22] C. Coello, G. Lamont, and D. van Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, ser. Genetic and Evolutionary Computation. Springer
US, 2007.

[23] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on
decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6,
pp. 712–731, 2007.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on,
vol. 6, no. 2, pp. 182–197, 2002.

[25] E. Talbi, “Metaheuristics: From design to implementation,” Wiley, vol. 2, pp. 268–
308, 2009.

[26] P. Eskelinen and K. Miettinen, “Trade-off analysis approach for interactive nonlinear
multiobjective optimization,” Or Spektrum, vol. 34, pp. 803–816, 2011.

[27] S. Martello and P.Toth, “Knapsack problems: Algorithms and computer implemen-
tations,” 1990.

[28] T. Feo and M. Resende, “Greedy randomized adaptive search procedures,” Journal
of Global Optimization, vol. 6, pp. 109–133, 1995.

[29] P. Hansen, N. Mladenovic, and J. Moreno-Pérez, “Variable neighbourhood search:
Methods and applications,” 4OR, vol. 175, pp. 367–407, 2010.

[30] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,”
Science (New York, N.Y.), vol. 220, pp. 671–80, 1983.

[31] J. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1, pp. 66–73,
1992.

[32] F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94, 1990.
[33] F. Marini and B. Walczak, “Particle swarm optimization (pso). a tutorial,” Chemo-

metrics and Intelligent Laboratory Systems, vol. 149, pp. 153–165, 2015.
[34] D. Johnson, “Approximation algorithms for combinatorial problems,” in Proceedings

of the fifth annual ACM symposium on Theory of computing, 1973, pp. 38–49.

84

Bibliography

[35] K. Heßler, T. Hintsch, and L. Wienkamp, “A fast optimization approach for a com-
plex real-life 3d multiple bin size bin packing problem,” 2024.

[36] M. Prais and C. Ribeiro, “Reactive grasp: An application to a matrix decomposition
problem in tdma traffic assignment,” INFORMS Journal on Computing, vol. 12, pp.
164–176, 2000.

[37] F. Parreño, R. Alvarez-Valdés, J. Tamarit, and J. Oliveira, “A maximal-space algo-
rithm for the container loading problem,” INFORMS Journal on Computing, vol. 20,
pp. 412–422, 2008.

[38] Y. Fu and A. Banerjee, “Heuristic/meta-heuristic methods for restricted bin packing
problem,” Journal of Heuristics, vol. 26, no. 5, pp. 637–662, 2020.

[39] E. Bischoff, F. Janetz, and M. Ratcliff, “Loading pallets with non-identical items,”
European Journal of Operational Research, vol. 84, no. 3, pp. 681–692, 1995.

[40] J. Gonçalves and M. Resende, “A biased random key genetic algorithm for 2d and
3d bin packing problems,” International Journal of Production Economics, vol. 145,
no. 2, pp. 500–510, 2013.

[41] S. Berndt, K. Jansen, and K. Klein, “Fully dynamic bin packing revisited,” Mathe-
matical Programming, vol. 179, no. 1, pp. 109–155, 2020.

[42] X. Zhao, J. Bennell, T. Bektaş, and K. Dowsland, “A comparative review of 3d
container loading algorithms,” International Transactions in Operational Research,
vol. 23, no. 1-2, pp. 287–320, 2016.

[43] E. Osaba, E. Villar-Rodriguez, and S. Romero, “Benchmark dataset and instance
generator for real-world three-dimensional bin packing problems,” Data in Brief,
vol. 49, p. 109309, 2023.

85

	Introduction
	Background and motivation
	Description of the 3D bin packing problem
	Thesis Objectives
	Structure of the Thesis

	Literature Review
	The Bin Packing Problem: 1D, 2D, and 3D versions
	Traditional Bin Packing Problem
	The 2D Bin Packing Problem
	The 3D Bin Packing Problem
	Evolution of the 3D Bin Packing Problem
	Formulations in Literature
	Notable Works in 3D Bin Packing
	Recent Advances and Challenges

	Multi-Objective Optimization: Concepts and Methods
	Concepts in Multi-Objective Optimization
	Scalarization Methods
	Pareto-Based Approaches
	Comparative Overview of Multi-Objective Methods
	Methods for Multi-Objective Optimization

	Computational Complexity and 3D Bin Packing
	Computational Complexity: An Overview
	NP-hard nature of the 3D bin packing problem
	 Computational complexity of Heuristics approaches

	Heuristic Concepts for 3D Bin Packing
	 Overview of Heuristic Approaches
	First Fit Decreasing (FFD)
	Best Fit Decreasing (BFD)
	Bottom-Left (BL) and Bottom-Left-Fill (BLF)
	Metaheuristic Approaches
	Implemented Heuristics in the Thesis

	Priority-Based Item Sorting
	Handling Empty Maximal Spaces
	Generation of Maximal Spaces
	Overlap Resolution
	Selection of Maximal Spaces

	Pivot Point Selection for Item Placement
	Definition of Pivot Points
	Stability Requirements
	Orientation Optimization

	 Advantages and Challenges of the Implemented Heuristics
	Advantages
	Challenges

	The proposed approach
	Preprocessing Steps
	Constructive Phase: Initial Packing Strategy
	Improvement Phase: Refining the Solution
	Diversification Phase: Avoiding Local Optima
	Stopping Criteria
	Key Innovations and Contributions

	Experimental Results and Analysis
	Challenges in Comparing 3D Bin Packing Algorithms
	Dataset Description
	Benchmark Dataset
	Integration with Custom High-Density Packing Scenarios

	Performance Metrics and Evaluation Methods
	Analysis of Results
	Experimental Setup and Performance Metrics
	Parameter Tuning Process
	Results and Analysis
	Performance Analysis on the Custom Dataset

	Analysis of Initial and Improved Solutions
	Execution Time Comparison
	Utilization and Packed Volume

	Center of Mass Analysis
	Improvement Curve Analysis

	Further remarks
	Strengths and Weaknesses of the Algorithm
	Potential Future Improvements

	Conclusions and Future Work
	Summary of Contributions
	Potential Improvements to the Algorithm

	Bibliography

