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Summary

Visual localization, the process of determining a camera’s exact 6-DoF pose within
a known environment, is fundamental to applications such as autonomous vehicles,
augmented reality, and robotics. Traditional methods like GNSS offer only coarse
position estimates and are often unreliable in indoor or visually challenging scenarios,
underscoring the need for alternative, high-precision approaches. This thesis
addresses these challenges by focusing on the image retrieval component within
the visual localization pipeline, a critical stage that narrows the search space for
computationally expensive local feature matching and thereby enhances overall
system efficiency and accuracy.

The research systematically evaluates state-of-the-art image retrieval models,
including NetVLAD, AP-GeM, and SALAD, under diverse environmental conditions
such as varying illumination, seasonal changes, and significant viewpoint differences.
A key aspect of this study is the analysis of image angular diversity and its impact
on retrieval performance, which reveals the sensitivity of current methods to changes
in camera orientation. Additionally, the integration of local feature descriptors
with global image representations is explored to further improve discrimination
between similar scenes and reduce false positives.

Through comprehensive experiments and performance benchmarks, the thesis
develops optimization strategies that enhance performances of visual localization
systems. The results provide practical guidelines for deploying advanced image
retrieval techniques in large-scale, real-world environments, thereby advancing the
state-of-the-art in visual localization technology.

ii



Acknowledgements

Desidero esprimere la mia più profonda gratitudine alla mia famiglia, a Federica e
a mio figlio, che con il loro affetto e supporto mi hanno aiutato a mantenere alto
il morale nei momenti di stress e concitazione durante questo percorso di laurea
magistrale. Senza di loro, affrontare le difficoltà sarebbe stato molto più arduo.

Un ringraziamento speciale va ai miei genitori, che con il loro esempio e i valori
che mi hanno trasmesso hanno posto le basi su cui ho potuto costruire il mio
percorso. È grazie a loro se oggi ho avuto la possibilità di raggiungere questo
importante traguardo.

Ringrazio di cuore gli amici e i compagni di viaggio che hanno condiviso con me
questa avventura. Il loro sostegno, la loro compagnia e i momenti vissuti insieme
hanno reso questo percorso non solo più leggero, ma anche più ricco e significativo.

Infine, un sincero ringraziamento ai miei relatori e correlatori, che con la loro
guida e i loro preziosi consigli mi hanno accompagnato nella realizzazione di questo
progetto di tesi. Il loro supporto è stato fondamentale per portare a termine questo
lavoro con impegno e dedizione.

Grazie di cuore a tutti.

iii





Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Structure-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Image Retrieval-based Methods . . . . . . . . . . . . . . . . . . . . 9
2.3 Pose Regression-based Methods . . . . . . . . . . . . . . . . . . . . 11
2.4 Benchmarking Image Retrieval for Visual Localization . . . . . . . . 13

3 Benchmarking Framework 16
3.0.1 Overview of the Visual Localization Pipeline . . . . . . . . . 17
3.0.2 The Two-Phase Role of Image Retrieval . . . . . . . . . . . . 19

3.1 Global Feature Extractors . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 NetVLAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 AP-GeM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 SALAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Local Features Extraction and Matching . . . . . . . . . . . . . . . 25
3.2.1 SuperPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 LightGlue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 LaMAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 VBR: Vision Benchmark in Rome . . . . . . . . . . . . . . . 31

4 Experiments 34
4.1 Metrics for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Fixed Pipeline Components for Isolating Retrieval Impact . . . . . 36

v



4.3 Experiment 1: Evaluating the Role of Angular Differences Between
Retrieved Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Experiment 2: Model Comparison (NetVLAD & AP-GeM vs. SALAD) 41
4.5 Experiment 3: Incorporating Local Features to Improve Retrieval . 43
4.6 Experiments on VBR . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Findings and Discussion 49
5.1 Role of Angular Differences in Retrieval Performance . . . . . . . . 49
5.2 Comparative Analysis of Models . . . . . . . . . . . . . . . . . . . . 52
5.3 Impact of Local Features . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Implications for Visual Localization Pipelines . . . . . . . . . . . . 55

6 Conclusion and Future Work 58
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Limitations of the Current Work . . . . . . . . . . . . . . . . . . . . 58
6.3 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . 59

A Complete Results of Experiment 1 on Lamar 60

B Complete Results of Experiment 1 on VBR 63

Bibliography 66

vi



List of Tables

2.1 Comparison of different visual localization methods . . . . . . . . . 7

3.1 Timestamp of test images for VBR . . . . . . . . . . . . . . . . . . 33

4.1 Results for Experiment 2 on Phone Queries . . . . . . . . . . . . . . 41
4.2 Results for Experiment 2 on Hololens Queries . . . . . . . . . . . . 42
4.3 Upper bound results for Lamar dataset . . . . . . . . . . . . . . . . 42
4.4 Results for Experiment 3 on Phone Queries . . . . . . . . . . . . . . 44
4.5 Results for Experiment 3 on Hololens Queries . . . . . . . . . . . . 45
4.6 Results of Experiment 1 and 2 on VBR . . . . . . . . . . . . . . . . 47

A.1 Experimental results for the angular spreadness experiment on the
CAB scene for phone queries . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Experimental results for the angular spreadness experiment on the
HGE scene for phone queries . . . . . . . . . . . . . . . . . . . . . . 61

A.3 Complete experimental results for the angular spreadness experiment
on the LIN scene for phone queries . . . . . . . . . . . . . . . . . . 61

A.4 Experimental results for the angular spreadness experiment on the
CAB scene for hololens queries . . . . . . . . . . . . . . . . . . . . . 62

A.5 Complete experimental results for the angular spreadness experiment
on the HGE scene for hololens queries . . . . . . . . . . . . . . . . . 62

A.6 Complete experimental results for the angular spreadness experiment
on the LIN scene for hololens queries . . . . . . . . . . . . . . . . . 62

B.1 Experimental results for different retrieval methods on the Ciampino
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2 Experimental results for different retrieval methods on the Campus_1
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.3 Experimental results for different retrieval methods on the Colosseo
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.4 Experimental results for different retrieval methods on the diag dataset 65

vii



B.5 Experimental results for different retrieval methods on the Pincio
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.6 Experimental results for different retrieval methods on the Spagna
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Figures

2.1 Example of typical challenges visual localization is facing . . . . . . 5
2.2 Overview of different methods of visual localization. . . . . . . . . . 6
2.3 Architecture of a VG system that approaches the problem as an

Image Retrieval task . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 PoseNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Pipeline used to analyze the role of image retrieval in three visual

localization paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Lamar’s visual localization pipeline. "3D Map" figure from[47]. . . . 17
3.2 Netvlad architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Salad architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 SuperPoint functioning . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 LigthGlue Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 LigthGlue functioning example . . . . . . . . . . . . . . . . . . . . 28
3.7 Summary of LaMAR sequences . . . . . . . . . . . . . . . . . . . . 29
3.8 Three example query images from the Lamar dataset . . . . . . . . 30
3.9 Characteristic of the Lamar dataset . . . . . . . . . . . . . . . . . . 31
3.10 Summary of VBR sequences . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Results for Experiment 1 for phone queries . . . . . . . . . . . . . . 39
4.2 Results for Experiment 1 for Hololens Queries . . . . . . . . . . . . 40
4.3 Results for Experiment 1 on VBR . . . . . . . . . . . . . . . . . . . 47
4.4 Results for Experiment 1 on VBR . . . . . . . . . . . . . . . . . . . 48

5.1 Comparison of retrieved images for the CAB scene with phone query
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Comparison of retrieved images for the HGE scene with phone query
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Comparison of retrieved images for the HGE scene with phone query
images using different global extractors. . . . . . . . . . . . . . . . . 52

ix



5.4 Comparison of retrieved images for the LIN scene with HoloLens
query images using the baseline method versus our proposed cluster-
ing and local feature matching approach. . . . . . . . . . . . . . . . 54

x





Chapter 1

Introduction

1.1 Background and Motivation

Visual localization, the process of determining the exact 6-DoF pose of a camera
within a known environment, is a fundamental problem in computer vision with
applications across multiple domains. Its applications span diverse fields, from
autonomous vehicles and augmented reality (AR) to robotics, navigation systems.
Precise visual localization enables robust positioning and orientation estimation,
which is crucial for tasks such as self-driving vehicles, AR-enhanced experiences,
and simultaneous localization and mapping (SLAM) in robotics. For instance, in
autonomous vehicles, Visual localization ensures that the vehicle can accurately
interpret its environment and determine its position in relation to the map, enabling
safe and efficient navigation. Similarly, in AR applications, precise localization
enhances the user’s experience by anchoring virtual objects to real-world coordinates,
creating seamless interactions between the digital and physical worlds.

Many modern technologies, such as self-driving cars, mobile robots, and AR
applications, interact with their environment in different ways, making accurate
location determination essential. The most widely known approach for obtaining
location information is through global navigation satellite systems (GNSS), such
as GPS. However, GNSS-based methods come with limitations, they are ineffective
indoors, provide location accuracy within only a few meters, and lack orientation
data. While combining GPS with a compass can offer an estimated position
accurate to 1/2 meters and an orientation within 10 degrees, applications like robotic
navigation and self-driving vehicles demand much higher precision. Furthermore,
since satellite-based methods are unreliable indoors, alternative geolocalization
techniques must be explored to address these challenges.
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Introduction

Despite its significance, visual localization presents numerous challenges. En-
vironmental variations, including changes in lighting, weather, and seasonal con-
ditions, complicate scene recognition and localization. Furthermore, issues such
as occlusions, repetitive structures, and large viewpoint changes add additional
complexity. Addressing these challenges requires sophisticated methods that can re-
liably analyze and interpret visual data while maintaining computational efficiency
and scalability.

One of the most effective approaches to visual localization is structure-based
localization (SBL). This method relies on matching local keypoints from a query
image to a pre-constructed 3D global model. By triangulating these keypoints, it
estimates the precise pose of the camera. Structure-based localization has demon-
strated outstanding performance in many scenarios due to its ability to leverage
detailed geometric information. However, it also faces limitations, particularly in
large-scale environments, where computational costs and memory requirements can
become prohibitive. Additionally, SBL may fail if:

1. Fewer than two retrieved database images contain the same place as the query
image.

2. The viewpoint difference between the retrieved images and/or between the
query and retrieved images is too large.

3. The baseline between retrieved database images is too small for stable trian-
gulation.

Thus, effective visual localization requires retrieving a diverse set of images
depicting the same scene from multiple viewpoints. This necessity highlights the
importance of image representations that are robust but not entirely invariant to
viewpoint changes.

Within the Visual localization pipeline, image retrieval plays a pivotal role in
overcoming these challenges and ensuring the pipeline’s efficiency and scalability.
Image retrieval is the process of identifying and ranking the most visually similar
images from a large database of geotagged reference images, given a query image.
By narrowing down the search space, it enables the pipeline to focus computa-
tional resources on the most relevant candidates, facilitating accurate and efficient
localization.

Image retrieval is employed at two critical stages of the visual localization
pipeline:

1. During Database Pair Matching: Before constructing the 3D map, image
retrieval identifies pairs of images in the database that are likely to correspond
to spatially close locations. This reduces the number of image pairs requiring
computationally expensive local feature matching, making the map-building
process feasible for large datasets.
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2. During Query Localization: When a query image is presented, image
retrieval is used to identify the top-N most relevant database images, effectively
reducing the search space for local feature matching. This second application
ensures that the pipeline can scale efficiently to handle large databases while
maintaining high localization accuracy.

The performance of the image retrieval system directly impacts the effectiveness
of the entire localization pipeline. A robust retrieval mechanism enhances accuracy
by identifying the most relevant images while minimizing false positives. Addi-
tionally, it improves computational efficiency by significantly reducing the number
of candidate images for subsequent processing stages. As highlighted in prior
research [1, 2], optimizing the image retrieval component is crucial for addressing
real-world challenges in visual localization, and the development of specialized
feature representations tailored to this task presents a promising research direction.

Image retrieval algorithms are designed to fetch the most relevant images
from extensive databases based on a given query, yet their requirements vary
depending on the application. For example, in generic visual search tasks, retrieval
focuses on identifying all images depicting the same content as the query image,
irrespective of variations in viewpoint or camera angle. However, in the context
of visual localization, robustness to viewpoint changes is not always desirable.
Benchmarking studies on image retrieval for localization have emphasized the need
for retrieval strategies that cater specifically to localization requirements. While
most modern localization pipelines rely on deep-learned image descriptors optimized
to retrieve images of the same landmark as the query, they often overlook camera
pose information. Since pose approximation benefits from retrieving database
images captured from similar viewpoints as the query, tailoring retrieval methods to
incorporate camera pose considerations could further enhance localization accuracy
[1].

Refining the image retrieval process to better align with the specific needs of
visual localization, can improve both the efficiency and precision of these systems.
This underscores the importance of continued research into specialized retrieval
approaches that bridge the gap between traditional image retrieval and pose-aware
localization techniques.

1.2 Objectives of the Thesis
The primary aim of this thesis is to enhance the efficiency and accuracy of the
visual localization pipeline that utilizes structure-based approach by focusing on
the image retrieval component only in the query localization task. To achieve this,
the research is structured around the following key objectives:

3
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1. Evaluate the Impact of Image Angular Diversity: This objective focuses
on understanding how variations in the angular orientation of images affect
retrieval performance. By systematically analyzing images captured from
different angles, the thesis seeks to quantify the influence of viewpoint differ-
ences on the ability of state-of-the-art models to correctly identify geospatially
relevant images. This evaluation will provide insights into the robustness of
current methods against variations in image angles and help identify potential
areas for improvement.

2. Test and Compare Advanced Image Retrieval Models: A critical
component of this research involves a comprehensive assessment of advanced
image retrieval models, including NetVLAD, AP-GeM, and SALAD. The
goal is to benchmark these models under consistent experimental settings,
comparing their performance in terms of accuracy, by measuring the precision
of retrieval results in diverse environmental conditions and across varying
scales.

3. Explore the Integration of Local Feature Descriptors: While global
image representations provide a solid foundation for image retrieval, integrating
local features can offer finer granularity and improved discrimination between
similar scenes. This objective aims to:

• Investigate how local feature descriptors can complement global represen-
tations.

• Develop strategies for effectively combining these features to reduce false
positives and enhance overall retrieval accuracy.

• Assess the impact of this integration on the visual localization pipeline,
particularly in scenarios with high visual variability.

Through these objectives, the thesis strives to advance the state-of-the-art in
visual localization by not only improving the core image retrieval process but also
by ensuring that these improvements translate into more reliable and efficient
localization in practical scenarios.

4



Chapter 2

Related Work

Visual localization offers the potential to achieve highly accurate indoor and outdoor
positioning, often reaching accuracies on the order of a few centimeters and degrees.
For instance, in self-driving cars, the rich visual data captured by onboard cameras
enables the establishment of correspondences between a query image and a pre-
constructed world representation, or “visual map.” This visual map may take the
form of a 3D reconstruction, a collection of geotagged images, or even a deep neural
network, thereby providing the basis for computing the camera’s precise position
relative to the environment. Indoors, such localization techniques are invaluable
not only for robot navigation and augmented reality (AR) applications but also for
autonomous vehicles operating in environments where GNSS signals are unreliable,
such as tunnels or underground parking structures.

Figure 2.1: Example of typical challenges visual localization is facing. The images
depict the same building under varying illumination, different scales, seasonal changes,
and occlusions. Images from [3].

Despite its promise, visual localization must overcome several significant chal-
lenges, including:

• Illumination Changes: Can a system localize a nighttime image when the
reference images were captured during the day?

• Dynamic Scenes: How does one account for moving objects that may not have
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been present during the creation of the map?

• Seasonal and Weather Variations: Variations in appearance due to different
seasons or weather conditions can greatly affect matching.

• Occlusions: The presence of objects or people that partially obscure the scene
can complicate localization.

• Viewpoint Changes: Strong differences in the viewpoints between the reference
and query images further complicate the task.

Figure 2.2: Overview of different methods for visual localization: all visual localization
approaches need a set of pose-tagged reference images to create a map or some other
representation of the environment. The methods then differ in their workflow: Structure-
based methods use local feature correspondences to generate a 3D map and to localize an
image within the map. Image retrieval can be used to reduce the search space by pairing
only similar images instead of all possibilities. Alternatively, these similar images can be
used for pose interpolation or relative pose estimation. Scene point regression methods
can directly determine correspondences between 2D pixel locations and 3D points using
a deep neural network (DNN) and compute the camera pose similar to structure-based
methods. Finally, absolute pose regression methods estimate the pose end-to-end using a
DNN. Figure and description from [3].

To address these challenges, several benchmark datasets and evaluation chal-
lenges have been developed. These datasets are designed to test visual localization
pipelines under conditions with significant appearance variations, including those
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induced by seasonal changes (summer, winter, spring, etc.) and differing illumina-
tion (dawn, dusk, day, night). In parallel, the growing interest in visual localization
has spurred the production of a wealth of online resources which provide valuable
insights into state-of-the-art techniques.

Many strategies have been developed over the years to tackle these issues. As
shown in figure 2.2, a range of prominent methods has been explored. Traditional,
structure-based techniques rely on constructing a 3D representation, typically in
the form of point clouds, of the environment and then matching local features
between the query image and this 3D map.

To streamline this process, image retrieval methods are often employed, limiting
the search to only the most visually similar reference images rather than considering
every possibility. Alternatively, these similar images can be used either to directly
interpolate the camera pose or to estimate the relative pose between the query
and the retrieved references without building a complete 3D model. Additionally,
scene point regression techniques employ a deep neural network (DNN) to establish
correspondences between 2D pixel locations and 3D points, ultimately computing
the camera pose in a manner analogous to structure-based approaches.

Approach 3D
Map

Pros Cons

Structure-
based

yes Perform very well in
most scenarios

Challenging in large environments in
terms of processing time and memory
consumption

Structure-
based with
image
retrieval

yes Improve speed and
robustness for
large-scale settings

Quality heavily relies on image retrieval

Scene point
regression

yes/no Very accurate position
in small-scale settings

To be improved in large environments

Absolute
pose
regression

no Fast pose
approximation, can be
trained for certain
challenges

Low accuracy

Pose
interpolation

no Fast and lightweight Quality relies heavily on image retrieval
and only provides a rough pose

Relative pose
estimation

no Fast and lightweight Quality relies heavily on image retrieval
and, e.g., local feature matches or a DNN
used for relative pose estimation

Table 2.1: Comparison of different visual localization methods.
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Modern scene point regression methods typically make use of a 3D reconstruction
during the training phase, even though they do not depend on it during inference.
In contrast, absolute pose regression methods employ a DNN to estimate the pose
in an end-to-end fashion. As summarized in table 2.1, these approaches differ
in their ability to generalize and in localization accuracy. Some methods require
detailed 3D reconstructions, while others operate solely with pose-tagged reference
images. Although 3D reconstructions can yield highly accurate poses, they often
entail substantial computational and storage demands, particularly in large or
dynamic environments where updates are frequent.

2.1 Structure-based Methods

Structure-based methods remain a cornerstone in visual localization research. The
conventional approach begins by constructing a 3D map, a process that gives
rise to the term “structure”, and subsequently localizing the query image within
that map [4, 5, 6, 7, 8, 9]. This process, known as structure from motion (SfM)
[5, 9], involves estimating camera poses and reconstructing 3D points from a
collection of images taken from multiple viewpoints. Modern SfM pipelines not
only optimize the camera poses but also refine the 3D point positions to improve
overall map consistency and robustness. Pixel-level correspondences across images
are generated automatically using local features [10, 11]. These correspondences
may be established by exhaustively comparing every image pair (brute force) or by
selecting pairs based on image similarity (as discussed in the next section).

A local feature is defined by an exact pixel location (the keypoint) and a
distinctive descriptor, often derived from the pixel’s surrounding neighborhood.
Early approaches relied on handcrafted feature extractors, such as the popular SIFT
descriptor [12]. However, these handcrafted methods can struggle with challenges
like drastic illumination changes or seasonal variations. In response, several data-
driven methods have recently emerged [11, 13, 14, 15], including end-to-end deep
architectures that learn local features, as detailed in [10, 16]. Such advancements
have improved both the robustness and discriminative power of the descriptors.

Since the 3D map is built using image descriptors, these same descriptors
facilitate the establishment of 2D-3D correspondences between the query image’s
keypoints and the 3D points in the map. Once these matches are secured, the
camera pose is computed using perspective-n-point (PnP) solvers [17]. To handle
potential outliers among the matches, PnP is typically solved within a RANSAC
loop [18, 19], with recent improvements incorporating guided sampling and adaptive
thresholds for enhanced performance under challenging conditions.

Mapping extensive areas can lead to massive 3D models. For example, the
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Aachen-Day-Night dataset [20] comprises between 700k and 2.5M 3D points, de-
pending on the number of image pairs used, despite covering only the historic
inner city of Aachen, Germany. In such scenarios, matching every query keypoint
with all 3D points becomes computationally infeasible. To address this, image
retrieval methods (discussed below) are applied to first select the most relevant
images, effectively confining the keypoint matching to a localized region [21, 22].
This strategy not only reduces computational complexity but also improves the
accuracy of subsequent pose estimation by focusing on spatially coherent areas.

In some cases, rather than relying on a global map, the retrieved images can be
used to assemble a temporary local map. While the localization process remains
similar, the drawback is that if too few images depicting the same scene are retrieved,
the resulting local map may be insufficiently robust. Additionally, dynamic changes
in the environment may render portions of a global map outdated, making local
mapping an attractive alternative in rapidly evolving settings.

Another approach within structure-based methods is scene point regression,
wherein 2D-3D correspondences are directly predicted using a DNN [23, 24, 25, 26]
or a random forest [27]. These techniques are particularly beneficial in scenarios
where traditional feature matching is challenged by significant viewpoint variations
or textureless regions, though their success is highly dependent on the diversity
and quality of the training data.

2.2 Image Retrieval-based Methods
Image retrieval plays a crucial role in visual localization by supporting structure-
based techniques in large-scale environments, such as shopping centers, airports,
and urban areas, and by serving as an independent alternative when a detailed
3D structure is unavailable. Typically, database images are stored with either
approximate location information (such as GPS in geo-localization scenarios) or
exact 6 degrees of freedom (DoF) poses (in visual localization). This dual storage
approach offers flexibility, with the choice often dictated by the precision of available
sensor data.

The primary goal is to identify a subset of images that closely resemble the
query image based on a chosen representation. This initial selection is often refined
through a re-ranking process using techniques like query expansion or filtering.
In the context of visual localization, a retrieved image is considered relevant if it
captures the same scene (e.g., a landmark) as the query or if it was taken in close
geographic proximity. When the criterion is scene similarity, the process is known
as “landmark retrieval”; when it is based on proximity, it is referred to as “geo-
localization” or “place recognition”. Consequently, the architectures for landmark
retrieval and place recognition share many similarities, particularly among recent
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Figure 2.3: The conceptual architecture of a Visual Geolocation (VG) system formulated
as an Image Retrieval task. Initially, the system extracts feature representations from
both the query and database images, using either handcrafted or deep-learning-based
methods. Next, a similarity search is conducted to compare the extracted features,
generating a ranked list of potential matches. Optionally, a post-processing step further
refines the final retrieval results for improved accuracy. Figure from [28].

deep learning-based models [29, 30]. Additionally, the adoption of convolutional
neural networks for feature extraction has significantly enhanced retrieval accuracy
by capturing more abstract, semantically meaningful representations.

Historically, many image retrieval systems utilized variations of the “bag of
visual words” model. More recently, however, features extracted from DNN acti-
vations, which capture high-level semantic information, have proven to be highly
effective. The performance of these systems is further boosted when the networks
are specifically trained for retrieval using ranking losses [31, 32, 33]. Moreover,
recent research incorporating attention mechanisms has demonstrated improved
robustness by dynamically weighting feature importance in complex scenes.

Image retrieval not only narrows the search space during the localization process
when a 3D map is available, but it also offers a direct, albeit less precise, means
of localization when no such map exists. For example, one can simply assign the
pose of the nearest neighbor or interpolate among the top k retrieved poses [34, 35].
These approaches are particularly useful in applications requiring rapid, on-the-fly
localization, with the initial estimates later refined through additional processing.

Alternatively, if the intrinsic parameters of the camera are known, the relative
pose between the query image and a retrieved image can be estimated using local
feature matches. With the absolute poses of the reference images available, the
query’s pose can then be deduced from these relative measurements [36, 37]. This
method effectively bridges the gap between purely appearance-based and geometric
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techniques, leveraging both types of information for improved accuracy.
A comprehensive benchmark evaluating image retrieval for visual localization is

presented in [1]. The study compares four popular image representations across
three tasks, using a global 3D map, constructing an on-the-fly local 3D map,
and interpolating camera poses, and examines the relationship between landmark
retrieval and visual localization. The findings underscore the need for retrieval
methods that are robust to environmental variations and adaptable to the diverse
requirements of different localization scenarios.

2.3 Pose Regression-based Methods
Recent breakthroughs in image classification, semantic segmentation, and image
retrieval have paved the way for a deep CNN-based approach to visual localization.
In this strategy, a CNN processes an RGB image and learns to directly regress
the camera pose in an end-to-end manner. The core idea is that the low-level
features developed for general vision tasks also encode valuable information for
pose estimation, which can be leveraged through transfer learning from pre-trained
CNNs. This approach has attracted significant interest due to its simplicity and
potential for real-time deployment, although achieving high precision remains a
challenge.

For instance, PoseNet [38] adapts well-known image classification architectures,
such as VGGNet or ResNet, by replacing the final softmax layers with fully
connected layers that output the 3D position and orientation of the camera,
as depicted in figure 2.4. Despite its innovative design, PoseNet’s performance
highlights the inherent trade-offs in end-to-end learning, where the network must
balance between general feature extraction and precise pose regression.

Figure 2.4: PoseNet architecture for absolute pose regression. Image encoder E, position
regressor Rp and orientation regressor Ro produce 6DoF pose of the image. Figure and
description from [3]. Image taken from the Cambridge Landmarks dataset [38].

End-to-end absolute pose regression offers several benefits. It eliminates the need
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for manual feature engineering by relying on learned representations that are robust
to changes in lighting and viewpoint. Additionally, these models typically require
less memory and offer constant inference time compared to methods that depend
on extensive 3D models. Transfer learning also facilitates effective training on
moderately sized datasets. However, the accuracy of pose estimates from PoseNet,
both in translation and rotation, is generally an order of magnitude lower than that
achieved by state-of-the-art structure-based methods. This performance gap has
spurred extensive research into refining network architectures and loss functions to
better capture the complexities of 3D space.

Various enhancements to the PoseNet framework have been proposed, including
the development of new loss functions [32], the incorporation of Long-Short-Term-
Memory (LSTM) layers, and the integration of additional sensor data [39]. Moreover,
VLocNet [40] introduced a joint framework for learning both absolute and relative
poses, which was further refined in VLocNet++ [41] by incorporating semantic
segmentation as an auxiliary task. These developments exemplify a growing trend
toward multi-task learning, where complementary tasks provide additional context
that significantly improves pose estimation.

Despite these advancements, fully end-to-end learning of the localization pipeline
often results in suboptimal performance because it tightly couples the network
to specific scene coordinates, essentially compressing an implicit map of the en-
vironment, which can hinder generalization. This tight coupling makes models
particularly vulnerable to overfitting, especially when deployed in scenes that differ
significantly from the training data.

To mitigate these limitations, newer hybrid methods have emerged that shift
the focus toward localized sub-tasks while combining them with traditional image
retrieval and structure-based techniques. For example, DSAC [42] utilizes geometric
constraints to concentrate on tasks such as establishing 2D-3D correspondences.
While this hybrid approach considerably improves pose accuracy, the resulting
models tend to be scene-specific and may not generalize well to new environments.
By integrating geometric priors, these models strike a balance between data-driven
learning and model-based reasoning, offering a promising direction for future
improvements.

Addressing the generalization challenge, the recent SANet [43] introduces a
scene-agnostic neural framework for camera localization. By decoupling the model
parameters from any particular scene, SANet leverages geometric cues from 3D
point clouds, obtained via dense multi-view stereo (MVS) reconstructions from
the top retrieved images, and jointly learns query-scene registration along with
camera pose regression. This innovative approach represents a significant step
toward developing robust localization systems that can adapt to a wide variety of
environments without extensive retraining.
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2.4 Benchmarking Image Retrieval for Visual Lo-
calization

The performance of image retrieval systems is pivotal in visual localization pipelines,
as the quality of retrieval directly influences the efficiency and accuracy of subsequent
pose estimation stages. In recent years, research has increasingly focused on the
task of benchmarking retrieval methods within the context of visual localization,
with an emphasis on understanding their individual strengths, limitations, and
overall impact on localization performance. Two influential contributions in this
area are Investigating the Role of Image Retrieval for Visual Localization [1] and
Benchmarking Image Retrieval for Visual Localization [2].

The work from Pion et al. proposes a comprehensive benchmarking framework
designed specifically for image retrieval in visual localization tasks. This framework
extends conventional retrieval evaluation methods by incorporating localization-
specific factors.

The authors present an evaluation protocol that unifies various retrieval metrics
while integrating factors such as spatial consistency and geometric robustness. This
approach allows for a more holistic assessment of retrieval methods by considering
how well the retrieved images support accurate pose estimation.

The framework is tested across multiple challenging datasets, highlighting the
trade-offs between computational efficiency and retrieval precision in different
environmental settings. The analysis spans various scenarios, including urban,
suburban, and dynamic environments, thereby demonstrating the scalability of the
proposed metrics.

A systematic comparison is carried out between classical retrieval approaches
and modern deep learning-based methods. The study reveals that while traditional
methods may offer competitive performance in certain controlled scenarios, modern
approaches, especially those employing deep networks, tend to perform better under
complex, real-world conditions. Moreover, the paper provides detailed insights into
how retrieval performance correlates with localization accuracy, thereby guiding
the development of more effective retrieval systems.

By advocating for standardized benchmarking protocols, the study underlines
the need for consistent evaluation practices in the community. This standardization
not only aids in comparing results across different studies but also drives future
research towards refining retrieval methodologies that can robustly support visual
localization.

In a complementary effort, the subsequent work developed by the same authors
provides an in-depth analysis of how the retrieval process affects overall localization
accuracy. The authors evaluate various retrieval strategies under challenging
conditions.
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Figure 2.5: Pipeline used in [1, 2] to analyze the role of image retrieval in three visual
localization paradigms through extensive experiments. Figure from [1, 2].

The paper introduces robust evaluation metrics that go beyond traditional
precision and recall measures. These metrics are tailored to capture the nuances
of visual localization, such as spatial consistency and the geometric alignment of
retrieved images, which are crucial for accurate pose estimation.

By comparing both handcrafted features (e.g., SIFT [44]) and deep learning-
based descriptors, the study illustrates the trade-offs inherent in different represen-
tation methods. The evaluation reveals that while deep representations (e.g., those
derived from CNN activations) excel in capturing high-level semantic information,
integrating them with local feature descriptors can further mitigate challenges in
large-scale or dynamically changing environments.

A notable finding of this work is that even slight improvements in retrieval
accuracy can lead to substantial gains in localization performance. The authors
demonstrate that a more accurate retrieval stage reduces the number of candidate
images for the subsequent matching process, thereby lowering computational
costs and enhancing robustness against false positives. They also explore how
environmental factors, such as lighting variations and occlusions, impact retrieval
performance and, by extension, the overall localization accuracy.

The study lays the groundwork for standardized evaluation protocols by high-
lighting the importance of considering both global descriptor quality and the
potential benefits of local feature integration. These protocols have since become a
reference point for subsequent research in the field.

Both studies underscore the critical role that image retrieval plays in the visual
localization pipeline. Their rigorous benchmarks reveal that:

• Enhanced retrieval methods not only reduce the computational burden during
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the matching process but also improve the robustness of the subsequent pose
estimation.

• Integrating local feature descriptors with global image representations can
significantly reduce false positives, especially in environments characterized
by high visual variability.

• The balance between retrieval accuracy and efficiency is crucial, particularly
when scaling to large and complex datasets.

The findings from these benchmarking studies provide a roadmap for future
research, highlighting that improvements in the retrieval component can lead to
notable advancements in visual localization performance. They encourage the
development of hybrid systems that effectively combine the strengths of both global
and local feature extraction methodologies.

Building upon the insights and methodologies presented in these works, this
thesis adopts their benchmarking principles and findings as a foundation for further
exploration. By addressing the challenges identified in these studies and leveraging
their suggested directions for future work, we aim to refine image retrieval techniques
to enhance both accuracy and computational efficiency in visual localization.
Specifically, this thesis extends their contributions by examining the impact of
angular diversity in images retrieved with global features, exploring different global
feature extractors, and developing novel approaches that integrate global and local
descriptors while considering real-world deployment constraints. Ultimately, our
goal is to push the boundaries of retrieval-based localization systems.
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Chapter 3

Benchmarking Framework

In this chapter, we introduce a comprehensive benchmarking framework designed
to evaluate state-of-the-art visual localization systems under real-world conditions.
Visual localization is a crucial component in many applications, but its performance
is highly dependent on sensor data quality and the effectiveness of feature extraction,
matching, and mapping strategies. To assess these factors, the framework integrates
multiple datasets and advanced retrieval models, rigorously measuring accuracy,
robustness, and efficiency.

For our experiments, we adopted the visual localization pipeline proposed in
the LaMAR paper [45]. This pipeline provides a strong baseline, offering a well-
validated experimental setup for benchmarking different localization approaches.
Given its structured design and prior validation in large-scale benchmarks, it serves
as a reliable foundation for evaluating various feature extraction and matching
strategies. The chapter begins with a detailed discussion of this pipeline and the
central role of image retrieval in the localization process.

Next, we introduce the global feature extractors used in our benchmarking
(Section 3.1). We evaluate three different extractors: NetVLAD and AP-GeM,
both widely used in visual localization for their strong retrieval performance, and
SALAD, a lightweight alternative prioritizing efficiency. These global descriptors
were integrated into a fusion extractor, enabling us to analyze the impact of
different retrieval strategies on localization accuracy. All three extractors were used
off-the-shelf without additional fine-tuning.

Following this, in Section 3.2, we describe our approach to local feature extraction
and matching. We employed SuperPoint as the keypoint detector and LightGlue
for feature matching. SuperPoint provides robust and repeatable keypoints, while
LightGlue efficiently matches local features, making it a strong choice for refining
localization accuracy. This combination allows us to leverage both global and local
features effectively, balancing retrieval efficiency with precise geometric alignment.

Then, in 3.3, we introduce the two datasets used in our evaluation: the LaMAR
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dataset [45] and the Visual Benchmark in Rome (VBR) dataset [46]. We discuss
their characteristics, differences, and how they were utilized in our research.

By using this setup, we aim to evaluate the trade-offs between retrieval precision,
efficiency, and overall localization accuracy while maintaining comparability with
existing benchmarks. The use of off-the-shelf global descriptors and robust local
features ensures a structured and reproducible evaluation of different feature
extraction methods.

3.0.1 Overview of the Visual Localization Pipeline
A visual localization pipeline is a systematic approach designed to estimate the geo-
graphic location of a query image by leveraging a combination of feature extraction,
image matching, and spatial reasoning techniques. The pipeline integrates data
from large-scale geotagged image databases and applies sophisticated algorithms
to ensure accurate localization under varying conditions. This pipeline involves
several key stages, each building upon the previous, to achieve efficient and precise
localization. The pipeline we will consider here is the pipeline implemented and
used by the paper LaMAR: Benchmarking Localization and Mapping for Augmented
Reality [45], and it can be described as follows:

Figure 3.1: Lamar’s visual localization pipeline. "3D Map" figure from[47].

1. Extraction of Local and Global Features for the Database:
The pipeline begins with the preprocessing of the reference database of geo-
tagged images. For each image in the database, both global and local features
are extracted. Global features, such as those generated by deep learning mod-
els like NetVLAD or AP-GeM, provide compact, high-level representations of
an image’s overall visual content. Local features, such as SIFT [44] or ORB
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[48] keypoints, capture detailed information about specific image regions. The
combination of these features ensures the database is ready for robust and
scalable matching.

2. Matching Database Images Using Global Features (Pair Matching):
Image retrieval is used for the first time in the pipeline during this stage
to perform pair matching within the database. By comparing the global
features of images in the database, the system identifies pairs of images that
are visually similar and likely to represent spatially proximate locations. This
process significantly reduces the number of image pairs that need to undergo
the computationally expensive local feature matching step. Without this
retrieval-based filtering, the sheer number of image pairs in large databases
would make subsequent steps infeasible.

3. Local Feature Matching Between the Pairs:
After identifying candidate pairs of images using global features, local feature
matching is performed to establish precise correspondences between keypoints
in the paired images. These correspondences are essential for computing
relative poses and identifying geometric relationships between images.

4. Creation of the 3D Map:
Using the matched pairs and their local feature correspondences, a georef-
erenced 3D map of the environment is constructed. Structure-from-motion
(SfM) techniques are employed to triangulate 3D points and estimate the
relative poses of the cameras associated with the database images. The result
is a dense 3D point cloud that encodes the spatial geometry of the scene, as
well as the camera positions and orientations for all database images. This
3D map serves as the foundational reference for query localization.

5. Extraction of Local and Global Features for the Queries:
When a query image is presented for localization, its local and global features
are extracted using the same techniques applied to the database images.
This ensures that the query features are compatible for comparison with the
database features.

6. Matching Queries and Database Images Using Global Features:
Image retrieval is used for the second time in the pipeline during this stage.
The global features of the query image are matched against the global features
of the database images to retrieve a ranked list of the top-N most relevant
candidates. These candidates are the images in the database that are most
likely to correspond to locations near the query. This retrieval step reduces the
search space for the computationally intensive local feature matching, making
the system more efficient.
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7. Local Feature Matching Between Query-Database Pairs:
For each candidate match identified in the previous step, local feature matching
is performed to validate and refine the relationship between the query image
and the database images. This step ensures that the retrieved images are
geographically relevant and prepares the system for precise pose estimation.

8. Pose Estimation of the Queries:
Using the keypoint correspondences between the query image and the 3D
map, the pipeline estimates the exact pose of the query image. This involves
determining the camera’s position and orientation at the time the query image
was captured. Perspective-n-Point (PnP) algorithms are often employed,
leveraging the spatial relationships established during the map-building phase.

3.0.2 The Two-Phase Role of Image Retrieval
The image retrieval task plays a pivotal role in the pipeline, appearing twice to
optimize the system’s efficiency and scalability.

• Building the 3D Map from the Database:
The creation of the 3D map is a critical step that relies heavily on the effective
use of image retrieval to streamline the process. In the first use of image
retrieval, global feature matching is performed within the database to identify
pairs of images that are visually similar and likely to correspond to spatially
adjacent locations. This step reduces the number of image pairs that need to
undergo local feature matching, which is computationally expensive. By filter-
ing out irrelevant or dissimilar images, the system focuses only on meaningful
candidates, ensuring that computational resources are used efficiently.
Once candidate pairs are identified, local feature matching is conducted to
establish precise keypoint correspondences. These correspondences are then
used to compute the relative poses of the database images, forming the basis
for 3D map construction. Structure-from-motion (SfM) techniques are applied
to generate a dense 3D point cloud that represents the spatial geometry of
the scene, along with the georeferenced positions of the cameras. This map
is essential for localization, as it provides the framework for pose estimation
during the query phase.

• During Query Localization:
Image retrieval is used again during the query phase to retrieve a ranked list
of top-N database images that are most visually similar to the query image.
This step narrows again the search space for local feature matching between
the query and the database, ensuring that only the most relevant candidates
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are considered. By minimizing unnecessary computations, this second usage
of image retrieval improves the efficiency of the overall localization process.

Both phases highlight the importance of image retrieval as a tool for filtering and
prioritizing candidate matches, allowing the pipeline to achieve both precision and
computational efficiency. This two-phase application of image retrieval underscores
its central role in balancing accuracy and scalability in modern visual localization
systems.

3.1 Global Feature Extractors
In this section, we present an overview of the state-of-the-art models and techniques
employed in our pipeline. The Lamar pipeline used in this work leverages a fusion
of global feature extractors, namely, NetVLAD and AP-GeM, to obtain robust
image representations. In addition, the SALAD model is utilized to provide an
alternative retrieval baseline.

3.1.1 NetVLAD

Figure 3.2: Netvlad architecture. Figure from [29]

NetVLAD [29] is a convolutional neural network architecture designed to generate
compact global descriptors from input images, making it a critical component in
image retrieval tasks. Building upon the traditional VLAD (Vector of Locally
Aggregated Descriptors) method, NetVLAD incorporates a trainable clustering layer
that aggregates local convolutional features into a single, fixed-dimensional global
representation. This integration transforms the classic VLAD into a differentiable
module, allowing the entire network to be trained end-to-end for the retrieval
objective.

Historically, NetVLAD has had a significant impact on the field of visual lo-
calization. Introduced by Arandjelović et al. in 2016 [29], it marked a paradigm
shift by effectively bridging the gap between hand-crafted feature aggregation tech-
niques and deep learning. Prior to NetVLAD, many systems relied on engineered
features like SIFT [44] combined with traditional VLAD, but these methods were
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limited by their inability to leverage large amounts of training data in a unified
framework. NetVLAD’s innovative design not only provided improved robustness
to variations in viewpoint, illumination, and scale, but also set a new standard for
descriptor compactness and efficiency. Its success has spurred a wealth of research
into learned image representations and has become a cornerstone in state-of-the-art
place recognition and localization pipelines [49, 50, 51, 52, 53, 54, 55, 56].

One of the key innovations of NetVLAD is its ability to learn a set of cluster
centers (or visual words) directly from data. Each local feature extracted from a
convolutional layer is softly assigned to these learned centers, and the residuals
between the features and the centers are aggregated. This process results in a
descriptor that captures the distribution and arrangement of visual features in the
image, effectively summarizing the overall scene context.

Given an image with a set of N local feature vectors F = {x1, ..., xN}, the
global VLAD descriptor is a matrix v with dimension K × D, where D is the
dimensionality of the local features. Each element contains the sum of residuals of
each local descriptor and the nearest word as:

V (j, k) =
NØ

i=1
ak(xi) (xi(j) − ck(j)) (3.1)

To achieve trainability, the NetVLAD pooling must be differentiable. Thus, a
soft assignment to codewords is adopted, and the descriptor is adjusted accordingly
as:

vi,j =
NØ

a=1

ewT
i xa−biq

i′ ewT
i′ xa−bi′

(xa,j − ci,j) (3.2)

in which each cluster has a set of independent trainable parameters wi, bi, ci.
As illustrated in Figure 3.2, the architecture typically leverages a CNN backbone

(such as VGG16 or ResNet) to extract rich feature maps, which are then processed
by the NetVLAD layer.

The advantages of NetVLAD in visual localization are multifold:

• Robustness: The aggregated descriptors are highly resilient to variations
in viewpoint, illumination, and scale. This robustness makes NetVLAD
particularly well-suited for place recognition and localization tasks where
environmental conditions can vary significantly.

• Efficiency: By producing compact global descriptors, NetVLAD enables fast
nearest-neighbor searches within large-scale databases. This efficiency is crucial
for real-time applications, such as autonomous navigation and augmented
reality.
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• End-to-End Training: The differentiable nature of the NetVLAD layer allows
the entire network to be fine-tuned on domain-specific data. This optimization
improves retrieval performance by directly aligning the learned descriptors
with the target task.

In our visual localization pipeline, NetVLAD serves as one of the two primary
global feature extractors within a fusion strategy. Its descriptors provide a reliable
baseline for capturing the overall scene context, which is essential for both database
pair matching and query localization. By combining NetVLAD with complementary
techniques, such as AP-GeM and local feature extraction method, we achieve a
robust, multi-level representation that enhances both precision and recall in the
retrieval process.

Recent studies have demonstrated that NetVLAD achieves state-of-the-art per-
formance on large-scale place recognition benchmarks and has become a cornerstone
in many modern visual localization systems [52, 53, 57, 55, 56]. While it excels
in handling moderate environmental variations, its performance can be further
enhanced when integrated with local feature matching and other complementary
descriptors, providing a balanced approach to tackle the inherent challenges of
visual localization.

3.1.2 AP-GeM
AP-GeM is a refined variant of the Generalized Mean (GeM) pooling method,
developed by Revaud et al. in 2019 [57], and it is specifically optimized for image
retrieval tasks. Its key innovation lies in the integration of a loss function that
directly optimizes average precision, a metric that aligns closely with the retrieval
task, resulting in improved ranking quality of the retrieved images.

GeM pooling exploits the generalized mean to extract one single value from
each feature map. In particular, given a CNN output with shape W × H × D, it
processes it as D feature maps {x1, ..., xD} with dimensions W × H. The pooling
results in a D-dimensional vector f = [f1, ..., fD], where

fk =
A

1
WH

Ø
x∈xk

xpk

B 1
pk

. (3.3)

Note that max pooling [58, 59] and average pooling [60] are special cases when
pk → ∞ and pk = 1, respectively. The parameter pk is learnable, since this pooling
is differentiable, allowing for backpropagation.

The introduction of AP-GeM has been influential in the field, setting a new
benchmark for learned image representations in retrieval and place recognition. Its
development has spurred further research into task-specific pooling techniques and
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loss functions, establishing it as a critical component in modern visual localization
pipelines.

Historically, while traditional pooling methods (including standard GeM) have
been effective for aggregating convolutional features into a single global descriptor,
they were not explicitly tailored for ranking performance. AP-GeM addresses
this gap by fine-tuning the pooling process with a task-specific objective, thereby
producing descriptors that are more discriminative for retrieval scenarios. This
task-specific optimization ensures that subtle differences in visual content are better
captured, leading to superior performance in challenging conditions.

The main advantages of AP-GeM include:

• Task-Specific Optimization: By directly optimizing average precision, AP-GeM
generates descriptors that are finely tuned for ranking tasks, making them
particularly effective in distinguishing between similar images.

• Complementarity: When combined with NetVLAD descriptors, AP-GeM
contributes complementary information. This fusion leverages the robust
global context captured by NetVLAD with the refined, ranking-optimized
details provided by AP-GeM, enhancing overall retrieval accuracy.

• Scalability: The global representations produced by AP-GeM are compact
and efficient, enabling fast nearest-neighbour searches even when applied to
large-scale databases, a critical requirement for real-time visual localization
applications.

In our fusion-based approach, AP-GeM works alongside NetVLAD to form a
robust global representation. This dual strategy leverages the strengths of both
methods: NetVLAD offers a resilient and broadly informative descriptor, while
AP-GeM hones in on ranking accuracy and discriminative detail. Together, they
enhance both precision and recall in the retrieval process, making the combined
system highly effective for challenging visual localization tasks.

3.1.3 SALAD
Sinkhorn Algorithm for Locally Aggregated Descriptors (SALAD) [61] is a novel
module built upon the NetVLAD framework, designed to enhance feature assign-
ment and aggregation in visual place recognition. Unlike traditional methods,
SALAD integrates a fine-tuned DINOv2 backbone and introduces key modifications
to the assignment and aggregation processes.

SALAD utilizes DINOv2, a vision transformer (ViT)-based model, for local
feature extraction. Instead of relying on fixed feature extraction methods, a
supervised training pipeline is adopted, where only the last layers of DINOv2
are fine-tuned. This approach enhances robustness to appearance variations (e.g.,
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Figure 3.3: First, the DINOv2 backbone extracts local features and a global token
from an input image. Then, a small MLP, score projection, computes a score matrix
for feature-to-cluster and dustbin relationships. The optimal transport module uses
the Sinkhorn algorithm to transform this matrix into an assignment, and subsequently,
dimensionality-reduced features are aggregated into the final descriptor based on this
assignment and concatenated with the global token. Figure and description from [61]

seasonal and lighting changes) while preserving essential structural information.
DINOv2 divides an image I ∈ Rh×w×c into p × p × c patches, where p = 14. These
patches are projected through transformer blocks, yielding tokens {t1, . . . , tn, tn+1},
with n = hw

p2 , where tn+1 serves as a global token aggregating class information.
SALAD redefines feature assignment by addressing three key issues in NetVLAD:

1. Instead of initializing cluster centroids using k-means, each row si of the
assignment score matrix S is learned from scratch using two fully connected
layers:

si = Ws2 (σ(Ws1ti + bs1)) + bs2 (3.4)
where Ws1, Ws2, bs1, bs2 are the weights and biases, and σ is a non-linear
activation function.

2. Features containing negligible information, such as sky regions, are assigned
to a ’dustbin’ cluster. The score matrix is augmented to S̄ ∈ Rn×(m+1),
incorporating a learnable parameter z for the dustbin assignment:

s̄i,m+1 = z1n (3.5)

where 1n is an n-dimensional vector of ones.

3. Unlike NetVLAD’s per-row softmax, assignment is formulated as an optimal
transport problem, distributing feature mass µ = 1n among clusters and the
dustbin κ = [1T

m, n − m]T . The Sinkhorn algorithm is applied to normalize
row and column distributions in the assignment matrix P̄ , ensuring:

P̄1m+1 = µ, P̄ T 1n = κ (3.6)
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The dustbin column is removed to obtain the final assignment matrix P .

Once assignment is completed, aggregation is performed using the following
modifications:

1. Feature dimensions are reduced from Rd to Rl using fully connected layers:

fi = Wf2 (σ(Wf1ti + bf1)) + bf2 (3.7)

2. Each feature is aggregated into its assigned cluster, without subtracting
centroids, as follows:

Vj,k =
nØ

i=1
Pi,kfi,k (3.8)

where V ∈ Rm×l represents the VLAD descriptor.

3. A global descriptor g is extracted from DINOv2’s global token:

g = Wg2 (σ(Wg1tn+1 + bg1)) + bg2 (3.9)

This vector is concatenated with the flattened V , followed by L2 intra-
normalization and global L2 normalization, forming the final descriptor.

3.2 Local Features Extraction and Matching
Local features provide complementary information to global descriptors by capturing
fine-grained image details, which are especially useful in distinguishing between
visually similar scenes. To achieve this, we decided to use SuperPoint and LightGlue
due to their reliability and efficiency. SuperPoint provides robust keypoint detection
and description, while LightGlue ensures efficient and accurate feature matching,
making them well-suited for our visual localization pipeline.

3.2.1 SuperPoint
SuperPoint [15] is a deep learning-based model designed for keypoint detection
and description, offering a powerful alternative to traditional handcrafted methods
like SIFT [44], ORB [48], and SURF [62]. By leveraging a self-supervised learning
approach, SuperPoint can extract distinctive and repeatable keypoints, making it
highly robust to variations in lighting, viewpoint, and occlusions. It has gained
widespread use in applications such as visual localization, structure-from-motion,
and image retrieval, where reliable feature detection is critical.

Traditional keypoint detection methods rely on handcrafted heuristics, which,
while effective, often struggle in complex real-world scenarios. In contrast, Su-
perPoint utilizes a fully convolutional neural network that learns to detect and
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describe keypoints directly from data. This end-to-end design eliminates the need
for separate detection and description stages, allowing for a streamlined and efficient
feature extraction pipeline.

The architecture of SuperPoint consists of two main components: a keypoint
detector and a descriptor generator. The keypoint detection module processes an
input image to produce a heatmap that highlights the most salient feature points.
Meanwhile, the descriptor module extracts high-dimensional representations for
each detected keypoint, ensuring reliable matching across different images. This
unified approach significantly improves both speed and accuracy compared to
traditional pipelines.

Figure 3.4: SuperPoint is a fully-convolutional neural network that computes SIFT-
like 2D interest point locations and descriptors in a single forward pass. Figure from [15]

A major innovation of SuperPoint lies in its self-supervised training strategy,
which enables it to learn without manually labeled keypoints. Initially, the model
is trained using synthetic data, where keypoints are generated by applying simple
homographic transformations. This provides an initial learning signal for detecting
meaningful feature points. Following this pretraining phase, the model is refined
on real-world data using a bootstrapping approach, where it leverages its own
predictions to improve accuracy iteratively. This adaptive learning process allows
SuperPoint to generalize well to diverse environments without requiring extensive
human annotation.

One of SuperPoint’s biggest strengths is its robustness to challenging conditions
such as changes in illumination, perspective distortion, and occlusions. Unlike
traditional handcrafted methods, which may fail in such scenarios, SuperPoint’s
learned features allow it to maintain strong performance. Its fully convolutional
architecture also enables real-time processing, making it suitable for applications like
robotic perception, augmented reality, and autonomous navigation. By combining
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detection and description within a single deep learning framework, it offers an
efficient and scalable solution for various vision tasks.

Despite its advantages, SuperPoint is not without limitations. Its computational
cost, while lower than some deep learning alternatives, is still higher than traditional
methods such as FAST [63] or ORB [48]. Additionally, while it generalizes well
to many conditions, extreme distortions or highly dynamic environments can still
pose challenges.

3.2.2 LightGlue
LightGlue [64] is a deep learning-based feature matching framework designed to
provide a balance between efficiency and accuracy, addressing the limitations of
traditional feature matching approaches [65, 66]. As an evolution of transformer-
based architectures [14, 67, 68], LightGlue introduces an adaptive matching strategy
that dynamically refines correspondences based on the complexity of the scene. This
makes it particularly well-suited for real-time applications in robotics, augmented
reality, and large-scale structure-from-motion pipelines.

Traditional feature matching methods, such as brute-force nearest neighbor
search or handcrafted algorithms like FLANN [65], often suffer from inefficiencies
when dealing with large feature sets. These approaches apply a fixed matching
strategy regardless of image complexity, leading to unnecessary computations in
simple cases or insufficient accuracy in more challenging scenarios. LightGlue
overcomes these limitations by introducing an adaptive approach that adjusts the
number of iterations and computational resources based on scene difficulty.

Figure 3.5: Given a pair of input local features (d, p), each layer augments the visual
descriptors (•, •) with context based on self- and cross-attention units with positional
encoding ⊙. A confidence classifier c helps decide whether to stop the inference. If few
points are confident, the inference proceeds to the next layer but we prune points that
are confidently unmatchable. Once a confident state if reached, LightGlue predicts an
assignment between points based on their pariwise similarity and unary matchability.
Image and description from [64]
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The core of LightGlue’s architecture is built upon a transformer-based attention
mechanism that enables context-aware feature matching. Unlike traditional models
that treat all keypoints equally, LightGlue prioritizes high-confidence matches early
in the process, dynamically refining lower-confidence matches as needed. This
hierarchical refinement allows it to efficiently process simple scenes while dedicating
more resources to challenging ones, ensuring an optimal trade-off between speed
and accuracy.

Figure 3.6: LigthGlue matching an easy image pairs (top) and a difficult ones (bottom).
Image from [64]

One of the key innovations of LightGlue is its ability to leverage a coarse-to-
fine matching strategy. Initially, it establishes rough correspondences between
keypoints, rapidly filtering out obvious mismatches. Once a preliminary set of
correspondences is established, the model refines the matches using self- and cross-
attention mechanisms, progressively improving alignment accuracy. This stepwise
refinement makes LightGlue more robust to occlusions, viewpoint changes, and
varying image conditions compared to conventional methods.

In addition to its efficiency, LightGlue is designed with flexibility in mind. It can
integrate seamlessly with different feature extractors, such as SuperPoint or SIFT,
adapting its performance to the available keypoint descriptors. This modular design
ensures that it can be deployed in a wide range of applications without requiring a
complete overhaul of existing vision pipelines. Furthermore, its lightweight nature
allows it to run efficiently on edge devices, making it ideal for mobile and embedded
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systems where computational resources are limited.
Despite its advantages, LightGlue does have some limitations. While it signif-

icantly improves efficiency compared to traditional deep learning-based feature
matchers, it still relies on transformer-based computations, which can be more
resource-intensive than purely handcrafted approaches. Additionally, its perfor-
mance is highly dependent on the quality of the initial keypoint detections, meaning
that suboptimal feature extraction can impact the final matching results.

3.3 Datasets
To evaluate the performance of our retrieval-based localization methods, we con-
ducted experiments using two established datasets: Lamar and VBR. These datasets
provide realistic and diverse visual data, making them suitable for benchmarking
retrieval and localization approaches.

3.3.1 LaMAR

(a) CAB (b) HGE (c) LIN

Figure 3.7: Summary of LaMAR sequences. Images from [45].

The LaMAR Dataset [45] is a large-scale dataset created to support research in
visual localization and mapping, with a focus on urban and suburban environments
and augmented reality applications. The initial release of LaMAR comprises three
expansive locations that serve as representative scenarios for AR use cases. Specif-
ically, HGE covers approximately 18,000 m2 of a historical university building’s
ground floor, featuring multiple large halls and expansive esplanades; CAB spans
around 12,000 m2 and consists of a multi-floor office building with a variety of
small and large offices, a kitchen, storage rooms, and two courtyards; and LIN
encompasses about 15,000 m2, capturing several blocks of an old town with shops,
restaurants, and narrow passages. Both HGE and CAB include extensive indoor
and outdoor sections with numerous symmetric structures, and each location has
undergone structural changes over the span of a year (e.g., the front of HGE
transforming into a construction site or rearrangements of indoor furniture).
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Data for the LaMAR Dataset was collected in a crowd-sourced fashion using
consumer-grade devices, primarily Microsoft HoloLens 2 and Apple iPad Pro,
equipped with custom raw sensor recording applications. Ten participants were
instructed to freely explore the designated areas, resulting in diverse camera heights,
motion patterns, and capture conditions. Recordings were performed both during
the day and at night over the course of up to one year, with each location being
covered by more than 100 sessions of roughly 5 minutes each. In addition, each
location was captured two to three times by professional mapping platforms (such
as the NavVis M6 trolley or VLX backpack), which generate textured dense 3D
models from laser scanner data and panoramic imagery. To adhere to privacy
regulations, the data processing pipeline automatically anonymizes all visible faces
and license plates.

(a) CAB (b) HGE (c) LIN

Figure 3.8: Three example query images from the Lamar dataset, respectively they are
from CAB, HGE and LIN.

The dataset consists of high-quality ground-level images acquired under a wide
range of conditions, including variations in weather, lighting, and seasons. This
diversity offers a challenging benchmark for evaluating algorithms in scenarios
characterized by significant viewpoint differences and cross-domain variations. Each
image is enriched with precise metadata, such as GPS coordinates, camera poses,
and ground truth information, which is derived via an automated pipeline that
registers the AR sequences to a dense 3D reference model constructed from LiDAR
scans. This pipeline involves pairwise registration, global alignment, and pose
graph optimization, yielding accurate and globally consistent absolute poses in a
common reference frame. Temporal variations, achieved by repeated visits over
different periods, further enable the study of long-term environmental changes.
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Figure 3.9: Characteristic of the Lamar dataset compared to other famous datasets.
Figure from [45].

In addition to visual data, the LaMAR Dataset includes multimodal sensor
information, such as depth maps, LiDAR scans, and IMU readings, making it highly
versatile for applications like SLAM, visual odometry, and real-time localization.
However, for the purposes of our research, due to the unavailability of ground
truth for the official test set, the validation set was repurposed as the testing
set. Moreover, given that the focus of this research is the role of image retrieval,
only smartphone-acquired and hololens-acquired validation queries were used, and
no additional sensor modalities (e.g., IMU, Wi-Fi, Bluetooth signals, depth, or
infrared) were incorporated.

This decision does not affect the integrity of our experiments since our study is
comparative rather than absolute. Our primary objective is to compare different
retrieval methods, modalities, and configurations rather than establish an absolute
performance measure. By using the validation set as the test set, we maintain a
consistent and reliable evaluation framework.

3.3.2 VBR: Vision Benchmark in Rome
The Visual Benchmark in Rome (VBR) [46] dataset was introduced to evaluate
visual recognition and localization models in complex urban environments, with
a particular emphasis on Rome’s rich historical and architectural heritage. VBR
is a large-scale dataset offering extensive coverage of the city, capturing its iconic
landmarks and diverse urban fabrics under a variety of conditions.

A notable strength of VBR is its sophisticated data acquisition system. The
dataset was collected using a multi-modal sensor suite comprising two global
shutter RGB cameras arranged in a wide stereo configuration, a high-resolution 3D
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(a) Spagna (b) Colosseum (c) Pincio

(d) DIAG (e) Campus (f) Ciampino

Figure 3.10: Summary of VBR sequences. Images from[46].

LiDAR, an RTK-GPS system, and an Inertial Measurement Unit (IMU). Rigorous
calibration and synchronization of these sensors ensure that the resulting ground
truth, expressed in the precise LiDAR reference frame, achieves accuracies on the
order of a few centimeters, even over extensive trajectories.

The dataset is structured to rigorously challenge visual localization algorithms.
The reference database contains high-quality images captured under controlled
conditions, providing a stable basis for training and benchmarking. In contrast, the
query images are recorded from varied viewpoints and at different times, featuring
substantial variations in lighting, weather, and crowd density. This deliberate dual
mode acquisition, controlled references versus unconstrained queries, forces models
to contend with real-world cross-domain discrepancies and ensures a comprehensive
evaluation of robustness and accuracy.

The VBR dataset is originally split into a train set and a test set. However, as
with Lamar, the test set does not contain ground truth positions, preventing us
from computing localization accuracy. To work around this, we carefully selected
750 images for each scene from the train set to construct our test set.

To ensure meaningful evaluation, we sampled images from specific trajectory
segments where the camera operator passed through multiple times. This allowed
us to create a test set where nearby and visually similar images remain in the
training set, ensuring a realistic retrieval scenario. The remaining images from the
train set were used to construct the global map. The specific timestamps of the
selected test images are listed in Table 3.1.

However, even after our careful selection process, this approach introduced
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several issues that affect the validity of our experiments on this dataset. These
limitations and their impact on our results will be discussed in detail in Chapter 4.6.

Scene Timestamp of test images
Campus 1273791462170 - 1324036965410

Ciampino 3333899690710 - 3361796843540
4320655133829 - 4394998052910

Colosseo 235383958310 - 2442227787890
Diag 2824193513930 - 3062070457450
Pincio 284343555140 - 707687060340
Spagna 213141675270 - 460611290830

Table 3.1: Timestamp of test images for VBR
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Chapter 4

Experiments

In this chapter, we present a comprehensive evaluation of our experiments on the
visual localization pipeline. Our experimental framework is designed to isolate
the impact of the image retrieval phase, during query time, on pose estimation
performance by keeping all other components of the pipeline constant. Specifically,
we use the same structure-from-motion map, and local feature extraction and
matching procedures across all experiments. This controlled setup ensures that
any differences in localization accuracy are solely due to variations in the image
retrieval strategy.

We begin by defining the evaluation metrics, Recall@[1, 0.1] and Recall@[5, 1],
which capture the system’s ability to correctly localize query images under both
stringent and relaxed error thresholds.

The experiments in this chapter are organized into three main parts:

1. Experiment 1: Evaluating the Role of Angular Differences Between
Retrieved Images. In this experiment, we investigate whether increasing the
angular diversity among the images retrieved during query time improves the
final pose estimation. We compare a baseline retrieval method (selecting the
first n images from a spatially filtered list) against an approach that maximizes
angular spread among the retrieved images.

2. Experiment 2: Model Comparison (NetVLAD & AP-GeM vs.
SALAD). Here, we compare the performance of two different global fea-
ture extractors, one fusion-based (NetVLAD combined with AP-GeM) and
the other SALAD-based. For each query image, we generate a ranked list of
the top 40 database images and evaluate three retrieval strategies: a baseline
using the top 10 images, a method using all 40 images, and a third strategy
that leverages local features for additional refinement. An upper bound for
every scene is also established.
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3. Experiment 3: Incorporating Local Features to Improve Retrieval.
In the final experiment, we propose an advanced retrieval method that incor-
porates local feature information to further refine the selection of images. For
each query, we first generate a ranked list of 40 images based on global feature
similarities. We then cluster these images using the DBSCAN algorithm,
tuning the parameters based on the known positions of the database images,
and select the best cluster based on the maximum ratio of matching local
features. From this cluster, we retrieve at most 10 images for pose estimation.

The following sections detail the methodology and results for each experiment.

4.1 Metrics for Evaluation
In this work, the primary metric for evaluating visual localization performance is
Recall, measured under two sets of error thresholds: Recall@[1, 0.1] and Recall@[5,
1]. These metrics assess the system’s ability to correctly localize query images by
considering both angular and positional accuracy.

Definition of Metrics

• Recall@[1, 0.1]: A query is deemed correctly localized if the pose estimation
result exhibits an orientation error of no more than 1 degree and a positional
error of no more than 0.1 meters. This metric reflects the system’s performance
under stringent accuracy requirements.

• Recall@[5, 1]: A query is considered successfully localized if the pose estimation
result has an orientation error of no more than 5 degrees and a positional
error of no more than 1 meter. This more lenient metric captures the system’s
performance when higher error tolerances are acceptable.

These two metrics together provide a comprehensive view of the visual localiza-
tion system’s performance under both strict and relaxed conditions.

The recall metrics Recall@[1, 0.1] and Recall@[5, 1] have been adopted from the
Lamar paper.

Visual localization systems must achieve high accuracy in both orientation
and position to be effective in real-world applications. The chosen thresholds are
designed to reflect critical operational requirements: The Recall@[1, 0.1] metric
assesses the system under conditions demanding very high precision, which is vital
for applications where even minor deviations can have significant consequences.
The Recall@[5, 1] metric evaluates the system under more relaxed conditions, which
can be useful in scenarios where a broader tolerance for error is acceptable.
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4.2 Fixed Pipeline Components for Isolating Re-
trieval Impact

To isolate and better understand the influence of the image retrieval process during
query time on pose estimation performance, we ensured that all other components
of the visual localization pipeline were held constant across our experiments. By
doing so, any observed differences in results can be directly attributed to variations
in the retrieval step during query time. This controlled experimental setup includes
the following:

• Local Feature Extraction: The parameters for local feature extraction are
identical for both database and query images:

– Method: SuperPoint
– Maximum keypoints:2048
– NMS radius: 3
– Grayscale: True
– Maximum resize: 1024

• Global Feature Extraction: For global feature extraction, the same settings
were applied to both database and query images:

– Methods: SALAD, NetVLAD, and AP-GeM
– Resize maximum: 640
– Additional filters:

∗ Filter frustum: True
∗ Filter pose: True
∗ Number of pairs filter: 250

• Structure-from-Motion Map: For every scene, an initial SfM map was
built retrieving 10 images from the database per image. As described in
Section 3.2, SuperPoint was used to extract local features and LightGlue to
match them.

• Local Feature Matching (Map-Map): For matching features between
images in the map, preprocessing is performed using:

– Grayscale: True
– Resize maximum: 1024

By maintaining these fixed parameters across all experiments, we ensure that
any variations in localization performance are solely due to the changes in the
image retrieval strategy during query time.
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4.3 Experiment 1: Evaluating the Role of Angu-
lar Differences Between Retrieved Images

In this experiment, we aim to gain insights into how the diversity of viewpoints in
the image retrieval phase affects the final camera pose estimation. In particular, we
investigate whether a wider spread in the angular differences between the retrieved
images, those that are subsequently used to estimate the query’s pose, can lead to
improved localization accuracy.

The experiment is designed to compare two retrieval strategies: one based on
SALAD and another using Netvlad + APGem global feature extractors. For each
query image, of each scene, we first generate a ranked list of the top 40 database
images by computing global feature similarities. From this list, we apply a spatial
filter to retain only those images that lie within a specified range from the query.
This filtering ensures that the images considered are likely to be relevant to the
query.

As described in section 4.2, all other components of the pipeline remained
constant.

Two sets of experiments are then conducted:

1. Baseline Retrieval: From the filtered list, for each query, we take the first
n images (with n varying from 3 to 10) as the set of images used for pose
estimation.

2. Angular Diversity Maximization: We further refine the selection by
choosing n images that not only satisfy the spatial filter but also maximize the
angular spread. Specifically, we first select the top image in terms of global
feature similarity. Then, from the remaining images in the filtered set, we
iteratively choose the one that maximizes angular diversity relative to the
images already selected. This process is repeated until n images have been
chosen. This approach is intended to capture a more diverse set of viewpoints,
while still ensuring relevance to the query.
Formally, let Q be the query image, S = {I1, I2, ..., Im} be the set of candidate
images filtered by spatial constraints, f(I) be the global feature descriptor of
an image I, θ(I, J) be the angular difference between the viewpoints of images
I and J , n be the number of images to select and T be the final selected subset
of n images.
The first image I1 is chosen based on the highest global feature similarity with
the query Q:

I1 = arg max
I∈S

sim(f(I), f(Q))
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where sim(·, ·) is a similarity function, such as cosine similarity.
For each subsequent selection Ik (k = 2, ..., n), we choose the image from the
remaining set Sk that maximizes the minimum angular difference from the
already selected images:

Ik = arg max
I∈Sk

min
J∈T

θ(I, J)

where Sk = S \ T is the remaining candidate set after previous selections and
T is the set of already selected images {I1, ..., Ik−1}.
So, the final formula representation is the following:

T = {I1} ∪
;

arg max
I∈Sk

min
J∈T

θ(I, J) ∀k = 2, ..., n
<

In both cases, filtering images to lie within a certain range from the query is a
critical step. This constraint guarantees that when we maximize the angular spread,
we are likely still selecting images that contain the same scene as the query, thereby
avoiding the inclusion of outliers that might degrade pose estimation accuracy.

By comparing the pose estimation results obtained with the baseline retrieval
against those achieved with the angular diversity maximization strategy, and doing
so for varying numbers of retrieved images, we can assess the impact of viewpoint
diversity on the overall performance of the localization pipeline.

Figures 4.1 and 4.2 display the experimental results on the Lamar dataset,
illustrating the performance differences between the various retrieval strategies.
In these graphs, the R@(1, 0.1) metric is plotted against the number of retrieved
images, comparing both fusion-based and SALAD-based global feature extractors,
as well as the baseline retrieval method versus the angular spread selection approach.
These visual comparisons make it easy to appreciate how performance varies with
the number of images and to discern the differences between the methods.

Preliminary observations indicate that the SALAD-based global feature extractor
consistently outperforms the fusion-based extractor on the Lamar dataset under
the tested conditions. In particular, for phone queries for CAB and HGE scenes,
the angular spread method generally provides higher R@(1, 0.1) scores compared
to the baseline approach. In contrast, for the phone queries for LIN scene, while
SALAD again outperforms the fusion-based extractor, the performance differences
between the baseline and angular spread methods are minimal. Instead, for the
hololens queries no difference is appreciable apart from few points. These trends
are further explored in detail in Chapter 5.

For more detailed results for this experiment, including additional results for
the R@(5, 1) metric, refer to Tables A.1, A.2 and A.3 in Appendix A.
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Figure 4.1: Impact of retrieval strategy on pose estimation Performance for the Lamar
Dataset for phone queries. Each panel corresponds to a different scene (CAB, HGE,
and LIN) where the x-axis represents the number of retrieved images and the y-axis
indicates the R@(1, 0.1) metric. Four curves are shown for each scene: Fusion-based and
SALAD-based retrieval using the baseline strategy, and Fusion-based and SALAD-based
retrieval with angular spread maximization.



Figure 4.2: Impact of retrieval strategy on pose estimation Performance for the Lamar
Dataset for hololens queries. Each panel corresponds to a different scene (CAB, HGE,
and LIN) where the x-axis represents the number of retrieved images and the y-axis
indicates the R@(1, 0.1) metric. Four curves are shown for each scene: Fusion-based and
SALAD-based retrieval using the baseline strategy, and Fusion-based and SALAD-based
retrieval with angular spread maximization.
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4.4 Experiment 2: Model Comparison (NetVLAD
& AP-GeM vs. SALAD)

In this experiment, we compare the performance of two different global feature
extractors: a fusion-based approach (combining NetVLAD and AP-GeM) versus
the SALAD-based extractor. Our goal is to understand how these methods perform
on the dataset when applied during the image retrieval phase.

For each query image, for each scene, we first generate a ranked list of the
top 40 database images based on global feature similarity. From this ranked list,
a baseline result is computed by selecting only the first 10 images for both the
fusion-based and SALAD-based extractors. Next, we evaluate the performance
when all 40 images are considered, in order to assess how the retrieval performance
varies with an increased number of images.

Finally, we establish an upper bound for each scene by increasing the number of
images retrieved during map creation to 50. To create these upperbound, during
query time, the retrieved images are further filtered by distance, using the ground
truth query position, and by imposing a local feature matching criterion (requiring
at least 5% of the features to match with the query image).

As in the previous experiment, all other components of the pipeline remained
constant. This controlled setup allows us to directly evaluate the impact of the
global extractor on image retrieval estimation accuracy.

Dataset Method Fusion SALAD
Phone R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

CAB 10 Images Retrieved 0.422 0.533 0.439 0.540
CAB 40 Images Retrieved 0.465 0.568 0.523 0.636
HGE 10 Images Retrieved 0.548 0.813 0.664 0.918
HGE 40 Images Retrieved 0.647 0.884 0.681 0.907
LIN 10 Images Retrieved 0.767 0.891 0.8 0.935
LIN 40 Images Retrieved 0.820 0.940 0.833 0.970

Table 4.1: Results for experiment 2 on phone query images, model comparison. The
table presents the performance of the two image retrieval methods (baseline, all-40)
for both the fusion-based (NetVLAD & AP-GeM) and SALAD-based global extractors.
Metrics R@(1,0.1) and R@(5,1.0) are reported, with the best results for each configuration
highlighted in red.

The results for this experiment are presented in Tables 4.1 and 4.2. In these
tables, we report the R@(1,0.1) and R@(5,1.0) metrics for both the fusion-based
and SALAD-based extractors when 10 images and 40 images are retrieved. As
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Dataset Method Fusion SALAD
Hololens R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

CAB 10 Images Retrieved 0.445 0.640 0.508 0.738
CAB 40 Images Retrieved 0.496 0.701 0.558 0.785
HGE 10 Images Retrieved 0.422 0.6 0.539 0.710
HGE 40 Images Retrieved 0.462 0.640 0.577 0.739
LIN 10 Images Retrieved 0.622 0.729 0.753 0.891
LIN 40 Images Retrieved 0.671 0.777 0.793 0.909

Table 4.2: Results for experiment 2 on hololens query images, model comparison. The
table presents the performance of the two image retrieval methods (baseline, all-40)
for both the fusion-based (NetVLAD & AP-GeM) and SALAD-based global extractors.
Metrics R@(1,0.1) and R@(5,1.0) are reported, with the best results for each configuration
highlighted in red.

shown, for every scene and across both query types (phone and hololens), the
SALAD-based global feature extractor consistently outperforms the fusion-based
extractor for both R@(1,0.1) and R@(5,1.0) metrics.

Table 4.3 shows upperbound for the three scenes, for both query and hololens
queries, calculated by constructing the map with 50 retrieved images and further
filtering by distance using the query ground truth pose and local feature matching
ratio.

Dataset Phone Hololens
R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

CAB 0.680 0.823 0.662 0.9
HGE 0.745 0.946 0.707 0.860
LIN 0.881 0.975 0.846 0.943

Table 4.3: Upper bound results for the CAB, HGE, and LIN scenes. The table reports
the computed upper bounds for the R@(1,0.1) and R@(5,1.0) metrics, obtained by
constructing the map with 50 retrieved images and further filtering by distance (using
the query ground truth pose) and local feature matching ratio.
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4.5 Experiment 3: Incorporating Local Features
to Improve Retrieval

In this experiment, we propose an advanced method to refine the image retrieval
process by incorporating local feature information during query time. Our objective
is to retrieve at most 10 images per query, highlighting the additional information
that local features can contribute to the selection of the best images for pose
estimation.

For each query image, a ranked list of the top 40 database images is generated by
computing global feature similarities, as in our earlier experiments. To leverage the
additional information provided by local features, we then cluster these 40 images
using the DBSCAN algorithm. In this clustering process, we utilize the known
positions of the database images and carefully tune the DBSCAN parameters,
specifically eps and the minimum number of samples, to obtain meaningful clusters.
After clustering, we select the best cluster based on the maximum ratio of matching
local features between the query image and the images in each cluster. From this
optimal cluster, we then select at most 10 images for subsequent pose estimation.
This approach ensures that the final set of images is not only similar to the query
in terms of global features but also exhibits strong local feature correspondences,
which can provide additional spatial context and improve the accuracy of the pose
estimation.

Formally, for a given query image Q, we first retrieve a ranked set of the top 40
images from the database D based on global feature similarity:

S40 = {I1, I2, ..., I40}, where Ii = arg max
I∈D

sim(fg(I), fg(Q))

where fg(I) represents the global feature descriptor of image I, sim(·, ·) denotes
the similarity function (e.g., cosine similarity), S40 is the set of top 40 retrieved
images.

To refine the retrieved set, we apply DBSCAN clustering to the top 40 images
using their known positions. Let each image Ii have a spatial position p(Ii), then
we define the clustering process as:

C = DBSCAN({p(Ii)}40
i=1, ϵ, Nmin)

where: C = {C1, C2, ..., Cm} represents the set of clusters, ϵ is the neighborhood
radius parameter, Nmin is the minimum number of samples required to form a
cluster.

From the formed clusters, we select at most 10 images for the final retrieval set
S10:
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S10 =
Û

Ck∈C
{Ik}, |S10| ≤ 10

where the selection strategy prioritizes images from the most relevant clusters.
As in the previous experiments, all other components of the pipeline remained

constant.

Dataset Method Fusion Salad
Phone R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

CAB 10 Images Retrieved 0.422 0.533 0.439 0.540
CAB 40 Images Retrieved 0.465 0.568 0.523 0.636
CAB CL+LF 10 Images 0.459 0.553 0.469 0.563
HGE 10 Images Retrieved 0.548 0.813 0.664 0.918
HGE 40 Images Retrieved 0.647 0.884 0.681 0.907
HGE CL+LF 10 Images 0.615 0.846 0.640 0.909
LIN 10 Images Retrieved 0.767 0.891 0.8 0.935
LIN 40 Images Retrieved 0.820 0.940 0.833 0.970
LIN CL+LF 10 Images 0.760 0.877 0.796 0.902

Table 4.4: Results for experiment 3 on phone query images. The table presents the
performance of the three image retrieval methods (baseline, all-40, and local feature-based
selection) for both the fusion-based (NetVLAD & AP-GeM) and SALAD-based global
extractors. Metrics R@(1,0.1) and R@(5,1.0) are reported.

By comparing the pose estimation results achieved with this local feature-
enhanced retrieval method against those from the previous methods, we can assess
the impact of incorporating local feature information into the retrieval phase.

An objective evaluation of the results 4.4 and 4.5 shows that our proposed
cluster + local features method consistently outperforms the baseline approach that
relies on the first 10 retrieved images, even when using an equal or fewer number of
images. Anyhow, our method does not surpass the performance of the 40-images
retrieved strategy but in several cases it comes close, demonstrating competitive
results, particularly in certain scenes and with specific global extractors.

Additionally, the SALAD-based global extractor continue to outperform the
fusion-based extractor also in the cluster + local features experiment.
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Dataset Method Fusion Salad
Hololens R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

CAB 10 Images Retrieved 0.445 0.640 0.508 0.738
CAB 40 Images Retrieved 0.496 0.701 0.558 0.785
CAB CL+LF 10 Images 0.473 0.662 0.522 0.759
HGE 10 Images Retrieved 0.422 0.6 0.539 0.710
HGE 40 Images Retrieved 0.462 0.640 0.577 0.739
HGE CL+LF 10 Images 0.453 0.633 0.558 0.733
LIN 10 Images Retrieved 0.622 0.729 0.753 0.891
LIN 40 Images Retrieved 0.671 0.777 0.793 0.909
LIN CL+LF 10 Images 0.653 0.770 0.758 0.892

Table 4.5: Results for experiment 3 on hololens query images. The table presents the
performance of the three image retrieval methods (baseline, all-40, and local feature-based
selection) for both the fusion-based (NetVLAD & AP-GeM) and SALAD-based global
extractors. Metrics R@(1,0.1) and R@(5,1.0) are reported.

4.6 Experiments on VBR
In this chapter, we present a brief overview of the results obtained from three
experiments conducted on the Vision Benchmark in Rome (VBR) dataset. However,
it is important to note that these results should not be considered valid due to
fundamental issues in the way the test set was created.

As discussed in Section 3.3.2, the VBR dataset does not provide a predefined
validation set, nor does its test set contain ground truth pose information. To work
around this limitation, we constructed a test set using images from the training set.
This approach introduced several issues that significantly impacted the validity of
the experimental results.

The primary problems with our artificially created test set are:

1. Lack of Temporal, Weather, and Viewpoint Differences:

• Since the test set was derived from the training set, there is minimal differ-
ence between the two in terms of lighting conditions, weather variations,
and viewpoint changes. This eliminates many of the real-world challenges
typically encountered in visual localization.

2. Use of Consecutive Image Sequences:

• The test set consists of image sequences that follow a continuous trajectory
where the operator passed through the same location at least twice. As a
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result, one session of that trajectory is in the training set, while another
is in the test set.

• This leads to two extreme scenarios:
– In some cases, the test trajectory is nearly identical to the one in the

training set, making image retrieval trivially easy.
– In other cases, the test trajectory differs too much from the training

set, making it impossible for the retrieval method to find relevant
images.

Due to these limitations, the results obtained in these experiments are unreliable.
The artificially constructed test set fails to provide a meaningful evaluation of
retrieval-based localization performance, as it either simplifies the task to an
unrealistic degree or makes it completely unsolvable.

Despite these issues, we will report the experimental results in Table 4.6 and
Figures 4.3, 4.4 for completeness, but we will refrain from interpreting or drawing
conclusions from them. For more comprehensive result tables check chapter B of
the appendix.
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Dataset Method Fusion Salad
Phone R@(1, 0.1) R@(5, 1.0) R@(1, 0.1) R@(5, 1.0)

Ciampino 10 Images Retrieved 0.747 0.996 0.737 0.995
Ciampino 40 Images Retrieved 0.713 0.992 0.722 0.999
Ciampino CL+LF 10 Images 0.747 0.996 0.737 0.995
Campus 10 Images Retrieved 0.977 1.0 0.968 1.0
Campus 40 Images Retrieved 0.949 1.0 0.975 1.0
Campus CL+LF 10 Images 0.984 1.0 0.640 1.0
Colosseo 10 Images Retrieved 0.137 0.847 0.12 0.873
Colosseo 40 Images Retrieved 0.129 0.889 0.128 0.957
Colosseo CL+LF 10 Images 0.157 0.824 0.125 0.873

Diag 10 Images Retrieved 0.552 0.932 0.565 0.931
Diag 40 Images Retrieved 0.551 0.92 0.58 0.928
Diag CL+LF 10 Images 0.561 0.939 0.576 0.928

Pincio 10 Images Retrieved 0.184 0.679 0.16 0.635
Pincio 40 Images Retrieved 0.165 0.691 0.179 0.679
Pincio CL+LF 10 Images 0.188 0.675 0.171 0.613
Spagna 10 Images Retrieved 0.239 0.688 0.177 0.723
Spagna 40 Images Retrieved 0.296 0.728 0.208 0.761
Spagna CL+LF 10 Images 0.264 0.699 0.206 0.716

Table 4.6: Results of Experiment 1 and 2 on VBR.

Figure 4.3: Results for Experiment 1 on VBR.



Figure 4.4: Results for Experiment 1 on VBR.



Chapter 5

Findings and Discussion

5.1 Role of Angular Differences in Retrieval Per-
formance

The experimental results presented in Figure 4.1, 4.2 and Tables A.1, A.2, A.3
demonstrate that incorporating angular diversity in the image retrieval phase can
improve pose estimation accuracy under certain conditions. However, the benefits
of this approach vary across different scenes and depend on the specific global
feature extractor used.

For the HGE scene with phone query images, which is characterized by a highly
diverse mix of indoor and outdoor environments around a historical university
building, the method that leverages a wider angular spread generally outperforms
the baseline selection. In particular, when using the fusion-based global extractor,
the performance difference between the baseline and the angle-spread approach
can reach up to 6% recall for n=4 images. This indicates that, in the HGE scene
with phone query images, maximizing angular diversity consistently enhances pose
estimation, albeit with varying degrees of improvement depending on the number
of images retrieved.

In the CAB scene with phone query images, captured within confined indoor
spaces such as corridors and small rooms, the impact of angular spread differs
between global extractors. When using the SALAD-based method, the angular
spread strategy yields, on average, about a 1% improvement in recall, peaking at
a 2.5% advantage for n=6 images. Conversely, for the fusion-based extractor in
the CAB scene with phone query images, the angular spread approach appears to
have minimal influence, with both baseline and angle-spread methods producing
similar results regardless of the number of images retrieved. This can be attributed
to the inherent difficulty of differentiating between visually similar images in such
constrained environments.
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Figure 5.1: Comparison of retrieved images for the CAB scene with phone query images
using SALAD. The query image is shown on the left, while the top row presents the
first six images retrieved using the baseline method, and the bottom row shows the first
six images retrieved using the spread angle method. As observed, the baseline method
retrieves nearly identical images, primarily focused on the subject from a close distance,
whereas the spread angle method retrieves more diverse images that depict both the
subject and the surrounding environment from different angles.

Figure 5.2: Comparison of retrieved images for the HGE scene with phone query images
using fusion. The query image is displayed on the left, with the top row showing the first
six images retrieved using the baseline method and the bottom row showing the first
six images retrieved using the spread angle method. As observed, the baseline method
retrieves nearly identical images taken from very similar viewpoints. In contrast, the
spread angle method selects a more diverse set of images, capturing the subject and its
surroundings from different perspectives.
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For the LIN scene with phone query images, the effect of angular spread is
generally non-influential. The recall scores for the baseline and angle-spread
methods are very close, and in some cases, the baseline method even slightly
outperforms the angle-spread selection, particularly when using the SALAD-based
extractor.

Additionally, the two global extractors exhibit different sensitivities to angular
diversity. For example, in the HGE scene with phone query images at n=4, the
fusion-based extractor showed the most pronounced improvement when angular
spread was applied, suggesting that its performance benefits more from diverse
viewpoints compared to the SALAD-based extractor.

These results can be explained by the intrinsic characteristics of each scene. The
HGE scene is notably diverse, with images capturing varied aspects of a historical
university building, each room and outdoor area is distinct in scale and visual
content, and repetitive patterns are minimal. This diversity allows the retrieval
process to benefit significantly from a wide range of viewing angles. In contrast,
the CAB scene consists of many similar indoor environments, such as corridors and
staircases, where images from different locations can appear nearly identical. In
such cases, global features struggle to differentiate between them, and the enforced
angular spread may even lead to the selection of less relevant images.

Instead, for the HGE and LIN scenes using Hololens query images, we observe no
appreciable difference between the baseline and angle-spread methods. In particular,
when using the SALAD-based extractor in the HGE scene with a small number
of retrieved images, the baseline approach even performs better. This suggests
that for these specific settings, angular diversity does not contribute positively
to retrieval performance. In the CAB scene with Hololens query images, we still
observe that the angle-spread method provides a benefit when leveraging SALAD,
but with the fusion-based extractor, there is no noticeable improvement.

It is logical to conclude that the benefit of incorporating angular spreadness in
image retrieval is highly dependent on the nature of the dataset, the characteristics
of the scene, and the capacity of the global feature extractor to represent images
from different viewpoints consistently. In scenarios where the available database
images lack sufficient angular diversity, efforts to maximize angular spread can
be counterproductive. Conversely, in environments with rich viewpoint variation,
enhancing angular diversity can significantly improve retrieval performance. More-
over, the different behaviours of the two used global extractors suggest that the
effectiveness of angular spread depends not only on the scene characteristics but
also on the choice of the global feature extractor. Different global extractors capture
similarities and differences in images in distinct ways, depending on their strengths
and feature representations. As a result, they can behave differently when enforcing
maximum angular spread in the retrieved images, with some extractors benefiting
from a wider viewpoint diversity while others may not effectively leverage this
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additional variation. These findings underscore the importance of tailoring the
retrieval strategy to the specific characteristics of the scene and the capabilities of
the employed global feature extractor.

5.2 Comparative Analysis of Models
From all the experiments (Figures 4.1, 4.2 and Table 4.1, 4.2, 4.4, 4.5) conducted
across different methods, scenes, and retrieval settings, the SALAD-based global fea-
ture extractor consistently outperformed the fusion approach combining NetVLAD
and AP-GeM. This performance gap was evident regardless of the number of
retrieved images and across both phone and Hololens query sets. On average,
SALAD demonstrated a recall improvement of approximately 6-13% for R@(1,0.1),
further confirming its superior ability to retrieve more relevant images for pose
estimation.

These results highlight the advancements in global feature extraction techniques,
with SALAD significantly surpassing the much older NetVLAD + AP-GeM combi-
nation. The performance gap can be attributed to the more refined and expressive
representations learned by SALAD, which leverage modern self-supervised learning
techniques and better capture scene structure and semantic information.

Figure 5.3: Comparison of HGE retrieved images with phone queries using different
global extractors. The query is displayed on the left, with the top row showing the first
six images retrieved using the fusion-based global extractor and the bottom row showing
the first six images retrieved using the SALAD-based global extractor. In this example,
SALAD retrieves more images that are relevant to the query, demonstrating its superior
ability to capture pertinent visual information for image retrieval and pose estimation.
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Moreover, the superior performance of SALAD was consistent across different
retrieval strategies, including baseline retrieval (top 10 images) and expanded
retrieval (top 40 images). This suggests that SALAD not only retrieves better-
matching images but also improves robustness in diverse conditions, making it a
more reliable choice for visual localization tasks.

While our results emphasize the importance of selecting a strong global feature
extractor, an interesting direction for further improving performance would be to
train or at least fine-tune a global feature extractor specifically for the task of
visual localization. The requirements for an effective global feature extractor in this
pipeline can differ significantly from those in other tasks, such as geolocalization,
where broader scene-level information might be more relevant than viewpoint
diversity. By fine-tuning a global extractor on visual localization-specific datasets,
we could further optimize feature representations for this particular task, leading
to even greater improvements in retrieval and pose estimation accuracy.

Additionally, training a model specifically for visual localization could help
address the uncertainty observed in our first experiment regarding the impact of
angular spreadness in retrieval. A global feature extractor adapted to this task
could inherently learn the optimal degree of viewpoint diversity needed for different
scene types, thereby resolving some of the ambiguities we observed when enforcing
angular spread. This suggests that beyond simply swapping feature extractors, a
task-specific adaptation could not only enhance retrieval accuracy but also provide
more principled guidance on whether enforcing viewpoint diversity is beneficial in
a given scenario.

The results also reinforce the importance of using state-of-the-art global de-
scriptors for improving pose estimation pipelines. As seen in our experiments, an
enhanced retrieval step directly translates to better localization accuracy, empha-
sizing the critical role of global feature extraction in visual place recognition. Given
the significant improvements observed with SALAD, it is evident that modern
retrieval models leveraging self-supervised learning and stronger feature represen-
tations can substantially enhance the performance of visual localization systems.
Furthermore, fine-tuning these models for the specific needs of visual localization
could unlock additional performance gains and help optimize retrieval strategies,
particularly regarding viewpoint diversity.

5.3 Impact of Local Features
Our experimental results, presented in Tables 4.4 and 4.5, demonstrate that
incorporating additional information, such as the known positions of database
images for clustering and local feature-based filtering during retrieval, can enhance
pose estimation performance. By integrating spatial priors and leveraging local
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features earlier in the retrieval process, we observed notable improvements in recall,
particularly for weaker global feature extractors.

The most significant improvements were seen with the fusion-based retriever,
where the inclusion of these additional cues led to recall gains of up to 6% for the
HGE scene with phone query images. This suggests that the NetVLAD + AP-
GeM combination benefits substantially from supplementary spatial and geometric
information, likely due to its more limited capacity to distinguish relevant images
compared to more modern extractors like SALAD. By refining the retrieval process
with local feature filtering and clustering, the fusion method was able to select
more relevant images, which in turn improved the quality of the pose estimation
pipeline.

Figure 5.4: Comparison of retrieved images for the LIN scene with HoloLens query
images using the baseline method versus our proposed clustering and local feature
matching approach. The query image is shown on the left, with the top row displaying
the first six images retrieved using the baseline method and the bottom row showing the
first six images retrieved using the clustering + local feature matching approach. The
additional information provided by clustering and leveraging local features allows for
the retrieval of more relevant images, correctly depicting the target café and improving
localization accuracy.

For the SALAD-based retriever, the impact of these modifications was more
nuanced. While improvements of around 1-2% were observed in some cases, there
were also instances where performance slightly decreased. This suggests that
SALAD, being a stronger global feature extractor, may already retrieve highly
relevant images, and further refining the selection based on clustering and local
feature constraints might not always be beneficial. In some cases, enforcing these
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additional retrieval constraints could potentially exclude useful images that would
otherwise contribute positively to the final pose estimation.

These findings highlight the varying impact of local feature-based refinement
depending on the strength of the global feature extractor. For weaker global
extractors like the fusion method, the additional spatial and geometric cues provide
crucial improvements, helping compensate for less discriminative global features.
On the other hand, for more advanced methods like SALAD, the benefits are less
pronounced and may even introduce trade-offs in certain scenarios.

Ultimately, these results emphasize the importance of balancing global and
local feature information in the retrieval process. While spatial priors and local
feature constraints can be highly beneficial, their effectiveness is influenced by the
inherent capabilities of the global feature extractor, the scene characteristics, and
the retrieval pipeline design.

5.4 Implications for Visual Localization Pipelines
The experiments presented in this work offer valuable insights into how different
aspects of the image retrieval process influence the performance of visual localization
pipelines. The findings suggest that improvements can be achieved by addressing
three key areas: the choice of global feature extractor, the incorporation of additional
local feature and positional information, and the enforcement of angular spreadness
in the retrieved images.

1. Global Feature Extractor Comparison: Fusion vs. SALAD

Among all the experiments conducted, the comparison between the fusion-based
approach (NetVLAD + AP-GeM) and the SALAD-based global feature extractor
clearly shows that SALAD consistently outperforms fusion. This performance
gap highlights the superiority of SALAD, which leverages modern self-supervised
learning techniques and more expressive feature representations to capture scene
structure and semantic content more effectively than the older fusion approach.

Notably, swapping from an off-the-shelf fusion extractor to an off-the-shelf
SALAD extractor is one of the simplest modifications that can be made in the
visual localization pipeline. This change is low effort but high reward, as it
directly translates to significantly improved localization accuracy. However, it is
important to note that in real-time applications where hardware resources and
computational time are constrained, the increased computational load associated
with SALAD must be carefully evaluated. The balance between improved accuracy
and computational efficiency is crucial for practical deployments.
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2. Leveraging Additional Local Information
Our third experiment demonstrated that incorporating additional information,
specifically, the known positions of database images and local feature matching
data, can further enhance the image retrieval process. This additional information
is already available within typical visual localization pipelines and does not require
computation from scratch; rather, it can be efficiently retrieved from memory. The
experiment showed that lower-performance global extractors like the fusion method
benefit more from leveraging this supplementary data, achieving significant recall
improvements when clustering images by position and selecting the best cluster
based on local feature matches.

This finding suggests that underutilizing available positional and local feature
data represents a missed opportunity in improving the pipeline’s performance.
However, it should be noted that the additional computational cost associated with
clustering and local feature matching can be significant. Therefore, the trade-off
between improved recall and increased processing time must be carefully evaluated
to ensure the overall efficiency of the system.

3. Impact of Angular Spreadness in Retrieval
The experiment investigating angular spreadness revealed that enforcing a wider
diversity of viewpoints in the retrieved images can, in many cases, enhance pose
estimation accuracy. In some datasets, maximizing angular diversity resulted in
substantial improvements, while in others, its impact was minimal or even coun-
terproductive. The effectiveness of angular spreadness depends on several factors,
including the inherent structure and morphology of the dataset, the availability of
diverse viewpoints for the same scene or subject, and the capabilities of the global
and local feature extractors.

In some scenarios, such as the HGE scene with phone query images, increasing
angular spread yielded notable improvements, up to a 6% gain in recall for the
fusion-based extractor. In contrast, for certain scenes and with specific query types
(e.g., Hololens queries in HGE and LIN), the baseline retrieval method performed
comparably or even slightly better than the angular spread approach. These mixed
results indicate that while angular spreadness has the potential to be beneficial, its
effectiveness is highly context-dependent and warrants further investigation with
more extensive experiments and carefully curated datasets.

Overall Implications
Collectively, these experiments underscore the importance of carefully balancing
global and local feature information in visual localization pipelines. The evidence
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strongly suggests that modern global feature extractors like SALAD can sub-
stantially enhance localization performance compared to older methods such as
NetVLAD + AP-GeM. Additionally, leveraging available spatial and local feature
data can further boost performance, particularly for pipelines that rely on less
discriminative global features. Finally, while increasing the angular diversity of
retrieved images holds promise, its benefits are highly dependent on various factors
and must be tailored to the specific conditions of the application.

These findings indicate that even relatively straightforward modifications, such
as replacing the global feature extractor or integrating additional retrieval cues,
can lead to significant improvements in visual localization. However, practical
deployment requires careful consideration of computational costs, especially in
scenarios where real-time performance is critical. Future work should further
explore these trade-offs and develop optimized strategies that balance accuracy
and efficiency in diverse operational environments.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions
This work investigated the impact of different retrieval strategies and global fea-
ture extractors on visual localization pipelines. Through a series of controlled
experiments, we explored three key aspects: (1) the role of angular spreadness in
retrieval performance, (2) the comparative effectiveness of different global feature
extractors, particularly SALAD vs. the fusion-based approach, and (3) the impact
of incorporating additional spatial and local feature information.

Our findings demonstrate that SALAD consistently outperforms the older fusion-
based approach, making it a highly effective choice for improving image retrieval
in localization pipelines. Additionally, we showed that leveraging already available
positional and local feature data enhances performance, particularly for weaker
global feature extractors. Finally, we found that enforcing angular spreadness in
retrieved images can be beneficial in many cases, but its impact is scene-dependent
and requires further investigation.

6.2 Limitations of the Current Work
While our experiments provide meaningful insights, certain limitations must be
acknowledged. First, the dataset constraints may have influenced our findings.
The experiments were conducted on a limited set of scenes, and the observed
benefits of angular spreadness or additional retrieval cues might not generalize to
all environments. Larger and more diverse datasets could provide a clearer picture
of these effects.

Second, computational efficiency remains a concern. While SALAD offers supe-
rior retrieval performance, its increased computational cost may pose challenges for
real-time localization applications. Similarly, incorporating additional local feature
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matching and spatial clustering improves recall but also introduces processing
overhead. The trade-off between accuracy and efficiency needs further evaluation,
particularly for real-world applications with strict latency constraints.

Lastly, the role of angular spreadness remains somewhat ambiguous. While we
observed improvements in some scenarios, the factors that determine its effectiveness,
such as dataset structure, viewpoint availability, and feature extractor choice,
require more systematic exploration. resources, or specific model issues.

6.3 Directions for Future Research
Several avenues for future research emerge from this work. One key direction is
expanding our experiments to larger and more diverse datasets, covering a broader
range of environments, including outdoor urban spaces, complex indoor settings,
and dynamic scenes with moving objects. Such datasets would help validate our
findings and refine strategies for integrating retrieval improvements into visual
localization pipelines.

Another important area is exploring alternative global feature extractors and
retrieval techniques. While SALAD outperformed the fusion approach, future work
could examine even more advanced self-supervised or transformer-based models to
further enhance retrieval performance.

Finally, future research should investigate how these retrieval improvements
translate to downstream geolocalization tasks. While our work focused on retrieval
performance, integrating these enhancements into full pose estimation pipelines
could provide a more comprehensive assessment of their practical impact. Addition-
ally, optimizing retrieval strategies for real-time applications by balancing accuracy
and computational cost will be crucial for deploying these techniques in practical
scenarios such as augmented reality navigation and autonomous systems.

By addressing these challenges, future work can build upon our findings to
further refine and optimize visual localization pipelines, improving both their
accuracy and efficiency in diverse environments.
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Appendix A

Complete Results of
Experiment 1 on Lamar

In this chapter, we present the complete results of Experiment 1, which investigates
the impact of angular spreadness on image retrieval and pose estimation accuracy.
The details of this experiment are discussed in Chapter 4.3.

Each of the following tables corresponds to a specific scene in the Lamar dataset
and provides a comprehensive breakdown of the experimental results for angular
spreadness. The tables report two key recall metrics:

• R@(1, 0.1): Recall at 1 image within a 0.1m threshold.

• R@(5, 1.0): Recall at 5 images within a 1.0m threshold.

The results are presented for different numbers of retrieved images, ranging from 3
to 10. We compare the performance of two global feature extractors:

• Fusion-based extractor (NetVLAD + AP-GeM)

• SALAD-based extractor (DINOv2 SALAD)

For each global feature extractor, we report results under both the baseline selection
method and the angular spread selection method. The best result for each number
of retrieved images is highlighted in red to emphasize the most effective approach
in each case.

60



Complete Results of Experiment 1 on Lamar

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.515 0.684 0.505 0.657 0.510 0.702 0.525 0.712
4 0.523 0.687 0.520 0.674 0.533 0.715 0.525 0.715
5 0.530 0.684 0.538 0.689 0.533 0.715 0.543 0.717
6 0.543 0.684 0.528 0.689 0.535 0.720 0.561 0.720
7 0.548 0.687 0.538 0.689 0.566 0.728 0.575 0.720
8 0.556 0.694 0.550 0.689 0.563 0.730 0.571 0.717
9 0.553 0.689 0.548 0.692 0.556 0.725 0.568 0.730
10 0.553 0.697 0.548 0.689 0.561 0.732 0.573 0.730

Table A.1: Experimental results for CAB scene for phone queries.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.552 0.817 0.607 0.857 0.624 0.884 0.592 0.868
4 0.586 0.838 0.651 0.870 0.641 0.891 0.634 0.884
5 0.590 0.844 0.639 0.870 0.647 0.891 0.666 0.895
6 0.624 0.859 0.658 0.872 0.641 0.893 0.666 0.895
7 0.643 0.861 0.660 0.872 0.653 0.895 0.672 0.895
8 0.645 0.870 0.655 0.874 0.668 0.899 0.672 0.897
9 0.643 0.863 0.668 0.876 0.670 0.897 0.689 0.901
10 0.641 0.874 0.672 0.876 0.681 0.901 0.683 0.899

Table A.2: Experimental results for HGE scene for phone queries.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.777 0.909 0.777 0.910 0.800 0.937 0.757 0.947
4 0.777 0.911 0.780 0.912 0.797 0.944 0.795 0.952
5 0.797 0.917 0.792 0.926 0.818 0.947 0.803 0.960
6 0.795 0.916 0.803 0.927 0.815 0.947 0.807 0.957
7 0.797 0.919 0.805 0.924 0.821 0.949 0.815 0.959
8 0.798 0.919 0.800 0.924 0.826 0.952 0.821 0.957
9 0.800 0.922 0.803 0.924 0.825 0.950 0.837 0.960
10 0.798 0.921 0.798 0.926 0.835 0.954 0.836 0.960

Table A.3: Experimental results for LIN scene for phone queries.
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N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.417 0.581 0.404 0.578 0.465 0.689 0.456 0.680
4 0.442 0.603 0.434 0.605 0.484 0.694 0.491 0.706
5 0.457 0.613 0.453 0.621 0.496 0.711 0.512 0.716
6 0.468 0.630 0.465 0.632 0.507 0.712 0.518 0.727
7 0.463 0.638 0.471 0.640 0.517 0.717 0.526 0.733
8 0.483 0.647 0.481 0.648 0.515 0.731 0.539 0.742
9 0.482 0.655 0.483 0.649 0.536 0.734 0.545 0.747
10 0.488 0.650 0.484 0.656 0.537 0.736 0.543 0.743

Table A.4: Experimental results for CAB scene for hololens queries.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.425 0.624 0.391 0.637 0.543 0.755 0.496 0.735
4 0.447 0.642 0.432 0.647 0.564 0.770 0.531 0.750
5 0.452 0.647 0.452 0.657 0.583 0.779 0.558 0.762
6 0.452 0.656 0.455 0.661 0.587 0.778 0.569 0.772
7 0.470 0.661 0.463 0.669 0.594 0.775 0.578 0.770
8 0.469 0.664 0.468 0.668 0.585 0.785 0.585 0.774
9 0.472 0.668 0.469 0.671 0.591 0.783 0.594 0.778
10 0.473 0.670 0.478 0.674 0.606 0.784 0.594 0.780

Table A.5: Experimental results for HGE scene for hololens queries.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.610 0.737 0.585 0.723 0.688 0.887 0.670 0.866
4 0.624 0.752 0.617 0.737 0.723 0.899 0.707 0.877
5 0.637 0.757 0.635 0.746 0.742 0.902 0.744 0.897
6 0.647 0.762 0.645 0.750 0.741 0.903 0.755 0.901
7 0.651 0.762 0.649 0.752 0.759 0.906 0.763 0.905
8 0.654 0.766 0.658 0.755 0.757 0.909 0.772 0.909
9 0.655 0.765 0.661 0.759 0.762 0.915 0.782 0.910
10 0.660 0.766 0.664 0.759 0.768 0.913 0.784 0.908

Table A.6: Experimental results for LIN scene for hololens queries.
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Appendix B

Complete Results of
Experiment 1 on VBR

In this chapter, we present the complete results of Experiment 1, which examines
the impact of angular spreadness on image retrieval and pose estimation accuracy.
The details of this experiment are discussed in Chapter 4.6.

Each of the following tables corresponds to a specific scene in the VBR dataset
and provides a detailed breakdown of the experimental results for angular spreadness.
The tables report two key recall metrics:

• R@(1, 0.1): Recall at 1 image within a 0.1m threshold.

• R@(5, 1.0): Recall at 5 images within a 1.0m threshold.

The results are shown for different numbers of retrieved images, ranging from 3 to
10. We compare the performance of two global feature extractors:

• Fusion-based extractor (NetVLAD + AP-GeM)

• SALAD-based extractor (DINOv2 SALAD)

For each global feature extractor, we report results under both the baseline selection
method and the angular spread selection method.
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N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.765 0.960 0.671 0.960 0.759 0.949 0.699 0.949
4 0.761 0.960 0.688 0.960 0.757 0.949 0.697 0.949
5 0.768 0.960 0.693 0.960 0.756 0.949 0.704 0.949
6 0.757 0.960 0.707 0.960 0.759 0.949 0.704 0.949
7 0.755 0.960 0.704 0.960 0.760 0.949 0.707 0.949
8 0.759 0.960 0.712 0.960 0.747 0.949 0.720 0.949
9 0.743 0.960 0.727 0.960 0.745 0.949 0.721 0.949
10 0.753 0.960 0.721 0.960 0.744 0.949 0.730 0.949

Table B.1: Experimental results for different retrieval methods on the Ciampino dataset.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.9693 1.000 0.9293 1.000 0.9640 1.000 0.9360 1.000
4 0.9773 1.000 0.9347 1.000 0.9693 1.000 0.9400 1.000
5 0.9773 1.000 0.9520 1.000 0.9680 1.000 0.9467 1.000
6 0.9800 1.000 0.9480 1.000 0.9720 1.000 0.9493 1.000
7 0.9827 1.000 0.9480 1.000 0.9667 1.000 0.9493 1.000
8 0.9747 1.000 0.9453 1.000 0.9680 1.000 0.9560 1.000
9 0.9773 1.000 0.9493 1.000 0.9720 1.000 0.9467 1.000
10 0.9787 1.000 0.9467 1.000 0.9707 1.000 0.9533 1.000

Table B.2: Experimental results for different retrieval methods on the Campus_1
dataset.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.1347 0.7720 0.1267 0.7627 0.1467 0.8040 0.1173 0.7920
4 0.1240 0.7813 0.1000 0.7747 0.1453 0.8147 0.1187 0.7960
5 0.1293 0.7933 0.0960 0.7853 0.1307 0.8173 0.1107 0.8040
6 0.1307 0.7893 0.1120 0.7907 0.1307 0.8147 0.1093 0.8253
7 0.1520 0.7947 0.1053 0.7893 0.1360 0.8173 0.1120 0.8160
8 0.1440 0.7973 0.1120 0.8013 0.1280 0.8213 0.1267 0.8240
9 0.1427 0.7987 0.1187 0.7987 0.1280 0.8227 0.1253 0.8293
10 0.1493 0.8027 0.1333 0.7960 0.1213 0.8213 0.1293 0.8267

Table B.3: Experimental results for different retrieval methods on the Colosseo dataset.
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Complete Results of Experiment 1 on VBR

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.5347 0.9133 0.4733 0.8973 0.5173 0.9147 0.4880 0.8880
4 0.5427 0.9227 0.5027 0.9107 0.5240 0.9173 0.5040 0.8987
5 0.5547 0.9320 0.5000 0.9080 0.5480 0.9280 0.4920 0.9067
6 0.5480 0.9320 0.4987 0.9093 0.5600 0.9320 0.5293 0.9173
7 0.5507 0.9293 0.5200 0.9173 0.5480 0.9320 0.5240 0.9120
8 0.5573 0.9360 0.5160 0.9293 0.5427 0.9293 0.5413 0.9240
9 0.5520 0.9293 0.5160 0.9267 0.5507 0.9280 0.5413 0.9240
10 0.5520 0.9347 0.5240 0.9253 0.5667 0.9307 0.5413 0.9253

Table B.4: Experimental results for different retrieval methods on the diag dataset.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.1253 0.6387 0.1067 0.5907 0.1480 0.6453 0.0960 0.5680
4 0.1400 0.6533 0.1160 0.6213 0.1480 0.6587 0.1053 0.6013
5 0.1533 0.6733 0.1173 0.6440 0.1520 0.6627 0.0960 0.6053
6 0.1680 0.6707 0.1133 0.6600 0.1493 0.6533 0.0947 0.6200
7 0.1707 0.6747 0.1293 0.6533 0.1547 0.6467 0.1120 0.6253
8 0.1840 0.6907 0.1187 0.6627 0.1653 0.6453 0.1173 0.6293
9 0.1827 0.6813 0.1400 0.6707 0.1627 0.6507 0.1347 0.6440
10 0.1920 0.6867 0.1440 0.6667 0.1600 0.6387 0.1320 0.6387

Table B.5: Experimental results for different retrieval methods on the Pincio dataset.

N Fusion Baseline Fusion Spread Salad Baseline Salad Spread
R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1) R@(1,0.1) R@(5,1)

3 0.2267 0.6613 0.2120 0.6547 0.1827 0.6360 0.1787 0.6267
4 0.2413 0.6653 0.2240 0.6560 0.1840 0.6400 0.2053 0.6307
5 0.2520 0.6560 0.2440 0.6560 0.1867 0.6387 0.1933 0.6227
6 0.2560 0.6533 0.2533 0.6613 0.1853 0.6333 0.1867 0.6320
7 0.2493 0.6547 0.2533 0.6600 0.1973 0.6373 0.1907 0.6373
8 0.2507 0.6587 0.2560 0.6587 0.1947 0.6360 0.2053 0.6347
9 0.2387 0.6613 0.2533 0.6600 0.1880 0.6387 0.2040 0.6307
10 0.2533 0.6547 0.2413 0.6627 0.1920 0.6373 0.2040 0.6373

Table B.6: Experimental results for different retrieval methods on the Spagna dataset.
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