
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Understanding and Enhancing
Visual Place Recognition through

Embedding Space Interpretability and
Uncertainty Estimation

Supervisors

Prof. Carlo MASONE

Dr. Gabriele BERTON

Dr. Gabriele TRIVIGNO

Candidate

Davide SFERRAZZA

April 2025

Summary

Visual Place Recognition (VPR) involves determining the geographic location of a
photo based solely on its visual content. Recent advancements in Deep Learning
have enabled the representation of images in high-dimensional spaces, where photos
taken in the same location tend to cluster together, while images from different
places are spread apart. This spatial organization makes it easier to predict locations
by performing similarity searches against a database of known places.

However, a key gap in current research is understanding the specific information
retained in these image embeddings that allows for effective and reliable location
prediction. Additionally, existing State-Of-The-Art (SOTA) deterministic methods
in VPR are unable to quantify the uncertainty of their predictions. This is
particularly problematic in safety-critical applications, such as autonomous driving,
where knowing the confidence level in a system’s decision is vital for ensuring safety.

This thesis addresses two main challenges: first, understanding and visualizing
the essential information encoded in image embeddings, and second, providing
uncertainty estimates for VPR models through post-hoc techniques. To overcome
these challenges, the thesis employs Generative Artificial Intelligence models, par-
ticularly Latent Diffusion Models, to explore and visualize the content within image
embeddings. Additionally, uncertainty estimation methods are incorporated to
enhance the robustness and reliability of VPR systems.

The contributions of this thesis provide valuable insights into the interpretability
and reliability of VPR systems, offering a framework for analyzing the output of
these models and incorporating uncertainty quantification during inference.

i

Acknowledgements

This thesis marks the final chapter of a profound and significant period in my life.
The journey has been incredible, beginning when I was an 18-year-old stepping
into the challenges of the academic world.

Though I spent the past year and a half at the Polytechnic University of Turin, I
want to express my heartfelt gratitude to the University of Palermo, which provided
a strong knowledge foundation that allowed me to face any academic challenge.
For me, it wasn’t a farewell, but simply a “see you later.”

In Turin, I had the chance to strengthen existing relationships with people I
already knew, while also forming new, meaningful connections. The Polytechnic
University of Turin has given me opportunities I truly believe I wouldn’t have had
in Palermo, both professionally and personally.

I’m especially grateful to the VANDAL lab, which welcomed me with open arms
and made me feel at ease throughout the experience. A special thank you goes to
Carlo, Bert, and Trivi, who supported me throughout the thesis development, and
to Professor Tommasi, who initially gave me the opportunity to conduct my work
in the lab.

Throughout these years, I’ve been fortunate enough to meet amazing people,
both students and professors. Each of them has contributed a small piece to the
puzzle of who I am today. Every experience, every little detail, every emotion, has
left its mark in some way. I hope that everyone who knows me and has shared this
journey with me will feel a sense of gratitude as they read this thesis.

I am profoundly grateful to my family–everyone, both those who are still with
us and those who are no longer here. To my parents, who have always supported
me in everything, including this major life transition, and who have filled my life
with love. Dad and Mom, you are my pillars of strength. But my deepest thanks,
as vast as infinity itself, go to my brother Gianluca. This journey would never have
been possible without him. You’ve always been my guide, the example to follow,
and a myth in my eyes. No words can ever fully express the admiration I feel for
you.

Lastly, I want others to feel responsible for this achievement. I am just the
product of my experiences, shaped by the people, moments, and decisions that

ii

have influenced me along the way. It is these factors that define who we are. The
only gift I want to give to myself is this thesis. This thesis is the true conclusion of
a path that I’ve poured my heart and soul into. I’ve always believed that with the
right determination, anyone can achieve any goal, and that belief will remain with
me forever.

Thank you for everything.

“I am indeed amazed when I consider how weak my mind is and how prone to error”
Rene Descartes

iii

Table of Contents

List of Tables viii

List of Figures x

List of Algorithms xvi

Acronyms xviii

1 Introduction 1
1.1 Focus . 1
1.2 Objectives . 2
1.3 Composition . 2

2 Background 4
2.1 Artificial Intelligence . 4
2.2 Machine Learning . 5
2.3 Deep Learning . 6

2.3.1 The Perceptron and Biological Neurons 6
2.3.2 Neural Networks and Deep Learning 7
2.3.3 CNNs and the Visual Cortex 9

3 Visual Place Recognition 11
3.1 Mathematical Formulation . 12
3.2 Visual Challenges . 13
3.3 Connection to Deep Metric Learning 14

3.3.1 Triplet Loss . 15
3.3.2 Weakly Supervised Triplet Ranking Loss 15
3.3.3 Contrastive Loss . 15
3.3.4 Generalized Contrastive Loss 16
3.3.5 Multi-Similarity Loss . 16

3.4 Evaluation Metrics . 16

v

4 Generative Artificial Intelligence 17
4.1 Variational Auto-Encoder . 18

4.1.1 Auto-Encoder . 18
4.1.2 Variational Lower Bound . 19
4.1.3 Vector Quantised-Variational Auto-Encoder 20

4.2 Generative Adversarial Networks 21
4.3 Diffusion Probabilistic Models . 23

4.3.1 Denoising Diffusion Probabilistic Models 24
4.3.2 Denoising Diffusion Implicit Models 29
4.3.3 Latent Diffusion Models . 33

5 Uncertainty Estimation 37
5.1 BayesCap . 38
5.2 ProbVLM . 41

6 Experiments 45
6.1 Embedding Information Inspection 45

6.1.1 Inspection Framework . 45
6.1.2 Implementation Details . 46
6.1.3 Metrics . 47
6.1.4 Quantitative Results . 50
6.1.5 Fidelity to Conditioning Information 53
6.1.6 Qualitative Results . 54

6.2 Prediction Uncertainty . 60
6.2.1 Uncertainty Framework . 60
6.2.2 Implementation Details . 61
6.2.3 From Per-Feature to Instance Level Uncertainty 62
6.2.4 Metrics . 63
6.2.5 Quantitative Results . 63

7 Conclusions and Future Work 69
7.1 Conclusions . 69

7.1.1 Findings . 69
7.1.2 Limitations . 70

7.2 Future Work . 70

A Variational Lower Bound 72
A.1 Kullback-Leibler divergence non-negativity 72

B Probability Distributions 73
B.1 Heavy-tailed distribution . 73

vi

C Experimental Details and Additional Results 74
C.1 LDM training curves . 74
C.2 Quantitative LDM results . 83
C.3 BayesCap training curves . 104
C.4 Binning strategy for BayesCap results 106
C.5 BayesCap uncertainty distributions 108

Bibliography 112

vii

List of Tables

2.1 XOR function. 7

6.1 Visual Place Recognition models used for conditioning. 46
6.2 Training and validation sets derived from the training split of the

SF-XL [52] dataset used for training LDM models. 47
6.3 Architectural and training hyperparameters for the LDM model (see

Section 4.3.1, Section 4.3.3, and «High-resolution image synthesis
with latent diffusion models» [42] for further details on notation and
the meaning of the architectural hyperparameters). 48

6.4 Visual and fidelity metrics for the LDM conditioned on CosPlace’s
output space [52] with d = 2048, while varying the scale parameter
s for CFG [39] and the number of images N . Metrics labeled with
↑ indicate better performance when higher, and those labeled with
↓ are better when lower. For brevity, ‘P’ stands for Precision and
‘R’ for Recall. The number of steps in the accelerated generation
process is fixed at S = 250. The row representing the common
evaluation practice is highlighted , with the chosen scale s indicated
in a distinct color . 52

6.5 Summary of L1 and L2 metrics for CosPlace [52] classes in the
validation set of Table 6.2. The second half of the table reports the
metrics for our LDM model, with scale parameter s ∈ {1, 2} for
CFG [39]. 57

6.6 Grid search for the number of steps S in the accelerated generation
process and the hyperparameter η controlling the level of stochasticity. 57

6.7 Training and validation sets derived from the training split of the
EigenPlaces [19] dataset used for training BayesCap [58] models. . . 62

6.8 Architectural and training hyperparameters for BayesCap [58]. . . . 62
6.9 Summary of trained BayesCap [58] models. 64

viii

C.1 Reference table showing the mean pairwise distances for all Visual
Place Recognition models, calculated from 14k randomly selected
images from the validation set of Table 6.2. The embedding dimen-
sion d is included to distinguish between different versions of the
same VPR model. 83

ix

List of Figures

2.1 Perceptron. Adapted from Artificial intelligence: a new synthesis [1]. 7
2.2 Implementation of the XOR function presented in Table 2.1. The

numbers inside the perceptrons represent the threshold b for each
perceptron. 8

2.3 Multi-Layer Perceptron, a type of Feedforward Neural Network. . . 8
2.4 Example of the convolution operation. 9

3.1 Common Visual Place Recognition pipeline. Adapted from «A
Survey on Deep Visual Place Recognition» [10]. 12

4.1 Auto-Encoder model. 19
4.2 Generative Adversarial Network framework. 22
4.3 Scheme of the Markovian diffusion process. Adapted from «Denoising

diffusion probabilistic models» [41]. 25
4.4 Illustration of the forward process. 30
4.5 Illustration of the reverse process. 31
4.6 Scheme of the non-Markovian diffusion process. Adapted from

«Denoising diffusion implicit models» [40]. 31
4.7 Scheme of the accelerated diffusion process, with the first two el-

ements of τ set to 2 and 4. Adapted from «Denoising diffusion
implicit models» [40]. 33

4.8 Diagram of the Latent Diffusion Model with conditioning through ei-
ther concatenation or cross-attention. Adapted from «High-resolution
image synthesis with latent diffusion models» [42]. 35

5.1 BayesCap architecture. Adapted from «BayesCap: Bayesian Identity
Cap for Calibrated Uncertainty in Frozen Neural Networks» [58]. . . 40

5.2 ProbVLM architecture. Adapted from «ProbVLM: Probabilistic
Adapter for Frozen Vision-Language Models» [65]. 44

6.1 Illustration of a LDM model conditioned on the output space of a
VPR model. 45

x

6.2 Plots of visual metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, using VGG-16, while varying the scale
parameter s for CFG [39]. The number of steps in the accelerated
generation process is fixed at S = 250. 54

6.3 Plots of visual metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, using InceptionV3, while varying the scale
parameter s for CFG [39]. The number of steps in the accelerated
generation process is fixed at S = 250. 55

6.4 Plots of fidelity metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, while varying the scale parameter s for
CFG [39]. The number of steps in the accelerated generation process
is fixed at S = 250. 56

6.5 Figure 1 showing five generated images conditioned on a query
from the SF-XL [52] validation split (shown in the first column).
The images are generated by varying the number of steps S in the
accelerated reverse process and the hyperparameter η, which controls
the level of stochasticity. The specific values used to generate each
image set are indicated on the left of each corresponding set. 58

6.6 Figure 2 showing five generated images conditioned on a query
from the SF-XL [52] validation split (shown in the first column).
The images are generated by varying the number of steps S in the
accelerated reverse process and the hyperparameter η, which controls
the level of stochasticity. The specific values used to generate each
image set are indicated on the left of each corresponding set. 59

6.7 Illustration of the viewpoint invariance property for Visual Place
Recognition models. 60

6.8 Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the Pitts30k [15] validation set. 66

6.9 Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the SF-XL [52] validation set. 67

6.10 Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the MSLS [78] validation set. 68

C.1 Training plot of the Latent Diffusion Model conditioned on the
output space of AP-GeM [14]. 75

C.2 Training plot of the Latent Diffusion Model conditioned on the
output space of CliqueMining [13]. 75

C.3 Training plot of the Latent Diffusion Model conditioned on the
output space of Conv-AP [25]. 76

C.4 Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 32. 76

xi

C.5 Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 64. 77

C.6 Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 128. 77

C.7 Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 512. 78

C.8 Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 2048. 78

C.9 Training plot of the Latent Diffusion Model conditioned on the
output space of CricaVPR [17]. 79

C.10 Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 128. 79

C.11 Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 512. 80

C.12 Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 2048. 80

C.13 Training plot of the Latent Diffusion Model conditioned on the
output space of MixVPR [18]. 81

C.14 Training plot of the Latent Diffusion Model conditioned on the
output space of NetVLAD [15]. 81

C.15 Training plot of the Latent Diffusion Model conditioned on the
output space of SALAD [51]. 82

C.16 Training plot of the Latent Diffusion Model conditioned on the
output space of SFRS [71]. 82

C.17 Plots of LDM conditioned on AP-GeM’s output space [14]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 85

C.18 Plots of LDM conditioned on CliqueMining’s output space [13]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 86

C.19 Plots of LDM conditioned on Conv-AP’s output space [25]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 87

xii

C.20 Plots of LDM conditioned on CosPlace’s output space [52] (d = 32).
The table shows metrics for 50k images, with the best results in
bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 88

C.21 Plots of LDM conditioned on CosPlace’s output space [52] (d = 64).
The table shows metrics for 50k images, with the best results in
bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 89

C.22 Plots of LDM conditioned on CosPlace’s output space [52] (d = 128).
The table shows metrics for 50k images, with the best results in
bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 90

C.23 Plots of LDM conditioned on CosPlace’s output space [52] (d = 512).
The table shows metrics for 50k images, with the best results in
bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 91

C.24 Plots of LDM conditioned on CricaVPR’s output space [17]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 92

C.25 Plots of LDM conditioned on EigenPlaces’s output space [19] (d =
128). The table shows metrics for 50k images, with the best results
in bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 93

C.26 Plots of LDM conditioned on EigenPlaces’s output space [19] (d =
512). The table shows metrics for 50k images, with the best results
in bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 94

C.27 Plots of LDM conditioned on EigenPlaces’s output space [19] (d =
2048). The table shows metrics for 50k images, with the best results
in bold. Metrics marked with ↑ are better when higher, and those
with ↓ are better when lower. ‘P’ = Precision, ‘R’ = Recall, and s
is the scale parameter for CFG [39]. 95

xiii

C.28 Plots of LDM conditioned on MixVPR’s output space [18]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 96

C.29 Plots of LDM conditioned on NetVLAD’s output space [15]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 97

C.30 Plots of LDM conditioned on SALAD’s output space [51]. The
table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are
better when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 98

C.31 Plots of LDM conditioned on SFRS’s output space [71]. The table
shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better
when lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale
parameter for CFG [39]. 99

C.32 Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the
points in the distribution corresponding to the L2 distance of the
LDM models, based on the scale parameter s for CFG [39]. The
distributions for AP-GeM [14], CliqueMining [13], Conv-AP [25],
and CricaVPR [17] are shown. 100

C.33 Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the
points in the distribution corresponding to the L2 distance of the
LDM models, based on the scale parameter s for CFG [39]. The
distributions for MixVPR [18], NetVLAD [15], SALAD [51], and
SFRS [71] are shown. 101

C.34 Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the
points in the distribution corresponding to the L2 distance of the
LDM models, based on the scale parameter s for CFG [39]. The
distributions for CosPlace [52] with d ∈ {32, 64, 128, 512} are shown. 102

xiv

C.35 Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the
points in the distribution corresponding to the L2 distance of the
LDM models, based on the scale parameter s for CFG [39]. The
distributions for CosPlace [52] with d = 2048, and EigenPlaces [19]
with d ∈ {128, 512, 2048} are shown. 103

C.36 Training plot of BayesCap [58] on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 30
epochs. 104

C.37 Training plot of BayesCap [58] on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 50
epochs. 105

C.38 Training plot of BayesCapCycle on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 30
epochs. 105

C.39 Uncertainty distributions for all trained BayesCap [58] models, com-
puted on the Pitts30k [15] validation set. 109

C.40 Uncertainty distributions for all trained BayesCap [58] models, com-
puted on the SF-XL [52] validation set. 110

C.41 Uncertainty distributions for all trained BayesCap [58] models, com-
puted on the MSLS [78] validation set. 111

xv

List of Algorithms

1 SGD optimization of GANs. 23
2 Training DDPM models. 28
3 Sampling from DDPM models. 29

xvi

Acronyms

SOTA
State-Of-The-Art

AI
Artificial Intelligence

Gen-AI
Generative Artificial Intelligence

ML
Machine Learning

DL
Deep Learning

SGD
Stochastic Gradient Descent

MLP
Multi-Layer Perceptron

NN
Neural Network

DNN
Deep Neural Network

BNN
Bayesian Neural Network

xviii

CNN
Convolutional Neural Network

VPR
Visual Place Recognition

AE
Auto-Encoder

VAE
Variational Auto-Encoder

VQ-VAE
Vector Quantised-Variational Auto-Encoder

GAN
Generative Adversarial Network

DM
Diffusion Model

DDPM
Denoising Diffusion Probabilistic Model

DDIM
Denoising Diffusion Implicit Model

LDM
Latent Diffusion Model

CFG
Classifier-Free Guidance

VLM
Vision-Language Model

KNN
K-Nearest Neighbors

xix

FoV
Field of View

i.i.d.
independent and identically distributed

xx

Chapter 1

Introduction

1.1 Focus

This thesis focuses on the Visual Place Recognition (VPR) task, which aims to
determine the location where a photo–referred to as the query–was taken, based
solely on the image content. Current methods build upon advancements in Deep
Learning (DL), a subfield of Machine Learning (ML), by embedding the image into
an embedding space. Ideally, in this space, images depicting the same location are
positioned close together, while those depicting different locations are placed farther
apart. To predict the location of the query, a similarity search is typically performed
on-line against a pre-established database of images with known locations, where
embeddings are precomputed off-line. The embedding space is often learned using
deep metric learning loss functions, which impose some form of supervision on the
relative distances between images. Consequently, the models autonomously identify
which features are essential for distinguishing between different locations.

A key limitation of current deterministic State-Of-The-Art (SOTA) methods is
that they do not provide any indication of uncertainty regarding their predictions.
This is especially critical in safety-critical scenarios, such as autonomous driving,
where incorrect predictions could have severe consequences, including harm to
people or environmental damage. In such contexts, providing uncertainty scores–
quantifying the model’s confidence in its predictions–is essential. These scores allow
both humans and systems to identify uncertain predictions and avoid making risky
decisions.

The lack of supervision over the embedding information and the computation
of uncertainty scores are key aspects of this thesis, as elaborated in the following
section.

1

Introduction

1.2 Objectives
The first objective of this thesis is to develop a framework that enables understanding
the key information from photos that various VPR models deem important, and
which is thus preserved in the extracted embeddings. To address this challenge,
we utilize advances in Generative Artificial Intelligence (Gen-AI) with a class of
models known as Latent Diffusion Models (LDMs). Typically, generative models
are designed to create new images from random noise. LDMs operate similarly, but
with the added capability of conditioning the generation process on external inputs.
By conditioning the generation on the embeddings extracted by VPR models
and varying the initial noise used for generation, we can infer which information
is retained in the embeddings. We expect that the information encoded in the
embeddings will remain consistent in the generated images, while other factors will
vary.

The second objective of this thesis is to provide uncertainty scores for pre-trained
VPR models using post-hoc methods derived from existing literature on uncertainty
estimation. These post-hoc techniques can be applied to frozen models, thereby
enhancing their robustness without compromising their inference performance.

1.3 Composition
This thesis encompasses both theoretical concepts and an analysis of empirical
results. The structure of the work is as follows:
Chapter 1 - Introduction: The Introduction outlines the focus of the thesis,
the objectives, and provides an overview of the structure of the work.

Chapter 2 - Background: The Background chapter provides foundational
knowledge on Artificial Intelligence (AI), Machine Learning (ML), Deep Learning
(DL), Neural Networks (NNs), and Convolutional Neural Networks (CNNs), along
with a discussion on the relationship between biological processes and artificial
neurons.

Chapter 3 - Visual Place Recognition: This chapter explains the VPR task,
the primary pipeline used for predictions, the visual challenges involved, and the
key loss functions typically employed in training DL models.

Chapter 4 - Generative Artificial Intelligence: This chapter offers an
extensive overview of the current SOTA in Gen-AI, covering architectures such
as Auto-Encoders (AEs), Variational Auto-Encoders (VAEs), Vector Quantised-
Variational Auto-Encoders (VQ-VAEs), Generative Adversarial Networks (GANs),
Denoising Diffusion Probabilistic Models (DDPMs), Denoising Diffusion Implicit
Models (DDIMs), and Latent Diffusion Models (LDMs).

2

Introduction

Chapter 5 - Uncertainty Estimation: This chapter explores the different
types of uncertainties that are important in Deep Learning, the main approaches
to uncertainty estimation, and the foundational works that underpin this thesis.

Chapter 6 - Experiments: This chapter illustrates the methodologies and
frameworks proposed to achieve the goals of this thesis, including architectures,
implementation details, evaluation metrics, quantitative and qualitative results.

Chapter 7 - Conclusions and Future Work: This chapter concludes this thesis
by summarizing the main findings and limitations of the proposed approaches,
along with possible real-world applications and avenues for future research.

Appendix A - Variational Lower Bound: This appendix contains a brief
mathematical proof of the non-negativity of the Kullback-Leibler divergence.

Appendix B - Probability Distributions: This appendix provides the defini-
tion of heavy-tailed distribution.

Appendix C - Experimental Details and Additional Results: This appendix
contains the training curves of the trained models, further implementation details,
and additional results not included in Chapter 6.

3

Chapter 2

Background

2.1 Artificial Intelligence
Artificial Intelligence (AI) can be defined as the intelligent behavior exhibited by
machines [1]. The question of whether machines can think, first raised by Turing
in 1950, with the seminal paper «Computing Machinery and Intelligence»[2], has
been a subject of fascination for philosophers, scientists, and engineers ever since.
Despite the ill-defined nature of the question–since intelligence itself is not clearly
defined even in humans [3]–the concept of machines mimicking human behavior
has driven the development of a global research community. This community
is characterized by diverse and often contradictory views on the capabilities of
machines and the potential future of AI, both in the short and long term.

In their influential book Artificial intelligence: a modern approach, Russell and
Norvig [4] proposed a framework for categorizing AI into four approaches:

Thinking humanly: AI aims to replicate human thought processes by studying
introspection, psychology, and brain imaging, ultimately developing cognitive
models of the human mind.

Thinking rationally: AI employs logic to formalize rational thought. It translates
informal knowledge into formal terms, enabling the application of general deduction
procedures to solve problems.

Acting humanly: AI systems are designed to pass the Turing’s test [2], which
requires capabilities such as natural language processing, knowledge representation,
automated reasoning, machine learning, computer vision, and robotics. The goal
is to create a machine whose behavior is indistinguishable from that of a human.

Acting rationally: AI agents are designed to act rationally, making decisions
aimed at achieving the best possible outcome, even in the face of uncertainty. In

4

Background

this approach, the focus is on the outcomes and decisions themselves, rather than
the cognitive processes behind them. AI agents are formally defined as functions
that map percept sequences (the history of sensory inputs) to actions, ensuring
that the agent’s behavior is optimized based on its perception of the environment.

Overall, intelligent behavior encompasses a range of abilities, including perception,
reasoning, problem solving, learning from experience, understanding, communicat-
ing, and acting in complex, dynamic environments.

2.2 Machine Learning
Machine Learning (ML) is a subfield of AI that focuses on enabling systems to
learn directly from data or experience. As defined by Tom Mitchell [5]:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

In this context, the program autonomously learns to perform tasks, without the
need for human intervention in its competence development.

In ML, the process begins with data collection, often followed by a pre-processing
step. The data is organized into datasets, which are typically divided into three
subsets:

Training set: The training set is the largest subset and is used to train the ML
models. During this phase, the models identify patterns and relationships in the
data by adapting to the data’s underlying structure to improve their predictions
and generalize to new situations.

Validation set: The validation set serves multiple purposes. It is used to tune
the models’ hyperparameters, which are predefined values that are not learned by
the model but must be manually specified by the designers before training. It is
also used for model selection and to prevent overfitting–the phenomenon where
a model memorizes the training data instead of learning generalizable patterns.
Importantly, models do not learn from the validation set; it is used solely for
evaluation and optimization purposes.

Test set: Once the models have been trained and tuned, they are evaluated on
the test set. This step assesses the model’s ability to generalize to new, unseen
data, providing an estimate of how well the model is likely to perform in real-world
scenarios.

Machine Learning can be categorized into three distinct, non-overlapping learning
paradigms:

5

Background

Supervised Learning: In supervised learning, models are trained on labeled
datasets, where each training example consists of input features paired with
corresponding output labels. The goal is for the model to learn a mapping function
that can predict outputs from new, unseen inputs.

Unsupervised Learning: In unsupervised learning, models work with unlabeled
data. Here, the objective is to identify hidden structures, patterns, or relationships
within the data, without any explicit guidance in the form of labels.

Reinforcement Learning: in reinforcement learning, models, referred to as
agents, learn by interacting with an environment. They receive feedback in the
form of rewards (positive feedback) or penalties (negative feedback). The model
aims to learn the best actions to take in specific situations to maximize long-term
cumulative rewards.

In addition to the primary paradigms, several hybrid approaches integrate elements
from the categories mentioned earlier. For example, in semi-supervised learning,
models leverage both labeled data and large volumes of unlabeled data. In self-
supervised learning, there is no reliance on labeled data, as the model generates its
own labels from the input data; this approach is commonly used for pre-training in
fields like natural language processing or computer vision. Finally, active learning
involves querying the user (or oracle) for labels on the data samples that are most
uncertain or informative.

2.3 Deep Learning

2.3.1 The Perceptron and Biological Neurons
In 1958, inspired by the functioning of biological neurons, Rosenblatt [6] introduced
the perceptron. Biological neurons receive electrical signals through dendrites from
other neurons. If the cumulative signal reaches a threshold at the axon hillock, the
neuron ‘fires’ an action potential that travels down the axon to communicate with
other neurons or muscles. The perceptron operates in a similar manner.

The perceptron is characterized by a weight vector ω = (ω1, ω2, . . . , ωn), with
each component ωi being a weight, and a threshold b. It takes as input a vector
x = (x1, x2, . . . , xn), known as the feature vector, where each xi is referred to as a
feature value. The perceptron produces an output of 1 if the weighted sum of the
inputs meets or exceeds the threshold, i.e., if x ·ω = qn

i=1 ωixi ≥ b, and an output
of 0 otherwise. A graphical representation of the perceptron is shown in Fig. 2.1. In
this framework, the perceptron performs binary classification, where each feature
vector x is labeled with y ∈ {0, 1} during both training and evaluation. Its

6

Background

Figure 2.1: Perceptron. Adapted from Artificial intelligence: a new synthesis [1].

performance is typically measured using accuracy, i.e., the proportion of correctly
classified samples.

Since the perceptron’s output is determined by a unit step function, it is
inherently discrete and non-differentiable, which prevents the direct application
of optimization methods like gradient descent. Moreover, when the data is non-
linearly separable, such as in the case of the XOR function shown in Table 2.1,
the training algorithm proposed by Rosenblatt may fail to converge. To overcome
these challenges, the step function can be replaced by continuous non-linearities,
such as the sigmoid function σ(x) := 1

1+e−x , transforming the perceptron from
a deterministic binary classifier into a probabilistic one. In this context, the
perceptron is referred to as a neuron, the threshold b is known as the bias and the
non-linear function is called activation function.

x1 x2 o

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: XOR function.

2.3.2 Neural Networks and Deep Learning
By interconnecting multiple perceptrons and arranging them into layers, the XOR
problem becomes solvable, as demonstrated in Fig. 2.2, which illustrates a possible
solution.

The idea of connecting multiple neurons gave rise to various models, collectively
referred to as Neural Networks (NNs). The simplest form of a Neural Network,

7

Background

Figure 2.2: Implementation of the XOR function presented in Table 2.1. The
numbers inside the perceptrons represent the threshold b for each perceptron.

illustrated in Fig. 2.3, is the Multi-Layer Perceptron (MLP), a network comprising
multiple layers and fully connected neurons between them. A MLP is a type of
Feedforward Neural Network, where information flows unidirectionally from input
to output with no feedback loops.

A MLP consists of several layers: the first layer is the input layer, which contains
the feature values; the last layer is the output layer, which contains the output
neurons; situated between the input and output layers there are the hidden layers,
which process information in ways not directly visible from either the input or
output.

Figure 2.3: Multi-Layer Perceptron, a type of Feedforward Neural Network.

The neurons in both the hidden and output layers can utilize any form of
activation function, as long as the backpropagation algorithm [7] can be applied to

8

Background

adjust the network weights Θ := tL
i=1{W (i)}, where L is the total number of layers

and W (i) represents the weight matrix for the i-th layer, which includes both the
weights and biases of the neurons in that layer.

Multi-Layer Perceptrons have been proven to be universal approximators [8],
meaning they can approximate any continuous function with just one hidden
layer. This capability makes them highly effective for function approximation when
combined with optimization techniques, resulting in precise predictions. Expanding
the network by adding more layers further enhances its representational power,
giving rise to the field of Deep Learning (DL).

2.3.3 CNNs and the Visual Cortex
The concept of Convolutional Neural Networks (CNNs) was first introduced by
LeCun et al. [9] in 1989. Similar to the perceptron introduced by Rosenblatt, CNNs
are a family of Neural Networks inspired by the visual processing system of the
brain in animals. The key operation behind CNNs is called convolution.

Let I be an image with elements indexed by x and y, and let ω be a filter or kernel
indexed by i and j. The convolution operation is performed in a sliding-window
manner and is defined as:

(I ∗ ω)[x, y] =
Ø

i

Ø
j

ω[i, j]I[x− i, y − j]

An example of the convolution operation is shown in Fig. 2.4.

Figure 2.4: Example of the convolution operation.

In the context of CNNs, a neuron is a computational unit that performs the
convolution operation, adds a bias b, and applies an activation function σ to produce
the feature map f . This can be written as:

f [x, y] = σ

b+
Ø

i

Ø
j

ω[i, j]I[x− i, y − j]


9

Background

A unique feature of CNNs is the weight-sharing property, where the weights ω in
the sliding-window process are shared across all positions in the image. This weight-
sharing mechanism significantly reduces the number of parameters in comparison
to fully connected layers in MLPs, where the number of parameters scales with the
total number of connections. In CNNs, the number of parameters scales linearly
with the number of kernels used.

Convolutional layers are particularly suited for grid-like data, such as images,
which contain structural priors like repeating patterns, locality, and hierarchical
structures. In this setup, individual neurons in a convolutional layer activate in
a way that is similar to biological neurons in the visual cortex, which respond to
stimuli from a restricted region of the visual field known as the receptive field. In
the case of images, the receptive field corresponds to a small region of the original
image.

As information passes through successive areas in the visual cortex, it becomes
increasingly abstract, and higher-level structures are recognized. Similarly, by
stacking multiple convolutional layers, CNNs are able to capture a hierarchical
structure in the data: early layers detect low-level features like edges and textures,
intermediate layers identify more complex patterns such as object parts, and deeper
layers capture high-level features like objects or faces.

10

Chapter 3

Visual Place Recognition

Visual Place Recognition (VPR) [10] is the task of recognizing the location where
an image was taken given only its visual content, i.e. the image itself. It is a
building block of fundamental importance for applications in autonomous driving,
augmented reality, robotics, absolute pose estimation, simultaneous localization
and mapping, etc.

The problem is commonly treated as an image retrieval task, where a summary
description of an image of interest, called a query, is computed and compared
against a database of descriptions of images with known locations. The location
and description change depending on the particular task for which a VPR block is
needed and by the adopted methodology to build it.

The place depicted by an image could be annotated by the name of a point of
interest, called a landmark, or by a finite sequence of numbers, e.g. GPS coordinates,
depending on the task at hand.

The description of images has evolved significantly over the years, beginning
with hand-crafted local features like SIFT [11] and global descriptors such as VLAD
[12]. Recent advancements in Deep Learning (DL) have enabled the use of deep
neural networks like a Convolutional Neural Network (CNN) to extract global
image descriptors from their final fully connected layers or by the aggregation of
the output of their final convolutional layers, allowing for their direct application
to the Visual Place Recognition (VPR) task.

To determine the location of the query image, a summary description is computed
for both the query and the database images. A similarity search is then conducted
over the database using a distance metric, often implemented with a K-Nearest
Neighbors algorithm. This algorithm identifies the K most similar images to the
query based on their representations. Once the K nearest neighbors are retrieved,
they contribute to the final location prediction. Typically, the location is predicted
by selecting the most similar database descriptor, though in some cases, additional
aggregation techniques may be used to refine the prediction.

11

Visual Place Recognition

A full Visual Place Recognition pipeline, incorporating the steps outlined above,
is shown in Fig. 3.1. This pipeline includes an optional refinement step, which
seeks to re-rank the nearest neighbors by utilizing local image features. However,
this step is seldom used due to its time-consuming nature and high computational
cost. The figure also highlights the processing time of the descriptors. While the
descriptor for the query image is computed online, the descriptors for the database
images are pre-computed and stored offline due to the large number of images
involved. However, since the top-K nearest neighbors need to be retrieved in
order to predict the location, they must be loaded into volatile memory prior to
performing the similarity search. This, in turn, limits the size of the descriptors
generated by the VPR model, as the entire database must be considered during
the search.

Optional
Refinement

Figure 3.1: Common Visual Place Recognition pipeline. Adapted from «A Survey
on Deep Visual Place Recognition» [10].

3.1 Mathematical Formulation
By partially aligning with the mathematical foundations introduced in [13, 14, 15,
16], the VPR task aims to map a query image Iq ∈ I ⊆ RH×W ×3 in RGB format

12

Visual Place Recognition

into a d-dimensional space, O ⊂ Rd, through a mapping function f : I → O.
Currently, the mapping function f is typically realized using a Deep Learning
network, which is parameterized by a set of learnable parameters Θ, with the
dependence on these parameters denoted as fΘ. Henceforth, we implicitly assume
that the function is realized by a DL model, i.e. f := fΘ.

Given a set of N database images from the image space I with known locations
in P, i.e. D := {(I1, P1) , (I2, P2) , . . . , (IN , PN)} ⊆ {(I, P) | I ∈ I, P ∈ P}, the
mapping function f is applied to each image, resulting in a set of embeddings
{e1, e2, . . . , eN} ⊂ O. Similarly, for the query image, the embedding eq = f (Iq) is
computed.

Following this initial step, a similarity search must be conducted. Depending on
the structure of the embedding space O–which may reside on a unit hypersphere
O ⊆ S :=

î
e ∈ Rd | ∥e∥2 = 1

ï
, as a result of L2 normalization applied at the end

of the network, or not–the choice of the distance function d : O ×O → R can vary.
If the embedding is L2-normalized, the dot product is typically used to compute
the distance, defined as:

di := d(ei, eq) = 1− eT
i eq, ∀i ∈ {1, 2, . . . , N}

In cases where the embedding is not L2-normalized, the Lp norm is commonly
employed, with p = 2 in most situations. The resulting distances are then computed
as:

di := d(ei, eq) = ∥ei − eq∥p , ∀i ∈ {1, 2, . . . , N}

The similarity search is usually conducted using a K-Nearest Neighbors algorithm
to retrieve the K most similar embeddings from the database, resulting in a
reference set R =

è
e(1), e(2), . . . , e(K)

é
. The elements in this reference set are sorted

by increasing distance, i.e. d(1) ≤ d(2) ≤ . . . ≤ d(K). The predicted location Pq of
the query image is derived as a combination of the locations

î
P(1), P(2), . . . , P(K)

ï
corresponding to the nearest neighbors in R. However, in practice, the most
common approach is to use only the location of the first nearest neighbor to predict
Pq, i.e. Pq := P(1).

3.2 Visual Challenges
The task involves analyzing an image’s visual content to determine the location
it represents. Given that the image could be captured at any time and from
various sources, several challenges may arise. In cases where the image quality
is significantly degraded, the system can use a detection mechanism to reject
the image for location prediction, prompting the user to submit a higher-quality
version. However, if the image is determined to be of sufficient quality, the system

13

Visual Place Recognition

will proceed with making the location prediction. In this case, the system must
overcome three key challenges [17, 18, 19, 16]:

1. Variations in conditions resulting from short- and long-term changes in ap-
pearance, such as weather, occlusions, and illumination shifts.

2. Viewpoint variations relative to the database images.

3. Perceptual aliasing, where visually similar images correspond to geographically
distant locations.

The first challenge has been tackled in the literature by leveraging advanced
Deep Learning models that generate highly general feature representations. This
has been achieved by Keetha et al. [20], for example, through the use of large-scale
pre-trained models, referred to as foundational models, such as DINO [21] and
DINOv2 [22], or by combining and automatically aggregating spatial features in a
holistic manner, as demonstrated by Ali-Bey et al. [18].

To address the second challenge, Berton et al. [19] propose a novel training
strategy that encourages models to generate perspective-invariant features by
leveraging location coordinates and viewpoint angles. Alternatively, Leyva-Vallina
et al. [23] suggest training models with a new loss function that employs similarities
between images based on overlapping Field of View (FoV) or 3D pointclouds. Both
approaches require the availability of supervised or weakly supervised information.

The third challenge is the most complex, as humans also experience perceptual
aliasing, though to a lesser extent than DL models. This aliasing is particularly
evident in images dominated by the sky or grass, which lack distinctive landmarks
or keypoints that would help the model generate unique feature representations and
differentiate between scenes. Lu et al. [17] propose leveraging the images within
a training batch in a way that allows them to inform and enhance each other’s
representations. This approach can address this challenge, as well as the previous
two, simultaneously. Specifically, images from the same location can promote
invariance to conditions and viewpoints, while images from diverse locations can
increase discriminativeness. Complementary to this, Zaffar et al. [16] suggest a
test-time uncertainty estimation method that uses the locations within a reference
set R as an indicator of perceptual aliasing, helping to prevent critical system
failures.

3.3 Connection to Deep Metric Learning
Metric Learning [24, 25], or Deep Metric Learning in the context of DL, is a branch
of Machine Learning that involves learning an embedding space where the similarity

14

Visual Place Recognition

between objects is preserved. The objective is to learn feature representations that
bring similar objects closer together while pushing dissimilar ones farther apart.

The VPR literature has heavily drawn on concepts from Metric Learning,
particularly in the development and use of loss functions. These functions depend on
positive and negative pairs. A positive pair consists of two images representing the
same place, while a negative pair consists of images depicting different places. The
loss functions presented in the following subsections all have a common objective:
to reduce the distance between positive pairs while increasing the distance between
negative pairs.

3.3.1 Triplet Loss
The Triplet Loss was defined by Hoffer et al. [26] in 2015. Given a tiplet of images
(Iq, Ip, In), where (Iq, Ip) forms a positive pair and (Iq, In) forms a negative pair,
the loss is computed as:

LTL = max (dp − dn +m, 0)

where dp = d(ep, eq) and dn = d(en, eq) represent the distances between the
corresponding embeddings, and m is a margin hyperparameter.

3.3.2 Weakly Supervised Triplet Ranking Loss
Many datasets in Visual Place Recognition provide only weak supervision, where
images that are considered close based on their (noisy) location labels may actually
correspond to different scenes or places. In 2016, Arandjelovic et al. [15] introduced
a new loss function designed to address this challenge. Given a tuple

1
Iq, {I i

p}, {Ij
n}
2

where {I i
p} represents a set of potential positive images and {Ij

n} a set of definite
negative images, the loss function is computed as:

LWTL =
Ø

j

max
3
m− (dj

n)2 + min
i

(di
p)2, 0

4

with di
p = d(ei

p, eq) ∀i and dj
n = d(ej

n, eq) ∀j. Here, m is a margin hyperparameter,
similar to the one used in the loss function presented in Section 3.3.1.

3.3.3 Contrastive Loss
The Contrastive Loss was first introduced by Hadsell et al. [27] in 2006 for training
Siamese networks. It operates on pairs of images and is defined as:

LCL = yij

51
2d(ei, ej)2

6
+ (1− yij)

51
2 max (m− d(ei, ej), 0)2

6
15

Visual Place Recognition

where yij = 1 if the pair (Ii, Ij) is positive, and yij = 0 otherwise. The margin
hyperparameter m prevents the distance between dissimilar images from growing
without bound.

3.3.4 Generalized Contrastive Loss
Leyva-Vallina et al. [23] in 2023 argued that using a binary ground truth value to
assess similarity between image pairs could lead to unreliable predictions for the
VPR task. To address this, they propose estimating the similarity between images
using continuous values, denoted as ψij ∈ [0, 1]. The formulation remains the same
as presented in Section 3.3.3, but the ground truth is replaced by the similarity
score ψij. The loss function is then given by:

LGCL = ψij

51
2d(ei, ej)2

6
+ (1− ψij)

51
2 max (m− d(ei, ej), 0)2

6
The similarity scores, ψij, are computed by measuring the overlap of the Field of
View (FoV) or 3D pointclouds between image pairs.

3.3.5 Multi-Similarity Loss
Unlike previous loss functions, Wang et al. [28] in 2019 proposed a novel loss based
on similarity scores computed via the dot product Sij := eT

i ej. For a batch of M
images, the loss function is defined as:

LMSL = 1
M

MØ
k=1

 1
α

log
1 +

Ø
i∈Pk

e−α(Ski−m)

+ 1
β

log
1 +

Ø
j∈Nk

eβ(Skj−m)


with Pk denotes the set of indices in the batch that correspond to positive pairs
with the k-th image, while Nk represents the set of indices for negative pairs. The
hyperparameters α, β and m guide the weighting scheme of the loss.

3.4 Evaluation Metrics
To evaluate and compare the performance of Visual Place Recognition models, the
standard metric used is Recall@K on a given dataset. For a specified distance
threshold τ in meters, the Recall@K measures the percentage of queries for which
at least one of the top-K retrieved database images–determined by the K-Nearest
Neighbors algorithm–is within τ meters of the ground-truth location of the query.
A common value for τ is 25 meters.

16

Chapter 4

Generative Artificial
Intelligence

Generative Artificial Intelligence (Gen-AI) is a key branch of AI with a wide range
of real-world applications. In drug discovery, it plays a crucial role by designing
novel molecules and optimizing their properties, accelerating the development
of new treatments. In medical imaging, Gen-AI aids in enhancing diagnostic
accuracy by generating and simulating medical images, offering more precise
insights for healthcare professionals. Beyond healthcare, Gen-AI contributes to
improving accessibility through advanced text-to-speech and speech-to-text systems,
promoting greater inclusivity. It is also used in data augmentation, generating
synthetic data to enrich training datasets and enhance the performance of AI models.
With its impact across content creation, medical imaging, virtual environments,
and more, Gen-AI is driving forward both the capabilities of AI and its real-world
applications.

The general goal of Generative Artificial Intelligence can be summarized as
follows: a Gen-AI model aims to learn a data distribution, which is represented
by a probability density function in the continuous case and by a probability mass
function in the discrete case, denoted as pdata(x). To train the model, a finite set
of samples {x1,x2, . . . ,xN} is drawn from the unknown data distribution pdata(x).
The goal is for the model to learn a distribution pmodel(x) such that samples
x̂i ∼ pmodel(x), generated from this learned distribution, closely resemble the true
data distribution pdata(x).

A variety of models have been proposed in the literature to address this goal,
with distinctions made between unimodal [29] and multimodal [30, 31] approaches.
A multimodal system can process multiple types of inputs simultaneously, referred
to as modalities (such as text, speech, and visual data), or generate multiple
modalities as outputs. In contrast, a unimodal system is limited to working with a

17

Generative Artificial Intelligence

single modality.
Remarkable progress has been made thanks to key innovations such as VAE [32],

VQ-VAE [33], GAN [34, 35, 36, 37, 38], and Diffusion Probabilistic Models [39, 40,
41, 42]. While this work focuses on the latter, the earlier works laid the foundational
for subsequent advancements, and are therefore discussed in the following sections.

4.1 Variational Auto-Encoder
The Variational Auto-Encoder (VAE) was introduced in 2013 by Kingma in the
paper «Auto-encoding variational bayes» [32]. The work is based on the assumption
that the dataset {x1,x2, . . . ,xN} consists of i.i.d. (independent and identically
distributed) samples generated by a random process from an unobserved continuous
latent random variable z. If we had access to z, we could recover the marginal
likelihood of the data, pdata(x), as follows:

pdata(x) := pΘ∗(x) =
Ú
pΘ∗(x | z)pΘ∗(z) dz (4.1)

where we assume that both the prior pΘ∗(z) and the likelihood pΘ∗(x | z) are from
parametric families of distributions. However, since both the latent variable z and
the true parameters Θ∗ are unknown, and the integral is typically intractable, the
question becomes how to effectively perform inference and learn the parameters
of the distributions. To address this, Kingma proposed a solution based on the
Auto-Encoder.

4.1.1 Auto-Encoder
Auto-Encoder (AE) [43] is Neural Network architecture with various applications,
which can be trained either in a supervised or unsupervised manner. In its original
form, the model learns to reconstruct its input x ∈ Rd, producing an output x̂ ∈ Rd,
by passing through an intermediate representation z ∈ Rh, minimizing the distance
d(x, x̂) between the input and the reconstruction. The architecture is illustrated
in Fig. 4.1. It consists of two main components: an encoder that implements a
mapping function E : Rd → Rh, and a decoder with a reverse mapping function
D : Rh → Rd. Depending on the specific task, both the encoder and decoder can be
realized using either a Multi-Layer Perceptron or a Convolutional Neural Network.

In 2006, Hinton et al. [44] employed this architecture to reduce the dimensionality
of the data from a d-dimensional space to a much smaller h-dimensional space
(h≪ d), while preserving the most important features and characteristics of the
data. Additionally, Bengio et al. [45] utilized similar models for pre-training the
layers of a Neural Network, improving the initialization of the optimization process
and enhancing the model’s generalization performance.

18

Generative Artificial Intelligence

Figure 4.1: Auto-Encoder model.

More recently, the role of the decoder has been extended from merely recon-
structing data to mapping to different data distributions, as demonstrated in tasks
like semantic segmentation [46]. Furthermore, these architectures have found a wide
range of applications, including denoising [47, 48], compression [49], and anomaly
detection [50], among others.

4.1.2 Variational Lower Bound

Due to the intractability of Eq. 4.1, Kingma suggests an alternative method for
computing the marginal distribution pΘ(x) using the Bayes’ rule, as follows:

pΘ(x) = pΘ(x | z)pΘ(z)
pΘ(z | x) ≈ pΘ(x | z)pΘ(z)

qΦ(z | x)

Here, qΦ(z | x) represents the encoder, which approximates the intractable true
posterior pΘ(z | x), and pΘ(x | z) is modeled by the decoder. By considering the
marginal log-likelihood and recognizing the independence of the marginal from z,
we can derive the following:

19

Generative Artificial Intelligence

log pΘ(x) = Ez∼qΦ(z|x) [log pΘ(x)]

= Ez∼qΦ(z|x)

C
log

A
pΘ(x | z)pΘ(z)
pΘ(z | x)

BD

= Ez∼qΦ(z|x)

C
log

A
pΘ(x | z)pΘ(z)
pΘ(z | x) · qΦ(z | x)

qΦ(z | x)

BD

= Ez∼qΦ(z|x) [log pΘ(x | z)]− Ez∼qΦ(z|x)

C
log qΦ(z | x)

pΘ(z)

D

+ Ez∼qΦ(z|x)

C
log qΦ(z | x)

pΘ(z | x)

D
= Ez∼qΦ(z|x) [log pΘ(x | z)]−DKL (qΦ(z | x) || pΘ(z))

+DKL (qΦ(z | x) || pΘ(z | x))

In this equations, DKL (P || Q) denotes the Kullback-Leibler divergence between
distributions P and Q. The first expectation is computed via sampling and is
differentiable due to the reparametrization trick1. The second term represents the
KL divergence between the approximate and the true prior, which are often chosen
to be Gaussian distributions, allowing this term to be computed in closed form.
The third term, however, involves the intractable true posterio pΘ(z | x), which
cannot be directly computed. Since the KL divergence is non-negative2, we can still
optimize the sets of parameters Θ and Φ by maximizing the following variational
lower bound (ELBO):

log pΘ(x) ≥ L (x; Θ,Φ) = Ez∼qΦ(z|x) [log pΘ(x | z)]−DKL (qΦ(z | x) || pΘ(z)) (4.2)

By setting the prior pΘ(z) to a Gaussian distribution and training according to
Eq. 4.2, once the parameters Θ and Φ are fully optimized, we can sample from
pΘ(z), pass the samples through the decoder pΘ(x | z), and generate new data.

4.1.3 Vector Quantised-Variational Auto-Encoder
In 2017, Van Den Oord et al. [33] extented the VAE framework to work with
discrete latent representations that represent a more realistic fit to real world tasks
like both spoken and written language, reasoning, planning, and others. They
propose modifying the encoder architecture to predict discrete codes instead of
continuous latent variables. Additionally, they introduce a learned prior over the

1For further details, see Section 2.4 of [32]
2See Appendix A.1 for the proof.

20

Generative Artificial Intelligence

discrete codes, which is typically fixed in standard VAEs. The prior is learned
using autoregressive distributions over the latent codes, but only after the discrete
codes have been trained.

4.2 Generative Adversarial Networks
The introduction of the Generative Adversarial Network (GAN) framework by
Goodfellow et al. [34] in 2014 marked a major breakthrough in image generation.
Since then, Deep Learning models inspired by this framework have dominated the
State-Of-The-Art (SOTA) in various domains.

The concept behind GANs originates from Game Theory, a field of mathematics
that studies strategic interactions between rational agents using mathematical
models. Specifically, GANs are based on the minimax two-player game, where
two players engage in a game where each aims to maximize their own gain while
minimizing their potential losses.

Goodfellow et al. [34] formalized this game-theoretic framework within the
context of Gen-AI by defining two models: a generative model G, which seeks to
learn the true data distribution pdata(x), and a discriminative model D, whose task
is to distinguish between real and generated samples, i.e., samples from the true
data distribution and those produced by the generator.

The generator G(z) := G(z; ΘG) takes noise inputs z from a prior distribution
pz(z) and maps them to the data space. Here, ΘG represents the parameters of
the generator network. In contrast, the discriminator D(x) := D(x; ΘD) operates
directly on the data space, outputting a score that indicates the probability that a
given input x is a real sample (i.e., drawn from the true data distribution) rather
than a generated one. The parameters of the discriminator network are denoted by
ΘD. The framework is illustrated in Fig. 4.23.

The learning objective can be formulated as:

min
ΘG

max
ΘD

è
Ex∼pdata(x) logD(x) + Ez∼pz(z) log (1−D(G(z)))

é
In this formulation, the discriminator seeks to maximize both terms by distin-
guishing real data samples from generated ones. On the other hand, the generator
minimizes the second term, aiming to produce more convincing samples that are
difficult for the discriminator to distinguish from real data.

Goodfellow et al. [34] observed that early in training, when the generator G
produces poor-looking images, the discriminator D can easily distinguish real from

3The images were generated using a LDM (see Section 4.3.3) model, conditioned on DINOv2
SALAD [51] embeddings derived from real images in the SF-XL dataset [52].

21

Generative Artificial Intelligence

Figure 4.2: Generative Adversarial Network framework.

fake samples, leading to high-confidence decisions. This, however, results in weak
gradient signals that do not effectively help improve the generator. To address this
issue, they proposed an alternative objective in which the generator attempts to
maximize the likelihood that the discriminator makes incorrect predictions:

max
ΘD

è
Ex∼pdata(x) logD(x) + Ez∼pz(z) log (1−D(G(z)))

é
max

ΘG

Ez∼pz(z) log (D(G(z)))

The training process utilizes the Stochastic Gradient Descent (SGD) optimization
algorithm, alternating between updates to the discriminator and the generator
weights. The complete training procedure is outlined in Algorithm 1.

22

Generative Artificial Intelligence

Algorithm 1 SGD optimization of GANs.
1: /* k is the number of training steps to apply to the discriminator */
2: /* M is the batch size */
3: /* ηD is the learning rate for the discriminator */
4: /* ηG is the learning rate for the generator */
5: for number of iterations do
6: for k steps do
7: ▷ Sample M noise samples {z1, z2, . . . , zM} from the prior pz(z)
8: ▷ Sample M data samples {x1,x2, . . . ,xM} from the real data distribu-

tion pdata(x)
9: ▷ Update the discriminator by stochastic gradient ascent

10: ΘD ← ΘD + ηD∇ΘD

1
M

MØ
i=1

[logD(xi) + log (1−D(G(zi)))]

11: end for
12: ▷ Sample M noise samples {z1, z2, . . . , zM} from the prior pz(z)
13: ▷ Update the generator by stochastic gradient ascent

14: ΘG ← ΘG + ηG∇ΘG

1
M

MØ
i=1

logD(G(zi))

15: end for

4.3 Diffusion Probabilistic Models

The framework outlined in Section 4.2 has significantly advanced the field of
Generative Artificial Intelligence. However, the algorithm presented in Algorithm 1
is prone to training instability due to the simultaneous training of two networks.
Additionally, the generator network may converge to a local minimum in the weight
space, where it produces only a limited set of outputs (often just one or a few),
failing to capture the full diversity of the source data distribution. This issue,
known as mode collapse, has been widely discussed in the literature [38].

In 2015, Sohl-Dickstein et al. [53] introduced a new class of probabilistic models,
called Diffusion Probabilistic Models, inspired by principles from nonequilibrium
thermodynamics. As demonstrated by Ho et al. in «Denoising diffusion probabilistic
models» [41], this approach can generate high-quality image samples. Since their
introduction, Diffusion Probabilistic Models have been widely adopted for various
tasks due to their stable training dynamics, diverse outputs, and exceptional image
quality.

23

Generative Artificial Intelligence

4.3.1 Denoising Diffusion Probabilistic Models
A diffusion process is a stochastic process that gradually adds noise to a signal over
time, typically through a Markov chain4, until the original signal is indistinguishable
from noise. This can be thought of as a process that evolves the signal in such a
way that, in the limit, the signal is lost.

A Diffusion Model (DM) [53] build upon this concept. Given data x0 that
follows the distribution q(x0) (i.e. x0 ∼ q(x0)), DMs are latent variable models
described by the following marginal distribution:

pΘ(x0) :=
Ú
pΘ(x0:T) dx1:T

where x1,x2, . . . ,xT are latents of the same dimensionality as x0. The join distri-
bution pΘ(x0:T), referred to as the reverse process, is defined by a Markov chain
with learned Gaussian transitions starting from p(xT) = N (xT ; 0, I). Specifically,
it is expressed as:

pΘ(x0:T) := p(xT)
TÙ

t=1
pΘ(xt−1 | xt)

where pΘ(xt−1 | xt) := N (xt−1; µΘ(xt, t),ΣΘ(xt, t)). A distinctive feature of DMs is
that the posterior q(x1:T | x0), known as the forward process (or diffusion process),
is a fixed Markov chain that progressively adds Gaussian noise according to a
variance schedule β1, β2, . . . , βT . This process is defined as:

q(x1:T | x0) :=
TÙ

t=1
q(xt | xt−1)

where q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI). The Markovian diffusion process is
depicted schematically in Fig. 4.3.

With this setup, we can train the model using the typical variational lower
bound (see Eq. 4.2 in Section 4.1.2), which is given by:

Eq [− log pΘ(x0)] ≤ Eq

C
− log pΘ(x0:T)

q(x1:T | x0)

D

= Eq

C
− log

A
p(xT)

TÙ
t=1

pΘ(xt−1 | xt)
q(xt | xt−1)

BD

= Eq

C
− log p(xT)−

TØ
t=1

log pΘ(xt−1 | xt)
q(xt | xt−1)

D
=: L

(4.3)

4A Markov chain is a stochastic process in which the probability of each state depends only
on the previous state. This property is known as the Markov property, which means that the
process has no memory of past events beyond the most recent one.

24

Generative Artificial Intelligence

Figure 4.3: Scheme of the Markovian diffusion process. Adapted from «Denoising
diffusion probabilistic models» [41].

The forward process allows for sampling xt at an arbitrary timestep t in closed
form. To illustrate this, we first define αt := 1−βt and apply the reparameterization
trick [34] to rewrite the following expression:

q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I)

= √αtxt−1 +
√

1− αtN (0, I)
= √αtxt−1 +

√
1− αtϵ

Thus, during the forward process, xt is sampled starting from xt−1 as follows:

xt = √αtxt−1 +
√

1− αtϵt

where ϵt is sampled from N (0, I). We can recursively express xt−1 as follows:

xt = √αtxt−1 +
√

1− αtϵt

= √αt(
√
αt−1xt−2 +

ñ
1− αt−1ϵt−1) +

√
1− αtϵt

= √αtαt−1xt−2 +
ñ
αt(1− αt−1)ϵt−1 +

√
1− αtϵt

= √αtαt−1xt−2 +
ñ
αt(1− αt−1) + (1− αt)ϵt,t−1

= √αtαt−1xt−2 +
ñ

1− αtαt−1ϵt,t−1

Here, ϵt and ϵt−1 are independent Gaussian noise terms. When we combine them,
the result is a new Gaussian noise term ϵt,t−1, whose variance is the sum of the
individual variances of ϵt and ϵt−1. This process can be applied recursively for each
timestep t until we reach x0, yielding the following expression for xt:

xt = √αtαt−1 . . . α1x0 +
ñ

1− αtαt−1 . . . α1ϵt,t−1,...,1

Finally, defining ᾱt := rt
s=1 αs, we obtain:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt,t−1,...,1 (4.4)

25

Generative Artificial Intelligence

or equivalently, the distribution for xt given x0 is:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (4.5)

The ability to sample xt directly from x0 enables the optimization of random terms
in the variational lower bound L using Stochastic Gradient Descent. Specifically,
Eq. 4.3 can be rewritten in a way that promotes variance reduction, as follows:

L = Eq

C
− log p(xT)−

TØ
t=1

log pΘ(xt−1 | xt)
q(xt | xt−1)

D

= Eq

C
− log p(xT)−

Ø
t>1

log pΘ(xt−1 | xt)
q(xt | xt−1)

− log pΘ(x0 | x1)
q(x1 | x0)

D

= Eq

C
− log p(xT)−

Ø
t>1

log
A
pΘ(xt−1 | xt)
q(xt−1 | xt,x0)

· q(xt−1 | x0)
q(xt | x0)

B
− log pΘ(x0 | x1)

q(x1 | x0)

D

= Eq

C
− log p(xT)

q(xT | x0)
−
Ø
t>1

log pΘ(xt−1 | xt)
q(xt−1 | xt,x0)

− log pΘ(x0 | x1)
D

= DKL (q(xT | x0) || p(xT)) +
Ø
t>1

DKL (q(xt−1 | xt,x0) || pΘ(xt−1 | xt))

− log pΘ(x0 | x1) = LT +
Ø
t>1
Lt−1 + L0 (4.6)

Here, the KL divergences can be computed in closed form since they only involve
Gaussian distributions. This is due to the fact that the posteriors q(xt−1 | xt,x0)
are tractable when conditioned on x0, as shown below:

q(xt−1 | xt,x0) = q(xt | xt−1,x0)q(xt−1 | x0)
q(xt | x0)

= q(xt | xt−1)q(xt−1 | x0)
q(xt | x0)

= N (xt;
√
αtxt−1, (1− αt)I)N (xt−1;

√
ᾱt−1x0, (1− ᾱt−1)I)

N (xt;
√
ᾱtx0, (1− ᾱt)I)

= N
A

xt−1;
√
ᾱt−1βt

1− ᾱt

x0 +
√
αt(1− ᾱt−1)

1− ᾱt

xt,
1− ᾱt−1

1− ᾱt

βtI
B

= N (xt−1; µ̃t(xt,x0), β̃tI)

The derivation of the third equation in the previous block of equations is left to
the reader5.

Although the variances β1, β2, . . . , βT could be learned through reparameteriza-
tion, Ho et al. [41] opted to fix them, ensuring that the forward process contains

5The derivation is a long sequence of algebraic manipulations, which should be straightforward,
though it may require some patience. I trust you ♡.

26

Generative Artificial Intelligence

no learnable parameters. As a result, the term LT in Eq. 4.6 can be disregarded.
Furthermore, they chose to set ΣΘ(xt, t) = σ2

t I in pΘ(xt−1 | xt), where σ2
t = β̃t.

Given the specific forms of pΘ(xt−1 | xt) and q(xt−1 | xt,x0), the KL divergence
Lt−1 between the two Gaussian distributions is:

Lt−1 = Eq

C
1

2β̃t

∥µ̃t(xt,x0)− µΘ(xt, t)∥2
D

+ C

where C is a constant. Since we know the form of µ̃t(xt,x0), we can express
µΘ(xt, t) similarly:

µΘ(xt, t) =
√
ᾱt−1βt

1− ᾱt

xΘ(xt, t) +
√
αt(1− ᾱt−1)

1− ᾱt

xt

Substituting this into the expression for Lt−1, we obtain:

Lt−1 − C = Eq

C
βtᾱt−1

2(1− ᾱt)(1− ᾱt−1)
∥xΘ(xt, t)− x0∥2

D

Next, we can simplify this further, recognizing that xt is an available input to the
model during training. Since xt = xt(x0, ϵ) =

√
ᾱtx0 +

√
1− ᾱtϵ from Eq. 4.4,

where ϵ sampled from N (0, I), we have:

x0 = 1√
ᾱt

1
xt(x0, ϵ)−

√
1− ᾱtϵ

2
(4.7)

This allows us to rewrite the mean of the posterior µ̃t(xt,x0) as:

µ̃t(xt,x0) =
√
ᾱt−1βt

1− ᾱt

· 1√
ᾱt

1
xt(x0, ϵ)−

√
1− ᾱtϵ

2
+
√
αt(1− ᾱt−1)

1− ᾱt

xt(x0, ϵ)

=
A

βt√
αt(1− ᾱt)

+
√
αt(1− ᾱt−1)

1− ᾱt

B
xt(x0, ϵ)− βt

√
1− ᾱt√

αt(1− ᾱt)
ϵ

The same can be done for µΘ(xt, t), so we can write Lt−1 as:

Lt−1 − C = Et,x0,ϵ

C
βtᾱt−1

2(1− ᾱt)(1− ᾱt−1)
· 1− ᾱt

ᾱt

∥ϵΘ(xt, t)− ϵ∥2
D

= Et,x0,ϵ

C
β2

t

2β̃tαt(1− ᾱt)
∥ϵΘ(xt, t)− ϵ∥2

D
(4.8)

Thus, the model is designed to approximate the noise ϵ defined in Eq. 4.4, by
learning the function ϵΘ(xt, t).

At timestep t = 0, the goal of the model’s reverse process is to predict the image
x0 given x1 based on the distribution pΘ(x0 | x1). This is captured during training

27

Generative Artificial Intelligence

by the term L0 in Eq. 4.6. Since images are rescaled from integer values in the set
{0, 1, . . . , 255} to range [−1, 1] ⊂ R, Ho et al. [41] suggested computing L0 using
a discrete decoder that assumes independence across the data dimensions. This
approach is defined as follows:

pΘ(x0 | x1) =
DÙ

i=1

Ú δ+(xi
0)

δ−(xi
0)
N (x;µi

Θ(x1, 1), σ2
1) dx

δ+(x) =
I
∞ if x = 1
x+ 1

255 if x < 1 δ−(x) =
I
−∞ if x = −1
x− 1

255 if x > −1

where D is the dimensionality of the data and i refers to the i-th coordinate.
This formulation enables training, with the reverse process using µΘ(x1, 1) during
sampling.

Finally, Ho et al. [41] found that simplifying Eq. 4.8 by disregarding the weights
resulted in both improved sample quality and simpler training. Specifically, they
proposed optimizing the following function:

Lsimple (Θ) := Et,x0,ϵ

è
∥ϵΘ(xt, t)− ϵ∥2

é
(4.9)

= Et,x0,ϵ

5...ϵΘ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ

...2
6

This approach leads to a weighted variational bound that places different emphasis
on various aspects of reconstruction. In particular, terms associated with smaller
timestep values are down-weighted, as they deal with denoising data that has very
little noise. This allows the model to concentrate more on the more challenging
denoising tasks associated with larger t-values. Additionally, the term L0 is
simplified by approximating it using the Gaussian probability density function
multiplied by the bin width.

Algorithm 2 Training DDPM models.
1: /* T is the total number of timesteps */
2: /* η is the learning rate */
3: while not converged do
4: ▷ Sample data x0 from q(x0)
5: ▷ Sample timestep t from Uniform({1, 2, . . . , T})
6: ▷ Sample noise ϵ from N (0, I)
7: ▷ Update the model by taking gradient descent step
8: Θ← Θ− η∇Θ

...ϵΘ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ

...2

9: end while

The complete procedures for training and sampling are outlined in Algorithm 2
and Algorithm 3, respectively. The forward and reverse processes are visually

28

Generative Artificial Intelligence

Algorithm 3 Sampling from DDPM models.
1: /* T is the total number of timesteps */
2: ▷ Sample xT from N (0, I)
3: for t = T, T − 1, . . . , 1 do
4: if t > 1 then
5: ▷ Sample z from N (0, I)
6: else
7: z← 0
8: end if
9: xt−1 ←

1
√
αt

A
xt −

1− αt√
1− ᾱt

ϵΘ(xt, t)
B

+ σtz

10: end for
11: return x0

represented in Fig.4.4 and Fig.4.5. Specifically, Fig. 4.4 illustrates how noise is
progressively added, eventually destroying the original image signals, while Fig. 4.5
depicts the gradual removal of noise over successive timesteps, leading to the
generation of images6.

4.3.2 Denoising Diffusion Implicit Models

Although DDPM models can generate images of comparable or even superior quality
to GANs, they are constrained by their sequential nature. The reverse process must
traverse all timesteps, starting from pure noise at timestep T and progressively
denoising at each step until a data sample x0 is obtained. To ensure that the
reverse process can be approximately modeled with Gaussian distributions, the
number of timesteps T needs to be large. This requirement significantly limits the
models’ inference speed. As a result, DDPM models are orders of magnitude slower
than GANs, which only require a single forward pass to generate new images.

Song et al. [40] proposed overcoming this limitation by extending the forward
process to non-Markovian diffusion processes. Their reasoning is based on the
observation that the objective in Eq. 4.8 depends only on the marginals q(xt | x0).
This implies that, as long as these marginals remain the same, the joint distribution
q(x1:T | x0) can be modeled in any desired way. Specifically, they represented the

6In both figures, the images were generated using a LDM model (see Section 4.3.3), conditioned
on CosPlace [52] with a ResNet-50 backbone and a descriptor dimension of 2048. The embeddings
were derived from real images in the SF-XL dataset [52].

29

Generative Artificial Intelligence

Figure 4.4: Illustration of the forward process.

joint distribution using a vector of standard deviations σ ∈ RT as follows:

qσ(x1:T | x0) := qσ(xT | x0)
TÙ

t=2
qσ(xt−1 | xt,x0)

where the conditional distributions are given by:

qσ(xt−1 | xt,x0) = N
A

xt−1;
ñ
ᾱt−1x0 +

ñ
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt

, σ2
t I
B

qσ(xT | x0) = N (xT ;
√
ᾱT x0, (1− ᾱT)I)

where the mean function is designed to ensure that the marginals in Eq. 4.5 are
matched as intended. Under this framework, the forward process can be derived
using the Bayes’ rule:

qσ(xt | xt−1,x0) = qσ(xt−1 | xt,x0)qσ(xt | x0)
qσ(xt−1 | x0)

This formulation allows for flexible modeling of the dependencies of xt on both
xt−1 and x0, as well as the level of stochasticity in the forward process, which can

30

Generative Artificial Intelligence

Figure 4.5: Illustration of the reverse process.

Figure 4.6: Scheme of the non-Markovian diffusion process. Adapted from
«Denoising diffusion implicit models» [40].

be controlled by the vector σ. A schematic representation of the non-Markovian
diffusion process is shown in Fig. 4.6.

The reverse process remains mainly the same and is summarized as follows.

31

Generative Artificial Intelligence

According to Eq. 4.8, the model ϵΘ predicts the noise that was added to obtain
xt starting from x0. Using this predicted noise, an approximation of the denoised
observation can be made in a manner similar to Eq. 4.7:

xΘ(xt, t) := 1√
ᾱt

1
xt −

√
1− ᾱtϵΘ(xt, t)

2
The reverse process is then defined as:

pΘ(xt−1 | xt) =
I
N (x0; xΘ(x1, 1), σ2

1I) if t = 1
qσ(xt−1 | xt,xΘ(xt, t)) otherwise

This process starts from the prior p(xT) = N (xT ; 0, I). For the case t = 1, Gaussian
noise with covariance σ2

1I is added to ensure that the reverse process is supported
everywhere.

Song et al. [40] demonstrated that this formulation, when trained using the
variational lower bound in Eq. 4.6, converges to the same solution as DDPM models
trained with Eq. 4.9, provided that the model parameters are not shared across
different timesteps t. This is because, when the parameters are not shared, each
term is optimized independently, leading to the same global optimum. This enables
the use of pre-trained DDPM models and allows for the manipulation of the reverse
process through adjustments to σ to improve the quality of the generated samples.
There are two special cases to note: first, by setting σ2

t = β̃t ∀t ∈ {1, 2, . . . , T},
the reverse process is identical to that of DDPM models, as this results in a
Markovian forward process; second, by taking σ → 0, the model becomes an
implicit probabilistic model, known as Denoising Diffusion Implicit Model (DDIM),
where the forward process is deterministic (except for t = 1), and the reverse
process eliminates the addition of noise at each timestep t.

Furthermore, Song et al. [40] proposed an accelerated image generation procedure,
drawing similar conclusions about the optimization process. They suggested
rewriting the forward process as:

qσ,τ (x1:T | x0) := qσ,τ (xτS
| x0)

SÙ
i=2

qσ,τ (xτi−1 | xτi
,x0)

Ù
t∈τ̄

qσ,τ (xt | x0)

where τ is a subsequence of [1, 2, . . . , T] of length S, with the constraint τS = T ,
and τ̄ := {1, 2, . . . , T} \ τ . The conditional distributions are defined as:

qσ,τ (xτi−1 | xτi
,x0) = N

A
xτi−1 ;

ñ
ᾱτi−1x0 +

ñ
1− ᾱτi−1 − σ2

τi
· xτi

−
√
ᾱτi

x0√1− ᾱτi

, σ2
τi

I
B

qσ,τ (xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

32

Generative Artificial Intelligence

These coefficients are chosen to ensure that the marginals in Eq. 4.5 are correctly
matched. The corresponding reverse process is defined as:

pΘ(x0:T) := p(xT)
SÙ

i=2
pΘ(xτi−1 | xτi

)
Ù
t∈τ̄

pΘ(x0 | xt)

where

pΘ(xτi−1 | xτi
) = qσ,τ (xτi−1 | xτi

,xΘ(xτi
, τi))

pΘ(x0 | xt) = N (x0; xΘ(xt, t), σ2
t I)

In this setup, only a subset of the conditionals–specifically, pΘ(xτi−1 | xτi
) and

pΘ(x0 | xτ1)–are used to generate samples, following the reverse of the subsequence
τ , referred to as the sampling trajectory, thereby speeding up the sampling process.
A diagram of the accelerated diffusion process is illustrated in Fig. 4.7.

Figure 4.7: Scheme of the accelerated diffusion process, with the first two elements
of τ set to 2 and 4. Adapted from «Denoising diffusion implicit models» [40].

Finally, Song et al. [40] proposed computing the vector of standard deviations
σ by indexing its elements according to τ , as follows:

στi
(η) = η

ó
1− ᾱτi−1

1− ᾱτi

ó
1− ᾱτi

ᾱτi−1

Here, η ∈ R+ is a hyperparameter: setting η = 1 recovers the original DDPM
sampling process, while setting η = 0 results in the DDIM method.

4.3.3 Latent Diffusion Models
Although Song et al. [40] significantly enhanced the speed of sample generation
by decreasing the number of timesteps needed in the reverse process, DMs still

33

Generative Artificial Intelligence

face considerable limitations due to their high resource consumption during both
training and sampling. These issues primarily stem from the latents, which reside
in the pixel space.

In response to these limitations, Rombach et al. [42] introduced a novel archi-
tecture called Latent Diffusion Model (LDM), designed to lower computational
requirements without sacrificing the performance typically associated with DMs.
Their strategy is founded on the observation that likelihood-based models allocate
significant computational resources on capturing high-frequency, often imperceptible
details of the data during an initial learning phase known as perceptual compression.
This stage is followed by a second learning phase, termed semantic compression, in
which the generative model assimilates the semantic and conceptual composition
of the data.

Their approach seeks to establish a perceptually equivalent space that is more
computationally efficient for training high-resolution DMs. By leveraging inductive
biases inherent in spatially structured data and utilizing a U-Net [46] backbone,
they avoided extreme levels of compression that could degrade sampling quality.
Specifically, they developed a perceptual compression model based on an auto-
encoder (details in Section 4.1.1).

For a given image x ∈ RH×W ×3, the encoder maps it into a latent representation
z = E(x) ∈ Rh×w×c, while the decoder reconstructs the image from the latent
representation as x̂ = D(z) ∈ RH×W ×3. The factor f = H

h
= 2m, where m ∈ N,

acts as a hyperparameter controlling the trade-off between compressing the latent
space (which, as discussed later, accelerates both training and inference times for
DMs) and preserving the information in the original image, ensuring perceptually
similar outputs. The AEs are trained using an adversarial framework [54, 29] to
better capture the image manifold by enhancing local, patch-based realism and
alleviating the blurring effects typically encountered with simple reconstruction
losses. The overall objective can be expressed as follows:

L = min
E,D

max
D

[λ1LRec(x,D(E(x))) + λ2LLPIPS(x,D(E(x)))

+λ3LGAN(x; E ,D, D) + λ4LReg(x; E ,D)]
In this equation, λi, i ∈ {1, 2, 3, 4}, are hyperparameters that dictate the relative
weight of each loss component and D is a discriminator network (see Section 4.2).
Here, LRec denotes the reconstruction loss, LLPIPS represents the Learned Perceptual
Image Patch Similarity loss introduced in [55], LGAN is the patch-based adversarial
loss [29], and LReg is a regularization loss designed to prevent arbitrary scaling of
latent spaces. The regularization term LReg could take the form of a KL divergence
term, similar to the one used in VAEs [32], or it could depend on the codebook
size in a vector quantization layer, as in VQ-VAEs [33].

Once powerful AEs have been trained, both inference and training of DMs can
occur within the learned latent spaces, thereby accelerating both processes. The

34

Generative Artificial Intelligence

learning objective in Eq. 4.9 can now be reformulated as:

LLDM (Θ) = Et,E(x0),ϵ
è
∥ϵΘ(zt, t)− ϵ∥2

é
The function ϵΘ(zt, t) can be realized using a time-conditional U-Net architecture.
This enables the training to concentrate on the essential, semantic components of
the data within a highly efficient, low-dimensional space.

Figure 4.8: Diagram of the Latent Diffusion Model with conditioning through
either concatenation or cross-attention. Adapted from «High-resolution image
synthesis with latent diffusion models» [42].

They further extended DMs to model conditional distributions p(z | y) by
incorporating a cross-attention mechanism [56] into the U-Net architecture. The
condition y is first mapped to an intermediate representation τΘ(y) ∈ RM×dτ using
a modality-specific encoder τΘ. This representation is then integrated into the
intermediate layers of the U-Net through cross-attention layers, as follows:

Attention(Q,K, V) = softmax
A
QKT

√
d

B
· V

where:
Q = φi(zt) ·W (i)

Q , K = τΘ(y) ·W (i)
K V = τΘ(y) ·W (i)

V

Here, φi(zt) ∈ RN×d
(i)
ϵ is a flattened intermediate representation of the U-Net and

W
(i)
Q ∈ Rd

(i)
ϵ ×d, W (i)

K ∈ Rdτ ×d and W
(i)
V ∈ Rdτ ×d are learnable projection matrices.

35

Generative Artificial Intelligence

The objective function for this approach is given by:

LLDM (Θ) = Et,E(x0),y,ϵ

è
∥ϵΘ(zt, τΘ(y), t)− ϵ∥2

é
(4.10)

In this formulation, both the model ϵΘ and the encoder τΘ are jointly optimized.
A comprehensive diagram of the conditioned LDM model is shown in Fig. 4.8.

36

Chapter 5

Uncertainty Estimation

Deep Learning models have demonstrated remarkable performance across a wide
range of tasks and are now broadly deployed in various real-world applications.
However, these models often generate outputs based on high-dimensional data
without providing any measure of confidence or uncertainty regarding their pre-
dictions. While their outputs are typically assumed to be correct, this lack of
uncertainty estimation can lead to significant risks, as incorrect predictions may
lead to catastrophic failures with serious consequences [57, 16]. As a result, there is
an increasing need to integrate uncertainty estimation into DL systems to mitigate
risks and improve reliability.

There are two major types of uncertainties that can be modeled: aleatoric
uncertainty, which represents the inherent randomness or noise in the data, and
epistemic uncertainty, which stems from uncertainty in the model parameters.
While epistemic uncertainty can be reduced with more data and improved models,
aleatoric uncertainty is irreducible, as it is an intrinsic part of the data generation
process.

Uncertainty estimation can be addressed through a general framework known as
Bayesian Deep Learning, where Bayesian Neural Networks (BNNs) are characterized
by treating the weight parameters as distributions. This approach enables models to
estimate both types of uncertainty [57]. However, it faces several challenges, such as
difficulty in producing models that are competitive with non-Bayesian alternatives.
BNNs typically require training from scratch, are challenging to optimize, and
struggle to scale with large, high-dimensional datasets [58]. In 2024, Franchi et al.
[59] proposed a method to convert pre-trained DNNs into BNNs by replacing their
normalization layers with a novel layer called Bayesian Normalization Layer (BNL).
While this method achieves its objective, it still necessitates modifications to the
architecture and additional fine-tuning steps.

An alternative approach to addressing the problem is to enable models to
generate uncertainty scores by using an additional output head [60], or by producing

37

Uncertainty Estimation

probabilistic rather than deterministic outputs [61]. When multiple pre-trained
models are available, Miao et al. [62] in 2024 proposed a novel probabilistic model
ensemble framework that integrates prior knowledge from the pre-trained models.
This ensemble enhances predictive performance in low-shot image classification
while also quantifying uncertainty.

Furthermore, uncertainty estimates can play a key role in improving model
performance and robustness. For instance, Upadhyay et al. [63, 64] showed how
incorporating uncertainty information could improve model predictions or enable
training in unsupervised settings, potentially leading to more accurate and/or
resilient outputs in the face of challenging or ambiguous inputs.

In the following, we will concentrate on post-hoc approaches, where pre-trained
DNNs remain unchanged, and uncertainty estimation techniques are applied on
top of them [58, 65, 66].

5.1 BayesCap

In 2022, Upadhyay et al. [58] introduced a novel, data-efficient technique for post-
hoc uncertainty estimation. This approach learns a Bayesian identity mapping over
the outputs of a pre-trained deterministic Deep Neural Network, converting the
deterministic outputs into probabilistic ones.

Consider a dataset D := {(x1,y1) , (x2,y2) , . . . , (xN ,yN)}, where each input
xi ∈ X ⊆ Rm and each output yi ∈ Y ⊆ Rn. Let ΨΘ : Rm → Rn represent a
DNN parameterized by the learnable parameters Θ. After training the model on
the dataset D, the parameters Θ∗ are learned, and the model is in a frozen state.
The objective is to estimate the output distribution pY|X using the point estimates
ȳ = ΨΘ∗(x), where the distribution’s parameters capture the irreducible aleatoric
uncertainty.

To achieve the goal, a Bayesian identity mapping ΩΦ : Rn → R(k+1)×n is learned,
which reconstructs the point estimates ȳ and generates the k parameters of the
distribution pY|X . The learning process is conducted via maximum likelihood
estimation. Specifically, the model ΩΦ produces a set of outputs {ỹi, ξ̃

1
i , . . . , ξ̃

k
i } :=

ΩΦ(ȳi), which characterizes the distribution pY|X (y; {ỹi, ξ̃
1
i , . . . , ξ̃

k
i }), such that

yi ∼ pY|X (y; {ỹi, ξ̃
1
i , . . . , ξ̃

k
i }). The optimal parameters for the model are therefore

determined by maximizing the likelihood L (Φ;D) := rN
i=1 pY|X (yi; {ỹi, ξ̃

1
i , . . . , ξ̃

k
i }).

The choice of the functional form for pY|X is typically guided by the need to
express the uncertainty in a closed-form solution F that depends on the estimated

38

Uncertainty Estimation

parameters, such as:

Φ∗ := argmax
Φ

L (Φ;D) = argmax
Φ

NÙ
i=1

pY|X (yi; ΩΦ(ȳi))

= argmax
Φ

NÙ
i=1

pY|X (yi; {ỹi, ξ̃
1
i , . . . , ξ̃

k
i }) (5.1)

Uncertainty(ỹi) = F (ξ̃1
i , . . . , ξ̃

k
i) (5.2)

The form of pY|X is often chosen to be a heteroscedastic1 Gaussian-like distribu-
tion, which models the per-feature residuals between predictions and ground-truth
values. However, real-world inputs frequently contain outliers and artifacts, leading
to residuals that often follow heavy-tailed distributions2. To account for these cases,
Upadhyay et al. [58] proposed using a heteroscedastic generalized Gaussian distri-
bution to model the residuals. This approach results in predictions for the mean
ỹi, scale α̃i, and shape β̃i parameters. The likelihood and uncertainty expressions
in Eq. 5.1 and Eq. 5.2 are then rewritten as follows:

Φ∗ := argmax
Φ

L (Φ;D) = argmax
Φ

NÙ
i=1

pY|X (yi; {ỹi, α̃i, β̃i})

= argmax
Φ

NÙ
i=1

β̃i

2α̃iΓ(1
β̃i

)e
−
1

|ỹi−yi|
α̃i

2β̃i

(5.3)

= argmin
Φ
− log L (Φ;D)

= argmin
Φ

NØ
i=1

A
|ỹi − yi|

α̃i

Bβ̃i

− log β̃i

α̃i

+ log Γ(1
β̃i

) (5.4)

Uncertainty(ỹi) = σ̃2
i =

α̃2
i Γ(3

β̃i
)

Γ(1
β̃i

) (5.5)

where Γ(x) =
s∞

0 tx−1e−t dt, ∀x > 0 denotes the Gamma function and σ2
i represents

the variance of the generalized Gaussian distribution. These uncertainties are used
as per-feature predictions of the errors that will occur at inference time.

This formulation necessitates that the reconstructed outputs ỹi closely align
with the point estimates ȳi. As the quality of the reconstructions improves, the

1A sequence of random variables is said to be heteroscedastic if the variance varies across the
different variables. In our context, each feature is treated as a random variable, each with its own
distinct variance.

2See Appendix B.1 for more details.

39

Uncertainty Estimation

uncertainties predicted by the model should converge to those of the pre-trained
model’s predictions, which can be expressed as follows:

ỹi → ȳi =⇒ σ̃2
i → σ̄2

i

Consequently, the training process aims to minimize both the reconstruction loss
and the negative log-likelihood specified in Eq. 5.4 as follows:

L(Φ) = λ1

NØ
i=1
|ỹi − ȳi|+ λ2

NØ
i=1

A
|ỹi − yi|

α̃i

Bβ̃i

− log β̃i

α̃i

+ log Γ(1
β̃i

) (5.6)

In this objective, the hyperparameters λ1 and λ2 determine the relative importance
of the reconstruction loss and the negative log-likelihood term, respectively, in the
overall loss function.

The model ΩΦ implements a Bayesian identity mapping, meaning its struc-
ture is independent of the architecture and specific task performed by ΨΘ∗ . As
demonstrated by Upadhyay et al. [58], their approach does not require task-specific
tuning and is robust to variations in hyperparameters, such as learning rate and
architecture. Moreover, because the mapping is applied on top of the pre-trained
model, the output of the pre-trained model can be used directly, ensuring that the
predictions of the original model remain unaffected and that there is no degradation
in its predictive performance. A schematic representation of the complete model is
provided in Fig. 5.1.

Figure 5.1: BayesCap architecture. Adapted from «BayesCap: Bayesian Identity
Cap for Calibrated Uncertainty in Frozen Neural Networks» [58].

40

Uncertainty Estimation

5.2 ProbVLM
In 2023, Upadhyay et al. [65] proposed a novel probabilistic adapter designed to
estimate probability distributions for the embeddings of pre-trained large-scale
Vision-Language Models [31, 67]. While these models align image and text modalities
in a shared embedding space in a deterministic manner, they fail to capture the
inherent ambiguity in the correspondences between the two: an image can have
multiple captions, and a caption can correspond to multiple images.

Building on the concepts from BayesCap [58], Upadhyay et al. [65] extended
the use of uncertainties from representing predictive errors at inference time to
modeling the ambiguities present in the different modalities. They achieved this by
employing a combination of intra-modal and cross-modal alignment objectives.

Formally, let I denote the image space and C the caption space. Consider a vision-
language dataset D := {(I1, C1) , (I2, C2) , . . . , (IN , CN)} ⊆ {(I, C) | I ∈ I, C ∈ C}.
The dataset satisfies the condition that ∀i, j ∈ {1, 2, . . . , N}, i /= j ⇒ Ii /= Ij ∨Ci /=
Cj. In other words, it is allowed that the same image Ii appears in multiple pairs,
or the same caption Ci appears in multiple pairs, as long as they are associated with
different counterparts. VLMs typically learn a shared embedding space Z ⊆ Rn for
both modalities, allowing the measurement of cross-modal similarity via distances
between elements. These models learn the embedding space using modality-specific
encoders, ΨV := ΨV

Θ∗
V

: I → Z for images and ΨT := ΨT
Θ∗

T
: C → Z for captions.

Both encoders are assumed to be in a frozen state, with Θ∗
V and Θ∗

T representing
the learned set of parameters of each encoder.

To capture the inherent ambiguity in the embeddings z ∈ Z, the conditional
probability distribution pZ|X := pZ|X (z; {z̃, ξ̃1, . . . , ξ̃k}) is modeled in a post-hoc
manner, on top of the pre-trained encoders, where X := I ∪ C. Specifically, the
model is defined as:

ΩΦ := (ΩV ,ΩT)

where:
ΩV := ΩV

ΦV
: Rn → R(k+1)×n, ΩT := ΩT

ΦT
: Rn → R(k+1)×n

Here, Φ := ΦV ∪ ΦT represents the full set of model parameters. The components
ΩV and ΩT are Bayesian identity mapping models that are trained to reconstruct
the point estimates z̄V = ΨV(I) and z̄T = ΨT (C), respectively. These models
also generate the k parameters of the modality-specific distributions pZ|I and pZ|C,
respectively.

The learning process for ΩΦ is structured to ensure both intra-modal alignment
and cross-modal alignment. Intra-modal alignment ensures that the unimodal
mapping models generate reconstructions that faithfully approximate the original
unimodal embeddings, allowing the estimated uncertainties to serve as reliable
proxies for the uncertainties of the pre-trained encoders. Cross-modal alignment,

41

Uncertainty Estimation

on the other hand, ensures that the estimated distribution parameters effectively
capture the inherent ambiguities and uncertainties both within individual modalities
and across modalities.

The intra-modal alignment problem can be addressed by designing modality-
specific components of ΩΦ that reconstruct the original unimodal embeddings.
This is achieved by assuming that the residuals are independent but not identically
distributed, and by learning the heteroscedasticity of these residuals during the
reconstruction process, allowing them to follow potentially heavy-tailed distribu-
tions. The modality-specific conditional distributions can be modeled in a similar
manner to Eq. 5.3, using generalized Gaussian distributions pZ|X (z; {z̃, α̃, β̃}).
These distributions are learned via maximum likelihood estimation based on the
modality-specific embeddings {z̄i}N

i=1. As a result, the modality-specific compo-
nents are trained by minimizing the same loss function as in Eq. 5.6, where the
embeddings {z̄i} are used to learn the distribution parameters. The corresponding
losses are denoted as LV

Intra(ΦV) and LT
Intra(ΦT) for the vision and text modalities,

respectively.
The cross-modal alignment problem can be tackled by ensuring that the vision

and text conditional distributions belonging to similar concepts are close to each
other. Given the embedding pairs {(z̄V

i , z̄T
i) := (ΨV(Ii),ΨT (Ci))}N

i=1, the modality-
specific conditional distributions pZ|I(z; {z̃V , α̃V , β̃V}) and pZ|C(z; {z̃T , α̃T , β̃T })
can be computed. The degree of alignment between the two distributions is
given by the likelihood p(zV = zT), where zV ∼ pZ|I(z; {z̃V , α̃V , β̃V}) and zT ∼
pZ|C(z; {z̃T , α̃T , β̃T }). This alignment is expressed as:

p(zV = zT) :=
ÚÚ

pZ|I(zV ; {z̃V , α̃V , β̃V})pZ|C(zT ; {z̃T , α̃T , β̃T })δ(zV − zT) dzVdzT

where δ(·) denotes the Dirac delta distribution.
Considering that the conditional distributions are generalized Gaussian distri-

butions, the random variable ∆z := zV − zT follows a distribution based on the
Bivariate Fox H-function, which does not yield an appropriate training function
for DNNs. To address this, Upadhyay et al. [65] proposed an approximation by
interpreting the integral as a convolution between two distributions:

p(zV = zT) ≈ 1
2

Ú
pZ|I(z; {z̃V , α̃V , β̃V})δ(z− z̃T) dz

+ 1
2

Ú
pZ|C(z; {z̃T , α̃T , β̃T })δ(z− z̃V) dz

= 1
2(pZ|I(z̃T ; {z̃V , α̃V , β̃V}) + pZ|C(z̃V ; {z̃T , α̃T , β̃T }))

To avoid biased estimation caused by using the reconstructions as the means of the
generalized Gaussians, during training, the modality-specific embeddings are used

42

Uncertainty Estimation

instead. This leads to the following negative log-likelihood term:

LCross(ΦV ,ΦT) := λ1|z̃V − z̄T |+ λ2

A |z̃V − z̄T |
α̃V

Bβ̃V

− log β̃V

α̃V + log Γ(1
β̃V

)


+ λ1|z̃T − z̄V |+ λ2

A |z̃T − z̄V |
α̃T

Bβ̃T

− log β̃T

α̃T + log Γ(1
β̃T

)


where the hyperparameters λ1 and λ2 function similarly to those in Eq. 5.6.
Finally, the overall loss function is expressed as:

L(Φ) = LV
Intra(ΦV) + LT

Intra(ΦT) + λCrossLCross(ΦV ,ΦT)

where λCross is a hyperparameter that controls the relative weight of the cross-modal
term compared to the intra-modality terms. A schematic overview of the entire
model is shown in Fig. 5.2.

The aleatoric uncertainty σ̃2
aleatoric can be derived from the modality-specific

components, as detailed in Eq. 5.5. Furthermore, if the DNNs corresponding to
ΩV and ΩT include dropout layers, activating dropout during inference allows for
the estimation of epistemic uncertainty σ̃2

epistemic. The epistemic uncertainty can
be computed over M forward passes as follows:

σ̃2
epistemic = 1

M

MØ
m=1

z̃m −
1
M

MØ
j=1

z̃j

2

(5.7)

The total uncertainty is then the sum of the aleatoric and epistemic uncertainties:

σ̃2
total = σ̃2

aleatoric + σ̃2
epistemic (5.8)

Finally, Upadhyay et al. [65] also demonstrated that the text conditional distri-
bution pZ|C, conditioned on a text embedding z̄T , can be sampled to generate new
embeddings. These embeddings can then be synthesized using a Latent Diffusion
Model to visualize the predicted distribution.

43

Uncertainty Estimation

Figure 5.2: ProbVLM architecture. Adapted from «ProbVLM: Probabilistic
Adapter for Frozen Vision-Language Models» [65].

44

Chapter 6

Experiments

6.1 Embedding Information Inspection

6.1.1 Inspection Framework
As outlined in Section 1.2, the primary aim of this thesis is to explore the information
encoded in the embeddings produced by Visual Place Recognition (VPR) models.
To achieve this, we propose leveraging Latent Diffusion Models (see Section 4.3.3),
where the conditioning space shown in Fig. 4.8 will be aligned with the output
space of a specific VPR model. For clarity, the same illustration is also presented
in Fig. 6.1, with the relevant modifications highlighted to support our goal.

Figure 6.1: Illustration of a LDM model conditioned on the output space of a
VPR model.

An image Ĩ is given as input to the VPR model f , producing as output an

45

Experiments

embedding vector ẽ = f
1
Ĩ
2
. The cross-attention mechanism enables this embed-

ding vector ẽ to guide the reverse process in the Diffusion Model, leading to the
generation of an image that reflects the information encoded in the output vector.
Formally, given M noise samples {zi

T}M
i=1 drawn from the prior p(zT) = N (zT ; 0, I),

i.e., zi
T ∼ p(zT) for all i = 1, 2, . . . ,M , the reverse process should generate {Î i}M

i=1
images that preserve the same information content as the VPR model has learned to
predict the location of image Ĩ. We hypothesize that the VPR model has captured
distinctive features, such as building facades, roads, intersections, relative spacing
of elements, and viewpoint, while disregarding transient features like vehicles and
occlusions, in order to identify the location depicted in an image. If this hypothesis
holds, these same distinctive elements should appear in the generated images.

6.1.2 Implementation Details
To implement the framework outlined in Section 6.1.1, we build upon the official
repository1 of Rombach et al. [42]. We trained several Latent Diffusion Models by
conditioning on the outputs from the VPR models listed in Table 6.1.

Method Backbone Embedding Dimension d

AP-GeM [14] ResNet-101 [68] 2048
CliqueMining [13] DINOv2 [22] (ViT-B/14 [69]) 8448

Conv-AP [25] ResNet-50 [68] 4096
CosPlace [52] ResNet-50 [68] 32
CosPlace [52] ResNet-50 [68] 64
CosPlace [52] ResNet-50 [68] 128
CosPlace [52] ResNet-50 [68] 512
CosPlace [52] ResNet-50 [68] 2048
CricaVPR [17] DINOv2 [22] (ViT-B/14 [69]) 10752

EigenPlaces [19] ResNet-50 [68] 128
EigenPlaces [19] ResNet-50 [68] 512
EigenPlaces [19] ResNet-50 [68] 2048

MixVPR [18] ResNet-50 [68] 4096
NetVLAD [15] VGG-16 [70] 4096
SALAD [51] DINOv2 [22] (ViT-B/14 [69]) 8448
SFRS [71] VGG-16 [70] 4096

Table 6.1: Visual Place Recognition models used for conditioning.

1https://github.com/CompVis/latent-diffusion/tree/main

46

https://github.com/CompVis/latent-diffusion/tree/main

Experiments

The training process is carried out using the SF-XL [52] dataset. We split the
dataset into training and validation sets based on the latitude of the images: images
with latitude 37.70 are assigned to the validation set, while all other images are
used for training the LDM models. The number of images in each set is detailed in
Table 6.2. We chose the SF-XL [52] dataset due to its large size, which enables

Set Latitude # Images
Training 37.71− 37.81 5,350,506

Validation 37.70 256,914

Table 6.2: Training and validation sets derived from the training split of the
SF-XL [52] dataset used for training LDM models.

the Diffusion Models to effectively learn the relationship between the VPR model’s
output space and the original images from which the embeddings are derived.
Additionally, by separating the data based on latitude, we can assess whether the
Diffusion Models can generalize to geographic regions that were not included in
the training data.

In detail, the training follows the procedure outlined in Section 4.3.3. A batch
of images, denoted as B, is used to compute the loss function in Eq. 4.10, while
conditioning on the embeddings E = f (B). We employed the AdamW optimizer [72]
and used the same LDM model architecture for all VPR models. The architectural
and training hyperparameters are listed in Table 6.3, where d corresponds to the
embedding dimension of the respective VPR model. The training process behaves
similarly across all VPR models, as shown in the plots in Appendix C.1. A closer
inspection of the curves reveals that models with larger embedding dimensions d
tend to have lower loss values at the end of training. This suggests that a larger
embedding size allows for more information to be encoded from the original image,
making it easier for the DM to generate images that are more faithful to the input
images.

6.1.3 Metrics
To evaluate the performance of Gen-AI models in computer vision, various metrics
have been introduced in recent years [38, 36, 35, 37, 73, 74]. In this work, we follow
the approach of Rombach et al. [42] and assess our models using three statistical
measures: FID [36], Precision, and Recall [37].

The Fréchet Inception Distance (FID) is a metric introduced by Heusel et al.
[36] in 2017 to address a limitation of the Inception Score [38], which does not
directly compare the statistics of real and generated data. FID uses the Inception
model [75, 76] to extract vision-relevant features from images. Assuming that the

47

Experiments

Hyperparameter Value
f 8

z-shape 32× 32× 4
T 1000

Loss Type L1
Noise Scheduler Linear

Channels 192
Channel Multiplier [1, 2, 2, 4, 4]

Attention Resolutions [32, 16, 8, 4]
Residual Blocks 2

Heads 8
Batch Size 96
Iterations 500k

Learning Rate 5× 10−5

Image Shape 256× 256× 3
Context Dimension dτ d

Table 6.3: Architectural and training hyperparameters for the LDM model (see
Section 4.3.1, Section 4.3.3, and «High-resolution image synthesis with latent
diffusion models» [42] for further details on notation and the meaning of the
architectural hyperparameters).

feature vectors from the real data distribution pdata(x) and the generated data
distribution pmodel(x) follow multidimensional Gaussians distributions, the FID
score is computed as follows:

d2((mdata,Cdata), (mmodel,Cmodel)) = ∥mdata −mmodel∥2
2

+ Tr(Cdata + Cmodel − 2(CdataCmodel)
1
2)

Here, (mdata,Cdata) and (mmodel,Cmodel) are the mean vector and covariance matrix
of the real and generated data distributions, respectively. A lower FID score
indicates that the generated data distribution is closer to the real data distribution,
meaning the model has learned to generate more realistic data. Thus, a smaller
FID value reflects better model performance.

In 2019, Kynkäänniemi et al. [37] demonstrated that the FID score conceals
an undesirable tradeoff between the quality and diversity of generated samples.
To address this issue, they proposed distinguishing between the two aspects by
explicitly modeling the manifolds of the data distribution, pdata(x), and the model
distribution, pmodel(x). This is achieved by using an intermediate model, g, to
extract feature vectors. Specifically, two sets are formed by sampling N samples

48

Experiments

from both pdata(x) and pmodel(x), and applying g to map these samples into a
d-dimensional space. That is, the sets are defined as:

Sdata = {g(x) | x ∼ pdata(x)}
Smodel = {g(x̂) | x̂ ∼ pmodel(x)}

where |Sdata| = |Smodel| = N . To approximate the manifold for each distribution,
they place each sample within a hypersphere defined by the k-nearest neighbor of
that sample. For this, they introduce two functions, κdata(·) and κmodel(·), which
return the k-th nearest neighbor of a given sample in Sdata and Smodel, respectively.
These functions lead to the following definitions:

πdata(g(x̂)) =
I

1 if ∃ g(x) ∈ Sdata : ∥g(x)− g(x̂)∥2 ≤ ∥g(x)− κdata(g(x))∥2
0 otherwise

πmodel(g(x)) =
I

1 if ∃ g(x̂) ∈ Smodel : ∥g(x̂)− g(x)∥2 ≤ ∥g(x̂)− κmodel(g(x̂))∥2
0 otherwise

These definitions allow Precision and Recall to be calculated as follows:

precision(Sdata,Smodel) = 1
N

Ø
g(x̂)∈Smodel

πdata(g(x̂))

recall(Sdata,Smodel) = 1
N

Ø
g(x)∈Sdata

πmodel(g(x))

From these equations, we observe that Precision quantifies the proportion of
generated data that lies within the real data manifold, whereas Recall measures the
proportion of real data that falls within the generated data manifold. Specifically,
if generated data are close to the real data distribution, this suggests high-quality
samples, and Precision serves as a measure of that quality. Conversely, if real data
points are captured within the generated data distribution, it indicates the model
can capture the full range of real data variations, meaning that Recall reflects
the diversity of the generated samples. In both cases, higher values correspond to
better model performance.

While Heusel et al. [36] defined g as an Inception model, Kynkäänniemi et al.
[37] suggested using a VGG-16 [70], based on the findings of Brock [77]. They
demonstrated that the feature space generated by the second fully connected layer of
VGG-16 produces meaningful nearest neighbors, representing semantically similar
images.

In our experiments, we utilize both the Inception model and VGG-16 to assess
whether the LDM models are trained correctly, aiming to obtain results comparable
to those reported by Rombach et al. [42] in their study. Moreover, since our primary
objective is to examine the information captured in the embeddings generated by

49

Experiments

the VPR models, we also propose evaluating the same metrics by setting g := f ,
i.e., using the VPR model that conditions the generation process. These metrics
will help us determine whether the real and generated data distributions align from
the perspective of the VPR model. Additionally, as we expect the information in
the generated images to closely match that of the real images used for conditioning,
we propose computing the L1 and L2 metrics as follows:

L1 := 1
N

Ø
(f(x),f(x̂))

∥f(x)− f(x̂)∥1

L2 := 1
N

Ø
(f(x),f(x̂))

∥f(x)− f(x̂)∥2

where in each pair (f(x), f(x̂)), the generated image x̂ is produced by conditioning
on the embedding f(x).

6.1.4 Quantitative Results
To quantitatively evaluate how both visual and fidelity metrics perform for our
trained Latent Diffusion Models, we use the model conditioned on the output space
of CosPlace [52] with embedding dimension d = 2048 as a baseline. This serves as
the reference for setting up the evaluation strategy for all other models.

In 2022, Ho et al. [39] introduced the Classifier-Free Guidance (CFG) technique
for Diffusion Models, which steers the generation process towards conditioning
information without requiring a classifier. This idea was later adopted by Rombach
et al. [42] for LDM models. Specifically, during sampling, the noise score estimate
is influenced not only by the conditioned score ϵΘ(zt, τΘ(y), t) but also by an
unconditional score ϵΘ(zt, t). This relationship is expressed as follows:

ϵ̃Θ(zt, τΘ(y), t) = ϵΘ(zt, t) + s · (ϵΘ(zt, τΘ(y), t)− ϵΘ(zt, t))

where s ∈ R+ is a positive scalar, known as the scale. By adjusting s, we can
balance the tradeoff between generating images that are highly faithful to the
conditioning information and those that are more creative and diverse while still
respecting the condition. In our case, the condition is defined as τΘ(y) := ẽ, i.e.,
the embedding vector produced by a Visual Place Recognition model. Thus, the
CFG formula becomes:

ϵ̃Θ(zt, ẽ, t) = ϵΘ(zt,0, t) + s · (ϵΘ(zt, ẽ, t)− ϵΘ(zt,0, t))

where 0 denotes the null vector, representing the absence of conditioning information.
We analyze the effect of this scaling parameter in detail to optimize the fidelity
of the generated images with respect to the conditioning information. To do this,

50

Experiments

we compute all relevant metrics by selecting s ∈ {1, 1.5, 2, 3, 5, 10} and varying the
number of generated images N ∈ {1k, 2k, 3.5k, 7k, 14k, 25k, 50k, 75k}. This allows
us to assess whether the resulting trends align with those observed by Kynkäänniemi
et al. [37]. Additionally, we fix the number of steps S in the accelerated image
generation process outlined in Section 4.3.2 to S = 250. Further details on this
choice can be found in Section 6.1.6.

In Table 6.4, we provide the full set of metric values, while the corresponding
curves are presented in Fig. 6.2–6.4. To improve readability and better fit the
page, all plots use a logarithmic scale on the x-axis. Additionally, the FID, and
occasionally the L1 and L2 metrics, have been normalized by dividing by their
respective maximum values, ensuring that all metrics fall within the range [0, 1].
The legend displays the actual maximum and minimum values for reference.

As observed, the visual metrics largely follow the trends reported by Kynkään-
niemi et al. [37] as we vary the number of generated images. Specifically, the FID
continues to improve with a larger number of images (lower values are better),
while Precision and Recall deteriorate (higher values are better), with all metrics
stabilizing at higher values. The same pattern holds for Precision and Recall in
fidelity metrics. The L1 and L2 metrics, however, stabilize at 14k images, meaning
that increasing the number of images beyond this point no longer significantly
impacts their values.

Regarding the scaling parameter s used for CFG [39], increasing its value
significantly impacts the visual metrics, leading to worse performance. In contrast,
modestly higher values enhance the fidelity metrics, with the best performance
across all image counts observed at s = 2. However, further increasing the value
causes performance to degrade, ultimately resulting in worse performance than the
s = 1 case (i.e., without Classifier-Free Guidance [39]) at s = 10.

Based on these trends and following the common practice of reporting visual
metrics at 50k images, we set the number of images to N = 50k for evaluating both
visual and fidelity metrics in the remaining models in Appendix C.2. Additionally,
for the rest of the thesis, we fix the scale parameter at s = 2, as it provides the best
performance for our primary goal of explaining the output embeddings of Visual
Place Recognition models with respect to fidelity metrics.

51

Experiments

Table 6.4: Visual and fidelity metrics for the LDM conditioned on CosPlace’s
output space [52] with d = 2048, while varying the scale parameter s for CFG [39]
and the number of images N . Metrics labeled with ↑ indicate better performance
when higher, and those labeled with ↓ are better when lower. For brevity, ‘P’ stands
for Precision and ‘R’ for Recall. The number of steps in the accelerated generation
process is fixed at S = 250. The row representing the common evaluation practice
is highlighted , with the chosen scale s indicated in a distinct color .

VGG-16 InceptionV3 CosPlace (d = 2048)
N s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1k

1 212.18 0.81 0.75 30.49 0.70 0.80 1.00 1.00 31.18 0.86
1.5 259.43 0.75 0.77 31.98 0.70 0.81 1.00 0.99 28.93 0.80
2 357.71 0.66 0.82 35.85 0.68 0.79 1.00 0.99 28.64 0.79
3 587.65 0.46 0.81 44.71 0.57 0.77 1.00 0.99 29.08 0.80
5 974.46 0.24 0.77 58.96 0.38 0.71 0.99 0.99 30.10 0.83
10 1485.11 0.12 0.66 79.67 0.21 0.58 0.99 0.99 31.46 0.87

2k

1 140.58 0.75 0.71 18.22 0.70 0.77 0.99 1.00 30.97 0.86
1.5 187.49 0.70 0.75 20.16 0.69 0.78 0.99 1.00 28.80 0.80
2 289.79 0.59 0.77 24.84 0.63 0.76 1.00 1.00 28.58 0.79
3 518.67 0.39 0.77 33.46 0.49 0.73 1.00 1.00 29.15 0.81
5 885.57 0.20 0.70 47.00 0.34 0.65 0.99 1.00 30.30 0.84
10 1406.66 0.09 0.61 66.85 0.18 0.55 0.99 0.97 31.59 0.87

3.5k

1 107.23 0.73 0.69 12.50 0.67 0.72 0.99 1.00 30.95 0.86
1.5 154.99 0.67 0.77 14.71 0.66 0.74 0.99 1.00 28.73 0.80
2 251.99 0.56 0.77 18.75 0.60 0.74 0.99 1.00 28.50 0.79
3 467.87 0.37 0.76 27.19 0.47 0.67 0.99 1.00 29.08 0.80
5 836.84 0.18 0.68 41.24 0.30 0.57 0.98 0.98 30.27 0.84
10 1349.77 0.09 0.59 60.03 0.16 0.48 0.98 0.96 31.61 0.87

7k

1 78.34 0.70 0.68 8.29 0.64 0.70 0.96 1.00 31.02 0.86
1.5 125.53 0.63 0.73 10.36 0.62 0.71 0.97 1.00 28.79 0.80
2 226.07 0.50 0.73 14.51 0.55 0.69 0.97 1.00 28.52 0.79
3 443.32 0.31 0.70 23.02 0.42 0.63 0.97 1.00 29.10 0.81
5 809.48 0.14 0.64 36.52 0.27 0.53 0.96 0.96 30.27 0.84
10 1334.58 0.05 0.52 55.58 0.13 0.42 0.93 0.93 31.64 0.88

14k

1 69.19 0.67 0.65 6.33 0.59 0.68 0.89 1.00 30.97 0.86
1.5 113.63 0.59 0.70 8.30 0.57 0.69 0.92 1.00 28.78 0.80
2 212.15 0.47 0.71 12.31 0.50 0.66 0.93 0.99 28.54 0.79
3 430.48 0.28 0.67 20.78 0.37 0.60 0.91 0.97 29.09 0.81
5 807.14 0.12 0.60 34.45 0.22 0.49 0.89 0.94 30.27 0.84
10 1330.50 0.04 0.49 53.18 0.11 0.38 0.85 0.87 31.67 0.88

25k

1 63.68 0.62 0.64 5.40 0.56 0.66 0.78 0.99 30.96 0.86
1.5 106.34 0.54 0.69 7.43 0.53 0.67 0.84 0.99 28.77 0.80
2 203.27 0.42 0.69 11.45 0.46 0.64 0.85 0.98 28.53 0.79
3 422.05 0.23 0.65 19.90 0.33 0.57 0.83 0.95 29.09 0.81

Continued on next page

52

Experiments

Continued from previous page
VGG-16 InceptionV3 CosPlace (d = 2048)

N s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

5 799.25 0.10 0.56 33.28 0.19 0.47 0.80 0.89 30.26 0.84
10 1326.81 0.03 0.46 52.00 0.09 0.36 0.75 0.81 31.66 0.88

50k

1 59.58 0.56 0.63 4.88 0.49 0.64 0.57 0.99 30.98 0.86
1.5 103.11 0.48 0.67 6.94 0.47 0.64 0.67 0.98 28.78 0.80
2 201.32 0.36 0.66 11.01 0.39 0.60 0.68 0.96 28.54 0.79
3 420.28 0.20 0.62 19.41 0.27 0.52 0.65 0.90 29.10 0.81
5 793.25 0.07 0.54 32.87 0.15 0.41 0.60 0.80 30.27 0.84
10 1327.46 0.02 0.41 51.53 0.06 0.32 0.54 0.69 31.67 0.88

75k 1 57.64 0.53 0.63 4.64 0.45 0.63 0.43 0.99 30.96 0.86

6.1.5 Fidelity to Conditioning Information

To better assess how accurately the generated images reflect the conditioning
information, we compare the L1 and L2 metrics in Table 6.4 with the same metrics
calculated for the CosPlace [52] classes in the validation set of Table 6.2. For
this comparison, we use the official repository2 from Berton et al. [52], which
provides code to generate the classes. In this context, classes are defined with strict
constraints: two images belong to the same class if they were taken within 10 meters
of each other and point in the same direction, with a heading difference (orientation)
of no more than 30 degrees. For each class, we compute the L1 and L2 metrics by
considering all possible pairwise distances between the image embeddings.

After filtering out classes with fewer than 10 images, we are left with 1842 classes
in total. The metrics for each class are computed and summarized in Table 6.5,
alongside the L1 and L2 metrics for our Latent Diffusion Model model.

As shown in the table, both scale values s = 1 and s = 2 achieve L1 and L2
metrics that are below the mean value of all classes. Notably, the case with s = 2
results in a substantial improvement, pushing the metrics toward the minimum
value of the classes and even falling outside the standard deviation range.

This further highlights that our Latent Diffusion Model model has effectively
learned to generate images that preserve the same informational content as the
conditioning embeddings, emphasizing the model’s ability to faithfully replicate
and maintain crucial details from the conditioning input.

2https://github.com/gmberton/CosPlace

53

https://github.com/gmberton/CosPlace

Experiments

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 212.18, Min: 57.64)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 1.5) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 259.43, Min: 103.11)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 357.71, Min: 201.32)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 3) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 587.65, Min: 420.28)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 5) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 974.46, Min: 793.25)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 10) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 1485.11, Min: 1326.81)

Figure 6.2: Plots of visual metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, using VGG-16, while varying the scale parameter s for
CFG [39]. The number of steps in the accelerated generation process is fixed at
S = 250.

6.1.6 Qualitative Results

In Section 6.1.4, the Latent Diffusion Model conditioned on CosPlace [52] with an
embedding dimension of d = 2048 was used as a baseline to guide the evaluation

54

Experiments

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0
M

e
tr

ic
V

a
lu

e
InceptionV3 Metrics (s = 1) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 30.49, Min: 4.64)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1.5) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 31.98, Min: 6.94)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 35.85, Min: 11.01)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 3) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 44.71, Min: 19.41)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 5) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 58.96, Min: 32.87)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 10) - CosPlace ResNet50 2048

Precision

Recall

F-score

FID (Max: 79.67, Min: 51.53)

Figure 6.3: Plots of visual metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, using InceptionV3, while varying the scale parameter s
for CFG [39]. The number of steps in the accelerated generation process is fixed at
S = 250.

strategy for the other models. In this section, we also use this model to select
hyperparameters that influence the DM reverse process, which contribute to the
qualitative results.

The relevant hyperparameters in this context are η, which controls the level of

55

Experiments

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VPR Metrics (s = 1) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 31.18, Min: 30.95)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1.5) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 28.93, Min: 28.73)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 28.64, Min: 28.50)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 3) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 29.15, Min: 29.08)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 5) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 30.30, Min: 30.10)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 10) - CosPlace ResNet50 2048

Precision

Recall

F-score

L1 (Max: 31.67, Min: 31.46)

L2

Figure 6.4: Plots of fidelity metrics for LDM conditioned on CosPlace’s output
space [52] with d = 2048, while varying the scale parameter s for CFG [39]. The
number of steps in the accelerated generation process is fixed at S = 250.

stochasticity in the reverse process, and S, which determines the number of steps
in the accelerated reverse process (see Section 4.3.2 for more details). To set these
values, we propose the grid search outlined in Table 6.6.

In Fig. 6.5–6.6, we compare five generated images for each pair of values from
the rows of Table 6.6, conditioned on the embedding of the leftmost real image,

56

Experiments

Statistic L1 L2

Maximum value 46.90 1.30
Minimum value 21.11 0.58

Mean value 33.54 0.93
Standard Deviation 4.57 0.13
s = 1 CFG [39] 30.97 0.86
s = 2 CFG [39] 28.54 0.79

Table 6.5: Summary of L1 and L2 metrics for CosPlace [52] classes in the validation
set of Table 6.2. The second half of the table reports the metrics for our LDM
model, with scale parameter s ∈ {1, 2} for CFG [39].

S η

200 0.0
200 1.0
250 0.0
250 1.0
500 0.0
500 1.0
1000 1.0

Table 6.6: Grid search for the number of steps S in the accelerated generation
process and the hyperparameter η controlling the level of stochasticity.

which is randomly selected from the queries in the SF-XL [52] validation set3.
As observed, increasing the number of steps S does not significantly affect

the visual appearance of the generated images. However, using η = 1 produces
slightly more aesthetically pleasing results. It is important to note that, for
evaluating the information content, η = 1 introduces noise at each step of the
reverse process, while in the case of η = 0, the noise is limited to the initial random
noise zT ∼ p(zT) = N (zT ; 0, I) (see Section 4.3.2).

Based on these observations, we choose to fix η = 0 throughout this thesis
to control the level of stochasticity. The number of steps S is determined with
computational considerations in mind, especially considering that Rombach et al.
[42] found diminishing improvements in image quality for values of S > 250. We
choose S = 250 as a balanced option, as it allows us to achieve all results within a

3For improved visualization, please consider zooming in on the images.

57

Experiments

reasonable time frame.

S = 200
η = 0.0

S = 200
η = 1.0

S = 250
η = 0.0

S = 250
η = 1.0

S = 500
η = 0.0

S = 500
η = 1.0

S = 1000
η = 1.0

Figure 6.5: Figure 1 showing five generated images conditioned on a query
from the SF-XL [52] validation split (shown in the first column). The images are
generated by varying the number of steps S in the accelerated reverse process and
the hyperparameter η, which controls the level of stochasticity. The specific values
used to generate each image set are indicated on the left of each corresponding set.

58

Experiments

S = 200
η = 0.0

S = 200
η = 1.0

S = 250
η = 0.0

S = 250
η = 1.0

S = 500
η = 0.0

S = 500
η = 1.0

S = 1000
η = 1.0

Figure 6.6: Figure 2 showing five generated images conditioned on a query
from the SF-XL [52] validation split (shown in the first column). The images are
generated by varying the number of steps S in the accelerated reverse process and
the hyperparameter η, which controls the level of stochasticity. The specific values
used to generate each image set are indicated on the left of each corresponding set.

59

Experiments

6.2 Prediction Uncertainty

6.2.1 Uncertainty Framework
In Section 1.2, we outlined the second objective of this thesis: enhancing the
robustness of pre-trained Visual Place Recognition models by incorporating uncer-
tainty scores during inference. To achieve this, in Section 5.1 and Section 5.2, we
introduced two post-hoc techniques proposed by Upadhyay et al. [58, 65]. Building
upon their work, we propose a training technique tailored to our specific task.

Figure 6.7: Illustration of the viewpoint invariance property for Visual Place
Recognition models.

An effective VPR model f is expected to extract embedding vectors ei = f (Ii)
from images Ii that are viewpoint invariant, meaning that images of the same
place taken from different viewpoints should result in highly similar embedding
vectors. This concept is visually depicted in Fig. 6.7. However, even models
designed with viewpoint invariance in mind may not always satisfy this condition.
For instance, when occlusions occur and landmarks become obstructed, the Visual
Place Recognition model might produce embedding vectors that are far apart from
one another. Such situations often arise in real-world environments, particularly in
crowded areas such as urban settings. In these cases, the VPR model’s predictions

60

Experiments

may be negatively affected, highlighting the need for an uncertainty estimate to
make more informed decisions.

Given the absence of ground-truth labels for our task, we propose leveraging
the viewpoint invariance property by training BayesCap [58] on top of pre-trained
VPR models. To do this, we reformulate the loss function from Eq. 5.6 as follows:

LBC = λ1

NØ
i=1

---ỹi − e(1)
i

---+ λ2

NØ
i=1


---ỹi − e(2)

i

α̃i

β̃i

− log β̃i

α̃i

+ log Γ(1
β̃i

)

where e(1)
i and e(2)

i are embedding vectors extracted from images of the same
location but taken from different viewpoints, and ỹi represents the reconstruction
of the embedding e(1)

i .
Additionally, inspired by the cross-modal alignment of ProbVLM [65], discussed

in Section 5.2, we propose further training BayesCap [58] by imposing a form of
cycle consistency between reconstructions ỹ(1)

i and ỹ(2)
i generated from embedding

vectors e(1)
i and e(2)

i , respectively. This leads to the following loss function, resulting
in the model we term BayesCapCycle:

LBCC = λ1

2

NØ
i=1

---ỹ(1)
i − e(1)

i

---+ λ2

2

NØ
i=1


---ỹ(1)

i − e(2)
i

α̃

(1)
i

β̃
(1)
i

− log β̃
(1)
i

α̃
(1)
i

+ log Γ(1
β̃

(1)
i

)

+ λ1

2

NØ
i=1

---ỹ(2)
i − e(2)

i

---+ λ2

2

NØ
i=1


---ỹ(2)

i − e(1)
i

α̃

(2)
i

β̃
(2)
i

− log β̃
(2)
i

α̃
(2)
i

+ log Γ(1
β̃

(2)
i

)

By considering both embedding vectors, e(1)
i and e(2)

i , we expect the model to
converge more quickly, yielding improved results with fewer training epochs. This
aspect is explored in more detail in Section 6.2.5.

6.2.2 Implementation Details
To apply the training strategies outlined in Section 6.2.1, we utilize the EigenPlaces
[19] dataset, employing the same latitude-based split described in Section 6.1.2.
To ensure that images correspond to the same location, we use panoramas. The
number of panoramas in both the training and validation sets is presented in
Table 6.7.

For BayesCap [58], we fix the architecture to a 3-layer MLP with ReLU acti-
vations in the first two layers and dropout applied only in the second layer. The
architectural and training hyperparameters are detailed in Table 6.8, where d
represents the embedding dimension of the upstream VPR model.

61

Experiments

Set Latitude # Panoramas
Training 37.71− 37.81 3,267,427

Validation 37.70 163,665

Table 6.7: Training and validation sets derived from the training split of the
EigenPlaces [19] dataset used for training BayesCap [58] models.

Hyperparameter Value
Input Dimension d

1-st layer output dimension d/2
2-nd layer output dimension d/2
3-rd layer output dimension d

Activation Function ReLU
Dropout Probability 0.1

λ1 1.0
λ2 10−4

Batch Size 96
Iterations per epoch 5k

Learning Rate 10−4

Table 6.8: Architectural and training hyperparameters for BayesCap [58].

6.2.3 From Per-Feature to Instance Level Uncertainty

BayesCap models [58] are capable of modeling both aleatoric and epistemic un-
certainties, as defined in Eq. 5.5 and Eq. 5.7, respectively. These uncertainties
are then summed to compute the total uncertainty, as shown in Eq. 5.8. However,
these uncertainties are computed at feature level, so they must be aggregated to
derive a single uncertainty score for the embedding eq = f (Iq), obtained from the
query image Iq.

Let [·]i denote the function that extracts the i-th component of its argument.
Each feature’s uncertainty score [σ̃2

q]i for the query Iq has its own range of vari-
ation. This means the ranges of [σ̃2

q]i and [σ̃2
q]j, for i /= j, may be disjoint and

significantly different. Consequently, using a simple arithmetic mean to aggregate
the uncertainties would be inappropriate.

To address this variability, the geometric mean is used instead, as it prevents
disproportionately weighting features with larger uncertainty scores. Therefore, for

62

Experiments

the remainder of the thesis, the uncertainty uq for query Iq is computed as follows:

uq =
A

dÙ
i=1

[σ̃2
q]i
B 1

d

where d is the dimensionality of embedding vector eq.

6.2.4 Metrics
To evaluate the quality of uncertainty estimates produced by trained BayesCap
[58] models, we use the same metrics as Upadhyay et al. [65]: Spearman’s rank
correlation coefficient (S) and the coefficient of determination (R2). Additionally,
we include the Area Under the Sparsification Curve (AUSC), as introduced by
Warburg et al. [66].

To compute these metrics, we first calculate the uncertainty scores uq for all
queries Iq in a dataset. We then apply an adaptive binning strategy to ensure
each bin Bi contains an adequate number of samples (i.e., not too few) and has a
sufficiently wide range (i.e., not too narrow). Once M bins are created, we compute
the mean uncertainty score (ūi) and mean Recall@1 (r̄i) for each bin. After ranking
the data, ensuring that both mean values become ordinal and fall within the same
range, we calculate both S and R2. From here on, we will refer to the ranked mean
uncertainty scores as “uncertainty levels”.

The Spearman’s rank correlation coefficient S ∈ [−1, 1] measures the monotonic
relationship between uncertainty levels and ranked mean Recall@1. Since we
expect that higher uncertainty levels correspond to lower mean Recall@1, the ideal
relationship is a strictly decreasing monotonic one, which would yield S = −1.

The coefficient of determinationR2 ∈ [−∞, 1] evaluates the regression fit between
uncertainty levels and ranked mean Recall@1, allowing us to assess if the decline
in performance follows a linear trend. The more linear the trend, the higher the
score, with the ideal value being R2 = 1.

Finally, the sparsification curve is generated by iteratively removing queries with
the highest uncertainty scores and recalculating the Recall@1 on the remaining
samples. The curve should increase monotonically, and the area under the curve,
AUSC, provides a way to compare different models.

6.2.5 Quantitative Results
For the quantitative evaluation using the metrics outlined in Section 6.2.4, we
focus on BayesCap [58] models trained on top of CosPlace [52] with embedding
dimension d = 2048, consistent with the baseline used in Sections 6.1.4–6.1.6.

In total, we trained three BayesCap [58] models: one corresponding to BayesCap-
Cycle, which was trained using the loss function LBCC, and two others trained

63

Experiments

using the loss function LBC. A summary of these trained models is provided in
Table 6.9, and their training curves are available in Appendix C.3.

Method Loss Function VPR Model d # Epochs
BayesCap [58] LBC CosPlace [52] 2048 30
BayesCap [58] LBC CosPlace [52] 2048 50
BayesCapCycle LBCC CosPlace [52] 2048 30

Table 6.9: Summary of trained BayesCap [58] models.

The adaptive binning strategy mentioned in Section 6.2.4 aims to balance the
minimum number of samples and the minimum bin width for each bin Bi, while
also considering constraints on the number of bins M , including both minimum
and maximum limits. Starting with an initial set of bins with equal width, where
the bin edges are determined by combining the constraints on minimum width,
maximum number of bins, and minimum number of bins, the algorithm iteratively
merges adjacent bins (i.e., Bi, Bj such that |i − j| ≤ 1) until all bins meet the
minimum sample size requirement or a maximum number of merge attempts is
reached. The full Python code for this strategy is provided in Appendix C.4.

We evaluate all three models on the validation sets of Pittsburgh-30k (Pitts30k)
[15], SF-XL [52], and MSLS [78]. The corresponding results are shown in Fig. 6.8,
Fig. 6.9, and Fig. 6.10. We present both calibration plots, illustrating how the mean
Recall@1 varies with increasing uncertainty levels, and sparsification curves, where
the x-axis represents the percentage of queries removed and the y-axis represents
Recall@1 computed on the remaining queries.

Since the calibration plot depends on the adaptive binning strategy, which varies
the number of uncertainty levels and bin widths across models, it is not a fair
comparison metric. As such, we focus primarily on the sparsification curves for
model comparison.

On the Pitts30k [15] validation set, all models exhibit a monotonically increasing
sparsification curve. BayesCapCycle and the BayesCap [58] model trained for
50 epochs show nearly identical curves, with the latter achieving a higher AUSC
value. The BayesCap [58] model trained for 30 epochs struggles to follow the same
trend, as seen by the curve not reaching a Recall@1 of 0.98. The similarity in the
curves between BayesCapCycle and the 50-epoch BayesCap [58] model supports
our hypothesis that using the LBCC loss function leads to better results with fewer
training epochs.

Results on the SF-XL [52] validation set are harder to interpret, as all models
perform poorly. This may be due to CosPlace [52] being specifically trained on
SF-XL [52], making it harder to distinguish between certain and uncertain queries.
Nevertheless, BayesCapCycle and the BayesCap [58] model trained for 50 epochs

64

Experiments

show similar trends.
The trend shifts on the more challenging MSLS [78] validation set, where

the BayesCap [58] model trained for 50 epochs delivers the best performance.
However, as with the previous validation sets, BayesCapCycle demonstrates a
better sparsification curve than the BayesCap [58] model with the same number of
epochs.

Overall, the results suggest that BayesCapCycle offers a good trade-off be-
tween performance and computational efficiency, as it delivers strong results even
with fewer epochs compared to BayesCap [58], making it a suitable choice when
computational resources are limited.

Additionally, further plots showing how the uncertainties calculated by all models
distribute according to Recall@1 are available in Appendix C.5.

65

Experiments

BayesCapCycle
30 epochs

1 2 3 4 5 6 7
Uncertainty level

0.825

0.850

0.875

0.900

0.925

0.950

R
e
ca

ll
@

1
S = −1.00, R2 = 1.00, −SR2 = 1.00

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy

AUSC = 0.92

Sparsification Curve

BayesCap
30 epochs

1 2 3 4 5 6 7
Uncertainty level

0.80

0.85

0.90

0.95

R
e
ca

ll
@

1

S = −1.00, R2 = 1.00, −SR2 = 1.00

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.90

0.92

0.94

0.96
A

cc
u

ra
cy

AUSC = 0.92

Sparsification Curve

BayesCap
50 epochs

1 2 3 4 5 6 7
Uncertainty level

0.85

0.90

0.95

R
e
ca

ll
@

1

S = −1.00, R2 = 1.00, −SR2 = 1.00

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy

AUSC = 0.93

Sparsification Curve

Figure 6.8: Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the Pitts30k [15] validation set.

66

Experiments

BayesCapCycle
30 epochs

1 2 3 4 5 6 7
Uncertainty level

0.92

0.93

0.94

0.95

0.96

R
e
ca

ll
@

1
S = −0.68, R2 = 0.36, −SR2 = 0.24

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.930

0.935

0.940

0.945

0.950

0.955

A
cc

u
ra

cy

AUSC = 0.94

Sparsification Curve

BayesCap
30 epochs

1 2 3 4 5 6 7
Uncertainty level

0.92

0.93

0.94

0.95

R
e
ca

ll
@

1

S = −0.79, R2 = 0.57, −SR2 = 0.45

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.940

0.945

0.950

0.955

A
cc

u
ra

cy

AUSC = 0.94

Sparsification Curve

BayesCap
50 epochs

1 2 3 4 5 6 7
Uncertainty level

0.92

0.93

0.94

0.95

0.96

R
e
ca

ll
@

1

S = −0.79, R2 = 0.57, −SR2 = 0.45

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.935

0.940

0.945

0.950

0.955

A
cc

u
ra

cy

AUSC = 0.94

Sparsification Curve

Figure 6.9: Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the SF-XL [52] validation set.

67

Experiments

BayesCapCycle
30 epochs

1 2 3 4 5 6
Uncertainty level

0.725

0.750

0.775

0.800

0.825

0.850

R
e
ca

ll
@

1
S = −0.83, R2 = 0.66, −SR2 = 0.54

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.83

0.84

0.85

0.86

0.87

A
cc

u
ra

cy

AUSC = 0.84

Sparsification Curve

BayesCap
30 epochs

1 2 3 4 5 6 7
Uncertainty level

0.75

0.80

0.85

R
e
ca

ll
@

1

S = −0.96, R2 = 0.93, −SR2 = 0.90

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.83

0.84

0.85

0.86

0.87

A
cc

u
ra

cy

AUSC = 0.84

Sparsification Curve

BayesCap
50 epochs

1 2 3 4 5 6
Uncertainty level

0.70

0.75

0.80

0.85

R
e
ca

ll
@

1

S = −0.94, R2 = 0.89, −SR2 = 0.84

Calibration Plot

0 20 40 60 80 100

Filter Out Rate (%)

0.83

0.84

0.85

0.86

0.87

0.88

A
cc

u
ra

cy

AUSC = 0.85

Sparsification Curve

Figure 6.10: Calibration plots and sparsification curves for all trained BayesCap
[58] models, computed on the MSLS [78] validation set.

68

Chapter 7

Conclusions and Future
Work

7.1 Conclusions
In this thesis, two research gaps about the Visual Place Recognition (VPR) task
have been explored. In the following, the primary findings and limitations associated
with the methodologies employed are summarized.

7.1.1 Findings
The first research question addresses the type of information retained in image
embeddings produced by VPR models. This was examined by utilizing Latent
Diffusion Models, conditioned on the outputs of VPR models. The experiments
demonstrated that these Generative Artificial Intelligence (Gen-AI) models effec-
tively capture the relationships between original images, in pixel space, and the
embeddings, in the VPR model’s output space. As shown numerically in Sec-
tion 6.1.5 and Appendix C.2, these Gen-AI models can generate synthetic images
that retain the informational content of the conditioning embeddings. Notably,
generating multiple images based on the same embedding reveals that consistent
features of real images preserved in the embeddings appear across all generated
images. Meanwhile, varying or transient elements not represented in the embed-
dings are introduced solely by the LDM’s reverse process. This capability enhances
the interpretability of VPR models, making their output space more transparent.
Insights into the output space can be gained by sampling and visualizing hypothet-
ical embeddings. A practical application of this is the interpretation of centroids
generated by clustering methods, which might not correspond to real images in a
dataset (e.g., no matching image exists). Additionally, CAV [79] directions can be

69

Conclusions and Future Work

interpreted, enabling speculation about the features that are likely to emerge as we
progress along a specific direction in the output space. Moreover, comparing the
outputs of different VPR models for the same original image allows for examining
the varying information preserved by each model and which aspects of the original
image they emphasize. Lastly, cross-model translations are possible, as embeddings
sampled in one VPR model’s output space can be synthesized and projected onto
another VPR model’s output space.

The second research question, focusing on how to produce uncertainty esti-
mates for the deterministic predictions of VPR models, was tackled by proposing
adapted and novel training strategies for BayesCap [58], an existing post-hoc un-
certainty estimation technique in the current literature. The results, as presented
in Section 6.2.5, indicate that these uncertainty scores enhance the robustness
and reliability of pre-trained Visual Place Recognition models during inference.
However, there is still significant room for improvements.

7.1.2 Limitations
The main limitations of the methodologies in this thesis stem from the interpretabil-
ity framework that relies on Latent Diffusion Models. These models are highly
computationally intensive, both during training and inference. For example, train-
ing a model from scratch on an NVIDIA A100 GPU takes over 7 days, which makes
it impractical in many scenarios. Additionally, the success of the interpretability
framework depends on the LDM model’s ability to learn the relationships between
image embeddings and their corresponding original images. If the LDM model fails
in this task, the embeddings cannot be effectively interpreted. Furthermore, to
fully understand the information within the image embeddings, multiple images
must be generated, which increases inference time. However, preliminary experi-
ments indicate that generating between 7 and 9 images is typically sufficient, also
considering that generating too many images can make analysis challenging for
humans.

The uncertainty estimation framework also has its limitations, as demonstrated
in Appendix C.5, where the uncertainty distributions do not clearly differentiate
between correctly and incorrectly matched queries. This suggests potential failures
in uncertainty estimation, where a query that is ultimately mispredicted by the
VPR model may have a low uncertainty score, preventing the error from being
effectively identified and mitigated during production.

7.2 Future Work
The interpretability framework presented in this thesis opens up several potential
real-world applications and avenues for further research. First, by examining the

70

Conclusions and Future Work

information embedded in image embeddings, insights into the failure modes of
Visual Place Recognition models can be gained. This could enable the refinement
of training strategies and the design of improved model architectures. Advanced
clustering techniques can be used to explore fine-grained features captured in
the embeddings, enhancing the interpretability of VPR models’ output spaces.
Additionally, investigating the transferability of embeddings across different VPR
models could lead to better generalization across diverse domains and datasets, or
facilitate the effective integration of multiple models. Generating images in less
densely populated regions of the output space could boost model performance by
fine-tuning the model on these synthetic images or even enable the creation of new
synthetic VPR datasets. Moreover, this framework is not limited to the VPR task
and can be applied to any model that outputs an embedding vector. For instance,
Concept Bottleneck Models [80] and Concept Embedding Models [81] could benefit
from this interpretability tool, helping to understand how concept intervention
translates into pixel space, ensuring that activating or modulating a concept has
the intended effect. Furthermore, Latent Diffusion Models trained on different data
distributions but conditioned on the same model can facilitate the translation of
embeddings across domains, such as in style transfer.

The uncertainty estimation framework warrants further investigation to improve
the separation between correct and incorrect queries. One way to achieve this is by
incorporating regularization terms into the loss function during training, ensuring
that incorrect queries are associated with higher uncertainty scores. Another
approach could involve designing a new loss function that aggregates multiple
desired properties of VPR models, where queries that satisfy all properties are
assigned low uncertainty scores, while those that meet fewer constraints are assigned
progressively larger uncertainty values.

71

Appendix A

Variational Lower Bound

A.1 Kullback-Leibler divergence non-negativity
To prove the non-negativity of the KL divergence DKL (P || Q) between distribu-
tions P and Q, we must show that log x ≤ x− 1 ∀x ≥ 0.

The function log x is concave, meaning it is always bounded above by its first-
order Taylor expansion. Specifically, we can use the following approximation at a
point x0:

log x ≤ log x0 + (x− x0)
d

dx
log x

x=x0

= log x0 + x− x0

x0

If we choose x0 = 1, this gives:

log x ≤ log 1 + x− 1
1 = x− 1

Thus, we have log x ≤ x− 1, , which is the required inequality.
Now, applying this to the KL divergence, we proceed as follows:

−DKL (P || Q) = −
Ú
P (x) log P (x)

Q(x) dx =
Ú
P (x) log Q(x)

P (x) dx

≤
Ú
P (x)

A
Q(x)
P (x) − 1

B
dx = −

Ú
P (x) dx+

Ú
Q(x) dx

= −1 + 1 = 0

Thus, DKL (P || Q) ≥ 0, proving that the KL divergence is always non-negative.

72

Appendix B

Probability Distributions

B.1 Heavy-tailed distribution
Let X be a random variable. The tail distribution function is defined as follows:

F̄ (x) = Pr [X > x]

Here, Pr [X > x] represents the probability that the random variable X takes values
greater than x. The distribution of X is classified as a heavy-tailed distribution if
the tail distribution function F̄ (x) decays polynomially as x increases, specifically:

lim
x→∞

etxF̄ (x) =∞, ∀t > 0

In simpler terms, this implies that there is a significant probability of observing
very large values of X.

73

Appendix C

Experimental Details and
Additional Results

C.1 LDM training curves
In this section, we present the training curves (Fig. C.1–C.16) of the Latent Diffusion
Models, following the process outlined in Section 6.1.2. Each training runs for 100
epochs, with one epoch consisting of 5,000 iterations and a batch size of 96. The
plots are organized by the Visual Place Recognition models specified in Table 6.1.

74

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - APGeM Resnet101 2048

Train Loss

Validation Loss

Figure C.1: Training plot of the Latent Diffusion Model conditioned on the
output space of AP-GeM [14].

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - Clique-Mining-eval 8448

Train Loss

Validation Loss

Figure C.2: Training plot of the Latent Diffusion Model conditioned on the
output space of CliqueMining [13].

75

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - ConvAP 4096

Train Loss

Validation Loss

Figure C.3: Training plot of the Latent Diffusion Model conditioned on the
output space of Conv-AP [25].

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CosPlace ResNet50 32

Train Loss

Validation Loss

Figure C.4: Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 32.

76

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CosPlace ResNet50 64

Train Loss

Validation Loss

Figure C.5: Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 64.

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CosPlace ResNet50 128

Train Loss

Validation Loss

Figure C.6: Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 128.

77

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CosPlace ResNet50 512

Train Loss

Validation Loss

Figure C.7: Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 512.

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CosPlace ResNet50 2048

Train Loss

Validation Loss

Figure C.8: Training plot of the Latent Diffusion Model conditioned on the
output space of CosPlace [52] with d = 2048.

78

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - CricaVPR 10752

Train Loss

Validation Loss

Figure C.9: Training plot of the Latent Diffusion Model conditioned on the
output space of CricaVPR [17].

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - EigenPlaces ResNet50 128

Train Loss

Validation Loss

Figure C.10: Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 128.

79

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - EigenPlaces ResNet50 512

Train Loss

Validation Loss

Figure C.11: Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 512.

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - EigenPlaces ResNet50 2048

Train Loss

Validation Loss

Figure C.12: Training plot of the Latent Diffusion Model conditioned on the
output space of EigenPlaces [19] with d = 2048.

80

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - MixVPR 4096

Train Loss

Validation Loss

Figure C.13: Training plot of the Latent Diffusion Model conditioned on the
output space of MixVPR [18].

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - NetVLAD 4096

Train Loss

Validation Loss

Figure C.14: Training plot of the Latent Diffusion Model conditioned on the
output space of NetVLAD [15].

81

Experimental Details and Additional Results

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - SALAD-eval 8448

Train Loss

Validation Loss

Figure C.15: Training plot of the Latent Diffusion Model conditioned on the
output space of SALAD [51].

0 20 40 60 80 100
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

L
o
ss

Training - SFRS 4096

Train Loss

Validation Loss

Figure C.16: Training plot of the Latent Diffusion Model conditioned on the
output space of SFRS [71].

82

Experimental Details and Additional Results

C.2 Quantitative LDM results
In this section, we further analyze the results from Section 6.1.4 for the additional
Visual Place Recognition models listed in Table 6.1. For each model, we provide
a table of metrics calculated using 50k images. Here, we focus specifically on the
scale parameter s ∈ {1, 2}, which regulates the strength of the CFG [42, 39].

For comparison, Table C.1 reports the L1 and L2 metric values for all VPR
models. These values are derived from randomly selecting 14k images from the
validation set of Table 6.2 and computing the mean of all possible pairwise distances,
totaling

1
14,000

2

2
= 97,993k pairwise comparisons. The selection of 14k images is

based on the observation that these metrics stabilize and do not change significantly
with larger sample sizes.

Method L1 L2

AP-GeM [14] 35.84 1.07
CliqueMining [13] 102.48 1.40

Conv-AP [25] 69.96 1.38
CosPlace (d = 32) [52] 6.35 1.39
CosPlace (d = 64) [52] 8.99 1.40
CosPlace (d = 128) [52] 12.70 1.40
CosPlace (d = 512) [52] 25.34 1.40
CosPlace (d = 2048) [52] 50.70 1.40

CricaVPR [17] 113.22 1.38
EigenPlaces (d = 128) [19] 12.65 1.40
EigenPlaces (d = 512) [19] 25.27 1.40
EigenPlaces (d = 2048) [19] 50.50 1.40

MixVPR [18] 70.14 1.39
NetVLAD [15] 70.55 1.39
SALAD [51] 101.58 1.39
SFRS [71] 70.51 1.39

Table C.1: Reference table showing the mean pairwise distances for all Visual
Place Recognition models, calculated from 14k randomly selected images from the
validation set of Table 6.2. The embedding dimension d is included to distinguish
between different versions of the same VPR model.

As illustrated in the plots1 and numerical values in the tables of Fig. C.17–C.31,
all models show similar trends. With s = 1, we achieve the best metrics for
the visual quality of the generated images, as measured by both VGG-16 and
InceptionV3. However, this comes at the cost of reduced fidelity to the embeddings
produced by the Visual Place Recognition models, as reflected in the Precision and

1To improve readability and better fit the page, the x-axis is presented on a logarithmic scale.

83

Experimental Details and Additional Results

Recall values under each model’s name. When s = 2, the generation process aligns
more strongly with the conditioning information, leading to a significant increase in
Precision within the output space of the VPR models. While Recall either remains
stable or decreases slightly (with a maximum drop of 16% for NetVLAD), except
for CliqueMining and SALAD, which both show a 6% improvement, this trend
is offset by a notable increase in Precision. For NetVLAD, this results in a 28%
increase in Precision, which is the second-largest gain across all models. The largest
gain is seen for AP-GeM, with an impressive 33% improvement in Precision.

In summary, for all models, when s = 2, the embeddings f(x̂) of the generated
images are closer to the embeddings f(x) of real images, as indicated by the L1 and
L2 metrics. This confirms the conclusions drawn in Section 6.1.4 regarding CosPlace
[52] with embedding dimension d = 2048. Furthermore, in Fig. C.32–C.35, we
present the distributions of the distances used to calculate the values in Table C.1,
along with the corresponding L2 metrics of the Latent Diffusion Models.

84

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - APGeM Resnet101 2048

Precision

Recall

F-score

FID (Max: 207.32, Min: 56.93)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - APGeM Resnet101 2048

Precision

Recall

F-score

FID (Max: 287.16, Min: 141.14)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - APGeM Resnet101 2048

Precision

Recall

F-score

FID (Max: 29.75, Min: 4.73)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - APGeM Resnet101 2048

Precision

Recall

F-score

FID (Max: 30.63, Min: 6.85)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - APGeM Resnet101 2048

Precision

Recall

F-score

L1 (Max: 32.80, Min: 32.66)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - APGeM Resnet101 2048

Precision

Recall

F-score

L1 (Max: 30.30, Min: 30.04)

L2

50k VGG-16 InceptionV3 AP-GeM
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 58.02 0.57 0.68 4.94 0.49 0.66 0.31 0.81 32.72 0.97
2 141.14 0.49 0.74 6.85 0.50 0.65 0.64 0.74 30.07 0.89

Figure C.17: Plots of LDM conditioned on AP-GeM’s output space [14]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

85

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - clique-mining-eval 8448

Precision

Recall

F-score

FID (Max: 218.66, Min: 60.14)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - clique-mining-eval 8448

Precision

Recall

F-score

FID (Max: 306.91, Min: 150.87)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - clique-mining-eval 8448

Precision

Recall

F-score

FID (Max: 30.34, Min: 4.81)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - clique-mining-eval 8448

Precision

Recall

F-score

FID (Max: 33.30, Min: 8.57)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - clique-mining-eval 8448

Precision

Recall

F-score

L1 (Max: 78.12, Min: 77.92)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - clique-mining-eval 8448

Precision

Recall

F-score

L1 (Max: 72.54, Min: 72.35)

L2

50k VGG-16 InceptionV3 CliqueMining
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 61.12 0.57 0.63 5.03 0.50 0.64 0.46 0.85 77.95 1.08
2 150.87 0.45 0.66 8.57 0.47 0.61 0.61 0.91 72.36 1.01

Figure C.18: Plots of LDM conditioned on CliqueMining’s output space [13].
The table shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better when lower. ‘P’
= Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

86

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - ConvAP 4096

Precision

Recall

F-score

FID (Max: 190.02, Min: 52.37)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - ConvAP 4096

Precision

Recall

F-score

FID (Max: 313.15, Min: 163.17)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - ConvAP 4096

Precision

Recall

F-score

FID (Max: 28.62, Min: 4.27)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - ConvAP 4096

Precision

Recall

F-score

FID (Max: 32.73, Min: 8.96)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - ConvAP 4096

Precision

Recall

F-score

L1 (Max: 46.19, Min: 45.89)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - ConvAP 4096

Precision

Recall

F-score

L1 (Max: 44.06, Min: 43.82)

L2

50k VGG-16 InceptionV3 Conv-AP
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 53.54 0.63 0.72 4.45 0.55 0.70 0.83 0.99 46.19 0.92
2 163.17 0.49 0.74 8.96 0.49 0.66 0.88 0.97 44.02 0.88

Figure C.19: Plots of LDM conditioned on Conv-AP’s output space [25]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

87

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CosPlace ResNet50 32

Precision

Recall

F-score

FID (Max: 232.03, Min: 69.75)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CosPlace ResNet50 32

Precision

Recall

F-score

FID (Max: 341.29, Min: 170.19)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - CosPlace ResNet50 32

Precision

Recall

F-score

FID (Max: 31.74, Min: 5.54)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CosPlace ResNet50 32

Precision

Recall

F-score

FID (Max: 34.59, Min: 9.74)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - CosPlace ResNet50 32

Precision

Recall

F-score

L1 (Max: 2.69, Min: 2.67)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CosPlace ResNet50 32

Precision

Recall

F-score

L1 (Max: 2.28, Min: 2.26)

L2

50k VGG-16 InceptionV3 CosPlace (d = 32)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 71.01 0.52 0.58 5.80 0.45 0.59 0.68 0.99 2.67 0.59
2 170.19 0.41 0.57 9.74 0.40 0.54 0.78 0.99 2.27 0.50

Figure C.20: Plots of LDM conditioned on CosPlace’s output space [52] (d = 32).
The table shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better when lower. ‘P’
= Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

88

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CosPlace ResNet50 64

Precision

Recall

F-score

FID (Max: 221.15, Min: 66.70)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CosPlace ResNet50 64

Precision

Recall

F-score

FID (Max: 331.26, Min: 163.60)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - CosPlace ResNet50 64

Precision

Recall

F-score

FID (Max: 31.66, Min: 5.28)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CosPlace ResNet50 64

Precision

Recall

F-score

FID (Max: 34.82, Min: 9.84)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - CosPlace ResNet50 64

Precision

Recall

F-score

L1 (Max: 4.48, Min: 4.46)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CosPlace ResNet50 64

Precision

Recall

F-score

L1 (Max: 3.86, Min: 3.85)

L2

50k VGG-16 InceptionV3 CosPlace (d = 64)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 68.78 0.53 0.59 5.51 0.46 0.61 0.63 0.99 4.46 0.70
2 163.60 0.41 0.60 9.84 0.40 0.57 0.75 0.98 3.85 0.60

Figure C.21: Plots of LDM conditioned on CosPlace’s output space [52] (d = 64).
The table shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better when lower. ‘P’
= Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

89

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CosPlace ResNet50 128

Precision

Recall

F-score

FID (Max: 221.21, Min: 63.31)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CosPlace ResNet50 128

Precision

Recall

F-score

FID (Max: 322.59, Min: 157.30)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - CosPlace ResNet50 128

Precision

Recall

F-score

FID (Max: 31.05, Min: 5.02)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CosPlace ResNet50 128

Precision

Recall

F-score

FID (Max: 33.55, Min: 8.78)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - CosPlace ResNet50 128

Precision

Recall

F-score

L1 (Max: 6.97, Min: 6.94)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CosPlace ResNet50 128

Precision

Recall

F-score

L1 (Max: 6.12, Min: 6.10)

L2

50k VGG-16 InceptionV3 CosPlace (d = 128)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 64.45 0.54 0.60 5.25 0.47 0.61 0.61 0.99 6.94 0.77
2 157.30 0.40 0.63 8.78 0.41 0.59 0.74 0.98 6.11 0.68

Figure C.22: Plots of LDM conditioned on CosPlace’s output space [52] (d = 128).
The table shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better when lower. ‘P’
= Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

90

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CosPlace ResNet50 512

Precision

Recall

F-score

FID (Max: 215.16, Min: 61.85)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CosPlace ResNet50 512

Precision

Recall

F-score

FID (Max: 322.57, Min: 175.52)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - CosPlace ResNet50 512

Precision

Recall

F-score

FID (Max: 30.51, Min: 4.86)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CosPlace ResNet50 512

Precision

Recall

F-score

FID (Max: 33.94, Min: 9.96)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - CosPlace ResNet50 512

Precision

Recall

F-score

L1 (Max: 15.63, Min: 15.51)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CosPlace ResNet50 512

Precision

Recall

F-score

L1 (Max: 14.15, Min: 14.11)

L2

50k VGG-16 InceptionV3 CosPlace (d = 512)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 63.12 0.55 0.61 5.11 0.47 0.63 0.56 0.99 15.53 0.86
2 175.52 0.38 0.65 9.96 0.40 0.60 0.68 0.97 14.11 0.78

Figure C.23: Plots of LDM conditioned on CosPlace’s output space [52] (d = 512).
The table shows metrics for 50k images, with the best results in bold. Metrics
marked with ↑ are better when higher, and those with ↓ are better when lower. ‘P’
= Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

91

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - CricaVPR 10752

Precision

Recall

F-score

FID (Max: 200.74, Min: 51.15)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - CricaVPR 10752

Precision

Recall

F-score

FID (Max: 293.63, Min: 146.61)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - CricaVPR 10752

Precision

Recall

F-score

FID (Max: 28.48, Min: 3.99)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - CricaVPR 10752

Precision

Recall

F-score

FID (Max: 31.33, Min: 7.85)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - CricaVPR 10752

Precision

Recall

F-score

L1 (Max: 80.73, Min: 80.59)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - CricaVPR 10752

Precision

Recall

F-score

L1 (Max: 75.25, Min: 75.09)

L2

50k VGG-16 InceptionV3 CricaVPR
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 53.05 0.62 0.72 4.22 0.56 0.71 0.62 0.99 80.71 0.99
2 146.61 0.48 0.76 7.85 0.52 0.69 0.78 0.97 75.23 0.93

Figure C.24: Plots of LDM conditioned on CricaVPR’s output space [17]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

92

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - EigenPlaces ResNet50 128

Precision

Recall

F-score

FID (Max: 222.38, Min: 63.22)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - EigenPlaces ResNet50 128

Precision

Recall

F-score

FID (Max: 311.13, Min: 144.31)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - EigenPlaces ResNet50 128

Precision

Recall

F-score

FID (Max: 30.81, Min: 5.11)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - EigenPlaces ResNet50 128

Precision

Recall

F-score

FID (Max: 34.33, Min: 8.77)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - EigenPlaces ResNet50 128

Precision

Recall

F-score

L1 (Max: 7.67, Min: 7.63)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - EigenPlaces ResNet50 128

Precision

Recall

F-score

L1 (Max: 6.74, Min: 6.70)

L2

50k VGG-16 InceptionV3 EigenPlaces (d = 128)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 64.39 0.53 0.60 5.35 0.46 0.62 0.49 0.99 7.63 0.84
2 144.31 0.39 0.65 8.77 0.39 0.61 0.67 0.97 6.70 0.74

Figure C.25: Plots of LDM conditioned on EigenPlaces’s output space [19]
(d = 128). The table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are better when
lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

93

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - EigenPlaces ResNet50 512

Precision

Recall

F-score

FID (Max: 220.74, Min: 62.65)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - EigenPlaces ResNet50 512

Precision

Recall

F-score

FID (Max: 306.20, Min: 151.00)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - EigenPlaces ResNet50 512

Precision

Recall

F-score

FID (Max: 30.82, Min: 5.00)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - EigenPlaces ResNet50 512

Precision

Recall

F-score

FID (Max: 33.81, Min: 8.45)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - EigenPlaces ResNet50 512

Precision

Recall

F-score

L1 (Max: 17.74, Min: 17.67)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - EigenPlaces ResNet50 512

Precision

Recall

F-score

L1 (Max: 16.14, Min: 16.07)

L2

50k VGG-16 InceptionV3 EigenPlaces (d = 512)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 63.94 0.54 0.62 5.19 0.47 0.63 0.43 0.99 17.67 0.98
2 151.00 0.37 0.68 8.45 0.39 0.63 0.59 0.97 16.07 0.89

Figure C.26: Plots of LDM conditioned on EigenPlaces’s output space [19]
(d = 512). The table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are better when
lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

94

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

FID (Max: 202.68, Min: 58.36)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

FID (Max: 329.45, Min: 180.83)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

FID (Max: 30.21, Min: 4.72)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

FID (Max: 34.37, Min: 9.72)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

L1 (Max: 35.55, Min: 35.41)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - EigenPlaces ResNet50 2048

Precision

Recall

F-score

L1 (Max: 32.75, Min: 32.71)

L2

50k VGG-16 InceptionV3 EigenPlaces (d = 2048)
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 58.92 0.56 0.64 4.90 0.49 0.65 0.47 0.99 35.49 0.98
2 180.83 0.34 0.70 9.72 0.39 0.62 0.63 0.96 32.71 0.91

Figure C.27: Plots of LDM conditioned on EigenPlaces’s output space [19]
(d = 2048). The table shows metrics for 50k images, with the best results in bold.
Metrics marked with ↑ are better when higher, and those with ↓ are better when
lower. ‘P’ = Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

95

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - MixVPR 4096

Precision

Recall

F-score

FID (Max: 200.59, Min: 53.41)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - MixVPR 4096

Precision

Recall

F-score

FID (Max: 281.96, Min: 150.81)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - MixVPR 4096

Precision

Recall

F-score

FID (Max: 28.83, Min: 4.26)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - MixVPR 4096

Precision

Recall

F-score

FID (Max: 31.39, Min: 8.13)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - MixVPR 4096

Precision

Recall

F-score

L1 (Max: 50.78, Min: 50.63)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - MixVPR 4096

Precision

Recall

F-score

L1 (Max: 48.01, Min: 47.87)

L2

50k VGG-16 InceptionV3 MixVPR
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 54.61 0.63 0.71 4.50 0.55 0.70 0.78 1.00 50.75 1.00
2 150.81 0.51 0.73 8.13 0.51 0.66 0.86 0.99 47.98 0.94

Figure C.28: Plots of LDM conditioned on MixVPR’s output space [18]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

96

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - NetVLAD 4096

Precision

Recall

F-score

FID (Max: 194.34, Min: 51.47)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - NetVLAD 4096

Precision

Recall

F-score

FID (Max: 277.87, Min: 144.55)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - NetVLAD 4096

Precision

Recall

F-score

FID (Max: 28.39, Min: 4.27)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - NetVLAD 4096

Precision

Recall

F-score

FID (Max: 31.12, Min: 8.32)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.6

0.8

1.0

1.2

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - NetVLAD 4096

Precision

Recall

F-score

L1 (Max: 61.90, Min: 61.75)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.7

0.8

0.9

1.0

1.1

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - NetVLAD 4096

Precision

Recall

F-score

L1 (Max: 59.71, Min: 59.65)

L2

50k VGG-16 InceptionV3 NetVLAD
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 53.27 0.66 0.78 4.46 0.56 0.73 0.53 0.87 61.88 1.22
2 144.55 0.57 0.80 8.32 0.55 0.69 0.81 0.71 59.70 1.18

Figure C.29: Plots of LDM conditioned on NetVLAD’s output space [15]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

97

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - SALAD-eval 8448

Precision

Recall

F-score

FID (Max: 203.52, Min: 58.07)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - SALAD-eval 8448

Precision

Recall

F-score

FID (Max: 282.35, Min: 142.84)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - SALAD-eval 8448

Precision

Recall

F-score

FID (Max: 29.62, Min: 4.55)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - SALAD-eval 8448

Precision

Recall

F-score

FID (Max: 31.25, Min: 7.81)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - SALAD-eval 8448

Precision

Recall

F-score

L1 (Max: 75.59, Min: 75.47)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - SALAD-eval 8448

Precision

Recall

F-score

L1 (Max: 69.27, Min: 69.16)

L2

50k VGG-16 InceptionV3 SALAD
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 59.74 0.58 0.66 4.76 0.51 0.65 0.42 0.86 75.58 1.05
2 142.84 0.47 0.66 7.81 0.50 0.61 0.61 0.92 69.25 0.97

Figure C.30: Plots of LDM conditioned on SALAD’s output space [51]. The
table shows metrics for 50k images, with the best results in bold. Metrics marked
with ↑ are better when higher, and those with ↓ are better when lower. ‘P’ =
Precision, ‘R’ = Recall, and s is the scale parameter for CFG [39].

98

Experimental Details and Additional Results

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
tr

ic
V

a
lu

e
VGG Metrics (s = 1) - SFRS 4096

Precision

Recall

F-score

FID (Max: 195.76, Min: 52.98)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

VGG Metrics (s = 2) - SFRS 4096

Precision

Recall

F-score

FID (Max: 284.61, Min: 157.82)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 1) - SFRS 4096

Precision

Recall

F-score

FID (Max: 28.29, Min: 4.21)

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
tr

ic
V

a
lu

e

InceptionV3 Metrics (s = 2) - SFRS 4096

Precision

Recall

F-score

FID (Max: 31.63, Min: 8.75)

1k 2k
3.
5k 7k 14

k
25

k
50

k
75

k

Images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 1) - SFRS 4096

Precision

Recall

F-score

L1 (Max: 58.81, Min: 58.61)

L2

1k 2k
3.
5k 7k 14

k
25

k
50

k

Images

0.80

0.85

0.90

0.95

1.00

1.05

1.10

M
e
tr

ic
V

a
lu

e

VPR Metrics (s = 2) - SFRS 4096

Precision

Recall

F-score

L1 (Max: 56.19, Min: 56.03)

L2

50k VGG-16 InceptionV3 SFRS
s FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ P ↑ R ↑ L1 ↓ L2 ↓

1 53.89 0.66 0.77 4.41 0.56 0.73 0.62 0.92 58.79 1.16
2 157.82 0.54 0.78 8.75 0.54 0.66 0.84 0.81 56.19 1.11

Figure C.31: Plots of LDM conditioned on SFRS’s output space [71]. The table
shows metrics for 50k images, with the best results in bold. Metrics marked with
↑ are better when higher, and those with ↓ are better when lower. ‘P’ = Precision,
‘R’ = Recall, and s is the scale parameter for CFG [39].

99

Experimental Details and Additional Results

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Distance

0

1

2

3

4

5

6

7

P
D

F

s = 1

s = 2

Distances Distribution - APGeM Resnet101 2048

Histogram

PDF

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Distance

0

5

10

15

20

P
D

F

s = 1
s = 2

Distances Distribution - clique-mining-eval 8448

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4
Distance

0

2

4

6

8

10

12

14

P
D

F

s = 1
s = 2

Distances Distribution - ConvAP 4096

Histogram

PDF

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
D

F

s = 1
s = 2

Distances Distribution - CricaVPR 10752

Histogram

PDF

Figure C.32: Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the points in the
distribution corresponding to the L2 distance of the LDM models, based on the
scale parameter s for CFG [39]. The distributions for AP-GeM [14], CliqueMining
[13], Conv-AP [25], and CricaVPR [17] are shown.

100

Experimental Details and Additional Results

0.6 0.8 1.0 1.2 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
D

F

s = 1
s = 2

Distances Distribution - MixVPR 4096

Histogram

PDF

0.9 1.0 1.1 1.2 1.3 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
D

F

s = 1
s = 2

Distances Distribution - NetVLAD 4096

Histogram

PDF

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
D

F

s = 1
s = 2

Distances Distribution - SALAD-eval 8448

Histogram

PDF

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
D

F

s = 1
s = 2

Distances Distribution - SFRS 4096

Histogram

PDF

Figure C.33: Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the points in the
distribution corresponding to the L2 distance of the LDM models, based on the
scale parameter s for CFG [39]. The distributions for MixVPR [18], NetVLAD
[15], SALAD [51], and SFRS [71] are shown.

101

Experimental Details and Additional Results

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
D

F

s = 1s = 2

Distances Distribution - CosPlace ResNet50 32

Histogram

PDF

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Distance

0

1

2

3

4

P
D

F

s = 1s = 2

Distances Distribution - CosPlace ResNet50 64

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

0

1

2

3

4

5

6

P
D

F

s = 1s = 2

Distances Distribution - CosPlace ResNet50 128

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

0

2

4

6

8

10

12

P
D

F

s = 1s = 2

Distances Distribution - CosPlace ResNet50 512

Histogram

PDF

Figure C.34: Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the points in
the distribution corresponding to the L2 distance of the LDM models, based on
the scale parameter s for CFG [39]. The distributions for CosPlace [52] with
d ∈ {32, 64, 128, 512} are shown.

102

Experimental Details and Additional Results

0.4 0.6 0.8 1.0 1.2 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
D

F

s = 1s = 2

Distances Distribution - CosPlace ResNet50 2048

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

0

1

2

3

4

5

6

P
D

F

s = 1

s = 2

Distances Distribution - EigenPlaces ResNet50 128

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

0

2

4

6

8

10

P
D

F

s = 1

s = 2

Distances Distribution - EigenPlaces ResNet50 512

Histogram

PDF

0.4 0.6 0.8 1.0 1.2 1.4
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
D

F

s = 1
s = 2

Distances Distribution - EigenPlaces ResNet50 2048

Histogram

PDF

Figure C.35: Distribution plots of the distances for the 14,000 random images
used to compute the metrics in Table C.1. The arrows highlight the points in the
distribution corresponding to the L2 distance of the LDM models, based on the
scale parameter s for CFG [39]. The distributions for CosPlace [52] with d = 2048,
and EigenPlaces [19] with d ∈ {128, 512, 2048} are shown.

103

Experimental Details and Additional Results

C.3 BayesCap training curves
In this section, we present the training curves of the BayesCap [58] models, as de-
scribed in Section 6.2.2. Each training session consists of 5,000 iterations per epoch,
with a batch size of 96. Three training curves are shown here. Figures C.36 and C.37
display the training curves for BayesCap, differing only in the number of epochs–30
epochs and 50 epochs, respectively. Figure C.38 shows the training curve for
BayesCapCycle, which was trained for 30 epochs.

0 5 10 15 20 25
Epoch

0.004

0.006

0.008

0.010

0.012

0.014

0.016

L
o
ss

Training BayesCap - CosPlace ResNet50 2048

Train Loss

Validation Loss

Figure C.36: Training plot of BayesCap [58] on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 30 epochs.

104

Experimental Details and Additional Results

0 10 20 30 40
Epoch

0.004

0.006

0.008

0.010

0.012

0.014

0.016

L
o
ss

Training BayesCap - CosPlace ResNet50 2048

Train Loss

Validation Loss

Figure C.37: Training plot of BayesCap [58] on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 50 epochs.

0 5 10 15 20 25
Epoch

0.004

0.006

0.008

0.010

0.012

0.014

0.016

L
o
ss

Training BayesCapCycle - CosPlace ResNet50 2048

Train Loss

Validation Loss

Figure C.38: Training plot of BayesCapCycle on top of CosPlace [52], with a
descriptor dimension of d = 2048. The model was trained for 30 epochs.

105

Experimental Details and Additional Results

C.4 Binning strategy for BayesCap results
This section details the adaptive binning strategy introduced in Section 6.2.4 and
Section 6.2.5 for the quantitative evaluation of BayesCap [58] models. The full
Python code is given in Listing C.1.

1 import numpy as np
2

3 def get_bins_adaptive(uncertainties, min_num_samples, max_num_bins,
ñ→ min_num_bins, min_width_factor=0.05, max_merge_attempts=100):

4 uncertainties_sorted = np.sort(uncertainties)
5 min_val, max_val = uncertainties_sorted[0], uncertainties_sorted[-1]
6

7 q25, q75 = np.percentile(uncertainties, [25, 75])
8 iqr = q75 - q25
9

10 min_width = min_width_factor * iqr
11 range_uncertainties = max_val - min_val
12 bin_width = max(min_width, range_uncertainties / max_num_bins)
13 num_bins = int(np.ceil(range_uncertainties / bin_width))
14 num_bins = min(max(num_bins, min_num_bins), max_num_bins)
15 bin_width = range_uncertainties / num_bins
16 bin_edges = np.linspace(min_val, max_val, num_bins + 1)
17 binned_samples = np.histogram(uncertainties, bins=bin_edges)[0]
18

19 merge_attempts = 0
20

21 while any(binned_samples < min_num_samples) and merge_attempts <
ñ→ max_merge_attempts:

22 merge_attempts += 1
23 new_bin_edges = []
24

25 i = 0
26 while i < len(bin_edges) - 1:
27 if binned_samples[i] < min_num_samples and i < len(bin_edges) - 2:
28 new_bin_edges.append(bin_edges[i])
29 i += 2
30 else:
31 new_bin_edges.append(bin_edges[i])
32 i += 1
33

34 if binned_samples[-1] < min_num_samples and len(bin_edges) > 1:
35 new_bin_edges[-1] = bin_edges[-1]
36 elif binned_samples[-1] >= min_num_samples:
37 new_bin_edges.append(bin_edges[-1])
38

39 bin_edges = np.array(new_bin_edges)
40 binned_samples = np.histogram(uncertainties, bins=bin_edges)[0]
41 bin_edges = np.unique(bin_edges)

106

Experimental Details and Additional Results

42

43 if len(bin_edges) <= min_num_bins:
44 break
45

46 return bin_edges

Listing C.1: Full Python code for the adaptive binning strategy of Section 6.2.4
and Section 6.2.5.

107

Experimental Details and Additional Results

C.5 BayesCap uncertainty distributions
In this section, we build upon the results presented in Section 6.2.5 by examining
how uncertainties, computed on the validation sets of Pitts30k [15], SF-XL [52],
and MSLS [78], are distributed with respect to Recall@1.

Specifically, we define a query as positive if its first nearest neighbor in the
database is within 25 meters of its true location, and negative otherwise. The
distributions of these uncertainties are shown in Fig. C.39–C.41. The x-axis
represents the uncertainty values, while the y-axis shows the match result. To
enhance the visibility of the points’ density, we also add a small amount of Gaussian
noise to the y-axis.

108

Experimental Details and Additional Results

BayesCapCycle
30 epochs

0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 6822, # Negatives = 786

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
30 epochs

0.05 0.06 0.07 0.08 0.09 0.10 0.11
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 6822, # Negatives = 786

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
50 epochs

0.025 0.030 0.035 0.040 0.045 0.050 0.055
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 6822, # Negatives = 786

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

Figure C.39: Uncertainty distributions for all trained BayesCap [58] models,
computed on the Pitts30k [15] validation set.

109

Experimental Details and Additional Results

BayesCapCycle
30 epochs

0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 7549, # Negatives = 434

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
30 epochs

0.05 0.06 0.07 0.08 0.09 0.10 0.11
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 7549, # Negatives = 434

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
50 epochs

0.020 0.025 0.030 0.035 0.040 0.045 0.050
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 7549, # Negatives = 434

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

Figure C.40: Uncertainty distributions for all trained BayesCap [58] models,
computed on the SF-XL [52] validation set.

110

Experimental Details and Additional Results

BayesCapCycle
30 epochs

0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 9174, # Negatives = 1910

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
30 epochs

0.04 0.05 0.06 0.07 0.08 0.09 0.10
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 9174, # Negatives = 1910

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

BayesCap
50 epochs

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
Uncertainty

Negative

Positive

R
e
ca

ll

Positives = 9174, # Negatives = 1910

Positive

Negative

Median Uncertainty for Positives

Median Uncertainty for Negatives

Uncertainty vs Recall

Figure C.41: Uncertainty distributions for all trained BayesCap [58] models,
computed on the MSLS [78] validation set.

111

Bibliography

[1] Nils J Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann,
1998 (cit. on pp. 4, 7).

[2] A. M. TURING. «I.—COMPUTING MACHINERY AND INTELLIGENCE».
In: Mind LIX.236 (Oct. 1950), pp. 433–460. issn: 0026-4423. doi: 10.1093/
mind/LIX.236.433. eprint: https://academic.oup.com/mind/article-
pdf/LIX/236/433/61209000/mind_lix_236_433.pdf. url: https:
//doi.org/10.1093/mind/LIX.236.433 (cit. on p. 4).

[3] Melanie Mitchell et al. «Artificial intelligence: A guide for thinking humans».
In: (2019) (cit. on p. 4).

[4] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Pearson, 2016 (cit. on p. 4).

[5] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill
New York, 1997 (cit. on p. 5).

[6] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on pp. 6, 7, 9).

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 8).

[8] George Cybenko. «Approximation by superpositions of a sigmoidal function».
In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314 (cit.
on p. 9).

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. «Backpropagation Applied to Handwritten Zip Code Recog-
nition». In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.
1989.1.4.541 (cit. on p. 9).

[10] Carlo Masone and Barbara Caputo. «A Survey on Deep Visual Place Recog-
nition». In: IEEE Access 9 (2021), pp. 19516–19547. doi: 10.1109/ACCESS.
2021.3054937 (cit. on pp. 11, 12).

112

https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/61209000/mind_lix_236_433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/61209000/mind_lix_236_433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/ACCESS.2021.3054937
https://doi.org/10.1109/ACCESS.2021.3054937

BIBLIOGRAPHY

[11] David G. Lowe. «Distinctive Image Features from Scale-Invariant Keypoints».
In: International Journal of Computer Vision 60 (2004), pp. 91–110. url:
https://api.semanticscholar.org/CorpusID:174065 (cit. on p. 11).

[12] Relja Arandjelovic and Andrew Zisserman. «All About VLAD». In: 2013 IEEE
Conference on Computer Vision and Pattern Recognition. 2013, pp. 1578–1585.
doi: 10.1109/CVPR.2013.207 (cit. on p. 11).

[13] Sergio Izquierdo and Javier Civera. «Close, But Not There: Boosting Geo-
graphic Distance Sensitivity in Visual Place Recognition». In: arXiv preprint
arXiv:2407.02422 (2024) (cit. on pp. 12, 46, 75, 83, 86, 100).

[14] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza.
«Learning with average precision: Training image retrieval with a listwise loss».
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 5107–5116 (cit. on pp. 12, 46, 75, 83, 85, 100).

[15] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
«NetVLAD: CNN architecture for weakly supervised place recognition». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 5297–5307 (cit. on pp. 12, 15, 46, 64, 66, 81, 83, 97, 101, 108, 109).

[16] Mubariz Zaffar, Liangliang Nan, and Julian FP Kooij. «On the Estimation of
Image-matching Uncertainty in Visual Place Recognition». In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2024, pp. 17743–17753 (cit. on pp. 12, 14, 37).

[17] Feng Lu, Xiangyuan Lan, Lijun Zhang, Dongmei Jiang, Yaowei Wang, and
Chun Yuan. «CricaVPR: Cross-image Correlation-aware Representation Learn-
ing for Visual Place Recognition». In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2024, pp. 16772–16782
(cit. on pp. 14, 46, 79, 83, 92, 100).

[18] Amar Ali-Bey, Brahim Chaib-Draa, and Philippe Giguere. «Mixvpr: Feature
mixing for visual place recognition». In: Proceedings of the IEEE/CVF winter
conference on applications of computer vision. 2023, pp. 2998–3007 (cit. on
pp. 14, 46, 81, 83, 96, 101).

[19] Gabriele Berton, Gabriele Trivigno, Barbara Caputo, and Carlo Masone.
«Eigenplaces: Training viewpoint robust models for visual place recognition».
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2023, pp. 11080–11090 (cit. on pp. 14, 46, 61, 62, 79, 80, 83, 93–95,
103).

[20] Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula,
Sebastian Scherer, Madhava Krishna, and Sourav Garg. «Anyloc: Towards
universal visual place recognition». In: IEEE Robotics and Automation Letters
(2023) (cit. on p. 14).

113

https://api.semanticscholar.org/CorpusID:174065
https://doi.org/10.1109/CVPR.2013.207

BIBLIOGRAPHY

[21] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Pi-
otr Bojanowski, and Armand Joulin. «Emerging properties in self-supervised
vision transformers». In: Proceedings of the IEEE/CVF international confer-
ence on computer vision. 2021, pp. 9650–9660 (cit. on p. 14).

[22] Maxime Oquab et al. «Dinov2: Learning robust visual features without
supervision». In: arXiv preprint arXiv:2304.07193 (2023) (cit. on pp. 14, 46).

[23] María Leyva-Vallina, Nicola Strisciuglio, and Nicolai Petkov. «Data-efficient
large scale place recognition with graded similarity supervision». In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2023, pp. 23487–23496 (cit. on pp. 14, 16).

[24] Deen Dayal Mohan, Bhavin Jawade, Srirangaraj Setlur, and Venu Govindaraju.
«Deep metric learning for computer vision: A brief overview». In: Handbook
of Statistics 48 (2023), pp. 59–79 (cit. on p. 14).

[25] Amar Ali-bey, Brahim Chaib-draa, and Philippe Giguere. «Gsv-cities: Toward
appropriate supervised visual place recognition». In: Neurocomputing 513
(2022), pp. 194–203 (cit. on pp. 14, 46, 76, 83, 87, 100).

[26] Elad Hoffer and Nir Ailon. «Deep metric learning using triplet network». In:
Similarity-based pattern recognition: third international workshop, SIMBAD
2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3. Springer.
2015, pp. 84–92 (cit. on p. 15).

[27] Raia Hadsell, Sumit Chopra, and Yann LeCun. «Dimensionality reduction by
learning an invariant mapping». In: 2006 IEEE computer society conference
on computer vision and pattern recognition (CVPR’06). Vol. 2. IEEE. 2006,
pp. 1735–1742 (cit. on p. 15).

[28] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott.
«Multi-similarity loss with general pair weighting for deep metric learning».
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 5022–5030 (cit. on p. 16).

[29] Patrick Esser, Robin Rombach, and Bjorn Ommer. «Taming transformers for
high-resolution image synthesis». In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2021, pp. 12873–12883 (cit. on
pp. 17, 34).

[30] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. «Zero-shot text-to-image
generation». In: International conference on machine learning. Pmlr. 2021,
pp. 8821–8831 (cit. on p. 17).

114

BIBLIOGRAPHY

[31] Alec Radford et al. «Learning transferable visual models from natural language
supervision». In: International conference on machine learning. PMLR. 2021,
pp. 8748–8763 (cit. on pp. 17, 41).

[32] Diederik P Kingma. «Auto-encoding variational bayes». In: arXiv preprint
arXiv:1312.6114 (2013) (cit. on pp. 18–20, 34).

[33] Aaron Van Den Oord, Oriol Vinyals, et al. «Neural discrete representation
learning». In: Advances in neural information processing systems 30 (2017)
(cit. on pp. 18, 20, 34).

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial nets». In: Advances in neural information processing systems 27
(2014) (cit. on pp. 18, 21, 25).

[35] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton.
«Demystifying mmd gans». In: arXiv preprint arXiv:1801.01401 (2018) (cit.
on pp. 18, 47).

[36] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. «Gans trained by a two time-scale update rule converge
to a local nash equilibrium». In: Advances in neural information processing
systems 30 (2017) (cit. on pp. 18, 47, 49).

[37] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. «Improved precision and recall metric for assessing generative
models». In: Advances in neural information processing systems 32 (2019)
(cit. on pp. 18, 47–49, 51).

[38] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. «Improved techniques for training gans». In: Advances in
neural information processing systems 29 (2016) (cit. on pp. 18, 23, 47).

[39] Jonathan Ho and Tim Salimans. «Classifier-free diffusion guidance». In: arXiv
preprint arXiv:2207.12598 (2022) (cit. on pp. 18, 50–52, 54–57, 83, 85–103).

[40] Jiaming Song, Chenlin Meng, and Stefano Ermon. «Denoising diffusion im-
plicit models». In: arXiv preprint arXiv:2010.02502 (2020) (cit. on pp. 18,
29, 31–33).

[41] Jonathan Ho, Ajay Jain, and Pieter Abbeel. «Denoising diffusion probabilistic
models». In: Advances in neural information processing systems 33 (2020),
pp. 6840–6851 (cit. on pp. 18, 23, 25, 26, 28).

[42] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. «High-resolution image synthesis with latent diffusion models».
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2022, pp. 10684–10695 (cit. on pp. 18, 34, 35, 46–50, 57, 83).

115

BIBLIOGRAPHY

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 18).

[44] Geoffrey E Hinton and Ruslan R Salakhutdinov. «Reducing the dimensionality
of data with neural networks». In: science 313.5786 (2006), pp. 504–507 (cit.
on p. 18).

[45] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. «Greedy
layer-wise training of deep networks». In: Advances in neural information
processing systems 19 (2006) (cit. on p. 18).

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional
networks for biomedical image segmentation». In: Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer.
2015, pp. 234–241 (cit. on pp. 19, 34).

[47] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. «Extracting and composing robust features with denoising autoen-
coders». In: Proceedings of the 25th international conference on Machine
learning. 2008, pp. 1096–1103 (cit. on p. 19).

[48] Lovedeep Gondara. «Medical Image Denoising Using Convolutional Denoising
Autoencoders». In: 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW). 2016, pp. 241–246. doi: 10.1109/ICDMW.2016.0041
(cit. on p. 19).

[49] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. «Lossy
image compression with compressive autoencoders». In: arXiv preprint (2017).
arXiv:1703.00395 (cit. on p. 19).

[50] Mayu Sakurada and Takehisa Yairi. «Anomaly Detection Using Autoen-
coders with Nonlinear Dimensionality Reduction». In: Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis.
MLSDA’14. Gold Coast, Australia QLD, Australia: Association for Comput-
ing Machinery, 2014, pp. 4–11. isbn: 9781450331593. doi: 10.1145/2689746.
2689747. url: https://doi.org/10.1145/2689746.2689747 (cit. on p. 19).

[51] Sergio Izquierdo and Javier Civera. «Optimal transport aggregation for visual
place recognition». In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2024, pp. 17658–17668 (cit. on pp. 21, 46, 82,
83, 98, 101).

[52] Gabriele Berton, Carlo Masone, and Barbara Caputo. «Rethinking visual geo-
localization for large-scale applications». In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 4878–4888
(cit. on pp. 21, 29, 46, 47, 50, 52–59, 63, 64, 67, 76–78, 83, 84, 88–91, 102–105,
108, 110).

116

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ICDMW.2016.0041
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747

BIBLIOGRAPHY

[53] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
«Deep unsupervised learning using nonequilibrium thermodynamics». In:
International conference on machine learning. PMLR. 2015, pp. 2256–2265
(cit. on pp. 23, 24).

[54] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. «Image-to-
image translation with conditional adversarial networks». In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1125–1134 (cit. on p. 34).

[55] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
«The unreasonable effectiveness of deep features as a perceptual metric». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 586–595 (cit. on p. 34).

[56] A Vaswani. «Attention is all you need». In: Advances in Neural Information
Processing Systems (2017) (cit. on p. 35).

[57] Alex Kendall and Yarin Gal. «What uncertainties do we need in bayesian deep
learning for computer vision?» In: Advances in neural information processing
systems 30 (2017) (cit. on p. 37).

[58] U. Upadhyay, S. Karthik, Y. Chen, M. Mancini, and Z. Akata. «BayesCap:
Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks».
In: European Conference on Computer Vision (ECCV 2022). 2022 (cit. on
pp. 37–41, 60–68, 70, 104–106, 109–111).

[59] Gianni Franchi, Olivier Laurent, Maxence Leguéry, Andrei Bursuc, Andrea
Pilzer, and Angela Yao. «Make Me a BNN: A Simple Strategy for Estimat-
ing Bayesian Uncertainty from Pre-trained Models». In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024,
pp. 12194–12204 (cit. on p. 37).

[60] Roman Kail, Kirill Fedyanin, Nikita Muravev, Alexey Zaytsev, and Maxim
Panov. «Scaleface: Uncertainty-aware deep metric learning». In: 2023 IEEE
10th International Conference on Data Science and Advanced Analytics
(DSAA). IEEE. 2023, pp. 1–10 (cit. on p. 37).

[61] Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio De Rezende, Yannis Kalan-
tidis, and Diane Larlus. «Probabilistic embeddings for cross-modal retrieval».
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 8415–8424 (cit. on p. 38).

[62] Yibo Miao, Yu Lei, Feng Zhou, and Zhijie Deng. «Bayesian Exploration of
Pre-trained Models for Low-shot Image Classification». In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024,
pp. 23849–23859 (cit. on p. 38).

117

BIBLIOGRAPHY

[63] Uddeshya Upadhyay, Yanbei Chen, Tobias Hebb, Sergios Gatidis, and Zeynep
Akata. «Uncertainty Guided Progressive GANs for Medical Image Trans-
lation». In: International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Springer. 2021 (cit. on p. 38).

[64] U. Upadhyay, Y. Chen, and Z. Akata. «Robustness via Uncertainty-aware
Cycle Consistency». In: Advances in Neural Information Processing Systems
34 (NeurIPS 2021). 2021 (cit. on p. 38).

[65] U. Upadhyay, S. Karthik, M. Mancini, and Z. Akata. «ProbVLM: Probabilistic
Adapter for Frozen Vision-Language Models». In: International Conference
on Computer Vision (ICCV 2023). 2023 (cit. on pp. 38, 41–44, 60, 61, 63).

[66] Frederik Warburg, Marco Miani, Silas Brack, and Søren Hauberg. «Bayesian
metric learning for uncertainty quantification in image retrieval». In: Advances
in Neural Information Processing Systems 36 (2023), pp. 69178–69190 (cit. on
pp. 38, 63).

[67] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. «Blip: Bootstrapping
language-image pre-training for unified vision-language understanding and
generation». In: International conference on machine learning. PMLR. 2022,
pp. 12888–12900 (cit. on p. 41).

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 46).

[69] Alexey Dosovitskiy. «An image is worth 16x16 words: Transformers for image
recognition at scale». In: arXiv preprint arXiv:2010.11929 (2020) (cit. on
p. 46).

[70] Karen Simonyan. «Very deep convolutional networks for large-scale image
recognition». In: arXiv preprint arXiv:1409.1556 (2014) (cit. on pp. 46, 49).

[71] Yixiao Ge, Haibo Wang, Feng Zhu, Rui Zhao, and Hongsheng Li. «Self-
supervising fine-grained region similarities for large-scale image localization».
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IV 16. Springer. 2020, pp. 369–386
(cit. on pp. 46, 82, 83, 99, 101).

[72] I Loshchilov. «Decoupled weight decay regularization». In: arXiv preprint
arXiv:1711.05101 (2017) (cit. on p. 47).

[73] Tero Karras. «A Style-Based Generator Architecture for Generative Adver-
sarial Networks». In: arXiv preprint arXiv:1812.04948 (2019) (cit. on p. 47).

118

BIBLIOGRAPHY

[74] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen Zhydenko, Jonathan
Kyl, and Elvis Yu-Jing Lin. High-fidelity performance metrics for genera-
tive models in PyTorch. Version v0.3.0. Version: 0.3.0, DOI: 10.5281/zen-
odo.4957738. 2020. doi: 10.5281/zenodo.4957738. url: https://github.
com/toshas/torch-fidelity (cit. on p. 47).

[75] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. «Going deeper with convolutions». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on
p. 47).

[76] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. «Rethinking the inception architecture for computer vision». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 2818–2826 (cit. on p. 47).

[77] Andrew Brock. «Large Scale GAN Training for High Fidelity Natural Image
Synthesis». In: arXiv preprint arXiv:1809.11096 (2018) (cit. on p. 49).

[78] Frederik Warburg, Soren Hauberg, Manuel Lopez-Antequera, Pau Gargallo,
Yubin Kuang, and Javier Civera. «Mapillary Street-Level Sequences: A
Dataset for Lifelong Place Recognition». In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2020
(cit. on pp. 64, 65, 68, 108, 111).

[79] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fer-
nanda Viegas, et al. «Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (tcav)». In: International conference
on machine learning. PMLR. 2018, pp. 2668–2677 (cit. on p. 69).

[80] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. «Concept bottleneck models». In:
International conference on machine learning. PMLR. 2020, pp. 5338–5348
(cit. on p. 71).

[81] Mateo Espinosa Zarlenga et al. «Concept embedding models: Beyond the
accuracy-explainability trade-off». In: Advances in Neural Information Pro-
cessing Systems 35 (2022), pp. 21400–21413 (cit. on p. 71).

119

https://doi.org/10.5281/zenodo.4957738
https://github.com/toshas/torch-fidelity
https://github.com/toshas/torch-fidelity

	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	Introduction
	Focus
	Objectives
	Composition

	Background
	Artificial Intelligence
	Machine Learning
	Deep Learning
	The Perceptron and Biological Neurons
	Neural Networks and Deep Learning
	CNNs and the Visual Cortex

	Visual Place Recognition
	Mathematical Formulation
	Visual Challenges
	Connection to Deep Metric Learning
	Triplet Loss
	Weakly Supervised Triplet Ranking Loss
	Contrastive Loss
	Generalized Contrastive Loss
	Multi-Similarity Loss

	Evaluation Metrics

	Generative Artificial Intelligence
	Variational Auto-Encoder
	Auto-Encoder
	Variational Lower Bound
	Vector Quantised-Variational Auto-Encoder

	Generative Adversarial Networks
	Diffusion Probabilistic Models
	Denoising Diffusion Probabilistic Models
	Denoising Diffusion Implicit Models
	Latent Diffusion Models

	Uncertainty Estimation
	BayesCap
	ProbVLM

	Experiments
	Embedding Information Inspection
	Inspection Framework
	Implementation Details
	Metrics
	Quantitative Results
	Fidelity to Conditioning Information
	Qualitative Results

	Prediction Uncertainty
	Uncertainty Framework
	Implementation Details
	From Per-Feature to Instance Level Uncertainty
	Metrics
	Quantitative Results

	Conclusions and Future Work
	Conclusions
	Findings
	Limitations

	Future Work

	Variational Lower Bound
	Kullback-Leibler divergence non-negativity

	Probability Distributions
	Heavy-tailed distribution

	Experimental Details and Additional Results
	ldm training curves
	Quantitative ldm results
	BayesCap training curves
	Binning strategy for BayesCap results
	BayesCap uncertainty distributions

	Bibliography

