
POLITECNICO DI TORINO

COLLEGIO DI INGEGNERIA INFORMATICA, DEL CINEMA E
MECCATRONICA

Corso di Laurea Magistrale in Ingegneria Informatica

A new benchmark for Anomaly
Segmentation in driving scenes,
using the CARLA simulator

Relatore

Prof. Carlo MASONE
Phd. Shyam Nandan RAI

Candidato

Andrea PANI

SESSIONE DI LAUREA DI MARZO/APRILE 2025

Contents

1 Introduction 5

2 Background 7
2.1 Autonomous Driving: an Overview 7

2.1.1 System Architectures . 8
2.1.2 Sensors and Hardware . 10
2.1.3 Localization and Mapping . 11
2.1.4 Perception . 12
2.1.5 Assessment . 12
2.1.6 Planning and Decision Making 13

2.2 Semantic Segmentation . 13
2.2.1 Datasets . 14
2.2.2 Architectures . 15
2.2.3 Metrics . 16

2.3 The CARLA simulator . 17
2.3.1 World and Client . 17
2.3.2 Actors and Blueprints . 18
2.3.3 Maps and Traffic . 18
2.3.4 Weather . 20
2.3.5 Sensors and Data . 21

3 Related works 25
3.1 The Fishyscapes Benchmark . 25
3.2 The SegmentMeIfYouCan Benchmark 26
3.3 The StreetHazards dataset . 27
3.4 Detecting outliers in mask-level predictions 27
3.5 Mask2Anomaly . 28

4 Dataset Creation 31
4.1 Adding objects to CARLA . 31
4.2 The CARLA Client . 32

4.2.1 Client parameters . 33
4.2.2 Client steps . 34

4.3 Recording configuration . 36
4.4 CARLA-Normal . 37
4.5 CARLA-Anomaly . 38

3

CONTENTS

5 Experiments and Results 41
5.1 Training . 41
5.2 Inference . 42

5.2.1 Metrics . 42
5.2.2 Experiments . 43

6 Conclusions 47

Chapter 1

Introduction

Autonomous driving holds the keys to a future where driving time could be real-
located to other, more productive activities, where accidents due to human errors
are minimized and where traffic could be optimized to reduce energy consumption.
However, much progress still needs to be made for this to happen. In particular,
handling of anomalous, hazardous objects, rarely seen by the vehicle during normal
operation, is particularly difficult for the current state-of-the-art autonomous cars;
this poses safety risks that sometimes lead to dangerous accidents, including pedes-
trian death. Furthermore, most deep learning models deployed on these cars are
so called “black-box”, because it’s difficult to predict their behavior reliably and to
identify what caused an accident after it happened. Research on these matters has
been slow partly because it is difficult and expensive to produce datasets of road
scenes with anomalies, making the development of deep-learning models to detect
them difficult. One possibility to produce a high quantity of data with low economic
cost is the use of graphic engines to simulate realistic environments with cities, vehi-
cles and pedestrians. This thesis investigates the possibility of using CARLA (Car
Learning to Act), a simulator based on Unreal Engine, to produce a dataset of road
scenes filled with anomalous objects. The simulator, by offering software imple-
mentations of a variety of sensors like RGB cameras and LIDAR, often part of the
perception modules of autonomous vehicles, offers also the possibility of recording
different modalities of data. In the first part of this work a script is developed us-
ing the API provided by CARLA, that by taking user inputs and controlling the
simulation as such, produces a dataset of road scenes in different maps and weather
conditions. Then, after the collection of the dataset, some of the state-of-the-art
models for anomaly segmentation on road scenes are tested on this dataset to assess
their performance. In particular, the following chapters cover:

• Chapter 2, Background, includes an overview of Autonomous driving, an in-
troduction to the task of Semantic segmentation and a description of all the
features of the CARLA simulator

• Chapter 3, Related works, is focused on datasets and models in the task of
Anomaly segmentation, that have been used or influenced this work

• Chapter 4, Dataset creation in which is described how the CARLA simulator
was used to produce datasets with different sensor modalities and with or

5

CHAPTER 1. INTRODUCTION

without anomalies

• Chapter 5, Experiments and results, discusses how the datasets where used to
benchmark models for the task of Anomaly segmentation, giving insights into
their strength and weaknesses

• Chapter 6, Conclusions, wraps up the work, by hypothesizing on future direc-
tions that research on the matter discussed on this thesis could take

Chapter 2

Background

2.1 Autonomous Driving: an Overview

An Autonomous Driving System (ADS) [1], also known in popular culture with the
somewhat misleading term “self-driving car”, is a vehicle that is capable of oper-
ating with reduced or absent human input. Since according to a report [2] by the
National Highway Traffic Safety Administration (NHTSA) as much as 94% of road
accidents are caused by human errors, this paradigm shift promises a much more
secure driving environment, other than related benefits such as reduced energy con-
sumption, reduced stress, and increased productivity due to reallocation of driving
time. However, despite business-driven promises, no company or organization is
anywhere near achieving full autonomy, especially in challenging scenarios such as
urban environments. An important comparison framework for ADSs is the one [3]
proposed by the Society of Automotive Engineers (SAE) that defines 5 levels of
autonomy:

• Level 0: no automation at all

• Level 1: primitive driving assistance methods such as Adaptive Cruise Control,
Anti-Lock Braking Systems and Stability Control

• Level 2: partial automation with advanced assistance like Emergency Braking
or Collision Avoidance System (CAS)

• Level 3: conditional automation, the driver can focus on other tasks while the
car is operating but needs to quickly be able to take over the vehicle when
prompted with an acoustic signal. Furthermore, the vehicle can only operate
in “controlled environments”, formally defined as Limited Operational Design
Domains (ODDs), such as highways.

• Level 4: no human input is needed, but the vehicle can operate only in ODDs
where special infrastructure or detailed maps exist. When departing from
these areas, the vehicle must automatically park itself.

• Level 5: complete automation, the vehicle can operate by itself in all scenarios
and weather conditions possible.

7

CHAPTER 2. BACKGROUND

Figure 2.1: The 6 Levels of Autonomus Driving

For context, the Tesla Autopilot is considered by industry experts to be a Level 2
SAE technology [4], since it “requires active driver supervision and does not make the
vehicle autonomous” as stated on Tesla’s official website. Instead, Mercedes-Benz
has recently announced its Level 3 DRIVE PILOT system on the luxury models S-
class and EQS [5]. This newer version reaches the world record of up to 95 km/h of
speed, but it can only operate on the German Autobahn network, legally allowing the
driver to divert attention away from the vehicle. Regarding Level 4, companies such
as Waymo and Baidu are testing driverless taxies, also called robo-taxies, in certain
parts of the USA and China, respectively [6]. However, these early adoption efforts
face challenges that range from social acceptance, cybersecurity, and production
costs. Regarding Level 5, the Toyota Research stated that no automaker is even
close to achieving full autonomy [7], despite announcements by business leaders.

2.1.1 System Architectures

ADS architectures can be classified at the macro-level by how vehicles interact with
each other, and at the micro or vehicle level by how the different modules interact to
enable autonomous driving. At the macro-level there are two main approaches fol-
lowed: ego-only system or connected, multi-agent system. In a Ego-Only System,
all the necessary operations for autonomous driving are carried out in the vehicle
only, without relying on external elements or other vehicles. Most of the State-
of-The-Art ADS fall into this category. In a Connected Multi-Agent System
instead, the agents (vehicles) interact with each other using dedicated infrastructure
sharing information about driving and the environment. This approach is mostly

CHAPTER 2. BACKGROUND

Figure 2.2: Classification of Automated Driving System Architectures

theoretical for now since it requires huge infrastructural changes, but holds the
promise of solving ego-only vehicle problems such as sensing range, limited com-
putational power and blind spots. At the vehicle level, the architectural choices
used can be broadly categorized as modular systems or end-to-end driving systems,
as shown in figure 2.3. In a Modular system, the architecture is structured as
a pipeline that processes sensory inputs and produces actuator outputs. The core
components of a modular ADS pipeline are:

• Localization and Mapping

• Perception

• Assessment

• Planning and Decision Making

• Vehicle Control

• Human-Machine Interface

The advantage of this architecture lies in the decomposition of a complex problem
(automated driving) into a set of smaller ones, that in some cases have a complex and
rich scientific literature on their own (for example, Computer Vision and Robotics).
Apart from knowledge transfer, modularity allows for more safety, for example by
adding a set of hard-encoded rules in the pipeline, and interpretability, as functions
are self-contained in a module. Drawbacks of this architecture choice are error-
propagation and over-complexity. For example, in the first ADS fatality caused
by a Tesla car, a wrongly classified white trailer (as sky) was propagated from the
Perception module up to the end of the pipeline, causing a severe system error.
In a End-to-end System motion is generated directly from sensory inputs, using
an all-in-one approach. In this architecture, motion can come in the form of a set
discrete actions, such as accelerate or turn left, or as the continuous control of the
vehicle peripherals. To implement and end-to-end pipeline, three main strategies
are used:

CHAPTER 2. BACKGROUND

• Direct supervised deep learning uses a model that learns directly from a
human driver and can be trained offline. This method has poor generalization
performance

• Deep Reinforcement Learning uses a model that learns by online training
the optimal way of driving. However, urban driving has not been achieved yet
using this method.

• Neuroevolution uses evolutionary algorithms to train a neural network model,
without backpropagation. Real-world driving has not been achieved yet.

Generally speaking, the biggest problem of the end-to-end driving paradigm is the
lack of interpretability and hard-coded safety measures, since the system works as
a kind of “black box” in which is difficult to identify possible incident causes.

Figure 2.3: Flow diagram of (a) a Modular System and (b) and End-to-End Driving
System

2.1.2 Sensors and Hardware

Every modern autonomous vehicle uses a wide variety of on-board sensors for op-
eration; in most cases, high sensor redundancy is needed to guarantee robustness
and reliability. Types of sensors used include exteroceptive sensors, used to perceive
the environment, proprioceptive sensors, used for internal vehicle monitoring, com-
munication arrays, actuators, and computational units. The most commonly used
Exteroceptive sensors for perception are:

• Monocular cameras, that perceive color while not emitting any signal. Cou-
pled with powerful 2-D Computer Vision algorithms, they can be a simple yet
powerful sensing tool, although affected by illumination conditions

• Event cameras record data asynchronously for individual pixels with respect
to visual stimulus. The output therefore consists of irregular data points /
events caused by changes in brightness. Current event cameras have lower
resolutions than standard cameras.

CHAPTER 2. BACKGROUND

• Radar perceives the distance of objects by measuring the time and strength
of emitted radio waves, returning to the source after bouncing back on object
surfaces. It is simple, lightweight, and cost-effective.

• LIDAR has a very similar principle to that of the Radar, but uses lasers of
ultraviolet, visible or near-infrared light instead of radio waves. Its accuracy
under 200 meters is much stronger than that of Radar. LIDARs are affected
by weather conditions such as rain, fog or snow and are generally larger than
Radars, making them less practical.

In general, ultrasonic sensors like Radar and LIDAR serve to compensate for the
shortcomings of cameras under certain conditions, for example at night. However,
being active sensors, they can be affected and affect other systems as well. Pro-
prioceptive sensors are crucial in determining speed, acceleration, yaw and other
state parameters that require continuous monitoring to guarantee safe operation of
a vehicle. Some examples of proprioceptive sensors are wheel encoders and IMU
(Inertial Measurement Unit), used for odometry (the process of estimating the posi-
tion and orientation of a moving object), tachometers to measure vehicle speed and
altimeters for altitude.

2.1.3 Localization and Mapping

In an ADS driving scenario, Localization is defined as determining the precise po-
sition and orientation of the vehicle in its environment. This task is crucial in order
to keep the lane, avoid obstacles and route planning. As shown in Figure 2.3, the
Localization module is part of the driving pipeline of a Modular ADS. Mapping in-
stead refers to the creation of a representation of the vehicle’s surroundings, starting
from onboard sensors data (like cameras and LIDAR); it provides the vehicle the
context necessary to understand its environment, like roads, buildings and traffic
signs. A simple strategy for Localization is GPS-IMU fusion: since using only
position and orientation coming from the IMU unit leads to accumulated error over
time, GPS readings are integrated to help correct them, leading to more reliable lo-
calization of the vehicle over time. However, the accuracy required by urban driving
environments is too high for current GPS-IMU systems to be employed effectively,
and their accuracy even drops in particularly dense urban scenarios or in the pres-
ence of tunnels. In Simultaneous Localization and Mapping (SLAM), the
task of location and mapping are combined, by simultaneously building the map
during operation (online) and localizing the vehicle in it. The technique comes from
robotics and is generally applied in closed environments, while its application in open
scenarios like the one needed by ADS is for now inefficient. For this reason it is still
common for autonomous cars to use pre-built maps; in a technique called A-Priori
Map Based Localization, online data coming from sensors is compared to an al-
ready built map to find the best matching position. This method obviously requires
the additional step of map creation, but what if the environment changes signifi-
cantly over time? The map needs to be updated, an expensive operation. That’s
why SLAM techniques have the potential to replace a priori map-based methods if
their performance increases in the future.

CHAPTER 2. BACKGROUND

2.1.4 Perception

Perception is the ADS task of perceiving the environment with the goal of extract-
ing useful information that the vehicle can use for safe navigation. It encompasses
various different sub-tasks such as object-detection, semantic segmentation, road
and lane detection, and object tracking. In Object Detection, the goal is to iden-
tify both the location and size of objects in the vicinity of a vehicle, be it static, like
roads and traffic signs / lights, or dynamic, like vehicles and pedestrians. After the
deep learning revolution in 2012, two different architectural style choices have been
used to perform object detection:

• Single stage detection networks use a single neural network to produce
object locations (bounding boxes) and labels at the same time. Models like
You Only Look Once (YOLO), based on convolutional neural networks (CNNs)
and more recently the DEtection TRansformer (DETR) are examples.

• Region-proposal networks employ a two stage process: first a network select
regions of interest in an image, then another network categorizes them. An
example is the Faster R-CNN models.

When comparing models for object detection that needs to be deployed in au-
tonomous vehicles, not only accuracy in bounding boxes estimation needs to be
taken into consideration. Computational power is extremely important, because the
car needs to have time to react to objects; that is why a balance between at how
many frame per second (FPS) a model can operate and its accuracy needs to be
considered. In Semantic Segmentation, each pixel in an image is classified as
belonging to a different class. This task is important for autonomous driving since
some objects like roads, sidewalks and traffic lines are poorly defined by bounding
boxes. Since this thesis work regards the creation of a dataset for semantic segmen-
tation, and in particular with the goal of segmenting anomalies in road scenes, a
more detailed analysis of architectures for semantic segmentation is found in Sec-
tion 2.2. Often simply understanding the location of an object is not enough for safe
driving, but also the speed and future direction of an object needs to be estimated
using some kind of modeling, in order to prevent collision. In Object tracking, this
problem is often tackled with the use of multiple sensor modalities, such as cameras
and LIDAR, used together (sensor fusion). Likewise, often simply segmenting the
drivable surfaces using semantic segmentation models is not enough: in the problem
of Road and Lane detection a vehicle needs to understand the semantics of the
road in order not to cause accidents.

2.1.5 Assessment

After perception of the environment has occurred, a robust ADS also needs to quan-
tify uncertainties. The Assessment task consist in estimating future intentions of
dynamic actors such as vehicle and pedestrians, with the goal of inferring the overall
risk of the current situation. Assessment can take many forms:

CHAPTER 2. BACKGROUND

Figure 2.4: Risk assessment for road scenes

• Risk and uncertainty assessment aims to assess the global risk level of a
complex driving scene, composed, for example, of several vehicles or pedestri-
ans. This method could greatly increase the overall safety of an ADS pipeline

• Driving behavior and style recognition aims to build models of human
traits of drivers in order to predict future actions of vehicles

It is fair to say that these methodologies are of much importance for the future
development of SAE 5 truly autonomous vehicles, but at current times research on
these topics is still in its infancy and the problem of estimating driving behavior is
far from solved.

2.1.6 Planning and Decision Making

Planning in an ADS is the task of, given a destination by the user of the system, to
develop a program with the goal of reaching that location. InGlobal planning, the
shortest route to the destination on a map must be found. This often takes the form
of choosing the shortest point-to-point path in a directed graph. Efficient algorithms
on this matter have been extensively investigated by research in various fields and
are already utilized in our GPS systems today. In Local planning, the goal is to
execute the global plan without failures. This implies finding trajectories to avoid
obstacles, while also satisfying optimality criteria for the graph-based configuration
space, using information coming from earlier modules in an ADS pipeline.

2.2 Semantic Segmentation

Image Segmentation [8] is a computer vision (CV) task that consists in partitioning
images (or video frames) into a set of known classes or objects. It plays a crucial role
in a broad range of applications such as medical imaging (E.g. tumor segmentation),
autonomous vehicles (E.g. identifying drivable surface, vehicles and pedestrians),
video surveillance and many more. Image Segmentation can be further subdivided
into three slightly different tasks:

CHAPTER 2. BACKGROUND

Figure 2.5: Difference between Image recognition and Semantic segmentation

• Semantic segmentation: assigns each pixel of an image to a set of known
classes (E.g. human, car, tree), discarding the regions of no interest. Objects
with the same class will have the same label.

• Instance segmentation: aims at segmenting countable objects by also dis-
tinguishing between different instances.

• Panoptic segmentation: combines both semantic segmentation and in-
stance segmentation, distinguishing between “things”, countable objects that
need instance identification, and “stuff”, amorphous regions like sky and grass
that are a single instance.

2.2.1 Datasets

To train models for Image segmentation, one of the most popular datasets is the
PASCAL Visual Object Classes (VOC). It consists of two sets of images,
1,464 for the training and 1,449 for the validation set, plus an hidden test set for
the benchmark challenge evaluation. Each of these images is annotated with one
of 21 classes (E.g. vehicles, household, animals) in addition to a background class
where for pixels not belonging to any of the classes. Another notorious dataset is
the Microsoft Common Objects in Context (MS COCO), consisting of 328k
images of 91 classes of common objects in their natural context. With respect to
datasets for road scenes understanding , Cityscapes [9] is without a doubt the most
used. It consists of 5000 images with high-quality pixel-level annotations, plus an
additional 20000 images with coarse (less precise) annotations. The images were
recorded by using a moving vehicle with cameras, over the span of several months
covering spring, summer and fall, in 50 cities in Germany. Images are annotated
with 30 classes divided into eight categories: flat, construction, nature, vehicle, sky,
object, human, and void. Since some classes are rarely present in images, in the
official benchmark challenge the authors evaluate the submitted models only on
a subset of 19 most frequent classes. The BDD100K dataset is a much larger
dataset comprised of 100.000 images coming from 1100 videos, captured by crowd-
sourced drivers across the world: this ensures stronger diversity with respect to
Cityscapes. Unlike the former, however, it has only 10 classes to be used for Semantic
segmentation, but captured images have a much higher variety of weather conditions
(like fog and rain) and include night shots.

CHAPTER 2. BACKGROUND

Figure 2.6: An example Image and Annotation coming from Cityscapes

2.2.2 Architectures

Before the advent of Deep Learning, Image segmentation was performed using vari-
ous simpler methods, such as thresholding a grayscale image to distinguish between
foreground and background, or grouping pixels similar in color, texture, and inten-
sity in clusters using the K-Means algorithm. With the widespread use of Neural
Networks, and in particular Convolutional Neural Networks (CNNs), several archi-
tectures were proposed over the years to perform segmentation harnessing the power
of large quantities of data and deeper networks. One of the first such architectural
patterns is the Fully Convolutional Network (FCN) that consists of a convo-
lutional network (usually existing architectures like VGG16 or GoogLeNet) where
all linear layers are stripped. As such, only convolutional layers remain, and the
final segmentation map is produced by utilizing only a transpose convolution layer
(de-convolution) that up-samples the image to the original resolution; one interest-
ing feature of the FCN is that it can handle images of different shapes since it only
uses convolutional layers. An evolution of this type of architecture is the Encoder-
Decoder model which, instead of a single de-convolution, produces a segmentation
map utilizing a series of such layers interposed by un-pooling layers. Using more
parameters than an FCN increases the sensitivity to smaller details, making the
Encoder-Decoder network perform better when small objects are involved, at the
cost of higher memory and computational usage. Going forward, The DeepLab
family of convolutional neural networks introduced a series of new features with re-
spect to simple Encoder-Decoder architectures that made them capture finer details
of images and handle images of higher resolutions:

• Atrous or Dilated convolutions make possible to combine information over
a larger area of an image using the same weights as standard convolutions
interspersed with zeros.

• Atrous Spatial Pyramid Pooling (ASPP), a technique consisting of multiple
atrous convolutions in parallel with different dilation rates. This makes the
model capture information at different scales simultaneously, improving seg-
mentation accuracy.

• The usage of different backbones like Resnet or MobileNet that provide feature
representation can influence model performance and efficiency, depending on
the desired task

Another important leap was made by utilizing the revolutionizing Transformer and
in particular Vision Transformer (ViT) architectures to image segmentation. Vi-

CHAPTER 2. BACKGROUND

sion Transformers improve upon some of the shortcomes of convolutional networks;
first, by leveraging their attention mechanism, they capture global dependencies
between different or distant parts of an image, making them even more able to de-
lineate complex objects than CNNs; second, each sub-task of image segmentation
(Semantic segmentation, Instance segmentation and Panoptic segmentation) was ap-
proached by researching and building different specialized convolutional networks,
while transformers offer a unified architecture that can tackle all simultaneously.
One of such architectures is MaskFormer and its evolution Mask2Former [10],
that introduce a single mask-level classification to handle both instance and semantic
segmentation, where usually a per-pixel classification strategy was employed.

2.2.3 Metrics

A simple metric to evaluate models on Semantic Segmentation is the Pixel accu-
racy (PA). It simply evaluates a model on the ratio of correctly classified pixels
over the total number of pixels; for example, in a problem setting with K different
classes:

PA =

PK
i=0 piiPK

i=0

PK
j=0 pij

where pij is the fraction of pixels labeled as class i while being from class j. When
classes are not balanced, meaning that some classes account for significantly fewer
labeled pixels than others, Mean pixel accuracy (MPA) can instead be used. It
calculates the ratio of correctly labeled pixels for each class and then averages them:

MPA =
1

K

KX
i=0

piiPK
j=0 pij

One of the most popular metrics is the Intersection over Union (IoU), also called
the Jaccard Index; It is defined as the area of intersection between the predicted
segmentation map and the ground truth, divided by the area of union between the
predicted segmentation map and the ground truth:

IoU = J(A,B) =
|A ∩B|
|A ∪B|

=
TP

TP + FP + FN

where A and B denote the ground truth and the respective predicted segmentation
map (with values ranging from 0 to 1) and:

• True positives (TP) are the fraction of pixels correctly labeled as belonging to
the class

• False positives (FP) are the fraction of pixels incorrectly labeled as belonging
to the class

• False negatives (FN) are the fraction of pixels incorrectly labeled as not be-
longing to the class

An averaged version over all classes of this metric is also widely used, called the
Mean IoU.

CHAPTER 2. BACKGROUND

Figure 2.7: Intersection over Union metric

2.3 The CARLA simulator

CARLA (Car Learning to Act) [11] is an open-source driving simulator designed for
research and development in the fields of autonomous driving, robotics, and arti-
ficial intelligence, developed by the Computer Vision Center (CVC) of Barcelona.
CARLA offers out-of-the-box high-fidelity 3D assets like cars and buildings, cus-
tomisable maps and implementations of sensors and control interfaces. The CARLA
simulator consists of a scalable client-server architecture, where multiple user scripts
written in the Python programming language can interact with the same server sim-
ulation, written in C++ and based on a modified build of the graphics engine Unreal
Engine, developed by Epic Games. The usage of Unreal Engine as a core provides
CARLA with high-quality graphics and photorealism, advanced physics simulation
and AI control of NPCs (non-player characters), without the need to re-implement
everything from the beginning.

2.3.1 World and Client

TheCARLA Client is the module that the user runs in order to obtain information
about the state of the simulation or to request changes to it. The client connects
to the CARLA server, running the simulation, using an IP address and a port; the
server could therefore be running on the same machine or in another machine on
the network. As mentioned before, multiple clients can connect to the same server,
although requiring synchronization to maintain a coherent simulation state. Some
of the actions that the client can perform are loading maps, recording the simulation
and retrieval of server information.

The World in CARLA is an object representing the actual state of the simula-
tion. It also acts as a logical layer that exposes methods to spawn actors, change
the weather and get information about objects placed in the world. There is only
one world per simulation, and it will be destroyed and created new every time a new
map is loaded. Another interesting concepts in CARLA are the asynchronous and
synchronous mode. When the asynchronous mode is set, the server runs as fast
as possible and handles client requests on the fly. This means that if the client is
slower than the server to handle data, it will lose some information. When using
the synchronous mode, instead, the server waits for a client “tick” to advance
the state of the simulation; this ensures that the client processing finishes before the
simulation can continue.

CHAPTER 2. BACKGROUND

(a) A vehicle

(b) A walker

Figure 2.8: Example of CARLA actors

2.3.2 Actors and Blueprints

Actors are the objects in a CARLA simulation that can perform actions and affect
other actors as well. Actors in CARLA include vehicles, walkers (pedestrians), and
even sensors, traffic signs and traffic lights; some of this actors can be spawned in
the simulation (vehicles, walkers, sensors) while traffic signs and lights are fixed
from the start. The actors that can be spawned in the running simulation are
described by a Blueprint, which essentially defines, using the Blueprint scripting
language and classes of Unreal Engine, its properties that depend on the type of
actor considered. Example of modifiable properties are color for vehicles, speed
for walkers and resolution for a camera sensor. Actors like vehicles and walkers
consist also of a 3-D model with animations, as exemplified in figure 2.8. All of the
blueprints available in CARLA can be accessed by using an object called Blueprint
Library, which accepts blueprint ids and gives back a blueprint for the associated
actor (which is in turn used by the World object for spawning). As an example, to
spawn the vehicle in figure 2.8, a query to the Blueprint library for the actor with id
equal to “vehicle.lincoln.mkz 2020” would be needed, while to spawn a pedestrian
(also in figure 2.8) the id to be used would be “walker.pedestrian.0001”.

2.3.3 Maps and Traffic

In CARLA, Actors are placed inside a Map, which comprises both a 3-D model of
the town, constructed using Unreal Engine, and the road annotation, which consists
of an OpenDRIVE file, a standard file format used for describing road networks.

CHAPTER 2. BACKGROUND

The Python API of CARLA, used by the client to control the simulation, relies on
the OpenDRIVE definition of roads, lanes and junctions to make its decisions. The
CARLA distribution comes with these, uninspiringly named, maps:

• Town01: A small, simple town with a river and several bridges.

• Town02: A small simple town with a mixture of residential and commercial
buildings.

• Town03: A larger, urban map with a roundabout and large junctions.

• Town04: A small town embedded in the mountains with a special “figure of
8” infinite highway.

• Town05: Squared-grid town with cross junctions and a bridge. It has multiple
lanes per direction. Useful to perform lane changes.

• Town06: Long many lane highways with many highway entrances and exits.
It also has a Michigan left.

• Town07: A rural environment with narrow roads, corn, barns and hardly any
traffic lights.

• Town10: A downtown urban environment with skyscrapers, residential build-
ings and an ocean promenade.

Each Map in CARLA has an associated set of Spawn points, which are lo-
cations in the Map recommended to spawn Actors to (and especially a Vehicle), in
order to place them well with respect to each other. Another important concept
related to Maps is the Waypoint, nothing more than a 3D point with information
about the lane which is included into; they can be, however, combined to define
paths into the road for vehicles to follow. Finally, when a number of Vehicles are
placed into the simulation, how can they be moved? CARLA provides the Traffic
Manager, a module that controls certain vehicles in a simulation from the client
side. The Traffic Manager provides a CARLA simulation with realistic traffic con-
ditions in an easy configurable way, for example it can activate lights of vehicles,
set the minimum distance vehicles should maintain between them and the desired
maximum speed. Another way of moving a vehicle that guarantees the user a more
fine-grained control is by using Agents. An Agent allows a vehicle to either follow
a random, endless route or take the shortest route to a given destination by obeying
traffic lights and reacting to other obstacles on the road. An agent is more versatile
than the standard Traffic manager since the user can control target speed, braking
distance and tailgating behavior (and more) of the vehicle, achieving more com-
plex and realistic driving behaviors. CARLA provides implementations for a Basic
Agent, that roams around the map or reaches a target destination in the shortest
distance possible by avoiding other vehicles and responding to traffic lights but ig-
noring stop signs, and a Behavior Agent, that can reach a target destination in the
shortest distance possible by following traffic lights, signs, and speed limits while
tailgating other vehicles.

CHAPTER 2. BACKGROUND

(a) Town01

(b) Town10

Figure 2.9: Example of CARLA Maps

2.3.4 Weather

Weather conditions in CARLA come in the form of adjustable parameters that can
alter the appearances of Maps by utilizing the underlining graphics power of Unreal
Engine. These parameters are grouped into an object that needs to be passed to
the World in order for the change to take effect, although, obviously, each Map has
its own default weather configuration. Parameters include:

• Cloudiness: ranging from 0 or clear sky to 100 or completely cloud sky.

• Precipitation: rain intensity values, going from 0 (no rain) to 100 (heavy rain)

• Fog density: fog concentration or thickness, with values ranging from 0 to 100.

• Wind intensity: controls the strength of the wind, from 0 (no wind) to 100
(strong wind)

So far in the latest CARLA version weather conditions only affect RGB cameras,
without affecting actors physics or other sensors (for example, a strong wind will
only move trees of a map, without affecting vehicles trajectories). For convenience,
CARLA already comes with a series of Weather presets ready be used: these are 27
in total, and each one is a combination of one of three daylight conditions (Sunset,
Noon and Night) with weather (Clear, Cloudy, Soft rain, Mid rain, Hard rain, Wet
cloudy and Wet). More complex weather scenarios, like weather changing as time
passes in the simulation, needs to be scripted.

CHAPTER 2. BACKGROUND

2.3.5 Sensors and Data

As said before, Sensors in CARLA are Actors, although a special type able to
measure and stream simulation data. Since there are a lot of different types of
sensors (which I will briefly present), also the type of data varies accordingly. The
moment in which a sensor gathers data also varies by type: some collect data on
every simulation step, others only when a certain event is registered. Despite their
differences, each sensor follows a similar life-cycle pattern:

• Setting, in which the user sets the Blueprint attributes, such as the sensor
tick, which specifies when the sensor should record data out of every simulated
second. Other attributes are sensor-dependent and can greatly customize each
type of sensor to the user’s needs.

• Spawning, in which the sensors are placed in the simulation. Unlike others,
however, sensors need to be attached to an actor, which is usually a vehicle.

• Listening, in which sensors process the collected data using a user-defined
callback. The processing frequency can also be altered.

• Data Storing, in which processed data is stored on disk. Data can be tagged
using information like frame and timestamp, for smart browsing in the future.

The CARLA library divides each sensor type into three categories: Cameras, De-
tectors and Other.
Cameras capture the simulated world from their point of view. Currently, there
are 6 different cameras implemented:

• The RGB camera acts as a regular camera capturing images from the scene.
Modifiable parameters for this camera include shutter speed, gamma and ISO.
A set of post-processing effects can also be applied to enhance the image
realism.

• The Semantic camera classifies every object in sight by displaying it in a
different color according to its tags. Each tag corresponds to a class and is
determined by the folder in which the object 3D model is located inside the
project structure. This tag is encoded by the CARLA server in the image’s
red channel. The library also provides utilities to convert each tag to a color,
for example, using the Cityscapes palette.

• The Instance segmentation camera classifies every object in the field of
view both by class and also by instance ID. This implies that every object in
the simulation is identified by both its class and its specific instance ID. The
image tags are encoded, like in the Semantic camera, using the red channel,
while the object ID is split between the blue and green ones.

• The Depth camera provides an image of the scene codifying the distance of
each pixel to the camera (also known as depth buffer or z-buffer) to create a
depth map of the elements inside. For visualization’s sake, the image can be
saved using the Depth and Logarithmic Depth color palettes.

CHAPTER 2. BACKGROUND

Figure 2.10: From left to right, top to bottom: RGB camera, Semantic camera,
Instance camera, Depth camera, DVS camera and Optical flow camera

• The Optical flow camera captures the motion perceived from the point of
view of the camera. Every pixel recorded by this sensor encodes the velocity
of that point projected to the image plane.

• The DVS camera, also known as an Event camera, is a sensor that works
radically differently from a conventional camera. Instead of capturing intensity
images at a fixed rate, it measures changes of intensity asynchronously, in the
form of a stream of events, encoding per-pixel brightness changes. This sensor
can be customized by attributes such as positive and negative thresholds and
refractory period.

Sensors in the category Detectors register data when the Actor they are at-
tached to registers a specific event:

• The Collision detector registers an event each time its parent actor collides
against something in the simulated world.

• The Lane invasion detector registers an event each time its parent actor
crosses a lane marking, using the OPENDRIVE data associated with the cur-
rent map.

• The Obstacle detector registers an event every time its parent actor has
an obstacle ahead its way. Customizable attributes includes hit radius and
detection distance.

Finally, sensors in the category Others include proprioceptive and ultrasonic
sensor implementations:

• The LIDAR simulates a real rotating LIDAR by using ray-casting, a com-
puter graphics and computational geometry technique used to determine the
visibility of objects in a scene by tracing rays from a point of origin. This
implementation contains a lot of customizable attributes, such as the num-
ber of points generated per second, the number of lasers used (channels), the
detection range and the rotational frequency. Unfortunately, as of now, this
version of LIDAR is not influenced by weather conditions of the simulation
like a real sensor would.

CHAPTER 2. BACKGROUND

• The Semantic LIDAR functions the same as the standard LIDAR, but in-
cludes the instance and semantic ground truth (the tag and instance ID of the
Semantic/Instance camera) with the collected points.

• The Radar generates a conical field of view, which is translated into a 2D
point map representing detected object along with their speed relative to the
parent actor. Points collected this way consist of polar coordinates, distance
and velocity.

• The GNSS sensor reports the current Global Navigation Satellite System
(GNSS) position of its parent actor.

• The IMU sensor provides measures that a real accelerometer, gyroscope and
compass would retrieve for the parent actor.

CHAPTER 2. BACKGROUND

Chapter 3

Related works

In this chapter, datasets and methods aimed at Anomaly segmentation are intro-
duced. This task is defined as precisely segmenting anomalies, that are patterns
and elements which deviate from normality, by assigning an anomaly score to each
pixel of an image. Segmenting anomalies is important because most state-of-the-
art models for Semantic Segmentation are trained on a closed-set of well defined
classes, while in the real world previously unseen objects can appear at any time;
the failure to at least acknowledge the potential hazards can lead to unpredictable
and potentially dangerous consequences.

Figure 3.1: Example of a Segmentation model failing to detect objects on the road

3.1 The Fishyscapes Benchmark

Fishyscapes [12] was the first public benchmark for Anomaly segmentation of driving
scenes. It consists of an evaluation suite and two different datasets: FS Static and FS
Web. Each of these datasets is based on the validation set of Cityscapes (probably
the most notorious and used dataset for Semantic Segmentation of road scenes)

25

CHAPTER 3. RELATED WORKS

(a) Image with overlayed object (b) Segmentation mask

Figure 3.2: Fishycapes Benchmark, FS Static example from the validation set

on which a series of objects have been overlayed on the original images, producing
synthentic new images: in FS Static, objects from the PASCAL VOC not found
in Cityscapes have been overlayed, while in FS Web objects are first crawled from
the Internet using a changing list of keywords, processed and the overlayed. The
interesting part of FS Web is that, at least in the original authors’ intention, the
dataset is updated every couple of months with new objects, making it dynamically
changing. The benchmark, acknowledging that most methods used for Anomaly
segmentation produce uncertainty scores, uses a threshold to transform these into
binary scores that indicate wether a pixel of the image is anomalous or not. In the
related paper, the authors also proceed to test the state-of-the-art models of the time
on Fishyscapes, concluding that most of the methods required some modification of
the loss that reduced Semantic Segmentation performance and that models trained
with supervision from OOD (Out of Distribution) data consistently outperformed
unsupervised equivalents.

3.2 The SegmentMeIfYouCan Benchmark

The SegmentMeIfYouCan benchmark [13] builds upon Fishyscapes and other previ-
ous road anomaly datasets, trying to improve the diversity of scenarios and objects
included in the images. This works comes with a public leaderboard, an evaluation
suite and defines two tasks to tackle, with associated datasets: Anomalous Object
Segmentation and Road Obstacle Segmentation, both consisting of real collected
images, unlike Fishyscapes where the images are synthetic. In Anomalous Object
Segmentation, any object that doesn’t belong to any of the classes used in the train-
ing process (in this case, the one from Cityscapes) can appear anywhere in the
image; the associated dataset, called RoadAnomaly21, contains 100 images with an
increased (from previous works) amount of different objects, 26. Since, according
to the authors, sometimes defining what an anomaly is can be “fuzzy”, the Road
Obstacle Segmentation task considers every object present on the road, be it from
known or unknown classes, an anomaly. The associated dataset, RoadObstacle21,
contains 371 images with 31 different objects. The SegmentMeIfYouCan bench-
mark also defines two different metrics to challenge submitted models: one, similar
to Fishyscapes, evaluates anomaly scores on a per-pixel bases, another, instead, fo-
cuses on evaluating them on a component level. The component level metrics are

CHAPTER 3. RELATED WORKS

(a) RoadAnomaly21 (b) RoadObstacles21

Figure 3.3: Examples from the test sets of the SegmentMeIfYouCan benchmark

needed for small anomalies, that by occupying a small set of pixels do not contribute
that much to a negative per-pixel score, if mistaken for normal objects. Finally, the
paper’s authors tested various types of models on RoadAnomaly21 and RoadOb-
stacle21, finding that most methods show a significant drop in performance when
evaluated on the component-wise metrics; clearly, the authors concluded, there is
still much work to do to deliver models able to be deployed safely for autonomous
tasks.

3.3 The StreetHazards dataset

StreetHazards [14] is an Anomaly Segmentation dataset that is built using the
CARLA simulator, by leveraging its customization capabilities to insert a wider
variety of anomalies in a realistic scenario. According to the authors of this paper,
the usage of a simulated environment solves the problem of inconsistent lightning
and textures that synthetic datasets based on composed images, such as Fishyscapes
(where objects from different sources are overlayed with a real image) present, giving
the model unwanted cues that the object is, in fact, anomalous. The authors used 3
maps from CARLA to collect a training set of 5125 images and an additional one for
the 1,031 validation images, leveraging inbuilt RGB cameras sensors and Semantic
cameras. All the training and validation images do not have inserted anomalies.
The test set filled with anomalies is instead built on two different maps from the
ones used for training/validation, and it contains 1500 images in total.

3.4 Detecting outliers in mask-level predictions

In a work titled “On Advantages of Mask-level Recognition for Outlier-aware Seg-
mentation” [15], researchers used a Mask2Former architecture [cheng2021mask2former]
combined with a custom “anomaly detector” that extends the capabilities of the
standard mask-based architecture from simple semantic segmentation to what they
called “outlier-aware semantic segmentation”. The authors proposed (among others)
two different approaches that use a scoring function that maps each pixel, coming
from predictions by Mask2Former, to its out-of-distribution score. The first ap-
proach is called Anomaly of Ensembled Mask-wide predictions (AEM) and

CHAPTER 3. RELATED WORKS

is formally defined as:

sAEM(X)[w, h] = − max
k=1..K

NX
i=1

Mi[w, h] ∗ Pi(Y = k|Mi)

where X is the input image of size WIDTHxHEIGHT, (w, h) is a pixel belonging
to that image, M is a pixel mask of size WIDTHxHEIGHT from Mask2Former,
Pi(Y = k|Mi) is the class prediction distribution for a mask. Additionally, K is
the number of semantic classes of the semantic segmentation task and N is the total
number of output masks of Mask2Former. The second approach is called Ensemble
over Anomaly scores of Mask-wide predictions (EAM)

sEAM(X)[w, h] =
NX
i=1

Mi[w, h] ∗ (− max
k=1..K

Pi(Y = k|Mi))

using the same notation as before. According to the results presented by the re-
searchers who authored the paper, the EAM scoring function outputs lower anomaly
scores on semantic boundaries between in-linear and outlier pixels. This helps EAM
reduce false-positives in these regions with respect to the AEM approach.

3.5 Mask2Anomaly

Mask2Anomaly [16] is an anomaly recognition model that leverages the mask-base
segmentation novelties introduced first in MaskFormer and refined in Mask2Former
[10], adapting it to let it perform well not only on closed-set in-distribution (ID)
data, but also on out-of-distribution (OOD), not seen before during training, data.
Mask2Anomaly can jointly perform three different anomaly tasks with a single com-
mon architecture that are, in order of complexity:

• Anomaly segmentation (AS), that focuses on segmenting object from
classes that were absent during training, generating an output map that iden-
tifies the anomalous pixels

• Open-set semantic segmentation (OSS), that evaluates a segmentation
model’s performance on both anomalies and known classes. OSS ensures that
when training an anomaly segmentation model, its performance on known
classes remains unaffected.

• Open-set panoptic segmentation (OPS), that simultaneously segments
distinct instances of unknown objects and performs panoptic segmentation for
the known classes.

Enhancements towards detecting anomalies made by Mask2Anomaly with respect
to Mask2Former have been made at the architectural, training and inference level.
First, the architecture of Mask2Former was modified extending the masked-attention
mechanism (MA), that attends primarily to foreground regions of images, with a
global masked-attention (GMA), that also considers background regions. This was

CHAPTER 3. RELATED WORKS

necessary because anomalies may also appear in the background, still this novelty
does not significantly impact the benefits of Mask2Former’s masked-attention in
terms of training convergence and semantic segmentation performance. Second,
during training, a mask contrastive learning procedure is utilized in order to max-
imize the difference between anomaly scores for OOD data, which should be high,
with scores for ID data, which should be as low as possible. This is performed using
an additional outlier dataset and performing an additional fine-tuning procedure on
top of training, that consists in combining the training ID images with objects cut
from the OOD data (anomaly-mix). Lastly, for inference, a refinement mask is used
that filters out most false-positives (FP) from the predicted anomaly-mask. This
approach was inspired by Panoptic-segmentation (that groups objects in a scene in
“things”, countable objects, or “stuff”, amorphous regions). The filtering builds a
binary mask where the unwanted “stuff” pixel masks have value 0 and 1 otherwise.
Since this approach is tailored for road-type scenes and most obstacles are placed on
the road, the ”Road” regions are excluded from the filtering of the refinement-mask.

Figure 3.4: Mask2Anomaly

CHAPTER 3. RELATED WORKS

Chapter 4

Dataset Creation

In this chapter, I will describe how the CARLA simulator was used to collect the
datasets used in training and evaluating models for anomaly segmentation. The
main desired characteristics for the datasets that guided the work and influenced
choices made were the following:

1. Given that most of the datasets for anomaly segmentation in road scenes
consist of new objects, unseen during training, mostly placed on the road, to
expand the notion of what an anomaly is. For example, to also consider as
anomalies objects already seen during training, but in strange configurations,
like a fallen tree on the road or an improperly parked car.

2. Most of the datasets collect only RGB data, and the ground truth needs to
be derived from manual labeling or from some automated procedure (usually
less precise and realistic). Since CARLA provides implementations for other
sensors like LIDAR (although imperfect), to expand the data collection to
consider other modalities like 3-D point clouds.

3. Collecting a continuous stream of data just as a car on the road would.
This could enable models that can leverage temporal information to recog-
nize anomalies better.

4.1 Adding objects to CARLA

The CARLA build already provides objects called Props, which model the various
structures and items that can be found on or near roads, such as benches, boxes,
bins, debris or trash. They are spawned in the simulation as actors, like vehicles
and walkers, by selecting the corresponding Blueprint from the Blueprint library.
However, not all the props were considered useful for our scenario: some objects were
too big and designed to be spawned as map-customization tools outside the road
(like, for example, food carts and fountains), while others focused only on certain
categories like road construction items and garbage. For this reason, I decided to
try and add new 3-D models to hopefully enhance the different categories of objects
that could be spawned in the simulation. To this end, was extremely useful the
website CGTrader, a 3-D marketplace for content creators to share their work for

31

CHAPTER 4. DATASET CREATION

(a) A fan 3-D model (b) A football 3-D model

Figure 4.1: Examples of objects added into CARLA

others to buy; apart from paid content, there is also an extensive library of free-
to-use objects to download after registering to the site. Each downloaded object
needed to be in the FBX (Filmbox) format, which is the format adopted by Unreal
Engine, the backbone of CARLA, for importing 3-D models. Not all the models
downloaded from CGTrader were ready to be imported nicely into Unreal Engine;
some came with embedded textures, a type of file that specifies the surface of the
3-D model, and some came with textures that needed to be manually imported and
added to the model in Unreal Engine. In order to define the surface properties
of a 3-D model or Mesh, Unreal Engine uses a structure called a Material, which
can control and combine textures to create a final surface for the mesh. Its main
controllable attributes are:

• Base color: the main color or texture of the surface.

• Metallic: defines how metal-like the surface is, from 0 (similar to plastic) to
1 (completely metallic)

• Roughness: how shiny or matte the surface is, from 0 (completely shiny /
reflective like glass) to 1 (completely matte or completely not reflective)

• Normal: A texture that adds small surface details (like bumps or grooves)
without modifying the underlining geometry (useful, for example, to recreate
brick or wood textures)

This Material structure was therefore used to combine the various downloaded tex-
tures to create a final realistic surface to be added to the 3-D skeleton of an object.
These newly added objects needed to be registered in a JSON file in order for them to
be included in the Blueprint library as props and become spawnable inside CARLA
maps.

4.2 The CARLA Client

In this section, I will describe how the CARLA client, the script that controls the
CARLA simulation, was crafted in order to allow enough versatility to record both

CHAPTER 4. DATASET CREATION

the datasets for training, with no anomalies, and the one for evaluation, with added
anomalies. After development, its main features were to control the simulation by
connecting to a CARLA server, to spawn a variable numbers of actors like vehicles
and walkers, to attach sensors for recording data and to spawn anomalies (props),
all in varying maps and weather conditions. This section continues by describing
the different parameters that the client scrips offers to customize the simulation, the
steps that it follows to achieve the desired behavior, and finally the characteristics
of the training and evaluation datasets that were collected by using it.

4.2.1 Client parameters

The user of the client script can specify parameters and configuration for the sim-
ulation in two different “places”: a JSON file, mainly used for lengthy and more
structured data, and command-line arguments to be specified when running the
script. The JSON file is to be structured in this way (in order for the script to
process it correctly):

• “maps”: this field is an array of strings in which the names of selected maps
for the simulation should be specified (e.g. Town01, ..., Town10)

• “weather”: this field is an array of strings in which the names of the desired
weather conditions for the simulation should be specified (e.g. ClearSunset,
CloudyNoon, SoftRainNight). They correspond to weather presets offered by
CARLA.

• “props”: this field is an array of strings in which the names of the desired
props for the simulation should be specified (e.g. fan, football, mattress). In
particular, the Blueprint library uses this strings to locate the 3-D prop model
to spawn in CARLA.

• “vehicles”: this field is an array of objects. Each object should specify a
vehicle configuration, composed of the blueprint id of the car for the blueprint
library (e.g vehicle.tesla.model3) and a list of sensor objects. Each sensor is
also defined by its blueprint id (e.g sensor.camera.rgb or sensor.other.lidar),
the “transform” field that specifies the x-y-z location in space relative to the
parent object (the car), the “parameters” field that specifies values for the
sensor parameters (which differ greatly by sensor, e.g field of view for the
RGB camera and rotational frequency for the LIDAR) and a “name” which is
used to create different directories to save data. In summary, each car should
have its own sensors configured, because differences in size between 3-D models
make impossible to attach the sensors always in the same place in every car.

The command-line arguments that the user can specify when running the script are
instead:

• –host and –port define the IP address of the machine running the CARLA
server (that can be the same running the client, or another, potentially in
another network) and the TCP port used for connection.

CHAPTER 4. DATASET CREATION

• –verbose specifies the verbosity of the script output. Choices are between
0, completely silent, 1 that displays basic simulation infos like iteration and
vehicles number, 2, that displays also debug info like when there is a spawn
collision or the elapsed seconds for each iteration.

• –config-file that specifies the name of the JSON file containing the simulation
configuration

• –runs that specifies the number of times the simulation will run (iterations).

• –seconds specifies how long each run should last. It is worth noting that this
is not real time but simulated time, therefore influenced by how fast the CPU
and GPU is processing the simulation, and it can vary greatly each time.

• –vehicles specifies the number of vehicle actors that will be spawned in each
simulation run.

• –walkers specifies the number of walker actors that will be spawned in each
simulation run.

• –record specifies if simulation should be recorded using the sensors specified
in the vehicle configuration.

• –folder specifies the name of the folder in which recorded sensor data should
be stored.

• –game-window opens a window that displays a camera following the ego-
vehicle in its path.

• –anomalies specifies the maximum number of anomalies that will be spawned
in each run. Since all anomalies are spawned in the same place, values for this
parameter should stay low in order to not block the car in its path (for example,
1 to 3 anomalies).

4.2.2 Client steps

The algorithmic steps that the CARLA client follows serve two purposes: first they
initialize the simulation with the desired configuration, then they loop as long as the
number of iterations desired is reached, called a “game loop”. More specifically, the
script first gathers parameters from the command line, process them, then proceeds
to read the JSON file, as the path of this file needs to be also specified from the
terminal. If the configuration is found correctly, the script tries to connect to the
CARLA server using the IP address and port specified by the user and retrieves
the corresponding World and Blueprint library objects that are to be used to find
blueprints and spawn actors. The script then loops as long as the number of –runs
that the user specified is reached, each time repeating the following steps.
First, a map and a weather condition is randomly extracted from the “maps” and
“weather” configuration fields; this has the intent of recording data as diverse as

CHAPTER 4. DATASET CREATION

possible within the tools provided by the CARLA simulator. The ego-vehicle con-
figuration is then chosen randomly from the possible “vehicles” configurations spec-
ified; using the corresponding blueprint ID the vehicle blueprint is retrieved by the
Blueprint library and then spawned using a random spawn point in the map, by
means of the World object. If the weather condition includes Night or Rain, the
vehicles lights are turned on. A Behavior Agent is used to control the vehicle, and as
a destination to reach a random spawn point of the map is chosen. The simulation is
then populated with as many vehicles and walkers (pedestrians) as the user specified:
blueprints are once again randomly extracted from the ones provided by CARLA
in the Blueprint library and the associated attributes are randomly assigned (color
for cars, as an example) to enhance the diversity of actors in the scenes. If the user
wants to record some data, using the “–record” option, the list of sensors is retrieved
from the vehicle configuration; each sensor needs a callback that specifies what to do
with the collected data produced on the CARLA server, for this I defined a callback
for each sensor (using guidelines and examples from the CARLA documentation)
that generally does some processing to the data and then saves it on disk. This way,
each sensor recording is tagged and placed in a directory named after the sensor
using the format “RUN MAP WEATHER FRAME”, where “RUN” is the iteration
number, “MAP” and “WEATHER” are the selected map and weather condition
of the iteration and “FRAME” is the frame number, . As an example, an image
from an RGB Camera tagged as “1 Town05 WetCloudyNight 00024873.png” was
collected on the first iteration, the map was Town05 and the weather preset was
WetCloudNight.
The last initialization step occurs only if the user has specified the number of anoma-
lies desired, using the “–anomaly” argument; in this case, a random spawn point is
chosen from the pre-defined path that the Agent plans to follow and the anomalies
are spawned there. This way, the car will always reach the anomalies and bump into
them. As anomalies are nothing but prop objects in the CARLA simulation, they
are spawned using the Blueprint library and ids provided by the user in the JSON
file, field “props”.

In the “game-loop”, the client script advances the simulation by communication
with the server in synchronous mode. The Agent controls the ego-vehicle physics
moving it one waypoint at a time following its pre-planned path. If there is no
anomaly placed in the agent’s path, data is always recorded at the specified rate; if
anomalies are placed, instead, data is collected only when the anomalies are near the
ego-vehicle, by appearing in its field of view. More specifically, this behavior is im-
plemented by using an Instance camera with a custom callback that compares actor
ids of the prop anomalies with actor ids collected in data: if a match is found, the
client is notified by means of a flag and it starts recording, and when the anomaly
disappears from view, it stops again. This design choice was necessary to collect
small episodes for the anomaly dataset consisting of the ego vehicle reaching and
colliding with the anomalies. The game-loop can end in two ways: if the user has
specified a number of “–seconds”, the run will only last that amount and then end,
if not, it will end when the Agent has reached its destination. Before starting a
new iteration, a cleanup phase is executed when all vehicles, walkers and sensors
are “destroyed” from the simulation. In summary, the client script repeats initial-

CHAPTER 4. DATASET CREATION

ization steps and the game-loop for every iteration and when the desired number of
iterations (runs) is reached, it disconnects from the CARLA server and it ends.

4.3 Recording configuration

Here are listed all the parameters that I specified in the JSON file and on the
command-line during the recording of the two datasets, which I named CARLA-
Normal and CARLA-Anomaly. Some of these parameters are in common between
the two datasets, some are not. Starting with sensors in the vehicle configuration:

• 3 RGB Cameras: one in the center, called RGBCenterFront, one on the
left, RGBLeftFront and one on the right, RGBRightFront, of the vehicle. The
image resolution set was 1280x720 and the field of view (FOV) was set to 90
degrees. I also set the sensor attribute ”motion blur” to 0 to obtain sharper
images

• 1 LIDAR sensor on top of the vehicle, LIDARTop. The LIDAR was con-
figured following suggestions from CARLA example scripts with 64 channels
(the number of lasers used) generating 500000 points per second, covering a
range of 100 meters. To generate a full-circle point-cloud per simulation step,
the rotational frequency of the LIDAR is always set as the number of frames
per second of the CARLA client (fps).

• 3 Semantic/Anomaly cameras and 1 Semantic LIDAR to capture ground
truth for cameras and LIDAR. Here, the configuration changes between the
two datasets. In CARLA-Normal the ground truths consist of semantic maps
with values ranging from 0 to 28, indicating to which of the 29 CARLA classes
each pixel belongs to, recorded using Semantic cameras. In CARLA-Anomaly
the ground truths consist of anomaly binary maps, where each pixel is 0 if
not anomalous and 1 if anomalous, plus additional semantic maps similar
to CARLA-Normal but with an added 30th anomaly class (indexed 29). The
anomaly ground truths were recorded using an Instance camera with a custom
callback that I named an “Anomaly” camera to differentiate between the two.
The Anomaly camera uses the IDs of anomalies (which are nothing but prop
actors with an associated ID) to produce the two segmentation maps start-
ing from the IDs of the actors in the scene that a standard Instance camera
captures.

The other parameters in the JSON configuration were:

• “maps”: Town01, Town02, Town03, Town04, Town05, Town06, Town07 and
Town10HD (all of the maps provided by CARLA)

• “weather”:

{Sunset, Noon, Night} × {Clear, Cloudy, SoftRain, MidRain, HardRain,

WetCloudy, Wet}

(all the Weather parameters provided by CARLA)

CHAPTER 4. DATASET CREATION

Figure 4.2: Configuration used to record the dataset

• “props”: baseballbat, basketball, beerbottle, bicycle, dumbbell, football,
mattress, skateboard, television, tire, woodpalette, pillow, guitar, servicetrol-
ley, fan, ladder, officechair, warningaccident, warningconstruction, construc-
tioncone, streetbarrier, plasticchair, trashbag, box01, colacan, bin, clothcon-
tainer, container, glasscontainer, trashcan01, wateringcan, haybale, traffic-
cone01 (these are the objects that I added into CARLA plus other prop objects
already packaged that I considered viable as road obstacles)

• “vehicles”: Tesla Model3 with the sensor configuration previously described

and the command-line arguments were:

• –runs 50 for CARLA-Normal and 25 for CARLA-Anomaly

• –seconds 0 since each simulation lasts as longs as the vehicle reaches its
destination

• –vehicles 50 for CARLA-Normal and 0 for CARLA-Anomaly. This was the
only way I found to prevent other vehicles to hit anomalies before the ego-
vehicle.

• –walkers 30

• –record set to record the data using the specified sensors

• –anomalies 3 for CARLA-Anomaly, clearly none for CARLA-Normal

4.4 CARLA-Normal

CARLA-Normal is the dataset used to train models on in-distribution data. Of the
50 CARLA simulation episodes recorded, 40 were selected for the training portion

CHAPTER 4. DATASET CREATION

of the dataset and the remaining 10 for validation. This way, CARLA-Normal
training consists of a total of 6.099 images, combined from the 2.033 images or
frames collected by each one of the three RGB cameras (Center, Left and Front),
and the corresponding 2.033 point-cloud recording of the LIDAR sensor. Likewise,
CARLA-Normal validation consists of 549 images per sensor; by combining, once
again, images from each RGB camera we obtain 1.647 images in total. Each image
and point-cloud has an associated ground-truth, recorded using the corresponding
Semantic cameras and LIDAR.

(a) RGB image (b) Semantic ground-truth

Figure 4.3: Example of image ground-truth pair from CARLA-Normal

4.5 CARLA-Anomaly

CARLA-Anomaly is the dataset used to evaluate models on out-of-distribution
(OOD) data. The 25 CARLA simulation episodes produced 1.273 sensor record-
ings, that, in the case of images, account for a total of 3.819 images by combining
all the RGB cameras. Each image is paired with the corresponding semantic and
anomaly mask (as explained in the previous sections); the point-cloud recordings
also have semantic ground truth as in CARLA-Normal. Each episode depicts the
ego-vehicle reaching and colliding with a variable number of anomalous objects (set
to 3 maximum in the configuration). As sensors in the script stop recording once
the anomalies stop being in the field of view of the ego-vehicle, each episode has a
short recorded duration. As shown in Figure 4.4, where the ego-vehicle is reaching a
bike object that was added to CARLA, sometimes only certain cameras are actually
recording anomalies because of their different placements. Therefore, not all frames
in CARLA-Anomaly (be it images or point-clouds) contain anomalies, but most are.

CHAPTER 4. DATASET CREATION

(a) Left-Front RGB Camera view (b) Right-Front RGB Camera view

(c) Center-Front RGB Camera view

Figure 4.4: Example of recorded frame in the CARLA-Anomaly dataset

(a) A visualization of an anomaly mask (b) A visualization of a segmentation mask

(c) A visualization of a Semantic LIDAR
point-cloud

Figure 4.5: Example of ground truths of CARLA-Anomaly

CHAPTER 4. DATASET CREATION

Chapter 5

Experiments and Results

In this chapter, I will describe how some models were first trained using CARLA-
Normal and then evaluated on the task of Anomaly segmentation on CARLA-
Anomaly. All the training procedures and experiments were carried out on a machine
located in the Visual And Multimodal Applied Learning Laboratory (VANDAL) of
Politenico di Torino, equipped with an NVIDIA RTX 3090 graphics card (GPU).

Parameter Value

BATCH SIZE 4

LEARNING RATE 0.0001

WEIGHT DECAY 0.05

ITERATIONS 60000

CROP SIZE (360, 760)

BACKBONE Swin-B

Table 5.1: Training configuration

5.1 Training

Since methods based on ensembles of masks, namely AEM and EAM, implement a
novel scoring anomaly function on top of existing mask transformer architectures,
in order to perform experiments on CARLA-Anomaly was first necessary to train
a Mask2Former model from scratch using the corresponding in-distribution dataset
CARLA-Normal. The Mask2Anomaly method is also based on Mask2Former, but
as highlighted in the “Related works” section, it modifies the original architecture
by substituting Masked-attention with a tweaked version called Global masked-
attention, therefore needing a different training procedure. The two Mask2Former
variants were trained using the same configuration and hyperparameters listed in Ta-
ble 5.1 for 60.000 iterations using the AdamW optimizer. Since the RTX 3090 comes
with 24 GB of VRAM, the batch size was reduced to just 4 images per batch and the
crop size was set to 360x760 to make model and data fit into memory. After training,

41

CHAPTER 5. EXPERIMENTS AND RESULTS

the models obtained similar performances on the CARLA-Normal validation set: the
“vanilla” Mask2Former scored an mIoU of 77.1% while the Mask2Anomaly variant
scored a slightly less 76.9%. Additionally, Mask2Anomaly’s variant of Mask2Former
requires fine-tuning on outlier images to achieve full potential on anomaly segmenta-
tion. As such, 300 images from the COCO dataset with respective annotation were
used; during this process, images from CARLA-Normal and COCO where mixed
together (anomaly-mix), as shown in Figure 5.1, and the model updated. In the
end, the model did not suffer from a drop in mIoU on ID data, but performances
on anomalies where greatly improved. Figure 5.3 (heatmaps on the anomaly scores,
thresholded at 0.5, blue is ID and red is OOD) shows how Mask2Anomaly handles
the scene differently before and after finetuning: the bicycle is initially unrecognized
as anomaly (as it should, since the Bicycle class is part of CARLA’s training classes),
but after finetuning, it is labeled strongly as anomaly. Interestingly, the finetuned
version suffers from false-positives in this scene, labeling the region between the road
and the crops as anomalous.

(a) (b)

Figure 5.1: Example of mixed images from CARLA-Normal with COCO objects,
used during the fine-tuning of Mask2Anomaly

In Figure 5.2 a series of predictions by the trained Mask2Former are shown.
The first pair of images show that the model performs really well in in-distribution
CARLA-Normal data. The second and third pair instead show of the model handles
data from CARLA-Anomaly: when the anomalous object is a bike, an object that
belongs to the training classes but still classifies as anomaly because of its road
placement, it is correctly segmented by Mask2Former as a Bycicle class but when
the anomalous objects were not included in training classes (trashcans and ball) the
model is not secure in its predictions, labeling the objects as belonging to different
classes.

5.2 Inference

5.2.1 Metrics

All the experiments carried out on CARLA-Anomaly have been evaluated using two
Anomaly segmentation’s pixel-wise metrics that evaluate each pixel independently
by assigning a score from 0 to 1, the AuPRC and the FPR@95. The Area under

CHAPTER 5. EXPERIMENTS AND RESULTS

The Precision-Recall Curve (AuPRC) is a metric that estimates, usually by
trapezoidal rule, the area under a Precision-Recall curve (PRC), a curve plotted
by calculating Recall and Precision values for a series of different thresholds, and
placing them respectively on the x and y-axes. This metric is much more informative
when used in evaluating a task with a highly unbalanced dataset, like in Anomaly
Segmentation, where much of the image pixels are usually normal.

In this context, Precision is defined as the fraction of correctly labeled anomalous
pixels out of all the pixels labeled as such by the model. It was historically defined
with the concepts of True Positives (TP) or the fraction of positively labeled sample
that were really positives, False Positives (FP) or the fraction of positively labeled
samples that weren’t really positives, and their likewise counterparts True Nega-
tives (TN) and False Negatives (FN). Considering an anomalous pixel as a Positive
instance:

PRECISION(t) =
|Ya ∩ Ŷa(t)|

|Ŷa(t)|

=
TP

TP + FP

Where t is the chosen threshold, Ya is the set of anomalous pixels in a ground truth
label Y = {Ya, Yn} that contains anomalous and normal pixels, and Ŷa is the set
of pixels labeled as anomalous by the model. Recall is defined as the fraction of
correctly labeled anomalous pixels out of all the anomalous pixels (in the ground
truth, not the ones labeled by the model). Again considering anomalous pixels as
positive instance, Recall is defined as:

RECALL(t) =
|Ya ∩ Ŷa(t)|

|Ya|

=
TP

TP + FN

with the same definitions as before.
In safety-critical scenarios such as autonomous driving, another metric called

the False Positive Rate at a True Positive rate of 95% (FPR95), shortened
as FPR@95, is used to evaluate how many pixels are labeled as anomalies while
being really normal to achieve a correct labeling of 95% of anomalies that are really
anomalies. It is formally defined as:

FPR95(t
∗) =

|Yn ∩ Ŷa(t
∗)|

|Yn|

=
FP

FP + TN

where t∗ is the threshold needed to achieve a True Positive rate of 95%.

5.2.2 Experiments

At first, the three Anomaly Segmentation models, AEM EAM and Mask2Anomaly
where evaluated on the full CARLA-Anomaly dataset. Additionally, Mask2Anomaly

CHAPTER 5. EXPERIMENTS AND RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Mask2Former predictions and ground truths for CARLA-Normal and
CARLA-Anomaly

(a) Pre-finetuning (b) Post-finetuning

Figure 5.3: How predictions change with the finetuning of Mask2Anomaly

CHAPTER 5. EXPERIMENTS AND RESULTS

without the anomaly-mix finetuning procedure was included in the evaluation as
a baseline and to confirm that the OOD-detection modules where working cor-
rectly. All results are shown in Table 5.2. By looking at metrics performances,
it is clear that AEM and EAM are the worst performing methods out of all, even
less performing than the un-finetuned Mask2Anomaly version. With the fine-tuning,
Mask2Anomaly achieves the best performance out of all methods tested on CARLA-
Anomaly; it does suffer, however, from large false positives. In Figure 5.4 are
shown examples of Anomaly segmentation by Mask2Anomaly: in the first figure,
Mask2Anomaly fails to recognize the anomalous trash container at a distance, while
the ball is correctly labeled; in the second figure, Mask2Anomaly correctly labels
all anomalies, this time nearer to the camera. This behavior is repeated in other
episodes of the dataset. Going further, I decided to focus only on Mask2Anomaly
(who gave the most promising results) and analyse more how the different character-
istics of the dataset affect the model’s abilities to correctly label anomalies. In a first
analysis, CARLA-Anomaly was evaluated separately on the three differently placed
RGB cameras on which the dataset was collected. Interestingly, the RGBRightFront
camera split seems to be the easiest, and the model has very low number of false-
positives. This could be partially explained by the fact that this split has the lowest
number of anomaly pixels out of all, due to the anomaly placement that occurred
during simulation:

• Center: 1.52% anomaly pixels

• Left: 1.38% anomaly pixels

• Right: 1.14% anomaly pixels

Another analysis divided the dataset into three splits based on light conditions of
the weather that occurred during the CARLA simulation: Sunset, Noon and Night.
Caused by the random extraction of the weather parameters, Noon and Night have
double the frames of the Sunset split. Here, Mask2Anomaly performed best when
evaluated on the Sunset split, achieving the best performance of all on CARLA-
Anomaly; the Night split was also an easier one for the method, while again of the
Noon split Mask2Anomaly suffers greatly from large false-positives. Finally, the
last analysis was performed by splitting the data set into three subsets depending
on the weather condition: Rain, Clear or Cloudy / Wet. Here, the most difficult
split was the Clear, while the best performance was obtained in the Cloudy / Wet
split. By examining the anomaly heatmaps visualizations, it is not clear why the
Mask2Anomaly model presents these behaviors according to different characteristics
of the dataset; further analysis is certainly necessary to understand it better.

CHAPTER 5. EXPERIMENTS AND RESULTS

AuPRC ↑ FPR@95 ↓ Sensor Weather Frames

Mask2Former AEM 6.9 99.9 * * 3819

Mask2Former EAM 7.1 99.8 * * 3819

Mask2Anomaly (no fine-tuning) 10.0 98.5 * * 3819

Mask2Anomaly 64.0 95.0 * * 3819

Mask2Anomaly 62.0 97.1 RGBCenterFront * 1273

Mask2Anomaly 83.2 12.3 RGBRightFront * 1273

Mask2Anomaly 53.4 95.7 RGBLeftFront * 1273

Mask2Anomaly 84.6 9.1 * Sunset 726

Mask2Anomaly 58.3 97.2 * Noon 1509

Mask2Anomaly 61.7 9.8 * Night 1584

Mask2Anomaly 67.5 17.6 * Rain 648

Mask2Anomaly 32.4 21.7 * Clear 351

Mask2Anomaly 80.4 10.7 * Cloudy, Wet 1581

Table 5.2: Anomaly Segmentation evaluation on CARLA-Anomaly and subsets

(a) (b)

Figure 5.4: Example of failure and success in Anomaly segmentation by
Mask2Anomaly

Chapter 6

Conclusions

In conclusion, this thesis work was aimed at creating a dataset of road scenes that
included various kinds of anomalies with the goal of benchmarking methods for
Anomaly segmentation. To achieve this, I used CARLA, an open-source simulator
that comes pre-packaged with maps and assets that lets users setup a realistic simu-
lation to record data in. However, in order to insert anomalies into the environment,
it was necessary to first search for free 3-D models of various kinds of object on the
Internet and then integrating them into Unreal Engine and CARLA. To control
the simulation in a predictable and customizable way, was also necessary the de-
velopment of a script that, by utilizing the CARLA API, is able to spawn vehicles
and pedestrians, attach sensors to the ego-vehicle and recording data using them,
alternate different environments varying by map and weather condition in order to
record data as diverse as possible. By using the script, I recorded two datasets,
named CARLA-Normal, with no anomalies, and CARLA-Anomaly, with anomalies
placed on the road. Then, I used these datasets to train and test Anomaly segmen-
tation models all based on the Mask2Former architecture and mask-segmentation.
The tests showed that all models suffer from a large percentage of false-positives,
a characteristic that would make them unable to be deployed on autonomous vehi-
cles because of safety risks. Further tests, where CARLA-Anomaly was partitioned
based on certain sub-characteristic of the data, showed that the model is partic-
ularly suffering in certain scenarios while performing really well in others; further
tests should be conducted in order to better understand these behaviors, maybe by
constructing specialized datasets that focus on one particular condition at a time.
In retrospective, I would say that is certainly possible to construct anomaly datasets
by only using simulation, but the main problem lies in the difficulty of finding or
custom-making 3-D assets in a good quantity and with varying appearances; as an
example, in CARLA-Anomaly there is one kind of object per type, with a fixed
texture combination and 3-D model, but in real life the same objects come in differ-
ent shapes and varieties. However, using simulation has also great benefits: a great
amount of diverse data can be recorded cheaply, while the same kind of real data
would require more money and possibly regulatory permits. Regarding anomaly
models, I believe that datasets built by leveraging the versatility of simulated en-
vironments, like CARLA-Anomaly, showed that they are far from perfect and that
real datasets on which these models are tested, most of the times, are too small or

47

CHAPTER 6. CONCLUSIONS

unrealistic to have an accurate portrayal of the model capabilities. I hope this thesis
work would lead to further investigations on these models, and to the creation of bet-
ter and more realistic simulated datasets that could be used to benchmark models,
that, one day, would be deployed on real, completely autonomous, vehicles.

Bibliography

[1] Ekim Yurtsever et al. “A Survey of Autonomous Driving: Common Practices
and Emerging Technologies”. In: CoRR abs/1906.05113 (2019). arXiv: 1906.
05113. url: http://arxiv.org/abs/1906.05113.

[2] S. Singh. Critical Reasons for Crashes Investigated in the National Motor Ve-
hicle Crash Causation Survey. Technical Report. National Highway Traffic
Safety Administration, 2015.

[3] SAE International. Taxonomy and Definitions for Terms Related to Driv-
ing Automation Systems for On-Road Motor Vehicles. Technical Report SAE
J3016. SAE International, 2016.

[4] Tesla Autopilot. 2025. url: https://en.wikipedia.org/wiki/Tesla_
Autopilot.

[5] Mercedes-Benz Group. Mercedes-Benz increases top speed of its Level 3 auto-
mated driving system to 95 km/h. Accessed: 2025-03-05. 2024. url: https://
group.mercedes-benz.com/innovations/product-innovation/autonomous-

driving/drive-pilot-95-kmh.html.

[6] Robotaxi. Accessed: 2025-03-05. 2025. url: https://en.wikipedia.org/
wiki/Robotaxi.

[7] E. Ackerman. “Toyota’s Gill Pratt on Self-Driving Cars and the Reality of
Full Autonomy”. In: IEEE Spectrum (2017).

[8] Shervin Minaee et al. “Image Segmentation Using Deep Learning: A Survey”.
In: CoRR abs/2001.05566 (2020). arXiv: 2001.05566. url: https://arxiv.
org/abs/2001.05566.

[9] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Un-
derstanding”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016).

[10] Bowen Cheng et al. Masked-attention Mask Transformer for Universal Image
Segmentation. 2022. arXiv: 2112.01527 [cs.CV]. url: https://arxiv.org/
abs/2112.01527.

[11] Carla Development Team. CARLA: an Open-Source Simulator for Autonomous
Driving. Accessed: 2025-03-06. 2025. url: https://carla.readthedocs.io/
en/latest/.

[12] Hermann Blum et al. “The Fishyscapes Benchmark: Measuring Blind Spots
in Semantic Segmentation”. In: arXiv preprint arXiv:1904.03215 (2019).

49

BIBLIOGRAPHY

[13] Robin Chan et al. “SegmentMeIfYouCan: A Benchmark for Anomaly Segmen-
tation”. In: Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks. Ed. by J. Vanschoren and S. Yeung. Vol. 1. 2021.
url: https://datasets-benchmarks-proceedings.neurips.cc/paper_
files/paper/2021/file/d67d8ab4f4c10bf22aa353e27879133c- Paper-

round2.pdf.

[14] Dan Hendrycks et al. “Scaling Out-of-Distribution Detection for Real-World
Settings”. In: ICML (2022).

[15] Matej Grcic, Josip Šarić, and Sinǐsa Šegvić. “On Advantages of Mask-level
Recognition for Outlier-aware Segmentation”. In: 2023.

[16] Shyam Nandan Rai et al. Mask2Anomaly: Mask Transformer for Universal
Open-set Segmentation. 2023. arXiv: 2309.04573 [cs.CV]. url: https://
arxiv.org/abs/2309.04573.

