
Politecnico di Torino

Master’s Degree in Computer Engineering
Artificial Intelligence and Data Analytics

A.a. 2024/2025
Graduation Session April 2025

One-Shot Image-Conditioned Object
Detection Using Transformers

Supervisors:

Prof.Alessandro Rizzo

Dr.Enrico Civitelli

Candidate:

Milena Yahya



Acknowledgements

To my father and my mother,
who are my rock, my guiding light,
and my greatest blessing.

For your unwavering support,
your unconditional love,
and your faith in me,
which has given me so much strength.

Every achievement of mine is a testament
to the love and devotion you have poured
into my life, and to you I dedicate
every one of my successes.

May I forever be the light
that honors your love.

i





Abstract
Object detection is a critical task in today’s world, with applications spanning many
diverse fields, including, but not limited to autonomous vehicles, biometric and
facial recognition, and industrial automation. Traditional object detection methods
heavily rely on ample amounts of labeled training data and require extensive
training time. This makes them resource-intensive and less adaptable to rapidly
changing scenarios. In this thesis, we define a one-shot object detection framework
that overcomes these limitations. Using state-of-the-art pretrained transformer
networks, our approach enables real-time detection of novel objects from a single
reference image, bypassing the need for a training phase. This results in a scalable
and efficient solution for dynamic, data-scarce environments. Full code at: GitHub

iii

https://github.com/milenayahya/OneShotObjectDetection/


Table of Contents

List of Figures vi

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4
2.1 Early Stages of Object Detection . . . . . . . . . . . . . . . . . . . 4
2.2 Object Detection in the Deep Learning Era . . . . . . . . . . . . . . 6

2.2.1 CNN-based models . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Transformer-based Models . . . . . . . . . . . . . . . . . . . 10

2.3 Limitations of Existing Object Detection Methods . . . . . . . . . . 12
2.4 Few-Shot Learning for Object Detection . . . . . . . . . . . . . . . 12

3 Theoretical Foundations 16
3.1 Key Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Vision Transformers . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Query Image and Query Embedding . . . . . . . . . . . . . 25
3.2.2 Image-Conditioned Object Detection . . . . . . . . . . . . . 25
3.2.3 Zero-Shot vs Few-Shot Object Detection . . . . . . . . . . . 26

4 Model Overview 28
4.1 OWL-ViT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 OWL-ViT Architecture . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Transition to OWLv2 . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 OWLv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



4.3.1 Step 1: Generating Pseudo-Annotations . . . . . . . . . . . 32
4.3.2 Step 2: Self-training at Scale . . . . . . . . . . . . . . . . . . 33

5 Implementation 36
5.1 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Zero-Shot Object Detection on Query Images . . . . . . . . . . . . 38

5.2.1 Automatic Query Selection . . . . . . . . . . . . . . . . . . . 40
5.2.2 Manual Query Selection . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Few-Shot Object Detection . . . . . . . . . . . . . . . . . . . 46
5.2.4 Supercategories . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.5 Seamless addition of a new category . . . . . . . . . . . . . . 49

5.3 One-Shot Object Detection on Test Images . . . . . . . . . . . . . . 53
5.4 Real-time Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Experiments and Results 66
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 COCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 MetaGraspNetv2 (MGN) . . . . . . . . . . . . . . . . . . . . 67

6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Numeric Results . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 Confidence Threshold Tuning . . . . . . . . . . . . . . . . . 69
6.3.3 5-Shot vs. 1-Shot Performance . . . . . . . . . . . . . . . . . 71

6.4 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.1 Controlled Laboratory Environment . . . . . . . . . . . . . . 72
6.4.2 Logo Detection . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.4 Bin Picking and Depalletizing Applications . . . . . . . . . . 75

6.5 Efficiency and Performance . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion 77

8 Future Work 79

Bibliography 81

v



List of Figures

2.1 Haar features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 HOG feature extractor . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 DPM concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 A neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Classification diagram of deep learning-based object detection[12] . 7
2.6 An example convolutional neural network . . . . . . . . . . . . . . . 7
2.7 Transformer Architecture[17] . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Multi-Head Attention[17] . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 DETR workflow[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Overall Transformer Architecture . . . . . . . . . . . . . . . . . . . 17
3.2 Scaled Dot-Product Attention . . . . . . . . . . . . . . . . . . . . . 19
3.3 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 "Visualization of how attention heads focus on different relationships

between the sequence tokens" . . . . . . . . . . . . . . . . . . . . . 22
3.5 Vision Transformer Architecture[18] . . . . . . . . . . . . . . . . . . 23
3.6 Image-Conditioned detection: Features of query images are compared

with features of the images from the support (test) set, to produce
similarity scores, and eventually class predictions.[20] . . . . . . . . 26

4.1 Overview of the OWL-ViT method: 2-phase recipe[27] . . . . . . . 29
4.2 Overview of the OWL-V2 method[26] . . . . . . . . . . . . . . . . . 32

5.1 Extracting classes of query images imposing control on the parameter
K using the filename of each image. . . . . . . . . . . . . . . . . . . 38

5.2 Class query embeddings extraction. . . . . . . . . . . . . . . . . . . 42
5.3 The box with maximum area has very low objectness score, while

that with maximum objectness score has an area very close to the
max area, so we choose the latter. . . . . . . . . . . . . . . . . . . . 43

5.4 The maximum area box coincides with the maximum objectness
score, as is the case 90% of the time. . . . . . . . . . . . . . . . . . 43

vi



5.5 Automatic query selection fails to select the correct box with index
1460 and objectness score 0.39. . . . . . . . . . . . . . . . . . . . . 44

5.6 Details about the top 3 boxes ranked by objectness score. . . . . . . 45
5.7 Zero-Shot Detection with manual query selection option . . . . . . . 46
5.8 Example class where independent query embeddings are required. . 47
5.9 Example class where it is better to average query embeddings. . . . 47
5.10 Query Embedding Extraction – Our Approach . . . . . . . . . . . . 51

6.1 One-Shot Object Detection on COCO. . . . . . . . . . . . . . . . . 68
6.2 One-Shot Object Detection on MGN. . . . . . . . . . . . . . . . . . 69
6.3 Per-Category Thresholds that Maximize the F1-Score. . . . . . . . . 70
6.4 F1-Score Before and After Tuning the Confidence Thresholds. . . . 71
6.5 5-Shot vs 1-Shot Performance. . . . . . . . . . . . . . . . . . . . . . 72
6.6 One-Shot Object Detection in the Labaratory. . . . . . . . . . . . . 73
6.7 One-Shot Object Detection on Logos . . . . . . . . . . . . . . . . . 74
6.8 One-Shot for Anomaly Detection . . . . . . . . . . . . . . . . . . . 75

vii



Chapter 1

Introduction

1.1 Context

Object Detection is an essential computer vision task with an ever-increasing
demand across a wide range of industries. Its real-world applications include
self-driving vehicles, biometrics and facial recognition, inventory and warehousing,
medical image analysis, crowd counting, traffic monitoring, and quality control,
among others[1]. As many sectors depend on object detection to drive advancements
and improve operational efficiency, the task remains an area of active research.
Despite significant progress, challenges remain, particularly in optimizing computa-
tional efficiency and minimizing resource costs. Researchers continue to explore
innovative solutions aimed at enhancing the performance and scalability of object
detection systems.

In widely-adopted state-of-the-art object detection models such as Faster R-
CNN[2], YOLO[3], and DETR[4], models learn to recognize objects using training
datasets of roughly a few hundred examples per each object category. However,
achieving high accuracy and robust performance often demands thousands of care-
fully annotated instances per class. This heavy reliance on large, high-quality,
carefully annotated datasets is considered a significant bottleneck because such
data is difficult and expensive to obtain. It is time-consuming and resource-intensive.

Moreover, for the aforementioned models, introducing a new object class is rarely
a seamless process. It typically requires either full retraining on an updated dataset
or fine-tuning with new class-specific data. Alternatively, additional classification
heads can be appended at the final layers of the network, or incremental learning can
be employed. However, these methods often introduce their own challenges, such
as catastrophic forgetting or imbalanced class representation [5]. Despite ongoing

1



Introduction

research, incremental learning remains an evolving field with many unresolved
challenges. Thus, adapting existing solutions to accommodate new object classes is
a non-trivial task that does not yet have a straightforward solution.

1.2 Goal
In this thesis, we mitigate these constraints by proposing a one-shot image-
conditioned object detection framework. Our approach requires only a single
example image of an object, provided in real-time, to enable its detection across
diverse scenes. By leveraging Google’s pre-trained Owlv2 network, we eliminate
any need for training, effectively removing the burden of data collection, annotation,
as well as extensive computational resources and training time, all while offering
seamless generalization over new categories. This framework not only significantly
reduces deployment time and resource requirements, but it also introduces a scalable
and flexible solution capable of handling dynamic and data-scarce environments
effortlessly.

This thesis was conducted in collaboration with Comau S.p.A. who generously
provided the necessary resources, support, and mentorship to make this research
possible. Their commitment to innovation and technological excellence was crucial
in facilitating the successful development and execution of this project.

1.3 Thesis Structure
This thesis is organized in several sections, each building upon the previous one
to provide a comprehensive overview of the development process, methodological
choices, and achieved results of this project. The organization ensures a logical
flow, guiding the reader from the fundamental concepts and motivation behind
the work, through the technical implementation and experimentation, to the final
analysis and conclusions.

• Literature Review: In this section, we present the chronological evolution of
object detection models, their architectures, strengths, and shortcomings. We
examine the circumstances and conditions under which these models achieve
optimal performance, and highlight the challenges they face in dynamic and
data-scarce environments. Finally, we introduce the state-of-the-art approaches
to Few-Shot Object Detection, setting the stage to introduce our own
proposed model.

• Theoretical Foundations: This section introduces the building blocks upon

2



Introduction

which we build our model. It explains Vision Transformers and their Self-
Attention mechanisms, detailing their roles in modern object detection systems.
Additionally, it delves into key concepts and coined terms in the field, such as
image-conditioned object detection, one-shot object detection, zero-shot object
detection, and query embeddings. These concepts and components will all be
referenced in the section demonstrating the architecture of our model.

• Model Overview: This section provides a comprehensive introduction to the
network utilized in our methodology, focusing on its architecture and training
methods. We discuss the transition from OWL-ViT to OWLv2, highlighting
improvements and adaptations that make the model suitable for one-shot
detection tasks. We also present detailed insights into the components and
workflows that enable seamless scalability and adaptability.

• Implementation: This section outlines the practical aspects of deploying
the proposed solution. It includes details on the model configuration, such as
libraries, frameworks, and hyperparameters, as well as the hardware setup used
for inference. Additionally, we describe the end-to-end pipeline, emphasizing
real-time operation, user-defined control, and solution’s ability to seamlessly
integrate new object categories, ensuring scalability and adaptability across
diverse scenarios. Lastly, we present the custom features implemented that en-
hance model flexibility, all supported by code snippets and practical examples.

• Experiments and Results: Once the framework was fully developed, we
proceeded to test its performance. We evalaute the performance on benchmark
datasets like COCO and MetaGraspNetv2. Experiments are also performed
on subsets of Logos in The Wild and MVTecAD. We further conducted a
series of experiments simulating some of the target real-word use cases, like
bin picking and palletizing, in Comau’s Robolab utilizing Comau robots
to validate the system under practical conditions and test the robustness of
the server. In this section, we detail the experimental setup, including the
testing environment, evaluation metrics, and scenarios considered. We report
the results obtained.

• Conclusion: We summarize the key contributions and findings of this thesis,
reflecting on the advancements made through our one-shot image-conditioned
object detection framework. We revisit the research objectives and demonstrate
how they were successfully addressed.

• Future Work: We outline potential future directions for this research, high-
lighting areas where further improvements and exploration could lead to even
more impactful results in the field of object detection.

3



Chapter 2

Literature Review

2.1 Early Stages of Object Detection
The earliest object detection algorithms, dating back to the 1990s, employed
template matching and window sliding techniques[6]. While foundational, these
methods suffered from some limitations. Besides having poor performance on
unseen datasets and low accuracy in general, these methods also relied heavily on
hand-crafted features, and were generally very computationally expensive. This
made them impractical for real-time applications, but laid the base for future
advancements in the field.

In the early 2000s, the object detection landscape saw significant progress with
the emergence of the Viola Jones Algorithm[7] for real-time face detection. This
model utilized a cascade of classifiers and leveraged Haar-like features[8] for fea-
ture extraction and comparison. Although this method focused particularly on
face recognition, it marked a critical turning point, and it set the stage for more
generalized object detection methods that would follow in the next years.

Figure 2.1: Haar features

4



Literature Review

It had become clear that feature extraction and representation were crucial yet
challenging steps in the object detection pipeline, and in 2005, the HOG (Histogram
of Oriented Gradients) feature extractor [9] revolutionized the object detection
scene, which so far had relied on hand-crafted features. The HOG provided a more
effective way to capture essential object characteristics, such as edges and shapes.
As a result, HOG became a standard feature extractor, widely adopted by many
classification algorithms in object detection tasks.

Figure 2.2: HOG feature extractor

In 2008, the Deformable Parts Model (DPM)[10] was proposed as an extension
of the HOG, and it would dominate object detection for years. This model uses
the "divide and conquer" strategy, where detecting an object means detecting the
different parts that compose it. For example, the problem of detecting a “car” can
be broken down to detecting its window, body, and wheels. The training process of
DPM teaches the model to properly decompose an object into these parts, and then
to ensemble the individual detections of different object parts during inference.

Figure 2.3: DPM concept

After 2010, progress in object detection reached a plateau as research in hand-
crafted features became saturated. However, just a few years later, the advent of
deep learning revolutionized the field, unlocking new horizons and reshaping object

5



Literature Review

detection into the rapidly evolving and dynamic sphere we know today[11].

2.2 Object Detection in the Deep Learning Era
Deep learning is a subset of machine learning that uses artificial neural networks
with multiple layers to understand complex data patterns. Inspired by the human
brain, these networks are designed to learn hierarchical data representations and
interpret data in a human-like way. Unlike other machine learning paradigms, deep
learning models learn their own decision-making, instead of relying on a predefined
set of rules. The learning process requires extensive training on large datasets. This
ability to autonomously extract meaningful features has made deep learning the
driving force behind breakthroughs in computer vision, natural language processing,
speech recognition, and other AI-driven fields.

Figure 2.4: A neural network

By 2014, the advancements that came with the rise of deep learning broke
the deadlocks of object detection, and redefined the way objects were detected
and classified. This marked a significant milestone for object detection, as the
challenges that limiting progress in the field were overcome. In this era, object
detection models are grouped into two main approaches: "CNN-based models” and
“Transformer-based models”[12].

6



Literature Review

Figure 2.5: Classification diagram of deep learning-based object detection[12]

2.2.1 CNN-based models

A convolutional neural network is a network that "contains three types of lay-
ers: convolutional layer, pooling layer, and fully-connected (FC) layer"[12]. The
convolutional and hierarchical structure of a CNN renders it capable of learning
complex features with higher computational performance. CNN-based object de-
tection methods are divided into two categories: two-stage detectors, and one-stage
detectors.

Figure 2.6: An example convolutional neural network

7



Literature Review

Two-Stage Detectors

These detectors operate in two distinct steps: region proposal and object classifica-
tion. In the first stage, the model proposes a set of candidate regions, often using a
Region Proposal Network (RPN), which identifies areas in the image that are likely
to contain objects. In the second stage, these proposed regions are classified into
object categories after they are refined, and consequently the predicted bounding
boxes are fine-tuned. This separation allows two-stage detectors to focus on high-
quality region proposals, leading to accurate object localization and classification.
However, this comes at the cost of increased computational complexity and slower
inference times, making them less suitable for real-time applications. We briefly
touch upon the most famous detectors in this category:

• R-CNN (Region-based CNN)[13]: These detectors generate region pro-
posals using Selective Search, and extract features from each region using
a CNN. These proposed regions are classified into object categories using a
Support Vector Machine (SVM) classifier. This method is accurate but
computationally slow, due to the redundant feature extraction of overlapping
regions. Other limitations include a fixed input size of 277*277 pixels, low
precision of bounding box definitions when using the SVM classifier, and
requiring "separate training for candidate region generation, feature extraction,
and target classification"[12].

• Fast R-CNN[14]: These detectors improve upon their predecessors by
applying CNN to the entire image once and extracting the feature map, rather
than applying a separate CNN to each region.. Then, the regions of interest
are extracted and classified using a RoI pooling layer, which significantly
speeds up the process.

• Faster R-CNN[2]: Out-performing all previous detectors, these models
employ Region Proposal Networks (RPN) to replace Selective Search. The
RPN is significantly faster and more efficient because it generates region
proposals directly from feature maps using learnable convolutional layers.
RPNs are end-to-end trainable, unlike Selective Search which is hand-
crafted and heuristic-based. Thus, Faster R-CNN allow joint optimization,
allowing the network to generate region proposals and to classify objects and
refine bounding boxes in a single training process. These detectors produce
fewer, higher-quality region proposals.

• FPN (Feature Pyramid Network[15]): FPNs tackle another problem:
detecting multiscale features or small-scale objects that are generally poorly
detected by other models. They propose a pyramid structure with bottom-up
and top-down pathways. While the bottom-up link is similarly utilized in other

8



Literature Review

CNN models, the top-down path adds spatial resolution to the features. Then,
a feature fusion model is employed to fuse these the features from both paths.
"After the fusion steps on whole features, the Region Proposal Network(RPN)
generates proposals for different scales along with the prediction of the presence
of objects and bounding box predictions"[12]. These detectors became the
standard when dealing with multi-scale applications.

One-Stage Detectors

While R-CNN-based models excel in terms of detection accuracy and computational
efficiency, they are unfit for real-time applications as they do not have sufficient
speed. Models with simpler structures and faster inference times instead are
employed for real-life detection.

• YOLO (You Only Look Once)[3]: The YOLO algorithm divides each
image into an N x N grid, and produces B bounding boxes with their corre-
sponding confidence scores for each grid cell. This allows the model to produce
predictions in a single forward pass of the neural network, unlike two-stage
detectors, which first generate region proposals and the classify them. This
one-stage inference makes YOLO suitable for real-time applications, without
compromising accuracy significantly. However, the YOLO algorithm suffers
when detecting adjacent and small-scale objects. Over time, YOLO has
been significantly improved: YOLOv2 introduced batch normalization and
anchor boxes for better localization, YOLOv3 enhanced feature extraction
with a multi-scale detection approach, it uses multi-label classification to
overcome the challenges that YOLO faces, and YOLOv4 optimized training
strategies with techniques like self-adversarial training. Subsequent versions,
such as YOLOv5 and YOLOv7, have focused on refining model architecture,
balancing accuracy and speed, and introducing efficient deployment features.

• SSD (Single Short Detector)[16]: This model is another branch of one-
stage models parallel to the YOLO series. The key innovation of SSD lies in
the use of multiple feature maps at different scales to detect objects of varying
sizes, allowing the network to handle both small and large objects effectively.
SSD employs default anchor boxes (predefined aspect ratios) at each feature
map location, predicting class probabilities and box offsets for each anchor.
Compared to YOLO, SSD offers better accuracy on smaller objects due to its
multi-scale feature map design. This combination of efficiency and flexibility
makes these detectors a widely used choice in real-time object detection tasks.

9



Literature Review

2.2.2 Transformer-based Models
In recent years, transformers have become popular in Computer Vision and Natural
Language Processing applications. First introduced by Vaswani et al. in 2017 in [17],
transformers replace all recurrent and convolutional layers, and rely instead entirely
on self-attention mechanisms to process data in parallel. "Transformers utilize
the self-attention mechanism to establish global dependencies between different
points in sequence"[12]. The general structure of a transformer consists of an
encoder-decoder architecture, where the encoder maps input sequences into
a latent representation, while the decoder generates output sequences based on
this representation. Both encoder and decoder stacks are composed of multi-head
self-attention layers, which allow the model to focus on different parts of the input
simultaneously, and feed-forward layers, which process these attention-weighted
representations. Positional encodings are added to the input embeddings to retain
some information about the relative or absolute position of the tokens in the
sequence. A deeper explanation of the architecture is discussed in Section 3.1.1.

Figure 2.7: Transformer Architec-
ture[17]

Figure 2.8: Multi-Head Atten-
tion[17]

The transformer-based detectors can be categorized as follows: end-to-end
detectors like DETR, and ViT-based detectors.

• DETR (Detection Transformer)[4]: This model surpasses the CNN-based
detectors with its end-to-end architecture, which eliminates the need for any

10



Literature Review

hand-crafted components, like anchor boxes (e.g YOLO), region proposal
networks (e.g Faster R-CNN), and non-maximum suppression (NMS) during
the post-processing step. The DETR consists of four major components:
CNN backbone, transformer encoder, transformer decoder, and final prediction
head. The CNN backbone extracts the 2D features from input images, which
are then flattened and matched with their positional encodings. The encoder
learns the global characteristics of the image from the input sequence, and the
decoder uses the output of the encoder, along with a set of learnable object
queries to guide the model’s attention to different objects. In a final step,
the output of the decoder is processed by a feed forward network (FNN) to
produce the final predictions.

Figure 2.9: DETR workflow[12]

Improved versions of the original DETR were proposed to address its slow
convergence and computational inefficiencies. The Deformable DETR uses
sparse attention instead of global self-attention to focus on a small number
of key points surrounding each reference point. This imporves detection
accuracy, especially for small objects. Sparse DETR reduces the number
of query points, focusing only on relevant image regions, which speeds up
training and reduces memory usage. And finally, Efficient DETR optimizes
training strategies and architectural design, improving both training speed
and inference efficiency without compromising detection performance.

• ViT-based Object Detectors: Vision Transformers (ViTs) [18] have been
adapted for object detection by leveraging their ability to model long-range
dependencies without relying on convolutional backbones. These models
divide an image into fixed-size patches, flatten them, and process them as
a sequence using transformer layers, with positional embeddings preserving
spatial relationships. To perform object detection, ViTs are often coupled
with additional components such as region proposal networks (RPNs), feature

11



Literature Review

pyramid networks (FPNs), or detection-specific transformer heads that refine
predictions. Architectures like ViTDet[19] integrate these components to
enhance multi-scale feature learning, improving their ability to detect objects
of varying sizes. By capturing global context and complex relationships across
image regions, ViT-based detectors achieve strong performance in both small
and large object detection tasks.

2.3 Limitations of Existing Object Detection Meth-
ods

The inclusive but not exhaustive list of object detection algorithms we have covered
above have significantly advanced the field of computer vision, but they all share
certain limitations that hinder their performance in more complex scenarios.

1. The need for extensive amounts of meticulously labeled high-quality data.

2. The drastic declination of performance on novel or unseen classes.

3. High computational cost and inefficiency of CNN-based models when scaling
to diverse object categories.

4. Slow convergence and high computational cost of transformer-based models,
particularly in low-data scenarios.

These gaps and shortcomings were the driving reason for the emergence of the
Few-Shot Learning paradigm, which reduces the dependency on large annotated
datasets and enables models to adapt to evolving environments and recognize rare
or emerging objects more effectively.

2.4 Few-Shot Learning for Object Detection
"Requiring a large number of data samples, many deep learning solutions suffer from
data hunger and extensively high computation time and resources. Furthermore,
data is often not available due to not only the nature of the problem or privacy
concerns, but also the cost of data preparation. Data collection, preprocessing,
and labeling are strenuous human tasks"[20]. These challenges have driven the
emergence of Few-Shot Learning (FSL) as a critical area of research in machine
learning, with a lot of applications in object detection.

Few-Shot Learning aims to enable models to learn effectively from a very limited
number of labeled samples per class, typically ranging from just one to a handful.

12



Literature Review

This is rendered possible by leveraging prior knowledge from previously learned
tasks, using meta-learning, transfer-learning, and embedding-based tech-
niques.

In the context of object detection, traditional object detection methods suffer in
some real-world scenarios, especially with rare objects, newly emerging categories,
and domain-specific tasks where data collection is prohibitively expensive. FSOD
(Few-Shot Object Detection) presents immense potential because it addresses
these limitations by enabling models to detect novel objects using only a few la-
beled examples, while still maintaining high detection accuracy and generalization
capabilities.

Thus, FSOD not only reduces the cost and time associated with dataset creation,
but also improves model adaptability. This is particularly useful in applications
like autonomous driving, medical imaging, and surveillance systems, where
encountering previously unseen objects is common, and the ability to quickly adapt
to new categories is crucial.

We list the explored methods for Few Shot Learning:

1. Fine-Tuning/Transfer Learning Methods: These methods leverage pre-
trained models trained on large-scale datasets to serve as a strong foundation
for learning. Then, these models are fine-tuned on smaller few-shot datasets,
significantly reducing the data and computational requirements, while still
achieving high performance and adaptability to new tasks or object classes.
[21]

2. Meta-Learning Methods: These approaches focus on teaching models how
to learn efficiently from limited data by exposing them to few-shot learning
scenarios during training. Instead of training on a single task, the model is
trained across multiple small tasks, each with only a few labeled examples.
This allows the model to become highly adaptive and to quickly fine-tune its
parameters or make accurate predictions when presented with new, unseen
tasks using minimal data. [21]

3. Data Augmentation Methods: Techniques like synthetic feature generation
and domain-aware data augmentation are used to increase the diversity and
quantity of training samples, compensating the lack of labeled samples, and
enabling the model to better adapt to unseen categories.

4. Model-Oriented Methods: These methods focus on improving existing
model architectures to better handle few-shot scenarios. Innovations often

13



Literature Review

include improved attention mechanisms, adaptive feature extraction, and
dynamic prediction heads tailored for limited data scenarios. Models like
DETR and YOLO have undergone such architectural refinements to help
them extract more meaningful representations from sparse data and generalize
effectively to novel object categories.

Although this field is still in its early stages of research with no widely-adopted
solution, we mention a few prominent models and highlight the gaps identified in
these approaches, which lead us to the development of our method.

Hsieh et al. (2019)[22] introduced a novel one-shot object detection framework
based on Faster R-CNN, incorporating co-attention and co-excitation mechanisms
to enhance feature interactions between the query and target images. In their
two-stage detection pipeline, a modified Region Proposal Network (RPN) generates
candidate regions from the target image, to which the co-attention mechanism
is applied to capture mutual dependencies between the query and target feature
maps, guiding the RPN to focus on regions that are most relevant to the query
object. Then, the co-excitation module is applied to the feature maps, adaptively
re-weighting the channels to emphasize those most pertinent to the query, thus
improving the quality of the proposals. These refined regions are then classified
and further refined using metric learning with a margin-based ranking loss. This
design allows the model to generalize to unseen object categories using a single
query example.

Vargas et al. (2024)[23] introduced a novel joint neural network framework
for one-shot object recognition and detection. The architecture comprises two
interconnected networks of stacked convolutional layers: one for object recognition
and the other for object detection. The recognition network processes the query
image to extract discriminative features, which are then used to guide the detec-
tion network. The detection network generates region proposals from the target
image, refining them using the features derived from the recognition network. Both
networks are trained jointly using a shared objective, combining classification and
bounding box regression tasks into a single loss function, effectively succeeding at
the one-shot object detection task.

While the aforementioned methods achieve state-of-the-art performance on
benchmark datasets, their architectures remain heavily reliant on convolutional
layers and region proposal networks. This reliance introduces inherent limitations,
such as sequential computation, which constrains parallelization and increases
inference time, and high computational cost, especially in large-scale deployments.
Our proposed transformer-based method eliminates these bottlenecks while while

14



Literature Review

achieving performance on par with existing methods and even setting new state-of-
the-art benchmarks under specific conditions.

15



Chapter 3

Theoretical Foundations

This chapter presents the fundamental building blocks, mechanisms, and key terms
that form the foundation of our network. These concepts will be referenced through-
out the subsequent chapters of this thesis, thus we seek to provide the necessary
theoretical context for understanding the proposed model and its components.

3.1 Key Elements

3.1.1 Transformers

Transformers were introduced in Attention is All You Need[17] in 2017 as a revolu-
tionary method for processing sequential data. Prior to this, tasks like language
modeling and machine translation were typically handled by Recurrent Neu-
ral Networks (RNNs)[24] and Long Short-Term Memory (LSTM)[25]
networks. While RNNs and LSTMs were effective for these tasks, they shared a
critical limitation: the inability to parallelize computations due to their sequential
nature. This bottleneck significantly slowed down training and inference times,
especially as datasets grew larger, and rendered these networks difficult to deploy
in real-time solutions.

The Transformer model, by contrast, operates on the entire input sequence
simultaneously, using a mechanism called self-attention to capture dependencies
between elements, regardless of their distance in the sequence. This ability to
process data in parallel greatly accelerates training and enables the model to scale
efficiently. The Transformer architecture has since become the foundation for many
state-of-the-art models in natural language processing (NLP) and, more recently,
computer vision.

16



Theoretical Foundations

Transformer Architecture

The Transformer is at its very core an Encoder-Decoder structure, both using
stacked self-attention and position-wise, fully connected layers.

Figure 3.1: Overall Transformer Architecture

• "Encoder: The encoder is composed of a stack of N = 6 identical layers. Each
layer has two sub-layers. The first is a multi-head self-attention mechanism,
and the second is a simple, position-wise fully connected feed-forward network.
We employ a residual connection around each of the two sub-layers, followed
by layer normalization. [...]

• Decoder: The decoder is also composed of a stack of N = 6 identical layers.
In addition to the two sub-layers in each encoder layer, the decoder inserts
a third sub-layer, which performs multi-head attention over the output of
the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify

17



Theoretical Foundations

the self-attention sub-layer in the decoder stack to prevent positions from
attending to subsequent positions. This masking, combined with the fact that
the output embeddings are offset by one position, ensures that the predictions
for position i can depend only on the known outputs at positions less than i."
[17]

In this architecture, the encoder transforms an input sequence of symbol repre-
sentations (x1, ..., xn) into a sequence of continuous representations z = (z1, ..., zn).
Using these continuous representations z, the decoder then generates an output
sequence of symbols (y1, ..., ym), one symbol at a time. The model operates in an
auto-regressive manner, where at each step, it consumes the previously generated
symbols as additional input for generating the next symbol in the sequence.

Self-Attention Mechanism

Injected in every layer of the encoder and the decoder, the Self-Attention mechanism
maps a query and a set of key-value pairs to an output. It helps us understand the
relationships between different elements in a sequence.

• Query Q: This matrix represents the focus word for which the context is being
determined. By transforming the word representation using the query matrix,
the system generates a query vector that will be used to compare against other
words in the sentence.

• Key K: The key matrix is used to create key vectors for all words in the sentence.
These key vectors help the system measure the relevance or similarity between
the focus word (using the query vector) and other words in the sentence. A
higher similarity score between the query vector and a key vector indicates a
stronger relationship between the corresponding words.

• Value V: For each element in the sequence, the value matrix generates a
value vector which represents the contextual information of the element. Each
element is also assigned a weight determined by the similarity scores, and the
system finally computes a weighted sum of the value vectors, ensuring that
the final contextual representation is influenced more by relevant words.

18



Theoretical Foundations

Figure 3.2: Scaled Dot-Product Attention

The attention we use is called "Scaled Dot-Product Attention". The output is
computed as follows:

Attention(Q, K, V ) = softmax
A

QK⊤
√

dk

B
V (3.1)

Multi-Head Attention

The transformer architecture uses a multi-head attention mechanism, which consists
of multiple self-attention layers running in parallel. Each attention layer has its own
set of Q, K, and V matrices, obtained by projecting the original Q, K, and V using
separate learned linear projections. The outputs from each layer are concatenated
and linearly projected to form the final values. The purpose of multi-head attention
is to allow the model to focus on different aspects or relationships between words
in the input sequence simultaneously.

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O (3.2)

where headi = Attention(QW Q
i , KW K

i , V W V
i ) (3.3)

19



Theoretical Foundations

Figure 3.3: Multi-Head Attention

The Transformer uses multi-head attention in three different ways:

1. Encoder-Decoder Attention: The queries come from the decoder’s previous
layer, and the keys and values are from the encoder’s output. This allows
the decoder to focus on all input positions, similar to traditional sequence-to-
sequence models.

2. Encoder Self-Attention: Each position in the encoder can attend to all
other positions in the encoder. Here, the keys, values, and queries all come
from the previous layer of the encoder.

3. Decoder Self-Attention: Each position in the decoder attends to all prior
positions up to the current one, maintaining the auto-regressive property. This
is ensured by masking illegal future connections in the scaled dot-product
attention mechanism.

Position-wise Feed-Forward Networks

Each layer of the encoder and the decoder also contains a fully connected feed-
forward network, "which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between."[17]

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.4)

While the linear transformations are the same across different positions, they use
different parameters from layer to layer. This step helps the model learn more
complex patterns and relationships within the input sequence.

20



Theoretical Foundations

Positional Encoding

"Since our model contains no recurrence and no convolution, in order for the model
to make use of the order of the sequence, we must inject some information about
the relative or absolute position of the tokens in the sequence. To this end, we
add "positional encodings" to the input embeddings at the bottoms of the encoder
and decoder stacks. The positional encodings have the same dimension as the
embeddings, so that the two can be summed." [17]

Advantages of Self-Attention

Self-attention layers revolutionize sequence processing by directly connecting all
positions in a sequence with a constant number of operations, providing unmatched
computational efficiency compared to recurrent layers, which require sequential
operations proportional to the sequence length. This inherent parallelism allows
self-attention to scale more effectively, particularly when the sequence length is
shorter than the dimensionality of the representation. Moreover, even for long
sequences, the computational load can be further reduced by limiting self-attention
to a local neighborhood around each output position without significantly compro-
mising performance.

Unlike convolutional layers, which are inherently more expensive due to their de-
pendency on larger kernels, self-attention achieves comparable or better performance
with significantly lower complexity when combined with point-wise feed-forward
layers. Optimizations like separable convolutions aim to bridge the gap, but even
then, self-attention’s efficiency and simplicity remain unmatched.

However, the most important advantage provided by Self-Attention is inter-
pretability. The attention distributions it produces show what parts of a sequence
the model focuses on when making decisions. This ability to reveal patterns and
relationships makes self-attention not just efficient but also easier to interpret,
offering clear advantages over recurrent and convolutional methods.

21



Theoretical Foundations

Figure 3.4: "Visualization of how attention heads focus on different relationships
between the sequence tokens"

3.1.2 Vision Transformers

Building on the Transformer framework, Vision Transformers (ViTs)[18] were
developed as a way to apply the Transformer architecture to image data. Unlike
traditional convolutional neural networks (CNNs) that operate on pixel grids, ViTs
treat an image as a sequence of fixed-size patches. Each patch is linearly embedded
into a vector, and the Transformer processes these vectors to learn relationships
between different parts of the image. The Vision Transformer has shown impressive
performance on computer vision tasks, even outperforming CNNs when trained on
large datasets.

22



Theoretical Foundations

ViT Architecture

The intention of this design is to resemble the original Transformer architecture as
closely as possible. Thus, similarly to the original Transformer, the ViT consists of
alternating layers of multi-headed attention and MLP (Multi-Layer Perceptron)
blocks. The MLP blocks replace the FFNs in the original architecture. Layer
normalization is applied before every block, and residual connections are added
after every block. An overview of the architecture is show in the figure below.

Figure 3.5: Vision Transformer Architecture[18]

We note that the ViT, as the traditional Transformer, relies on the Multi-
Headed Self-Attention mechanism. However, we highlight the main differences in
architecture:

• The MLP introduced in each block consists of two fully-connected layers with a
GELU (Gaussian Error Linear Unit) activation function. This activation
function adds a smooth non-linearity to the MLP block, and it enhances gra-
dient flow and improves model performance compared to traditional functions
like ReLU (Rectified Linear Unit).

• The Layer Normalization applied before every block normalizes the input
activations, ensuring stability during the training process by reducing covariate
shifts, where the distribution of inputs to each layer changes as the model
trains. This helps maintain consistent gradients, allowing for more effective
learning across layers.

• Residual Connections, also known as Skip Connections, are added after every
block to allow the model to skip some transformations when needed. This facil-
itates information flow between layers, and prevents vanishing gradients that

23



Theoretical Foundations

can occur in deep architectures. These connections improve both convergence
speed and final performance.

Besides the architectural refinements with respect to the traditional Transformer
listed above, the way data is preprocessed changes with the ViT. To process 2D
images, a series of transformations is applied to the images.

1. First, all the images are resized to a fixed resolution to ensure uniform size
across all input images, regardless of their original dimensions.

2. Then, each image is divided into a fixed number of patches, all of the same
size, for example 16x16 pixels. These patches do not overlap, and each patch
is considered as a "token".

3. Before feeding these tokens to the ViT, each patch is flattened into a 1D vector
by concatenating the pixel values. So, for 16x16 pixels patches, if we use 3
color channels (RGB), the resultinf vector with be of size 16x16x3 = 768.

4. Next, a fully connected layer is applied to each of the flattened patches. This is
simply a linear transformation which maps the patch vector into an embedding
space of fixed size. This step is necessary as Transformers expect embeddings
of the data, and not the raw pixel data itself.

5. As Transformers process all patches simultaneously, they are unaware of the
sequential order of the patches. Thus, Positional Encodings are injected
into each patch embedding vector, to provide information about the relative
or absolute position of each patch in the image. These positional embeddings
can be simply a sine or cosine encoding, or a learnable embedding. Standard
learnable 1D position embeddings are used, as no significant performance
gains from using more advanced 2D-aware position embeddings were observed.

6. Finally, a sequence of fixed-size patch embeddings with positional encodings
is fed to the Vision Transformer.

This is how the ViT adapts the Transformer architecture, originally designed for
text, to handle visual data effectively.

3.2 Key Concepts
This section aims to clarify concepts and coined terms that shall be frequently
referred to hereafter.

24



Theoretical Foundations

3.2.1 Query Image and Query Embedding
A query image is an image of the object or concept to be detected in a target or test
image. It serves as an example of the category we would like our object detector to
be able to identify. However, the query image is not passed in its raw format to
the object detector. Query Embeddings are numerical representations of the
query images, obtained using specialized encoders, which output a compact high
dimensional vector that captures all the distinctive features of the query image.
Query embeddings are designed to retain semantic and structural information,
allowing the model to identify similar objects, even under variations in scale, lighting,
or orientation. The query embeddings are passed to the object detector, which
then looks for the query objects in the test images by comparing the embeddings
of the query objects to the test image embeddings.

3.2.2 Image-Conditioned Object Detection
The computer vision task which consists of detecting objects based on a visual
example is called Image-Conditioned Object Detection. The visual example is an
image of the object to be detected in the test images, and it is used instead of textual
queries which are phrases that describe the object to be identified, as well as instead
of a fixed predefined set of categories that the detector is pretrained to detect.
The example image provided is called the query image. Unlike traditional object
detection methods, this approach allows the dynamic identification of objects in test
images by comparing their features to those in the query image. The model extracts
embeddings from both the test and query images, and then computes similarity
measures to locate and classify objects in the scene. This method is particularly
useful for scenarios requiring flexibility, such as one-shot or few-shot detection,
where labeled data for specific object classes is rare or difficult to obtain. By
conditioning on visual queries instead of fixed class definitions, image-conditioned
object detection offers a versatile and adaptive solution for detecting novel or
previously unseen objects.

25



Theoretical Foundations

Figure 3.6: Image-Conditioned detection: Features of query images are compared
with features of the images from the support (test) set, to produce similarity scores,
and eventually class predictions.[20]

3.2.3 Zero-Shot vs Few-Shot Object Detection

Few-Shot Object Detection is an advanced computer vision task whose goal is to
detect objects with limited labeled training data available. The model is given
few examples of the object to be detected (often as few as one or five). N-way
K-shot detection refers to the task of detecting "N" novel object categories, with
"K" labeled examples available for each of the "N" classes[20]. This is done by using
the "K" example images as query images for the detection task.

Zero-Shot Detection, on the other hand, is the task of detecting objects in
an image without any labeled examples or prior visual references of the object.
This makes zero-shot detection class-agnostic, meaning the model does not rely on
specific class labels to identify objects. Instead, it predicts bounding boxes and
"objectness" scores, which represent the model’s confidence that a bounding box
contains an object, regardless of its class.

26



Theoretical Foundations

To accomplish this, zero-shot detection leverages semantic knowledge, such
as relationships between objects, attributes, or textual descriptions, rather than
relying on visual examples. The model is trained to align object features extracted
from images with a pre-existing semantic space. This alignment enables the model
to generalize and detect objects from unseen classes by associating visual patterns in
the image with their semantic meanings. In simple terms, the model "understands"
what an object might be based on its attributes and context, even if it has never
seen that specific object before. By using this semantic understanding, the model
can identify and localize objects it has no prior examples of, making zero-shot
detection a powerful tool for tasks involving unseen categories.

27



Chapter 4

Model Overview

Our work leverages the pretrained OWLv2[26] network, introduced in 2023, which
represents the state-of-the-art in one-shot and zero-shot object detection. Our
choice to leverage OWLv2 is driven by its superior performance in generalizing to
unseen object categories and its open-vocabulary learning capabilities. The model
is designed to detect objects in images based on textual descriptions provided by
the user. In our work, we build upon this functionality and extend it by adapting
the architecture to detect objects based on reference images rather than textual
descriptions. This ability to support both textual and visual inputs demonstrates
the flexibility of OWLv2, making it an ideal candidate for handling the complex
detection tasks relevant to our scope of work.

The OWLv2 model builds on the foundation of OWL-ViT, a vision transformer
architecture designed specifically for open-vocabulary learning. By incorporating
several optimizations, OWLv2 enhances both scalability and performance. In the
following, we present their respective architectures.

4.1 OWL-ViT
The objective of OWL-ViT model is to create a simple and scalable open-
vocabulary object detector, i.e, a detector able to recognize objects of novel
categories beyond the training vocabulary. The chosen architecture is transformer-
focused because of their proven scalability and success in closed-vocabulary de-
tection. Since this model primarily focuses on images, the Vision Transformers
described in [18] are utilized. "We present a two-stage recipe:

1. Contrastively pre-train image and text encoders on large-scale image-text
data.

28



Model Overview

2. Add detection heads and fine-tune on medium-sized detection data.

The model can then be queried in different ways to perform open-vocabulary or
few-shot detection." [27]

Figure 4.1: Overview of the OWL-ViT method: 2-phase recipe[27]

4.1.1 OWL-ViT Architecture
To encode the test images, the model uses a standard Vision Transformer (ViT)[18]
as the image encoder and a Transformer-based architecture for encoding text queries,
creating a unified framework for object detection through image-text alignment.

4.1.2 Phase I
In the first phase, the image and text encoders are pretrained contrastively. Con-
trastive training of image-text pairs enables the model to learn consistent visual
and language representations from web-derived image and text pairs without the
need for explicit human annotations, vastly increasing the available training data,
which has led to significant improvements on zero-shot classification benchmarks.
The idea of Contrastive Learning is to teach the model to match corresponding
image-text pairs, while distinguishing non-matching pairs.

Both encoders are trained from scratch with random initialization with a con-
trastive loss on the image and text representations.

1. Image Embedding: The Vision Transformer (ViT) processes the image by
dividing it into patches and generating token representations, where each token
corresponds to a specific region of the image. To create a single embedding

29



Model Overview

for the entire image, Multihead Attention Pooling (MAP) is applied. MAP
aggregates all token representations by focusing on the most relevant parts of
the image, enabling the model to represent the whole image effectively in a
compact vector.

2. Text Embedding: The Text Encoder processes the query, and the final
end-of-sequence token is used as the text embedding. This embedding captures
the overall semantic meaning of the text query in a way that aligns with the
visual representations.

Once the image and text embeddings are computed, they are paired and used to
train the model with a contrastive loss. This loss function minimizes the distance
between embeddings of matching image-text pairs and maximizes the distance
between embeddings of non-matching pairs.

At the end of this phase, the image and text encoders are aligned in a shared
semantic space, allowing the model to generalize to unseen categories by associating
visual features with textual descriptions, making it highly effective for tasks such
as zero-shot and few-shot object detection.

4.1.3 Phase II
In the second phase, to adapt the image encoder for object detection, the token
pooling and final projection layers are removed. Unlike the pre-training stage,
where the output representations of different tokens (representing different parts of
the image) are combined into a single image embedding, the Vision Transformer
processes the image without aggregating token outputs.

Since each output token from the ViT represents a distinct region of the im-
age, these tokens are linearly projected into individual object embeddings. This
allows the model to handle multiple objects within a single image by leveraging
these per-token projections. The self-attention mechanism in the ViT ensures that
each token not only encodes local information about its specific region but also
incorporates global context by attending to other regions in the image.

The query embeddings produced by the text encoder are then used in conjunc-
tion with the ViT token outputs to predict class probability scores for the objects.
In particular, the query embeddings are compared to the ViT token outputs using
a similarity function to associate each region with a class label.

30



Model Overview

Bounding boxes are generated by passing the ViT output tokens through a small
Multi-Layer Perceptron (MLP). The MLP transforms the spatial and contextual
features encoded in the tokens into precise bounding box coordinates, localizing
the detected objects in the image.

By preserving the token-level granularity of the ViT outputs and aligning them
with query embeddings, the model can handle complex scenarios involving multiple
objects, overlapping regions, and unseen categories, making it a powerful tool for
object detection tasks.

4.2 Transition to OWLv2
The OWL-ViT model excels in image classification by leveraging large-scale con-
trastive learning on image-text pairs, which are abundantly available on the web
as weakly supervised data[26]. However, its performance diminishes when applied
to object detection tasks. This limitation arises because object detection requires
precise localization, a challenge not directly addressed by contrastive learning.
Unlike image-text pairs, which are plentiful for classification, naturally occurring
data suitable for object localization is scarce and not publicly available, restricting
detection performance and scalability.

Additionally, OWL-ViT’s dependence on pre-trained representations limits its
ability to adapt to the more complex demands of object detection, such as recog-
nizing multiple objects within a single image and managing overlapping regions.
Localization tasks demand a precise alignment between visual features and spatial
regions, which cannot be effectively learned through contrastive training alone.

To scale detection training, inspiration is drawn from image-level methods, where
the principle has been to leverage weak supervision in the largest possible amount.
Specifically, a self-training approach is adopted: an existing detector generates
pseudo-box annotations for image-text pairs, which are then used as training data.
This strategy mitigates the scarcity of labeled detection data, enabling more robust
and scalable object detection training.

4.3 OWLv2
The OWLv2 method consists in a simple self-training approach with three steps:

1. Use an existing open-vocabulary detector to predict bounding boxes for a
large Web image-text dataset to produce pseudo-annotations.

31



Model Overview

2. Self-train a new detector on the pseudo-annotations.

3. Optionally, fine-tune the self-trained model briefly on human-annotated detec-
tion data.

Figure 4.2: Overview of the OWL-V2 method[26]

The self-training approach encounters three primary challenges: label space
selection, pseudo-annotation filtering, and training efficiency[26]. The objective of
the OWLv2 method is to address these challenges in a systematic and optimized
manner. In the following sections, we provide a detailed description of the OWLv2
method and how it overcomes these limitations.

4.3.1 Step 1: Generating Pseudo-Annotations
We use the WebLI dataset as the source of weak supervision for self-training. The
WebLI dataset consists of approximately 10 billion images and their associated alt-
text strings available on the public web. The OWL-ViT CLIP-L/14 is employed
to annotate these images with pseudo-bounding boxes. As an open-vocabulary
object detector, OWL-ViT first detects objects in a class-agnostic manner and
then assigns scores to the detected objects based on their association with free-text
queries.

A key design decision in this process is the annotation label space.The two
following alternatives are explored[26]:

1. Using a fixed, human-curated label space for all images: We combine all
the labels sets from LVIS, Objects365, OpenImagesV4, and Visual Genome
datasets and remove duplicates and plural forms. We obtain a total of 2520
categories.

32



Model Overview

2. Machine-generate per-image queries from image-associated text: We automati-
cally generated queries from the image-associated text, we use no grammatical
parsing and simply extract all word N-grams up to length 10 from the text
associated with a given image and use them as queries for that image, to
avoid biases from grammatical parsing (extracting nouns/verbs for example).
An example of an N-gram is the following: if the text describes "a black cat
sitting on a red sofa", unigrams, bigrams, trigrams, etc., will be generated:

• Unigrams: "black", "cat", "sitting", "sofa"
• Bigrams: "black cat", "red sofa"
• Trigrams: "black cat sitting", "sitting on sofa"

As for filtering these pseudo-annotations, "Regardless of label space, we ensemble
predictions over seven prompt templates such as "a photo of a ". For each predicted
box, we keep the query with the highest score as its pseudo-label. For each image,
we keep all boxes above a score threshold of 0.3. This threshold was selected after
performing a grid search. The pseudo-annotations are used as hard labels for
self-training." [26]

It was observed that the machine-generated per-image queries yielded better
results than the human-curated label space. A mixture of human and machine-
generated label spaces performs well in all settings, but does not significantly
outperform the purely machine-generated label space. The broader and more
flexible query set generated dynamically for each image enabled better alignment
with the diverse and noisy data in WebLI, leading to improved pseudo-annotation
quality and more robust training performance in downstream object detection
tasks.

4.3.2 Step 2: Self-training at Scale
Self-training represents the primary enhancement introduced in OWLv2 over
OWL-ViT, and the following provides an in-depth overview of this process:

Initialization

The model’s image and text encoders are initialized from pre-trained contrastive
image-text models, such as CLIP. These encoders have already been trained on a
large-scale dataset of image-text pairs, enabling them to capture and understand
the relationships between visual content and textual descriptions effectively.

The detection heads, responsible for generating bounding boxes and class proba-
bilities, are randomly initialized. Starting from scratch allows the detection heads to

33



Model Overview

learn specifically from the pseudo-annotations generated during training, adapting
directly to the object detection task.

Self-training

The self-training process is structured around the following key components:

• Training data: The training process begins by exclusively using pseudo-
annotations generated by the OWL-ViT model, as described in Section 4.3.1.
These pseudo-annotations serve as weakly supervised data, allowing the model
to improve its detection capabilities without relying on manual annotations.

• Loss Functions: The training leverages the same loss functions as the OWL-
ViT model, which have been proven effective in guiding the model to make
precise decisions. These include contrastive loss for aligning visual and textual
embeddings, as well as object detection losses for bounding box regression and
classification.

• Pseudo-negatives: To further enhance learning, the query embeddings are
augmented with pseudo-negatives, which are randomly sampled queries from
other images in the dataset. This augmentation mimics the concept of batch
negatives in contrastive learning, forcing the model to distinguish between
relevant and irrelevant queries. As a result, the model becomes better at
identifying correct matches and avoiding false positives, improving its ability
to handle diverse and challenging detection scenarios.

• Token Dropping: Both natural and Web images contain low-variance areas
devoid of useful information, e.g. sky, single-color backgrounds, or padding.
These areas do not affect the detection performance of our model. Since ViTs
represent images as an unordered sequence of tokens, token can be dropped
without changing the model’s parameters. Therefore, the image patches are
ordered based on their pixel variance and the 50% with the lowest variance
are discarded during training. During inference, all patches are preserved to
ensure full information is utilized.

• Instance Selection: OWL-ViT is an encoder-only architecture, so it predicts
one bounding box per encoder token. This is inefficient, since there are typically
many more encoder tokens than objects, and most output tokens therefore do
not represent objects. We introduce an objectness head which predicts the
likelihood that an output token actually represents an object, and compute
boxes, class scores, and losses only for the top-k tokens by objectness. In
particular, we select 10% of instances by top objectness during training, but
we keep all instances during inference.

34



Model Overview

• Mosaics: During self-training, raw images are combined into grids of up to 6
x 6 to create a single training example. This is done to increase the number
of raw images seen for a given fixed model input resolution. We prefer this
approach rather than accepting different input image sizes, because the latter
requires resizing image position embeddings for each input size, introducing
an additional complexity. Moreover, mosaics reduce the average object size,
enhancing small-object detection performance.

By incorporating these strategies, the self-training process effectively addresses
the challenges of weak supervision, low-resolution data, and inefficiencies, resulting
in a model that is more robust and capable of handling diverse detection scenarios.

3. Fine-Tuning

While self-training using pseudo-annotations alone delivers strong performance,
briefly fine-tuning on human annotations can yield further significant improve-
ments. However, fine-tuning open-vocabulary models introduces a critical trade-off:
it enhances performance on the fine-tuned classes but can reduces the model’s
open-vocabulary capabilities. Specifically, it is observed that the model’s initially
high robustness to distribution shifts diminishes after fine-tuning, leading to poorer
performance on unseen classes, even as its accuracy on fine-tuned classes improves.

To address this trade-off, an ensemble approach is proposed which averages the
model weights before and after fine-tuning. This method requires no additional
training, making it a zero-cost solution. The experiments confirm that this Model
Ensembling strategy achieves the best overall performance, preserving robustness
and ensuring balanced performance across both fine-tuned and unseen classes.

In the following section, we describe how we leverage the OWLv2 model in our
work to build and end-to-end pipeline for zero, one, and few-shot detection.

35



Chapter 5

Implementation

5.1 Model Configuration

As our choice of architecture has fallen upon OWLv2 described above, we leverage
the HuggingFace implementation publicly available on GitHub. HuggingFace is
a robust and highly structured library for state-of-the-art technologies, offering
an efficient user-friendly framework for model deployment. It also provides a
well-organized, comprehensive, and in-depth documentation, along with numerous
examples found at HuggingFace.

For our project, we have utilized the Owlv2ForObjectDetection class from
the Transformers library, which is specifically designed to leverage the OWLv2 ar-
chitecture for object detection tasks. This class provides a set of powerful functions
that enable us to efficiently process and predict objects in images. Specifically, we
utilize the image_embedder, which generates image embeddings, the box_predictor,
which predicts bounding boxes for detected objects, and the class_predictor, which
assigns class labels to the objects within those boxes. In addition, we employ the
Owlv2Processor, which integrates both an Image Processor and a CLIP Tokenizer.
The Owlv2Processor is responsible for preprocessing the input images and tokeniz-
ing them in a way that is compatible with the OWLv2 model. Together, these
classes enable us to fully utilize the OWLv2 architecture’s functionalities, making
the model highly effective for our object detection tasks. Although HuggingFace
provides a ready-to-use image-guided function for object detection, we opt not to
use it, as its abstracted implementation limits user control over critical parameters
essential for increasing model adaptability to a wide variety of use cases. Instead,
we utilize the base OWLv2 model and define our own image-guided sequence
(see Fig. 5.10), allowing greater flexibility in query embedding extraction, data
processing, model inference, and results post-processing.

36

https://github.com/huggingface/transformers/tree/main/src/transformers/models/owlv2
https://huggingface.co/docs/transformers/en/model_doc/owlv2#transformers.Owlv2ForObjectDetection


Implementation

We have already covered the 2-stage recipe of OWLv2, emphasizing that the
Encoders are pre-trained contrastively on large amounts of text-image pairs. Our
project focuses on the second phase, were we leverage these pre-trained encoders
and integrate them in our pipeline for the detection task. Thus, the encoders
are initialized from checkpoints pre-trained by Google. In particular, we use the
google/owlv2-base-patch16-ensemble checkpoint. We selected this checkpoint due
to its "ensembling" (see Section 4.3.2) of model weights before and after fine-tuning,
a technique that has been shown to deliver the best overall performance over
fine-tuned and unseen classes both. Additionally, the 16x16 patch size of the model
represents an ideal balance between computational efficiency given the resources at
hand, and the ability to capture fine-grained image features, ensuring satisfactory
detection performance.

As for the hardware setup, this project was developed on an HP ZBook Power
workstation, running Windows 10 Enterprise. The system is equipped with a 13th
Generation Intel Core i7-13800H processor, which operates at 2.50 GHz, coupled
with 32GB of RAM, providing ample memory for the computational demands of
our project. For GPU acceleration, the workstation features an NVIDIA RTX
A1000 GPU with 6GB of VRAM, offering robust performance for tasks like deep
learning and image processing. However, our code is also adapted to run without
GPU support, though at the cost of speed, but it renders the project flexible for
systems without dedicated GPU resources.

In the following, we provide a detailed, step-by-step breakdown of the end-to-end
pipeline that is our solution, covering all the details and nuances of our implemen-
tation.

At a high level, our goal is straightforward: extract the query embeddings from
the query images and use them to perform object detection on the test images.
To this aim, we present our solution which not only successfully accomplishes
this task, but also provides significant user flexibility and control over the various
functionalities. This ensures that users can easily tailor the product to meet their
specific needs depending on the use case, while maintaining high performance and
accuracy. The full code can be found at GitHub

37

https://huggingface.co/google/owlv2-base-patch16-ensemble
https://github.com/milenayahya/OneShotObjectDetection


Implementation

5.2 Zero-Shot Object Detection on Query Images
To initiate the detection process, users must provide their query images and place
them in a dedicated directory specified as a parameter to the program. Each query
image should strictly contain only one object and must adhere to the following file-
name format: "{category_id}_{category_name}_{instance_number}".
This unique naming convention serves two purposes:

1. It enables the program to associate the extracted embeddings with a specific
category, which is crucial for zero-shot detection. Since zero-shot detection is
class-agnostic, i.e, it identifies objects without prior knowledge of their classes,
the filename acts as a guide for mapping the identified object to a known
category.

2. It supports few-shot detection by allowing multiple query images for the same
category to be distinguished and managed effectively. The program introduces
a parameter, k, which specifies the k-shot setting, representing the number of
query images provided per class. The inclusion of the {instance_number}
in the filename ensures unique identification of each query image for a given
category, while imposing control over the maximum number of query images
allowed per class.

1 images = []
2 for image_name in os.listdir(image_dir):
3 if image_name.endswith((".png", ".jpg", ".jpeg", ".bmp", "JPEG")):
4 category = ID2CLASS[float(image_name.split("_")[0])]
5

6 #Taking only k query images to perfrom k shot detection
7 k_hat = image_name.split("_")[-1].split(".")[0]
8 if k_shot is not None and int(k_hat) > k:
9 continue

10

11 image_path = os.path.join(image_dir, image_name)
12 image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
13 if image is not None:
14 images.append((image, category))
15 return images
16

Figure 5.1: Extracting classes of query images imposing control on the parameter
K using the filename of each image.

38



Implementation

Once the query images and their respective category information are loaded,
the program proceeds as follows:

1. Preprocessing with Owlv2Processor The query images are first passed
to the Owlv2Processor, which converts them into PyTorch tensors. This
transformation ensures compatibility with the model and facilitates batch
processing, improving computational efficiency. Additionally, this step allows
the tensors to be transferred to a GPU for faster processing.

2. Feature Extraction and Predictions The transformed tensors are fed into
the model, which extracts features and generates predictions. The model
outputs:

• Bounding box predictions, representing the spatial coordinates of
detected objects.

• Objectness scores, indicating the model’s confidence that a bounding
box contains an object, irrespective of its class.

1 for batch_start in range(0, len(images), args.query_batch_size):
2

3 torch.cuda.empty_cache()
4 image_batch = images[batch_start : batch_start +

args.query_batch_size]ñ→

5 source_pixel_values = processor(
6 images=image_batch, return_tensors="pt"
7 ).pixel_values.to(device)
8 with torch.no_grad():
9 feature_map = model.image_embedder(source_pixel_values)[0]

10

11 # Rearrange feature map
12 batch_size, height, width, hidden_size = feature_map.shape
13 image_features = feature_map.reshape(batch_size, height * width,

hidden_size).to(device)ñ→

14

15 # Get objectness logits and boxes
16 objectnesses = model.objectness_predictor(image_features)
17 source_boxes = model.box_predictor(image_features,

feature_map=feature_map)ñ→

18 source_class_embedding =
model.class_predictor(image_features)[1]ñ→

At this stage, it is necessary to identify which of the predicted bounding boxes
correctly encompasses the query object to extract their corresponding query em-
beddings as the class embeddings. If the parameter visualize_query_images is set

39



Implementation

to True, the program visualizes the top_k predicted bounding boxes—ranked by
objectness score—on the query image. The top_k parameter is user-controlled,
enabling flexibility in visualizing the predictions made by the model.

Below are examples of query images with their top 3 zero-shot predictions:

The program provides users with two options for query embedding selection: au-
tomatic and manual, controlled by the boolean parameter manual_query_selection.

5.2.1 Automatic Query Selection
In automatic mode, the bounding box with the highest objectness score is selected,
and its corresponding query embeddings are assigned as the embeddings of the
mapped class.

If the user-provided query images are cropped or zoomed in—such that the
entire image represents the query object—the cls flag, a model parameter, must be
enabled. Specifically:

• Set cls to 1 if the image is cropped.

• Set cls to 0 if the image contains background elements.

• Alternatively, cls can be a bitmap array containing flags for all query images
in a batch.

As noted in Section 4.3, token pooling has been removed from the OWLv2
model. Consequently, there is no token embedding representing the entire image,
and aggregating all tokens is infeasible because the resulting embedding lacks
meaningful representation. To address this, we represent the whole image by

40



Implementation

selecting the predicted bounding box with the maximum area, under the following
conditions:

1. The area of this box is at least 70% greater than that of the box with the
highest objectness score.

2. The objectness score of the maximum-area box exceeds 0.1.

If these conditions are not met, the resulting embeddings will lack meaningful
features and risk confusing the model. In this case, we default to selecting the
bounding box with highest objectness score.

In Fig. 5.4, we show two examples of cropped query images. Query images may
be cropped either because they are extracted using an automated script that crops
objects from a dataset, or because the user provides manually cropped images for
improved precision during query embedding generation.

41



Implementation

1 for i in range(batch_size):
2 # select max objectness score box
3 if cls[batch_start + i] == 0:
4 max_index = torch.argmax(current_objectnesses[i])
5 indexes.append(max_index.cpu().item())
6 query_embedding = current_class_embeddings[i, max_index]
7

8 # if selecting cls token, take from the max objectness boxes, the
one that has maximum areañ→

9 elif cls[batch_start + i] == 1:
10 #first find max objectness box
11 idx_obj = torch.argmax(current_objectnesses[i])
12 box_obj = current_boxes[i, idx_obj]
13 area_obj = box_obj[2] * box_obj[3]
14

15 #find max area box
16 topk_indices = torch.topk(current_objectnesses[i],

args.topk_query).indicesñ→

17 topk_boxes = current_boxes[i,topk_indices]
18 areas = [box[2] * box[3] for box in topk_boxes]
19 max_area_index = torch.argmax(torch.tensor(areas))
20 max_area = areas[max_area_index]
21 objectness = round(float(current_objectnesses[i,

topk_indices[max_area_index]]),2)ñ→

22

23 #first check: threshold max_area_box on objectness score and
compare areañ→

24 if objectness < 0.1 or (area_obj/max_area) <= 0.7:
25 indexes.append(idx_obj.cpu().item())
26 query_embedding = current_class_embeddings[i, idx_obj]
27

28 else:
29 idx = topk_indices[max_area_index]
30 indexes.append(idx.cpu().item())
31 query_embedding = current_class_embeddings[i, idx]
32

Figure 5.2: Class query embeddings extraction.

42



Implementation

Figure 5.3: The box with maximum
area has very low objectness score,
while that with maximum objectness
score has an area very close to the
max area, so we choose the latter.

Figure 5.4: The maximum area box
coincides with the maximum object-
ness score, as is the case 90% of the
time.

5.2.2 Manual Query Selection
If the automatic query selection algorithms and options fail to select the target
box that correctly represents the query object, the user can set the parameter
manual_query_selection to True to perform the selection themselves.

The query embeddings produced by the model have the dimension [512, 3600],
512 being the dimension of the embedding of each patch (hidden size), and 3600
being the number of proposed (possibly overlapping) regions. The bounding boxes
have dimension [4,3600], and the query embeddings and boxes are aligned, meaning
that the query embedding of bounding box i is found at the index i of the query
embeddings array.

It is possible to manually select embeddings for specific classes while leaving
automatic predictions for others. To do so, the user must specify the class name
they wish to modify and the index of the query embedding corresponding to the
patch they want to select for that class (i.e., one of the 3600 predicted regions).

This feature is useful because sometimes the model fails to correctly extract the
query object using zero-shot detection. The box containing the object is among
the predicted boxes, but the defined heuristics for box selection cannot choose it,

43



Implementation

because it doesn’t have maximum objectness nor maximum area if the image is
cropped. Below is an example of such a query image:

Figure 5.5: Automatic query selection fails to select the correct box with index
1460 and objectness score 0.39.

If the user prefers to avoid manual selection, they could either take/select another
query image for the given class, or crop the query image around the object, which
will lead the automatic selection to choose the box with the maximum area, i.e,
the correct box. Otherwise, we continue to describe the manual selection process:

The program, when performing the zero-shot detection, besides producing
the query images with the predicted bounding boxes, also produces a file called
"objectness_indexes_{args.comment}.json". This file contains for each class, the
predicted details about the predicted boxes, namely the index and objectness score
of each of the top_k boxes. The entries look like this:

44



Implementation

1 [
2 {
3 "category": "pear",
4 "boxes": [
5 {
6 "index": 1358,
7 "objectness": 0.05
8 },
9 {

10 "index": 1704,
11 "objectness": 0.6
12 },
13 {
14 "index": 2645,
15 "objectness": 0.04
16 }
17 ]
18 },
19 {
20 "category": "mug",
21 "boxes": [
22 {
23 "index": 1233,
24 "objectness": 0.47
25 },
26 {
27 "index": 1819,
28 "objectness": 0.16
29 },
30 {
31 "index": 2838,
32 "objectness": 0.09
33 }
34 ]
35 }
36 ]

Figure 5.6: Details about the top 3 boxes ranked by objectness score.

This file contains the same information as the visualized query images, eg: Figure
5.3, but it is useful as it allows the extraction of the index of the required box in
case the boxes are overlapped and the index cannot be clearly read from the image.
The manual step thus consists of specifying the class and the corresponding index,

45



Implementation

as shown below:

1 if options.manual_query_selection:
2 zero_shot_detection(model, processor, options, writer)
3

4 categories = ["sugar_box", "wineglass"]
5 idx = [1689, 2166]
6

7 indexes = modify_max_objectness_indices(
8 os.path.join(query_dir, f"objectness_indexes_again.json"),
9 categories,

10 idx)
11 indexes = [v for k, v in indexes.items()]
12 query_embeddings, classes = find_query_patches_batches(
13 model, processor, options, indexes, writer
14 )
15

16 else:
17 indexes, query_embeddings, classes = zero_shot_detection(
18 model,
19 processor,
20 options,
21 writer,
22 cls
23 )

Figure 5.7: Zero-Shot Detection with manual query selection option

At the end of this step, we have classes and corresponding query_embeddings
which we will use to perform One-Shot Detection.

5.2.3 Few-Shot Object Detection
To perform K-Shot detection on test images, we collect K query images for each
class. The query embeddings are extracted in the same manner as described
for individual images, which means we can choose between automatic or manual
embedding selection, as well as cropped or non-cropped images. After extracting
these embeddings, two possible approaches can be used to handle them:

1. Independent Query Embeddings: In this approach, the query embeddings
for each of the K query images of a class are kept independent. This means
that each query image has its own embedding, and during inference, the

46



Implementation

test image embeddings are compared with each of the K query embeddings
as before. Importantly, Non-Maximum Suppression (NMS) is applied
during post-processing, even if the predictions belong to the same class but
originate from different query images.

This approach is particularly useful when the K query images for a class are
significantly different, such as when they show the object from different
angles or perspectives, capturing different features. This diversity ensures
that the model has multiple representations of the same class, which can be
beneficial in detecting the object under varying conditions or views.

Figure 5.8: Example class where independent query embeddings are required.

2. Averaged Query Embeddings: Alternatively, the query embeddings of
the K query images for the same class can be averaged. This is done by
performing Average Pooling on the K query embeddings, resulting in a
single combined query embedding for the class.

This approach is more suitable when the K query images are very similar
and do not reveal significant new information about the object (e.g., if they are
simply different views of the same object from similar angles). By averaging
the embeddings, we reduce redundancy and avoid the extra computational
overhead that comes from performing NMS on multiple similar predictions.
This can lead to more efficient processing but may lose some of the diversity
present in the first approach.

Figure 5.9: Example class where it is better to average query embeddings.

While in the previous case no code modification is required, to perform Average

47



Implementation

Pooling of the queries of the same class, we set the parameter average_queries
to True, to execute the following block of code:

1 if args.k_shot > 1 and args.average_queries:
2 class_embeddings_dict = {}
3

4 # Group queries of same class together
5 for embedding, class_label in zip(query_embeddings,

classes):ñ→

6 if class_label not in class_embeddings_dict:
7 class_embeddings_dict[class_label] = []
8 class_embeddings_dict[class_label].append(embedding)
9

10 query_embeddings = []
11 classes = []
12 for class_label, embeddings in

class_embeddings_dict.items():ñ→

13 average_embedding = torch.mean(torch.stack(embeddings),
dim=0)ñ→

14 query_embeddings.append(average_embedding)
15 classes.append(class_label)
16

5.2.4 Supercategories
Another feature our program offers is the ability to generalize over predicted
categories by grouping conceptually or visually similar classes under a common
label. This is achieved by mapping individual categories to their corresponding
supercategories.

This mapping can be applied before or after inference, with different implica-
tions for model performance and result interpretation:

1. Pre-Inference Mapping When categories are grouped into supercategories
before inference, the query embeddings used for each class (now representing a
supercategory) are aggregated from multiple individual categories. Since all
these embeddings are mapped to the same label, the Non-Maximum Sup-
pression (NMS) algorithm will filter them together, significantly impacting
the final predictions.

• This approach may improve robustness by consolidating similar object
types, reducing confusion between fine-grained categories.

48



Implementation

• However, it may also lead to a loss of specificity, as multiple distinct
categories will be treated as a single class.

2. Post-Inference Mapping When the mapping is applied after inference, the
raw detection results remain unchanged, but their labels are generalized at a
higher level.

• This is useful for applications that require more abstract categorization,
such as summarizing results in broad object groups (e.g., grouping "lion,"
"tiger," and "leopard" under "big cats").

• It can also help align the detected categories with a more human-intuitive
taxonomy, making the output more interpretable for downstream tasks.

Thus, whether to apply supercategory mapping before or after inference depends
on the specific objectives of the application—whether the goal is to modify the
detection behavior or simply to generalize the final labels for easier interpretation.

From a practical point of view, enabling this option requires the user to set the
parameter use_supercategories to True to perform the mapping before inference,
or alternatively, to set generalize_categories to True to perform the mapping after
inference.

These two parameters are mutually exclusive, meaning they cannot both be
set to True simultaneously. Additionally, the user must provide the mapping, which
is essentially a dictionary where the categories serve as keys and the corresponding
supercategories as values.

5.2.5 Seamless addition of a new category
The main objective of this project is to be able to add a new category to be
recognized, without collecting labeled data about this category, without training
the model on the model, and without re-starting the server.

Our program fully supports this functionality. If the user adds a new query image
to the designated query image directory during runtime, the program dynamically
integrates the new class into the detection pipeline.

To ensure consistency, the program temporarily locks the query_embeddings
and classes resources, preventing their use in the One-Shot Detection phase
while processing the new query image. It then performs Zero-Shot Detection on
the newly added image, extracting its embedding and associating it with a new
class.

49



Implementation

Once this process is complete, the updated query_embeddings and classes are
unlocked, allowing One-Shot Detection to resume seamlessly. The key difference
is that inference now considers the newly introduced class, without requiring a full
restart of the system, nor any data collection and training of the network.

1 # Create an observer to watch for new query images
2 event_handler = ImageHandler(model, processor, options,

query_embeddings, classes, writer, cls, lock)ñ→

3 observer = Observer()
4 observer.schedule(event_handler, path=query_directory,

recursive=False)ñ→

5 observer.start()
6

7 # The function triggered when a new query image is observed
8 class ImageHandler(FileSystemEventHandler):
9 def __init__(self, model, processor, options, query_embeddings,

classes, writer, cls, lock):ñ→

10 ...
11

12 def on_created(self, event):
13 if event.is_directory:
14 return
15 if event.src_path.endswith((".png", ".jpg", "JPEG")):
16 print(f"New query image detected: {event.src_path}")
17 with self.lock:
18 self.query_embeddings, self.classes = add_query(
19 self.model,
20 self.processor,
21 self.options,
22 event.src_path,
23 self.query_embeddings,
24 self.classes,
25 self.writer,
26 self.cls
27 )
28 print("Updated query_embeddings and classes.")
29

Below is a visual representation of the entire flow for extracting the query
embeddings:

50



Implementation

Figure 5.10: Query Embedding Extraction – Our Approach

51



Implementation

This concludes the Zero-Shot Detection phase and all its different features.

52



Implementation

5.3 One-Shot Object Detection on Test Images
This is the core part of the application, where the images are provided to the
program for object detection. As a starting point, the user must configure a set of
parameters which control the behavior of the detection process.

1 {
2 "mode": "test",
3 "data": "MGN",
4 "source_image_paths": "Queries/Comau_cropped",
5 "target_image_paths": "Test/Comau/3D",
6 "backbone": "google/owlv2-base-patch16-ensemble",
7 "comment": "interface_test",
8 "query_batch_size": 8,
9 "test_batch_size": 8,

10 "topk_query": 3,
11 "topk_test": 20,
12 "k_shot": 1,
13 "average_queries": false,
14 "manual_query_selection": false,
15 "confidence_threshold": 0.95,
16 "visualize_query_images": true,
17 "visualize_test_images": true,
18 "nms_threshold": 0.3,
19 "nms_between_classes": false,
20 "write_to_file_freq": 5,
21 "generalize_categories": false,
22 "use_supercategories": false
23 }
24

These parameters can either be provided in a json configuration file or via the
command line.
Below, we explain what each parameter means and how it influences the object
detection process:

• mode: Defines the operation mode of the program, either test or validation.
The test mode evaluates the model on unseen data, while validation mode
is used to give a quantitative measure to the model’s performance, or to tune
hyperparameters.

• data: Specifies the dataset being used. Possible values include ImageNet,
COCO, MGN, or TestData for miscellaneous data.

53



Implementation

• source_image_paths: The directory containing the query images used for
object detection.

• target_image_paths: The directory containing the target images on which
detections will be performed.

• backbone: The pre-trained checkpoint with which we initialize our OWLv2
model, such as google/owlv2-base-patch16-ensemble.

• comment: An optional field for adding a custom comment to the run, which
can help in tracking experiments. It is also used for naming the files generated
during runtime.

• query_batch_size: The batch size for the query images during processing.

• test_batch_size: The batch size for the test images during object detection.

• topk_query: The top k objectness scores in the query images, used to filter
out low-confidence queries.

• topk_test: The top k predictions by score to keep from the test images after
processing.

• k_shot: The maximum number of examples used for each object during object
detection (K-shot learning).

• average_queries: If set to true and k_shot, this will average the query
embeddings that belong to the same class from multiple query images to
improve the robustness of the predictions.

• manual_query_selection: If set to true, the user will manually select the
zero-shot prediction on the query images that represents correctly the query
object.

• confidence_threshold: The minimum confidence score required for a detec-
tion to be considered valid. It can be a fixed score for all classes, or a list with
class-specific confidence thresholds can be provided.

• visualize_query_images: If set to true, query images will be visualized
during processing.

• visualize_test_images: If set to true, test images will be visualized during
object detection.

• nms_threshold: The threshold value for non-maximum suppression (NMS)
to filter out redundant bounding boxes based on their overlap.

54



Implementation

• nms_between_classes: If set to true, NMS will be applied between classes
to suppress overlapping boxes from different classes.

• write_to_file_freq: Specifies how frequently the results should be written
to file, in terms of batches processed.

• generalize_categories: If set to true, categories in the results file will be
generalized by mapping them to supercategories after performing prediction.

• use_supercategories: If set to true, the model will map categories to
their corresponding supercategories and use them for predictions instead of
individual categories.

All these parameters are aggregated in a custom class, RunOptions, that can
parse them from json files as well as from the command line.

Having provided the necessary settings, we pass to the one_shot_detection
function the query_embeddings and corresponding classes computed in the Zero-
Shot Detection phase, based on which it is required to perform the detection.

The model proceeds as follows:
1. Preprocessing with Owlv2Processor Just like the query images, the test

images are processed by the Owlv2Processor, which transforms them into
PyTorch tensors. This conversion ensures the images are in a format compatible
with the model and optimizes batch processing for improved computational
performance. Moreover, this step allows the tensors to be moved to the GPU,
enabling faster processing.

2. Feature Extraction and Predictions The transformed tensors are fed into
the model, which extracts features and generates predictions. In particular:

• The feature map of each image is passed to the model.class_predictor,
alongside the tensor containing all the query_embeddings, to produce
class confidence scores.

• The model.box_predictor produces the proposed bounding boxes, i,e,
the regions of the image that are likely to contain an object.

3. Postprocessing The results obtained, the bounding boxes and class probabil-
ity scores, are post-processed using processor.post_process_object_detection.
This step is necessary because the model resizes and pads the test images all
to the same size, and thus the raw predictions it returns are not true to the
image real dimensions.
These few steps in code:

55



Implementation

1 with torch.no_grad():
2 feature_map = model.image_embedder(target_pixel_values)[0]
3 b, h, w, d = map(int, feature_map.shape)
4 target_boxes = model.box_predictor(
5 feature_map.reshape(b, h * w, d), feature_map=feature_map
6 ) # dimension = [batch_size, nb_of_boxes, 4]
7

8 reshaped_feature_map = feature_map.view(b, h * w, d)
9

10 query_embeddings_tensor = torch.stack(query_embeddings) #
Shape: (num_batches, batch_size, hidden_size)ñ→

11

12 target_class_predictions, _ =
model.class_predictor(reshaped_feature_map,
query_embeddings_tensor) # Shape: [batch_size,
num_queries, num_classes]

ñ→

ñ→

ñ→

13

14 outputs = ModelOutputs(logits=target_class_predictions,
pred_boxes=target_boxes)ñ→

15 results
=processor.post_process_object_detection(outputs=outputs,
target_sizes=target_sizes, threshold=0)

ñ→

ñ→

16

4. Filtering Since the model generates 3600 predictions per image, a filtering
step is necessary to retain only the most relevant and confident detections.
This process is controlled by two key parameters:

(a) confidence_threshold: This mandatory parameter ensures that only
predictions with a class probability greater than or equal to the specified
threshold are retained. The threshold can be applied globally across all
classes or set individually for each class, allowing for finer control over
the filtering process. A higher threshold reduces false positives, while a
lower threshold captures more potential detections.

(b) topk_test: This optional parameter specifies the maximum number of
predictions to retain per image. When used, it works in conjunction with
the confidence_threshold to further refine the selection process. For
example, setting topk_test to 20 ensures that, among all predictions,
only the 20 highest-scoring detections per image are considered, with the
additional constraint that they must also meet the confidence threshold
requirement. This helps balance precision and recall by limiting the
number of predictions while maintaining high-confidence detections.

56



Implementation

1 scores = torch.sigmoid(target_class_predictions)
2

3 if args.topk_test is not None:
4 top_indices = torch.argsort(scores[:, :, 0],

descending=True)[:, :args.topk_test]ñ→

5 scores = scores[torch.arange(b)[:, None], top_indices]
6 target_boxes = target_boxes[torch.arange(b)[:, None],

top_indices]ñ→

7

8 if args.mode == "test":
9 if isinstance(args.confidence_threshold, (int, float)):

10 top_indices = (scores >=
args.confidence_threshold).any(dim=-1)ñ→

11 else:
12 idxs = torch.argmax(scores, dim=-1)
13 # Compare the scores with the corresponding

class-specific thresholdñ→

14 predicted_classes = [[classes[idx] for idx in
image_idxs] for image_idxs in idxs.tolist()]ñ→

15 thresholds = [[args.confidence_threshold[class_id] for
class_id in image_classes] for image_classes in
predicted_classes]

ñ→

ñ→

16 thresholds_tensor = torch.tensor(thresholds,
device=scores.device)ñ→

17 max_scores =
scores[torch.arange(scores.size(0)).unsqueeze(1),
torch.arange(scores.size(1)).unsqueeze(0), idxs]

ñ→

ñ→

18 top_indices = (max_scores >
thresholds_tensor).to(device)ñ→

19

20 filtered_boxes = [target_boxes[i][top_indices[i]] for i in
range(b)]ñ→

21 filtered_scores = [scores[i][top_indices[i]] for i in
range(b)]ñ→

5. Padding After filtering, the number of retained predictions is different for each
image. Since our program supports batch processing, this poses a problem. To
overcome this, we identify the image with the maximum number of predictions
in the batch, and then we pad the predictions of all other images with empty
entries so that all images in the batch have the same number of predictions.

57



Implementation

6. Non Maximum Suppression (NMS) Object detection models often gen-
erate multiple overlapping bounding boxes for the same object, each with a
different confidence score, all passing the confidence threshold. Non-Maximum
Suppression (NMS) is a post-processing technique used to filter these redun-
dant and overlapping predictions.

NMS works by first sorting all predicted boxes by confidence score in de-
scending order. The highest-scoring box is selected, and all other boxes that
overlap with it significantly (as measured by Intersection over Union, IoU) are
suppressed. This process is repeated iteratively until no more boxes exceed
the predefined NMS threshold, used as IoU threshold.

Using the boolean parameter nms_between_classes, we allow users to choose
between class-wise NMS, which removes overlapping boxes both within the
same class, and cross-class NMS, which suppresses overlapping boxes across
different classes. Class-wise NMS preserves detections of different objects,
while cross-class NMS helps reduce confusion between similar objects. This
flexibility ensures optimal filtering based on the dataset and application needs.

To pass the predictions to NMS, we need first to remove the padded empty
predictions, and then to flatten them by removing the batch dimension. We
use batched_nms from the torchvision library.

58



Implementation

1

2 nms_boxes, nms_scores, nms_classes, nms_image_indices =
nms_batched(ñ→

3 flattened_boxes, flattened_scores, flattened_classes,
flattened_image_indices, argsñ→

4 )

1

2 # NMS function
3 def nms_batched(boxes, scores, classes, im_indices, args):
4

5 '''
6 Perform non-maximum suppression on a batch of bounding boxes.
7 Takes boxes in (x1, y1, x2, y2) format for NMS.
8 Returns boxes (x, y, width, height) format.
9

10 '''
11 if args.nms_between_classes:
12 classes_nms = torch.zeros_like(classes)
13 else:
14 classes_nms = classes
15

16 indices = batched_nms(boxes, scores, classes_nms,
args.nms_threshold)ñ→

17 filtered_boxes = boxes[indices]
18 filtered_scores = scores[indices]
19 filtered_classes = classes[indices]
20 filtered_indices = im_indices[indices]
21 filtered_boxes_coco =

convert_from_x1y1x2y2_to_coco(filtered_boxes)ñ→

22

23 return filtered_boxes_coco, filtered_scores, filtered_classes,
filtered_indicesñ→

24

The results returned by NMS are the final predictions of the model.

59



Implementation

7. Storing the Results The predicted bounding boxes and class scores are stored
in a structured list, where each element is a dictionary containing the detection
information. To facilitate standardized evaluation, the results are saved in
COCO format, ensuring compatibility with the COCO API for quantitative
performance evaluation. For datasets like COCO and MetaGraspNet, the
predictions are given image_id that corresponds to the real image_id in their
corresponding ground truth files. Otherwise, we simply assign the image index.

1 for idx, (box, score, cls, img_idx) in
enumerate(zip(nms_boxes_coco, nms_scores, nms_classes,
nms_image_indices)):

ñ→

ñ→

2

3 ... # img_id assignment
4

5 coco_results.append({
6 "image_id": img_id,
7 "category_id": cls.item(),
8 "bbox": rounded_box,
9 "score": round(score.item(), 2)

10 })

The results are stored in a json file named results_args.comment.json,
where comment is a user-defined identifier. For large datasets, results are
written to the file incrementally every args.write_to_file_freq iterations.
This prevents excessive memory usage and ensures efficient resource manage-
ment, particularly when working with GPU-accelerated processing.

If generalize_results discussed in Section 5.2.4 is set to True, an ab-
straction level is added to the results, and the categories are mapped to
Supercategories in a post-processing step.

1 if args.generalize_categories:
2 map_supercategories(file)

60



Implementation

8. Visualizing the Results For qualitative evaluation, the predicted bounding
boxes can be optionally drawn on the test images and displayed. This visual-
ization helps assess detection accuracy, identify potential misclassifications,
and debug model performance intuitively. We demonstrate examples:

5.4 Real-time Deployment
To complete the project and prepare it for industrial applications, we built a server
to support the execution of the program on the robot. The goal was to be able to
run the application on Comau’s Racer3 robot equipped with a Zivid 3D camera
and a gripper. The server’s functionality can be outlined as follows:

• Parameter Initialization: : The system loads user-defined parameters
from a json configuration file, which are then stored in an instance of the
RunOptions class. First, the server performs zero-shot detection on the query
images present in the designated query directory. This process extracts
query embeddings (query_embeddings) and their corresponding class labels
(classes), which are subsequently used for object recognition.

• Server Deployment A TCP server is implemented using Python’s socket
module, listening for incoming connections on localhost at port 5001. To
ensure responsiveness, the server operates in non-blocking mode, allowing it
to handle multiple consecutive connections efficiently.

• Dynamic Query Management To accommodate new object classes dy-
namically, a watchdog observer is configured to monitor the query directory.
Whenever a new query image is detected, the add_query function (detailed in
Section 5.2.5) is triggered. This function processes the new image, updates the
query_embeddings, and integrates the corresponding class into the detection
pipeline without requiring a system restart.

61



Implementation

1 signal.signal(signal.SIGINT, git )
2 # Create a TCP/IP socket
3 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
4

5 # Bind the socket to the address given on the command line
6 server_address = ('localhost', 5001)
7 print('starting up on {} port {}'.format(*server_address))
8 sock.bind(server_address)
9

10 # Listen for incoming connections
11 sock.listen(1)
12

13 # Set the socket to non-blocking mode
14 sock.settimeout(5)
15

16 query_embeddings, classes = zero_shot()
17

18 # Create an observer to watch for new query images
19 event_handler = ImageHandler(model, processor, options,

query_embeddings, classes, writer, cls, lock)ñ→

20 # ImageHandler calls add_query
21 observer = Observer()
22 observer.schedule(event_handler, path=query_directory,

recursive=False)ñ→

23 observer.start()

• Client Connection and Image Acquisition Once the server is initialized
and the query embeddings are prepared, it continuously listens for incoming
client connections. Upon establishing a connection, it sequentially receives the
image dimensions—first the width, then the height—followed by the actual
image data. This structured approach ensures that the received image is
correctly reconstructed and ready for processing.

62



Implementation

1 try:
2 print("Initializing the connection :D")
3 while True:
4 try:
5 while True:
6 print('waiting for a connection')
7 connection, client_address = sock.accept()
8 print('connection from', client_address)
9

10 # Receive the size of the image
11 w = int(connection.recv(1024).decode())
12 h = int(connection.recv(1024).decode())
13 image_data = receive_all(connection, w*h*3)
14 if not image_data:
15 break
16

In addition to the image data, the server receives a set of depth and normal
information from the robot in the form of (x, y, z, nx, ny, nz) for each
pixel in the point cloud. These values are essential for converting the 2D
bounding box coordinates predicted by our detector into a precise 3D grasping
point, enabling the robot to accurately pick up the detected object.

1 data = []
2 for i in range(6):
3 d = receive_all(connection, w*h*4) # 4 bytes for each

floatñ→

4 if not d:
5 break
6 d = np.frombuffer(d, dtype=np.float32)
7 d = d.reshape(h,w,1)
8 data.append(d)
9

63



Implementation

• Object Detection Once all the data has been received from the client, the
detection process begins. The system performs One-Shot Object Detection
to identify the target objects within the image. The detected 2D bounding
boxes are then converted into precise 3D grasping points using the depth and
normal information, ensuring accurate object manipulation by the robot.

We define the grasping point of each object as its centroid, which corresponds
to the center of the bounding box. Once the centroid is computed, we extract
the corresponding 3D coordinates from the point cloud data associated with
the image. To optimize the robot’s picking sequence, we prioritize objects
closer to the camera. Predictions for these nearer objects are sent first, ensuring
the robot picks up the objects that are positioned on top or closer in the 3D
space.

1 def find_grasping_points(data, predictions):
2 # Get the grasping points for each object
3 grasping_points = []
4 for i, pred in enumerate(predictions):
5 # Get the bounding box for the object
6 bbox = pred['bbox']
7 category = pred['category_id']
8 x, y, w, h = bbox
9

10 # compute centroid
11 cx, cy = int(x + w/2), int(y + h/2)
12

13 # find xyz and nx ny nz
14 grasping_point = [d[cy,cx,0] for d in data]
15 grasping_point.append(category)
16 grasping_points.append(grasping_point)
17

18 # sort by increasing value of z
19 grasping_points = sorted(grasping_points, key=lambda x:

x[2])ñ→

20 grasping_points = np.array(grasping_points)
21 grasping_points = np.array2string(grasping_points,

separator=' ', precision=3)ñ→

22

23 return grasping_points

The predictions for each object are sent as a grasping point along with its associ-
ated class information, formatted as (x, y, z, nx, ny, nz, category_id).

64



Implementation

This provides both the 3D coordinates and the object classification needed for
the robot to perform the grasping action.

Once the predictions are sent, the server continues running, remaining active
and ready to receive additional images from the client for further processing.

65



Chapter 6

Experiments and Results

To evaluate the performance of the proposed system, we conducted both quan-
titative and qualitative experiments. Quantitative evaluations were performed
on benchmark datasets, providing standardized metrics to assess the system’s
detection capabilities. Qualitative assessments, on the other hand, were carried out
in a controlled laboratory environment and on a custom logos dataset, designed
to explore the system’s adaptability to novel use cases without predefined ground
truth annotations.

6.1 Datasets

In this work, we employ two datasets to evaluate our proposed pipeline: COCO
and MetaGraspNet. These datasets serve complementary purposes, with COCO
providing a standardized benchmark for general object detection and MetaGraspNet
focusing on robotic grasp detection.

6.1.1 COCO

The COCO (Common Objects in Context) dataset is a widely used benchmark
for object detection, segmentation, and captioning tasks. It contains over 200,000
labeled images spanning 80 object categories, with varying levels of occlusion,
lighting conditions, and background complexity. The diversity and richness of
COCO make it an ideal dataset for evaluating the generalization capabilities of
object detection models. Being a benchmark dataset, it is used to compare systems
and establish performance baselines for new models.

66



Experiments and Results

6.1.2 MetaGraspNetv2 (MGN)

MetaGraspNet (MGN) is a specialized dataset designed for robotic grasp detection
and object manipulation tasks. It features a diverse set of objects, including tools,
household items, and industrial components, captured from multiple viewpoints
with depth information. In total, it contains 83 object categories. Unlike COCO,
which emphasizes general object detection, MetaGraspNet is particularly valuable
for assessing how well models can recognize and localize objects relevant to robotic
applications. Its inclusion in our evaluation enables us to test the adaptability of
our approach to real-world robotic scenarios.

6.2 Performance Metrics

To assess detection performance, we use the mean Average Precision (mAP) metric,
a standard evaluation criterion in object detection. The mAP score is computed
by averaging the precision-recall curve over all object categories at a specified
Intersection over Union (IoU) threshold. In our experiments, we primarily report
mAP@50, which considers predictions correct if the IoU between the detected and
ground-truth bounding boxes is at least 50%. This metric is particularly relevant
for labeled datasets such as COCO and MetaGraspNet, where the presence of
precise ground-truth annotations enables quantitative performance assessment.

However, for experiments conducted on unlabeled datasets, such as images
captured in a laboratory setting where no predefined ground-truth annotations
exist, mAP cannot be computed directly. Instead, we adopt a qualitative evaluation
approach, in which model predictions are evaluated based on visual inspection of
the generated detection results. This method allows us to subjectively analyze the
accuracy and robustness of the detections in scenarios where traditional bench-
marking is infeasible.

Additionally, for experiments conducted using the robot, performance is mea-
sured through the success rate of object retrieval. Specifically, we evaluate whether
the robot is able to correctly detect, localize, and grasp the target objects based
on the predicted bounding boxes. The effectiveness of our detection pipeline in
these settings is therefore inferred from the practical success rate of object pickups
rather than numerical metrics derived from labeled datasets.

67



Experiments and Results

6.3 Quantitative Evaluation

6.3.1 Numeric Results
We aim to compute the mean Average Precision (mAP) as a quantitative per-
formance measure for our model. To facilitate this evaluation, we developed an
automated script designed to streamline the process of fetching query images from
various datasets. The script functions as follows:

First, it accesses the ground truth file of the training split of the dataset, and
systematically parses the annotations to identify and extract bounding boxes for
each object. The scripts crops K bounding boxes of each category, given that the
area of the bounding boxes is at least 5000 pixels. These cropped boxes are saved
as new images in a specified query directory, with filenames that adhere to the
filename format of query images, indicating the object category and instance.

After the acquisition of the query images, we can perform up to K-Shot Detec-
tion on the validation split of the dataset.

We now proceed to evaluate the one-shot performance on COCO and MGN.
We leverage the COCO API from the library pycocotools to facilitate standardized
evaluation. We measure mAP@50 = 49.5% for COCO, and mAP@50 = 40.7%
for MetaGraspNet. These results are consistent with the expected performance of
the OWL-V2 model, confirming its state-of-the-art capabilities in one-shot object
detection.

Figure 6.1: One-Shot Object Detection on COCO.

68



Experiments and Results

Figure 6.2: One-Shot Object Detection on MGN.

6.3.2 Confidence Threshold Tuning
To further enhance detection performance, we refine the confidence threshold used
for detection. The default confidence threshold often does not yield optimal results
across all object categories, so we implement a class-specific threshold tuning
approach. By optimizing this threshold individually for each category, we aim
to improve the trade-off between precision and recall, ultimately boosting overall
detection effectiveness.

A key tool in this optimization process is the Precision-Recall (PR) curve,
which provides a graphical representation of the trade-off between precision (the
proportion of true positive detections among all positive predictions) and recall (the
proportion of true positives detected among all ground-truth instances). The PR
curve is particularly useful in object detection tasks as it illustrates how changes in
the confidence threshold affect model performance.

To quantify this trade-off, we compute the F1-score, a widely used metric that
balances precision and recall. The F1-score is defined as:

F1 = 2 × Precision × Recall
Precision + Recall (6.1)

By identifying the confidence threshold that maximizes the F1-score for each
category, we ensure an optimal balance between correctly identifying objects (recall)
and minimizing false positives (precision). This approach enables us to fine-tune our
model’s decision boundary, improving detection reliability and robustness across
different object classes.

69



Experiments and Results

Below are the optimal thresholds found for each category:

Figure 6.3: Per-Category Thresholds that Maximize the F1-Score.

By leveraging the F1-score-based confidence threshold optimization, we refine
the model’s detection settings to maximize real-world performance. This adaptive
thresholding strategy enhances object detection accuracy beyond the baseline mAP
scores, ensuring that the OWL-V2 model operates at its full potential across diverse
datasets and object categories.

We demonstrate the improved performance:

70



Experiments and Results

Figure 6.4: F1-Score Before and After Tuning the Confidence Thresholds.

6.3.3 5-Shot vs. 1-Shot Performance
To explore the potential enhancement in detection performance with increased
contextual information, we conducted 5-shot detection experiments on the Meta-
GraspNet dataset. For each of the 80 classes, five diverse examples showcasing the
object from varying perspectives were provided. This approach yielded a consider-
able improvement, increasing the mAP@50 from 40.7% (1-shot) to 43.7% (5-shot).

A more detailed per-category analysis revealed that certain object classes with
challenging semantics exhibited a significant performance boost under the 5-shot
setting. For example, the category "toydog" showed an increase from 49.2% to
86.1%, suggesting that additional visual context significantly aids in distinguish-
ing complex objects. Conversely, for well-defined objects such as "banana", the
improvement was marginal, indicating that the baseline one-shot approach was
already sufficient for clear categories. This demonstrates that the effectiveness
of few-shot learning varies depending on the complexity and visual ambiguity of
object categories.

71



Experiments and Results

Figure 6.5: 5-Shot vs 1-Shot Performance.

6.4 Qualitative Evaluation
Beyond benchmark datasets, we assessed the system’s performance in real-world
settings. Two key qualitative experiments were performed:

6.4.1 Controlled Laboratory Environment
The system was tested in a controlled laboratory setting, where objects were ar-
ranged under varying conditions such as different lighting angles, occlusions, and
backgrounds. These environmental factors were intentionally varied to evaluate
the robustness of the system in real-world scenarios. Despite these variations,
the results demonstrated that the system was able to effectively identify objects,
underscoring its resilience to changes in lighting and background complexity, as
well as its ability to handle partial occlusions.

Furthermore, the system was deployed on a physical robot at Comau, the Racer3
robot, where the software’s integration with the robotic system was tested. This
included evaluating the stability and performance of the server communication,
particularly the TCP connection between the robot and the our software. The
TCP connection is essential for receiving the query and test images from the robot,
and transmitting real-time predicted grasping points and object categories for each
object back to the robot. These grasping points are then processed by the robot’s

72



Experiments and Results

manipulation module to guide its object retrieval actions.

In summary, the lab tests not only validated the performance of the object
detection system under realistic conditions, but also ensured that the software
seamlessly integrated with the robotic hardware, enabling efficient object retrieval
even under challenging and dynamic laboratory conditions.

Figure 6.6: One-Shot Object Detection in the Labaratory.

6.4.2 Logo Detection
As a complementary experiment, we performed One-Shot Detection on a subset of
the Logos in the Wild dataset. We conducted a qualitative evaluation of the
visualized predictions to assess whether our system could effectively adapt to brand
logos it had never encountered during pretraining.

The results were highly satisfactory, validating that our proposed framework is
well-suited for yet another application: verifying that products on a conveyor belt
are branded. This demonstrates its potential for automated brand verification and
brand presence verification in industrial workflows.

73



Experiments and Results

Figure 6.7: One-Shot Object Detection on Logos

6.4.3 Anomaly Detection
Another important industrial application of our framework is anomaly detection,
a crucial task in quality control and defect identification. To assess the system’s
adaptability to this problem, we conducted experiments on a subset of the MVTec
Anomaly Detection (MVTecAD) dataset, which comprises high-resolution
images of industrial objects with various types of real-world defects.

Our qualitative evaluation revealed that the system successfully localized anoma-
lies across different object categories, even without task-specific fine-tuning. The
results were remarkably promising, demonstrating the robustness of our frame-
work in detecting deviations from normal patterns. Moreover, fine-tuning the model
on domain-specific defect distributions could further enhance its performance, en-
abling precise defect classification and detection.

These findings reinforce the versatility of our approach, showcasing its potential
for automated visual inspection in manufacturing environments, where early defect
detection is essential for maintaining production quality and minimizing waste. s

74



Experiments and Results

Figure 6.8: One-Shot for Anomaly Detection

6.4.4 Bin Picking and Depalletizing Applications

To further validate the practical applicability of our proposed solution in real-world
industrial scenarios, we conducted experiments on bin picking and depalletizing
tasks in Comau’s Robolab. These tasks, fundamental to industrial logistics and
warehouse automation, require precise object recognition and localization to ensure
efficient robotic grasping.

Our system demonstrated remarkable reliability in these experiments, success-
fully identifying and retrieving all objects within the test environment. Despite the
inherent challenges of occlusions, varying lighting conditions, and diverse object ge-
ometries, the model exhibited robust generalization capabilities, effectively guiding
the robot in real-time. and adaptability are paramount.

Videos of the experiments can be accessed at the following link: Demo

These results further reinforce the potential of our framework in industrial
robotics, paving the way for its integration into autonomous manufacturing and
logistics pipelines.

75

https://github.com/milenayahya/OneShotObjectDetection/tree/master/demo


Experiments and Results

6.5 Efficiency and Performance
One of the key strengths of the system lies in its efficiency and speed. Running on
an HP ZBook Power workstation with an Intel Core i7-13800H CPU, 32GB RAM,
and an NVIDIA RTX A1000 (6GB VRAM), the system achieves an inference time
of 1.7seconds per image, making it suitable for time-sensitive industrial applications.
While optimized for GPU acceleration, it remains adaptable to CPU-only execution,
although with increased processing time, with about 6seconds per image.

76



Chapter 7

Conclusion

In this thesis, we have presented a novel one-shot image-conditioned object de-
tection framework leveraging the state-of-the-art OWLv2 model. Addressing the
limitations of conventional object detection methods, our approach surpasses the
need for extensive dataset annotation and retraining by enabling real-time detection
from a single reference image. This capability significantly enhances the adaptabil-
ity and scalability of object detection in dynamic and data-scarce environments,
particularly in industrial applications.

Through rigorous experimentation, we have demonstrated that our detection
pipeline achieves competitive performance on benchmark datasets, including COCO
and MetaGraspNetv2, with mAP@50 scores of 49.5% and 40.7%, respectively. Fur-
thermore, our analysis of few-shot learning scenarios confirms that incorporating
multiple query images improves detection accuracy, particularly for semantically
complex object categories. The system’s qualitative assessments further validate
its efficacy in real-world environments, reinforcing its suitability for automation in
industrial robotics, brand verification, and anomaly detection.

The deployment of our detection pipeline via a TCP server ensures seamless inte-
gration with industrial workflows. The architecture’s flexibility allows for dynamic
adaptation, including the incorporation of novel object classes without necessitating
server restarts. Moreover, the system’s efficiency, with an inference time of 1.7
seconds per image on GPU-accelerated hardware, confirms its applicability in
time-sensitive scenarios.

Overall, the findings of this research substantiate the potential of transformer-
based architectures for object detection, reaffirming OWLv2’s capabilities in facili-
tating rapid, accurate, and scalable detection. Our contributions pave the way for
more autonomous and intelligent vision-based systems, marking a step forward in

77



Conclusion

the evolution of industrial and robotic perception technologies. The combination
of high detection accuracy, adaptability to any dataset, and efficient inference
time positions our approach as a robust solution for one-shot and few-shot object
detection in practical, real-world scenarios.

78



Chapter 8

Future Work

Building upon our current framework, several enhancements can be introduced
to further improve the system’s adaptability, performance, and usability across
various real-world applications.

One key direction for future work is the integration of segmentation-based
techniques to compute optimal grasping points. By leveraging segmentation masks,
the system could more effectively analyze object geometries, including non-convex
shapes, and determine the most suitable grasping configurations. This would
enhance the grasping accuracy and reliability, particularly in unstructured environ-
ments where object shapes and orientations vary significantly.

Another valuable improvement is the development of an intuitive and user-
friendly interface for fine-tuning the network on task-specific data. This feature
would allow users to adapt the model to specialized settings by incorporating
domain-specific examples, ultimately enhancing detection and grasping perfor-
mance in unique industrial or robotic applications. Simplifying the fine-tuning
process would make the framework more accessible to non-experts while maintain-
ing the flexibility to refine the model for improved precision and robustness.

Additionally, introducing an abstraction layer to the framework would provide
greater modularity and flexibility. Such a layer would decouple the pipeline from the
core model, enabling seamless integration of different object detection architectures
without altering the underlying process, parameters, or functionalities. This would
facilitate experimentation with newer or more advanced models as they become
available, ensuring the framework remains adaptable to evolving technological
advancements.

79



Future Work

By implementing these improvements, the system could achieve greater versatil-
ity, ease of customization, and robustness, making it an even more effective solution
for real-world object detection and robotic manipulation tasks.

80



Bibliography

[1] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV]. url: https://arxiv.org/abs/1804.
02767 (cit. on p. 1).

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
arXiv: 1506.01497 [cs.CV]. url: https://arxiv.org/abs/1506.01497
(cit. on pp. 1, 8).

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV]. url: https://arxiv.org/abs/1506.02640 (cit. on pp. 1, 9).

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-End Object Detection with Trans-
formers. 2020. arXiv: 2005.12872 [cs.CV]. url: https://arxiv.org/abs/
2005.12872 (cit. on pp. 1, 10).

[5] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and
Ziwei Liu. Class-Incremental Learning: A Survey. Dec. 2024. doi: 10.1109/
tpami.2024.3429383. url: http://dx.doi.org/10.1109/TPAMI.2024.
3429383 (cit. on p. 1).

[6] C.P. Papageorgiou, M. Oren, and T. Poggio. «A general framework for object
detection». In: Sixth International Conference on Computer Vision (IEEE
Cat. No.98CH36271). 1998, pp. 555–562. doi: 10.1109/ICCV.1998.710772
(cit. on p. 4).

[7] P. Viola and M. Jones. «Rapid object detection using a boosted cascade
of simple features». In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1.
2001, pp. I–I. doi: 10.1109/CVPR.2001.990517 (cit. on p. 4).

81

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://doi.org/10.1109/tpami.2024.3429383
https://doi.org/10.1109/tpami.2024.3429383
http://dx.doi.org/10.1109/TPAMI.2024.3429383
http://dx.doi.org/10.1109/TPAMI.2024.3429383
https://doi.org/10.1109/ICCV.1998.710772
https://doi.org/10.1109/CVPR.2001.990517


BIBLIOGRAPHY

[8] Luis Arreola, Gesem Gudiño, and Gerardo Flores. Object recognition and
tracking using Haar-like Features Cascade Classifiers: Application to a quad-
rotor UAV. 2019. arXiv: 1903.03947 [cs.RO]. url: https://arxiv.org/
abs/1903.03947 (cit. on p. 4).

[9] N. Dalal and B. Triggs. «Histograms of oriented gradients for human de-
tection». In: 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1. doi:
10.1109/CVPR.2005.177 (cit. on p. 5).

[10] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. «A discrimi-
natively trained, multiscale, deformable part model». In: 2008 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2008, pp. 1–8. doi:
10.1109/CVPR.2008.4587597 (cit. on p. 5).

[11] Chinmoy Borah. Evolution of Object Detection. Accessed: 2024-12-26. 2020.
url: https://smarttek.solutions/blog/object-detection-technolog
y/ (cit. on p. 6).

[12] Yibo Sun, Zhe Sun, and Weitong Chen. «The evolution of object detection
methods». In: International Federation of Automatic Control 133 (July 2024)
(cit. on pp. 6–11).

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. 2014.
arXiv: 1311.2524 [cs.CV]. url: https://arxiv.org/abs/1311.2524
(cit. on p. 8).

[14] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV]. url: https:
//arxiv.org/abs/1504.08083 (cit. on p. 8).

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature Pyramid Networks for Object Detection. 2017.
arXiv: 1612.03144 [cs.CV]. url: https://arxiv.org/abs/1612.03144
(cit. on p. 8).

[16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox Detec-
tor». In: Computer Vision – ECCV 2016. Springer International Publishing,
2016, pp. 21–37. isbn: 9783319464480. doi: 10.1007/978-3-319-46448-0_2.
url: http://dx.doi.org/10.1007/978-3-319-46448-0_2 (cit. on p. 9).

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You
Need. California, USA: Google, 2017 (cit. on pp. 10, 16, 18, 20, 21).

82

https://arxiv.org/abs/1903.03947
https://arxiv.org/abs/1903.03947
https://arxiv.org/abs/1903.03947
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2008.4587597
https://smarttek.solutions/blog/object-detection-technology/
https://smarttek.solutions/blog/object-detection-technology/
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2


BIBLIOGRAPHY

[18] Alexey Dosovitskiy et al. «An Image is Worth 16x16 Words: Transformers
for Image Recognition At Scale». In: Google Reasearch (2020) (cit. on pp. 11,
22, 23, 28, 29).

[19] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring Plain
Vision Transformer Backbones for Object Detection. 2022. arXiv: 2203.16527
[cs.CV]. url: https://arxiv.org/abs/2203.16527 (cit. on p. 12).

[20] Archit Parnami and Minwoo Lee. «Learning from Few Examples: A Summary
of Approaches to Few-Shot Learning». In: (2022) (cit. on pp. 12, 26).

[21] Zhimeng Xin, Shiming Chen, Tianxu Wuand Yuanjie Shao, Weiping Ding, and
Xinge You. «Few-Shot Object Detection: Research Advances and Challenges».
In: (2024) (cit. on p. 13).

[22] Ting-I Hsieh, Yi-Chen Lo, Hwann-Tzong Chen, and Tyng-Luh Liu. One-
Shot Object Detection with Co-Attention and Co-Excitation. 2019. arXiv:
1911.12529 [cs.CV]. url: https://arxiv.org/abs/1911.12529 (cit. on
p. 14).

[23] Camilo J. Vargas, Qianni Zhang, and Ebroul Izquierdo. Joint Neural Networks
for One-shot Object Recognition and Detection. 2024. arXiv: 2408.00701
[cs.CV]. url: https://arxiv.org/abs/2408.00701 (cit. on p. 14).

[24] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction
and Overview. 2019. arXiv: 1912.05911 [cs.LG]. url: https://arxiv.org/
abs/1912.05911 (cit. on p. 16).

[25] Christian Bakke Vennerød, Adrian Kjærran, and Erling Stray Bugge. Long
Short-term Memory RNN. 2021. arXiv: 2105.06756 [cs.LG]. url: https:
//arxiv.org/abs/2105.06756 (cit. on p. 16).

[26] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. «Scaling Open-
Vocabulary Object Detection». In: Google DeepMind (2023) (cit. on pp. 28,
31–33).

[27] Matthias Minderer et al. «Simple Open-Vocabulary Object Detection with
Vision Transformers». In: Google Research (May 2022) (cit. on p. 29).

83

https://arxiv.org/abs/2203.16527
https://arxiv.org/abs/2203.16527
https://arxiv.org/abs/2203.16527
https://arxiv.org/abs/1911.12529
https://arxiv.org/abs/1911.12529
https://arxiv.org/abs/2408.00701
https://arxiv.org/abs/2408.00701
https://arxiv.org/abs/2408.00701
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/2105.06756
https://arxiv.org/abs/2105.06756
https://arxiv.org/abs/2105.06756

	List of Figures
	Introduction
	Context
	Goal
	Thesis Structure

	Literature Review
	Early Stages of Object Detection
	Object Detection in the Deep Learning Era
	CNN-based models
	Transformer-based Models

	Limitations of Existing Object Detection Methods
	Few-Shot Learning for Object Detection

	Theoretical Foundations
	Key Elements
	Transformers
	Vision Transformers

	Key Concepts
	Query Image and Query Embedding
	Image-Conditioned Object Detection
	Zero-Shot vs Few-Shot Object Detection


	Model Overview
	OWL-ViT
	OWL-ViT Architecture
	Phase I
	Phase II

	Transition to OWLv2
	OWLv2
	Step 1: Generating Pseudo-Annotations
	Step 2: Self-training at Scale


	Implementation
	Model Configuration
	Zero-Shot Object Detection on Query Images
	Automatic Query Selection
	Manual Query Selection
	Few-Shot Object Detection
	Supercategories
	Seamless addition of a new category

	One-Shot Object Detection on Test Images
	Real-time Deployment

	Experiments and Results
	Datasets
	COCO
	MetaGraspNetv2 (MGN)

	Performance Metrics
	Quantitative Evaluation
	Numeric Results
	Confidence Threshold Tuning
	5-Shot vs. 1-Shot Performance

	Qualitative Evaluation
	Controlled Laboratory Environment
	Logo Detection
	Anomaly Detection
	Bin Picking and Depalletizing Applications

	Efficiency and Performance

	Conclusion
	Future Work
	Bibliography

