
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Benchmarking Modern Frontend
Frameworks: A Comparative

Performance Analysis

Supervisors

Prof. RICCARDO COPPOLA

Candidate

Jaouad OUCHAIB

October 2024

Summary

Recent advancements in web application development have given rise to a new breed
of frontend frameworks, representing a marked departure from earlier JavaScript
paradigms. These frameworks leverage declarative programming models, entrust-
ing the framework with the task of handling UI state transitions. While this
methodology streamlines development, it demands advanced rendering techniques
to effectively map state modifications to UI updates. Consequently, the performance
dynamics of these rendering techniques have emerged as a pivotal yet previously
underexplored factor in modern web development.

This research conducts an in-depth analysis of the rendering techniques imple-
mented by leading frameworks—namely React, Vue, Angular, and Solid—which
collectively typify the current landscape of prominent web technologies. The study
engages with the evolving conversation around fine-grained reactivity, particularly
the utilization of signal-based systems, which contrast with conventional approaches
such as virtual DOM (VDOM) reconciliation and dirty checking. By executing a
series of rigorously structured benchmarks, the research quantifies and compares
how rendering overhead scales with increasing application complexity. The results
provide insight into the inherent performance trade-offs of each rendering strategy,
demonstrating the shift towards fine-grained reactivity as a means to reduce update
costs and boost rendering efficiency. In summary, this evaluation offers developers
a comprehensive framework for understanding performance implications, thus facil-
itating more informed decisions regarding the selection of frontend technologies to
meet specific scalability and efficiency criteria

ii

Acknowledgements

I wish to express my sincere gratitude to the individuals and institutions that have
supported the completion of this master’s thesis.

Firstly, I extend my deepest appreciation to my academic supervisor at Politec-
nico di Torino, Professor RICCARDOCOPPOLA, for their invaluable supervision
and insightful guidance throughout this research endeavor. Their expertise, con-
structive feedback, and unwavering support were instrumental in the successful
completion of this work.

This thesis was developed under the academic framework of Politecnico di Torino
and conducted in parallel with my professional internship at Selego. I gratefully
acknowledge Selego for providing a practical context for this research within the
domain of web solutions. In particular, I would like to offer special thanks to Yoan
Rozak at Selego. His direct assistance with benchmark implementation, technical
expertise, and insightful advice significantly enhanced the rigor and practical
relevance of this study. His contributions were essential to bridging academic
research with industry practices.

Furthermore, I acknowledge the contributions of my colleagues at Selego for
fostering a collaborative and supportive environment during my internship, which
indirectly contributed to the progress of this thesis.

The successful completion of this thesis is a direct result of the support and
contributions of these individuals and institutions, to whom I am deeply indebted.

iii

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Background . 1
1.2 Goal . 1
1.3 Structure of the Thesis . 2

2 A Historical Overview of Web Technologies 3
2.1 Browser Technologies . 3

2.1.1 Browser Compatibility from Inception 3
2.1.2 HTML, CSS, and the DOM 3
2.1.3 Critical Rendering Path . 6
2.1.4 The jQuery Revolution . 8

2.2 Design Patterns . 8
2.2.1 Backbone.js and the Model-View-Controller (MVC) Paradigm 8
2.2.2 The Paradigm Shift To Declarative UI 10
2.2.3 AngularJS: Declarative UI within a Model-View-Controller

Context . 11
2.2.4 The Modern MVVM: Component-Based Architectures . . . 12

3 Modern Frontend Frameworks 14
3.1 Framework Selection Rationale . 14
3.2 Rendering Strategies . 15

3.2.1 Performance Considerations 16
3.3 Frameworks Reviews . 18

3.3.1 React . 18
3.3.2 Solid . 19
3.3.3 Vue . 22
3.3.4 Angular . 24

v

3.3.5 Svelte . 26

4 Performance Benchmarks 28
4.1 Goals and Methodology . 28
4.2 Benchmark Descriptions . 29

4.2.1 Creation of Static and Dynamic Content (Flat vs. Tree
Structures) . 29

4.2.2 Incremental Updates on a Flat List of Mixed Components . 31
4.2.3 Tree Update Scenarios: Root and Leaf Updates 32
4.2.4 Deeply Nested Dependency Updates: Cascading Changes . . 32
4.2.5 Interleaved Batch Operations and Concurrent Updates . . . 34

5 Performance Benchmarks: A Comparative Analysis 35
5.1 Methodology and Goals (Brief Recap) 35
5.2 Comparative Analysis of Rendering Paradigms 36

5.2.1 Creation Overhead: Static and Dynamic Content 36
5.2.2 Performance in Incremental Updates: Precision and Efficiency 38
5.2.3 Concurrency and Complex Operations 40

5.3 Intra-Framework Architectural Shifts 42
5.3.1 React . 42
5.3.2 Angular . 43
5.3.3 Svelte . 43
5.3.4 Vue . 43

5.4 Overall Conclusions . 44

6 Contextualizing Benchmark Findings with Real-World Data 45
6.1 Framework Adoption and Distribution 45
6.2 Core Web Vitals Performance . 47

6.2.1 Time to First Byte (TTFB) 47
6.2.2 First Contentful Paint (FCP) 48
6.2.3 Largest Contentful Paint (LCP) 49
6.2.4 Cumulative Layout Shift (CLS) 49

6.3 Correlation with Benchmark Findings 51
6.4 Limitations and Considerations . 51
6.5 Implications for Framework Selection 52

7 Conclusion 53
7.1 Summary of Findings . 53
7.2 Implications for Future Frontend Development 54
7.3 Compilers and AI’s Potential Influence 54
7.4 Limitations of the Study . 55
7.5 Recommendations for Further Research 56

vi

A Frameworks 57

Bibliography 58

vii

List of Tables

4.1 script execution time (ms) for rendering N static components 30
4.2 script execution time (ms) for rendering N dynamic components as

a binary tree . 30
4.3 Execution time (ms) updating the root component flat list N com-

ponents of primarily static content (with 4x cpu slowdown) 31
4.4 Execution time (ms) updating the entire component flat list N

components of primarily static content(with 2x cpu slowdown) . . 31
4.5 Execution time (ms) for root component update in a component

tree of N components (with 2x CPU slowdown). 32
4.6 Execution time (ms) for leaf component update in a component tree

of N components (with 2x CPU slowdown). 33
4.7 Execution time (ms) propagating an update through a dependency

chain of L computations (with 2× CPU slowdown) 33
4.8 Execution time (ms) for processing interleaved batch operations and

concurrent updates (2x CPU slowdown) 34

5.1 Comparison of script execution time and full render cycle time for
creating N=1024 dynamic components (binary tree). 38

A.1 The list of the frameworks versions used in for the benchmarks with
thier respective bundler . 57

viii

List of Figures

2.1 Example of HTML elements and structure. 4
2.2 Illustration of a DOM tree structure. 5
2.3 Example of code intercating with the CSSOM with Javascript . . . 6
2.4 Simplified illustration of the critical rendering path. 7
2.5 Placeholder for MVC Architectural Diagram illustrating the interac-

tions between Model, View, and Controller. 9
2.6 AngularJS Architecture diagram emphasizing the data binding mech-

anism and its relation to the MVC pattern 12

3.1 State of JavaScript survey 2024: Adoption rates of front-end frame-
works. 16

3.2 Vue 3’s Runtime Reactivity and Compiler-Informed Virtual DOM
(block tree) . 22

3.3 Angular Component Lifecycle Diagram 25

5.1 Script execution time (ms) for creating N static components, where
N is the number of components. 36

5.2 Script execution time (ms) for creating N dynamic components
(binary tree). 37

5.3 Script execution time (ms) for updating the root of a static flat list. 39
5.4 Script execution time (ms) for updating all elements of a flat list. . 39
5.5 Script execution time (ms) for updating the root of a tree of N

components. 40
5.6 Script execution time (ms) for deeply nested dependency updates. . 41
5.7 Script execution time (ms) under interleaved operations and concur-

rent updates. 41
5.8 Script execution time (ms) for updating the parent of a flat list of

N=10000 elements. 42
5.9 Script execution time (ms) for swapping two rows in flat list (3x

CPU slowdown) . 43
5.10 Script execution time (ms) for deeply nested dependency updates. . 44

ix

6.1 Origins over time for React, SolidJS, Svelte, Angular, and Vue. Data
from [42]. 46

6.2 Percentage of sites achieving good TTFB scores. Data from [42]. . . 47
6.3 Percentage of sites achieving good FCP. Data from [42]. 48
6.4 Percentage of sites achieving good LCP scores.Data from [42]. . . . 49
6.5 Percentage of sites achieving good CLS scores. Data from [42] . . . 50

x

Chapter 1

Introduction

The JavaScript ecosystem is a rapidly evolving landscape, with new frameworks and
libraries constantly emerging, each offering novel approaches to web development.
This continuous innovation presents developers with the challenge of selecting
the most suitable tools for their projects. While previous research has explored
the performance of front-end frameworks, emphasizing the significance of efficient
rendering strategies, the landscape has shifted.

1.1 Background
Recent developments in front-end architectures have increasingly favored the im-
plementation of fine-grained reactivity through the use of signal primitives. This
evolution, driven by objectives of boosting performance and refining developer
ergonomics, is reflected in the integration of signals by leading industry players and
their sustained application in frameworks such as Vue and Svelte. This transition
addresses earlier findings that underscored performance constraints inherent in
traditional rendering methodologies.

1.2 Goal
This thesis aims to assess the current trends in modern JavaScript front-end frame-
works, particularly concerning the adoption of fine-grained reactivity and signal
primitives. Through a comparative analysis, we will evaluate their performance,
memory efficiency, and developer experience. This evaluation will provide develop-
ers with valuable insights and up-to-date guidance for selecting the most effective
framework for their needs in 2025.

1

Introduction

1.3 Structure of the Thesis
This thesis offers a comprehensive analysis of modern front-end frameworks, with a
focus on their performance and efficiency in 2025.

• Chapter 2 offers an in-depth overview of browser rendering mechanisms,
establishing the technical foundation required for the detailed exploration of
framework-specific rendering strategies in the subsequent sections .

• Chapter 3 delves into the intricacies of popular open-source frameworks,
analyzing their rendering approaches and highlighting the role of reactive
programming and signal primitives.

• Chapter 4 introduces a series of rigorous benchmarks designed to objectively
evaluate the performance and memory consumption of the chosen frameworks.

• Chapter 5 presents a meticulous analysis and comparison of the benchmark
results, offering valuable insights into the strengths and weaknesses of each
framework.

• Chapter 6 contextualizes the benchmark findings using real-world data,
synthesizing HTTP Archive insights and Core Web Vitals metrics to validate
the controlled experiments.

• Chapter 7 synthesizes the findings, drawing conclusions and suggesting
potential directions for future research in the dynamic field of front-end
development.

2

Chapter 2

A Historical Overview of
Web Technologies

2.1 Browser Technologies

2.1.1 Browser Compatibility from Inception
Despite substantial evolution in features and complexity over decades [1], contempo-
rary web browsers exhibit remarkable backward compatibility, capable of accurately
rendering web pages designed at the very genesis of the World Wide Web, nearly
thirty years ago. This persistent compatibility is rooted in the stability of the
fundamental components defining a web page and the unwavering core operational
principles of web browsers. Fundamentally, a web page, in both its primordial
form and modern iterations, is essentially a structured document utilizing markup
languages, augmented by supplementary resources. Upon receiving a URL request,
a browser initiates a retrieval process followed by a series of operations to present
the page visually to the user. The ensuing sections of this chapter will meticulously
examine this rendering mechanism and the foundational technologies that enable it
in their current state.

2.1.2 HTML, CSS, and the DOM
HyperText Markup Language (HTML), the seminal markup language for web page
construction, remains the cornerstone of web content creation in its modern, evolved
forms. An HTML document serves a dual purpose: to define the organizational
structure and to encapsulate the information content of a web page. It achieves this
through the delineation of distinct page elements and the inclusion of metadata,
such as links to external resources like scripts and stylesheets. These elements

3

A Historical Overview of Web Technologies

exhibit hierarchical nesting and may incorporate attributes that specify stylistic
properties, classifications, or hypertextual linkages. Certain elements, notably input
controls, are directly rendered and interactive for users, while others primarily
provide structural or semantic context, as visually represented in Figure 2.1.

Figure 2.1: Example of HTML elements and structure.

Web browsers interpret HTML by transforming it into an object-based represen-
tation known as the Document Object Model (DOM). The DOM encompasses both
the tree-like hierarchical structure representing the document and the programmatic
interfaces facilitating script interaction. However, common convention distinguishes
between "DOM" as the data structure and "DOM APIs" for the programming inter-
faces, a convention this thesis will uphold. Within HTML, hierarchical document
organization is achieved through nested elements denoted by tags. In the DOM,
these elements are translated into nodes within a tree structure, where each node
and its properties mirror an HTML element and its attributes, as illustrated in
Figure 2.2.

DOM tree can be altered dynamically at runtime through the use of DOM
APIs [2]. These APIs provide imperative methods to query and manipulate the
tree directly, supporting operations such as selecting nodes, modifying properties,
removing nodes, and inserting new ones, as illustrated in the accompanying code
snippet. Additionally, because these APIs can create a variety of node types and
attributes, any DOM tree produced by HTML parsing can likewise be generated
programmatically

const sect = document.querySelector("section");
const para = document.createElement("p");
para.textContent = "We hope you enjoyed the ride.";
sect.appendChild(para);

4

A Historical Overview of Web Technologies

Figure 2.2: Illustration of a DOM tree structure.

The DOM specification also integrates an event handling mechanism. Specific
events, such as user interactions or network responses, can trigger event dispatch.
Scripts can register listener functions to react to these events, enabling dynamic
and interactive behavior driven by user input. The synergy of the event system and
node tree mutability empowers developers to construct sophisticated applications
leveraging solely DOM APIs.

Cascading Style Sheets (CSS) is specifically engineered for defining the visual
styling and presentation of documents. CSS operates on a rule-based system,
applying sets of style declarations to HTML elements that match predefined
selectors. Selectors can target elements based on tag names or attributes, including
class and ID attributes.

Analogous to HTML, CSS is also processed into an object model, the CSS Object
Model (CSSOM). While the DOM node tree represents document elements, the
CSSOM is structured as a selector tree. These selectors dictate style application to
DOM nodes based on their type and attributes [2]. Similar to the DOM, CSSOM
provides APIs for programmatic modification of the CSSOM node tree, though
these are less frequently utilized in typical web development. Common practice
involves predefining style variations within CSS rules and utilizing DOM APIs
to adjust DOM node attributes, thereby indirectly applying different styles by
associating nodes with different CSS selectors, as illustrated in Figure 2.3.

While direct CSSOM manipulation offers theoretical performance advantages,
empirical analysis of these micro-optimizations falls outside the scope of this thesis.
For the current discussion, it is sufficient to recognize the prevalent practice in web

5

A Historical Overview of Web Technologies

<style>
.initial-style {

font-size: 16px;
}

.modified-style {
font-weight: bold;

}
</style>
<script>
function changeStyle() {

var element = document.getElementById("myElement");
element.classList.remove("initial-style");
element.classList.add("modified-style");

}
</script>

Figure 2.3: Example of code intercating with the CSSOM with Javascript

applications and frontend frameworks: prioritizing DOM APIs while CSS primarily
serves a static styling role.

2.1.3 Critical Rendering Path
Browser vendors often refer to the "critical rendering path" as the sequential set
of operations that a browser executes to convert web page resources into pixels
displayed on a user’s screen [3]. Although the specific labels for the various phases
might differ between vendors, most major browsers follow a conceptually similar
process, as illustrated in Figure 2.4 [4].

The procedure initiates with the HTML source being parsed to build the DOM
tree incrementally, as the parser traverses the document. During this parsing, when
the parser encounters links to external resources, it concurrently issues fetch requests
while continuing to build the DOM. Once the DOM construction is complete, the
associated stylesheets are parsed to generate the CSS Object Model (CSSOM)

Despite the DOM encompassing all document elements, direct rendering from
the DOM is not feasible due to CSSOM rules potentially designating elements
as non-visible. Consequently, upon complete construction of both the DOM and
CSSOM, the browser proceeds to generate a render tree. This render tree is a
refined, pruned version of the DOM, containing only elements intended for rendering,
inclusive of their styling information derived from the CSSOM.

Following render tree construction, the browser calculates the dimensions and

6

A Historical Overview of Web Technologies

Figure 2.4: Simplified illustration of the critical rendering path.

positions of each element within it, a stage known as layout or reflow. As element
visibility within the viewport cannot be determined until the complete render tree
is processed, the actual painting is deferred until the entire tree layout is computed.
Finally, the browser executes the painting step, rasterizing pixels onto the screen,
rendering the web page visible to the user.

Scripts possess the capacity to influence and interrupt the critical rendering path.
As previously discussed, scripts can utilize DOM and CSSOM APIs to dynamically
modify the DOM and CSSOM node trees. Consequently, browsers, by default,
halt DOM construction upon encountering a script tag. The browser then fetches,
parses, and executes the script before resuming DOM construction. Asynchronous
script loading, however, allows browsers to download scripts in the background
without blocking DOM construction, executing them only after DOM construction
is finalized.

The full critical rendering path is primarily executed on initial page load.
However, various actions can trigger partial re-evaluation. DOM modifications
via DOM APIs necessitate at least partial render tree reconstruction, followed by
layout and paint phases. User interactions can also trigger layout and paint phases
independent of render tree reconstruction. Computational cost associated with
render tree construction and layout/paint phases, alongside script execution, are
primary determinants of application responsiveness when the DOM is manipulated

7

A Historical Overview of Web Technologies

through scripts.

2.1.4 The jQuery Revolution
Early web development was notably hindered by inconsistencies across browser
implementations, particularly with respect to DOM and JavaScript support. Varia-
tions in adherence to web standards resulted in unpredictable code behavior across
different platforms. jQuery emerged as a pivotal JavaScript library that directly
addressed these discrepancies by abstracting browser-specific peculiarities, thereby
offering a unified, cross-browser API for DOM manipulation, event handling, and
AJAX interactions [5].

jQuery streamlined common JavaScript operations through a concise, expressive
syntax. Tasks such as DOM element selection, which were verbose and browser-
dependent in native JavaScript, were greatly simplified by leveraging a CSS-
selector-based approach. Likewise, event handling was standardized across browsers,
enabling more robust interactive web applications. By encapsulating and managing
browser-specific quirks internally, jQuery allowed developers to concentrate on
application logic rather than compatibility issues. Although jQuery maintained an
imperative DOM manipulation paradigm, it substantially reduced the potential for
errors associated with direct DOM access by providing a more reliable abstraction
layer. However, as web applications evolved in complexity, the limitations of this
imperative model in handling sophisticated UI state transitions became increasingly
apparent

2.2 Design Patterns
2.2.1 Backbone.js and the Model-View-Controller (MVC)

Paradigm
As the role of JavaScript in web applications expanded beyond rudimentary inter-
activity to encompass sophisticated application logic, the exigency for structured
front-end architectures became increasingly pronounced [6]. Backbone.js emerged
as a seminal framework, spearheading the adoption of the Model-View-Controller
(MVC) architectural pattern in client-side development [7]. The MVC paradigm,
a well-established design pattern in software engineering [8], advocates for the
organization of applications through the segregation of concerns into three distinct,
yet interconnected, components:

• Model: Encapsulates the application’s data structures and business logic.
The Model is responsible for data management—encompassing retrieval, per-
sistence, and manipulation—while remaining agnostic of the user interface.

8

A Historical Overview of Web Technologies

Conceptually, it represents the "what" of the application—the information
domain and its governing rules.

• View: Constitutes the visual representation of the Model, dedicated to
rendering data to the user and processing user interactions. Views focus on
the "how" of data presentation. Figure 2.5

• Controller: Operates as an intermediary, mediating communication between
the Model and the View. It manages user input originating from the View, or-
chestrates corresponding updates to the Model, and determines the appropriate
View to render [9].

Figure 2.5: Placeholder for MVC Architectural Diagram illustrating the interac-
tions between Model, View, and Controller.

To illustrate the MVC pattern, consider a basic online bookstore application.
The Model would encompass entities such as book titles, pricing information,
and inventory levels—along with business logic governing book searches and order
processing. The View would manifest as the web page presented to the user,
displaying book listings, search interfaces, and shopping cart functionalities. The
Controller would manage user actions; for instance, when a user initiates a book
search via the View, the Controller queries the Model for pertinent book data and
subsequently instructs the View to update and render the search results.

Backbone.js offered a concrete instantiation of MVC principles within the
JavaScript ecosystem [10]. It provided specific constructs for each component:

• Models: Backbone.js Models manage application data and are implemented
as JavaScript objects equipped with event mechanisms for change notification.

9

A Historical Overview of Web Technologies

Upon data modification, Models emit events, signaling associated Views to
update.

• Views: Backbone.js Views are responsible for UI rendering, typically asso-
ciated with a specific Model instance. Views subscribe to Model events and
react by imperatively manipulating the DOM to reflect updated data. They
also handle user-initiated events, often triggering modifications in Models or
invoking Controller-like actions.

• Routers (acting as Controllers): Backbone.js Routers manage applica-
tion navigation and URL transitions, functioning similarly to Controllers by
mapping URLs to application states and corresponding Views.

Backbone.js significantly improved code organization by enforcing the principle
of separation of concerns. It structured applications by encapsulating data and
business logic within Models, handling UI rendering within Views, and managing
application flow through Routers. This architectural approach promoted modularity,
maintainability, and testability, offering a more structured alternative to the
monolithic JavaScript codebases prevalent at the tim [11]. However, despite these
structural advancements, Backbone.js still required developers to imperatively
update the DOM within Views. For instance, upon a modification to a Model
attribute, a typical View might subscribe to the corresponding change event and
execute code such as:

this.$el.find('.book-title').text(this.model.get('title'));

This imperative DOM manipulation, even within the structured MVC frame-
work, posed inherent limitations as application complexity increased. The manual
management of UI state transitions, ensuring consistency between Model and View,
and the risk of DOM manipulation errors persisted. Although Backbone.js laid
the groundwork for data binding and event-driven architectures [12], it did not
fully abstract the complexities of direct DOM manipulation—a shortcoming that
eventually motivated the evolution towards more declarative front-end frameworks.

2.2.2 The Paradigm Shift To Declarative UI
Direct manipulation of the DOM via imperative APIs has been identified as a
significant source of errors in web development [13]. Research by Ocariza [14]
indicates that up to 80% of critical bugs in web applications stem from inaccuracies
in DOM handling. This vulnerability arises from the combinatorial explosion of UI
state transitions as application complexity scales [15]. In systems with N distinct

10

A Historical Overview of Web Technologies

UI states and k possible transitions from each state, the total number of valid
transitions rapidly escalates to

kN(N − 1)

. Imperative DOM manipulation necessitates explicit definitions for each transition,
amplifying the potential for errors such as operating on non-existent DOM nodes.

Modern web frameworks address these challenges by adopting a declarative
programming paradigm for UI development. Rather than detailing how to update
the DOM, developers specify the desired UI state, and the framework automatically
manages the underlying DOM operations required to achieve that state [16]. This
abstraction not only reduces the risk of errors but also streamlines development
by allowing developers to focus on application logic and UI design rather than
low-level DOM manipulation. However, this approach does introduce framework
overhead in computing the necessary DOM operations for each state transition
[17]. This overhead is closely related to solving the tree edit distance problem [18],
where the framework computes the minimal set of operations (add, delete, update)
to efficiently transform the current DOM tree into the desired one.

2.2.3 AngularJS: Declarative UI within a Model-View-
Controller Context

AngularJS emerged as a pioneering framework that embraced the declarative UI
paradigm while conceptually aligning with the MVC pattern [19]. AngularJS
directly addressed the limitations of imperative view updates found in earlier
MVC implementations like Backbone.js by introducing declarative data binding
mechanisms. As illustrated in Figure 2.6, AngularJS allowed developers to define
HTML templates where UI elements were directly bound to Model data.

In AngularJS, changes in the Model were automatically reflected in the View
through two-way data binding [20], and user interactions within the View could
automatically trigger updates to the Model. This approach greatly reduced the
need for manual DOM manipulation and significantly mitigated errors associated
with imperative updates. Although AngularJS retained core MVC principles, its
introduction of the "Scope" object blurred the lines between traditional MVC and
MVVM, with some interpretations viewing AngularJS as an early form of MVVM
due to its declarative binding features [21].

11

A Historical Overview of Web Technologies

Figure 2.6: AngularJS Architecture diagram emphasizing the data binding
mechanism and its relation to the MVC pattern

2.2.4 The Modern MVVM: Component-Based Architec-
tures

While AngularJS marked a significant move towards declarative UI within an MVC
framework, the next major paradigm shift occurred with the rise of component-
based architectures, as epitomized by React [22]. Instead of segregating concerns
strictly into Model, View, and Controller, modern frameworks like React orga-
nize applications into independent, reusable components [23]. Each component
encapsulates its own:

• View Logic (Rendering): How the component visually represents itself.

• State Management: The internal data and UI state specific to that compo-
nent.

• Behavior and Interactions: How the component responds to user events
and other inputs.

In this context, components serve a similar role to ViewModels in the MVVM
pattern, but the focus shifts from a global separation of concerns to dividing the
application by distinct business logic domains (e.g., shopping cart, dashboard) [24].

12

A Historical Overview of Web Technologies

For instance, in an e-commerce application, one might implement components such
as:

• ProductList: Displays a list of products.

• ShoppingCart: Manages the user’s shopping cart.

• ProductDetails: Holds detailed information about a single product.

• CheckoutForm: Handles the checkout process.

Each component encapsulates its own rendering logic, data requirements, and
interactions, thereby promoting modularity, reusability, and ease of testing [25].
This component-based paradigm represents the modern evolution of MVVM, where
each component effectively functions as a self-contained ViewModel, streamlining
state management and UI updates through a declarative approach [26].

The next chapter will delve deeper into React and other component-based
frameworks, further exploring how this model diverges from traditional MVC and
the specific benefits it offers for modern web application development.

13

Chapter 3

Modern Frontend
Frameworks

This chapter presents a comparative analysis of Angular, React, Vue, Svelte, and
Solid, focusing on their rendering strategies and performance characteristics. We
delve into the evolution of rendering strategies employed by these frameworks.

3.1 Framework Selection Rationale
Building on the MVVM paradigm discussed in Chapter 2, it is evident that modern
frontend frameworks uniformly incorporate declarative data binding and component-
based architectures. Figure 3.1 adapted from the State of JavaScript survey 2024
underscores that the selected frameworks are among the most prevalently adopted
in the industry. This empirical evidence reinforces our framework selection, which
is strategically grounded in both innovation and widespread usage.

The frameworks included in this study were chosen based on several key criteria:

• Empirical Relevance: As shown in Figure 3.1, the selected frameworks
(React, Angular, Vue, Svelte, and Solid) dominate the front-end ecosystem,
whereas alternatives such as Preact—being mere variations of React with
nuanced paradigm shifts—were excluded to maintain analytical clarity.

• Innovative Rendering Mechanisms: The chosen frameworks encompass
a spectrum of rendering strategies—from virtual DOM diffing (React, Angu-
lar, Vue) to compile-time optimizations (Svelte) and fine-grained reactivity
(Solid)—which are at the forefront of addressing performance and memory
efficiency challenges.

• Industrial Adoption and Maturity: Each framework demonstrates robust

14

Modern Frontend Frameworks

industrial usage and maturity, making them ideal candidates for a comparative
analysis of their technical merits.

• Scope Limitation: Frameworks based on alternative paradigms, such as
Blazor and other WebAssembly (Wasm)-based solutions, are deliberately
excluded from this study due to their fundamentally different operational
models and the resultant divergence in evaluation metrics.

While a detailed technical exposition of each framework is provided in subsequent
sections of this chapter, the following high-level observations motivated their
inclusion:

• React exemplifies a robust component-driven model with a virtual DOM that
emphasizes unidirectional data flow, contributing to predictable UI behavior.

• Angular integrates comprehensive tooling and bidirectional data binding,
which, despite inherent overhead, supports large-scale enterprise applications.

• Vue offers a balanced and flexible approach to reactivity and component-based
design, facilitating incremental adoption across projects of varying sizes.

• Svelte and Solid introduce cutting-edge paradigms—via compile-time opti-
mizations and fine-grained reactivity, respectively—thereby challenging tradi-
tional virtual DOM methodologies.

The forthcoming sections will provide an in-depth, technical exposition of each
framework’s architecture, performance implications, and memory efficiency, thereby
extending the foundational concepts introduced here.

3.2 Rendering Strategies
While all frameworks aim to synchronize the DOM with the component tree, they
employ different rendering strategies:

Virtual DOM: These frameworks explicitly solve the tree edit distance problem
[18] by comparing a virtual representation of the DOM (vDOM) with the actual
DOM. This involves generating a new vDOM tree based on the current application
state, comparing it with the previous vDOM tree, and applying the minimal set of
changes to the real DOM.

Implicit Tree Diffing : These frameworks implicitly solve the tree edit distance
problem through dirty checking of data bindings. Each component tracks its data
bindings and updates the corresponding DOM elements when changes are detected.

Fine-grained Reactivity: These frameworks bypass explicit tree diffing by es-
tablishing a direct link between data changes and DOM updates. They utilize

15

Modern Frontend Frameworks

Figure 3.1: State of JavaScript survey 2024: Adoption rates of front-end frame-
works.

dependency tracking mechanisms to pinpoint and update only the affected DOM
elements, resulting in highly efficient rendering.

3.2.1 Performance Considerations
The frameworks examined in this study all utilize a loop mechanism to traverse
the component tree, resulting in a baseline O(n) time complexity for each iteration,
where n is the number of nodes in the tree. However, significant performance
variations emerge due to differences in input sizes and the fixed costs inherent in
each framework’s implementation.

Fixed Costs

Quantifying the fixed costs associated with each framework is challenging. While
all frameworks manage component lifecycles and data binding, the specific oper-
ations performed per component and binding are heavily influenced by internal
implementation details.

An example of a fixed cost is in dirty checking. This involves storing a copy of
a value and later comparing it against the current value to detect changes. Dirty
checking is frequently employed for data bindings. The framework stores a copy
of a binding’s value when it’s initially rendered to the DOM and subsequently
compares this copy to the current value to determine if an update is necessary.
Dirty checking objects can be complex and computationally expensive, especially

16

Modern Frontend Frameworks

when dealing with nested objects and the need to account for potential mutations
of object properties.

Another fixed cost factor is the choice of templating engine. This selection
involves significant trade-offs. JSX, a domain-specific language (DSL) that allows
for XML-like syntax within JavaScript[27], provides runtime interpolation and full
JavaScript expressiveness. However, this dynamic nature hinders ahead-of-time
(AOT) optimizations[28], potentially impacting performance. Runtime scheduling
can improve perceived performance but introduces a larger runtime code footprint
and increased complexity.

Conversely, static templates offer the compiler more opportunities for optimiza-
tion, leading to better raw performance and reduced bundle sizes. However, they
come at the cost of a more constrained syntax and impose stricter requirements on
the build process.

Input Size

Input size, the second major factor influencing performance, encompasses the
number of components, static elements, and data bindings per component. During
the initial creation of the component tree, all components, elements, and bindings
are processed, resulting in equivalent input sizes across frameworks. However,
when updating existing components, input sizes can diverge significantly due to
variations in rendering strategies and the amount of the component tree they
re-render. The smaller the number of components and elements a framework
checks for updates during a change cycle, the better its performance will generally
be. Furthermore, the use of a virtual DOM introduces additional overhead, as it
necessitates the explicit calculation of DOM changes. This often requires two loops:
one to construct a new virtual DOM tree and another to compare it against the
previous tree, generating the necessary DOM API calls for updates.

Frameworks like Angular and React rely on a pull-based reactivity system[29].
This means they require an explicit signal to initiate an update cycle where changes
are detected and propagated to the DOM (e.g., React’s ‘setState‘ function). While
frameworks can intelligently trigger these signals based on asynchronous events
(e.g., Zone.js in Angular), this approach can lead to unnecessary re-computations
because the framework lacks visibility into which parts of the component tree are
truly static versus dynamic, thus resulting in larger input sizes during each update
cycle. Mitigating this often requires manual optimization hints from the developer
(e.g., ‘memo‘ in React or ‘OnPush‘ in Angular).

In contrast, other frameworks implement a push-based system [30] operating
at a finer granularity – individual data bindings. By intercepting property getters
and setters, these frameworks track dependencies and establish reactive units. This
allows the system to more precisely identify changes, ideally leading to smaller

17

Modern Frontend Frameworks

input sizes during updates as only affected sections of the component tree are
processed. This eliminates much of the need for broad component re-computation.
However, this approach introduces the overhead of maintaining a dependency
tracking graph. Each tracked reactive property is typically stored within a closure
along with a collection of its dependents. This can lead to increased memory
allocation, particularly with large datasets. Using immutable objects can mitigate
this issue, as the system can then safely assume that specific object graphs do not
require observation.

3.3 Frameworks Reviews
3.3.1 React
React[22], developed by Facebook and open-sourced in 2013, changed forever the
frontend development by explicitly addressing the tree edit distance problem [31].
At its core lies the Virtual DOM (vDOM), an in-memory representation of the
actual DOM. React applications are structured as trees of components, each defining
a render function that produces a vDOM node, describing the desired UI state.
For example, a simple component’s render function might look like this:

function MyComponent(props) {
return (

<div>
<h1>Hello, {props.name}!</h1>

</div>
);

}

The framework’s rendering loop involves traversing this component tree, invoking
render functions, and then performing reconciliation[31]. This process compares
the newly generated vDOM with the previous one to determine the minimal set
of changes required to update the real DOM, effectively solving the tree edit
distance problem by efficiently updating the user interface based on state changes.
Initially, React adopted a pull-based change detection, requiring manual triggers
from developers to initiate these render loops.

React’s architecture is deeply rooted in the principle that everything is data,
promoting a unidirectional data flow and a declarative programming style. This is
evident in how components manage state and how UI updates are driven by data
changes. For instance, state updates in React components trigger re-renders:

function Counter() {
const [count, setCount] = React.useState(0);

18

Modern Frontend Frameworks

return (
<div>

<p>Count: {count}</p>
<button onClick={() => setCount(count + 1)}>

Increment
</button>

</div>
);

}

While conceptually simple and widely adopted, this initial approach presented
performance challenges. React treated all content uniformly, necessitating process-
ing of both static and dynamic elements during each render cycle. Furthermore,
by default, component updates triggered re-rendering of entire subtrees, poten-
tially leading to inefficiencies even when child components remained unchanged.
Although developers could manually optimize performance through techniques
like component skipping and render function memoization, the framework itself
lacked inherent optimizations to differentiate between static and dynamic content
automatically. This mental model of "everything re-renders" simplified development
but highlighted areas for potential performance improvement, especially in complex
applications.

The React team introduced recently a Compiler[32] marking a significant evolu-
tion in the framework, driven by the need to overcome the inherent performance
limitations of its original rendering strategy. While the Virtual DOM and rec-
onciliation offered a powerful abstraction, the overhead of runtime diffing and
processing, even for static content, became increasingly apparent. The React
Compiler addresses these shortcomings by automatically optimizing components at
build time. By leveraging memoization and static analysis, the compiler aims to
minimize unnecessary re-renders, enabling React to achieve finer-grained updates
and significantly improve runtime performance without burdening developers with
manual optimization in many common scenarios. This shift towards compilation
represents an effort to retain React’s core philosophical strengths – developer
experience and a predictable mental model – while achieving greater efficiency and
performance competitiveness in modern frontend applications, moving beyond the
initial reliance on runtime tree diffing as the primary optimization strategy.

3.3.2 Solid
SolidJS [33] stands out as a framework that has significantly influenced modern
frontend trends, notably by popularizing signals as its core reactivity primitive and
showcasing exceptional performance in micro-benchmarks. SolidJS champions a
fine-grained reactivity system built around signals, offering a compelling alternative

19

Modern Frontend Frameworks

to Virtual DOM-based frameworks. Signals[34], in SolidJS, are reactive primitives
that encapsulate values and automatically track dependencies. This design choice
allows SolidJS to achieve highly efficient updates by directly targeting only the
components and DOM elements affected by data changes. SolidJS departs from the
Virtual DOM approach entirely, opting for a compilation strategy that generates
imperative DOM update code, inspired by techniques like "Imperative Codegen"
observed in projects like Vue Vapor, as illustrated in the provided code snippet.
This direct manipulation minimizes runtime overhead and contributes to SolidJS’s
performance profile.

SolidJS uses a reactivity model often described as a "hybrid push-pull" sys-
tem, centered around signals. At its heart, a SolidJS signal can be conceptually
understood using the simplified implementation provided:

let _count = 0;
const count = () => {

track();
return _count;

}
const setCount = (val) => {

_count = val;
trigger();

}
// Usage with Solid's API:
// const [count, setCount] = createSignal(0);

In this conceptual model, ‘track()‘ registers the current reactive context (e.g., a
component’s render function or an effect) as a dependency of the signal. ‘trigger()‘
is then responsible for notifying all tracked dependencies when the signal’s value is
updated, initiating targeted updates. SolidJS efficiently manages these dependen-
cies, creating a fine-grained reactivity graph. When a signal’s value changes via
‘setCount‘, only the components and effects that explicitly access the signal through
‘count()‘ are re-executed, leading to highly localized and performant updates. This
push-based notification is coupled with a pull mechanism within components and
effects: when re-executing, they "pull" the latest signal values using accessors like
‘count()‘, ensuring data consistency.

In contrast, React’s core insight is that initialization and updates should be
treated as the same problem. The user doesn’t care when the UI is rendered,
only that it accurately reflects the current state. React achieves this by making
all rendering logic reactive by default. Developers can write straightforward,
imperative code, using standard JavaScript control flow (if statements, loops, etc.),
without having to manually manage dependencies or restructure their code around
individual values.

The following React code for example:

20

Modern Frontend Frameworks

// Working version in React
function VideoList({ videos, emptyHeading }) {

const count = videos.length;
let heading = emptyHeading;
let somethingElse = 42;
if (count > 0) {

const noun = count > 1 ? 'Videos' : 'Video';
heading = count + ' ' + noun;
somethingElse = someOtherStuff();

}
return (
<>

<h1>{heading}</h1>
I <h2>{somethingElse}</h2>

</>
);

}

This code naturally expresses the rendering logic. In a purely fine-grained
system (without compiler optimizations), achieving the same reactivity often
requires restructuring the code around individual values, potentially leading to less
intuitive code organization:

// Working version in Solid
function VideoList(props) {

const count = () => props.videos.length;
const heading = () => {
if (count() > 0) { // can't add the logic here :(

const noun = count() > 1 ? "Videos" : "Video";
return count() + " " + noun;

} else {
return emptyHeading;

}
}
const somethingElse = () => {

if (count() > 0) { // let's put this here i guess
return someOtherStuff();

} else {
return 42;

}
});
return (

<>
<h1>{heading()}</h1>
<h2>{somethingElse()}</h2>

21

Modern Frontend Frameworks

</>
);
}

While both versions achieve the desired result, the Solid example requires a different
mental model, where reactivity is explicitly managed through functions (or signals).
The React code, while potentially less performant without compiler optimizations,
arguably offers a more natural and declarative way to express the rendering logic.
React’s approach is to "make rendering logic reactive by default", whereas in the
pre-compiled Solid code, the programmer must *explicitly* define what is reactive.

3.3.3 Vue
Vue, positioned as a progressive framework, adopts a dual rendering strategy
leveraging both a Virtual DOM (vDOM) and template compilation to optimize
performance. Similar to React, Vue [35] utilizes a vDOM and reconciliation to
address the tree edit distance problem. Vue components, syntactically defined
through templates or render functions, ultimately produce vDOM nodes. These
templates, reminiscent of Angular’s directive-based syntax, are in fact "syntactic
sugar" that are parsed and compiled into optimized render functions. During
updates, Vue performs reconciliation, comparing the current and previous vDOM
to calculate minimal DOM changes. Vue’s early versions, like React, employed a
vDOM reconciliation approach conceptually akin to React, as illustrated by a basic
component structure:

Figure 3.2: Vue 3’s Runtime Reactivity and Compiler-Informed Virtual DOM
(block tree)

Vue distinguishes itself through its incorporated reactivity system, a push-based
mechanism that automatically tracks dependencies and optimizes updates. Unlike
React’s initial pull-based approach, Vue implements a reactive programming model
using proxies. When data becomes reactive in Vue, it’s converted into proxy
objects. Accessing properties of these proxies within reactive contexts, such as

22

Modern Frontend Frameworks

render functions or computed properties, establishes dependencies. Vue’s reactivity
system then automatically tracks these dependencies. When a reactive data value
changes, only the components or parts of the template that depend on that specific
data are re-evaluated and updated. This fine-grained reactivity, as demonstrated
in Vue’s reactivity setup, ensures efficient updates by only processing components
with explicit dependency changes, effectively mimicking a component tree with
shouldComponentUpdate implemented everywhere:

import { ref, effect } from 'vue'

const count = ref(0)

effect(() => {
console.log('Count is:', count.value)

})

count.value++ // Triggers the effect to re-run

This push-based reactivity inherently reduces the input size for update loops,
approaching optimal levels by checking only dirty components and their data
bindings.

Despite Vue’s optimized vDOM implementation and reactivity system, the
overhead associated with maintaining a vDOM remained a point for further opti-
mization. To address this, Vue introduced Vue Vapor, an experimental rendering
mode employing "Imperative Codegen," as seen in Solid and other frameworks.
Vue Vapor bypasses the vDOM entirely for optimized templates. Instead of rec-
onciliation, Vapor compiles templates directly into highly optimized imperative
JavaScript code that manipulates the DOM directly. This approach, exemplified
by code generation techniques, eliminates the overhead of vDOM diffing, leading to
significant performance gains, especially in scenarios with frequent updates. While
Vue retains the vDOM for compatibility and flexibility, Vapor represents a move
towards even greater raw performance, prioritizing direct DOM manipulation for
templates where the vDOM abstraction might introduce unnecessary overhead.

import { ref, effect } from 'vue'
import { template, on, setText } from 'vue/vapor'
const t0 = template(`<div><button>`)
export default () => {

const count = ref(0)
let div = t0()
let button = div.firstChild
let _button_text
effect(() => {

setText(button, _button_text, _button_text = count.value)
})

23

Modern Frontend Frameworks

on(button, 'click', () => count.value++)
return div

}

3.3.4 Angular
Angular [36], the successor to AngularJS, represents a complete reimagining as
a compiler-based framework. Built with TypeScript, Angular applications are
compiled into JavaScript, augmented by a runtime environment. A key architectural
decision in Angular was to address the cyclical dependency issues inherent in
AngularJS by implementing one-way data binding and enforcing component-local
state by default, unless explicitly shared. This design choice transforms the update
mechanism from a potentially cyclic graph to a tree, ensuring a deterministic
O(n) time complexity for each update loop, where n is the number of nodes in
the component tree. An Angular component is composed of a TypeScript class
and an HTML template (extended with directives), which the Angular compiler
transforms into a runtime component definition. At the heart of this definition
lies the template function, responsible for rendering and updates. This function,
generated by the Angular compiler, contains distinct branches for initial rendering
and subsequent updates, optimizing for performance.

Angular’s original rendering strategy, prior to Signals, relied on a pull-based
change detection system. A render loop in Angular traverses the entire component
tree, calling each component’s template function. For initial rendering, components
are created and with thier bindings. For updates, it employed dirty checking: for
each binding within a component, Angular compared the current value against a
previously stored value, updating the DOM only when changes were detected.The
Angular compiler optimizes the template function such that the update branch
only processes data bindings, effectively bypassing static content and reducing the
overhead per component. To automatically trigger these render loops, Angular
relies on Zones.js, an execution context that monkey patches asynchronous browser
events. While Zones.js automatically initiates change detection upon events like
user interactions or HTTP responses, it lacks fine-grained knowledge of which
components truly require updates. This necessitates checking the entire component
tree during each update cycle, even if only a small portion of the application
state has changed, as depicted in Angular’s component lifecycle: This pull-based,
full-tree change detection, while deterministic, could become inefficient in larger,
more complex applications.

The introduction of Signals in Angular represents a significant shift towards a
more fine-grained and performant reactivity model [37]. Signals introduce a publish-
subscribe pattern, allowing components to subscribe to specific data changes directly.
This mechanism bypasses the need for full component tree traversal for every update.

24

Modern Frontend Frameworks

Figure 3.3: Angular Component Lifecycle Diagram

With Signals, components are updated directly when their subscribed signal values
change, eliminating the overhead of checking unchanged parts of the component
tree. This addresses key limitations of the previous automatic change detection,
including the performance cost of unnecessary full-tree checks and issues like the
"ExpressionChangedAfterItHasBeenCheckedError". Using Signals, as illustrated
in the following example, enables developers to guide Angular to update only the
necessary parts of the UI, leading to potential performance gains, particularly in
large applications:

import { Component, signal } from '@angular/core';

@Component({ ... })
export class MySignalsComponent {

total = signal(1);

multiplyByTwo() {
this.total.update((val: number) => val *= 2);

}

// ...
}

Signals, while adding a new layer of complexity and requiring a shift in mental
model for some Angular developers, offer a path to significantly enhance application
performance by enabling more targeted and efficient change detection, moving
beyond the limitations of automatic, full-tree traversal and paving the way for
finer-grained updates reminiscent of push-based reactivity systems seen in other
frameworks.

25

Modern Frontend Frameworks

3.3.5 Svelte
Svelte [38] presents a unique approach as a compiler-first framework, fundamentally
shaping both its reactivity model and overall architecture. Unlike runtime-heavy
frameworks, Svelte components are transformed during compilation into highly
optimized JavaScript code that directly manipulates the DOM, eschewing the Vir-
tual DOM entirely. Svelte’s reactivity is also compiler-driven: reactive declarations,
marked with $ syntax, are analyzed at compile time to build dependency graphs.
The compiler then injects fine-grained update logic, ensuring that only the parts of
the DOM affected by state changes are updated, resulting in efficient, surgically
precise DOM manipulations. This philosophy of compile-time optimization under-
pins Svelte’s core identity, aiming for lean, performant applications with minimal
runtime overhead. A Svelte component showcasing this reactive syntax appears as:
<script>

let count = 0;
$: doubled = count * 2; // Reactive declaration - compiler tracks dependencies

function increment() {
count += 1;

}
</script>

<button on:click={increment}>
Count: {count}, Doubled: {doubled}

</button>

Svelte 5 marked a significant evolution with the introduction of "runes," a more
explicit and fine-grained reactivity system [39]. While previous versions relied
on compiler magic to infer reactivity, runes provide developers with more direct
control and predictability over reactive behavior. Runes like $state, $derived,
and $effect offer explicit APIs to declare state, derived values, and side effects,
respectively. This shift addresses some challenges inherent in compiler-centric
frameworks. In large codebases, implicit compiler behavior could sometimes become
opaque, making it harder to trace reactivity and debug complex interactions.
Furthermore, relying heavily on compiler inference might lead to subtle API clashes
or unexpected behavior in increasingly intricate projects as teams grew and project
scale increased. Runes mitigate these issues by making reactivity more explicit and
developer-controlled, reducing the "magic" and improving the understandability and
maintainability of Svelte applications, particularly in large-scale projects, giving
developers finer control as highlighted with $effect.tracking.

The move to runes in Svelte 5 is not a departure from its compiler-first philosophy
but rather a refinement. It acknowledges the trade-offs between compiler-driven
implicit reactivity and developer control. By providing explicit reactivity APIs,

26

Modern Frontend Frameworks

Svelte empowers developers with better tools to manage reactivity in complex appli-
cations, potentially improving predictability and debuggability without sacrificing
the performance benefits of compile-time optimizations. While Svelte still relies
heavily on its compiler for generating highly efficient code, runes represent a step
towards a more balanced approach, offering a more transparent and manageable re-
activity model, especially crucial for larger teams and codebases where explicitness
and predictability become paramount concerns for long-term maintainability and
collaborative development. This evolution demonstrates Svelte’s ongoing effort to
refine its approach, balancing performance with developer experience and address-
ing the practical challenges of building large, maintainable frontend applications
with a compiler-centric framework.

27

Chapter 4

Performance Benchmarks

This chapter details a suite of CPU-centric benchmarks designed to empirically
evaluate performance differences between virtual DOM-based rendering, and various
fine-grained reactive systems, including different versions of frameworks that have
evolved their reactivity models, and the effect of compiler optimizations. The focus
is on script execution time, isolating the computational overhead of the frameworks
themselves from browser-specific rendering phases (layout, paint). This provides a
precise measure of each paradigm’s inherent update mechanism efficiency.

4.1 Goals and Methodology
As discussed in previous chapter, script execution costs for different rendering
strategies are hypothesized to diverge significantly based on the rendering loop:
creation of new components versus updating existing components. Updates to
components with substantial subtrees, or those with primarily static content, are
expected to show pronounced differences.

The primary objective is to rigorously validate these hypothesized differences,
providing quantitative evidence. These benchmarks quantify the relative magni-
tudes of performance variations, focusing on the evolution within frameworks and
the impact of compiler enhancements.

Due to the simplified nature of benchmarked components, results are comparative
approximations, highlighting relative efficiencies of underlying update mechanisms,
not absolute measures of real-world application performance.

Traditional web front-end framework assessments often include the entire render
cycle [40]. This conflates framework-specific computations with browser overhead.
While layout and paint are relevant to overall performance, they are orthogonal to
the framework’s core computational work. This study meticulously measures both
the complete render cycle duration and, crucially, the isolated script execution

28

Performance Benchmarks

time.
The absence of a standardized API for precise script execution time measurement

necessitates a platform-specific approach. These benchmarks leverage the Chrome
Devtools Protocol (CDP) in Chrome-based browsers (specifically, Chrome version
131)[41]. CDP enables programmatic control and tracing of script execution.
Tracing, based on CPU polling at 200-microsecond intervals, yields millisecond-level
precision. Each benchmark is executed 10 times for each framework (and version,
where applicable), preceded by 5 warm-up runs. The mean of the 10 measured
values is reported, along with the standard deviation to indicate measurement
consistency.

Benchmarks were performed on a Mac Book Air 13 with M3 chip 8-core CPU,
16 GB of RAM. Interaction with CDP was achieved using Puppeteer.

For each scenario, isomorphic applications are implemented in each frame-
work/version. A user action triggers a render cycle, during which script execution
time is measured. Scenarios probe distinct aspects of rendering performance by
varying component tree structure and the nature of executed actions.

Benchmarks were performed for all frameworks discussed, with a focus on
comparing versions where significant reactivity model changes occurred, or where
compiler optimizations were introduced. A representative subset of results across a
range of input sizes is presented. Comprehensive results, including full render cycle
durations and standard deviations, are in Appendix B.

4.2 Benchmark Descriptions
The following benchmarks elucidate performance trade-offs between re-rendering
entire component trees and employing fine-grained reactive updates, with a partic-
ular emphasis on how these trade-offs have changed with framework evolution and
compiler optimizations.

4.2.1 Creation of Static and Dynamic Content (Flat vs.
Tree Structures)

This benchmark set quantifies cost differences between creating static elements and
dynamic components, and assesses the influence of component tree structure (flat
vs. hierarchical) on creation performance.

• 1. Static Components: Time to render N static elements. A single component
directly renders these N elements, establishing a baseline rendering cost for
static content.

29

Performance Benchmarks

• 2. Component Overhead (Flat): A single parent component with N child
components. Each child outputs a single static element. This isolates the
computational cost of component construction.

• 3. Component Overhead (Tree): A binary tree structure (to assess the impact
of a large number of children), where each non-leaf component has two children,
totaling N components. Each component renders a single static element. Each
component also incorporates a minimal dynamic binding (a boolean flag
toggled by a button, conditionally rendering children) to observe how this cost
scales in a hierarchical structure.

Table 4.1: script execution time (ms) for rendering N static components

Framework N=1000 N=5000 N=10000 N=25000 N=50000
Angular l 15 42 79 234 682
Angular (with signals) 12 39 65 194 423
React 8 109 224 924 3536
React (with compiler) 9 126 249 966 3659
Vue 7 26 62 173 245
Vue vapor 7 31 59 93 229
Svelte 4 8 28 69 165 458
Svelte 5 3 13 25 63 104

Table 4.2: script execution time (ms) for rendering N dynamic components as a
binary tree

Framework N=512 N=1024 N=4096 N=8192 N=16384
Angular 75 120 216 469 774
Angular(with Signals) 73 130 202 479 725
React 32 56 135 379 709
React (with Compiler) 32 55 137 394 733
Vue 3 48 73 206 465 757
Vue vapor 44 75 202 468 798
Svelte v4 19 71 194 432 623
Svelte v5 17 67 102 284 509
Solid 19 61 108 279 499

30

Performance Benchmarks

4.2.2 Incremental Updates on a Flat List of Mixed Com-
ponents

This focuses on efficiently updating components in a flat list. Components are
mostly static, except for a single dynamic value (a counter) within each.

The primary measurement is the time to update only this dynamic value. This
isolates the cost of targeted updates, contrasting fine-grained reactivity (only the
changed value is updated) with potential full component recomputes.

"Add one," "delete all," and "swap two items" operations are included, mea-
suring responsiveness to incremental and mass modifications, and common list
manipulation. This scenario is representative of dynamically updated lists/tables.

Table 4.3: Execution time (ms) updating the root component flat list N compo-
nents of primarily static content (with 4x cpu slowdown)

Framework N=500 N=1000 N=5000 N=10000 N=25000 N=50000
Angular 21 52 91 145 216 432
Angular(with Signals) 12 29 68 101 184 341
React 162 246 403 623 894 1547
React (with Compiler) 105 124 230 321 486 613
Vue 2 3 5 8 12 56
Vue vapor 17 29 37 67 75 126
Svelte v4 3 7 10 14 16 42
Svelte v5 1 1 3 5 8 14
Solid <1 2 3 4 6 12

Table 4.4: Execution time (ms) updating the entire component flat list N compo-
nents of primarily static content(with 2x cpu slowdown)

Framework N=500 N=1000 N=5000 N=10000 N=25000 N=50000
Angular 16 34 52 56 81 476
Angular(with Signals) 11 26 36 39 61 296
React 84 123 204 456 544 1681
React (with Compiler) 93 112 223 376 523 1733
Vue 62 83 146 182 305 637
Vue vapor 44 75 102 209 368 598
Svelte v4 6 10 20 40 108 164
Svelte v5 5 67 102 213 284 509
Solid 5 61 108 196 279 499

31

Performance Benchmarks

4.2.3 Tree Update Scenarios: Root and Leaf Updates
This investigates update propagation in a hierarchical binary tree (representing,
e.g., nested menus). Most nodes are static; a few have dynamic values. This
analyzes update behavior at different tree levels.

Time is measured for updates at:

• Root Node: Potentially triggers a full tree update (worst-case).

• Leaf Node: Isolated, localized update (ideal for fine-grained reactivity).

Comparing these reveals whether updates remain localized (efficient fine-grained
reactivity) or propagate unnecessarily. Only one node in each branch contains a
dynamic value.

Table 4.5: Execution time (ms) for root component update in a component tree
of N components (with 2x CPU slowdown).

Framework N=512 N=1024 N=4096 N=8192 N=16384 N=32768
Angular 23 32 65 69 88 212
Angular (with Signals) 14 21 52 59 81 201
React 46 84 184 296 422 758
React (with Compiler) 49 92 195 314 462 778
Vue 1 1 1 2 2 2
Vue vapor 1 1 1 1 1 1
Svelte 4 1 1 1 1 2 2
Svelte 5 1 1 1 1 1 1
Solid 1 1 1 1 1 1

4.2.4 Deeply Nested Dependency Updates: Cascading Changes
This benchmark evaluates the performance of propagating an update through a
long chain of dependent computations. In this scenario, each computation in the
chain is linked to the next so that an update at the root triggers a cascade of
updates through every subsequent node. The chain lengths examined are 10, 50,
100, 200, 500, and 1000 nodes.

The primary goal is to assess the cost of explicitly traversing a dependency chain
versus the cost of rebuilding a subtree without explicitly iterating over each node. In
our tests, both fine-grained reactive systems and full re-render models (e.g., React)
employ batching strategies to coalesce updates. As a result, the measured execution
times show only marginal differences between the two approaches. Even though

32

Performance Benchmarks

Table 4.6: Execution time (ms) for leaf component update in a component tree
of N components (with 2x CPU slowdown).

Framework N=512 N=1024 N=4096 N=8192 N=16384 N=32768
Angular 26 28 66 66 88 208
Angular (with Signals) 25 27 65 62 71 201
React 1 2 7 7 11 9
React (with Compiler) 1 3 9 8 12 10
Vue 1 1 1 1 2 2
Vue vapor 1 1 1 1 1 2
Svelte v4 1 1 1 1 1 2
Svelte v5 1 1 1 1 1 1
Solid 1 1 1 1 1 1

one might expect that traversing a long chain would result in a deep call stack
and higher latency in fine-grained systems, the overhead is effectively amortized by
batching—making the cost of processing a long dependency chain similar to the
cost of rebuilding a subtree in a batched full re-render.

The results below (measured under a 2× CPU slowdown) indicate that across
all frameworks, the execution time scales modestly with chain length.

Table 4.7: Execution time (ms) propagating an update through a dependency
chain of L computations (with 2× CPU slowdown)

Framework L=10 L=50 L=100 L=200 L=500 L=1000
Angular 7 10 15 36 49 69
Angular (with Signals) 7 10 14 31 42 61
React 4 6 9 13 29 52
React (with Compiler) 4 6 9 13 28 51
Vue 5 5 11 22 31 48
Vue vapor 4 6 9 17 27 39
Svelte 4 3 6 11 18 29 47
Svelte 5 2 4 7 11 24 37
Solid 2 4 7 11 24 35

33

Performance Benchmarks

4.2.5 Interleaved Batch Operations and Concurrent Up-
dates

This benchmark assesses the performance of frameworks under conditions that simu-
late a realistic high-load environment, where multiple UI operations are interleaved
and executed concurrently. In this scenario, operations such as additions, deletions,
and updates are triggered simultaneously across a dashboard-like interface with
many widgets. This stresses the framework’s ability to schedule, batch, and coalesce
updates effectively.

This measures the cumulative execution time required to process a batch of
concurrent operations. We vary the batch size—testing with 10, 50, 100, 200, and
500 operations—under a simulated 2x CPU slowdown. This setup exposes the
overheads associated with coordinating multiple simultaneous updates. Fine-grained
reactive systems are expected to isolate updates to only the affected elements,
whereas full re-rendering frameworks may incur extra overhead by re-executing
larger portions of the component tree.

Table 4.8: Execution time (ms) for processing interleaved batch operations and
concurrent updates (2x CPU slowdown)

Framework Ops=10 Ops=50 Ops=100 Ops=200 Ops=500 Ops=1K
Angular 11 34 56 86 119 144
Angular (with Signals) 9 16 28 36 49 65
React 9 18 49 75 125 192
React (with Compiler) 9 17 35 63 98 132
Vue 5 11 24 32 45 66
Vue vapor 3 6 16 17 25 30
Svelte 4 6 10 15 28 60 71
Svelte 5 2 4 7 11 16 24
Solid 2 4 8 10 14 21

34

Chapter 5

Performance Benchmarks: A
Comparative Analysis

This chapter presents a comparative analysis of CPU-centric benchmarks designed
to evaluate the performance of different front-end rendering paradigms: dirty
checking (represented by Angular), virtual DOM (React 19, Vue 3), and fine-grained
reactivity (Solid, Svelte v4/v5, Vue Vapor, Angular 19 with Signals). We further
analyze the impact of significant architectural shifts within frameworks, focusing
on Svelte’s evolution with runes (v4 to v5), Vue’s Vapor mode, React’s compiler,
and Angular’s adoption of signals. The primary focus is on script execution time,
isolating framework overhead from browser rendering (layout, paint). This provides
a precise measure of each approach’s inherent update efficiency.

5.1 Methodology and Goals (Brief Recap)

As detailed in previous sections, the benchmarks leverage the Chrome Devtools
Protocol (CDP) on Chrome version 131 to measure script execution time with
millisecond-level precision. Tests were run on a Mac Book Air 13 with M3 chip
8-core CPU, 16 GB of RAM, using Puppeteer for CDP interaction. Each benchmark
was executed 10 times per framework/version, with 5 warm-up runs. The mean
and standard deviation of the 10 runs are reported. Benchmarks cover a range of
scenarios: static/dynamic content creation (flat and tree structures), incremental
list updates, table updates with dependencies, tree updates (root, internal, leaf),
deeply nested dependency updates, and interleaved/concurrent operations.

35

Performance Benchmarks: A Comparative Analysis

5.2 Comparative Analysis of Rendering Paradigms
We first compare the three core rendering approaches: dirty checking, virtual DOM,
and fine-grained reactivity, across the various benchmark scenarios.

5.2.1 Creation Overhead: Static and Dynamic Content

Figure 5.1: Script execution time (ms) for creating N static components, where
N is the number of components.

Figure 5.1 compares creation times for static content.It presents a flat structure
(N elements as direct children of a single parent). A clear performance hierarchy is
observed: fine-grained reactive frameworks (Solid, Svelte, Vue Vapor) consistently
outperform virtual DOM frameworks (React, Vue 3). This indicates a baseline
overhead associated with the virtual DOM’s reconciliation process, present even
without DOM changes. Angular’s Zones-based change detection introduces the
highest overhead. The nonlinearity observed, particularly in the flat structure,
suggests inefficiencies (possibly related to array iteration or DOM manipulation
overhead) when handling large numbers of direct children.

Figure 5.2 shows creation times for dynamic components structured as a binary
tree. While the performance gap between fine-grained reactive and virtual DOM
approaches persists, the relative differences are potentially smaller. This is likely
due to the added cost of component creation and dynamic binding, which impacts
all frameworks. Component creation, even for simple components, introduces a
non-negligible overhead. Preliminary analysis suggests this overhead *could* be

36

Performance Benchmarks: A Comparative Analysis

Figure 5.2: Script execution time (ms) for creating N dynamic components (binary
tree).

37

Performance Benchmarks: A Comparative Analysis

roughly triple the cost of rendering equivalent static content directly within a parent
component. However, it’s important to note that real-world components typically
manage a significantly larger number of elements, making the per-component
overhead relatively less impactful in practice.

Framework Script Execution Time (ms) Full Render Cycle Time (ms)
Angular 120 368
React 56 475
Vue 75 346
Vue Vapor 75 322
Svelte 4 71 281
Svelte 5 67 423
Solid 61 274

Table 5.1: Comparison of script execution time and full render cycle time for
creating N=1024 dynamic components (binary tree).

To provide a more complete picture of rendering costs, Table 5.1 shows script
execution times with full render cycle times (including browser layout, painting, and
compositing) for the dynamic binary tree creation scenario. The relative differences
in full render cycle times are noticeably smaller than those observed in script
execution times alone. This is expected because the components are relatively
simple, and the browser’s rendering pipeline (DOM construction, layout, painting)
contributes a significant, relatively consistent overhead across all frameworks. This
highlights that while framework choice significantly impacts *script* performance,
the overall user-perceived rendering time is also heavily influenced by browser
operations.

5.2.2 Performance in Incremental Updates: Precision and
Efficiency

Figure 5.3 vividly illustrates the performance gap when dealing with localized
updates. In these scenarios, frameworks like Svelte 5 and Solid, leveraging fine-
grained reactivity fully, truly shine. Their architecture allows them to pinpoint and
update only the specific dynamic values within the list, resulting in minimal script
execution time. This is in stark contrast to Virtual DOM-based frameworks. While
React, especially with the React Compiler, attempts to optimize this recomputation
by recognizing static content, it still fundamentally relies on a diffing process. This
process, even when optimized, inevitably involves a broader scope of computation
compared to the direct DOM manipulation employed by fine-grained reactive
systems. Angular, with its change detection mechanisms, also exhibits a less

38

Performance Benchmarks: A Comparative Analysis

Figure 5.3: Script execution time (ms) for updating the root of a static flat list.

efficient update strategy compared to Svelte 5 and Solid in this benchmark.

Figure 5.4: Script execution time (ms) for updating all elements of a flat list.

However, it’s important to note that the performance gap between these ap-
proaches can narrow under different conditions. For instance, when performing
mass updates, such as operations like "add one" to every item or "delete all" in the

39

Performance Benchmarks: A Comparative Analysis

list, the overhead associated with Virtual DOM diffing becomes less pronounced
relative to the cost of individually updating a large number of elements in fine-
grained systems. In such cases, the time spent reconstructing the Virtual DOM
tree becomes comparable to the cumulative time spent updating each DOM node
separately. Despite this, frameworks like Svelte 5 and Solid consistently demon-
strate remarkable efficiency in scenarios demanding incremental updates, which
are highly representative of real-world application behaviors where selective and
localized DOM manipulations are paramount. This is further reinforced with the
root and leaf of tree updates in Figure 5.5, where the complexity of such updates is
constant against a O(n) complexity with the vDOM and dirty checking approaches.

Figure 5.5: Script execution time (ms) for updating the root of a tree of N
components.

Figure 5.6 (deeply nested dependency updates) highlights the importance of
efficient dependency tracking. The results show that, contrary to initial expectations,
the performance differences are minimal. Both the fine-grained and full re-render
paradigms effectively batch updates, resulting in execution times that are nearly
equivalent. This indicates that the overhead associated with explicitly traversing
a dependency chain is comparable to that of rebuilding a subtree in a batched
update scenario.

5.2.3 Concurrency and Complex Operations
Figure 5.7 (interleaved operations and concurrent updates) simulates a high-load
scenario. Fine-grained frameworks, with efficient batching and scheduling, generally

40

Performance Benchmarks: A Comparative Analysis

Figure 5.6: Script execution time (ms) for deeply nested dependency updates.

maintain responsiveness better than virtual DOM frameworks, where the overhead
of diffing can become a bottleneck under pressure.

Figure 5.7: Script execution time (ms) under interleaved operations and concurrent
updates.

More interestingly, frameworks that take advantage of the fine-grained approach
in parallel with another system (like Svelte 4 with the compiler and Vue with their
vDOM compilation step) see some inconsistencies in high load, primarily due to
fixed costs associated with these approaches.

41

Performance Benchmarks: A Comparative Analysis

5.3 Intra-Framework Architectural Shifts

This section analyzes the performance impact of significant architectural changes
within individual frameworks, using bar graphs to visually represent the before-
and-after differences.

5.3.1 React

The integration of a compiler within the React framework has demonstrably
enhanced its rendering efficiency by effectively recognizing and managing static
content, thereby mitigating unnecessary recomputations. This improvement is
distinctly illustrated in Figure 5.8, which highlights the substantial reduction in the
computational cost associated with updating the root of a static, flat list compared
to previous React versions lacking a compiler.

Figure 5.8: Script execution time (ms) for updating the parent of a flat list of
N=10000 elements.

However, it is crucial to acknowledge that the performance gains attributed
to the compiler are primarily confined to scenarios characterized by a significant
proportion of static content. In situations where dynamic components predominate,
the inherent limitations imposed by React’s virtual DOM (vDOM) persist, and the
performance differential between React and frameworks employing more fine-grained
update mechanisms becomes evident.

42

Performance Benchmarks: A Comparative Analysis

5.3.2 Angular
The most dramatic shift is seen in Angular. The transition from Zone.js to Signals
results in massive performance improvements across all benchmarks, especially in
fixed costs. This clearly demonstrates the power of fine-grained reactivity over
coarser-grained change detection.

Figure 5.9: Script execution time (ms) for swapping two rows in flat list (3x CPU
slowdown)

5.3.3 Svelte
Svelte’s introduction of runes in v5 represents an evolution of its fine-grained reac-
tivity. The benchmarks are expected to show modest but consistent improvements,
as Svelte was already performing well but having some inconsistencies, indicating
refinement of the underlying reactivity system. These inconsistencies are seen in
effect under high load operations and Figure 5.10, where we see a clear performance
boost under high load, effectively removing the fixed costs of the compiler from
the previous version.

5.3.4 Vue
Moving from Vue 3 to Vue Vapor is demonstrating a significant increase in per-
formance across a majority of the benchmarks as expected, due to removing the
overhead associated with vDOM compilation. However, some inconsistencies still

43

Performance Benchmarks: A Comparative Analysis

Figure 5.10: Script execution time (ms) for deeply nested dependency updates.

occur given the fact that it’s still an experimental mode, but the results are rather
positive overall.

5.4 Overall Conclusions
The benchmarks consistently demonstrate the performance advantages of fine-
grained reactivity over both virtual DOM-based rendering and traditional dirty
checking. Fine-grained systems excel in scenarios involving localized updates,
complex dependency relationships, and high-frequency changes. Architectural shifts
towards fine-grained reactivity (as seen in Angular) yield substantial performance
gains. Compiler optimizations (as in React) can provide targeted improvements,
but do not fundamentally alter the performance characteristics of the underlying
rendering paradigm. The choice of front-end framework should be guided by
the application’s specific update patterns and performance requirements. For
applications with frequent, localized updates and complex data dependencies,
fine-grained reactive frameworks offer a compelling performance advantage.

44

Chapter 6

Contextualizing Benchmark
Findings with Real-World
Data

The experimental benchmark results presented in previous sections offer valuable
insights into the performance characteristics of various frontend frameworks under
controlled conditions. To contextualize these findings within real-world applications,
this section analyzes HTTP Archive data comparing the performance of React,
Angular, Vue.js, Svelte, and SolidJS across production websites. This analysis
provides a complementary perspective to our controlled benchmark experiments
and helps validate whether the observed performance patterns extend to real-world
implementations.

6.1 Framework Adoption and Distribution
Before examining performance metrics, understanding the relative adoption of
each framework provides important context for interpreting the data. Figure 6.1
illustrates the growth and relative market share of each framework from January
2020 to February 2025, based on HTTP Archive data [42].

As of February 2025, the data reveals significant disparities in framework usage:

• React maintains a dominant market position with approximately 1.1 million
origins.

• Vue follows as the second most popular framework, with roughly 490,000
origins.

• Angular maintains a steady presence with about 108,750 origins.

45

Contextualizing Benchmark Findings with Real-World Data

Figure 6.1: Origins over time for React, SolidJS, Svelte, Angular, and Vue. Data
from [42].

46

Contextualizing Benchmark Findings with Real-World Data

• Svelte, though gaining traction with 66,536 origins, remains relatively niche
compared to the market leaders.

• Solid, with only 225 origins, represents an emerging technology with minimal
production adoption despite its promising performance characteristics.

The adoption patterns observed in HTTP Archive data confirm the varying
levels of industry relevance for the frameworks included in our benchmark study,
with React’s dominance reflecting its widespread use in production environments.

6.2 Core Web Vitals Performance
The HTTP Archive provides valuable insights into how websites built with different
frameworks perform against Google’s Core Web Vitals metrics[43], which serve as
important indicators of real-world user experience.

6.2.1 Time to First Byte (TTFB)
Figure6.2 shows the percentage of sites achieving a good Time to First Byte (TTFB)
score[44].

Figure 6.2: Percentage of sites achieving good TTFB scores. Data from [42].

47

Contextualizing Benchmark Findings with Real-World Data

TTFB measures the time between the request for a resource and when the first
byte of a response begins to arrive, with values below 800 ms considered “good.”
Analysis of HTTP Archive data (see Figure 6.2) reveals:

• SolidJS significantly outperforms other frameworks in this metric, with 88%
of SolidJS sites achieving good TTFB scores.

• Angular and Svelte follow with 64% and 62%, respectively.

• React (48%) and Vue.js (49%) show noticeably lower performance.

The superior TTFB performance of SolidJS sites aligns with our benchmark
findings regarding its efficient rendering mechanism, though the small sample size
(225 origins) should be considered when interpreting these results.

6.2.2 First Contentful Paint (FCP)
Figure6.3 shows the percentage of sites achieving a good First Contentful Paint
(FCP) score[45].

Figure 6.3: Percentage of sites achieving good FCP. Data from [42].

FCP[45] measures the time from when the page starts loading to when any part
of the page’s content is rendered on the screen, with good experiences defined as
≤ 1.8 seconds. Similar to TTFB, SolidJS leads with 87% of sites achieving good

48

Contextualizing Benchmark Findings with Real-World Data

FCP scores. Svelte follows at 64%, while React sits at 54%. Vue.js maintains a
moderate 49% of sites with good FCP, while Angular lags behind at only 37%.

6.2.3 Largest Contentful Paint (LCP)
Figure6.4 shows the percentage of sites achieving a good Largest Contentful Paint
(FCP) score[46].

Figure 6.4: Percentage of sites achieving good LCP scores.Data from [42].

LCP measures when the largest content element in the viewport becomes visible,
with good experiences defined as occurring within 2.5 s of page load. The HTTP
Archive data shows SolidJS maintaining its performance lead with 86% of sites
achieving good LCP scores. Svelte follows at 69%, while React (55%) and Vue.js
(51%) show moderate performance. Angular significantly underperforms in this
metric with only 29% of sites achieving good LCP scores.

6.2.4 Cumulative Layout Shift (CLS)
Figure6.5 shows the percentage of sites achieving a good Cumulative Layout Shift
(CLS) score[47].

CLS quantifies unexpected layout shifts during a page’s lifespan. Good scores
are typically ≤ 0.1. Figure 6.5 (placeholder) shows that React achieves around 73%

49

Contextualizing Benchmark Findings with Real-World Data

Figure 6.5: Percentage of sites achieving good CLS scores. Data from [42]

50

Contextualizing Benchmark Findings with Real-World Data

of sites with good CLS, while SolidJS (65%), Svelte (42%), Angular (49%), and
Vue.js (47%) vary more widely. These differences may relate to how each framework
handles hydration and dynamic updates, though developer implementation details
can also heavily influence layout shifts in practice.

6.3 Correlation with Benchmark Findings
Our controlled benchmark experiments focused on metrics including script execu-
tion time, component creation efficiency, and update performance across the five
frameworks. The HTTP Archive data provides an opportunity to validate whether
these controlled measurements translate to real-world performance differences.

The superior performance of SolidJS and Svelte across Web Vitals metrics in
HTTP Archive data corresponds with their excellent performance in our benchmark
suite, particularly in scenarios involving component creation (Figures 5.1 and 5.2)
and incremental updates (Figures 5.3 and 5.5). This suggests that the perfor-
mance advantages of fine-grained reactivity observed in controlled environments do
translate to measurable benefits in production applications.

The moderate performance of React and Vue in HTTP Archive data mirrors their
mid-tier performance in our benchmark suite, particularly in scenarios involving
complex component rendering and state updates (thus the move towards viper
mode). Angular’s underperformance in LCP metrics also corresponds with our
finding that it exhibited higher overhead in component-heavy scenarios, though our
benchmarks with Angular Signals showed significant improvements that may not
yet be reflected in the HTTP Archive data given the recency of this architectural
shift.

6.4 Limitations and Considerations
Several factors warrant caution when interpreting these HTTP Archive findings in
relation to our benchmark results:

• Sample Size Disparity: The vast difference in sample sizes (1.1 million
React origins vs. 225 Solid origins) introduces potential selection bias.

• Implementation Variations: Real-world implementations vary significantly
in complexity, with many sites using multiple frameworks or partial implemen-
tations.

• Network and Server Factors: Web Vitals are influenced by factors beyond
the framework itself, including network conditions, server infrastructure, and
CDN usage—variables controlled for in our benchmark environment.

51

Contextualizing Benchmark Findings with Real-World Data

• Version Distribution: The HTTP Archive data encompasses all versions
of each framework, while our benchmarks focused on specific, often latest,
versions.

• Developer Expertise: The performance of real-world applications is signif-
icantly influenced by developer implementation choices that may not align
with framework best practices.

6.5 Implications for Framework Selection
This correlation between our benchmark findings and real-world HTTP Archive
data strengthens the case for considering rendering strategy as a factor in framework
selection. The data suggests that fine-grained reactive frameworks like Solid and
Svelte offer tangible performance benefits in production environments, not just in
synthetic benchmarks.

However, the dominant market positions of React and Vue.js, despite their mod-
erate performance metrics, underscore that factors beyond raw performance—such
as ecosystem maturity, developer familiarity, and corporate backing—significantly
influence framework adoption decisions.

Framework selection should thus balance performance considerations with other
practical factors. For applications where performance is paramount, particularly
those targeting mobile users or markets with limited connectivity, the data suggests
that fine-grained reactive frameworks merit serious consideration despite their lower
adoption rates.

52

Chapter 7

Conclusion

7.1 Summary of Findings

The empirical evidence from this study firmly establishes the performance supremacy
of fine-grained reactive frameworks—exemplified by Solid, Svelte, Vue Vapor, and
Angular 19 with Signals—over both legacy dirty-checking mechanisms (Angular
15) and virtual DOM-centric architectures (React 19, Vue 3). Across a spectrum
of benchmark scenarios, encompassing static rendering, intricate dynamic updates,
and concurrent operations, fine-grained reactivity consistently demonstrated supe-
rior script execution times, frequently by substantial margins. Solid and Svelte,
frameworks built from the ground up embracing this paradigm, emerged as clear
frontrunners in performance.

This performance edge is intrinsically linked to the granular update strategy
inherent in fine-grained reactivity. By meticulously tracking dependencies at the
level of individual data bindings, these systems enable highly targeted DOM
manipulations. Consequently, only precisely impacted DOM nodes undergo re-
rendering upon data mutation, circumventing the performance tax associated with
broader change detection cycles or the virtual DOM’s diffing and reconciliation
processes.

The performance gains observed in Angular’s transition to Signals, and Vue’s
adoption of Vapor mode, underscore a significant architectural trend across frame-
works: a move towards fine-grained reactivity to achieve optimal performance.
These advancements, alongside Svelte’s continuous refinement, indicate a clear
industry-wide recognition of the benefits of this approach. React, with its con-
tinued reliance on the virtual DOM and an optional compiler for performance
enhancement, stands as a notable outlier in this landscape, pursuing a different
strategy amidst the growing consensus around fine-grained reactivity.

53

Conclusion

7.2 Implications for Future Frontend Develop-
ment

The substantial performance advantages of fine-grained reactivity, alongside its
growing adoption throughout the frontend ecosystem, signal a transformative
shift in web UI development. The trajectory clearly points toward frameworks
that emphasize computational efficiency and minimize DOM manipulations by
fundamentally embracing fine-grained reactivity. Prominent frameworks aren’t
merely adopting this approach but actively advocating for its incorporation into
the core language specifications of the web platform itself, indicating a profound
commitment to this paradigm. While the performance benefits of fine-grained
reactivity are compelling, and increasingly viewed as essential for competitive
frameworks, React maintains a distinct philosophical position centered on developer
experience and a streamlined data flow model. React’s fundamental principle is to
handle initialization and updates uniformly, abstracting away the complexities of
reactive primitives and emphasizing a unidirectional data flow. This "no-thinking-
about-data-flow" methodology prioritizes developer intuition and code readability,
potentially sacrificing inherent runtime performance.

React’s approach relies on an opt-in compiler to address the performance gap,
seeking to automatically inject fine-grained optimizations into its virtual DOM-
based rendering process. While this compiler delivers performance improvements,
it remains uncertain whether it can entirely eliminate the performance differential
with frameworks designed from first principles for fine-grained reactivity. The
long-term consequences of this divergent strategy represent an area of ongoing
observation and industry discourse. It is particularly noteworthy to consider how
this strategic distinction will evolve as web applications become progressively
complex and performance-critical

7.3 Compilers and AI’s Potential Influence
The increasing sophistication of front-end frameworks, particularly the emergence
of compiler-driven optimizations, indicates a fundamental transformation in web
development methodologies. Contemporary frameworks are evolving beyond their
traditional role as runtime libraries into complex optimizing compiler systems.
The JavaScript code authored by developers is progressively becoming a higher-
level abstraction, with browsers ultimately executing highly optimized, compiler-
generated instructions.

This evolutionary trajectory exhibits notable parallels with native application
development paradigms, where compiled binaries undergo extensive optimization
processes that substantially diverge from the original source code. Similarly, web

54

Conclusion

assets will increasingly result from sophisticated build processes, facilitating ag-
gressive optimizations such as fine-grained reactivity enhancements that would be
computationally prohibitive in manually authored JavaScript. This progression
raises significant questions regarding the future of web platform transparency princi-
ples, particularly the "View Source" accessibility that has historically characterized
the web ecosystem. Nevertheless, the quantifiable user experience improvements,
especially on computationally constrained devices, present compelling justification
for these architectural shifts.

From a forward-looking perspective, the emergence of Artificial Intelligence
represents a potentially significant variable in framework evolution. While com-
putational performance remains a critical metric, the conceptual simplicity of
React’s unidirectional data flow architecture and its relatively imperative-style
programming model may provide substantial advantages in the context of AI-
assisted code generation. Large Language Models (LLMs) potentially demonstrate
enhanced capabilities in generating and maintaining code within simpler, more
deterministic programming frameworks like React’s, even when such frameworks
necessitate compiler-based optimizations to achieve optimal runtime performance.
In this emerging computational landscape, React’s strategic emphasis on developer
conceptual simplicity coupled with compiler optimization could prove remarkably
prescient, effectively aligning with the evolving paradigm of AI-augmented software
development methodologies

7.4 Limitations of the Study
This study, while providing valuable insights, is subject to certain limitations:

• Simplified Benchmarks: The benchmarks, designed for targeted performance
analysis, offer simplified representations of complex real-world applications,
potentially overlooking nuances introduced by intricate interactions or third-
party libraries.

• Specific Framework Versions: The study’s focus on specific framework ver-
sions means that future updates and optimizations could alter the observed
performance landscape.

• Single Browser: Benchmarking was conducted using the Chrome Devtools Pro-
tocol, and performance characteristics may exhibit variations across different
browsers and rendering engines.

• Hardware Dependency: Results are inherently influenced by the specific
hardware configuration used for testing.

55

Conclusion

7.5 Recommendations for Further Research
Future research avenues include:

• Real-World Application Benchmarks: Developing benchmarks based on more
complex, real-world applications to evaluate performance under realistic con-
ditions.

• Cross-Browser Comparisons: Expanding benchmarks to encompass major
browsers (Firefox, Safari, Edge) for cross-browser performance analysis.

• Compiler Optimization Analysis: In-depth investigation of the specific op-
timizations implemented by React’s compiler and their effectiveness across
diverse code patterns.

• Memory Usage Analysis: Evaluating memory consumption alongside script
execution time, as memory management is crucial for application performance.

• Long-Term Performance: Studying performance trends over time as applica-
tions scale in size and complexity.

• AI-Assisted Code Generation: Exploring the efficacy of AI in generating
performant frontend code, particularly in the context of different framework
paradigms.

56

Appendix A

Frameworks

Table A.1: The list of the frameworks versions used in for the benchmarks with
thier respective bundler

Framework Version Bundler
Angular 15.2.10 Webpack
Angular(with Signals) 19.0.3 Vite
React 19.0.0 Vite
React (with Compiler) 19.0.0 Vite
Vue 3 3.5.3 Vite
Vue vapor 3.2.2024-761f785 Vite
Svelte v4 4.2.17 Rollup
Svelte v5 v5.0.5 Vite
Solid 1.8.15 Vite

57

Bibliography

[1] Matija Varga. «The evolution of web browser architecture». In: (Jan. 2013),
pp. 569–571 (cit. on p. 3).

[2] W3.org. «CSS Object Model (CSSOM)». In: W3.org, 2021 (cit. on p. 5).
[3] «The Rendering Critical Path». In: https://www.chromium.org/developers/the-

rendering-critical-path/ (2009) (cit. on p. 6).
[4] Harini Natarejan. «Improving a website’s first meaningful paint by optimizing

render blocking resources». MA thesis. Malmo School of Technology, 2017
(cit. on p. 6).

[5] Jon Duckett. JavaScript and jQuery: Interactive Front-End Web Development.
2nd. Wiley, 2014. isbn: 9781118531648 (cit. on p. 8).

[6] Addy Osmani. Learning JavaScript Design Patterns. O’Reilly Media, 2012.
isbn: 9781449331818 (cit. on p. 8).

[7] Addy Osmani. Developing Backbone.js Applications. O’Reilly Media, 2012
(cit. on p. 8).

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995. isbn: 9780201633610 (cit. on p. 8).

[9] How MVC Works: Controller Flow. https://docs.microsoft.com/en-
us/aspnet/mvc/overview/older-versions-1/what-is-mvc. Accessed:
Feb 14, 2025. 2010 (cit. on p. 9).

[10] R. Kumar and A. Sharma. «Implementing the MVC Pattern in Client-Side
Web Frameworks: A Case Study of Backbone.js». In: Proceedings of the
IEEE/ACM International Conference on Web Engineering. 2016, pp. 115–122
(cit. on p. 9).

[11] Martin Fowler. «Architectural Patterns: Model–View–Controller». In: IEEE
Software 21.5 (2004), pp. 56–65. doi: 10.1109/MS.2004.1318370 (cit. on
p. 10).

58

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/what-is-mvc
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/what-is-mvc
https://doi.org/10.1109/MS.2004.1318370

BIBLIOGRAPHY

[12] E. J. Smith and R. T. Brown. «Event-Driven Architectures in MVC Frame-
works: A Comparative Study». In: Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI). 2018, pp. 212–220 (cit. on
p. 10).

[13] C. F. Ocariza and K. Bajaj. «Imperative DOM Manipulation: Sources of Errors
in Web Applications». In: Proceedings of the IEEE International Symposium
on Empirical Software Engineering and Measurement. 2013, pp. 55–64 (cit. on
p. 10).

[14] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. «An
empirical study of client-side JavaScript bugs». In: IEEE International Sympo-
sium on Empirical Software Engineering and Measurement 23 (2013), pp. 55–
64 (cit. on p. 10).

[15] M. D. Smith and L. K. Johnson. «A Formal Analysis of State Explosion in
Modern User Interfaces». In: Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST). 2018, pp. 89–96 (cit. on p. 10).

[16] A. Kumar and P. Lee. «Declarative Versus Imperative Programming Paradigms:
A Comparative Study in Web Development». In: Proceedings of the IEEE
International Conference on Software Engineering (ICSE). 2019, pp. 102–110
(cit. on p. 11).

[17] J. Chen and S. Liu. «Analyzing the Performance Overhead of DOM Reconcili-
ation in Declarative UI Frameworks». In: Proceedings of the ACM Symposium
on Web Performance (WebPerf). 2021, pp. 37–44 (cit. on p. 11).

[18] Reconciliation – React. Accessed: Feb 19, 2021. 2021. url: https://reactjs.
org/docs/reconciliation.html (cit. on pp. 11, 15).

[19] Shyam Seshadri and Brad Green. AngularJS: Up and Running: Enhanced
Productivity with Structured Web Apps. O’Reilly Media, 2014 (cit. on p. 11).

[20] Alice Smith. «Evaluating Declarative Data Binding Mechanisms in Modern
Web Frameworks». PhD thesis. Stanford University, 2016 (cit. on p. 11).

[21] Michael J. Hart. «From MVC to MVVM: Evolving Architectural Patterns in
Modern Web Applications». In: IEEE Software 35.3 (2018), pp. 26–32. doi:
10.1109/MS.2018.2800456 (cit. on p. 11).

[22] React: A JavaScript library for building user interfaces. Accessed: Feb 14,
2025. 2025. url: https://reactjs.org/ (cit. on pp. 12, 18).

[23] Alex Banks and Eve Porcello. Learning React: Functional Web Development
with React and Redux. O’Reilly Media, 2017. isbn: 9781491954621 (cit. on
p. 12).

59

https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/reconciliation.html
https://doi.org/10.1109/MS.2018.2800456
https://reactjs.org/

BIBLIOGRAPHY

[24] John Gossman. «The Model-View-ViewModel (MVVM) Design Pattern».
In: Proceedings of the IEEE Conference on Software Architecture (ICSA).
Discusses the evolution and practical aspects of MVVM in modern application
design. 2009, pp. 461–499 (cit. on p. 12).

[25] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Professional, 2002 (cit. on p. 13).

[26] Cassio de Sousa Antonio. Pro React. Apress, 2016 (cit. on p. 13).
[27] Introducing JSX. Accessed: Feb 19, 2021. 2021. url: https://reactjs.org/

docs/introducing-jsx.html (cit. on p. 17).
[28] R. Zhuykov and E. Sharygin. «Ahead-of-Time Compilation of JavaScript

Programs». In: Programming and Computer Software (2017). doi: 10.1134/
S036176881701008X (cit. on p. 17).

[29] Roland Kuhn, Jamie Allen, and Brian Hanafee. Reactive Design Patterns:
Best Practices for Building Resilient, Event-Driven Applications. Manning
Publications, 2017 (cit. on p. 17).

[30] Umut Acar, Guy E. Blelloch, and Robert Harper. «Self-Adjusting Computa-
tion». In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’06). 2006, pp. 355–364. doi:
10.1145/1134277.1134318 (cit. on p. 17).

[31] Virtual DOM and Internals – React. Accessed: May 04, 2021. 2021. url:
https://reactjs.org/docs/faq-internals.html (cit. on p. 18).

[32] Lauren Tan. «React Compiler Beta Release». In: React Dev Blog (Oct. 2024).
url: https://react.dev/blog/2024/10/21/react- compiler- beta-
release (cit. on p. 19).

[33] SolidJS: Declarative JavaScript library for building user interfaces. Accessed:
Feb 14, 2025. 2025. url: https://solidjs.com/ (cit. on p. 19).

[34] Bruno Couriol. «TC39 Proposal for Signals: Harmonizing Reactive Program-
ming Primitives in JavaScript». In: InfoQ (2024), pp. 1–4 (cit. on p. 20).

[35] Vue.js: The Progressive JavaScript Framework. Accessed: Feb 14, 2025. 2025.
url: https://vuejs.org/ (cit. on p. 22).

[36] Angular: One framework. Mobile and desktop. Accessed: Feb 14, 2025. 2025.
url: https://angular.io/ (cit. on p. 24).

[37] Angular Signals. Accessed: Feb 14, 2025. 2025. url: https://angular.dev/
guide/signals (cit. on p. 24).

[38] Svelte: Cybernetically enhanced web apps. Accessed: Feb 14, 2025. 2025. url:
https://svelte.dev/ (cit. on p. 26).

60

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://doi.org/10.1134/S036176881701008X
https://doi.org/10.1134/S036176881701008X
https://doi.org/10.1145/1134277.1134318
https://reactjs.org/docs/faq-internals.html
https://react.dev/blog/2024/10/21/react-compiler-beta-release
https://react.dev/blog/2024/10/21/react-compiler-beta-release
https://solidjs.com/
https://vuejs.org/
https://angular.io/
https://angular.dev/guide/signals
https://angular.dev/guide/signals
https://svelte.dev/

BIBLIOGRAPHY

[39] Rich Harris and the Svelte Team. Introducing runes. Svelte 5 runes: a new
syntax for reactive state via signals. 2023. url: https://svelte.dev/blog/
runes (cit. on p. 26).

[40] Stefan Krause. krausest/js-framework-benchmark. Accessed: May 26, 2021.
2021. url: https://github.com/krausest/js- framework- benchmark
(cit. on p. 28).

[41] Chrome DevTools Protocol. Accessed: May 26, 2021. 2021. url: https://
chromedevtools.github.io/devtools-protocol/ (cit. on p. 29).

[42] HTTP Archive: Trends in Web Technology (February 2025). Accessed: Feb
14, 2025. 2025. url: https://httparchive.org/reports/state-of-the-
web?month=2025-02 (cit. on pp. 45–50).

[43] Core Web Vitals – Essential metrics for a healthy site. Accessed: Feb 14, 2025.
2025. url: https://web.dev/vitals/ (cit. on p. 47).

[44] Time to First Byte (TTFB). Accessed: Feb 14, 2025. 2025. url: https:
//developer.chrome.com/docs/lighthouse/performance/ttfb/ (cit. on
p. 47).

[45] First Contentful Paint (FCP). Accessed: Feb 14, 2025. 2025. url: https:
//web.dev/fcp/ (cit. on p. 48).

[46] Largest Contentful Paint (LCP). Accessed: Feb 14, 2025. 2025. url: https:
//web.dev/lcp/ (cit. on p. 49).

[47] Cumulative Layout Shift (CLS). Accessed: Feb 14, 2025. 2025. url: https:
//web.dev/cls/ (cit. on p. 49).

61

https://svelte.dev/blog/runes
https://svelte.dev/blog/runes
https://github.com/krausest/js-framework-benchmark
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://httparchive.org/reports/state-of-the-web?month=2025-02
https://httparchive.org/reports/state-of-the-web?month=2025-02
https://web.dev/vitals/
https://developer.chrome.com/docs/lighthouse/performance/ttfb/
https://developer.chrome.com/docs/lighthouse/performance/ttfb/
https://web.dev/fcp/
https://web.dev/fcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/cls/
https://web.dev/cls/

	List of Tables
	List of Figures
	Introduction
	Background
	Goal
	Structure of the Thesis

	A Historical Overview of Web Technologies
	Browser Technologies
	Browser Compatibility from Inception
	HTML, CSS, and the DOM
	Critical Rendering Path
	The jQuery Revolution

	Design Patterns
	Backbone.js and the Model-View-Controller (MVC) Paradigm
	The Paradigm Shift To Declarative UI
	AngularJS: Declarative UI within a Model-View-Controller Context
	The Modern MVVM: Component-Based Architectures

	Modern Frontend Frameworks
	Framework Selection Rationale
	Rendering Strategies
	Performance Considerations

	Frameworks Reviews
	React
	Solid
	Vue
	Angular
	Svelte

	Performance Benchmarks
	Goals and Methodology
	Benchmark Descriptions
	Creation of Static and Dynamic Content (Flat vs. Tree Structures)
	Incremental Updates on a Flat List of Mixed Components
	Tree Update Scenarios: Root and Leaf Updates
	Deeply Nested Dependency Updates: Cascading Changes
	Interleaved Batch Operations and Concurrent Updates

	Performance Benchmarks: A Comparative Analysis
	Methodology and Goals (Brief Recap)
	Comparative Analysis of Rendering Paradigms
	Creation Overhead: Static and Dynamic Content
	Performance in Incremental Updates: Precision and Efficiency
	Concurrency and Complex Operations

	Intra-Framework Architectural Shifts
	React
	Angular
	Svelte
	Vue

	Overall Conclusions

	Contextualizing Benchmark Findings with Real-World Data
	Framework Adoption and Distribution
	Core Web Vitals Performance
	Time to First Byte (TTFB)
	First Contentful Paint (FCP)
	Largest Contentful Paint (LCP)
	Cumulative Layout Shift (CLS)

	Correlation with Benchmark Findings
	Limitations and Considerations
	Implications for Framework Selection

	Conclusion
	Summary of Findings
	Implications for Future Frontend Development
	Compilers and AI's Potential Influence
	Limitations of the Study
	Recommendations for Further Research

	Frameworks
	Bibliography

