
POLITECNICO DI TORINO

Master’s Degree
in Mechatronics Engineering

Master’s Thesis

Docking Interface for Aerial-Ground Robot
Collaboration: Design and Implementation of an

Autonomous Coupling System

Supervisors Student
Prof. Alessandro RIZZO Eduardo SCHIAVON DE ANDRADE
Orlando TOVAR ORDOÑEZ
Edoardo TODDE

Academic Year 2024-2025

I am truly grateful to
my family and friends
for supporting me
throughout my
academic journey
abroad.

I would also like to
thank Prof. Alessandro
Rizzo, Edoardo Todde,
Orlando Tovar
Ordoñez, and Andrea
Manassi for mentoring
me throughout my
thesis project at
CIM4.0.

Abstract
With the rapid advancement in technology, robotic systems have become increas-
ingly popular and are used to aid in various complex tasks requiring automation.
Although UAV and UGV systems have many individual applications, their co-
operation has also proven to be of great value to the industry and the scientific
community as a whole.

The purpose of this research is to develop a coupling system between a UAV and a
UGV so that the drone can land and recharge on the rover. The coupling system is
composed of mechanical and electrical interfaces, which aim to correct the drone’s
landing errors caused by dynamic and environmental uncertainty and recharge the
drone’s battery.

Initially, a study was carried out to analyze the state of the art of UGV and UAV
collaboration. From this analysis, the best trade-off design was chosen, which
consisted of a docking station that corrects the drone’s landing errors through
gravity and two electrodes placed on the base of the station for the recharging
of the drone. Then, CAD prototypes were developed in SolidWorks, which were
later imported into Gazebo to simulate the landing in a realistic environment with
PX4-Autopilot running on the drone’s model. The landing was done autonomously
by means of a ROS2 node that uses the OpenCV library and a downward-facing
camera to acquire an ArUco marker. An error analysis was then carried out to
consider how the design would perform in sub-optimal conditions, such as with
higher errors in the sensor measurements and with different sizes of the fiducial
marker. Lastly, a final prototype was obtained by 3D printing the design.

Contents

List of Tables 4

List of Figures 5

List of Acronyms 7

1 Introduction 9
1.1 UGV and UAV Collaboration . 9
1.2 Collaborative Robots and FIXIT 10
1.3 Thesis Objectives and Structure . 11

2 State of the Art Research 13
2.1 Issues with Drone Battery Life . 13
2.2 Positional Uncertainty in Drone Landing 14
2.3 Literature Review . 14

2.3.1 Automated Battery Replacement Station 15
2.3.2 Wireless Charging Station with Active Compensation 16
2.3.3 Contact Charging Station with Passive Compensation 18
2.3.4 AutoCharge Patent . 19
2.3.5 Skycatch Patent . 21

2.4 Best Trade-off Design . 22

3 Theoretical Concepts and Software 23
3.1 Serial Communication Protocols . 23

3.1.1 USART . 23
3.1.2 SPI . 24
3.1.3 I2C . 25

3.2 Software Environment . 26
3.2.1 PX4 and QGroundControl (QGC) 26
3.2.2 ROS2 . 27
3.2.3 Gazebo . 28
3.2.4 Software Integration . 30

1

4 Electronics and Firmware of the FIXIT Robot 32
4.1 FIXIT Hardware Components Overview 32

4.1.1 Battery Connectors . 33
4.1.2 Battery Management System (BMS) 34
4.1.3 Fuel Gauge Estimator . 35
4.1.4 DC-DC Converters and Drone Connector 36
4.1.5 Ethernet Module . 37
4.1.6 Microcontroller (uC) . 37

4.2 Arduino Code and Command Line Outputs 39
4.2.1 Includes and Instances . 40
4.2.2 Setup . 40
4.2.3 Main . 40
4.2.4 Command Line Outputs . 40

5 Mechanical Design 42
5.1 3D Modelling the Docking Mechanism 42
5.2 Design Changes for 3D Printing . 44
5.3 Final Design . 47
5.4 3D Printing Analysis . 48
5.5 From Solidworks to Gazebo . 50

6 Simulation Analysis 51
6.1 Installing the Software . 51
6.2 Running the Simulation and Explaining the Code 52

6.2.1 Simulation Launch File . 52
6.2.2 Autonomous Landing Code 53

6.3 Building Custom Models in Gazebo 54
6.3.1 Custom Vehicle Definition 54
6.3.2 Custom World Definition . 58
6.3.3 Adding the Custom Models to PX4 58

6.4 Simulating Nonideal Scenarios . 59
6.4.1 ArUco Marker Size . 59
6.4.2 Modified Landing Code . 59
6.4.3 Sensor Noise . 60
6.4.4 Wind . 66
6.4.5 Distance Sensor for Height Measurements 67

7 Conclusion and Future Work 70
7.1 Conclusion . 70
7.2 Future Work . 71

Bibliography 75

A Code 75

2

A.1 UWB Sensor Codes . 75
A.1.1 uwb_tag.py . 75
A.1.2 uwb_anchor.py . 77

A.2 Autonomous Landing . 78

3

List of Tables

5.1 3D Printing Parameter Change. 48
6.1 IMU Noise for Simulation. 62
6.2 Default PX4 EKF2 Parameters Sensors 63
6.3 Modified PX4 EKF2 Parameters Sensors 63
6.4 Analysis of Docking Failure with Sensor Noise 69
6.5 Analysis of Docking Failure with Wind 69

4

List of Figures

1.1 Perseverance and Ingenuity [26]. 10
1.2 Cobot Examples: [14], [28]. 11
2.1 Battery Charging Station [22]. 16
2.2 Charging Station: a) stepper motor, b) slider, c) binary distance

laser sensor, d) ultrasonic sensor, e) aluminum frame, f) PVC panel,
g) transmitter coil [13]. 17

2.3 Top View of Landing Platform (left), Isometric View of Landing
Platform and Legs (right) [15]. 18

2.4 Maximum Landing Error Table (left) and Depiction of Drone’s Legs
Misalignment (right) [15]. 19

2.5 AutoCharge station connected to the drone [29]. 20
2.6 Illustration of the Gravity Based Docking of the Drone [30]. 21
2.7 Drone Developed at CIM Using F450 Hawk’s Work Frame [12]. . . 22
3.1 USART Frame [24] . 24
3.2 Single Master and Slave Configuration in SPI [32]. 25
3.3 I2C communication [33]. 26
3.4 Logos of PX4 [5] and QGC [6]. 26
3.5 ROS2 Logo [7]. 27
3.6 Gazebo Logo [3]. 28
3.7 Diagram of the Software Integration. 30
3.8 Micro-DDS Bridge for ROS2-PX4 Communication [4]. 30
4.1 Top view of the PCB [18]. 32
4.2 Block diagram of the PCB [18]. 33
4.3 Mini-Fit Connector of the Pack’s Cells [18]. 34
4.4 Functional Block Diagram of the BQ76930 IC [20]. 35
4.5 Schematic of the LTC2944. 36
4.6 Coulomb Counter Circuit and ACR Register. 36
4.7 Schematic of 24V DC/DC Buck Converter [19]. 37
4.8 SPI Master and Slave Configuration. 38
4.9 Example of Command Line Outputs [18]. 41
5.1 Digital Model of the UAV Frame. 42
5.2 Design Improvement by Adding a Support for the UAV’s Feet. . . . 43
5.3 Design Improvement by Material Removal. 43

5

5.4 Design Change To Avoid Supports. 44
5.5 Excess Material Removal. 45
5.6 Zip Tie Hole and 3D Printing. 45
5.7 Updated Design with Two Zip Tie Holes. 46
5.8 Coupling of Zip Tie Hole Designs. 46
5.9 Drone, Landing Gear, and Docking Cone. 47
5.10 Required Printing Supports for Landing Cone Designs. 49
5.11 Required Printing Supports for Landing Gear Designs. 49
5.12 Example of Pose Correction with Blender. 50
6.1 Simulation of Precision Landing using PX4, Gazebo, ROS2 and QGC. 53
6.2 Drone and Docking Mechanism in Gazebo. 56
6.3 Collision Boxes in Gazebo. 57
6.4 Visualization of the Inertias in Gazebo. 57
6.5 Comparison of Filter Performance in Two Scenarios. 64
6.6 Comparison of Filter Performance in Two Scenarios. 65
6.7 Effect of Wind in Gazebo Simulation. 66
6.8 Graph with ROS2 Nodes and Topics. 68

6

List of Acronyms
UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

CAD Computer-Aided Design

PCB Printed Circuit Board

WPT Wireless Power Transfer

USART Universal Synchronous and Asynchronous Receiver-Transmitter

TX Transmitter

RX Receiver

LSB Least Significant Bit

MSB Most Significant Bit

SPI Serial Peripheral Interface

SCLK Serial Clock

MOSI Master Output Slave Input

MISO Master Input Slave Output

SCSn Serial Chip Select

I2C Inter-Integrated Circuit

SCL Serial Clock Line

SDL Serial Data Line

QGC QGroundControl

GCS Ground Control Station

MAVLink Micro Air Vehicle Link

SITL Software in the Loop

ROS2 Robot Operating System 2

uORB Micro Object Request Broker

SDF Simulation Description Format

XML Extensible Markup Language

7

STL Stereolithography

DDS Data Distributed Services

BMS Battery Management System

DC Direct Current

LiPo Lithium Polymer

IC Integrated Circuit

ADC Analog to Digital Converter

NTC Negative Temperature Coefficient

SoC State of Charge

ACR Accumulated Charge Register

MAC Media Access Control

uC Microcontroller

EEPROM Electrically Erasable Programmable Read-Only Memory

ICSP In-Circuit Serial Programming

TCP Transmission Control Protocol

UDP User Datagram Protocol

FDM Fused Deposition Modeling

GPS Global Positioning System

IMU Inertial Measurement Unit

EKF Extended Kalman Filter

UWB Ultra-Wideband

8

Chapter 1

Introduction

1.1 UGV and UAV Collaboration
UAVs contain high-resolution cameras, which makes them useful for a variety of
tasks that require accurate observation. They are also capable of quickly reaching
areas that are difficult for humans to access. In particular, UAVs have proven to
be very useful in the aftermath of disasters since they can access affected areas
and look for survivors using an infrared camera. On the other hand, drones have a
limited load-carrying capability since a large load decreases the battery life of the
vehicle and affects the field of view of the camera. UGVs can perform a variety of
ground tasks, which makes them very useful for agricultural, industrial, and spa-
tial applications. Rovers can carry much heavier loads and can be used to perform
complex tasks on the ground, but they are slower and have limited visual capabil-
ities [25]. Since these vehicles each have their own trade-offs, UGV-UAV collab-
oration is being studied to see how their integration improves the overall system.
In this regard, the company Competence Industry Manufacturing 4.0 (CIM4.0)
has developed a research project called FIXIT, a collaborative robot made up of a
drone and a rover designed to be used within the context of industrial automation.

One of the most notable recent uses of a UGV and UAV collaboration was in
NASA’s Mars 2020 mission. The mission was carried out by two vehicles, namely
the Perseverance rover and the Ingenuity drone. The original goal of the joint
mission was to successfully deploy Ingenuity and to test its flight in the rarefied
atmosphere of Mars. However, as that was quickly achieved, the goal shifted to
test how the UAV could aid the rover’s exploration with aerial imaging so that
the routes could be better planned by avoiding obstacles and finding potential
exploration areas [31].

9

Introduction

Figure 1.1: Perseverance and Ingenuity [26].

1.2 Collaborative Robots and FIXIT
Industrial robots tend to be isolated from the human workers in the plant since
their large size and fast speeds are potentially dangerous for humans [27]. How-
ever, a promising trend in industrial automation is to develop robots that can work
in unison with workers. These are called Collaborative Robots (Cobots), and their
goal is not to replace human activity within the industrial plant but rather to aid
the workers in doing their jobs and preventing work-related injuries.

In their earliest stages, cobots were passive devices, that is, without any engines
so as to increase their operational safety around workers. They would only be
employed to help the worker guide an object along a particular path, but with-
out any power of their own, meaning that the operator would still be in control
of moving the robot. These types of cobots are now known as Intelligent Assist
Devices (IADs), and they paved the way for human-robot collaboration within the
industry. Since 2004, however, the focus has shifted to considering active cobots
such as robotic arms and UGVs.

10

Introduction

(a) FIXIT Cobot Developed by CIM4.0. (b) UR5 cobots.

Figure 1.2: Cobot Examples: [14], [28].

FIXIT is a cobot whose goal is to serve as a platform for testing new technologies
and expanding knowledge in the industrial automation sector. It consists of a UGV
that can guide itself autonomously using sensors and path-planning algorithms to
avoid obstacles and a UAV that can cooperate with the UGV [14].

1.3 Thesis Objectives and Structure
This work aims to review the state-of-the-art research on drone-rover collaboration
and propose a design that can properly couple a drone to a rover. The best tradeoff
solution will be determined from the studied designs, from which we will propose
a docking system design. The design will be modeled in SolidWorks and later
imported into the Gazebo simulator to study its coupling performance. Finally,
non-ideal conditions such as higher sensor error and wind will be considered.

• Chapter 2: covers the state-of-the-art research of electrical and mechanical
coupling systems for drone landing. Determines the design that offers the
best trade-off among the ones considered in the reviewed literature.

• Chapter 3: explains important theoretical concepts and introduces the soft-
ware used for running the simulations.

• Chapter 4: introduces and explains the function of the main hardware com-
ponents present in FIXIT, as well as the Arduino code that runs on the
microcontroller of the PCB.

• Chapter 5: describes the design process of the mechanical interface of the
chosen model.

11

Introduction

• Chapter 6: tests the drone model by importing its CADs into Gazebo and
performing different simulations.

• Chapter 7: concludes the thesis’ main topic and presents possible design
improvements.

12

Chapter 2

State of the Art Research

2.1 Issues with Drone Battery Life

Drones have proven to be incredibly useful for a variety of different applications.
This versatility, coupled with the integrated high-resolution camera technology,
has popularized the use of drones to the wider public. The biggest problem that
the market faces, however, is the poor autonomy that drones have. The power used
by the motors to keep the UAV hovering quickly consumes the drone’s battery,
and most commercially available drones have a battery life of about 20 to 30 min-
utes, which can be critical for many applications that require continuous operation.

The simplest solution could be to increase the battery size, yet this proves to be
a problem since increasing the battery capacity also means increasing its weight,
and a heavier drone spends more energy to hover. Another possible solution would
be to manually change the drone’s discharged battery to a fully charged one. How-
ever, this solution requires a human operator, and in some applications, the drone
may be out of reach. Thus, lately, the focus has shifted to considering automated
solutions either by using actuated systems to replace the discharged battery [22]
or by developing an automatic charging station [13].

This master’s thesis proposes to design the mechanical coupling of a UAV and
a UGV so that the drone can recharge on the rover in order to increase the drone’s
flight time.

13

State of the Art Research

2.2 Positional Uncertainty in Drone Landing
A popular autonomous landing algorithm for UAVs relies on visual recognition of
targets, known as fiducial markers. The visual recognition technique uses software,
such as OpenCV, to acquire and manipulate the images obtained by the camera.
This technique makes the drone land by first recognizing the target and then es-
timating the target’s pose in 3D based on the 2D image obtained by the onboard
camera. The pose is estimated by the internal functions present in the OpenCV
library, and once obtained, the UAV can proceed with its landing.

The accuracy of pose estimation depends on factors such as visibility and envi-
ronmental conditions, sensor measurements, and complex ground effect dynamics.
These errors accumulate, producing a landing error in the drone’s final position.
Since the drone must be recharged after landing, the uncertainty caused by the
landing errors must be compensated for because all charging methods require close
proximity to the drone.

2.3 Literature Review
Several research papers were analyzed, and most proposed solutions relied on ei-
ther automating the battery replacement or developing a charging station where
the drone could recharge its battery. To determine how to proceed with the design
of the coupling system, it was important to understand the system as a whole,
from the drone landing to the recharging and then take off.

When it comes to the landing, drones tend to have many inaccuracies, which
can be due to the landing code, complex ground effect dynamics, state estimation,
sensor errors, and so on. The investigated solutions used either actuated or pas-
sive methods to compensate for the landing inaccuracy of the UAV. The actuated
methods typically used servomotors that were able to position the charging coil
so that it was aligned with the drone [13]. On the other hand, passive methods
utilized gravity and contact forces to position the drone [15], [29].

For the recharging, various methods were used, the most common ones being
wireless power transfer (WPT) and contact charging. Wireless methods have a
considerably lower charging efficiency, which leads to a longer charging time and,
therefore, increases the downtime of the drone. Contact charging, conversely, can-
not completely remove the downtime of the drone, but it transfers power with a
much higher efficiency and, thus, faster charging speeds.

14

State of the Art Research

Several commercial solutions have also attempted to tackle this autonomy problem
of drones by developing their own automated charging stations. The biggest down-
sides, however, are the cost and the non-universality of such solutions since they
are very expensive and are typically custom-made for specific drone models [1].
A deeper analysis of the studied papers and their proposed solutions is reported
successively.

2.3.1 Automated Battery Replacement Station

The solution proposed in [22] uses an automated battery swapping system in order
to increase the drone’s autonomy while guaranteeing a short downtime. In par-
ticular, this solution focuses more on reducing the drone’s downtime since it was
developed for drone missions with time constraints. Whereas the other innovative
approaches of recharging the battery inside the drone are best fit for missions that
do not have very stringent time constraints, since the recharging time is on the
order of 45 to 60 minutes.

The drone must be placed in the correct position so that the replacement can
occur. Therefore, a landing guide was included in the design that provides a
landing tolerance of about 15cm, and sliders were placed on the sides so that the
UAV can slide into the replacement position. The solution also uses a hot battery
swapping feature, which ensures the avionic systems are powered on by an external
power supply during the process, allowing the drone to communicate with the
ground station during the battery swapping. The total swapping time was designed
to be executed within one minute from the drone’s landing to takeoff, and the
experimental results showed that the process took about 60 seconds. The station
holds up to three charged batteries and a depleted one that can be recharged in
45 minutes.

As can be seen from the figure below, an automated battery replacement system
has a very complex design, which depends on the well-functioning of many me-
chanical and electrical components. This means that any source of error in a single
component might cause the whole system to malfunction, making it not a robust
design. Another downside of this solution is that it is constrained to a specific type
of drone since each UAV has its own geometry, and the whole system would have
to be redesigned and reprogrammed if it were to be used with a different type of
drone. Furthermore, this design was meant to be fixed to the ground, making it
nonviable to mount on top of a movable UGV, which is one of the scopes of this
thesis.

15

State of the Art Research

Figure 2.1: Battery Charging Station [22].

2.3.2 Wireless Charging Station with Active Compensa-
tion

Wireless Power Transfer (WPT) uses the magnetic coupling between two inductors
to transfer power from a primary to a secondary coil. Its working principle is based
on Faraday-Lenz’s law, which states that a primary coil with a varying magnetic
flux can induce a variable current in a secondary coil. Unlike transformers, how-
ever, wireless devices do not use a ferromagnetic core to increase the flux flowing
through the coils. Instead, the coils transmit this energy wirelessly through the
inductive coupling between them. However, this coupling is typically quite weak,
producing an inefficient device that can only transfer power over short distances.

Research papers published by MIT [21], [17] showed that using self-resonant coils
produced an LC circuit that, when in resonance, was able to transmit power with
higher efficiency and over larger distances. This led to the development of LC
networks to leverage this property between the inductor coils. Therefore, in most
WPT applications, resonant magnetic coupling is used due to its higher efficiency.

The solution proposed in [13] developed an automatic wireless charging station
that used sensors to detect the position of the drone, then moved the primary coil
to the drone’s landing point so that it would recharge the UAV.

16

State of the Art Research

Figure 2.2: Charging Station: a) stepper motor, b) slider, c) binary distance laser
sensor, d) ultrasonic sensor, e) aluminum frame, f) PVC panel, g) transmitter coil
[13].

The charging station consisted of two stepper motors connected to two linear slid-
ers, a distance laser sensor, an ultrasonic sensor, and the transmitter coil. The
working principle is the following: when the drone attempts to land on the station,
the ultrasonic sensor is used to determine whether the drone has landed or not.
After this initialization stage, the landing position of the drone is determined by
binary laser sensors. Once the position of the drone has been determined, the
transmitter coil is moved to the position of the UAV by means of the stepper mo-
tors, and the charging process may start.

The outcome of the research [13] was that the algorithm used for determining
the landing coordinates of the drone was quite accurate, since it determined the
position of the drone with an uncertainty of 2mm. The scanning stage, however,
took 5 minutes to complete, which corresponds to almost 7% of the total charging
time. The charging time was quite long, as it took over an hour for the drone to
be charged, and the charging efficiency was quite low because even if the coils were
accurately positioned, the efficiency was about 65% that of the wired charging.

The solution proposed in [11] also used wireless charging and an actuated coil
positioning device. The alignment algorithm was the main difference with the
solution proposed in [13]. In [11], the input impedance between the coils was pe-
riodically measured until it reached its predetermined maximum value for a given
resonance frequency. The scanning process moved the primary coil based on the
measured value of the impedance.

17

State of the Art Research

The positive points of wireless charging are its ease of operation and overall safe
electronics as it does not leave any exposed wires, making it useful in adverse envi-
ronmental conditions since the chance of electrode corrosion is much smaller than
in contact charging. On the other hand, even in the best-case scenario, wireless
systems are inefficient and tend to increase the drone’s downtime greatly. The
system also depends on the well-functioning of the various sensors and actuators,
which increases its complexity.

It was concluded from this research that this type of charging station could be
a viable design for this thesis, however, the presence of actuators increases the size
of the station making it less portable to be mounted on top of the rover. Addition-
ally, the system depends on the well-functioning of many sensors and electronic
systems, which can be additional sources of error.

2.3.3 Contact Charging Station with Passive Compensa-
tion

The solution proposed in [15] developed a landing and recharging platform that
used a passive method that compensated for the landing inaccuracy of the drone.
The UAV uses a vision-based landing algorithm that ensures a landing accuracy
of some centimeters. The landing platform is made up of four inverted cones that
correct the drone’s position by guiding its feet to the center of the cones, which
contain slip-ring contacts that recharge the drone’s battery.

Figure 2.3: Top View of Landing Platform (left), Isometric View of Landing Plat-
form and Legs (right) [15].

The ideal drone position is one where the four legs are all perfectly centered with
the center of the cones. However, a generic landing of the drone may include a

18

State of the Art Research

translational and a rotational component with respect to the ideal position. There-
fore, some simulations were performed to estimate the maximum landing error that
the platform can correct with a fixed cone radius of 10cm.

Figure 2.4: Maximum Landing Error Table (left) and Depiction of Drone’s Legs
Misalignment (right) [15].

As can be seen from the table, the simulations concluded that the maximum land-
ing error the platform is able to compensate for is one of 5cm and 10° of trans-
lational and rotational error, respectively. These data were used to design the
drone’s vision-based landing algorithm. Finally, the research concluded that the
drone could land within the maximum error constraints 95% of the time, showing
that the overall system offers a reliable solution to the landing inaccuracy problem
of drones.

From these results, it can be concluded that passive compensation offers a simple
solution to the landing error problem. Furthermore, it greatly simplifies the de-
sign of the charging station while not compromising in compensation effectiveness.
It is also not difficult to integrate this design with recharging electrodes and the
platform and legs can easily be manufactured with a 3D printer.

2.3.4 AutoCharge Patent
The solution proposed in [29] comments on a series of other solutions proposed
by different papers. It then compares them to their own developed solution called
AutoCharge. To evaluate the different solutions to increase the battery life of
drones, the research came up with four parameters, namely, universality, robust-
ness, portability, and efficiency.

19

State of the Art Research

The simplest solution to the short battery life would be to increase the battery
capacity of the drone. However, as previously mentioned, it is not a true solution
to the problem since battery size does not directly increase the flight time of the
drone. At a certain point, a larger battery will demand more power from the mo-
tors, and its larger capacity will not have a positive effect on the flight time of the
UAV.

Battery replacement is the fastest solution from the point of view of the drone’s
downtime. In fact, the replacement time can be accomplished in just a few min-
utes, and the drone can immediately return to its previous task. That being said,
this solution is often difficult to implement in an autonomous way since it requires
many mechanical components. Analyzing this concept with the aforementioned
criteria, it was concluded that battery replacement is not a universal solution be-
cause it has to be specifically designed for a drone model. It is also not robust
since it cannot always overcome landing errors, and it is not portable since the
battery-changing stations are large and heavy.

According to [29], contact charging solutions are the most effective, and wire-
less solutions, appealing as they may be, are quite inefficient from an electrical
point of view, and they cause other problems related to alignment and flight con-
trol. Therefore, it was concluded that wireless charging is not very efficient nor
robust since it requires a precise alignment between the coils in order to achieve
efficiencies that are 25-30% inferior to contact charging [13].

Figure 2.5: AutoCharge station connected to the drone [29].

AutoCharge consists of a small charging station that connects to the drone by
means of a tether. At the end of the wire, there is an electromagnet that is able
to compensate for drone landing inaccuracies by using magnetic force. Power is
fed into the station from the mains, and it is transferred to the drone through an
electrode. The magnetic force is only used to attach the electrodes together and
is turned off once charging starts.

20

State of the Art Research

The research concluded that AutoCharge was able to meet all of the above-
mentioned requirements, namely:

• It is Universal since it can be used with any drone

• It is Robust since it compensates for the landing errors

• It is Portable due to its compact size

• It is Efficient because it uses contact charging.

A solution of this type would be viable for this thesis, in particular because of its
portability and efficiency. However, the necessity of plugging the station into the
mains to recharge the drone restricts its application since, in the case of FIXIT,
the station needs to be on top of the rover, which is not always connected to
the mains. Moreover, the recharging tether with the magnet would be difficult to
employ alongside a visual recognition technique because the camera is typically
mounted under the drone, and the presence of the cable could obstruct the camera’s
field of view.

2.3.5 Skycatch Patent
The patent [30] designed a landing platform along with landing gear capable of
compensating for the inaccuracy of the drone’s landing through gravity. Once the
drone lands on the platform, due to the complementary conic shapes of the landing
gear and platform, the weight of the drone causes it to slide down the cone until
it reaches its center. The patent also comprises a recharging solution that uses
electrodes positioned at the bases of the drone’s landing gear and platform. The
figure below shows the docking process of a drone when using the proposed design:

Figure 2.6: Illustration of the Gravity Based Docking of the Drone [30].

It should be noted that a study of the patent was conducted to understand its
claims and ensure that we would not infringe on its rights. It was concluded that

21

State of the Art Research

the original patent was only valid within the territory of the United States and
had recently expired, making it possible to use it as inspiration for the design of
the recharging station in this Master’s Thesis.

2.4 Best Trade-off Design
From the state-of-the-art analysis, we concluded that the best trade-off among the
different designs was to develop a charging station with passive compensation and
contact charging. As previously mentioned, passive compensation was chosen be-
cause it greatly simplifies the mechanical design and offers fewer chances of error
due to sensor or actuator malfunction. Contact charging was preferred due to its
higher efficiency and simpler implementation.

Regarding the geometry of the station, the adopted design will be similar to [30]
and [15]. Our proposed solution will consist of two complementary truncated cone
shapes that can be 3D printed in plastic. Initially, the landing gear will be de-
signed to be fixed to the drone’s frame. However, the prototype can be further
improved to be removable and mounted on various drone models, provided they
have the same x-shape.

The drone frame used in the design will be the F450, a commercially available
frame that was used in a previous thesis at CIM.

Figure 2.7: Drone Developed at CIM Using F450 Hawk’s Work Frame [12].

22

Chapter 3

Theoretical Concepts and
Software

3.1 Serial Communication Protocols

3.1.1 USART
Universal Synchronous and Asynchronous Receiver-Transmitter (USART) is a pro-
tocol for sending a continuous stream of data between two types of devices: the
transmitter (TX) and the receiver (RX). Two wires are dedicated to data trans-
fer, one for the TX and the other for the RX; thus, USART is full-duplex. This
protocol can be configured in both synchronous and asynchronous modes; in syn-
chronous operation, another wire must be used to send the clock signal for the
message passing between the TX and RX. Since all data is sent as a continuous
stream, the data is codified in frames, which consist of a starting bit (only used
for asynchronous operation), data bits, and stop bits. The transmission of data in
asynchronous mode works in the following manner:

• When no data is being transferred, the communication line is IDLE, meaning
its logic state is set to 1. Electrically, this is configured by means of a pull-up
resistor that constantly keeps the line at a high voltage (typically 3.3V or
5V).

• The start bit pulls down the communication line, setting its logical state to
0. Electrically, a logical 0 corresponds to lowering the voltage to GROUND.

• After the starting bit, the data is sent. USART supports a minimum of 5 and
a maximum of 9 data bits, which are sent starting from the least significant

23

Theoretical Concepts and Software

bit (LSB) to the most significant bit (MSB). It is also possible to configure a
parity bit to increase the success of the data transmission.

• After the data, the stop bit sets the state of the line to a logical 1 by pulling
the voltage back up; thus returning to IDLE.

Figure 3.1: USART Frame [24]

3.1.2 SPI
Serial Peripheral Interface (SPI) is a synchronous protocol that regulates commu-
nication between a Master and one or multiple Slaves. SPI uses four wires through
which different signals are sent. Since one wire is dedicated to the master output
and another to the slave output, SPI offers full-duplex communication:

• SCLK: the wire through which the clock signal is sent.

• MOSI: the wire through which the Master sends data to the Slave.

• MISO: the wire through which the Slave sends data to the Master.

• SCSn: the wire through which the Chip Select is determined. It is required
to choose which slave the master will communicate with in a multiple-slave
layout.

24

Theoretical Concepts and Software

Figure 3.2: Single Master and Slave Configuration in SPI [32].

3.1.3 I2C
The Inter-Integrated Circuit (I2C) is a synchronous protocol that manages serial
communication between many devices, called controllers and targets. Unlike US-
ART, however, I2C can also have multiple controllers on the same data bus. This
protocol uses two wires: one for transmitting the data, called the serial data line or
SDL, and the other for sending the clock signal, called the serial clock line or SCL.
Since only one wire is used to transmit data, I2C has a half-duplex transmission.
The transmission of data in asynchronous mode works in the following manner:

• Similar to the USART protocol, both lines used in I2C (SDL and SCL) are
initially set to TRUE, which is electrically configured by pulling up both lines
to a reference voltage.

• For the communication to start, a controller must set the START condition
by pulling down the SDL and then the SCL consecutively. This guarantees
that only one controller can access the communication channel at a given
time.

• Unlike USART, data transmission does not begin immediately after the START
condition. Before the data frame is sent, the controller sends an address frame
to select the specific target it wants to communicate with. Both frames are
made up of 8 main bits, and an acknowledgment bit is used to ensure suc-
cessful communication. The address frame contains a 7-bit address used to
identify the specific target and a final bit that indicates whether the controller
will read or write bits to the target.

• After all data frames have been sent, the STOP condition is set by the con-
troller, and it works in a complementary way to the START condition; that
is, first the SCL is pulled up and then the SDL.

25

Theoretical Concepts and Software

Figure 3.3: I2C communication [33].

3.2 Software Environment

3.2.1 PX4 and QGroundControl (QGC)

(a) PX4-Autopilot. (b) QGroundControl (QGC).

Figure 3.4: Logos of PX4 [5] and QGC [6].

PX4 is an open-source software that is run on flight controller hardware. It is
made up of two main components: the Flight Stack, which is responsible for the
control system and the estimation of the variables, and the Middleware, which
consists of a communication layer and different sensors. [4]

QGC, on the other hand, is a type of Ground Control Station (GCS) that can
send different commands to control the drone, such as takeoff and landing; it can
also set a path trajectory for the UAV to follow. The GCS uses the MAVLink
Protocol to send its commands to PX4.

A physical drone is controlled by a piece of hardware called a Flight Controller.
However, when developing code to control a drone, it is convenient to experiment
with it in a realistic simulated environment before running the code on the hard-
ware. This technique is known as Software in the Loop (SITL), and it runs the
PX4 firmware on a simulated drone model. Different software can be used for the
simulated environment, but this thesis will focus on Gazebo.

26

Theoretical Concepts and Software

3.2.2 ROS2

Figure 3.5: ROS2 Logo [7].

ROS2, which stands for Robot Operating System 2, is an open-source meta-
operating system that can be used to create applications for robots. ROS2 is
the more updated version of the original ROS1, and it contains some important
differences, such as a distributed network architecture. This means that in ROS2,
there is no need to establish a master-slave relationship between the different com-
ponents of the network.

The software works by leveraging the publisher-subscriber mechanism between
different components. The main building blocks of ROS2 are the nodes, which are
entities that run a specific portion of code that can be used for data processing and
robot control, for example. Nodes can interface with each other in three different
ways with topics, services, or actions. Topics are mostly used for data that must
be sent continuously and monitored periodically, such as sensor data. Services and
Actions work based on a request/response communication, and they differ in that
actions run for a longer time and can also provide feedback. [23]

• Topic: it is a sort of name tag that identifies the communication between
different nodes. Multiple nodes can publish and subscribe to the same topic,
and once data is published, all the subscribers receive the transmitted data.

• Service: it is defined by one server and multiple clients. The clients poll the
server by sending a request with some data, which is used by the server to
perform an operation. After which, the server sends a response to its clients.

• Action: it is characterized by a goal, feedback, and a result. Similarly to
services, it interfaces by using clients and a server, however, instead of just
receiving one response, the server can also send feedback along the way until
the goal is completed.

27

Theoretical Concepts and Software

3.2.3 Gazebo

Figure 3.6: Gazebo Logo [3].

Gazebo1 is an open-source software that provides a realistic simulated environment
in which different types of robots can be operated. Gazebo’s internal communica-
tion structure is similar to that of ROS2 and is defined in the Gazebo Transport
library. The architecture is based on a decentralized network of different nodes
that communicate with each other using Gazebo Messages. Although PX4 and
Gazebo use different message types, PX4’s source code comes with a library called
GZBridge, which translates the uORB topics into Gazebo topics and vice versa.

In the context of the SITL feature of PX4, Gazebo is the simulator that con-
tains the drone model along with all of its sensors, and PX4 is responsible for
controlling the model. SITL works in the following way: PX4 accesses the sensor
data by subscribing to Gazebo sensor topics through the GZBridge library. The
acquired data is then processed by the flight controller to obtain the actuator con-
trol information. The PX4 node publishes the actuator data, which is then used
by Gazebo to move the drone. [4]

/world/aruco/model/x500_mono_cam_down_0/link/base_link/sensor
/air_pressure_sensor/air_pressure

/world/aruco/model/x500_mono_cam_down_0/link/base_link/sensor
/imu_sensor/imu

/world/aruco/model/x500_mono_cam_down_0/link/base_link/sensor
/navsat_sensor/navsat

1In this thesis, Gazebo always refers to the newer version of the software, formerly known as
Gazebo Ignition

28

Theoretical Concepts and Software

The code above shows examples of sensor topics to which the Gazebo Simulation
publishes its data. PX4 subscribes to these topics to retrieve information about
the sensor data. PX4’s Flight Stack uses this information to compute the drone’s
estimated attitude.
/model/x500_mono_cam_down_0/command/motor_speed
/model/x500_mono_cam_down_0/servo_0
/model/x500_mono_cam_down_0/servo_1
...
/model/x500_mono_cam_down_0/servo_7

These Gazebo topics allow PX4 to publish the actuator control information, such
as the motor speed and torque required for the 8 different servo motors of the
x500 drone model. Gazebo subscribes to these topics and implements them in the
simulation so that the drone may be controlled.

Another powerful feature of Gazebo is the possibility of adding custom models
defined in SDF files. These are written in XML format and can be defined for the
robotic and environment models in our simulation.2 From the point of view of the
simulation, robot SDF files contain information about the robot’s inertial, colli-
sion, and visual properties, while world SDF files contain different sensor plugins,
and the physical features of the environment such as wind, gravity, magnetic field,
atmosphere, etc.

The standard way to define robots in the SDF file is by means of links and joints.
Each link contains the inertial properties of the body, its pose relative to the world,
its visual features, and its collision box. Joints define a mechanical coupling be-
tween a parent and a child link, allowing for relative motion between the two. The
file format accepts simple geometries such as a cube, a cylinder, and a sphere to
build a robot model. If more complex shapes are needed, however, the visual and
collision elements can be imported from a mesh file in STL format.

2See [9]

29

Theoretical Concepts and Software

3.2.4 Software Integration

Figure 3.7: Diagram of the Software Integration.

For the purposes of this thesis, all of these various software will be used simultane-
ously in order to properly control the simulated drone. It must be noted, however,
that each software has its own message definitions, and direct communication be-
tween two different programs is not guaranteed. Regarding the communication
that PX4 has with Gazebo and QGC, PX4’s source code already contains the
required modules for interfacing with these two software. Despite that, the PX4-
ROS2 and Gazebo-ROS2 interfaces cannot communicate without two additional
programs, called ROS2-Gazebo Bridge and Micro-DDS.

Figure 3.8: Micro-DDS Bridge for ROS2-PX4 Communication [4].

30

Theoretical Concepts and Software

Micro-DDS is the protocol that provides a two-way communication link between
PX4 and ROS2, allowing the uORB topics to be accessed by the ROS2 nodes. The
Micro-DDS Bridge is automatically managed by software that can be downloaded
from the internet. Similarly, the communication link interfacing ROS2 and Gazebo
is called ROS2-Gazebo Bridge. It provides a way for ROS2 nodes to access the
information in the Gazebo Simulator and vice versa. This two-way communication
bridge allows the ROS2 nodes to subscribe to important Gazebo topics, such as
topics with sensor data measured during the simulation. [8]

The following two lines of code exemplify how the Gazebo Bridge is used. The
syntax indicates that a bidirectional bridge will be created to allow the Gazebo
topics /camera and /camera_info, which send messages of type gz.msgs.Image and
gz.msgs.CameraInfo, to communicate with the ROS2 topics with message types
sensor_msgs/msg/Image and sensor_msgs/msg/CameraInfo.

$ ros2 run ros_gz_bridge parameter_bridge
/camera@sensor_msgs/msg/Image@gz.msgs.Image

$ ros2 run ros_gz_bridge parameter_bridge
/camera_info@sensor_msgs/msg/CameraInfo@gz.msgs.CameraInfo

31

Chapter 4

Electronics and Firmware of
the FIXIT Robot

4.1 FIXIT Hardware Components Overview
A custom board was previously designed at CIM4.0 to provide all of the required
functionalities for the drone and the rover that make up FIXIT. For the scope of
this thesis, the most important modules of the board are the battery management
system (BMS) and the DC power supply. The BMS performs the proper charging
and discharging of the rover’s batteries by monitoring cell voltage levels, and it
also protects the battery against overvoltage and overcurrent. The power supply
module outputs DC power of 5V, 12V, 18V, and 24V by means of several DC-DC
regulators.

Figure 4.1: Top view of the PCB [18].

32

Electronics and Firmware of the FIXIT Robot

In the block diagram below, the grey blocks indicate the different connectors on
the board, while the blue blocks indicate the main modules, such as the BMS,
the DC-DC regulators, the Ethernet module, and the microcontroller. The Eth-
ernet module allows the user to communicate with the microcontroller, which is
responsible for controlling the other modules of the board.

Figure 4.2: Block diagram of the PCB [18].

4.1.1 Battery Connectors
The battery pack used to power the rover is a SAMSUNG 36V 10S2P, comprised
of two parallel blocks of 10 cells connected in series. The pack is connected to the
board by means of an XT90 connector, which has two pins, one for the positive and
the other for the negative poles of the pack. For battery management purposes,
each cell is connected to a Mini-Fit connector made up of 12 pins.

33

Electronics and Firmware of the FIXIT Robot

Figure 4.3: Mini-Fit Connector of the Pack’s Cells [18].

4.1.2 Battery Management System (BMS)
A LiPo battery is typically made up of a series of smaller cells that add up their
voltages in order to produce the total output voltage of the battery. In theory,
each cell is designed to be equal to the other one in terms of voltage and capac-
ity, but in practice, this cannot be guaranteed since the manufacturing method is
not able to account for these exact parameters. Therefore, if we were to charge a
battery without a battery management system, it is likely that some of the cells
would charge faster than others and would keep increasing their voltage in order to
reach the total battery voltage. The end product, in this case, would be a battery
with the correct total voltage but unbalanced cell voltages. This is problematic
since exposing a battery cell to over-voltage levels might permanently damage the
battery.

A battery management system is therefore used for a safe charge/discharge of
LiPo batteries since it is able to ensure that all of the cells will charge up to the
same maximum voltage without the risk that one of the cells would reach over-
voltage levels, and thus decreasing the chance of battery cell damage.

34

Electronics and Firmware of the FIXIT Robot

Figure 4.4: Functional Block Diagram of the BQ76930 IC [20].

The BQ76930 chip is responsible for monitoring and balancing the battery cell
voltages during charging. In the designed PCB, the BMS makes use of a passive
cell balancing system that is controlled by activating a MOSFET, which closes
the path for the current to flow through the balancing resistor that dissipates the
energy into heat. The cell voltages are read as analog signals and then converted
to digital values through a 14-bit ADC. This chip can also monitor the pack’s
temperature by mounting two NTC thermistors on the appropriate pins. The
current flowing through the pack is read by means of a resistor, and its analog value
is converted to a digital one by means of a 16-bit integrating ADC. The digital
core of the chip processes the acquired data and transmits it to the microcontroller
via the I2C protocol through the SCL and SDA pins. [20]

4.1.3 Fuel Gauge Estimator
The LTC2944 chip uses the coulomb counting technique to estimate the battery’s
state of charge (SoC) and measures the battery’s current and voltage. The SoC is
the parameter that indicates how charged the battery is, that is, what its current
storage capacity is with respect to its full storage capacity, and it is represented
as a percentage.

35

Electronics and Firmware of the FIXIT Robot

Figure 4.5: Schematic of the LTC2944.

Figure 4.6: Coulomb Counter Circuit and ACR Register.

Fuel Gauge LTC2944 [16].

In the LTC2944 chip, the coulomb counting is performed by an analog circuit (Fig.
4.6) that integrates the current passing through a well-known sense resistor in series
with the battery pack. This information is then saved into the accumulated charge
register (ACR).

4.1.4 DC-DC Converters and Drone Connector
The board is able to provide a variety of constant DC voltages that can be used
to power other systems. For the drone, the 24V/60W output can be used for
recharging. The converter used in the PCB is the TEN 60-4815WIN, which is
designed to work with an input voltage ranging from 18V to 75V and a constant
output of 24V. The CHRG+ pin is either the rectified output of the charger when
the rover is being charged or the DC output of the rover’s battery. A heat sink
(TEN-HS1) can be mounted on top of the converter to help with heat dissipation.

36

Electronics and Firmware of the FIXIT Robot

Figure 4.7: Schematic of 24V DC/DC Buck Converter [19].

The board uses Mini-Fit connectors as the output of the DC/DC converters. For
recharging purposes, each connector pin of J13 can be wired to the two electrodes
located at the base of the docking cone. After landing, these electrodes will come
into contact with the drone’s electrodes, initiating the recharging process.

4.1.5 Ethernet Module
The Ethernet module is based on three main components, namely, the Ethernet
controller (WIZnet W5500), the EEPROM memory (24AA02E48) used to provide
the MAC address to the controller, and the RJ45 connector, which links the client
to the Wiznet chip. The Ethernet controller has two main interfaces:

• The Media Interface: it is between the RJ45 connector and the W5500 chip,
and the connector is electrically decoupled from the Ethernet controller by
means of a transformer.

• The SPI Interface: it connects the Host (uC) and the W5500 via the SPI
protocol, in which the uC is the SPI Master and the W5500 is the SPI Slave.

4.1.6 Microcontroller (uC)
The "brain" of the board is the Atmel ATmega2560-16AU, which is a high-performance
and low-power 8-bit microcontroller. Its main memory components are the flash
Memory, the SRAM, and the EEPROM. Both flash and EEPROM memories are
non-volatile, meaning that they retain their data even when the uC is powered
off. However, their difference lies in the type of data they contain, their storage
capacity, and the writing method. SRAM, on the other hand, is a volatile memory
that stores the current data being processed by the firmware.

37

Electronics and Firmware of the FIXIT Robot

The flash memory can store up to 256KB, and it is dedicated to storing the pro-
gram that is composed of the bootloader, used to reprogram the uC, and the
firmware, which contains the functions developed by the programmer. The flash
memory space is divided into two sections, namely, application and boot, which
are used for the firmware and the bootloader, respectively [24]. When the board is
powered, the bootloader is the first code to run on the uC. It waits for 5 seconds to
see if the firmware needs to be updated; if not, it runs the firmware already saved
in the flash [18]. The EEPROM memory, on the other hand, can store up to 4KB
and saves important data that must be kept even when the board is powered off.

The microcontroller has two main connectors, ICSP and FTDI, through which
it can communicate with the computer. The first must be used in order to burn
the bootloader onto the board, and the latter is used when loading the firmware.
These two connectors communicate with the uC via different protocols: ICSP uses
the SPI protocol, and FTDI uses the USART protocol. The ATmega2560 serves as
the SPI master for both the W5500 chip and the ICSP controller; therefore, they
both share the same MISO, MOSI, and SCK wires. In this specific case, however,
each slave has a dedicated CS wire for the uC to manage the communication. The
W5500’s CS wire (ETH_CS) is connected to the SS pin on the microcontroller,
while the CS wire of the ICSP connector is the RESET pin of the microcontroller.

Figure 4.8: SPI Master and Slave Configuration.

The other communication protocol that’s used by the uC is I2C. It regulates the
data exchange between the microcontroller and the BMS or the Fuel Gauge chips.
Although both the fuel gauge and the uC use a 5V voltage level to determine their
HIGH and LOW states, the BMS uses a 3.3V voltage level. Thus, an I2C level
translator is included in the PCB, and it performs the voltage step-down that’s
required for the BMS.

38

Electronics and Firmware of the FIXIT Robot

4.2 Arduino Code and Command Line Outputs

The main sections of the microcontroller code are reported below:

//---- INCLUDES ----//
#include <Wire.h>
#include <EEPROM.h>
#include "rgb_lcd.h"
#include <BQ769x0.h>
#include <LTC2944.h>
#include <Ethernet.h>
#include <SimpleCommandLine.h>
//---- INSTANCES ----//
rgb_lcd lcd;
SimpleCommandLine CLI;
EthernetClient TcpClient;
EthernetServer TcpServer(3001);
LTC2944 GAUGE(GAUGE_RSHUNT_DEFAULT);
BQ769x0 BMS(BMS_PART_NUMBER, BMS_I2C_ADDRESS, BMS_CRC_ENABLED);
//----- SETUP -----//
void setup() {

Serial.begin(115200);
InitPins();
GetHwRevision();
InitLCD();
InitEEPROM();
InitCommandLine();
InitETH();
InitBMS();
GetSerialNumber();
PrintBoardData();

}
//----- MAIN -----//
void loop() {

TcpSocket(TcpClient,TcpServer,false);
TcpCommandPool();
BmsUpdate();
GaugeUpdate();
LcdUpdate();
BatteryManagement();
CheckRoverPowerSupply();
CheckShutdownTimer();

}

39

Electronics and Firmware of the FIXIT Robot

4.2.1 Includes and Instances
The Arduino code uses libraries written in C++ to access the different data output
by the Integrated Circuits of the board. The instances section creates objects of
the classes defined in the included header files. For example, the TC2944.h file
defines the LTC2944 class, from which the instance GAUGE is created in the
FIXIT-M.ino file. The objects TcpClient/TcpServer(3001) are created from the
classes EthernetClient/EthernetServer, defined in the Arduino library Ethernet.h.
The number 3001 indicates the port used for the TCP communication.

4.2.2 Setup
The setup section sets the serial baud rate to 115200 bits per second (bps), which
is the data transfer speed to and from the microcontroller when using the USART
protocol. This section also initializes the functions required for communication
between the rover and the computer, namely, InitETH() and InitEEPROM().
The former initializes the Ethernet device and starts the TCP server, and the
latter initializes the board’s EEPROM, where the Ethernet module’s MAC address
is stored. The functions InitBMS() and InitGauge() are used to get the initial
information about the battery; they manage the BQ76930 and the LTC2944 chips,
respectively. The board also consists of an LCD that displays the cell voltage levels,
and therefore, this peripheral is initialized with the function InitLCD().

4.2.3 Main
In the main loop, the TcpSocket() function manages the communication between
the client and the server, respectively represented by the computer’s command line
and the microcontroller. BmsUpdate() updates the BMS information every 50ms,
while GaugeUpdate() updates the battery level at a fixed rate of one second set
by the GAUGE_UPDATE_INTERVAL constant.

4.2.4 Command Line Outputs
Several commands can be sent from the command line, allowing the user to change
specific parameters and informing the user of the state of the battery and its cells.
In particular, the useful commands for battery monitoring purposes are gbs and
gcs, whose output is indicated in the figure below. A deeper analysis of the func-
tions contained in the main loop identified that parameters such as battery voltage,
current, Rshunt, capacity, and battery level are all obtained from the fuel gauge
chip (LTC2944), whereas the battery state and temperature parameters are ob-
tained from the BMS chip (BQ76930). The command gcs outputs the information

40

Electronics and Firmware of the FIXIT Robot

about the voltage of each cell of the rover’s battery, which is obtained from the
BMS chip.

(a) Output of gbs Command. (b) Output of gcs Command.

Figure 4.9: Example of Command Line Outputs [18].

41

Chapter 5

Mechanical Design

5.1 3D Modelling the Docking Mechanism
A drone previously built by CIM4.0 on the F450 commercially available frame was
used as a model to dimension the docking cone and landing gear. An accurate
CAD of the drone was downloaded from the internet [2]:

Figure 5.1: Digital Model of the UAV Frame.

The initial design determined the main shape of the landing gear, which consisted
of a truncated cone with a base angle of 30°, but it did not include any support
for the feet of the drone. The base of the frustum was also too thin, which made

42

Mechanical Design

it susceptible to high mechanical stresses. The second design, therefore, consisted
of a thicker base to ensure better mechanical properties and an opening where the
drone’s feet could be attached.

(a) Initial Design. (b) Improved Design.

Figure 5.2: Design Improvement by Adding a Support for the UAV’s Feet.

The initial design determined the main shape of the landing cone, which consisted
of a truncated cone complementary to the landing gear. The dimensions of the
frustum were quite large, and there was material that could be removed without
affecting the docking properties. The second design, therefore, consisted of the
same shape with added elliptical holes to reduce the amount of material.

(a) Initial Design. (b) Improved Design.

Figure 5.3: Design Improvement by Material Removal.

43

Mechanical Design

5.2 Design Changes for 3D Printing
3D printing an object comes with a series of challenges depending on the object’s
geometry. In particular, some surfaces cannot be directly printed without adding
extra material as support. Such material must be removed later, often producing
a rougher surface finish. Another consideration is the amount of material that has
to be printed. A fuller material takes longer to print, and it is more expensive.
Therefore, two main design changes had to be made:

• Avoid adding unnecessary supports in the printing process.

• Remove material that does not directly interfere with the structure and would
prolong the printing time.

Fused Deposition Modeling (FDM) printers deposit plastic filaments layer by layer.
Thus, each layer depends on the previous one for support. If a top surface’s over-
hang is larger than 45°, the bottom layer fails to support it, and printing failure
will occur if supports are not used.

The initial design of the landing gear had a horizontal surface used to hold the
propeller, which would produce an unstable overhang. The following changes were
made to avoid adding the printing support:

(a) Initial Design. (b) Design after Removal.

Figure 5.4: Design Change To Avoid Supports.

The area in contact with the propeller was larger than required, and it did not
interfere with the structure of the design. Therefore, the following changes were
made to remove excessive material:

44

Mechanical Design

(a) Initial Design. (b) Design after Removal.

Figure 5.5: Excess Material Removal.

A final change was added to fix the drone frame’s foot to the landing gear. A
small rectangular base was extruded, and a small hole was made to attach a zip
tie between the drone’s foot and the base. Once these modifications were added
to the CADs, a section of the landing gear was printed to test its coupling with
the drone’s frame. It can be noted that each layer of the outer wall needed to be
printed at an angle of 60° with respect to the layer below it, and thus, printing
supports had to be used.

(a) Side View of Landing Gear with Zip-Tie
Hole.

(b) 3D Printing a Section of the Landing
Gear.

Figure 5.6: Zip Tie Hole and 3D Printing.

45

Mechanical Design

The initial design with one hole for the zip tie proved to be insufficient in tightly
coupling the two structures. Therefore, to properly secure the drone’s frame,
another zip tie hole was added to the exterior wall of the landing gear:

(a) Section View. (b) Side View.

Figure 5.7: Updated Design with Two Zip Tie Holes.

(a) Loose Coupling. (b) Tighter Coupling.

Figure 5.8: Coupling of Zip Tie Hole Designs.

46

Mechanical Design

5.3 Final Design
The angle of the landing gear and cone was changed from 30° to 45°. This choice
was made because 30 ° was not large enough to correct the drone’s position in the
preliminary simulations. With this angle change, some minor changes were also
required to adapt the previous design to this new angle, but the overall concept of
the design stayed the same. The following figures showcase the final design of the
docking mechanism in SolidWorks:

(a) Isometric View. (b) Sectional View.

Figure 5.9: Drone, Landing Gear, and Docking Cone.

By using the Mass Properties tool in SolidWorks, it was possible to determine
the mass, the moments of inertia, and the center of mass of the objects, three
parameters that will be required later for the simulations. The plastic material
ABS was chosen as the building material of both components. Moreover, due to
the symmetry of the designs, the moments of inertia along the non-principal axes
were considered approximately equal to zero.

The mass and moments of inertia of the UAV along its center of mass are:

M = 192.94 · 10−3kg, CM ≈ (0,0,26.88)mm

I ≈

1869108.65 0 0
0 1897496.06 0
0 0 3698030.93

 ·10−9kg · m2

47

Mechanical Design

The mass and moments of inertia of the Landing Gear along its center of mass
are:

M = 863.04 · 10−3kg, CM = (0,0,100.73)mm

I ≈

17924418.92 0 0
0 17924647.63 0
0 0 28455943.98

 ·10−9kg · m2

It can be noted that the largest element of the objects’ inertia matrices is Izz, and
the other components along the X and Y directions are almost the same. This
indicates the object’s symmetry about the Z axis.

5.4 3D Printing Analysis
In this section, we will analyze how the design change from 30° to 45° would
affect the 3D printing properties. The values of printing time, part volume, and
printing support volume reported here were obtained from the 3D printing software
predictions.

Part Vpart[cm3] Vsupport[cm3] Vsupport/Vtot Printing Time [d]
30° Cone 1495.862 1549.609 51% 3.22
45° Cone 1110.307 43.168 4% 1.44

30° Landing Gear 381.296 334.529 47% 1.15
45° Landing Gear 505.395 170.156 25% 1.42

Table 5.1: 3D Printing Parameter Change.

As can be seen from the table above, a simple design change of the cone angle
made a big difference in many printing parameters. In particular:

• The amount of printing supports needed for the cone went from 51% of the
cone’s printing volume to 4% (93% decrease). Whereas for the landing gear,
the amount of printing supports went from 47% to 25% (46% decrease) of the
part’s printing volume.

• The printing time of the cone was cut by more than 50% while that of the
landing gear increased by 24%. However, the total printing time considering
both parts of each design decreased by 35%.

• The printing costs were reduced by 39% and the total printing volume of each
design decreased by 51%.

As previously mentioned, FDM printers must add supports if the overhang be-
tween two layers is larger than 45°. Therefore, we are able to conclude that the

48

Mechanical Design

final design of the docking mechanism greatly reduced the amount of printing sup-
ports required, which also decreased the printing time and costs.

These changes can be visualized in the following pictures, where the parts in green
identify the final object and the ones in orange identify the printing supports
needed for each design.

(a) 30° Design. (b) 45° Design.

Figure 5.10: Required Printing Supports for Landing Cone Designs.

(a) 30° Design. (b) 45° Design.

Figure 5.11: Required Printing Supports for Landing Gear Designs.

Another parameter that can be set in the 3D printer software is the amount of
material that is added to fill in the object. This reduces the total mass of the
designs, since there will be hollow parts inside the final part, which will likely
improve the drone’s battery life, since it has to carry a lighter weight.

49

Mechanical Design

5.5 From Solidworks to Gazebo
The following procedure was done to import the SolidWorks designs into the
Gazebo simulation:

• The Solidworks files were saved as STL files.

• The origins of the objects were changed in Blender. This process was not
strictly required; however, SolidWorks does not always set the object’s origin
in the best place for positioning it in the SDF files. Therefore, Blender was
used to change the object’s origin to a convenient point for assembly.

• The mesh of the object was obtained by exporting the Blender file into an
STL format, and it was saved in the UAV model’s folder inside the folder:
∼/PX4_Autopilot/Tools/simulation/gz/models/fixit_UAV/meshes

(a) Object Imported from SolidWorks. (b) Object with New Origin.

Figure 5.12: Example of Pose Correction with Blender.

50

Chapter 6

Simulation Analysis

6.1 Installing the Software
All of the software required for the simulation was installed on an Ubuntu 22.04
machine, and the ROS2 distribution used was ROS2 Humble. An open-source code
developed by the company ARK Electronics was downloaded from their GitHub
repository [10].

1. Installing PX4-Autopilot:
$ git clone https://github.com/PX4/PX4-Autopilot.git --recursive
$ bash ./PX4-Autopilot/Tools/setup/ubuntu.sh
$ cd PX4-Autopilot/
$ make px4_sitl

2. Installing QGC Daily Build:
$ wget

https://d176tv9ibo4jno.cloudfront.net/builds/master/QGroundControl-x86_64.AppImage
$ chmod +x QGroundControl-x86_64.AppImage

3. Installing Micro XRCE-DDS Agent:
$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
$ cd Micro-XRCE-DDS-Agent
$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install
$ sudo ldconfig /usr/local/lib/

51

Simulation Analysis

4. Installing ROS2-Gazebo Bridge:
$ sudo apt install ros-humble-ros-gzgarden

5. Cloning the Open-Source Tracktor Beam Repository from GitHub:
$ git clone https://github.com/ARK-Electronics/tracktor-beam.git
$ cd tracktor-beam
$./install_opencv.sh
$ git submodule update --init --recursive
$ colcon build

6.2 Running the Simulation and Explaining the
Code

6.2.1 Simulation Launch File
Since the simulation required executing many different terminals simultaneously,
a script file was created to execute all of these terminals with only one command.
The file was defined as the following:

#!/bin/bash
gnome-terminal --tab -- bash -c

"MicroXRCEAgent udp4 -p 8888; exec bash";\
gnome-terminal --tab -- bash -c

"./QGroundControl-x86_64.AppImage; exec bash";\
gnome-terminal --tab -- bash -c

"cd tracktor-beam/; source install/setup.bash;
ros2 launch aruco_tracker aruco_tracker.launch.py; exec bash";\

gnome-terminal --tab -- bash -c
"ros2 run rqt_image_view rqt_image_view; exec bash";\

gnome-terminal --tab -- bash -c
"cd tracktor-beam/; source install/setup.bash;
ros2 launch precision_land precision_land.launch.py; exec bash";\

The first line sets up the Micro-DDS agent and establishes communication between
ROS2 and PX4 through the UDP port 8888. The second line starts QGC, and
the third line executes the aruco_tracker launch file, which runs the aruco tracker
node and sets up the Gazebo bridge for ROS2 to be able to access the /camera
and /camera_info topics. Similarly, the fourth line runs the precision_land node.
PX4 and Gazebo were launched separately in another terminal.

The initial simulations (as shown in 6.1) were performed with models that were
already available in Gazebo to ensure that the code and all of the software were

52

Simulation Analysis

working properly. Having done that, the subsequent simulations were performed
with custom drone and world models that will be defined in the following sections.

Figure 6.1: Simulation of Precision Landing using PX4, Gazebo, ROS2 and QGC.

6.2.2 Autonomous Landing Code

The downloaded code has two ROS2 nodes called aruco_tracker and precision_land.
The former is responsible for processing the images acquired by the drone’s camera,
while the latter is responsible for implementing the target search and controlling
the drone’s landing. The working principles of the nodes are reported below:

• The aruco_tracker node subscribes to the Gazebo Topics /camera and /cam-
era_info and processes each data in the functions image_callback() and cam-
era_info_callback(). Then, the marker information and pose estimation are
published to the ROS2 /image_proc and /target_pose topics.

• The precision_land node subscribes to /target_pose topic that is published
by the aruco node. It uses the data received from said topic to compute the
target’s pose in the world frame, which is then used to change the drone’s
trajectory so it may land.

53

Simulation Analysis

6.3 Building Custom Models in Gazebo

6.3.1 Custom Vehicle Definition
In order to have a more accurate simulation of the drone landing with the docking
mechanism, a model.sdf file was created based on the vehicle model file of the x500
drone, which comes pre-installed with PX4.

Our drone model is made up of a base link, the landing gear link, four rotor
links, and four revolute joints. The base link defines the drone’s frame and is con-
nected to the rotor links by the revolute joints. The landing gear link is connected
to the drone’s frame by a fixed joint since there’s no relative motion between the
two.

Base Link Definition:

<link name="base_link">
<inertial>

<mass>0.19294</mass>
<pose>0 0 0.2688 0 0 0</pose> <!-- COM Position-->
<inertia>

<ixx>1869108.65e-09</ixx>
<iyy>1897496.06</iyy>
<izz>3698030.93e-09</izz>

</inertia>
</inertial>
<gravity>true</gravity>
<velocity_decay/>

<visual name="UAV_visual">
<pose>0 0 0.110 0 0 0</pose>
<geometry>

<mesh>
<scale>1 1 1</scale>
<uri>model://fixit_UAV/meshes/UAV.stl</uri>

</mesh>
</geometry>

</visual>
</link>

54

Simulation Analysis

Landing Gear Definition:

<link name="landing_gear">
<gravity>true</gravity>
<self_collide>false</self_collide>
<velocity_decay/>
<pose>0 0 0 0 0 0</pose>
<inertial>

<mass>0.86304</mass>
<pose>0 0 0.10073 0 0 0</pose> <!-- COM Position-->
<inertia>

<ixx>17924418.92e-09</ixx>
<iyy>17924647.63e-09</iyy>
<izz>28455943.98e-09</izz>

</inertia>
</inertial>
<visual name="landing_gear_visual">

<pose>0 0 0 0 0 0</pose>
<geometry>

<mesh>
<scale>1 1 1</scale>
<uri>model://fixit_UAV/meshes/Landing_Gear.stl</uri>

</mesh>
</geometry>

</visual>

<collision name="landing_gear_collision">
<pose>0 0 0 0 0 0</pose>
<geometry>

<mesh>
<scale>1 1 1</scale>
<uri>model://fixit_UAV/meshes/Landing_Gear_Collision.stl</uri>

</mesh>
</geometry>

</collision>
</link>

55

Simulation Analysis

Joint Definition:

<joint name="landing_gear_joint" type="fixed">
<parent>base_link</parent>
<child>landing_gear</child>

</joint>

<joint name="rotor_0_joint" type="revolute">
<parent>base_link</parent>
<child>rotor_0</child>
<axis>

<xyz>0 0 1</xyz>
...

</axis>
</joint>

Figure 6.2: Drone and Docking Mechanism in Gazebo.

The drone’s visual features and collision boxes were modeled with the meshes of
the developed CADs. The inertia values calculated using Solidworks were added
to the SDF file and visualized in Gazebo.

56

Simulation Analysis

(a) Collision Box of the UAV. (b) Collision Box of the Landing Gear.

Figure 6.3: Collision Boxes in Gazebo.

(a) UAV’s Inertia. (b) Landing Gear’s Inertia.

Figure 6.4: Visualization of the Inertias in Gazebo.

Plugins are also included in the model.sdf file, and they define the rotor models
used in the simulation. The plugin gz-sim-multicopter-motor-model-system de-
fines the intrinsics of the motors in the model, such as maximum velocity, motor
constant, turning direction, etc.

<plugin filename="gz-sim-multicopter-motor-model-system"
name="gz::sim::systems::MulticopterMotorModel">

<jointName>rotor_0_joint</jointName>
<linkName>rotor_0</linkName>
<turningDirection>ccw</turningDirection>
<commandSubTopic>command/motor_speed</commandSubTopic>
<maxRotVelocity>1000.0</maxRotVelocity>
<motorConstant>8.54858e-06</motorConstant>
<rotorDragCoefficient>8.06428e-05</rotorDragCoefficient>

</plugin>

57

Simulation Analysis

6.3.2 Custom World Definition
The world.sdf file is used to define the visual aspects of the simulated environment
and also the main parameters behind the simulation, such as the step size, the type
of physics engine that is used, and the sensor plugins. In the simulation of this
thesis, the world is made up of four main components: the ArUco marker, the
UGV, the docking mechanism, and the UAV. The following is an example of the
world definition in the SDF file:

<world name="fixit">
<physics type="ode">

<max_step_size>0.004</max_step_size>
<real_time_factor>1.0</real_time_factor>
<real_time_update_rate>250</real_time_update_rate>

</physics>
<plugin name="gz::sim::systems::Physics"

filename="gz-sim-physics-system"/>
...
<plugin name="gz::sim::systems::Imu" filename="gz-sim-imu-system"/>
<plugin name="gz::sim::systems::AirPressure"

filename="gz-sim-air-pressure-system"/>
<plugin name="gz::sim::systems::NavSat"

filename="gz-sim-navsat-system"/>
<plugin name="gz::sim::systems::Sensors"

filename="gz-sim-sensors-system">
...
<include> <uri>model://fixit_aruco</uri> </include>
<include> <uri>model://fixit_UGV</uri> </include>
<include> <uri>model://fixit_docking_station</uri> </include>

</world>

6.3.3 Adding the Custom Models to PX4
To add our vehicle model, an airframe file must be created containing all of the
required parameters of our frame. Then, the model must be added to the CMake
file, which contains all of the airframes that can be used in PX4. Each airframe
is associated with an ID number, and the ones reserved for custom models are
[22000,22999]; thus, the chosen ID for our UAV model was 22000. The main
parameters that must be specified in the airframe file are the default simulator,
world, and model:

PX4_SIMULATOR=${PX4_SIMULATOR:=gz}
PX4_GZ_WORLD=${PX4_GZ_WORLD:=default}
PX4_SIM_MODEL=${PX4_SIM_MODEL:=fixit_UAV}

58

Simulation Analysis

Once the file had been created, it was saved in the folder: ∼/PX4-Autopilot/ROMFS/
px4fmu_common/init.d-posix/airframes. The custom world model must be added
to the CMake file in the following folder: ∼/PX4-Autopilot/src/modules/simulation/
gz_bridge.

A particular command must be used to run the custom files we have built, which
specifies the ID of the vehicle that will be launched, the custom world, and an
optional third argument that spawns the drone in the desired position:
PX4_SYS_AUTOSTART=22000
PX4_GZ_WORLD=fixit
PX4_GZ_MODEL_POSE="0 0 1.041"
./build/px4_sitl_default/bin/px4

6.4 Simulating Nonideal Scenarios

6.4.1 ArUco Marker Size
The original aruco_tracker node was designed for an ArUco marker with 50x50
cm2. In the developed model of the docking mechanism, however, the landing area
is constrained by the size of the truncated cone. Therefore, the size of the marker
had to be reduced to a 12x12cm2 square in order to make it fit inside the base.
This change in area significantly affects visual recognition since a smaller target is
harder to acquire. This generates problems when the drone approaches the target
because the landing process will not occur properly if the acquired target is lost.
Consequently, a test was carried out in simulation to have a rough estimate of the
hovering altitudes that ensure proper landing. The results were that the smaller
size of the aruco marker made it only acquirable for altitudes of about 3m or less.

6.4.2 Modified Landing Code
Building on the structure of the code developed by ARK Electronics [10], a new
state called ChangeAltitude was created to automate the drone’s landing. This
state changes the drone’s altitude if it is higher or lower than a specified threshold
value. The Search state was modified to switch to the ChangeAltitude state once
the UAV was close to the base 1. The ChangeAltitude mode aims to:

• Perform a controlled descent of the drone if it’s flying at an altitude higher
than 3m with respect to its takeoff. The 3m threshold was determined based

1See A.2 for the code

59

Simulation Analysis

on the experiments mentioned previously.2

• Perform a controlled ascent of the drone if it’s flying at an altitude lower
than 3m with respect to its takeoff. It was decided to have this ascent phase
because, in the previous simulations, even if the camera would acquire the
target for altitudes lower than 3m, the landing would fail if the drone went
directly to its descent phase.

6.4.3 Sensor Noise
The main sensors on the simulated drone are the IMU, the Barometer, and the
GPS. The IMU sensor outputs measurements of the drone’s acceleration and an-
gular velocities at a high rate of 250 Hz. The Barometer outputs the pressure of
the drone during flight at a rate of 50 Hz, and it is used to measure the relative
altitude changes of the UAV. The GPS provides the absolute position of the drone
at a rate of 30 Hz.

In practice, however, each sensor has noise, which causes the measurements to
build up errors in estimating the drone’s position. Therefore, the information
coming from the sensors is combined in such a way as to reduce the effects that
noise has on the control of the drone. This is what’s known as sensor fusion, and
it is employed in PX4 by means of an Extended Kalman Filter (EKF2), which
works in the following way:

• The system is made up of high-rate and low-rate measurements, represented
mainly by the IMU and the GPS, respectively.

• The IMU data is fed into a mathematical model containing the drone’s dy-
namic equations. The model then computes a prediction of the system’s state,
basing itself on the current IMU state.

• Over time, the integration of the IMU measurements causes the predicted
state to drift, at which point the observation coming from the low-rate sensors
is used to correct the prediction. Then, the predicted state is compared to
the observed position measurements taken from the GPS, and the Kalman
gain is computed based on the noise of the sensors and on the uncertainty of
the predictions.

• Finally, the difference between the prediction and the measurement is cor-
rected by the Kalman gain, producing a corrected state estimate, which is
what PX4 uses to control the drone.

2See 6.4.1

60

Simulation Analysis

The sensor plugin definitions in Gazebo allow us to add noise to our simulated
sensor values, therefore a Gaussian noise distribution was chosen to simulate the
random sensor error. For the IMU, although only the noise in the x-component is
shown below, the same values of noise were added to each component. A Gaussian
noise was also used for the barometer.

<sensor name="imu_sensor" type="imu">
<always_on>1</always_on>
<update_rate>250</update_rate>
<imu>

<angular_velocity> <--! Gyroscope Noise-->
<x>

<noise type="gaussian">
<mean>0</mean>
<stddev>0.00018665</stddev>
<dynamic_bias_stddev>3.8785e-05</dynamic_bias_stddev>
<dynamic_bias_correlation_time>1000</dynamic_bias_correlation_time>

</noise>
</x>

</angular_velocity>
<linear_acceleration> <--! Accelerometer Noise-->

<x>
<noise type="gaussian">

<mean>0</mean>
<stddev>0.00186</stddev>
<dynamic_bias_stddev>0.006</dynamic_bias_stddev>
<dynamic_bias_correlation_time>300</dynamic_bias_correlation_time>

</noise>
</x>

</linear_acceleration>
</imu>

</sensor>
<sensor name="air_pressure_sensor" type="air_pressure">

<always_on>1</always_on>
<update_rate>50</update_rate>
<air_pressure>

<pressure>
<noise type="gaussian">

<mean>0</mean>
<stddev>0.01</stddev>

</noise>
</pressure>

</air_pressure>
</sensor>

61

Simulation Analysis

The default values that were used in the original Gazebo x500 drone model were
quite low. Thus, three main scenarios were considered in the simulation: high
noise, medium noise, and low noise, which roughly correspond to three price tags
of IMU sensors.

Sensor σ Low Noise Medium Noise High Noise
Gyro σ 0.0001 - 0.0005 0.0005 - 0.005 0.005 - 0.02
Acc σ 0.005 - 0.02 0.02 - 0.1 0.1 - 0.5

Table 6.1: IMU Noise for Simulation.

After running the simulations, it was observed that although the IMU noise was
increased, it did not significantly affect the simulation’s performance. This is
because the individual sensor noise and its effects on the estimator algorithm must
be considered separately. That is, the Extended Kalman Filter (EKF2) associates
its own weight to each of the measured values, which indicates the reliability of
that data to the final estimated output. These weights are determined by the filter
parameters, which can be monitored in QGC:

• EKF2_ACC_NOISE → Corresponds to the predicted standard deviation of
the accelerometer.

• EKF2_GYR_NOISE → Corresponds to the predicted standard deviation of
the gyroscope.

• EKF2_BARO_NOISE → Corresponds to the predicted standard deviation
of the barometer.

• EKF2_GPS_NOISE → Corresponds to the positional error of the GPS.

• EKF2_ACC_B_NOISE → Predicted sensor drift associated with the ac-
celerometer.

• EKF2_GYR_B_NOISE → Predicted sensor drift associated with the gyro-
scope.

When compared to the noise values that were being used in the simulations, it
can be noted that the EKF2 parameters for these sensors are much higher. This
means that the PX4 flight controller expects the IMU and barometer data to be
quite noisy and does not trust them much, relying mainly on the GPS data for its
pose estimation. This explains why docking was achieved even with higher IMU
and Barometer errors.3

3See 6.4.3

62

Simulation Analysis

Parameter Default Value Units
EKF2_ACC_NOISE 0.35 m/s2

EKF2_GYR_NOISE 0.015 rad/s
EKF2_GPS_NOISE 0.5 m

EKF2_BARO_NOISE 3.5 m
EKF2_ACC_B_NOISE 0.003 m/s3

EKF2_GYR_B_NOISE 0.001 rad/s2

Table 6.2: Default PX4 EKF2 Parameters Sensors

To further understand how the value of the EKF2 parameters affects the drone’s
control, the parameters of the IMU sensor were changed to values closer to the sim-
ulated noise. This caused the flight controller to output improper state estimations
since the low value of the parameter put too much trust in the state predictions
and not enough on the observer corrections. Thus, when the prediction started
to diverge from the observed measurement of the GPS, the filter’s corrections did
not carry enough weight to adjust the estimated state. Figure 6.5 shows the sim-

Parameter Modified Value Units
EKF2_ACC_NOISE 0.01 m/s2

EKF2_GYR_NOISE 0.001 rad/s
EKF2_ACC_B_NOISE 0.005 m/s3

EKF2_GYR_B_NOISE 0.0005 rad/s3

Table 6.3: Modified PX4 EKF2 Parameters Sensors

ulated path of the drone along the XY-plane and the estimated states coming
from the EKF2. It can be noted that although the estimates diverged from the
groundtruth in the case with modified parameters, the error was not that large,
meaning that the drone was still able to follow the position setpoints. The reason
why the groundtruth measurements also change with the estimate is that they
both depend on each other, since PX4 publishes actuator commands based on
the estimates obtained by fusing the Gazebo sensor data. Figure 6.6 shows the
altitude estimate and raw GPS and barometer data. In the case with modified
filter parameters, the fused altitude estimation greatly diverged from the measured
sensor data. After 0:30, the estimator was outputting a state that was above the
setpoint, which caused the flight controller to reduce the thrust on the drone, and
that caused it to go down to 1.5m. Only after 0:40 did the flight controller react to
the altitude difference by increasing the thrust, which caused the drone’s altitude
to increase after 1:00.

63

Simulation Analysis

(a) Path Estimate with Default EKF2 Parameters.

(b) Path Estimate with Modified EKF2 Parameters.

Figure 6.5: Comparison of Filter Performance in Two Scenarios.

64

Simulation Analysis

(a) Altitude Estimate with Default EKF2 Parameters.

(b) Altitude Estimate with Modified EKF2 Parameters.

Figure 6.6: Comparison of Filter Performance in Two Scenarios.

65

Simulation Analysis

6.4.4 Wind
The SDF file allows us to set the wind’s linear velocity in the (x,y,z) directions.
Thus, simulations were run for wind blowing in one, two, and three directions. For
winds in one and two directions, the maximum wind speed that ensured docking
was 3 m/s, but for wind with components in three directions, the maximum speed
was 5 m/s. Wind was added to the world file of the simulation in the following
way:

<?xml version="1.0" encoding="UTF-8"?>
<sdf version="1.9">

<world name="fixit">
<wind>
<linear_velocity>5 5 5</linear_velocity>

</wind>
</world>

</sdf>

Overall, the wind was a much harder variable to deal with when landing. The
reason is that the force of the wind changes the direction of the resultant force
acting on the drone, and thus, the drone must change the speed of its rotors to
compensate for the wind and stay hovering. This change in speed causes the drone
to tilt its axis with respect to the ground plane, which was the main source of error
in the landing simulations for the following reason: the tilting of the drone’s z-axis
caused it to land on the cone with an improper orientation, which often produced
unwanted collisions between the landing cone and the propellers.

(a) Tilting of the Drone’s Frame. (b) Docking Fail.

Figure 6.7: Effect of Wind in Gazebo Simulation.

66

Simulation Analysis

6.4.5 Distance Sensor for Height Measurements
As previously mentioned 4, structuring the code to meet a landing threshold with
an estimate of the drone’s altitude was not very effective since it required man-
ually changing the threshold’s value based on observations from the simulations.
Therefore, it was decided to run simulations with a dedicated distance sensor that
could provide a more accurate measurement of the drone’s height.

The two sensors considered were UWB and lidar sensors. Since Gazebo does not
include a plugin to include a UWB sensor, the first simulations were done with
a lidar sensor built into PX4. The outcome of the simulations was that although
the height measurement was more accurate, the added plugin made the simulation
more computationally heavy, so much so that it ran at a factor of less than 30%
of real-time. Therefore, ROS2 nodes that simulate the behavior of a UWB sensor
were coded in Python so that an accurate altitude measurement could be taken
without affecting the simulation’s speed.

The UWB sensor, in its simplest form, is made up of a transmitter and a re-
ceiver called tag and anchor, respectively. The working principle of the sensor
is:

• The tag polls the anchor by sending a radio wave at instant t1.

• Once the anchor receives the poll, it sends a response signal after a fixed
processing time tproc.

• The tag receives the response at instant t2 and computes the distance with
the following equation d = (t2−t1)−tproc

2·c , where c is the speed of light.

This was implemented in Python by writing two nodes, one for the tag and another
for the anchor. These nodes communicate with each other over two topics called
/uwb_poll and /uwb_respond, which simulate the Poll/Response waves sent by
the UWB sensor. The tag node then computes the altitude and publishes it to the
/measured_altitude topic at a rate of about 50 Hz.

Unlike a real UWB sensor, however, the polls and responses do not travel at
the speed of light since they are ROS2 messages and not radio waves. Therefore,
the tag node subscribes to the /odometry topic to compute its current altitude
with respect to its takeoff height. The OdometryPublisher plugin publishes the
odometry topic, and it must be added to the drone’s model.sdf file:

4See 6.4.3

67

Simulation Analysis

<plugin name="gz::sim::systems::OdometryPublisher"
filename="gz-sim-odometry-publisher-system">

<tf_frame>odom</tf_frame>
<odom_topic>/odometry</odom_topic>
<child_frame>base_link</child_frame>
<dimensions>3</dimensions>

</plugin>

The following graph shows a scheme of how all of the different ROS2 nodes used
in the simulation interacted with each other:

Figure 6.8: Graph with ROS2 Nodes and Topics.

68

Simulation Analysis

Below, two tables are reported, in which the results of landing under different
nonideal conditions are shown:

Sensor Noise Failure
Accelerometer Static σd = 0.01 No
Accelerometer Dynamic σd = 0.005 No

Gyroscope Static σd = 0.001 No
Gyroscope Dynamic σd = 0.0005 No

Table 6.4: Analysis of Docking Failure with Sensor Noise

Wind Direction Failure
≤ 3 m/s X||Y No
≥ 5 m/s X||Y Yes
≥ 6 m/s X,Y Yes
≥ 7 m/s X,Y,Z Yes

Table 6.5: Analysis of Docking Failure with Wind

69

Chapter 7

Conclusion and Future
Work

7.1 Conclusion
This research aimed to develop a coupling system between a UAV and a UGV so
the drone could land and recharge on the rover. A thorough state-of-the-art study
of drone coupling and recharging systems was performed to review the different
designs in academia and the market. Various solutions were analyzed, and the
best tradeoff design was chosen. A prototype was modeled in SolidWorks, and the
design was imported into Gazebo to test performance under non-ideal conditions.
Finally, a state was coded onto the autonomous landing code [10] so that the drone
would correct its altitude and land autonomously. A model of a UWB sensor was
coded in Python to improve the altitude measurement in the descent phase.

It can be concluded that a simple design change of the cone’s angle from 30°
to 45° improved the 3D printing estimates by reducing the total printing time, the
amount of printing supports, and the printing costs. The limitation of this design
is that it adds extra weight to the drone’s frame, which will affect its battery life.
The total added mass, however, will be smaller than the mass found using the
SolidWorks tool, since the 3D printing process allows the infill of the part to be
modified.

The simulations’ results showed that the proposed design efficiently corrected the
drone’s position in its descent phase, even in high sensor noise conditions. How-
ever, the design and the autonomous landing code had difficulties ensuring drone
docking under strong winds.

70

Conclusion and Future Work

7.2 Future Work
This thesis focused mostly on the mechanical coupling interface between the drone
and the rover; therefore, the next step of the work would be to design an au-
tonomous contact recharging mechanism. As mentioned in section 4.1, the board
on the rover has a 24VDC output that can be used to recharge the drone’s battery.
The power would come from the DC converter and be fed to the drone through
four semi-circular recharging electrodes, two of which would be placed on the cone
and the other two on the landing gear. Since the drone uses a LiPo battery, how-
ever, additional electronic components would be required to properly manage the
power delivery to the battery. The following is a non-exhaustive list of the possible
components needed to automate the drone’s recharging:

• Battery Charger IC to control the Constant Current/Constant Voltage charg-
ing cycles of the battery. Such as the BQ24773.

• Battery Management chip that ensures each cell reaches its maximum voltage.
Such as the BQ76920.

Another consideration that would have to be further studied is the drone’s orien-
tation prior to landing, since this is something that must be corrected for the elec-
trodes to come into full contact. The pose estimation made by the aruco_tracker
node already estimates the marker’s pose and sends this command to the drone
when landing; however, a more robust analysis would have to be performed to
ensure that the UAV properly aligns itself with the electrodes, perhaps by experi-
menting with different types of fiducial markers.

71

Bibliography

[1] DJI Dock 2. [URL].

[2] 3D CAD Model of the F450 Frame. [URL].

[3] Gazebo Logo. [URL].

[4] PX4-Autopilot Guide, . [URL].

[5] PX4 Logo, . [URL].

[6] QGC Logo. [URL].

[7] ROS2 Logo, . [URL].

[8] ROS-Gazebo Integration, . [URL].

[9] SDFormat. [URL].

[10] ARK Electronics. Tracktor Beam. [URL].

[11] T. Campi, S. Cruciani, M. Feliziani, and F. Maradei. High Efficiency and
Lightweight Wireless Charging System for Drone Batteries. In 2017 AEIT
International Annual Conference, pages 1–6, 2017. doi: 10.23919/AEIT.2017.
8240539.

[12] C. R. De Ceglia. Autonomous Precision Landing for UAVs. Master’s Thesis,
Politecnico di Torino, 2022.

[13] C. H. Choi, H. J. Jang, S. G. Lim, H. C. Lim, S. H. Cho, and I. Gaponov.
Automatic wireless drone charging station creating essential environment for
continuous drone operation. In 2016 International Conference on Control,
Automation and Information Sciences (ICCAIS), pages 132–136, 2016. doi:
10.1109/ICCAIS.2016.7822448.

[14] CIM4.0. Landing FIXIT. [URL].

[15] F. Cocchioni, A. Mancini, and S. Longhi. Autonomous navigation, landing
and recharge of a quadrotor using artificial vision. In 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 418–429, 2014.
doi: 10.1109/ICUAS.2014.6842282.

72

https://enterprise.dji.com/it/dock-2
https://grabcad.com/library/f450-frame-1/
https://classic.gazebosim.org/media#logos
https://docs.px4.io/main/en/
https://px4.io/brand-guidelines/
https://qgroundcontrol.gitbooks.io/design-guide/content/branding/symbol.html
https://www.ros.org/blog/media/
https://gazebosim.org/docs/latest/ros2_integration/
http://sdformat.org/
https://github.com/ARK-Electronics/tracktor-beam
https://cim40.com/landing-fixit/

BIBLIOGRAPHY

[16] Analog Devices. LTC2944 - 60V Battery Gas Gauge with Temperature, Volt-
age and Current Measurement. [URL].

[17] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher and M. Soljačić.
Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science,
317(5834):83–86, 2007. doi: 10.1126/science.1143254. [URL].

[18] J. Guarino. HW and FW Description - v1.2, 2023.

[19] J. Guarino. Schematic FIXIT-M REV 1.1, 2023.

[20] Texas Instruments. BQ769x0 3-Series to 15-Series Cell Battery Monitor Fam-
ily for Li-Ion and Phosphate Applications, 2022. [URL].

[21] A. Karalis, J.D. Joannopoulos and M. Soljačić. Efficient wireless non-radiative
mid-range energy transfer. Annals of Physics, 323(1):34–48, 2008. ISSN 0003-
4916. doi: https://doi.org/10.1016/j.aop.2007.04.017. [URL].

[22] D. Lee, J. Zhou, and W. T. Lin. Autonomous battery swapping system for
quadcopter. In 2015 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 118–124, 2015. doi: 10.1109/ICUAS.2015.7152282.

[23] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66):eabm6074, 2022. doi: 10.1126/scirobotics.abm6074.
[URL].

[24] Microchip. ATmega2560 Datasheet. [URL].

[25] I. Munasinghe, A. Perera, and R. C. Deo. A Comprehensive Review of UAV-
UGV Collaboration: Advancements and Challenges. Journal of Sensor and
Actuator Networks, 13(6), 2024. ISSN 2224-2708. doi: 10.3390/jsan13060081.
[URL].

[26] NASA. Perseverance’s Selfie with Ingenuity, Apr 7, 2021. [URL].

[27] M. Peshkin and J. E. Colgate. Cobots. In Industrial Robot, 25 (5), pages
355–341, 1999. [URL].

[28] Universal Robots. UR5e: Lightweight, versatile cobot. [URL].

[29] A. Saviolo, J. Mao, Roshan Balu T. M. B., V. Radhakrishnan, and G. Loianno.
Autocharge: Autonomous Charging for Perpetual Quadrotor Missions. In
2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 5400–5406, 2023. doi: 10.1109/ICRA48891.2023.10161503.

[30] Skycatch, Inc. System and method for capturing aerial images. U.S. Patent
US 9499265 B2, 2017. [URL].

[31] NASA Science Editorial Team. NASA’s Ingenuity Helicopter to Begin New
Demonstration Phase, Apr 30, 2021. [URL].

73

https://www.analog.com/media/en/technical-documentation/data-sheets/2944fa.pdf
https://www.science.org/doi/abs/10.1126/science.1143254
https://www.ti.com/lit/ds/symlink/bq76930.pdf?ts=1730104143259&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ76930%252Fpart-details%252FBQ7693007DBT
https://www.sciencedirect.com/science/article/pii/S0003491607000619
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
https://www.mdpi.com/2224-2708/13/6/81
https://science.nasa.gov/resource/perseverances-selfie-with-ingenuity/
https://peshkin.mech.northwestern.edu/publications/1999_Peshkin_Cobots.pdf
https://www.universal-robots.com/products/ur5e
https://patents.google.com/patent/US9499265B2/en?assignee=skycatch&oq=skycatch
https://science.nasa.gov/missions/mars-2020-perseverance/nasas-ingenuity-helicopter-to-begin-new-demonstration-phase/

BIBLIOGRAPHY

[32] WIZnet. W5500 Datasheet. [URL].

[33] J. Wu. Texas instruments - A Basic Guide to I2C. [URL].

74

https://docs.wiznet.io/img/products/w5500/W5500_ds_v110e.pdf
https://www.ti.com/lit/an/sbaa565/sbaa565.pdf?ts=1739461512235&ref_url=https%253A%252F%252Fwww.bing.com%252F

Appendix A

Code

A.1 UWB Sensor Codes

A.1.1 uwb_tag.py
1 #!/usr/bin/env python3
2 import rclpy
3 from rclpy.node import Node
4 from rclpy.qos import QoSProfile, ReliabilityPolicy
5 from std_msgs.msg import String, Float32
6 from nav_msgs.msg import Odometry
7

8 class UWBtag(Node):
9 def __init__(self):

10 super().__init__("UWB_tag_node") # Node’s name
11 self.get_logger().info("UWB Tag has started")
12 self.resp = bool(False)
13 self.first = bool(True)
14 self.print = bool(True)
15 self.drone_altitude = float
16

17 self.z1 = None
18 self.z2 = None
19

20 # Define a QoS profile with BEST_EFFORT reliability to successfully
subscribe to the topic

21 qos = QoSProfile(
22 reliability=ReliabilityPolicy.BEST_EFFORT,
23 depth=10
24)
25

26 # Define a Publisher:
27 self.uwb_tag_pub = self.create_publisher(String,"uwb_poll",qos)

75

Code

28 self.altitude_pub =
self.create_publisher(Float32,"measured_altitude",qos)

29 timer_period = 0.02
30 self.timer = self.create_timer(timer_period, self.timer_callback)
31 self.i = 1
32

33 # Define a Subscriber:
34 self.uwb_tag_sub =

self.create_subscription(String,"uwb_respond",self.uwb_tag_callback,qos)
35 self.odometry_sub =

self.create_subscription(Odometry,"/odometry",self.odometry_callback,qos)
36

37 def timer_callback(self):
38 msg=String()
39 msg.data = ’poll ’ + str(self.i)
40 if(self.i==1):
41 self.uwb_tag_pub.publish(msg)
42 self.i+=1
43 elif(self.resp):
44 self.uwb_tag_pub.publish(msg)
45 self.resp=False
46 self.i+=1
47

48 def uwb_tag_callback(self, msg):
49 self.resp=True
50

51 if(self.z2!=None and self.z1!=None):
52 self.drone_altitude = self.z2−self.z1
53 altitude_pub = Float32()
54 altitude_pub.data = self.drone_altitude
55 self.altitude_pub.publish(altitude_pub)
56

57 if(self.i%100==0):
58 self.get_logger().info(’Altitude = ’ + str(self.drone_altitude))
59

60 def odometry_callback(self, msg):
61 self.z2 = msg.pose.pose.position.z
62 if(self.z1==None):
63 self.z1 = self.z2
64

65 def main(args=None):
66 rclpy.init(args=args)
67 node = UWBtag()
68 rclpy.spin(node)
69 rclpy.shutdown()
70

71 if __name__ == ’__main__’:
72 main()

76

Code

A.1.2 uwb_anchor.py

1 #!/usr/bin/env python3
2 import rclpy
3 from rclpy.node import Node
4 from rclpy.qos import QoSProfile, ReliabilityPolicy
5 from std_msgs.msg import String
6

7 class UWBanchor(Node):
8 def __init__(self):
9 super().__init__("UWB_anchor_node") # Node’s name

10 self.get_logger().info("UWB Anchor has started")
11 self.poll = bool(False)
12

13 # Define a QoS profile with BEST_EFFORT reliability to successfully
subscribe to the topic

14 qos = QoSProfile(
15 reliability=ReliabilityPolicy.BEST_EFFORT,
16 depth=10
17)
18 # Define a Subscriber:
19 self.uwb_anchor_sub =

self.create_subscription(String,"uwb_poll",self.uwb_anchor_callback,qos)
20

21 # Define a Publisher:
22 self.uwb_anchor_pub = self.create_publisher(String,"uwb_respond",qos)
23 self.j = 1
24 timer_period = 0.02
25 self.timer = self.create_timer(timer_period, self.timer_callback)
26

27 def timer_callback(self):
28 if(self.poll):
29 msg=String()
30 msg.data = ’resp ’ + str(self.j)
31 self.uwb_anchor_pub.publish(msg)
32 self.j+=1
33 self.poll = False
34

35 def uwb_anchor_callback(self, msg):
36 self.poll = True
37

38 def main(args=None):
39 rclpy.init(args=args)
40 node = UWBanchor()
41 rclpy.spin(node)
42 rclpy.shutdown()
43

44 if __name__ == ’__main__’:
45 main()

77

Code

A.2 Autonomous Landing
1 #include "PrecisionLand.hpp"
2 #include <px4_ros2/components/node_with_mode.hpp>
3 #include <px4_ros2/utils/geometry.hpp>
4 #include <Eigen/Core>
5 #include <Eigen/Geometry>
6

7 static const std::string kModeName = "PrecisionLandCustom";
8 static const bool kEnableDebugOutput = true;
9

10 using namespace px4_ros2::literals;
11

12 PrecisionLand::PrecisionLand(rclcpp::Node& node)
13 : ModeBase(node, kModeName)
14 , _node(node)
15 {
16 ...
17 _uwb_altitude_sub =

_node.create_subscription<std_msgs::msg::Float32>("measured_altitude",
18 rclcpp::QoS(1).best_effort(),

std::bind(&PrecisionLand::uwbCallback, this,
std::placeholders::_1));

19 ...
20 }
21 void PrecisionLand::uwbCallback(const std_msgs::msg::Float32::SharedPtr msg)
22 {
23 _drone_altitude = msg−>data;
24 }
25

26 void PrecisionLand::updateSetpoint(float dt_s)
27 {
28 case State::Search: {
29

30 auto waypoint_position = _search_waypoints[0];
31 _trajectory_setpoint−>updatePosition(waypoint_position);
32

33 float search_altitude = 3;
34

35 if (positionReached(waypoint_position)){
36 if (abs(_drone_altitude)>=search_altitude){
37 _down = true;
38 switchToState(State::ChangeAltitude);
39 break;
40 }else{
41 _down = false;
42 _z_search = _drone_altitude;
43 switchToState(State::ChangeAltitude);
44 break;

78

Code

45 }
46 }
47 break;
48 }
49

50 case State::ChangeAltitude: {
51 _change_altitude = true;
52

53 Eigen::Vector2f vel = calculateVelocitySetpointXY();
54

55 if (_down){
56 _trajectory_setpoint−>update(Eigen::Vector3f(vel.x(), vel.y(),

_param_descent_vel/2), std::nullopt,std::nullopt);
57

58 if(abs(_drone_altitude)<=3 && !std::isnan(_tag.position.x())){
59 RCLCPP_INFO(_node.get_logger(), "Altitude = %f\n",_drone_altitude);
60 _approach_altitude = _vehicle_local_position−>positionNed().z();
61 switchToState(State::Approach);
62 break;
63 }
64 }else{
65 _trajectory_setpoint−>update(Eigen::Vector3f(vel.x(), vel.y(),

−1.f*_param_descent_vel/4), std::nullopt,std::nullopt);
66 if(abs(_drone_altitude)>=(_z_search+0.5) &&

!std::isnan(_tag.position.x())){
67 RCLCPP_INFO(_node.get_logger(), "Altitude = %f\n",_drone_altitude);
68 _approach_altitude = _vehicle_local_position−>positionNed().z();
69 switchToState(State::Approach);
70 break;
71 }
72 }
73 break;
74 }
75 }

79

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	UGV and UAV Collaboration
	Collaborative Robots and FIXIT
	Thesis Objectives and Structure

	State of the Art Research
	Issues with Drone Battery Life
	Positional Uncertainty in Drone Landing
	Literature Review
	Automated Battery Replacement Station
	Wireless Charging Station with Active Compensation
	Contact Charging Station with Passive Compensation
	AutoCharge Patent
	Skycatch Patent

	Best Trade-off Design

	Theoretical Concepts and Software
	Serial Communication Protocols
	USART
	SPI
	I2C

	Software Environment
	PX4 and QGroundControl (QGC)
	ROS2
	Gazebo
	Software Integration

	Electronics and Firmware of the FIXIT Robot
	FIXIT Hardware Components Overview
	Battery Connectors
	Battery Management System (BMS)
	Fuel Gauge Estimator
	DC-DC Converters and Drone Connector
	Ethernet Module
	Microcontroller (uC)

	Arduino Code and Command Line Outputs
	Includes and Instances
	Setup
	Main
	Command Line Outputs

	Mechanical Design
	3D Modelling the Docking Mechanism
	Design Changes for 3D Printing
	Final Design
	3D Printing Analysis
	From Solidworks to Gazebo

	Simulation Analysis
	Installing the Software
	Running the Simulation and Explaining the Code
	Simulation Launch File
	Autonomous Landing Code

	Building Custom Models in Gazebo
	Custom Vehicle Definition
	Custom World Definition
	Adding the Custom Models to PX4

	Simulating Nonideal Scenarios
	ArUco Marker Size
	Modified Landing Code
	Sensor Noise
	Wind
	Distance Sensor for Height Measurements

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Code
	UWB Sensor Codes
	uwb_tag.py
	uwb_anchor.py

	Autonomous Landing

