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Summary

Since their introduction, transformer models showed instantly their high perfor-
mances in the analysis of structured data such as images, time series and audios.
Their ability in solving the most different tasks brought them to become rapidly
the state of the art in a wide variety of domains. How they reason, however, is still
a big issue, as they translate those data into an embedding representation that
only they could comprehend.

Despite that, only a few works try to solve this problem by using several methods
proposed in the field of Explainable AI. The aim of this discipline is to make AI
models interpretable in a way that makes them trustworthy and reliable; this would
be impossible to obtain if we do not understand the way the models reason.

To address these issues, we take advantage of Descript Audio VAE, a model
specifically trained to compress and reconstruct an audio waveform passing through
a latent space representation. In particular, we apply a gating layer between the
embedding space of the model that we want to interpret and the latent space of
Descript Audio VAE. This mapping converts the embeddings of the first audio
transformer to the latents of the second model that can translate this unknown
representation into sound: something that we can interpret.
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Chapter 1

Introduction

Transformers are deep learning models commonly used in a wide range of fields,
from finance to medicine, from industry to economy. They became rapidly the
state of the art for entire research fields like image analysis, temporal sequence
predictors or even generative models.

Their main characteristic is attention, which has distinguished them from
previous architectures since their inception and allowed them to have a contextual
understanding of the input.

To name a few of the most famous examples, think about LLaMA from Meta
AI [1], or BERT developed by Google AI [2]. Specifically, the mentioned models
are distinguished by being LLMs: Large Language Models capable of interpreting
what is said to them with human language and providing results of any kind (text,
audio, images) that are better suited to the context. The attention mechanism
allows them to achieve exactly this, to extract the meaning from one or more
words forming concepts within one or more sentences, giving them the ability to
extrapolate some context from what they process.

These large models, that are not limited only on elaborating words, but are
also dominant with images, audios or temporal data, consist of millions or billions
of parameters and they have changed deeply the world of artificial intelligence.
Each big tech company has entered the race to have the best-performing model,
optimizing the computational cost of the model, the time and the resources required
for training, and the precision of the results. However, the game is not reserved
only for big companies; anyone can create their own transformer (but other models
too!), starting from an existing model that can be fine-tuned for a specific task
different from the original one, or create a custom one that addresses, from the
early stages of its development, to one or more specific requests.

Their ability to extract context features leads them to achieve remarkable results,
and this has made them rise to the top of popularity rankings for models used in
research, providing a solid starting point for various types of analysis. However,
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some big issues still exist. One of them is that these models operate in a black-box
manner. Due to their complexity, they resemble a black box where an input is
entered in the model and an output is computed. This process mixes input elements
in a way that make unfeasible any sort of connection between the initial and final
state. The causes of this opaque behavior are mainly two: in fact, transformer
cannot understand human perceptions like sounds, words or images as we intend.
It must "translate" them in a way that only itself can comprehend forming what is
called the embedding representation or the hidden state representation. The
second issue is due to the high number of model parameters and the complexity of
the computation made by itself. Some operations are probabilistic instead of being
deterministic, meaning that the computation in one way is easier to obtain than the
reversed procedure, that could be obtained despite some approximations. Due to
these circumstances, how it decides which response to provide for a given sentence
or which parts of an image or audio it focuses on when classifying a sample remain
largely unknown.

This is where the research field called Explainable AI comes into play, which
seeks to provide explanations for the reasons why a particular model behaves the
way it does. Given the application task of these new models, it is crucial to trust
their decisions. But how can we trust it if the reasoning behind its conclusions is
not interpretable and remains unknown to us?

1.1 Transformer architectures
In order to comprehend how transformer models works, let us focus on their general
architecture.

This type of model was introduced in the paper by Ashish Vaswani: Attention
Is All You Need [3], and, since then, it has spread widely across AI models. Its
widespread use is due to its distinctive feature: the attention mechanism, which
enabled the achievement of results that were never seen in previous architectures.
Attention is fundamentally a function that allows the model to focus on the context
of the input. It is therefore capable of identifying features not only specific to a
given input but also the relationships between different parts of it, allowing it to
extrapolate concepts as humans understand them as set of different aspects.

As we can see from the picture 1.1 this is a so reasonable way of "thinking".
Through attention, the model learns that the order of some words changes during
the translation from one language to another and it is able to apply this concept
during English-French translation in this case.

The computation of this peculiar characteristic follows the method shown in
Figure 1.2.

If we look at Figure 1.2, we can see Q, K and V. These stands for Query, Key and
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Figure 1.1: Attention mechanism;
Source: Bahdanau et al. “Neural ma-
chine translation by jointly learning to
align and translate”, Neurips 2015

Figure 1.2: Attention computation; Source:
https://www.baeldung.com/cs/attention-mechanism-transformers

Values and they are usually vectors of a fixed shape that come from the hidden state
representation of the model. We can also see how they are combined to produce the
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so called self-attention. Firstly, a matrix multiplication computes the dot product
between Q and K. Then the output is scaled by dividing it by a certain quantity;
then it could be masked. This optional operation randomly zeros some vectors.
This aims to introduce more randomness into the computation; this aspect, in fact,
help the model to generalize what it learns through the different training epochs.
Finally, an activation function prevents that the output values become way too low
or high, which could lead to the vanishing or exploding gradient phenomena. The
last step multiplies this output by the values that yielded to the attention output.
The process described here is called scale dot product attention is computed by
one or more attention head. On the right of Figure 1.2 we can see more attention
heads working in parallel, this allow to any of them to focus on a particular aspect
of the processed input.

Returning to the general description, transformer architecture can consist of
two key components: the encoder and the decoder. The encoder is responsible for
the input processing, while the decoder handles the decoding of the internal state.
The main steps are described here.

Encoder

1. The original input (whether audio, text, or image) is translated into the
transformer embeddings. Some tokens could be inserted into these hidden
states and they are usually exploited to achieve classification results such it
happens within AST model.

2. Self-attention is calculated by each attention head that composes the model
using the embedding representation by multiplying keys and queries, whose
dimensions vary depending on the model, but are typically at least two-
dimensional matrices. This results in what is called an attention score(s) or
similarity score(s), which represents how strongly different parts of the input
are related. This is very useful for focusing on different parts of the same
input. The output from each head is then concatenated and becomes the
input for the next layer.

Decoder

1. Starting from the encoder representation, the output is generated. Using
cross-attention, an aspect that will be clearer soon, the decoder chooses each
part of the output (whether words or images) based on the highest probability
that a given word belongs to a sentence or a given image being part of a video.

Depending on how these two modules are combined, we have three main trans-
former architectures:
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Encoder only - e.g. BERT [2], AST [4], ViT [5]
In this transformer type, the encoder is responsible for processing the input.

This will be then elaborated from other layers such as dense layers and classification
heads that are useful when dealing with classification tasks, where the desired
output is simply a label related to the input image.

Decoder only - e.g. LLaMA [1]
This type of transformer has only the decoder, which is useful for generating

output. The output can involve images, audio, or text (videos are considered as
sequences of images).

Encoder-Decoder - e.g. BART [6]
This architecture is useful for tasks like comprehension and generation, such as

text understanding and summarization (sequence-to-sequence models), where both
input and output are sequences of text, but they differ from each other.

Depending on the transformer architecture, attention has two main forms: self-
attention and cross-attention. Self-attention refers to attention within the input
sequence, enabling the model to interpret sequences of words and process concepts.
It is usually used inside the logic of a single component (encoder or decoder), with
both input and output of the attention mechanism belonging to the same domain,
and can involve multiple parallel heads, each focusing on different aspects of the
input sequence. On the other hand, cross-attention, is the mechanism based
on two different sequences during the same computation as previously shown in
Figure 1.1. Because of this, it typically connects the decoder with the encoder. It
is used once within the transformer (no multi-head), and the input and output can
belong to different domains (e.g., an image generated from a text prompt).

1.2 The need of explainability
These black-box models are becoming the new state of the art for many different
application fields and are actually capable of astonishing results; a big issue that
still has to be solved is their explainability and interpretability. Explainable
AI is a research area that tries to solve these issues to make AI models more
understandable for us as humans, in order to better understand their behavior and
to increase our trust on them.

Each model, depending on how it was developed, can be explainable by design
(think of simpler models like decision trees or classification rules, the so-called
white-box models) or not (almost all existing and better performing models are
black-boxes). Fortunately, there are some techniques to make even black-box
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models interpretable, and this was the main theme of my thesis work.
This research field is also responsible for addressing other aspects, too. If the

models were interpretable, in fact, we could easily assess if there is some decision
bias in the process, if the procedure is fair or if it is discriminative towards some
data labels. Furthermore, also the robustness of the model can be leveraged,
allowing us as programmers to build stronger models in terms of adversarial attacks
resistance looking also at the privacy policies maintenance. In order to give a brief
overview on this discipline, we can explore the taxonomy of this research domain.

We can set five macro-areas that are divided into some smaller ones. Let us see
them, first trying to understand what are the main related questions and, later, to
analyze them pointwise.

• Stages of explainability: at which step the explainability is put into the model?

• Explanation generalizability: Is the explanation method valid for possibly every
model out there or is it model specific?

• Scope of explainability: are the explanations covering all the predictions made
by the model? Or are they focused on a single prediction at a time?

• Explanation representation: in what form do the explanations assume? For
example, audio with higher pitch on focused parts, image with some charac-
teristics highlighted, highlighted text...

• Methodology used to obtain explanations: there are several ways to obtain
explanations from a model such as explaining by removing, counterfactual
explanations or building local surrogate models, but this aspect is so application
dependent and may vary a lot for different tasks.

Stages of explainability
The explanations could be placed at different stages:

Pre-modeling explainability focuses on raw data that will be the input of the
model, and the aim is to see how the data are organized, visualizing them, and
filtering in an efficient way, keeping just the most useful information trying to avoid
biases during the computation (this is called feature engineering). An important
aspect is also to check if the data can be used for our purposes in order to avoid
misuse, if they present already known biases (imbalanced dataset) and if there are
any ethical considerations.

In modeling explainability finds hints of trustworthiness that are given by the
model itself. They are usually simple and interpretable by design models. This is
the case of decision trees, decision rules, linear and logistic regressions or K-NN
classifier. Despite being interpretable, these models are really simple and can solve
only a small part of tasks and, because of that, their usage is really limited.
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In post modeling explainability the explanations comes after the model de-
velopment. Some examples of these techniques are global surrogate models that
expect to build a similar simpler and interpretable model with reference to the
one that we want to explain; permutation feature importance that randomizes
one or two features at a time along their domain, making the features assume all
the possible values in their domain. In this way, we can scroll the inter-feature
dependency and examine how the loss or the precision metrics vary. So we can
determine which are the most important features that are retained to compute the
model decision. Finally, the partial dependence plot selects a random features and
makes the whole dataset have a single value for that one. Then we make the model
predict the samples and we average the various probabilities. We then repeat the
procedure for the entire domain of that feature.

Explanation generalizability
The explanation method could be model dependent or model agnostic. In the
first case the explanations are valid only for a single model and this gives us the
advantage of being more specific, but makes us build another explanation method
if we change the model that we want to explain. In the second case, instead, the
explanations are valid for every model, but maybe the explanation is local (we will
see this definition in the next point) or is computational expensive or maybe it
could require additional training data.

Scope of explainability
This aspect is focused on which segment of the model we want to explain. We may
want to explain all the predictions made by the model in a comprehensive way, or
we may want to define the explanation only for a small group of predictions or
going even further and address only one.

Explanation representation
Which form assumes the explanation; they are:

• Feature importance: highlighting the part of the input that the model uses
the most to assess its prediction.

• Local rules: a decision rule for a single prediction.

• Graph visualization

• Explanation by example: giving one similar sample among the others seen in
order to say "This is x because this is similar to this other one and it is also
x." or "This is x because this can’t be y because the difference is..."

Methodology used to achieve the explanations
These are the ways that could be employed to retrieve explanations from the model:

• Explaining by removing: removing some features to assess how important they
are.
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• Local surrogate interpretable models exploit the interpretability and explain-
ability of simpler models such as decision trees or association rules, but are
applied in a local context (one or a few predictions at a time) to provide more
useful explanations with respect to a global approach.

• Gradient-based explanations use gradient information to provide information
on how changes on the input will reverberate on the output.

• Counterfactual methods is about generate a similar sample to the one we are
going to explain but almost different to be predicted as another class. In this
way, we can understand which changes in which features are more important
for the decision process.

1.3 Aim of this thesis
After this overview, it is clear that there is a need to fully understand the functioning
of these new models, without merely focusing only on their remarkable accuracy.
My thesis work focused on audio transformers. Specifically, my work focused on
the interpretation of the embedding representation, which is understandable from
the model, but completely unknown to us, aiming to obtain a reconstructed input
that is comprehensible to us as humans too, and that can give hints on how the
model interprets the input we give it. This approach remained largely unexplored
until now, as we seen a lot of explainability methods, that were focusing on other
aspects, though. The process of transforming embedding into audios, from now on,
will be identified as sonifying and the sonifications are the results of that. Only
by this genre of approaches it is possible to interpret the information it uses to
make its decisions and predictions. In order to achieve this, me and the professors
developed a novel approach that uses a gating layer as a bridge. This is used to
connect two larger models and is done in the embedding/latent space, the internal
hidden representation of these models that remained largely unexplored.

The whole procedure will be explained in detail in Section 3, while experiments
on the different strategies are shown in Section 4; obtained audio results are
available at this link; code available by clicking here.
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Chapter 2

Related works

2.1 Audio Domain Topology
Here I want to focus a bit on the audio domain, which is divided into three macro-
areas characterized by the type of sound that is processed: speech, audio, or music.
Note that these areas are not strictly divided and the borders from each other are
blurry.

Speech processing includes audio in which one or more people are talking. In
this context, transformers can be used for tasks like:

• Emotion recognition: analyzing emotions through lexical and/or paralinguistic
features (cadence, laughter, volume, etc.);

• Speech to text: transcribing from audio speech to text;

• Language detection: detecting the language spoken by the interlocutor in a
given audio;

• Speaker/Voice recognition: predict who is talking among a series of speakers;

• Speech translation: translating audio speech into a language different from
the original.

Audio events, on the other hand, involve the waveform analysis of the most
various events, where we might encounter background noise, conversations, animal
sounds, vacuums, engines, etc. Active research areas in this domain include:

• Audio signal analysis: extracting useful information from the audio sample in
order to classify or synthesize them;

• Sound classification: assigning a label to an event sound;
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• Audio enhancement: improving the quality of audio or reducing background
noise;

• Audio source separation: separating elements that make up the audio, for
example, if multiple people are talking at once;

• Spatial audio processing: analyzing and processing audio focusing on its spatial
features.

Finally, the music processing domain involves the analysis of audio samples
that define music, from complete songs to individual digital and/or electronic
musical instruments. Research tasks in this field include the following.

• Music genre classification: extracting the genre(s) of a song;

• Music information retrieval: obtaining information about the metrics, artists,
or instruments involved;

2.2 Audio Transformer models
Audio transformer models have the same general architectures of the models
depicted in Section 1.1 with a particular focus on the input/output data type.

Figure 2.1: Audio transformers architecture; Source: Hugging Face: Transformer
architectures for audio
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According to the task they are conceived, the architecture could be different, as
also focused in Section 1.1. If we think to classification tasks, audio tagging and
similars these models use only the encoder part of the transformer architecture,
while for generative task the decoder module is used. In order to see how audio
transformers are used for generative tasks, refer to Section 2.3. As we can see, they
process audio data and related data types, such as spectrogram images or text
tokens. Each input type has its own features.

• Audio waveforms are listenable audio samples belonging to one of the
categories of Section 2.1. They are usually processed from specific libraries;
Python examples of these are librosa, soundfile or even NumPy that transform
the audio waveform into one-dimensional arrays. Moreover, these libraries
allow us to resample an audio waveform making them really useful especially
in cases when the transformer model expects audio sampled at a specific
frequency, as it was in mine. Before being processed, the waveforms are
usually normalized. In this category, we find models like Wav2Vec2 by Baevski
et al. [7] that masks the input before projecting it in its latent space, HuBERT
by Hsu et al. [8] that overcomes BERT [2] architecture on which is based by
using a masking process for its input and WavLM by Chen et al. [9] that
focused not only on speech recognition, but also on several other tasks.

• Audio spectrograms are audio samples viewed in the frequency domain
through an image. Usually on the horizontal axis we have the time dimension
represented linearly, while the different frequencies that compose the audio are
set on the vertical one and are represented linearly or logarithmically (useful
for audios composed by a wide range of frequencies). The brightness of these
stripes tells us how much amplitude has a certain frequency; so we expect
that darker parts of the image are almost silent, while the brightest parts have
a higher volume. We can note these aspects from the input/output image
depicted in Figure 2.1. Since the spectrograms are fundamentally images they
found large employment trough the different technologies. In fact, they have
the advantage of being processed not only by audio models, but also from
image ones. In this category, we can find models such as Whisper [10], AST
[4] and its descending ASiT [11] and SSAST [12], ACT [13] that performs
Speech-to-Text and SAT [14] that aims to optimize existing transformer-based
models towards a streaming inference.

• Text. Most famous AI applications receives mainly text as input and outputs
the data that we required. Note that if the transformer receives text as input
and outputs text, it is not considered an Audio Transformer obviously. Since
these are audio transformer generative models they will be covered in the
upcoming section.
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Despite the input type on which they are based, transformer models will always
transform them into an embedding representation, that is the only way the trans-
former can process inputs; then the functioning is the same of the architectures
shown before. AST and HuBERT will also be described deeply in Section 2.5 as
they were used for this thesis research purposes.

2.3 Sonification models
Before proceeding with the thesis background, let us have a brief overview on some
of the existing sonification models; these models are characterized by producing
audio waveforms as output. In this field, we have some different model families that
we can analyze. Please note that these model typologies can also perform outside
the sonification task such as in image or time-series generation. However, since
my thesis aims to the embedding sonification, I will analyze the general aspects
of them by giving some insights on how these architectures are used in the audio
domain.

Variational Auto Encoders (VAE) by Kingma and Welling [15] is formed by
an Encoder model that compress an input to a latent space probability distribution
by using a downsampling network, and a Decoder model that tries to reconstruct
the value in the latent space into an output that should be as similar as possible to
the input. We have to note that the latent space is represented as a continuous
probability space; this differentiates the VAE from the simpler Auto-Encoders that
use a discrete latent representation allowing the VAE model to obtain outputs that
are similar to the original sample. Often, these models adopt the reparametrization
trick and the KL-Divergence as loss.

Generative Adversarial Networks (GAN) were introduced by Goodfellow
et al. [16] and are based on adversarial training of two different neural networks:
the generator and the discriminator. The generator aims to generate new data
based on a certain probability function, while discriminator aims to distinguish if
a received image is real or generated by the generator network. The parameter
optimization of the two networks is done with respect to the loss computed by the
discriminator after the comparison. The model weights are optimized alternatively:
the generator parameters are optimized by keeping the discriminator parameters
freezed and vice-versa. Within this family we can find HiFi-GAN by Jungjil K. et
al. [17] that achieves model performance and high precision in audio reconstructing
by exploiting periodic patterns during sound generation. Some versions start from
a text prompt that is given to a tokenizer. This outputs a spectrogram that is
processed by the GAN that generates the output audio waveform. Descript Audio
VAE by Kumar et al. [18] is another approach that will be explained deeply in
Section ?? as it was part of the project background.

12



Related works

Diffusion probabilistic models or, simply, diffusion models were introduced
by Sohl-Dickstein et al. [19]. They are class dependent latent generative models
and the main interesting idea comes from the physical non-equilibrium state. If
we put a colored drop in water, we can clearly see where the stain is. If we shake
the water container the color mixes with water until the equilibrium is reached
and we have colored water. With this idea Sohl-Dickstein et al. thought about
a model that, during the first phase, could learn to bring complex distribution
to more tractable ones through the forward or diffusion process. The generation
procedure, instead, tries to reverse this path. We can see an exhausting survey on
these models in the article published by Yang et al. [20].

Since every model works within a latent space where complex data are trans-
formed in simpler forms, me and my supervisors propose an approach based on
the gating layer model. This maps the embedding data sample representation of
a certain model into the latent space of another one belonging to the same input
domain acting as a sort of bridge. In this way, the focus can be put also on the
hidden representation of the models that has not been covered yet in existing
literatureas shwon in the next section regarding transformers related explainability
methods.

2.4 Transformer explainability
How transformers interpret input data remains largely opaque. For this reason, it is
necessary to adopt explainability techniques, in order to make them trustworthy and
accountable for their predictions. Despite Explainable AI is an almost new research
field, some transformer explanation techniques already exists. An important one is
the Layer-wise Relevance Propagation (LRP) [21] that operates by backpropagating
the prediction relevance using ad-hoc developed layers. It works well addressing
the most influential parts of the input that are related to a certain prediction; they
could be then highlighted with a colormap becoming very interpretable. Other
works start from this method and try to expand it. This is the case of Chefer et al.
in [22] where they provide the relevances information for each attention head that
was not so well addressed in LRP.

Another way is the raw attention exam that could be helpful by providing hints
on how the information flows among the model layers and consists in observing the
attention matrices, often converted in images, used by the model to convey useful
insights. Perikos et al. [23] use this method to infer sentiment analysis starting
from text input and they found how much focused was the model on several input
words. Another interesting approach was AttentionViz visualization toolkit by Yeh
et al. [24], but it only works with language and image processing models.

A brand new approach was built by Akman and Schuller in their AttHear
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[25] that is one of the few attempts of sonification in the audio transformer
model explainability field. Their method uses a novel formulation of Non-negative
Matrix Factorization (NMF) combining also attention weights and time activation
information. In this way, they retrieve useful input sample parts that have major
information and make them audible to the final user. Despite that, the embedding
representation used by audio transformers remains unexplained.

An overall survey, wrote by Fantozzi et al. [26], depicts the general status
of transformers interpretability analysis updated to 2024. They organize the
transformer explainability into 5 macro-categories that depend on which transformer
feature is exploited. Those are: Activation methods (like LRP), Attention methods,
Gradient methods, Perturbation methods and the Hybrid one that combine the
four previous ones two or more at a time. After seeing their work, we can say that
the number of interpretability methods for this model type is rising.

Despite that, no one seems to have focused on the embedding representation,
that remains largely unexplored. Until now seemed that all works addressed how
the attention is remarkable in order to make a prediction or on which parts the
model focuses the most, but not on how the internal model representation could
be interpreted. That is why I wanted to focus on this aspect trying to achieve a
sonified version of the hidden state representation of these models. Through the
gating layer (see section 3), the transformer embeddings of a model that we want
to interpret become audible thank to the mapping into the latent dimension of a
sonification model. Now, to comprehend better the section that will come next, let
us dive deep into the background architectures that I used: AST and HuBERT
models and the Descript Audio VAE.

2.5 Project background
2.5.1 Audio Spectrogram Transformer
Audio Spectrogram Transformer, shortened in AST, is a transformer model built by
Yuan G. et al. [4]. It was developed as convolution free encoder-only transformer.
It receives as input raw audio signals of any duration, sampled at a frequency of
16.000 Hz; first, audio is processed by the model feature extractor. This module is
responsible for transforming the audio encoded as a linear vector into a filter bank
of a fixed shape of [1024, 128]. The first dimension depends on the audio duration,
while the second is related to the quantized audio frequencies. This is basically a
padded spectrogram, as we will see in Figure 3.4. This matrix is then normalized
by subtracting the column means and padded or truncated to the fixed dimension
above forming what will be the transformer model input.

Inspecting model code, the first step projects the filter bank into the embedding
space through the patch embedder that transforms it into a 3D matrix of shape
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[1, 1212, 768]. Then, the model embedder adds to this matrix two tokens (called
classification and distillation tokens) that are used for classification task. The
embeddings, that, at this point, we can call first hidden state, are forwarded through
the 12 model layers. At each layer, 12 attention heads compute the attention score
and update the hidden state value. At the end, an ASTMLPHead layer computes
a linear projection and the class prediction by computing the mean of the token of
which we spoke before.

2.5.2 HuBERT
HuBERT (Hidden unit BERT) model was developed by Hsu et al. [8] where they
adapt BERT model to the audio domain. Furthermore, HuBERT exploits BERT
masked prediction strategy, but its aim is to predict audio related features instead
of text tokens. HuBERT masking strategy is derived from Wav2Vec2 [7] and the
loss calculation is a weighted sum of two cross-entropies: one computed on the
unmasked steps and the other on the masked ones. They also use different k-means
models to improve the quality and the granularity of codebooks extraction. These
cluster ensembles are being refined during the training process in order to start
to well-known representations and find also new ones. It was developed into three
versions: base, large and extra-large. For this thesis research purposes HuBERT
base pre-trained on 960h librispeech was employed since, differently from AST, it
processes directly the audio waveform, without passing from audio Mel-Spectrogram
representation.

AST and HuBERT models were used as test model from which to extract
embeddings to perform gating layer mapping test towards the next model latent
space.

2.5.3 Descript Audio VAE
Descript Audio VAE was built by innnky (here is its github reference [27], that
modified RVQGAN by Kumar et al. [18]. The modifications consist of replacing
the RVQ module with a VAE, which is easier to train on for some models. This
method was useful during the final part of sonification phase. As sonification is
intended the process of an embedding representation into a reproducible audio
waveform. By listening to this audio we can analyze the reasoning process of the
transformer model by the perspective of its internal input representation.

RVQGAN allowed them to compress audios 90 times more than the state of the
art and obtaining reconstructed audio that are very similar to the original one. They
achieved this through an interesting research process, active on different aspects.
First of all they put Residual Vector Quantization to the already existing VQ-GAN
embeddings improving its scarce use of codebooks. They also used factorization
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codes, allowing code lookup and code embedding in two different dimensional space,
reducing the lookup dimension by maintaining the same code embedding size,
that is directly related to the information that they carry. L2-normalization helps
stabilizing the model with these codebooks. Furthermore, they used the MultiScale
Discriminator and Multi-Period waveform discriminator strategy inside the decoder
logic, adding an STFT discriminator to improve the audio phase modeling. Finally,
they trained the model by using a different loss types such as L1 loss computed on
spectrograms of different window lenghts; they applied a codebook loss as it was in
VQ-GAN and then merged all these losses together by a weighted computation.
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Methodology

Gating layer model was employed to map the AST/HuBERT hidden states to the
Descript Audio VAE latent representation. The implementation could be of any
type: from linear, to convolution by passing also from the attention.

The gating layer was trained to map the embeddings deriving for the AST
model to the latent representation of the Descript Audio VAE. My goal here was
to achieve good sonification results starting from the embedded representation of
an audio provided by a certain model. This procedure was then repeated starting
from HuBERT embeddings. The key here was trying to map the embedding
representation of a model that processes raw audio waveforms instead of the
associated spectrogram representation in order to observe if the proposed model
could fit well with that approach. The main pipeline is in Figure 3.1.

Figure 3.1: Gating Layer methodology workflow. From the left: Green boxes
are the model we want to interpret truncated after its embedding computation.
Dotted arrows mean that only one model at a time stands in the pipeline (gating
layer is trained on specific model embeddings). The orange box is the gating
layer, while the yellow one is the sonification model decoder that transforms latent
representation provided by the gating layer into a reconstructed audio.
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For the deep explanation of the models around the gating layer refer to Section
2.5.

3.0.1 Dataset
Gating layer dataset required AST/HuBERT embedding representation and the
latent representation as ground truth in order to compare what the model produced
with a real latent representation. To achieve this, all the audio samples of ESC50
[28], the chosen dataset, were processed with models said before.

ESC50 is a labeled collection of 2000 audio samples coming from environmental
sounds. As the name suggests, there are 50 samples classes and each of them has
40 samples, producing a balanced dataset. Each sample lasts 5 seconds and it
is sampled at 44.100 Hz. Three partitions were made from that: training (80%
of the dataset), validation (10% of the dataset) and testing (10% of the dataset).
Filenames belonging to the different partitions were noted on text files in order to
have a deterministic starting point for each training session.

In order to compute the embedding representation audios were resampled
to 16 kHz since it was necessary for both AST and HuBERT models; in fact, they
expect audio sampled at that frequency. This was made with librosa library.

AST required importing its feature extractor and the previously finetuned model
on the same dataset. This was not imported from Hugging Face spaces or from
pre-trained models in general to respect the dataset split spoken above. After
that, the patch embedder module was extracted from the finetuned model since
the focus was on computing audios patch embeddings instead of doing the whole
classification procedure. Each of the resampled audio samples passed through
the feature extractor that computed the audio filter bank (ref. Figure ??). AST
embddings of ESC50 samples were obtained by passing feature banks through the
patch embedder module. Finally, they were saved torch.

HuBERT, on the other hand, has not a patch embedder model. So an editing of
the source code was necessary in order to have a portion of the original pipeline
on which we were interested. Embeddings were extracted before the masking step,
right before passing them into the HuBERT encoder.

Latents representation were computed from Descript Audio VAE model. It
is composed from an encoder and a decoder modules; it uses the encoder to obtain
the latent representation from an audio; this time the audios the model wants are
sampled at 44.1 kHz, so no resampling was necessary in this case and then it saves
it at a specified path. By doing that, a suitable dataset for the gating layer model
was built.

In Figures 3.2 and 3.3 we can see an AST embedding and a latent Descript
Audio VAE representation images. HuBERT embedding is not reported, but it is
similar of the AST one, just with a different width and height. As we can observe,
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these representations are totally different from a spectrogram, and they lack of
interpretability. So, if we could obtain a significant representation from those, we
could find other methods on how information flows in transformer models.

Figure 3.2: AST model embedding for sample 1-100210-A-36

Figure 3.3: Descript Audio VAE model latent for sample 1-100210-A-36

3.0.2 Temporal dimension alignment
An important reasoning has to be focused. Since the shape of the final results
must be equal to the latent representation, at the end of the computation process
done by the gating layer model, a reshape was simply applied to the processed
embedding. This was made without thinking on which of the two dimensions was
the temporal one, both speaking in term of embeddings and latents representations.

This observation is mandatory since if we map a certain matrix into another
one we must be sure of mapping the dimensions accordingly, otherwise results may
be affected and, in fact, this lead to better sonification results. Basically, every
encoded audio has a certain shape, usually [1, n_samples] where n_samples depend
on its duration and the sampling rate used to encode the audio. This encoding has
usually the temporal dimension flowing from left to right, so on the horizontal axis.
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In the embeddings and the latent computation, this audio is processed by several
transformations, so where is the temporal dimension oriented after that? Do they
change it?

To address these questions, an analysis for the embedding computation and
another for the latent representation were made. Regarding embedding representa-
tions, their computation involved the feature extractor and the AST model patch
embedder. The feature extractor output is the filter bank cited in Section 2.5.1 that,
if observed through an image, is just a padded (or truncated) vertical spectrogram
where the temporal dimension flows bottom up.

N.B: For the sake of space occupation, Figure 3.4 is rotated at a 90-degree angle.
Imagine it vertically oriented with the padded part (the flat green one) standing at
its top.

Figure 3.4: AST filter bank of shape [1024, 128] rotated by 90 degree obtained
by processing an audio file with AST feature extractor.

Since the filter bank is a spectrogram representation, it could be transformed
into sound. So, it makes sense to consider its temporal dimension as a starting point.
Now, this padded spectrogram passes through AST patch embedder that transforms
this matrix into another one of a fixed shape that the model can comprehend:
the embedding representation. In doing so, the filter bank is submitted to some
operations that have to be analyzed in order:

1. Unsqueezing: this operation just adds a single dimension along the specified
axis, so it does not change the temporal dimension orientation.

2. Transposition: this operation rotates and flips the input matrix, so, after this,
the temporal dimension flows from left to right.

3. 2D-Convolution: this operation simply computes the convolution between
the input matrix and the layer weights and bias, so no dimension orientation
changes. The output of this operation has three dimensions (that are: [768,
12, 101])

4. Flattening: this operation converts a 2-dimensional matrix into a vector. This
layer is applied to the last two dimensions of the output of the previous
convolution; thus we obtain a new [768, 1212] matrix, which still has a
horizontal flow of the temporal dimensions.
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5. Transposition: as said above, this layer rotates and flips the temporal di-
mension, now making it flow vertically and obtaining a final shape of [1212,
768].

So, AST embedding representations have a vertical temporal dimension
alignment. The above reasoning was made also for the HuBERT models leading
to the same result. Those transformers models have embeddings that are of a
different shape, but the time dimension orientation is the same.

Let us observe latent representation related to Descript Audio VAE. Here, the
flat audio (shape: [1, n_samples], again, horizontal temporal dimension) follows a
more complex treatment. We can refer to it from the list below:

1. Weighted norm 1D-Convolution: this is a normal 1-dimensional convolution
embedded into a weight normalization layer. Both the normalization and the
convolution, as we said before, do not change the temporal orientation.

2. 4x Encoder blocks: please refer to Appendix A to see the encoder block expan-
sion, but here we can say that after this the temporal dimension orientation
does not change, staying horizontally oriented.

3. Snake1d activation: since the activation functions maintain input values in a
certain range, this is similar to a clipping, so no changes have been made on
the axes.

4. Weighted norm 1D-Convolution: as said in the first point, no changes on the
temporal dimension.

This procedure is repeated few times by changing the kernel size of the convolu-
tional layers passing from different matrices shapes. The end point is reached for
the final latent shape [64, 431]. Since this procedure does not change the temporal
dimension orientation for the first time, it does not change it if iterated. So, the
temporal dimension remains unchanged from the beginning to the end, so it is
oriented horizontally.

This analysis highlighted an important fact: embeddings have to be transposed
before being mapped to the latent representation in order to maintain the temporal
dimension correctly aligned. Furthermore, these results can also be seen by the
lines orientation in Figures 3.2 and 3.3.

Another, final, observation on the embedding dimension has to be made. AST
embeddings discussed until now are considered the ones that were output of the
patch embedder and not from the embedder layer, that is the actual AST hidden
state representation that is shaped [1214, 768]. This was done because the embedder
outputs the patch embedding output after a head or tail addition of two tokens
(each one of shape [1, 768], called classification and distillation tokens respectively)
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and that are responsible of the classification process. So, in order to give the gating
layer the most pure data, avoiding any possible bias, the input of its computation is
set to the output of the patch embedder that has the shape of [1212, 768] and does
not have any information about a possible belonging class of the current sample.

3.0.3 Training
The training phase was done several times in order to train different model versions,
but it always been almost the same. In this section I will describe the general
workflow.

The first step was defining the model parameters that impacted on the training
process:

• Training batch size=64;

• Evaluation batch size=32;

• Logging steps=2;

• Training gradient accumulation steps=2;

• Evaluation gradient accumulation steps=1;

• Seed=42;

• Metric for the best model: loss;

• Logging strategy: steps;

• Save strategy: epoch;

• Evaluation strategy: epoch;

These values were the same among the different computations. Some others
were kept to the default ones that the Trainer object already had.

After setting those values, it comes the model training.For each model version,
different learning rates were tried. Initial values were on a large scale e.g. [1, 5e-1,
1e-1, 5e-2, 1e-2, ... 1e-5, 1e-6] combined with a reduced number of training epochs
(15). The model training, as anticipated, was made using the Hugging Face Trainer
and TrainingArguments classes. These objects can be very useful since they already
implement the forward pass, the gradient computation and the backward step that
must be executed during the model training phase. The models training were
made on the training dataset partitions described in Section 3.0.1. Since it was a
mapping task, loss measure was used as evaluation metric for the training process:
the lower the loss, the better the model. This was calculated by comparing the
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distance from the gating layer generated latent to the ground truth one in term of
Mean Squared Error (MSE) loss as this type seemed suitable for the task I was
trying to solve. During the training procedure, Trainer object also saved the model
checkpoints after each epoch that are useful to continue the training from a certain
point.

After training, results analysis was performed provided by the Trainer Hugging
Face class as logs with tensorboard [29]. It is a useful toolkit that allows to
analyze different model statistics in the training and evaluating phase such as the
computation time, number of samples per second, learning rate variations and loss
values. It has a smoothing option that regularize original loss curve that is usually
very segmented. This option uses a value in the range [0, 1]: 0 returns the original
curve, 0.99 the most smoothed one. This is helpful to focus on the trend of the
loss curve that should decrease for lower epochs becoming way more constant as
the epochs pass. I always used smoothing factor 0.99 unless differently specified.
So, after analyzing logs statistics in term of training and evaluation loss curves
learning rates and the model versions related to lower loss curves were selected.
These were set as starting point for further experiments involving more specific
learning rates that were trained for a higher number of training epochs (50).

3.0.4 Testing
After finding the most promising gating layers based on the loss metric, I tested
them by doing inference using the test set: split that was left unseen for both
AST/HuBERT finetuning and gating layer training. In first tests, this phase was
done considering only one sample. Then, after different experiments on different
model versions, data augmentation and data normalization pre-processing and
different post-processing rescaling and filtering types, 77 samples were considered
taking care of bring at least one sample for each of the 50 classes belonging to ESC50
dataset. Inference phase started with loading an already finetuned AST/HuBERT
model and extracting its modules for embedding computation. Next, the dataset
audio file was processed by these and its embedding representation was computed.
Descript Audio VAE model di not required any finetuning process since it performed
by inferring on an audio sample from ESC50 by using the whole encoder decoder
model. The track was sonified in a good way so the finetuning was not necessary.
After loading the Descript Audio VAE decoder, the steps made were:

1. audio loading after a 16 kHz resampling;

2. AST/HuBERT embedding extraction from the audio;

3. embedding mapping into the latent representation of the Descript Audio VAE
through the trained gating layer model;
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4. decoding the latent representation returned by the gating layer with the
Descript Audio VAE decoder model obtaining an audio waveform.

This procedure gave me good and bad results that will be discussed in the
following section. Moreover, all the results are available at link shown in Section
1.3. Despite that, the waveform amplitude was lower with respect to the original
one, which had a larger waveform shape on the vertical axis. So, sonification values
range was checked w.r.t. the original audio. The range of the original audio was
almost between [-1, 1], while the sonified one was in the range [-0.4, 0.4]. So, the
audio has been rescaled as I will show in Chapter 4.4. First results were treated
as tests and were tested with a subjective analysis. Most promising results, later,
were compared in this way and, furthermore, through an objective analysis.

This last one was about to compute the FAD and KAD metrics on the obtained
results. These metrics are useful to compare audios between them and obtain a
numeric result from which we can derive objective thoughts.

FAD stands for Fréchet Audio Distance and was introduced in 2019 by Kilgour
et al. [30]; they noted that existing audio evaluation methods often disagreed with
subjective evaluations made by human listeners. Their aim was to introduce a
new audio evaluation method that had to compare how a generated sample with a
clean studio recorded one. The main procedure consists on collecting two large sets
that are called target set, related to the generated audio samples, and the reference
set, composed by studio recorded samples, the ground truth of our experiments.
These are compared together after an audio embedding extraction made using a
pre-trained classification audio model; next, Gaussian mean and covariance are
computed from the audio embeddings and the Fréchet distance is computed on
the distance of the two multivariate Gaussian estimated on the embeddings. This
comparison method has been used in literature until these days, but it has to deal
with two main issues. First of all, it is set size dependent; for the reference and
target set MVGs are extracted, so these sets should have enough samples to model
those distributions. Then it assumes that audios follow a Gaussian probability
density function that is a good approximation, but not always true on generated
samples.

KAD, recently introduced by Chung et al. [31], overtakes these issues as it
is not set size dependent and the data distribution it assumes is not Gaussian
constrained. Its formulation derives from a weighted Maximum Mean Discrepancy
(MMD): a statistical test used to distinguish whether two samples belong to the
same distribution or not. This is done by evaluating sample relationships through
an unbiased Gaussian RBF (Radial Basis Function) kernel. For these reasons, I
computed FAD measure to be consistent on what was done in previous research
projects, but I also computed KAD metric as it should be better formalizing the
audio comparison problem. This was done by using the KAD toolkit provided by
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Chung et al. [31] and computing the comparison between the different sonifications
files against the original one.

Qualitative analysis, on the other hand, was made comparing sonified files
among them and the original dataset sample through a free software for audio
editing called "Audacity" (see https://www.audacityteam.org/). Test results
were evaluated by viewing how much their waveform was similar to the original
sample and also by listening to them. Finally, deeper qualitative analysis was made
on the 77 samples cited before. The aim here was to provide a human thought and
see if the results were aligned to what the objective analysis returned. Sonification
samples from the top 5 different versions of the gating layer were chosen.For those,
additionally to the standard qualitative analysis explained above, a mark from 1
to 5 (1=very low quality/totally different from the original, 5=high quality) was
assigned using as metric the audio similarity and the waveform shape similarity
with the original audio. Next, marks means for each model version were computed.
From them it has been possible to have a subjective metric for the process made
by each of the chose gating layer versions. More details on these results will be
given in the upcoming section.
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Chapter 4

Experiments and results

In this section we are going to see the detailed process of the model building by
discussing and analyzing the different performed experiments.

HPC by Politecnico di Torino was used to compute embeddings and latents
representation computation, the training and the inference phases. I used Legion
Cluster that consists in 24x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores as
GPU and 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores as CPU.

4.1 Initial models testing: LNR, CONV, ATTN
As said in Section 3 about the different strategies the model should have followed,
three initial versions were implemented.

1. v0 - LNR: A fully linear model that simply has two linear layers that converts
the embedding size into the latent one.

2. v1 - CONV: Since the convolutional layers obtained good results in the
majority of AI models a version with them should have been useful. In
order to not overload the memory usage the kernel was set to be a (10,
10) square matrix and the stride to be [2, 1] rectangular matrix. They are
followed by a ReLU activation function that prevents the effect of exploding
or vanishing gradient. Finally, two linear layers maps the dimension derived
by the convolutions into the latent dimension.

3. v2 - ATTN: Attention based model. This was copied from the attention
mechanism of AST model and was used as gating layer. The number of
attention heads was modified to 3. The rest of the values and the method was
kept equal as in the original implementation. The attention computation is
the same as shown in Figure 1.2.
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Each of the model version cited before is a class extending torch.nn.Module and
has the name of "Layer_vX" where X is the version number. The gating layer is
also a class extending torch.nn.Module and is composed of a MSE loss function
and one of the "Layer_vX".

Most promising loss curves after a 15 epochs training are displayed in Figure 4.1.
Those characterized by definitely too high loss values were excluded. These were
obtained for higher or extremely low learning rates so those models were discarded.
Discarding useless loss curves allows us to see clearly the trend of the best ones.
Among these, we are interested on those models that have the best curves, but
what is the rule to assess that? The answer is not well defined, but there are some
reasoning that are commonly followed.

1. Loss curves tends to become constant by increasing the number of epochs.
This has to be kept in mind since we have to choose those curves that have the
chance to become lower and not the ones that are clearly at their minimum
for a small number of epochs.

2. Overfitted models curves are usually characterized by learning rates that are in
a range that does not match with the model itself, so we can discard them to
choose other values that are in a most promising set of values. These learning
rates, despite being lower than others, output often higher values loss curves,
so, they produce models that perform worse.

At the right of this image, and of the majority of the figures that will follow
there are also loss curves related to the validation process. In normal condition
they should mimic the same behaviour of the training losses. If not so, we should
pay further attention to the output of these models.

Figure 4.1: Gating layer LIN, CONV
and ATTN best training losses after 15
epochs

Figure 4.2: Gating layer LIN, CONV
and ATTN best validation losses after 15
epochs

After a 15 epochs training only a small range of learning rates fits well for
our model versions. This makes sense since the different version of the model are
based on different architectures so each one has a set of learning rates on which

27



Experiments and results

it performs better. We can see that CONV and ATTN, that are more complex
solutions, have almost the same learning rates.

Now we can train those model versions for more epochs on a more specific set
of learning rates that comprehend those on which the model performs better. Here
the range of learning rates (often shortened as lr) [0.01, 0.005, 0.001, 0.0005, 0.0001]
has ben used. Last two values, that were not present among the best ones, were
also used to see if the models were really overfitting.

Figure 4.3: Gating layer LIN, CONV
and ATTN best training losses after 50
epochs

Figure 4.4: Gating layer LIN, CONV
and ATTN best validation losses after 50
epochs

These results are filtered with respect to the most promising learning rates. The
number of epochs turns out it is reasonable since the curves seems almost stable.
We can conclude that the best models up to now are:

• LIN: lr=[0.005, 0.001]

• CONV: lr=[0.01, 0.005]

• ATTN: lr=[0.005, 0.001]

Finally, models were used to compute the final inference step. The followed
approach was explained in detail in Section 3.0.4. Waveforms were obtained by
mapping one casual test split embedding into the Descript Audio VAE latent space
and then decoded by this model decoder. The result is presented in Figure 4.5.

Starting from the top we have the original audio sample named 1-7974-A-49,
and is related to the usage of a saw and we can clearly distinguish the movement if
we listen to it. If we can not do that just imagine that each peak of the waveform
is a run of the saw. We then have a pause characterized by silence in between 2.5
and 3.5 seconds, then it resumes until the duration of 5 seconds where the audio
ends. The sonifications are the following samples and, as we can see, are not so
good, unless for the CONV model with learning rate=0.005 that is showing the
most similar waveform among those compared. Other waveforms are just noise if
referenced to the original audio. By listening to the samples we can confirm that
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Figure 4.5: Sonification results for the different Gating Layer models after 50
epochs training

aspect. LIN version produced waveforms characterized by only continuous random
noise. ATTN version audios are similar to those obtained with LIN, but are even
most disturbed. The sound is similar to that produced by the electric current.
Finally, CONV version has a strong similarity with LIN samples in terms of audio
pitch. With respect similarity with the original sample CONV with lr=0.005 is the
most similar, where we can also hear some changing pitch drafts related to the saw
movement. Despite that, the audio reconstruction is not particularly good.

4.2 Temporal dimension alignment
Here I want to show a fast comparison between the model versions that do not
have the input transposition, and those that have it taking back what was said in
Section 3.0.2. I want to clarify that both procedures were tested on model versions
shown in Section 4.1. The key difference is only the missing input transposition
necessary to map the input temporal dimension accordingly to the output one. The
results are showed w.r.t. model version. Before showing the sonification results, we
can look at the training losses. For the sake of simplicity I will only report loss
curves obtained at the end of the final training phase after 50 epochs.

By comparing them with the previous Figure 4.3, we can clearly see that the
transposition of the input does not have such a big impact on the training results.
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Figure 4.6: Gating layer LIN, CONV
and ATTN with input transposition best
training losses after 50 epochs

Figure 4.7: Gating layer LIN, CONV
and ATTN with input transposition best
validation losses after 50 epochs

Loss curves are quite similar in term of shape, depicting stable versions of the
model; also the computation times are similar, aspect that should be the same as
in this case since the model architecture was not changed. Despite that, within this
shrewdness, loss values are lower; this should lead to better audio reconstruction
than what we seen before, meaning that the temporal dimension idea was necessary.
The model versions that have the higher loss drop are LIN and ATTN versions
that were those that performed worse overall. Model version CONV, instead, has
lower drop, but it is better than before too. Let us pass to practical results by
seeing how inferred sonification looks like in Figures 4.9, 4.11, 4.13 by comparing
them with the samples obtained with the gating layer versions trained without the
temporal dimension artifact depicted in Figures 4.8, 4.10 and 4.12.

Figure 4.8: LIN 50 epochs: no input
transposition

Figure 4.9: LIN 50 epochs: input trans-
position

From figures, we can say that sonifications obtained after transposing the input
are definitely more precise than those obtained without except for gating gayer
ATTN. We can clearly see how models LIN and CONV, trained with the input
transposition, provide results that follow the input waveform behavior in a better
way despite not being vertically high as the original sample. By listening to
the sonified samples we can confirm these aspects noting that the pitch and the
amplitude are similar among the sonified audios. By seeing that two versions over
three are enhanced we can conclude that the attention based gating layer version
is not so suitable for the AST embedding to the Descript Audio VAE latent space
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Figure 4.10: CONV 50 epochs: no
input transposition

Figure 4.11: CONV 50 epochs: input
transposition

Figure 4.12: ATTN 50 epochs: no in-
put transposition

Figure 4.13: ATTN 50 epochs: input
transposition

mapping specific case.
Since these model were retrieving good results and they had pretty different

architectures they were taken as baseline for this thesis project.

4.3 Data augmentation & normalization
As a usual approach tried for improve model performances data augmentation
and data normalization were also tested. There exist several methods to do both
procedures.

Data augmentation was tried with torchvision.transforms.v2 library since em-
beddings could be assumed as a sort of image with only one channel (as a gray
scale image). This library offers different types of image processing techniques.
The one tested was gaussian blur that consisted into an addition of a random noise
to the embedding tensor that make its representation more opaque if we think
at the embedding as an image. This transformation requires a kernel size and a
range from where the sigma will be extracted. This sigma value would be the
impact of the noise addition (the more it is high, the more the image would be
noisy). After few tests made on a random image outside the embedding context,
kernel was set to size=(7, 13), sigma=(0.1, 2) since the results obtained with these
parameters were producing few noisy images among the whole batch, and those
noisy images were affected with a decent noise quantity that made them blurred,
but still understandable. This procedure was applied on the embeddings at the
batch level extraction. In this way a blurred embedding would conduct to the same
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latent representation seen during another epoch. Moreover, data augmentation was
made only on the training set since the validation and test samples should not be
affected by these type of transformations.

On the other hand, for the normalization procedure, min-max normalization
formulation was used. It is shown in equation 4.1.

normalized_output = (input − inputmin)/(inputmax − inputmin) (4.1)

Gating layer baselines were trained with these data augmentation strategies
alone and with their combination in the same manner explained in Section 3.0.3.
The best loss curves for the three versions of the model are shown in Figures 4.14
and 4.15.

Figure 4.14: Gating layer baselines
LIN, CONV and ATTN with blur data
augmentation: best training losses after
15 epochs

Figure 4.15: Gating layer baseline LIN,
CONV and ATTN with blur data aug-
mentation: best validation losses after 15
epochs

After 15 epochs training, data augmented model versions returned loss curves
that were so similar to those obtained for the baseline indicating that the Gaussian
blur effect is not very useful for the training process and does not affect so much
also the evaluation. We have also to observe that computation times are more
or less 10 times higher than the ones related to the baseline. For these reasons,
gaussian blur data augmentation was discarded.

Now, Figure 4.16 and 4.17 show training losses of baseline models after applying
embedding and latent normalization.

If we look at it overall we can see that loss values are the lowest up to now, so
we may conclude that the best losses, and, consequently, that these are the best
models; but, if we have a closer look to the non smoothed version of the curves we
can find an interesting aspect.

32



Experiments and results

Figure 4.16: Gating layer baseline LIN,
CONV and ATTN with embedding and
latent data normalization: best training
losses after 15 epochs

Figure 4.17: Gating layer baseline LIN,
CONV and ATTN with embedding and
latent data normalization: best valida-
tion losses after 15 epochs

Figure 4.18: Gating layer baseline LIN, CONV and ATTN with embedding and
latent data normalization: best training losses after 15 epochs, NO SMOOTHED

Figure 4.18 shows how the models are saturating after few computation steps.
We can see that after 60 steps (equals to 2.4 epochs) the model is not learning
anymore since the loss curve becomes stable. So, we expect that the sonification of
these model versions would not lead to significant results. Furthermore, we expect
that also training this variation of the model for more epochs will be useless. This
could be due to the fact that all the embeddings on whose the model is trained on
comes from the same starting model (AST or HuBERT). So they belong to the
same range of values that is equal across them, so normalizing input is useless in
this case.

Finally, the combination of these two approaches was also tested. This approach
has the computational time of the gaussian blur variant and the low loss values
of the normalization part; since both input enhancement methods were discarded,
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also this one will end up this way.

4.4 Reconstructed audio rescaling
As we can see from the previous Figures like 4.9, 4.11 and 4.13, despite the good
reconstruction, all the generated waveforms are limited in their vertical amplitude.
The original input sample is always vertically wider. These differences result in
sonifications that are characterized by a lower volume.

In order to solve this issue, a standardization procedure is mandatory. Be careful
that this procedure is not part of the model, but it is a post-processing method
to make the generated samples more similar to the original one. The rescaling
strategy depends on two parameters: the range of values the output should assume
and where to apply the rescaling.

Regarding output audio values these were chosen to be in range [-1, 1] as a usual
normalized audio or in min-max range, where min and max are the minimum and
maximum values of the input audio sample.

On the other hand, for the place where the rescaling should have been applied
the steps were at reconstructed audio level or at embedding level (once extracted
from the model we want to sonify).

Results obtained on the sample seen until now are shown in Figures 4.19 and 4.21.
For these and the image that will follow three sonifications are shown characterized
by: no rescaling, [-1, 1] rescaling and minmax rescaling respectively. Since the
model results are just rescaled by maintaining the same waveform shape, in order
to see the differences in a better way among the different type of rescaling strategy,
only the results coming from the best models up to now LINlr=0.005 and CONVlr=0.01
will be shown.

Figure 4.19: LINlr=0.005 sonification re-
sults after 50 epochs, embedding rescal-
ing

Figure 4.20: CONVlr=0.01 sonification
results after 50 epochs, embedding rescal-
ing

In Figure 4.19 and 4.20 we have the sonification results for the model cited
previously. We can say that the minmax rescaling was the best method for the
embedding rescaling since the values belonging to that representation could be
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in any range and if the rescaling is made in [-1, 1] a lot of information would be
lost. Despite that, we can also observe that the embedding level rescaling changes
dramatically the audios generated by both models that were following well the
input audio shape. So, since things are getting worse, the embedding level rescaling
method would be discarded.

Figure 4.21: LINlr=0.005 sonification re-
sults after 50 epochs, audio rescaling

Figure 4.22: CONVlr=0.01 sonification
results after 50 epochs, audio rescaling

Passing to the reconstructed audio level rescaling shown in Figure 4.21 and
4.22 we can observe how efficient is rescaling on the final audio; the efficiency is
given by a rescaled audio that still follow the original waveform shape, but has a
wider vertical range, providing a sample that is more similar to the original one
than the not rescaled version. The results for the ATTN gating layer version are
not considered, as this model performed poorly as we can recall from Figure 4.13.
Since this is a post processing method, not so computationally expensive, and that
enhances output reconstruction, so it will be considered in future analysis.

Regarding the rescaling values range, from this audio, it seems that the two
tested ranges are quite the same. This sample, in fact, is characterized by seven
(and a half) well defined crests and a longer silence between the fifth and the
sixth. Those crests are well distinguishable from the flat line. But what happens
if we reconstruct another audio? ESC50 consists of several sounds and not all
are characterized by these features. Let us have a look, for example, at sample
2-120587-A-6 that is labeled as Hen depicted in Figure 4.23 and 4.24.

This is the case of peaks related to a lower sound (lower difference between
the crest and the silence). Audio rescaling in range [-1, 1] will produce rescaled
audios that are characterized by a background noise since the rescaling strategy
multiplies all the values inside the waveform by the maximum value of the input
audio absolute value function, making the fine output belong to the whole [-1,
1] range. Overall, we can see that LIN overcomes CONV version in this sample
reconstruction.

Furthermore, this aspect could be seen better by rescaling those sonified audios
deriving from sounds like wind, opening doors, or flowing water that are character-
ized by very weak noises. An example is the Pouring water sample in Figure 4.25
and 4.26.
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Figure 4.23: LINlr=0.005 2-120587-A-6
sonification results after 50 epochs, audio
rescaling

Figure 4.24: CONVlr=0.01 2-120587-A-6
sonification results after 50 epochs, audio
rescaling

Figure 4.25: LINlr=0.005 1-118559-A-17
sonification results after 50 epochs, audio
rescaling

Figure 4.26: CONVlr=0.01 1-118559-A-
17 sonification results after 50 epochs,
audio rescaling

Another time minmax rescaling returns better results that the [-1, 1] range
rescaling. For this reason, minmax rescaling was used as post-processing technique.
In this way, the output is more similar to the input sample and the background
noise is kept lower. Despite that, this rescaling method enhances background noise
too, and this can be noted especially where there should be a silence. In those
parts, each sample seen until now has at least a small background noise component
that should be avoided. This is an intrinsic issue since the rescaling multiplies each
audio value by the same quantity.

So, output audio filtering was focused too. In this way, we could apply an
audio rescaling post processing on the whole dataset and, maybe, improve audio
characteristics reducing background noise with the additional filter. So, few audio
filters were also tested trying to remove the background noise. Note that these tests
were made only on the audio cited before as they can be seen as critical audios,
with very different characteristics among them. After these tests, on fewer samples,
most promising filters were selected and applied to all the sonifications to research
if it could leverage or not the output audio quality. These filters were applied after
a minmax rescaling of the audio provided by the sonification model.

Different filtering approaches were observed, following diverse ideas for each of
them. The main ideas were basically three:
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1. Threshold filtering: every output audio values under this threshold is set
to 0.

2. Ad-hoc function filtering: the output audio is processed by a function
retrieving a filtered audio.

3. Wiener filtering: an existing filtering function.

First approach is thought to setting to 0 all the values below a certain thresh-
old. Different tries with different thresholds values were experimented. Precisely,
threshold was set to a certain percentage of the output audio, making this solution
scalable across the different samples. The percentage of chosen thresholding were:
5%, 7%, 10%, 15% and 25%. The best one was dependent to the audio sample.
This value was chosen related to the quantity of noise that has been filtered and
the quality of the audio that was left. Lower threshold was not filtering enough,
leaving the majority of background noise, while higher thresholds, filtered too much,
leading to final audios that have also significant parts set to 0. Next, not all audios
had the same waveform height as we seen; this aspect silenced some significant
audio peaks or performed very disturbed samples. This lead to a method that is
not general, but very specific to the sample we are processing.

In fact, this way of filtering will produce some sort of segmented audios: audio
characterized by a segmented waveform instead of a continuous one. If the value in
that instant is below the threshold that will be set to 0, independently to what
there is before or after.

Figure 4.27: Example of segmented audio waveform.

An example of this phenomenon can be seen in Figure 4.27 where we have
the original audio as first, the second one is the rescaled audio using the minmax
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approach and then we have audios filtered using the different thresholds filtering.
All the considered audios were produced by the same model. As we can see from
the last sample, the critical part, where in the original sample there is silence, is
filtered in a segmented way. Furthermore, in this particular case, the threshold
should be augmented to better filter the background noise in these areas. Since
the approach is very dependent from the processed track it was discarded.

Thinking about this aspect, I came up with the second approach that simply
computes the exponential of the audio with a certain value. The exponents that
I tested were 2 and

√
2. The idea was quite simple: to elevate each value of the

output audio file to a certain number making the values below 1 lower, and those
above higher, by maintaining a continuous representation of the audio file/waveform.
This technique is also invariant to the waveform vertical amplitude, by working
always the same for all the audios, independently the sound they are. Through
the visual and auditive tests performed on these exponents 2 was chosen as the
best one. Results related to these techniques are in Figure 4.28 where from the top
to the bottom we can find: original sample, non filtered sonification, sonification
filtered with sqrt exponent and sonification filtered with 2 as exponent.

Figure 4.28: Example of exponential filtering.

Finally, also Wiener filter was tested; an already implemented approach available
with the scipy library. It seemed that the filtered audio was almost the same (if
not identical) to the rescaled model output (ref. Figure 4.29), this method was
then discarded, in order to keep only the most promising one: the audio filtering
with exponential 2 transformation that from now will be called squared filtering.

Concluding, after analyzing all the losses and the sonification results in a visual
and a listenable manner (this was not covered in this document for obvious reasons,
but you can listen to all the sonification by following the link at the end of Section
1.3), we can observe that the best gating layer models up to now are LIN with
learning rate 0.005, 0.001 and CONV with learning rate 0.01, 0.005. These could
perform even better if followed by a post-processing minmax audio rescaling and a
minmax rescaling+squared filtering.
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Figure 4.29: Example of Wiener filtering. From the top we have the original
sample, the sonification rescaled into minmax range and the Wiener filtered sonifi-
cation.

4.5 More model testing: LIN and CONV varia-
tions

After inspecting some rescaling and filtering techniques and their results, it is time
to go back to the model architectures. We have completed our pipeline by having
a few version of model architectures, some audio post-processing and we obtained
good results from them also with rescaling/filtering combinations. We compared
the results of the different techniques retrieving useful information on which were
the most promising approaches. Now it is time to modify the existing architecture
of the gating layer models trying different layer types in order to see how they
affect the results and assess if they can leverage the model performances. Most
promising versions, LIN and CONV, were taken and some layers were added to
them, in order to obtain other versions that were related somehow. Different layer
typologies were put such as dropout layers, normalizations and additional activation
functions. To have a better understanding of the other model architectures let us
see them through a comparison with respect to the initial existing models seen at
the beginning of Sections 4.1.

• v3 - CONV-R - Convolutional, ReLU, Convolutional, ReLU, Linear, Linear;

• v4 - CONV-D - Convolutional, Convolutional, ReLU, Dropout(p=0.2),
Linear, Linear;

• v5 - CONV-RDD - Convolutional, ReLU, Dropout(p=0.1) Convolutional,
ReLU, Dropout(p=0.1), Linear, Linear;

• v6 - CONV-LN - Convolutional, Convolutional, ReLU, Layer normalization,
Linear, Linear;

• v7 - CONV-GN - Convolutional, Convolutional, ReLU, Group normalization,
Linear, Linear;
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• v8 - CONV-RDN - Convolutional, ReLU, Dropout(p=0.1), Convolutional,
ReLU, Dropout(p=0.1), Layer normalization, Linear, Linear;

• v9 - LIN-D - Linear, Dropout(p=0.2), Linear;

• v10 - LIN-R - Linear, Linear, ReLU ;

• v11 - LIN-C - Linear, Convolutional, ReLU, Linear, Linear;

Versions from 3 to 8 are inspired to the model version number 1 (CONV), while
9 to 11 are inspired to version 0 (LIN). We can see the variations from the initial
version written with italic text. New layers were added by focusing on where to
insert them and which layer type to put in that point. First of all, for model version
CONV a critical point was in between the two convolutional layers. Furthermore, a
good point to place the dropout layer, in geneeral, is after the activation function,
so it was placed there. Layer typology, instead, was made quite random instead;
an approach that is usually taken on model architecture experiments. Training
strategy was the same as before, employing 15 and 50 epochs and different learning
rates. After the longer training a comparison with each new version loss curves
were compared with those of the model from which it came from.

Figure 4.30: LIN derived models train-
ing losses, 50 epochs

Figure 4.31: LIN derived models vali-
dation losses, 50 epochs

Results (Fig. 4.30, 4.31) for LIN-D and LIN-R were a bit higher than LIN, so
I expect similar results from them. Despite that LIN-R had almost flat curves
in validation part, so I do not expect any good results from that model. LIN-C,
instead, had lower losses with respect to LIN for the training and validations parts.
These curves are also related to higher learning rates (0.01 and 0.005).

Speaking about CONV related models (Fig. 4.32, 4.33) CONV-R and CONV-
RDD had a remarkable aspect that consisted in a gap inside the training and
validation losses by passing from learning rate 0.01 to 0.005. CONV-RDN, which
has a similar architecture, has a lower gap and this could be due to the normalization
layer that there is in this last model. By the way, all these losses end up in the
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Figure 4.32: CONV derived models
training losses, 50 epochs

Figure 4.33: CONV derived models
validation losses, 50 epochs

region of CONV loss. CONV-D and CONV-GN have similar loss curves to CONV
and no particular aspects need to be highlighted. CONV-LN, finally, has losses that
are further from any of the previous models, but they still stand in a reasonable
region.

After having seen and discussed the model versions trained for 50 epochs let
us have a look at if we are getting what we expect by the waveform analysis. In
order to give a comparison of the models performances results are related to only
one sample of those shown before, post-processed with minmax rescaling. Results
related to other samples and different filtering methodologies will be analyzed in
Section 4.7. For comparison purposs, in Figure 4.34 the original sample is followed
by sonification results provided by the best LIN (2nd and 3rd sample) and CONV
(4th and 5th sample) models, so here there ar baseline related results.

Figure 4.34: LIN and CONV 1-7974-
A-49 sonifications

Figure 4.35: LIN-D and LIN-C 1-7974-
A-49 sonifications
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Figure 4.36: LIN-R 1-7974-A-49 sonifications

In Fig. 4.35 and 4.36 we have the sonification results of the versions derived from
gating layer LIN. As we could expect, from the loss curves seen before, LIN-D and
LIN-C, whose are similar to LIN, approximate well the audio waveform carrying a
small amount of noise in between the peaks (silence part). LIN-C seems to better
mimic the original sample behavior with more precise heights. This could be due
to the fact that LIN-C adds, among the additional layers, also a convolutional one,
taking advantage of this. LIN-R, on the other hand, performs poorly as we also
expected. This version with learning rate 0.005 has a loss curve that is too much
higher, and the waveform is reconstructed with basically only noise. Learning rates
0.001 and 0.0005 are better since the sonification is not like the previous one, but
the audios remain very disturbed.

Figure 4.37: CONV-R and CONV-
RDD 1-7974-A-49 sonifications

Figure 4.38: CONV-LN and CONV-
GN 1-7974-A-49 sonifications

Figure 4.39: CONV-D and CONV-RDN 1-7974-A-49 sonifications
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Figure 4.37 are related to CONV-R and CONV-RDD, those models that pre-
sented a gap in between the training losses. This can be noted in the results. Both
models, in fact, are characterized by a reconstruction that is made with just noise
for the learning rate=0.01. It then gives a more understandable one when passing
to the next lower learning rate, with a good silence part that is not so disturbed,
but, as the loss curve says, CONV version is still better being better in reducing
the waveform height in between the peaks.

In Fig. 4.38 we have the results produced by models CONV-LN and CONV-GN,
the versions in which I experimented with the type of normalization. We can
clearly see that changes due to its type variation are so minimal but these were the
expected sonification after looking at the training and validation losses. Despite
the losses being similar to the of CONV the sonifications are not so precise bringing
two main peaks instead of 7 and a half. By the way, they grant a good behavior
on silence part.

Finally, from Figure 4.39 we can see the effect of the dropout layer on CONV-
D, that does not change so much the CONV baseline results shown in Figure
4.34. CONV-RDN, finally, shows poor results with two main peaks as CONV-LN
and CONV-GN instead of seven and a half crests. This could be due to the
normalization layer that could be not so suitable for the task we want to solve.
The silence part is good, but this can not overcome the audios obtained from some
other versions.

From these examples we can conclude that the model, as it should be, is the
principal cause of the audio output, and the post-processing rescaling and filter
could be helpful sometimes, especially with those models that are not as precise
in terms of loss curve. To the best models LIN and CONV we can add LIN-C,
LIN-D and CONV-D that had a good comparison in terms of losses and sonification
results.

Unfortunately, this is true for the majority of audio samples. But there are some
classes where these versions just can not perform in a good way. This is the case of
continuous sounds like washing machines, people clapping, trains or planes that
have not a clear division between sound and silence parts. We have an example in
Figure 4.40 where are shown the waveform produced by gating layer best versions
derived from a washing machine recording.
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Figure 4.40: LIN, CONV, CONV-D, LIN-D, LIN-C 2-262579-A-45 sonification
results after 50 epochs, audio rescaling

4.6 Non-spectrogram based transformer: Hu-
BERT

As last experiment, the entire procedure was made starting from HuBERT embed-
dings, that does not process the audio spectrogram during its decision process (see
Section 2.5.2 for more details about that). In this way a more general analysis on
this novel mapping approach would have been set.

First of all, as done for AST, HuBERT finetuning was needed, since the baseline
which I used was trained on 960 hours of librispeech, and so speech audios. Some
already finetuned versions of HuBERT on ESC50 were found, but I decided to
fine-tune it by myself using the same parameters, except for the number of epochs
and, after 50 epochs, I obtained a validation accuracy of 83.5% at epoch 50.

After that, th finetuned model was imported and used to compute its embeddings.
This procedure was a bit different with respect to the AST model since HuBERT
does not have a patch embedder, but just a few lines of code before the model
encoder in the class named HubertModel. Despite that, a custom method was built
that returned the embedding representation of the first hidden state of the model.

At this point, gating layer code was modified accordingly to take as input the
HuBERT embeddings instead of the AST ones. Consequently, all the versions were
trained for the usual 15 and 50 epochs. Training results of all versions are shown
in Figures from 4.41 to 4.44.

From graphs, we can clearly see a loss gap in between the learning rate of model
versions CONV-R, CONV-RDD, and CONV-RDN. We are not new to these gaps
that were already present in the loss given after the training with AST embeddings.
This gap is also present in validation losses. We can see that the majority of the
model have small value losses overall. Among those with the lower values we can
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Figure 4.41: LIN, CONV and ATTN
best training losses, 50 epochs

Figure 4.42: LIN, CONV and ATTN
best validation losses, 50 epochs

Figure 4.43: CONV-R to LIN-C best
training losses, 50 epochs

Figure 4.44: CONV-R to LIN-C best
validation losses, 50 epochs

find LIN, ATTN, LIN-C, CONV and CONV-R with the smallest learning rates
while the worst is still version LIN-R. We can further note that some of the best
models were also the best model versions after the training with AST embedding
too. In this list we can find LIN, LIN-C and CONV. An important enhancement
was made by gating layer ATTN that reached the second lowest loss value, so we
should expect great improvements in its sonifications from those obtained with AST
embeddings. Other models should perform in line with the previously analyzed
sonifications.

In order to address this aspect, we are going to analyze the results produced by
these gating layer versions sonifying HuBERT embeddings coming from the three
audios already analyzed in Section 4.4.
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Figure 4.45: HuBERT sonifications from best models versions (ATTN and LIN-
C), no rescaling

Image 4.45 shows best models sonification results. We can see how a post
sonification rescaling is be useful also with this model embeddings. So, let us
discuss the rescaled results associate with the all the models versions related to the
best learning rates w.r.t. their loss value.

Figure 4.46: HuBERT sonifications
from gating layer LIN, CONV, ATTN,
CONV-R best learning rates, minmax
rescaling

Figure 4.47: HuBERT sonifications
from gating layer CONV-D, CONV-
RDD, CONV-LN, CONV-GN best learn-
ing rates, minmax rescaling

From figures 4.46, 4.47 and 4.48 we can see how the reconstructions are generally
better than those obtained from AST embeddings sonifications with all the gating
layer versions. As we expected LIN-C and ATTN performed in a good way providing
an output with well distinct peaks and a silence without background noise. LIN
outputs a waveform with high definition crests that approximates the original
sample in a remarkable way. LIN-R, on the other hand, has background noise
before and after each crests and also on the silence part. CONV-RDD an CONV-
RDN gives results similar to CONV-R due to the similar gating layer architecture,
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Figure 4.48: HuBERT sonifications
from gating layer CONV-RDN, LIN-D,
LIN-R, LIN-C best learning rates, min-
max rescaling

Figure 4.49: HuBERT sonifications
from best gating layer LIN, ATTN,
CONV-R, LIN-C minmax rescaling and
filtering

while CONV-LN and CONV-GN output a discrete result.
In general these are good results by their own and they do not need any filtering,

but, to have a comparison with the previous section in Figure 4.49 there are the
square filtered sonifications deriving from the best gating layer versions.

We can note that the filtering approach on these sonifications is anything but
good. The crests are radically reduced, transforming the good initial audio quality.
The filtering technique ruins the output provided by the stand alone models, so
should be avoided on sonifications obtained from HuBERT embeddings.

Finally, let us analyze those other particular samples seen in previous sections.
From Figures 4.50 and 4.51 we can note how the models can better reconstruct
audios with lower volumes without affecting the output quality. CONV-R has some
troubles in the 2-120587-A- hen reconstruction leading to a sonification that is not
particularly good.

Figure 4.50: HuBERT sonifications of
sample 2-120587-A-6 from gating layer
LIN, ATTN, CONV-R, LIN-C minmax
rescaling

Figure 4.51: HuBERT sonifications of
sample 1-118559-A-17 from gating layer
LIN, ATTN, CONV-R, LIN-C minmax
rescaling

Figures 4.50, 4.51 and 4.52 show how remarkably gating layers trained on
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Figure 4.52: HuBERT sonifications of sample 1-21896-A-35 from gating layer
LIN, ATTN, CONV-R, LIN-C minmax rescaling

HuBERT embeddings reconstruct better also those continuous sounds; this model
type versions provide an output with continuous volume changes that mimic the
original sample in a good way, very different to the sonification in Figure 4.40.
This aspect could be due to the fact that while AST uses two tokens for the final
predictions, while HuBERT exploits a mean of the hidden state values. Since AST
embeddings were used without those tokens, as they could have biased the gating
layer mapping and, so, the sonification process, these tensors had lower information
with respect to the ones belonging to HuBERT. So, the logic behind the model we
want to explain could impact on the quantity of information carried by its internal
representations.

4.7 Qualitative and quantitative analysis
In order to attribute an objective evaluation for the sonification process, a final
quantitative analysis was performed. By using KAD and FAD metrics the sonifi-
cations obtained from AST and HuBERT model embeddings were evaluated; the
sonifications were post processed with the two main methods: minmax rescaling
and the rescaling combined with the squared filtering. KAD toolkit described in
Section 3.0.4 was used, and that allowed to compute the two metrics by simply
running a command. Then, a qualitative analysis was performed on the same
samples; finally the two evaluation methods were compared in order to say if they
were providing trustworthy results.

Objective metrics are shown in Figures 4.53, 4.54, 4.55, 4.56. For each model
version, we have a point mapped to the value of that KAD metric computed on its
output samples. A dotted horizontal line meets the lower KAD point that is related
to the best gating layer version. Vertical lines are there just to better connect
points with related model versions. KAD metric was computed by comparing one
sample at a time with the original sound from ESC50 dataset. As we can see in
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the original column, the lower the score, the better the model. This column, in
fact, is not related to any obtained sonification, but is just the KAD computed
by comparing the original audio with itself. While images provide an overall idea
that allows a fast comparison between the model versions, KAD scores are not so
clear due to the large scale. To address that issue four tables with the top 5 best
gating layer versions for each model embedding type+post_processing method are
provided (see Tables from 4.1 to 4.4). Tables provide also a view on FAD metric
and, as we could expect from its set dimension issues, it gives useless values. For
this reason, I relied on KAD score for the sonification objective evaluation.

Figure 4.53: KAD metric computed on
AST sonifications with post processing
rescaling

Figure 4.54: KAD metric computed on
AST sonifications with post processing
rescaling and filtering

Model version KAD score FAD score
CONV-RDN lr=0.01 84.546934 NaN
CONV-D lr=0.005 85.093417 NaN
CONV-LN lr=0.01 86.005913 -inf
CONV-GN lr=0.01 86.120367 -1.815338e+30

LIN-C lr=0.005 86.124735 3.935136e+30

Table 4.1: Top 5 Gating Layer versions trained on AST embeddings with audio
rescaling as post processing

From the first two figures, we can see that model version ATTN has the worst
score overall and, also the other one is not among the best values. This also happens
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Model version KAD score FAD score
CONV-RDN lr=0.01 84.474238 2.191557e+31

LIN lr=0.001 84.503346 6.116645e+30
CONV-LN lr=0.005 84.741687 -3.167567e+29
CONV-LN lr=0.01 85.066978 1.710227e+30
CONV-D lr=0.005 85.077784 -2.925982e+30

Table 4.2: Top 5 Gating Layer versions trained on AST embeddings with audio
rescaling and filtering as post processing

for CONV-R and CONV-RDD lr=0.01 and LIN-R, which were the models that
also provided bad results for the initial qualitative tests. From the tables, instead,
we can find that what were the best versions at first sight as CONV-R, LIN-D
and LIN-C, are not numerically the bests that are surpassed from CONV-RDN,
CONV-LN and CONV-GN that were not so particular during previous tests. This
could be due to the fact that this analysis were computed on 77 samples, with
at least one sample for each class. So maybe I took a "lucky" sample that the
model could reconstruct in a good way, or simply I made some mistake in the
evaluation since I am not an expert of audio similarity evaluation. Furthermore, we
can say that the theory on audio filtering was correct: it could enhance, in general,
models outputs. We can see that by the lower values in Table 4.53 w.r.t. those in
Table 4.54. Furthermore, we can observe that CONV-RDN with learning rate=0.01
remains the best model with both rescaling and rescaling+filtering post processing
methods. From this, we can conclude its ability into audio reconstruction.

On the other hand, if we look at the other figures and tables we can see how
the gating layer architectures performs in mapping HuBERT embeddings. From
the models dots we can see that most of the model performs better with this set of
embeddings, giving proof that the HuBERT hidden state carries more information
than the AST internal representation.

Model version KAD score FAD score
ATTN lr=0.005 83.136840 -3.083930e+30

LIN lr=0.01 83.801301 inf
LIN lr=0.005 83.811109 -6.868389e+30

ATTN lr=0.001 83.829551 -inf
LIN-D lr=0.01 84.218821 -7.106036e+30

Table 4.3: Top 5 Gating Layer versions trained on HuBERT embeddings with
audio rescaling as post processing
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Figure 4.55: KAD metric computed on
HuBERT sonifications with post process-
ing rescaling

Figure 4.56: KAD metric computed on
HuBERT sonifications with post process-
ing rescaling and filtering

Model version KAD score FAD score
LIN-D lr=0.01 83.508207 1.205736e+31
ATTN lr=0.001 83.511286 2.044940e+29
ATTN lr=0.005 83.689330 inf

CONV-D lr=0.01 83.707093 9.274549e+3
CONV lr=0.005 83.797345 inf

Table 4.4: Top 5 Gating Layer versions trained on HuBERT embeddings with
audio rescaling and filtering as post processing

We can observe how ATTN passes from the worst to the best gating layer
being two times into the top 5 with learning rates 0.005 and 0.001. LIN also has
this characteristic followed by LIN-D. This demonstrates what was said before,
where really simple models (fill linear or similar) or very complex ones (attention
based) are the best to compute this task. Furthermore, also the other architectures
work well by being less far from the horizontal best KAD line than those points
regarding AST gating layer versions. This time, filtering has a destructive tendency,
since the associated KAD scores are higher than those post-processed by simply
rescaling method. Moreover, also KAD scores for models that are enhanced with
this procedure are not so far from the values without this post-processing, so it
should be avoided the usage of this technique within these specific model versions.
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Finally, these results made possible to choose the best performing models and
make a subjective qualitative analysis on them. As already said, I assigned a mark
on each of the 77 sonifications provided by the four configurations in which the
gating layer model was used. These configurations were:

1. sonify AST embeddings and then minmax rescaling;

2. sonify AST embeddings and then minmax rescaling+filtering;

3. sonify HuBERT embeddings and then minmax rescaling;

4. sonify HuBERT embeddings and then minmax rescaling+filtering.

Results were annotated on .csv files that are available in the Google Drive space.
Here, I will report marks means for each model version. Results are in Tables from
4.5 to 4.8.

AST embeddings, sonification rescaling
Model version Visual Audio

LIN LR=0.001 - 11th 3,883117 3,792208
CONV LR=0.01 - 13th 3,948052 3,727273
ATTN LR=0.001 - 23th 1,532468 1,246753

CONV-D LR=0.005 - 2nd 3,844156 3,805195
CONV-RDN LR=0.01 - 1st 2,740260 2,285714

Table 4.5: AST embeddings sonification post-processed with minmax rescaling

AST embeddings, sonification rescaling AND filtering
Model version Visual Audio

LIN LR=0.001 - 2nd 3,961039 3,909091
CONV LR=0.01 - 14th 3,623377 3,350649
ATTN LR=0.001 - 22th 1,610390 1,220779

CONV-LN LR=0.005 - 3rd 3,051948 2,649351
CONV-RDN LR=0.01 - 1st 2,545455 2,142857

Table 4.6: AST embeddings sonification post-processed with minmax rescaling
and squared filtering
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HuBERT embeddings, sonification rescaling
Model version Visual Audio

LIN LR=0.01 - 2nd 4,649351 4,584416
CONV LR=0.005 - 13th 3,441558 3,116883
ATTN LR=0.005 - 1st 4,662338 4,545455

CONV-GN LR=0.01 - 5th 3,415584 3,194805
LIN-D LR=0.01 - 8th 4,376623 4,259740

Table 4.7: HuBERT embeddings sonification post-processed with minmax rescaling

HuBERT embeddings, sonification rescaling AND filtering
Model version Visual Audio

LIN LR=0.01 - 9th 3,649351 3,714286
CONV LR=0.005 - 5th 2,896104 2,610390
ATTN LR=0.001 - 2nd 3,935065 3,870130
CONV-D LR=0.01 - 4th 2,948052 2,792208

LIN-D LR=0.01 - 1st 3,454545 3,363636

Table 4.8: HuBERT embeddings sonification post-processed with minmax rescaling
and squared filtering

Models are ordered w.r.t. their version number. The number at their right is the
position among their category classification. We can observe that the supposition on
the quantity of information carried from the HuBERT model embeddings is shown
also in this type of analysis. Tables 4.7 and 4.8 are characterized from higher mean
values if compared to the other two. Furthermore, the filtering approach enhances
gating layer versions that were not performing so well after a simple sonification
rescale. On the other hand, this technique make perform worse models that were
actually good in the configuration without filtering. E.g. in the sonification of AST
embeddings LIN with learning rate=0.001 passes from 11th position to the 1st or,
with HuBERT embeddings, LIN-D becomes the first model when its results are
filtered surpassing ATTN that were the most promising one. Moreover, ATTN
performances are lower, but they are still the best. Objective analysis is relatable
with the qualitative one only sometimes. We can do this comparison if we compare
the classification grades in each tables with the related Visual/Audio score. This
is the case of ATTN in configuration 1 or ATTN and LIN in configuration 3.
Despite that, especially for gating layer CONV-RDN mapping AST embeddings,
the model, to my advice, produce sonifications that are not so good. This could be
due to the way the KAD score is performed, what are the audio features taken into
consideration, or just simply from the fact that I am not an expert and someone
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else could give totally different grades to the sonifications. Finally, we can observe
some discrepancies between the assigned visual and the audio mark. This is due to
audios that are easier to classify in a visual way, while others are better classifiable
by listening to them, capturing different features accordingly to the evaluation
method. The most common cases were loud and almost silent audios.
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Chapter 5

Conclusions

5.1 Conclusions
This thesis works focused on mapping hidden state representation of audio trans-
former models to the latent space of a generative audio model in order to sonify
them. While the gating layer model already existed, the fact of using it to retrieve
the embedding sonification is a novel idea, that could open the path to new research
techniques focused on the embedding interpretation, a representation that was
never explored in this way before.

Due to its limited dimensions, the gating layer can be easily trained on an
HPC system by taking a reasonable amount of time to solve this task. With these
gating layer versions significant results were obtained, where the reconstructed
audio followed the majority of input waveforms in a good way. This method
was tested on audio transformers that employed spectrograms or simply used the
raw waveform to compute their embeddings, providing a general method for both
architectures. The output of the sonified gating layer translation were post processed
with different techniques, that were not always worthy, but that sometimes could
leverage sonification outputs. Finally, these results were given subjectively and
objectively leading to an a personal and on an objective evaluation.

5.2 Future works
Despite the remarkable results reached, a lot of work has still to be done in this
particular data domain, since no one investigated on it before. First of all, new
version of the model could be tried with new hyperparameters, loss types and
layers. By what we have seen the simpler the model, the better the results, but this
depends from which model we want to sonify and I did not tried any larger version,
so i can not confirm that! So, new models could be used as starting point to get the
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embeddings and different could be used in order to obtain the sonification results.
Moreover, other filtering methods and other metrics could be used, considering
also to organize a user study to enhance results of qualitative analysis.

Furthermore, this methodology can be used in addition to existing approaches
such as those based on gradient flow to give a more precise attribution of which
part of the input is used in the decision process of the model.

In short, a lot of work has still to be done, but we hope to have given a new
view, a new starting point on a new possible explainability method that could
inspire other researchers in the future.
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Appendix A

Encoder blocks:

1. 3x residual units: refer to the next list to see this unit expanded.

2. Snake1d activation: since the activation functions maintain inputs values in a
certain range this is similar to a value clipping, so no changes have been made
on the axes.

3. Weighted norm 1D-Convolution: no changes on the temporal dimension.

Residual unit:

1. Snake1d activation: as we said before, this does not change the temporal
orientation.

2. Weighted norm 1D-Convolution: no changes on the temporal dimension.

3. Snake1d activation: as we said before, this does not change the temporal
orientation.

4. Weighted norm 1D-Convolution: no changes on the temporal dimension.
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