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Abstract

Over the last few years, Convolutional Neural Networks (CNNs) and other deep
neural network architectures have been used increasingly across multiple domains.
Such as computer vision, autonomous driving, and medicine. This widespread usage
of CNNs has exposed them to adversarial attacks: applying deliberate perturbation
to input data with the goal of forcing the CNN to produce wrong results.

Quantization and Approximate Computing (AC) were originally introduced to
reduce CNNs’ memory and computational cost. Furthermore, recent works have
demonstrated that the noise they introduce could enhance input features, thereby
reducing the likelihood of the adversarial fooling the CNN. In this study, we explore
the effect of quantization and AC on the robustness of CNNs.

We propose a software framework to train and evaluate quantized CNNs with
support for layerwise approximation. Moreover, the framework provides adversar-
ial data generation for various attack types, in addition to Quantization Aware
Training (QAT), and adversarial training, allowing for extensive exploration. A
multiplier architecture with 256 approximation levels is chosen and integrated into
the framework using Look Up Tables (LUTs). Considering layerwise configuration
with 256 levels available for selection, exhaustive evaluation of approximate level
configurations is infeasible. Therefore, the genetic algorithm NSGA-II is used to
find optimal configurations by maximizing adversarial and standard accuracy.

Quantized CNNs led to an increase in adversarial accuracy of around 50% for a
black-box attack and around 30% for a white-box attack, depending on the attack
type and the chosen CNN architecture. For ResNet-32, AC led to a further increase
in adversarial accuracy by 2-6%. However, this came at a cost: a 2% increase in
adversarial accuracy had no effect on standard accuracy, whereas a 6% increase
resulted in a 2% drop in standard accuracy.

These results show that quantization effectively defends against adversarial
attacks by significantly enhancing CNN robustness. While approximate computing
offers only a modest improvement, it does not act antagonistically to quantization.
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Chapter 1

Introduction

1.1 Motivation
Convolutional Neural Networks (CNNs) and other deep learning architectures have
achieved remarkable success in various fields, including computer vision [1], robotics
[2], and autonomous driving [3]. As CNNs rapidly expand across several fields, the
threats targeting them are also on the rise, adversarial attacks are not just a theory
as they have been demonstrated in real-world scenarios [4, 5].

Multiple examples of adversarial attacks have been developed and successfully
tested on Deep Neural Networks (DNNs), such as Fast Gradient Sign Method
(FGSM) [6], Projected Gradient Descent (PGD) [7], and Square Attack [8]. The
mechanism of these attacks involves carefully distorting input images, such that
the alterations are undetectable by the human eye, yet are able to deceive the CNN
into an incorrect prediction.

Since adversarial attacks pose a serious threat to mission-critical applications
that employ CNNs, it is mandatory to explore different techniques that are used
to defend against such attacks. Some of the most well-known techniques include
quantization, Adversarial Training (AT), and Approximate Computing (AC). In
this work, we examine how these techniques perform both individually and in
combination to gain a more comprehensive understanding of their impact.

1.2 Proposed Framework and Methodology
In this work, we propose a modified version of the MARLIN framework [9], with
the added features of Quantization-Aware Training (QAT), fast adversarial train-
ing, GPU acceleration for training and evaluating CNN models with layerwise
configuration of approximation levels, enabled by the TransAxx framework [10]
and the generation of adversarial data using the Torchattacks library [11].
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The CNN architectures used in this study are ResNet-8, ResNet-20, ResNet-
32, and ResNet-56 [12], while the CIFAR-10 dataset [13] is used for training and
evaluation. In light of this, and the fact that the approximate multiplier used has 256
different approximation levels, we can compute the number of configurations that a
CNN model may have. For example, considering ResNet-32, each layer can have an
approximation level ranging from 0 to 255, so the total number of combinations is
25632, making an exhaustive search for Pareto-optimal configurations infeasible. For
this reason, the genetic algorithm NSGA-II was adopted to search for the Pareto-
optimal configurations, it was tuned to maximize adversarial accuracy and standard
accuracy. Adversarial accuracy refers to the model’s accuracy when evaluated on
perturbed data, while standard accuracy refers to the model’s accuracy when
evaluated on non-perturbed, standard data. Therefore, by using this framework, we
can easily assess the effectiveness of these defense mechanisms against adversarial
attacks, considering varying perturbation budgets and both white-box and black-box
attack scenarios.

This thesis is organized as follows:

• Chapter 2 provides background on the key concepts and techniques used in
this work, including CNNs, quantization, AC, adversarial attacks, and defense
mechanisms.

• Chapter 3 examines the most relevant literature on this topic and demon-
strates how the framework proposed in this thesis is superior by offering a
larger exploration space.

• Chapter 4 explains the methodology adopted to evaluate the CNNs’ robust-
ness, detailing the used frameworks, training process, and threat model.

• Chapter 5 displays the obtained results, explaining their significance, trends,
and implications in the context of the study.

• Chapter 6 presents the conclusions of this work, summarizing the key findings
on the impact of quantization, AC, and AT on CNN robustness and their
broader implications.
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Chapter 2

Background

2.1 Convolutional Neural Networks
CNNs are a type of deep neural network, mostly used for image classification, object
detection, video processing, and speech recognition [14]. CNNs are composed of
three main types of layers: convolutional layer, pooling layer, and fully connected
layer. Convolutional layers are typically followed by an activation function, which
adds nonlinearity to the network and allows for more complex decision making.
The general architecture of a CNN is shown in Figure 2.1 [15].

Figure 2.1: Architecture of a CNN

Convolutional layers These layers apply convolution operations to the input,
which consists of sliding a small matrix (called filter or kernel) over the input, the
typical size of a filter is 3x3, 5x5, or 7x7, and the depth of the filter is equal to the
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number of channels of the input. The first convolutional layers are able to extract
information from the input images, such as edges or patterns, in the later layers
they can detect parts of objects or even complete objects or complex geometrical
shapes [16]. A visual representation of a convolution operation can be seen in
Figure 2.2 [17]. It should be noted that filters are learnable parameters.

Figure 2.2: Convolutional operation with a 6 ×6 input map, 3×3 convolution
kernel, 1 stride size, and no padding

Two parameters need to be defined for a convolutional operation: stride and
padding. The stride is the number of pixels by which the filter is incremented after
each operation. Padding is applied to increase the width and height of the input
image by a specific number of pixels around its border, the value of the added
pixels can be 0 or a constant. This way the size of the output matrix, also called
feature map, can be controlled by changing these parameters, the formula used is
the following:

o = floor(i + 2p − k

s
) + 1 (2.1)

Where:

• o is the size of the output matrix.

• i is the size of the input image.

• p is the amount of padding.

• k is the kernel size (height or width).

• s is the stride.
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The depth of the feature map is equal to the number of filters that are used in
the convolution operation.

Pooling layers These layers do not contain any learnable parameters and are
usually placed after convolutional layers. Their role is to reduce the spatial
dimension of the input feature maps while preserving the most essential information.
The pooling operation also consists of a filter, often with a size of 2x2, sliding over
an input feature. The exact operation carried out depends on the pooling type,
the most common being max pooling and average pooling. Max pooling selects
the maximum value from each submatrix of the input feature map, while average
pooling computes the average of all the coefficients of the submatrix. Figure 2.3
and Figure 2.4 ([18]) illustrate both of these pooling techniques.

Figure 2.3: Max Pooling

Figure 2.4: Average Pooling

Fully connected layers CNNs generally have one or more Fully Connected (FC)
layers at the end of the network, preceded by a flattening layer that transforms the
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multidimensional feature map into a vector, which is then fed to the FC layer. The
final FC layer contains a number of neurons equal to the number of classes to be
recognized.

2.1.1 Residual Network
The Residual Network (ResNet) architecture is a modern CNN architecture that
utilizes residual learning through the use of shortcut connections [12]. It was
developed to solve the vanishing and exploding gradient problem for DNNs [19, 20].
The basic block implementing the shortcut connection is seen in Figure 2.5 [12].

Figure 2.5: Building block for residual learning

The complete architecture of ResNet consists of stacking a number of these
blocks, periodically doubling the number of filters in the convolutional layers.
Downsampling is applied in cases where the input and output sizes of the residual
block don’t match.

2.2 Quantization and Approximate Computing
DNNs are typically deployed on cloud servers with a large number of supercomputers
due to their significant demand in terms of memory and computational resources.
However, due to the emergence of intelligent applications such as Augmented Reality
(AR), Virtual Reality (VR), mobile assistants, Internet of Things, deploying DNNs
on resource-constrained edge devices has become necessary [21].

2.2.1 Quantization
Quantization is considered one of the most effective ways to decrease the energy
consumption and memory usage for DNNs, it consists of transforming the weights
and activation tensors to a lower bit precision, such as 8-bit fixed-point, compared
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to the 32-bit floating-point precision they are usually trained in. When quantized
to an 8-bit fixed-point representation, the saved energy can reach up to 85.41%,
while achieving little to no accuracy drop [22]. There are two forms of quantiza-
tion: Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).
The former consists of quantizing a full-precision trained network without any
additional training after quantization, while the latter involves either training a
quantized network from scratch or quantizing a pre-trained full-precision network
and retraining it for a number of epochs.

2.2.2 AC
The core operation in the inference phase for DNNs is matrix multiplication,
which consists of element-wise multiplication and addition. Since multiplication
consumes four times more energy than addition [23], it is logical to focus on
designing approximate multipliers to reduce the total energy consumption. Using
approximate multipliers in DNNs can lead to a 32% decrease in energy consumption
with a maximum loss in accuracy by 2.4% relative to exact multiplication [24].

2.2.3 Quantization and AC for Defense
Another line of research investigating these techniques focuses on their impact on
the robustness of CNNs [25, 26, 27, 28]. The main reason for CNNs’ vulnerability
against adversarial attacks is their linear nature [6]. An approximate multiplier
introduces input-dependent noise at its output [26], where the magnitude of the
noise scales with the input size, this enhances the features of the input image,
making the adversarial attack less likely to succeed. As for quantization, since
adversarial attacks consist of introducing small perturbations to the input images,
it is believed that quantization, which involves precision reduction, can help filter
out these adversarial perturbations [29].

2.3 Adversarial Attacks
This section provides an overview of techniques for generating adversarial attacks.
Adversarial attacks consist of carefully modifying the original input image such
that the CNN misclassifies it while remaining imperceptible to the human eyes. In
the following, we will discuss the four most commonly used types of adversarial
attacks in the literature:

1. Fast Gradient Sign Method (FGSM): Letting θ be the parameters of a DNN,
X the input to the DNN, and Y the class label corresponding to input X, the
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perturbation for this attack is computed as follows [6]:

η = ϵ sign(∇XJ(θ, X, Y )) (2.2)

Where ϵ is a configurable parameter that controls the severity of the attack, and
η is the perturbation added to the original image to generate the adversarial
input, as shown below:

Xadv = X + η (2.3)
Visualization of such an attack is shown in Figure 2.6 [6], by injecting an
imperceptible noise into the original image, the model misclassified the panda
as a gibbon with 99.3% confidence.

Figure 2.6: A demonstration of an FGSM attack applied to GoogLeNet [30] on
ImageNet.

2. Basic Iterative Method (BIM): It is an iterative version of FGSM, it consists of
performing an FGSM attack multiple times with a small step size and also clips
the value of the adversarial input so that it remains within ϵ-neighborhood of
the original image. The equation implementing this type of attack is shown
below:

XN+1
adv = clipX,ϵ

è
XN

adv + α ∗ sign
1
∇XJ(θ, XN

adv, Y )
2é

(2.4)

Where XN
adv is the adversarial input generated at iteration N, the adversarial

input is initialized as such: X0
adv = X. α is the step size in each iteration.

3. Projected Gradient Descent (PGD): Is also an iterative method and very similar
to BIM in its implementation. The only difference is in the initialization of
the first iteration, instead of being the original image as in BIM, this method
uses a randomized noise added to the original image [7]. As shown below:

X0
adv = X + random(−ϵ, ϵ) (2.5)
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The equation defining XN+1
adv is exactly the same as the one for BIM.

4. Carlini & Wagner (CW): The CW approach can be summarized in an opti-
mization problem as follows [31]:

minimize D(x, x + δ)
such that C(X + δ) = t

x + δ ∈ [0, 1]n
(2.6)

Where D is a distance metric which can refer to one of the L1, L2, or L∞
norms. The function C represents the classification function of the NN, X is
the original input image, δ is the perturbation value, and t is the target class,
which differs from the original classification. The original classification is the
class assigned to the input without any perturbation.
This problem is too complex for existing optimization algorithms to solve, due
to the equation C(X + δ) = t being non-linear. For this reason, the problem
is reformulated by defining an objective function f such that C(X + δ) = t if
and only if f(X + δ) ≤ 0. This allows for an alternative formulation:

minimize ||δ||p + c.f(X + δ)
such that X + δ ∈ [0, 1]n

(2.7)

Where c is a configurable parameter used to scale the minimization function, it
does not impact the final result, and ||δ||p is equivalent to the distance metric
D, so it can also take the form of an L1, L2, or L∞ norm.

2.4 Defense Mechanisms
In addition to quantization and approximation computing, other defense techniques
have been developed and evaluated, such as adversarial training, Data Preprocessing,
and Gradient Masking. A brief overview of these techniques will be given in this
section, highlighting their advantages and disadvantages.

1. Adversarial Training: It consists of feeding the network with perturbed inputs
during the training phase, to enable the trained model to correctly classify the
perturbed and standard data in the inference phase [32]. This technique has
been proven to remarkably increase NNs’ robustness against adversarial attacks
[32]. However, the main downside of adversarial training is its considerably
higher computational cost compared to standard training, potentially taking
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up to 14 times longer depending on the model used [33]. Fortunately, various
approaches have been explored to mitigate this issue, such as using FGSM
with random initialization instead of PGD for adversarial training [34].

2. Data Preprocessing: Several data preprocessing methods have emerged as
defensive measures against adversarial attacks, such as PixelDefend [35],
feature compression [36], and randomization[37]. In essence, all these methods
process the perturbed input in a specific way to destroy or suppress the
injected noise, such as compressing the input data, randomly resizing followed
by random padding, or flipping the image. Although some data preprocessing
techniques have been shown to defend against adversarial attacks, others have
been found to be weak against white-box attacks [38].

3. Gradient Masking: Since the most prominent white-box attacks are gradient-
based, masking or hiding the gradient in a way that prevents attackers from
exploiting it would be an effective defense against these attacks. Gradient
masking is typically achieved by introducing random noise or perturbations to
obscure gradient information [38]. On the negative side, non-gradient-based
attacks, such as the Square attack [8], are not affected by gradient masking.

10



Chapter 3

Related Work

Several previous studies have investigated the impact of quantization and AC on
the robustness of CNNs, yielding varying results. In this section, we will review the
most relevant research to this thesis, emphasizing the limitations of these studies
and demonstrating how this work addresses them.

In [25], the authors constructed an Ensemble of Approximate Multipliers (EAM)
by modifying the fraction multiplier unit in the floating-point multiplier. The exact
compressor in the fraction multiplier was replaced by one exact compressor and P
approximate compressors, all fed by the same input and their output multiplexed.
Therefore, by controlling the select signal of the multiplexer, they have P + 1
multipliers to choose from. The EAM was integrated inside a CNN and used to
evaluate its robustness. The operation of the CNN consists of computing P + 1
outputs for every input, then the final classification is decided by averaging or
maximum voting. This technique led to a significant increase in adversarial accuracy,
between 15% to 45% depending on the attack type for CIFAR-10. However, this
approach has major limitations, since it does not support layerwise configuration,
i.e., the same multiplier type is used for all the layers of the CNN, with only
one exact multiplier and 12 approximate multipliers available, the exploration
space is extremely restricted compared to our layerwise configurable multiplier
with 256 approximation level. Moreover, as each input requires the CNN to run
1 + P times for each input instead of once compared to regular CNNs, it led to a
dramatic increase in inference time. For example, using all 12 available approximate
multipliers results in a 13-fold increase in inference time, such drawback is not
present in this work.

Another study, [39], arrived at a different set of results compared to the previous
work. The authors claim that AC does not increase CNNs’ accuracy against
adversarial attacks while quantization does and that AC acts antagonistically to
quantization. However, since the approximate multipliers used were 8-bit multipliers
and the multipliers used in the previous study were approximate floating-point
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multipliers, we cannot justifiably compare the two results. Now Compared to this
thesis, the results align in showing that quantization does increase CNNs’ robustness.
The only difference is the impact of AC with quantization, we found that it increases
the adversarial accuracy by a small margin, but doesn’t act antagonistically to
quantization. This variance can be explained by the two weaknesses of their
methodology: firstly, similar to the previous study, only 9 approximate multipliers
were used; secondly, no Quantization-Aware Training (QAT) was applied in this
work.

The flaws identified in the previous two studies apply to some others as well, for
example [26] uses only one approximate multiplier, and [40] does not apply QAT.

While several studies present an adequate methodology, they are limited to
exploring only one defensive technique. For instance, [27] and [28] investigate
quantization only, [41] investigates quantization coupled with Adversarial Training
(AT), [25] explores AC only, and [34] explores AT only. On the other hand,
the framework developed in this thesis allows for combining all the mentioned
techniques, namely, AC, quantization, AT, and QAT.
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Chapter 4

Methodology

In this chapter, we will cover all the frameworks and libraries used, explaining how
they work and the modifications they underwent to better align with our goals.
Moreover, we will present the adopted methodology to train the CNNs, and the
threat model used to evaluate the CNNs’ robustness against adversarial attacks.
The methodology is summarized in Figure 4.1

4.1 MARLIN
The MARLIN framework [9] is considered the starting point of this work, it contains
the definitions of ResNet-8, ResNet-20, ResNet-32, and ResNet-56 in PyTorch [42].
For ease of explanation, we introduce the term "execution type", which refers to
the model type, either float or quantized. The default execution type for models
defined in PyTorch is float, so there is no need for any additional definitions to
support such a mode. However, that is not the case for a quantized model, as it is
not inherently defined by PyTorch. For this reason, custom layers were developed,
including a convolutional layer, a linear layer, and a custom activation function.
The CNN can be quantized to any bit precision, such as 8-bit, 4-bit, etc. The
weights, activations, and biases are quantized to the chosen precision, by applying
this formula:

quantized_tensor = clamp[round(scaling_factor ∗ real_tensor), min_v, max_v]
scaling_factor

(4.1)
Where:

• clamp is a bounding function, if the result is outside the range of [min_v, max_v],
it is clamped to the nearest bound, ensuring the value stays within the specified
range.
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Figure 4.1: Workflow showing the methodology used to evaluate approximate
CNNs.

• round function rounds the result to the nearest integer value.

• real_tensor is the real value of the tensor before any quantization (typically
has a floating-point representation).

• scaling_factor is the constant used to multiply the real_tensor to scale it
to the desired precision
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• min_v and max_v are the minimum and maximum values that could be taken
by the quantized_tensor depending on the desired precision. For example,
if the chosen precision is 8-bit, min_v and max_v would be -128 and 127,
respectively.

The scaling_factor is computed as follows:

scaling_factor = max_v

max[|min(real_tensor)|, |max(real_tensor)|] (4.2)

Where:

• max_v is the same as the one in the previous equation.

• The inner max and min functions return the maximum and minimum value
of all elements in the tensor.

• The || symbol is the absolute value operator.

• The outer max return the maximum between the two inputs.

Additionally, MARLIN provides two methods for quantization set by the
fake_quant parameter. If true, the data type of the tensors for the weights,
activations, and biases stays the same (floating-point), otherwise, the data type
would change to int. In this work, we only investigate the 8-bit precision, with
fake quantization (fake_quant is true). MARLIN also contains scripts to train
and evaluate the model, but these will be discussed later.

4.2 TransAxx
4.2.1 TransAxx Framework Overview
TransAxx [10] is a framework that extends PyTorch to support approximate DNNs,
allowing for both inference and QAT with GPU acceleration (CUDA). Since it
supports only 8x8 multipliers, the CNN has to be quantized. In contrast to
the custom layers defined in MARLIN, TransAxx utilizes pytorch_quantization
library to quantize the model. To enable approximate computing, custom layers
were created for both convolutional and linear layers, coupled with C++ and CUDA
extensions, defining the forward and backward propagation. These extensions rely
on LUTs to compute the multiplication result between two 8-bit operands, TransAxx
provides two LUTs, one for an exact multiplier (mul8s_acc) and the second for an
approximate multiplier (mul8s_1L2H) taken from EvoApproxLib [43].

However, neither of these multipliers is used in this work, instead, we utilize
the multiplier developed for MARLIN, which is a single-cycle reconfigurable ap-
proximate multiplier, supporting 256 approximation levels, ranging from 0 (fully
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accurate) to 255 (most approximate). This multiplier is based on the Dadda
reduction tree, the approximation is implemented by using a signal to mask specific
columns and force them to zero. As the approximation level increases, the masking
shifts further toward the MSB. This technique introduces a level of error to the
result, but at the same time reduces the switching activity and consequently the
dynamic power.

4.2.2 Integration and Execution Types
As mentioned previously, TransAxx can integrate any type of multiplier through
LUTs, for this reason we simulate the multiplier with all the possible input combi-
nations and save the results in a 256x256 LUT. The LUT size is 256 by 256 because
the two input operands are 8-bit. With an additional 8-bit input selecting the
approximation level, we obtain 256 LUTs in total, each LUT corresponding to a
specific approximation level. These LUTs were saved in 256 header files, one LUT
per file, and placed in the appropriate directory within the TransAxx framework.
TransAxx already has built-in functions for calibration which requires calibration
data. The calibration data was a subset of the CIFAR-10 dataset comprised of
5000 images.

By adopting this framework in our work, we introduced a new model type, which
offers approximate computing for CNNs, which we will refer to as the TransAxx
model. Going forward, we can state that we have three execution types: float,
quant, and transaxx.

4.3 Training
To ensure an equitable comparison of the robustness of the four different CNN
architectures, each with three possible execution types and two training tech-
niques (adversarial and standard), we developed a training workflow summarized
in Figure 4.2. In the following subsections, we will explain the workflow without
specifying the architecture used, whether it is ResNet-8, ResNet-20, ResNet-32,
ResNet-56, or any other CNN architecture, the workflow is identical.

4.3.1 Standard Training
Standard training was carried out through the MARLIN framework, using the
CIFAR-10 dataset. The data size for training, validation, and testing was 50000,
50000, and 10000 images, respectively. First, we instantiate a quant model with
initialized random parameters, then launch the training script using cross-entropy
loss as the criterion, SGD as the optimizer, and a multi-step scheduler. The
learning rate was bound between 0.1 and 0.0001, the decay factor (gamma) equal
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Figure 4.2: Workflow Showing the Training Scheme.

to 0.1, and the weight decay set to 0.0005. This type of training is referred to as
Quantization-Aware Training (QAT), where the model is trained after quantization,
rather than quantizing a pre-trained model. The same training configuration was
used to train the float model, and the parameters were saved in .pth files.

Training the transaxx model from scratch led to low test accuracy, for ResNet-8
the test accuracy saturated at 57% no matter the criterion, optimizer, or learning
rate used. For this reason, an alternative training method was required, and we
based our approach on [44], which states that 8-bit quantized models can outperform
their full-precision counterparts after just one epoch of fine-tuning with a small
learning rate of 10−4.

Building on this idea of using a low number of epochs and a small value for
the learning rate, we applied a similar approach: the pre-trained parameters of
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the quant model were loaded into the transaxx model, and continued training for
two extra epochs with a learning rate of 5.10−4 while setting all layers to exact
multipliers.

As a result, we now have 12 .pth files containing the trained parameters for
the 4 ResNet architectures, with the quant, float, and transaxx execution types.
We will refer to them as baseline accuracies since the test accuracies obtained in
the following experiments will be compared to these. The achieved test accuracies
with these parameters are shown in Table 4.1.

Architecture float quant transaxx
ResNet-8 85.59% 85.6% 85.55%
ResNet-20 91.23% 91.25% 91.18%
ResNet-32 92.31% 92.53% 92.46%
ResNet-56 92.91% 92.7% 92.77%

Table 4.1: Baseline Accuracy Across Different ResNet Architectures and Execution
Types.

4.3.2 Adversarial Training
Adversarial training was implemented using the fast_adversarial framework [34],
this work overcame the high cost of adversarial training by demonstrating that
using weaker adversary attacks for training such as FGSM-based training, combined
with random initialization, can yield results comparable to the more expensive
PGD-based training, while being an order of magnitude faster. The authors also
leveraged mixed-precision arithmetic to speed up the training process using the
Apex [45] PyTorch extension, but it was excluded in our work since mixed-precision
is not compatible with quantized weights and activations.

As explained in chapter 2, adversarial training consists of feeding the model
perturbed data during the training phase. In our case, the adversarial training
used is FGSM-based training, where the perturbation is computed according to
the FGSM attack, added to the non-perturbed data, and then fed to the model.
The parameters needed for adversarial training are the same as those for standard
training, with the addition of ϵ which dictates the perturbation severity. We
experimented with several values for ϵ, ranging between 8/255 and 1/255, and
discovered a tradeoff between the adv. accuracy and the standard accuracy. When
ϵ grew, the adv. accuracy increased while the standard accuracy decreased. We
chose ϵ = 1/255 as it provided the best tradeoff between adversarial and standard
accuracy. The cross-entropy loss was selected as the criterion, SGD as the optimizer,
and a step scheduler, with a learning rate of 5.10−4. The training process is as
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follows: reload the parameter trained by the float model in the float model, and
adversarially retrain the model for two additional epochs. The same procedure
is applied for the quant and transaxx models. From this point on, we will refer
to the parameters obtained by normal training as standard parameters and those
obtained from adversarial training as AT parameters.

We now have an additional 12 .pth files storing the AT parameters for the
different architecture and execution types. The difference in test accuracy between
non-AT and AT models is shown in Table 4.2. The standard accuracy dropped by
1-2% for AT models compared to their non-AT counterparts, but this drawback
is tolerated as it will lead to a significant increase in the adversarial accuracy
presented in the later sections.

Not AT AT
Architecture float quant transaxx float quant transaxx

ResNet-8 85.59% 85.6% 85.55% 84.08% 83.32% 83.49%
ResNet-20 91.23% 91.25% 91.18% 89.61% 90.19% 89.87%
ResNet-32 92.31% 92.53% 92.46% 90.42% 91.23% 91.26%
ResNet-56 92.91% 92.7% 92.77% 91.98% 91.63% 91.24%

Table 4.2: Test Accuracy in non-AT and AT Models.

4.4 Threat Model
We assume an attacker trying to fool one of the classifiers (ResNets) by feeding it
perturbed data. In this section, we will discuss the possible attack scenarios, the
adversarial data generation, how the model is evaluated against an attack, and the
use of NSGA-II to find the optimal approximation level configurations.

4.4.1 Attack Scenarios
The attacker is assumed to have either partial or complete knowledge (white-box
attack) or no knowledge (black-box) about the model he intends to attack. In the
black-box scenario, the attacker has no knowledge of which architecture is used, its
execution type, the approximation level used in each layer (if any), or if the model
is adversarially trained or not. As for the white-box attack, the attacker might
know partial information about the model such as its architecture only, or have
access to the exact model. In this work, we study all three scenarios: zero, partial,
or complete knowledge.
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4.4.2 Adversarial Data Generation
The adversarial data was generated using the Torchattacks library [11]. Torchattacks
supports 35 types of attacks, however, we will use only three which were identified
to be the most common in the literature, namely, FGSM, BIM, and PGD. The
attack mode was set to non-targeted, which means that the images are altered to
ensure the model misclassifies each one, regardless of the assigned class.

The test dataset is given to the model, then a function provided by the library
would generate a perturbed version of each image of the original dataset, then
save the images in a .pt file. Since we have 4 different architectures, 3 execution
types, and 2 types of parameters, we can generate 24 (4 ∗ 3 ∗ 2) adversarial datasets
for each attack type. The attack is labeled as a white-box or a black-box attack
depending on the chosen adversarial dataset and the model. For example, generating
adversarial data from a ResNet-8 model, with execution type quant with standard
parameters, then using this adversarial data to test the accuracy of a ResNet-32
model, transaxx execution type with AT parameters, is considered a black-box
attack.

4.4.3 CNN Evaluation
To evaluate the CNNs’ accuracy for standard and adversarial data, we identify
two types of accuracies: standard accuracy and adversarial accuracy. Standard
accuracy is evaluated using the CIFAR-10 test dataset, while adversarial accuracy
is evaluated using its perturbed version, both containing 10000 images.

For a more rigorous evaluation, we do not simply load the parameters trained
by the float model in the same float model. Instead, we consider all the possible
combinations, such as loading parameters trained by the float model in the quant
model, transaxx-trained parameters into the float model, and so on. In total,
for one architecture and parameter type (AT or not), we obtain nine combinations.

The reason for this approach is to investigate whether the variation in adv.
accuracy is due to the model’s precision (floating-point or quantized), or due to
the method its parameters were trained (by a float, quant, or transaxx model).

4.4.4 NSGA-II
So far only exact multipliers were used to train and evaluate the transaxx models.
And as explained in chapter 1, each layer in a transaxx model can be set to
a different approximation level, so the total number of possible combinations is
256nb of layers, which makes the evaluation for all possible combinations infeasi-
ble. Considering our multi-objective problem of maximizing the adv. accuracy
while maintaining a high standard accuracy, the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [46] was found to be the most suitable choice. We used
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the Pymoo library [47] which implements NSGA-II, to apply the algorithm and
search for the Pareto-optimal approximation level configurations.

We defined a class inheriting from the "Problem" class in Pymoo to configure
the search for maximizing both adversarial and standard accuracy. The main
parameters for NSGA-II are the following:

• Population: The number of new individuals evaluated at each iteration. Each
individual is a configuration for the approximation levels.

• Generations: The number of generations (iterations) explored during the
genetic search.

• Crossover probability: Defines the likelihood of two selected individuals ex-
changing genetic material during reproduction to create offspring.

• Mutation probability: Determines the likelihood of introducing random
changes to an individual’s genetic representation to maintain genetic diversity.

• Axx-levels: Sets the available range of approximation levels for the algorithm
to select. This parameter is specific to our case and not for NSGA-II in
general.

The crossover and mutation probabilities were set to 80%. Due to computational
resources constraints, we execute the search twice: initially setting axx-levels to 50,
which forces the algorithm to only search for approximation levels between 0 and
50, and then again with axx-levels set to 100, therefore reducing the search time
by limiting the number of options. The search targeted the ResNet-32 architecture,
with the objective of finding Pareto-optimal approximate configuration to maximize
both adv. and standard accuracies.

The population and generations were set to 50 and 30, respectively, for both
executions. The machine specifications used to run the algorithm are an Intel Core
i7 (10th gen) CPU with the Nvidia GeForce RTX 3060 (laptop version), and it
took around 14 hours for every execution. The results of this search algorithm will
be discussed in detail in the next chapter, specifically in subsection 5.3.3.

21



Chapter 5

Results

In this chapter, we will discuss the relevant results obtained from the methodology
described previously, and analyze whether they align with the initial propositions
about increasing robustness or not. This chapter is split into three sections, each
section considers one type of attack. Due to the long runtime NSGA-II, AC was
only investigated for the PGD attack, for the other types of attack we consider
exact multiplication for all the models.

From this point on, we will adopt the following terms to avoid redundancy:

• float parameters refers to parameters trained by the float model, not
that they are of float datatype, the same applies to quant parameters and
transaxx parameters.

• Victim model refers to the model under attack, i.e. the model being fed the
perturbed data and then evaluated.

• Adversarial model or adv. model refers to the model used to generate the
adversarial data.

We will also define the different types of attack scenarios, since the victim and
the adversarial models can each have different architectures and different execution
types (float, quant, or transaxx, we identified three attack scenarios, summarized
in Table 5.1. We considered only the execution type of parameters because it is
the only parameter that has an impact, as we will see later, whereas the execution
type of the model itself does not. The case where the architecture differs but the
parameters type is identical was considered a black-box attack rather than a partial
white-box attack. This is because once the architecture changes, the parameters
type has minimal influence on the adversarial accuracy, as we will demonstrate in
the following.
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Architecture Parameters Type
White-Box Identical Identical

Partial White-Box Identical Different
Black-Box Different Identical
Black-Box Different Different

Table 5.1: Different Attack Scenarios.

5.1 FGSM
The only parameter for an FGSM attack is ϵ, it limits the perturbation to a
maximum value of ϵ, therefore controlling the attack’s intensity. The chosen ϵ value
was 8\255, which is the default value set by Torchattacks.

In this section, we will consider all four attack scenarios listed in Table 5.1, with
standard training or not. The architectures used are ResNet-8, ResNet-32, and
ResNet-56.

5.1.1 White-Box and Partial White-Box Attacks - No AT
The performance of a ResNet-8 model against an FGSM attack is shown in Fig-
ure 5.1. This graph takes into consideration all the possible execution types for
ResNet-8, for example, the first bar pair is labeled with "float" and "param float",
this signifies that the ResNet-8 model is of type float, and the parameters loaded
into this model were trained by the float model. The X-axis labels "quant" and
"param transaxx" refer to a quant model being loaded with parameters trained by
the transaxx model, the same logic applies for the remaining labels.

The standard accuracy is roughly the same for all the execution types, the more
noticeable difference is with the adversarial accuracy. The first bar represents a
white-box attack since the victim model and the adv. model are both of type
float with float parameters, resulting in a 2.5% adv. accuracy. The second two
bar pairs are also considered as white-box attacks, with the difference being the
model type, resulting in a 2.3% and 2.5% adv. accuracy. The rest of the bars
represent a partial white-box attack where the attacker has even less knowledge of
the victim model, as the only thing in common between the victim model and the
adv. model is the architecture (both being ResNet-8). For the partial white-box
case, the adv. accuracy increased to 18% for (quant) parameters and 17% for
transaxx parameters.

Moreover, it is evident that the type of parameters used has a more significant
impact on the adversarial accuracy compared to the model type, as it only varies
marginally when the parameters are the same and the model type changes. For
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Figure 5.1: Evaluation of ResNet-8 Model (not AT) for Different Execution Types
- Adv. Data is Generated by a float ResNet-8 Model (not AT).

instance, the adversarial accuracy is 18.48%, 18.54%, and 18.36% for the float,
quant, and transaxx models when the quant parameters are used.

In the scenario where the adv. model is of type quant, we can see that the
trend is inverted compared to the previous case as seen in Figure 5.2. Here, the
adv. accuracy is higher when using the float parameters. Based on these findings
we theorize: the farther the adversarial model is from the victim, the weaker the
attack, i.e. the fewer similarities in terms of architecture, execution type, and
training (AT or not) there are, the weaker the attack. The case of using a transaxx
model as the adv. model will not be shown, because it is similar to the results
found in Figure 5.2.

We will present the results for ResNet-32 for the same two scenarios discussed
earlier: ResNet-32 performance when the adv. model is float ResNet-32 and
quant ResNet-32. The first scenario is shown in Figure 5.3, it follows the same
trend as in Figure 5.1, with the only difference being that it has a higher standard
and adv. accuracies. This could be explained by the inherent nature of ResNet-32
having a better performance than ResNet-8 due to ResNet-32’s greater depth,
which could also translate to a higher adv. accuracy. The second scenario is shown
in Figure 5.4, and as expected, we obtain the same trend as in Figure 5.2.

To ensure that all architecture follow the same trend, we also applied the previous
two scenario to ResNet-56. The results are shown in Figure 5.5 and Figure 5.6,
which follow the same patterns seen for the previous two architecture, so no further
discussion is needed.
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Figure 5.2: Evaluation of ResNet-8 Model (not AT) for Different Execution Types
- Adv. Data is Generated by a quant ResNet-8 Model (not AT).

Figure 5.3: Evaluation of ResNet-32 Model (not AT) for Different Execution
Types - Adv. Data is Generated by a float ResNet-32 Model (not AT).
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Figure 5.4: Evaluation of ResNet-32 Model (not AT) for Different Execution
Types - Adv. Data is Generated by a quant ResNet-32 Model (not AT).

Figure 5.5: Evaluation of ResNet-56 Model (not AT) for Different Execution
Types - Adv. Data is Generated by a float ResNet-56 Model (not AT).
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Figure 5.6: Evaluation of ResNet-56 Model (not AT) for Different Execution
Types - Adv. Data is Generated by a quant ResNet-56 Model (not AT).
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5.1.2 White-Box and Partial White-Box Attacks - AT
Continuing with the same scenarios, we will now introduce AT. The only difference
here is that the victim model is Adversarially Trained. The performance of an
AT ResNet-8 model is shown in Figure 5.7. Compared to Figure 5.1, the adv.
accuracy for models with float parameters increased by around 4.8%. However,
for the models loaded with the quant and transaxx, the adv. accuracy increased
by roughly 20%, which allows AT to be considered an effective method to increase
robustness. It is important to note that AT alone did not lead to a significant
improvement for a float model; the notable enhancement in robustness came
when AT was combined with quantization.

Figure 5.7: Evaluation of ResNet-8 Model (AT) for Different Execution Types -
Adv. Data is Generated by a float ResNet-8 Model (not AT).

The same trend is seen in Figure 5.8, where the adv. accuracy increased across
the different model types compared to Figure 5.2. But here, the notable increase
was for the models loaded with the float parameters, therefore we can conclude
that AT has a more substantial impact on partial white-box attacks. Where it
improves models with high adversarial accuracy significantly, but only provides a
slight growth to those with low adversarial accuracy.

The performance of ResNet-32 with AT is shown in Figure 5.9 and Figure 5.10.
These results follow the same trend as in Figure 5.7 and Figure 5.8 just with an
overall higher accuracy, so no further discussion is needed.

For sake of completeness, we also show the results of ResNet-56 in Figure 5.11
and Figure 5.12. These results also match the trends seen in the ResNet-8 and
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Figure 5.8: Evaluation of ResNet-8 Model (AT) for Different Execution Types -
Adv. Data is Generated by a quant ResNet-8 Model (not AT).

Figure 5.9: Evaluation of ResNet-32 Model (AT) for Different Execution Types -
Adv. Data is Generated by a float ResNet-32 Model (not AT).

ResNet-56 cases. When comparing the standard accuracy between non-AT and
AT models, we notice that it barely changes. For example, we can see that the
standard accuracy is nearly equal between Figure 5.5 and Figure 5.11. So from
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Figure 5.10: Evaluation of ResNet-32 Model (AT) for Different Execution Types
- Adv. Data is Generated by a quant ResNet-32 Model (not AT).

this point on, we will combine the results of non-AT and AT models into a single
graph for easier comparison.

Figure 5.11: Evaluation of ResNet-56 Model (AT) for Different Execution Types
- Adv. Data is Generated by a float ResNet-56 Model (not AT).
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Figure 5.12: Evaluation of ResNet-56 Model (AT) for Different Execution Types
- Adv. Data is Generated by a quant ResNet-56 Model (not AT).

5.1.3 Black-Box

Having a victim model and an adv. model with different architectures is considered
a black-box attack. For this case, we will use the ResNet-20 model as the adv.
model, with ResNet-8, ResNet-32 and ResNet-56 as the victims.

Starting with ResNet-8 as victim, and float ResNet-20 as the adv. model, we
can see the performance of ResNet-8 in Figure 5.13. Here, the results for non-AT
and AT models are combined into a single graph. All the results shown in this
figure are considered a black-box attack, the only difference among them is the
execution type. We notice that the adv. accuracy is roughly the same across all
the ResNet-8 execution types, regardless of the model type or the parameters used,
the adv. accuracy is around 25% for non-AT models Which is higher than the
adv. accuracy obtained in the white-box attack shown in Figure 5.1, this further
proves the point made in subsection 5.1.1 that the fewer the similarities between
the victim and the adv. model, the weaker the attack. For AT models, the adv
accuracy increased from 25% (orange bars) to anywhere between 46% and 51%
(green bars), which signifies a 21-26% increase in adv. accuracy.

The same pattern is present when we use the quant ResNet-20 as an adv. model,
the difference being a slight increase of the overall adv. accuracy for non-AT
models going from 25% to 27%, while the adv. accuracy for AT models showed no
significant variation compared to Figure 5.1. The results are shown in Figure 5.14.

Evaluating ResNet-32 in the same scenario, we find that the results are similar
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Figure 5.13: Evaluation of ResNet-8 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-20 Model (not AT).

Figure 5.14: Evaluation of ResNet-8 Model for Different Execution Types - Adv.
Data is Generated by a quant ResNet-20 Model (not AT).

to the results shown in Figure 5.1. The only significant difference is that the adv.
accuracy of non-AT models is varying between execution types, decreasing from
∼31% to ∼26%). The adv. accuracy for AT models showed minimal variation
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across the execution types, ranging from 52% to 54%, indication a ∼25% increase
compared to non-AT models, also shown in Figure 5.15.

Figure 5.15: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-20 Model (not AT).

As for the performance of ResNet-56, the pattern is more similar to what we
have seen in subsection 5.1.1, where the adv. accuracy for non-AT models is lower
for the model using the same parameters type as the adv. model. However, the
difference here is less pronounced, at around 7% (rising from ∼28% to ∼35%),
as shown in Figure 5.16. The adv. accuracy for AT models also showed minimal
variation across the execution types, fluctuating between 53% and 55%.

The case where both the victim and adv. models are AT is not investigated for
the FGSM attack, it will be covered in the following section.
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Figure 5.16: Evaluation of ResNet-56 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-20 Model (not AT).

5.1.4 Summary
Given the large number of graphs and numerical data, we found that providing
a summary would be beneficial. We provide two tables, each representing the
results for one type of architecture, each entry represents an attack scenario, and
each value is the average of all the obtained accuracies for the different execution
types shown in the graphs. Table 5.2, Table 5.3, and Table 5.4 summarize the adv.
accuracy of ResNet-8, ResNet-32, and ResNet-56, respectively.

Not AT AT
White-Box 2.6% 9%

Partial White-Box 17.9% 36.9%
Black-Box 26% 49.3%

Table 5.2: ResNet-8 Performance Under FGSM Attacks

Based on these results, we can conclude the following three points:

• In general, the adv. accuracy increases when going from a white-box towards
a black-box attack.

• Adv. accuracy also increases when using a CNN with greater depth.

• AT improves adv. accuracy in all scenarios.

34



Results

Not AT AT
White-Box 9.8% 25.6%

Partial White-Box 28.6% 53.8%
Black-Box 27.7% 53.7%

Table 5.3: ResNet-32 Performance Under FGSM Attacks

Not AT AT
White-Box 14.1% 29.1%

Partial White-Box 33.8% 52.8%
Black-Box 32.5% 53%

Table 5.4: ResNet-56 Performance Under FGSM Attacks

Since all architecture follow the same trend under evaluation, we selected ResNet-32
as the representative victim. ResNet-32 is the most suitable choice to represent the
ResNet family, as it serves as a midpoint among the different architectures. For the
following two attack types, we will only evaluate the performance of ResNet-32.

5.2 BIM
As explained in chapter 2, BIM is the iterative version of FGSM. It has three
parameters: ϵ which serves the same purpose as in FGSM, α defines the step size,
and the number of steps. We used the default values set by Torchattacks which
are 8\255 for ϵ, 2\255 for alpha, and 10 for the number of steps.

We will only consider the ResNet-32 architecture as the victim, with the attack
scenarios listed in Table 5.1. We will also use the transaxx model to generate the
adv. data instead of the quant model.

5.2.1 White-Box and Partial White-Box Attacks
First, we evaluate the performance of ResNet-32 against an attack generated by
a float ResNet-32 model, which constitutes a white or partial white-box attack
depending on the specific case we are considering in Figure 5.17. The white-box
attack, represented with the bars labeled with "param float", has an adv. accuracy
of 0% for non-AT models and 4% for AT models . The remaining cases are
considered partial white-box attacks, which all have an adv. accuracy of around
6% for non-AT models and 46-49% for AT models. Based on these findings, we
can conclude the following:
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• AT is effective even if the AT is based on a different attack type. In our case,
we applied FGSM-based AT, yet it increased the adv. accuracy against a BIM
attack.

• AT is ineffective on its own, as it barely increased the adv. accuracy for
the white-box attack. Its combination with quantization is what led to a
significant increase in robustness.

By comparing the results in Figure 5.17 and Figure 5.3, we can also conclude
that the BIM attack is stronger than FGSM.

Figure 5.17: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-32 Model (not AT).

We also tested the performance of ResNet-32 where the adv. data is generated
by a transaxx ResNet-32 model, the results are shown in Figure 5.18. As expected,
since the white-box attack is now represented by the bars labeled with "param
quant" and "param transaxx", and the partial white-box attack is labeled with
"param float", the adv. accuracies are now inverted. The higher adv. accuracy is
seen in the first three bar pairs, and the remaining adv. accuracies are 0% and 2%
for non-AT and AT models. These results still uphold the previously discussed
conclusions.

We will now evaluate the performance of an AT ResNet-32 when the adv. model
is also AT, this scenario was not investigated for the FGSM attack. Considering
the same scenario as in Figure 5.17, with the only difference being that the adv.
model is now Adversarially Trained, we see the results in Figure 5.19. Compared
to Figure 5.17, the adv. accuracy dropped from 45% to 13-16%.
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Figure 5.18: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a transaxx ResNet-20 Model (not AT).

Figure 5.19: Evaluation of ResNet-32 Model (AT) for Different Execution Types
- Adv. Data is Generated by a float ResNet-32 Model (AT).

5.2.2 Black-Box
First, we evaluate the performance of ResNet-32 with the adv. model being float
ResNet-56, the results are shown in Figure 5.20. The adv. accuracy is approximately
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the same for all the execution types at around 8% for non-AT models. These
findings are in accordance with the results obtained in subsection 5.1.3, where we
see that the adv. accuracy in the case of a black-box attack is higher compared to
that of a white-box attack. For the BIM attack, the difference in adv. accuracy
for a white-box attack and a black-box is 2%, going from 6% (Figure 5.17) to 8%
(Figure 5.20).

We notice a 45% increase in adv. accuracy when applying AT to the models,
going from 8% to around 53%. In this case, the adv. accuracy does not vary
significantly between the different execution types, it is bound between 51% and
54%, the same observation was made in subsection 5.1.3 for FGSM.

Figure 5.20: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-56 Model (not AT).

5.2.3 Summary

We summarize the results found for the BIM attack in Table 5.5, similar to our
approach in subsection 5.1.4.

These results further support the conclusions drawn in subsection 5.1.4, and
even provide additional insights about AT. Based on these new findings, we can
claim that FGSM-based training is also effective against other types of attacks,
such as BIM.
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Not AT AT
White-Box 0% 3.5%

Partial White-Box 6.2% 48.5%
Black-Box 7.7% 52.9%

Table 5.5: ResNet-32 Performance Under BIM Attacks

5.3 PGD
The PGD attack has identical parameters to those of BIM, namely, ϵ, α, and the
number of steps. We executed the PGD attack twice, with two different values of
ϵ: 8\255 (default) and 16\255. The remaining two parameters we kept at their
default values. Our main focus is on the results for the default value, but we also
highlight the effect of increasing the attack’s intensity in some cases.

The chosen model for evaluation is ResNet-32, the attack scenarios are shown in
Table 5.1. In this section, we will also investigate the impact of AC on the models’
robustness.

5.3.1 White-Box and Partial White-Box Attacks
The performance of ResNet-32 against adv. data generated by a float ResNet-32
model is shown in Figure 5.21. The results are similar to the BIM attack in the
same scenario as seen in Figure 5.17. As expected, the adv. accuracy is lower in
the case of a white box attack (bars labeled with "param float") compared to the
partial white-box attack represented by the remaining bars. For the first case, the
adv. accuracy is 0% and around 6.8% for the rest (in case of non-AT models).
Based on this figure, we can conclude that PGD is also more powerful than FGSM.

When applying AT, the adv. accuracy increased from 0% to 7% in the white-box
scenario, and from 6.8% to 50-54% in the partial white-box scenario. This further
proves the point made in subsection 5.2.1 about FGSM-based training being also
effective on different types of attacks.

Since the results of using a transaxx ResNet-32 model as an adversary are
similar to those of the BIM attack in Figure 5.18, we will not include the graph for
the PGD attack. We will suffice by stating that the adversarial accuracy is inverted,
the adv. accuracy is around 7% for the model loaded with float parameters and
0% for the rest.

Instead, we will compare the results in Figure 5.21 to Figure 5.22, where ϵ is
increased to 16\255. Naturally, the adv. accuracy decreased when applying a
higher perturbation budget, going from 6.8% to 1.5% for non-AT models. While it
dropped from 50-54% to 28-34% for AT models.
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Figure 5.21: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-32 Model (not AT).

Figure 5.22: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-32 Model (not AT) - ϵ = 16\255.

40



Results

5.3.2 Black-Box
The ResNet-32 model is still the victim, but the model generating the adv. data is
now ResNet-56. The performance of ResNet-32 in a black-box scenario is shown in
Figure 5.23, the adv. accuracy is almost identical across the different execution
types at around 8% for non-AT models. The adv. accuracy increased to 56-59%
after applying AT.

Figure 5.23: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-56 Model (not AT).

Increasing the perturbation budget caused a decrease in adv. accuracy for all
scenarios and models as shown in Figure 5.24, dropping from 8% to 2% for non-AT
models, and from 56-59% to 37-53% for AT models.
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Figure 5.24: Evaluation of ResNet-32 Model for Different Execution Types - Adv.
Data is Generated by a float ResNet-56 Model (not AT) - ϵ = 16\255.

5.3.3 AC and NSGA-II

NSGA-II searches for Pareto-optimal approximation level configurations, optimizing
the following metrics: the adversarial and standard accuracy. It is applied for a
single type of model under attack by a specific attack type. The execution type is
necessarily transaxx, since it is the only type that supports AC. The chosen model
is an AT ResNet-32 model loaded with transaxx parameters, under attack by adv.
data generated by the float ResNet-32 model. The initial adv. and standard
accuracy for the exact multipliers are represented in the last bar trio in Figure 5.21,
being 53.7% and 92.5%.

The result of this search algorithm is shown in Figure 5.25, every point on
this graph represents the adv. accuracy and standard accuracy for a specific
configuration. Keep in mind that an approximate value of 0 indicates exact
multiplication, while higher values correspond to increased approximation. Note
that we only have 31 approximation levels even though ResNet-32 has 32 layers,
this is because the last fully connected layer was fixed to exact multiplication.

Based on Figure 5.25, we can assert that there is a negative correlation between
adv. accuracy and standard accuracy, attempting to increase one by adjusting the
approximation levels will lead to a decrease in the other. For example, by using
the last configuration we can achieve an adv. accuracy of 58.01%, which is an
increase of 4.27% compared to the exact ResNet-32, but suffers a 0.86% decrease
in standard accuracy, going from 91.26% down to 90.4%. By accepting a greater
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Figure 5.25: Adversarial Accuracy vs. Standard Accuracy for Different Approxi-
mation Level Configurations.

loss in standard accuracy, we can achieve even higher adv. accuracy, such as an
88.84% standard accuracy with a 60.68% adv. accuracy.

5.3.4 Summary
We present the summary of the results for the PGD attack in Table 5.6. This
summary does not include PGD attacks with ϵ set to 16\255.

Not AT AT
White-Box 0% 6.8%

Partial White-Box 7% 52%
Black-Box 7.8% 57%

Table 5.6: ResNet-32 Performance Under BIM Attacks

There are no new conclusions to be drawn from these results, but rather re-
inforce the findings presented in the previous summaries (subsection 5.1.4 and
subsection 5.2.3).
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Chapter 6

Conclusion

In this thesis, we presented a comprehensive methodology to evaluate the impact
of quantization, AC, and AT on the robustness of CNNs, specifically the ResNet
architectures. This methodology was implemented through the developed frame-
work, which allowed for quantizing CNN models, inserting layers that support AC,
FGSM-based Adversarial Training, search for Pareto-optimal approximation level
configuration, and the emulation of white and black-box attacks on CNNs.

We observed that quantization combined with AT had the greatest impact
on adversarial accuracy, increasing it to anywhere between 37% to 53% for a
white-box attack, depending on the attack type and the architecture used. It
is important to note that AT alone did not lead to significant improvement in
robustness, so attributing the previous gain in adversarial accuracy to AT solely
would be inaccurate. Moreover, we found that FGSM-based training is effective
against other types of attacks such as PGD and BIM, which contradicts the claim
in [25] that FGSM-based training is not beneficial against BIM attacks.

AC was determined to have a minor impact on adversarial accuracy. It resulted
in a marginal increase of 1% to 2% for ResNet-32. AC was not investigated for
the other architectures due to the high runtime of NSGA-II, but it is expected to
have a similar outcome. For this reason, we can confidently assert that AC does
not interfere with quantization, as claimed in [39].

For future work, we suggest exploring a wider range of CNN architectures,
testing different types of attacks, using other datasets such as CIFAR-100, and
allowing NSGA-II to search all available approximation levels, to verify whether
the results remain consistent.
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Acronyms

CNN Convolutional Neural Network

DNN Deep Neural Network

GA Genetic Algorithm

LUT Look-Up Table

ML Machine Learning

NN Neural Network

QAT Quantization-Aware Training

PTQ Post-Training Quantization

AT Adversarially Trained or Adversarial Training

FGSM Fast Gradient Sign Method

BIM Basic Iterative Method

PGD Projected Gradient Descent

CW Carlini & Wagner

AC Approximate Computing

FC Fully Connected

CUDA Compute Unified Device Architecture
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