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Chapter 1

Background

1.1 Introduction

The Assemble-to-Order (ATO) problem is a production and inventory man-
agement challenge commonly encountered in industries where products are
assembled from various components or subassemblies. In an ATO environ-
ment, a company has a stock of components and assembles the final products
only when customer orders are received. This approach balances customiza-
tion (ince products are constructed based on specific customer requirements
and efficiency since the company does not need to stock large quantities
of finished goods. There has been a rich source of literature regarding the
problem that deals with a variety of versions of the ATO model. How-
ever, the main focus of the mainstream literature is to prove theoretically
some certain properties of the model and design control policies to optimize
predefined metrics. This approach isolates the assembler as the sole rational
decision maker of the process and ignores the complexity and the contractual
nature of supply chain coordination.The supplier cannot force the assembler
to receive more components than the ordered amount but in return, there is
not a strict compliance regime to force the supplier to deliver the desirable
amount of components to the assembler due to objective and subjective fac-
tor Kok, de and Graves [2003]. Therefore, it is necessary to create incentives
by sharing information on the uncertainty of demand so that each actor in
the supply chain behaves predictably.
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1.2 Literature review

The general formulation of the ATO problem with multiple products over
multiple periods has not been analytically solved since it was first mentioned
in Song and Zipkin [2003]. Some specific cases have been solved, including
the single product problem by Rosling [1989] and the single period problem
by Song and Zipkin [2003].It is important to notice the general formulation
in Song and Zipkin [2003] assume no procurement lead time and backlogged
demand is merged with current demand which means that no priority is
given to the back ordered demand. Here is the formulation of the problem:

(P) minimize E

{
T∑
t=0

[c(yt − xt) + hxt+1 + pwt+1]

}
subject to
xt+1 = yt −Azt, t = 0, . . . , T,

wt+1 = wt + dt − zt, t = 0, . . . , T,

xt, wt, zt ≥ 0, t = 0, . . . , T,

yt ≥ xt, t = 0, . . . , T.

where:

• c(yt − xt): Ordering cost for components, where yt − xt is the order
quantity in period t.

• hxt+1: Holding cost for excess inventory at the end of period t+ 1.

• pwt+1: Backorder cost for unmet demand at the end of period t+1.

• xt+1: Net inventory of components at the start of period t+ 1.

• Azt: Components consumed to assemble products in period t (where
A is the bill-of-materials matrix).

• wt+1: Backlogged demand at the end of period t+ 1.

• dt: Random demand for products in period t.

• zt: Production (assembly) of products in period t.
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The mathematical program above consists of two processes. The first one
is components procurement process in which the assembler (or the manufac-
turer as mentioned in the majority of the literature. Here we use the term
the assembler to underline their relationship with the suppliers that would
be later explained in this thesis). The second process is the components
allocation process in which the assembler makes a decision to distribute the
procured components into the production of each end-item once the demand
is realized. We cannot see clearly the distinction between these two pro-
cesses in the above mathematical formulation. However, there are papers
that tackle the same problem with different specifications. For example,
there are papers dealing with the ATO model with positive lead time. In
this case, it is more convenient to model the problem by separating the two
process and deal with them once at a time. An early paper that models pos-
itive lead time into the ATO problem is Agrawal and Cohen [2001], in which
the author consignment policy in conjunction with a fair shares allocation
scheme.

We can also simplify the model by removing the backlogged demand and
consider a lost-sale model. Gerchak and Henig [1989] study a lost-sales model
with stationary demand and linear order cost. Here is the formulation:

(Lost Sales) minimize E

{
T∑
t=0

[c(yt − xt) + hxt+1 − rzt]

}
,

where:

• c(yt − xt): Ordering cost for components.

• hxt+1: Holding cost for excess inventory.

• rzt: Revenue from selling zt units of products (negative cost).

Constraints

1. Inventory balance:

xt+1 = yt −Azt, t = 0, . . . , T.

2. Demand fulfillment (lost sales if unmet):

zt ≤ dt, t = 0, . . . , T.
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3. Non-negativity:

xt, zt ≥ 0, yt ≥ xt, t = 0, . . . , T.

Key Differences from Backlog Model

• No backorders: Unmet demand (dt − zt) is lost (no wt term).

• Revenue term: Objective includes −rzt to reflect revenue from sales.

The authors proved that above formulation is actually can be solved equiv-
alently by obtaining the single-period solution. In other words, the procure-
ment policy is a base-stock order policy in which at the beginning of each
period the assembler decides the amount of components to be procured and
once the demand is realized a linear program is run to solve the allocation
problem. This allocation policy is myopic which means that it does not take
into consideration what might happen in the next periods but the authors
has shown that under stationary demand, the base-stock order policy in con-
junction with the myopic-allocation policy is optimal. However, it is noted
that the paper only prove which policy would optimal profit under the given
settings without providing a clear way to actually compute the solution and
obtain a numerical result.

Based on the lost-sales model in Gerchak and Henig [1989], a line of
research using the stochastic programming technique was first established
by Brandimarte et al. [2021] regarding a one period model formulated as
a two-stage stochastic problem in which the problem is modeled and can
be solved using a solver for mathematical optimization. In the paper, the
authors computes the numerical result of the base-stock policy following the
approach of sample average approximation (SAA) and an allocation policy
is not specified. Here is the formulation used in the paper:

max −
I∑

i=1

Cixi +

S∑
s=1

πs

 J∑
j=1

Pjy
s
j


s.t.

I∑
i=1

Timxi ≤ Lm ∀m ∈M

ysj ≤ dsj ∀j ∈ J , s ∈ S
J∑

j=1

Gijy
s
j ≤ xi ∀i ∈ I, s ∈ S

ysj , xi ≥ 0
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where

• I = {1, . . . , I}: set of components

• J = {1, . . . , J}: set of end items

• M = {1, . . . ,M}: set of production resources (machines)

• S = {1, . . . , S}: set of scenarios for demand uncertainty

• dsj : demand for end item j ∈ J in scenario s ∈ S

• πs: probability of scenario s

• Ci: cost of component i ∈ I

• Pj : price of end item j ∈ J

• Lm: available time for machine m ∈M

• Tim: processing time for component i ∈ I on machine m ∈M

• Gij : number of components of type i needed to assemble one end item
of type j (gozinto factors)

• xi: first-stage variable representing the amount of component i to pro-
duce

• ysj : second-stage variable representing the amount of end item j as-
sembled and sold in scenario s

Later Fadda et al. [2023] developed risk-averse approach for the same
two-stage model.
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min
x∈RI ,y∈RJ

ζ +
1

1− α

S∑
s=1

πsz
s

s.t. −
∑
i∈I

Cixi +
∑
s∈S

πs

∑
j∈J

Pjy
s
j

 ≥ Ψ

zs ≥ 0 ∀s ∈ S

zs ≥
∑
i∈I

Cixi −
∑
j∈J

Pjy
s
j − ζ ∀s ∈ S

∑
i∈I

Timxi ≤ Lm ∀m ∈M

ysj ≤ dsj ∀j ∈ J , ∀s ∈ S∑
j∈J

Gijy
s
j ≤ xi ∀i ∈ I, ∀s ∈ S

ysj , xi ≥ 0 ∀i ∈ I, ∀j ∈ J , ∀s ∈ S
ζ ∈ R, zs ≥ 0 ∀s ∈ S

Finally, the approach is generalized to the multistage formulation by
Gioia et al. [2024].

max
x,y

∑
n∈N

π[n]

[∑
j∈J

(Pjy
[n]
j −Kjl

[n]
j )−

∑
i∈I

(Cix
[n]
i +HiI

[n]
i )

]
s.t.

∑
i∈I

Timx
[n]
i ≤ Lm ∀m ∈M, ∀n ∈ N

I
[n]
i = I

[p(n)]
i + x

[p(n)]
i −

∑
j∈J

Gijy
[n]
j ∀i ∈ I, ∀n ∈ N+

I
[0]
i = I0i −

∑
j∈J

Gijy
[0]
j ∀i ∈ I

y
[n]
j + l

[n]
j = d

[n]
j ∀j ∈ J , ∀n ∈ N

x
[n]
i , I

[n]
i ∈ Z+ ∀i ∈ I, ∀n ∈ N

y
[n]
j , l

[n]
j ∈ Z+ ∀j ∈ J , ∀n ∈ N

As mentioned in the introduction, the mainstream literature regarding
the ATO problem isolates the assembler as the sole decision maker, which
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might not be the case in many situations. There are papers in the line of
research in which there is information sharing between the assembler and
its suppliers of components and the assembler has to take into consideration
the decision made by its suppliers to optimize their own gain. One of them
is Gerchak and Wang [2004] which investigates a one-product model with
vendor-managed inventory with revenue sharing. The paper shows that the
channel performance of a wholesale-price-only scheme is shown to degrade
with the number of suppliers, which is not the case with a revenue-share-only
contract. Here is the formulation of the problem:

The assembler shares revenue with the suppliers. The contract specifies
that for each unit sold:

• Supplier i receives αi (0 < αi < 1).

• The assembler keeps α0 = 1−
∑n

i=1 αi.

The condition for participation is:

αi > ci, i = 0, 1, . . . , n.

Each supplier i chooses a production quantity Qi to maximize their ex-
pected profit, solving:

F̄ (Q∗
i ) =

ci
αi

, i = 1, . . . , n.

The assembler’s optimal assembly quantity Q∗
0 is similarly determined

by:
F̄ (Q∗

0) =
c0
α0

.

At equilibrium, all suppliers and the assembler produce the same quantity,
determined by the "critical supplier" with the smallest Q∗

i :

Q∗
d = min{Q∗

1, . . . , Q
∗
n, Q

∗
0}.

The assembler sets revenue shares αi to maximize its expected profit:

max
α1,...,αn

π0(α1, . . . , αn) = E

[
−c0Q∗

d +

(
1−

n∑
i=1

αi

)
min(Q∗

d, D)

]
.

The optimal revenue shares satisfy:
c1
α1

= · · · = cn
αn
≥ c0

α0
.
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Another paper is Bernstein et al. [2007] in which the authors investi-
gate a 2-product, 3-components (an M system) that shows possible capacity
imbalance and inefficiency caused by decentralized decision-making. Specif-
ically, the result indicates that outsourcing the management of component
supplies may inhibit the use of operational hedging approaches for managing
uncertainty. Our interest is to build a large-scale bilevel stochastic model
to handle the size of a realistic instance that optimizes the profit of the
assembler.

1.3 Stochastic Programming

In this model, the assembler produces its own components instead of ordering
them from other suppliers. Conceptually, there is no difference between
producing components and ordering them with zero lead time except that the
number of produced component is limited by the assembler’s capacity. The
limit of the assembler’s capacity would lead to the need of the development
of a decentralized model that is characterized later in chapter 3.

1.3.1 Two Stage Problems

Two-stage stochastic programming is a powerful framework for optimization
under uncertainty, where decisions are made in two sequential stages: be-
fore and after observing random parameters. We discuss the formulation,
solution methods, and challenges of two-stage stochastic programming, with
an emphasis on practical applications such as inventory management. We
also review scenario approximation techniques, decomposition methods, and
risk-averse extensions.

Stochastic programming provides a systematic approach to decision-making
under uncertainty. Among its variants, two-stage stochastic programming is
widely used in operations research, finance, and logistics. The key idea is to
separate decisions into:

• First-stage decisions ("here-and-now"): Made before uncertainty is
resolved.

• Second-stage decisions ("recourse actions"): Adjustments made af-
ter observing the random outcomes.

The first-stage decision variable x ∈ X is chosen to minimize an imme-
diate cost c⊤x plus the expected cost of future recourse:
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min
x∈X

{
c⊤x+ E[Q(x, ξ)]

}
,

where Q(x, ξ) is the optimal value of the second-stage problem. Given a
realization of random parameters ξ = (q, T,W, h), the second-stage problem
is:

Q(x, ξ) = min
y

{
q⊤y | Tx+Wy ≤ h

}
.

The term E[Q(x, ξ)] averages the recourse cost over all possible scenarios,
ensuring robustness.

Example: Inventory Management Consider a newsvendor problem where:

• x: Order quantity (first-stage decision).

• D: Random demand.

• Costs: c (ordering), b (backorder), h (holding).

The total cost is:

G(x,D) = cx+ bmax(D − x, 0) + hmax(x−D, 0).

The stochastic optimization problem:

min
x≥0

E[G(x,D)],

has a closed-form solution:

x̄ = F−1

(
b− c

b+ h

)
,

where F is the CDF of demand.
Solution Methods Scenario Approximation Discretize ξ into K scenarios

{ξk}Kk=1 with probabilities pk. The problem becomes a deterministic LP:

min
x,y1,...,yK

c⊤x+
K∑
k=1

pkq
⊤
k yk s.t. Tkx+Wkyk ≤ hk, ∀k.

Sample Average Approximation (SAA)

• Generate N Monte Carlo samples ξ1, . . . , ξN .

• Approximate E[Q(x, ξ)] with 1
N

∑N
j=1Q(x, ξj).
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• Statistical bounds validate solution quality.

The two-stage problem can be solved using the following techniques.

• Benders decomposition (L-shaped method): Separates first-stage
and second-stage problems.

• Lagrangian relaxation: Dualizes coupling constraints.

In conclusion, two-stage stochastic programming provides a flexible and
robust framework for optimization under uncertainty. Advances in decom-
position methods and sampling techniques have made large-scale problems
tractable. Future work includes integrating machine learning for scenario
generation and improving risk-averse formulations.

1.3.2 Sample Average Approximation (SAA)

The Sample Average Approximation (SAA) method is a widely used ap-
proach for solving stochastic optimization problems, where the objective
function involves expectations that are difficult to evaluate directly. The
core idea of SAA is to approximate the expected objective function by a
sample-based empirical average, transforming the stochastic problem into a
deterministic optimization problem that can be solved using conventional
techniques. Given a stochastic optimization problem of the form

min
x∈X

E[F (x, ξ)],

where ξ represents a random variable with an unknown probability dis-
tribution, the SAA method estimates the expectation by drawing an inde-
pendent and identically distributed (i.i.d.) sample {ξ1, ξ2, . . . , ξN} of size N .
The expected objective function is then approximated as

F̂N (x) =
1

N

N∑
i=1

F (x, ξi),

leading to the deterministic optimization problem

min
x∈X

F̂N (x).

As the sample size N increases, the SAA solution converges to the true
optimal solution under appropriate regularity conditions, such as continu-
ity and convexity of the function F (x, ξ). Theoretical guarantees, including
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the consistency and asymptotic normality of SAA estimators, make this ap-
proach attractive for practical applications. The efficiency of SAA depends
on the trade-off between computational complexity and solution accuracy,
as larger sample sizes provide better approximations but increase compu-
tational cost. The method has been successfully applied in various fields,
including supply chain management, financial optimization, and machine
learning, where decision-making under uncertainty is crucial. Moreover, ad-
vanced techniques such as variance reduction and adaptive sampling can be
incorporated to enhance the performance of SAA. Despite its advantages,
one of the main challenges of SAA is selecting an appropriate sample size N ,
as an insufficient sample may lead to suboptimal solutions, while an exces-
sively large sample increases computational burden. Nonetheless, the SAA
method remains a powerful and flexible approach for addressing stochas-
tic optimization problems, particularly when exact analytical solutions are
intractable.

1.4 Bilevel optimization

An optimization problem can generally be denoted in the following way:

min
x∈Rn

f(x) (1.1)

s.t. g(x) ≥ 0, (1.2)
h(x) = 0 (1.3)

There is only one objective function f , a variable x ∈ Rn, and constraints
h and g. This type of model is appropriate in several cases in which there
is only one rational decision maker, which means that all the parameters
affecting the decision are either constant or stochastically known through
a distribution. The model is, however, less appropriate when the problem
involves more than one decision maker, each of whose decisions affects the
parameters of the other’s optimization problem. A special case of the prob-
lem is the situation in which some decision-makers follow one decision-maker
in the temporal order of their decisions. It is called a leader-follower game
by von Stackelberg, or a bilevel optimization problem. Here is the formal
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definition of a bilevel optimization problem:

min
x∈X,y

F (x, y) (1.4)

s.t. G(x, y) ≥ 0, (1.5)
y ∈ S(x), (1.6)

(1.7)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (1.8)

s.t. g(x, y) ≥ 0. (1.9)

1.4.1 Linear Bilevel optimization

Bilevel optimization is a powerful mathematical framework used to model
hierarchical decision-making processes where two decision-makers, referred to
as the leader and the follower, interact in a sequential manner. The leader
makes decisions first, anticipating the follower’s optimal response, which in
turn affects the leader’s outcome. This structure is particularly useful in
modeling real-world scenarios such as pricing strategies, toll setting, energy
markets, and critical infrastructure defense.

Among the various classes of bilevel optimization problems, linear bilevel
optimization is one of the most studied and well-understood. In linear
bilevel optimization, both the leader’s and the follower’s problems are linear
programs (LPs). Despite the linearity of the individual problems, the bilevel
structure introduces significant complexity, making even linear bilevel opti-
mization problems challenging to solve.

This article provides a comprehensive overview of linear bilevel optimiza-
tion, covering its mathematical formulation, properties, solution concepts,
and algorithms. We will also discuss some of the challenges and applications
of linear bilevel optimization in real-world scenarios.

A linear bilevel optimization problem can be formally defined as
follows:

Upper-Level Problem (Leader’s Problem):

min
x∈X,y

c⊤x x+ c⊤y y

subject to: Ax+By ≥ a,

y ∈ S(x),

where:
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• x ∈ Rnx is the leader’s decision variable.

• y ∈ Rny is the follower’s decision variable.

• cx ∈ Rnx and cy ∈ Rny are the leader’s objective coefficients.

• A ∈ Rm×nx and B ∈ Rm×ny are the leader’s constraint matrices.

• a ∈ Rm is the right-hand side vector of the leader’s constraints.

• S(x) is the set of optimal solutions to the follower’s problem.

Lower-Level Problem (Follower’s Problem):

S(x) = argmin
y∈Y

d⊤y

subject to: Cx+Dy ≥ b,

where:

• d ∈ Rny is the follower’s objective coefficient vector.

• C ∈ Rℓ×nx and D ∈ Rℓ×ny are the follower’s constraint matrices.

• b ∈ Rℓ is the right-hand side vector of the follower’s constraints.

Key Components:

1. Leader’s Decision (x): The leader chooses x to minimize their ob-
jective function, anticipating the follower’s optimal response y ∈ S(x).

2. Follower’s Reaction (y): The follower reacts to the leader’s decision
x by solving their own optimization problem, which is parameterized
by x.

3. Coupling Constraints: The constraints Ax + By ≥ a and Cx +
Dy ≥ b link the leader’s and follower’s decisions, making the problem
hierarchical.

Linear bilevel optimization problems exhibit several unique properties
that distinguish them from standard linear programs:

• Nonconvexity: Even though both the leader’s and follower’s problems
are linear, the bilevel structure introduces nonconvexity. The feasi-
ble region of the bilevel problem is often nonconvex and may even be
disconnected. This nonconvexity arises because the follower’s optimal
solution y ∈ S(x) depends on the leader’s decision x, leading to a
complex interaction between the two levels.
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• Disconnected Feasible Set:The feasible set of a linear bilevel problem
is typically a union of faces of the shared constraint set Ω = {(x, y) :
Ax + By ≥ a,Cx + Dy ≥ b}. This means that the feasible region is
not a single convex set but rather a collection of convex polyhedra.

• NP-Hardness:Linear bilevel optimization problems are NP-hard, mean-
ing that there is no known polynomial-time algorithm to solve them
in general. This complexity arises from the hierarchical structure and
the need to account for the follower’s optimal response.

• Optimal Solutions at Vertices: Despite the nonconvexity, the optimal
solution of a linear bilevel problem is often found at a vertex of the
shared constraint set Ω. This property is exploited by algorithms such
as the Kth-best algorithm and branch-and-bound methods.

Now we discuss solution concepts in Bilevel Optimization:

1. Optimistic vs. Pessimistic Solutions

• Optimistic Approach: The leader assumes that the follower
will choose the best response for the leader. This is the most
common approach in bilevel optimization.

• Pessimistic Approach: The leader assumes that the follower
may choose the worst possible response, leading to a more con-
servative solution.

2. Local vs. Global Solutions

• Local Solution: A feasible point (x∗, y∗) is a local solution if
there exists a neighborhood around it where no better solution
exists.

• Global Solution: A feasible point (x∗, y∗) is a global solution if
it has the best objective value among all feasible points.

3. Inducible Region

• The inducible region is the set of all feasible points (x, y) where
y is an optimal solution to the follower’s problem for a given x.

• The bilevel feasible set is a subset of the shared constraint set Ω
and is defined by the inducible region.

Solving linear bilevel optimization problems is challenging due to their
nonconvexity and NP-hardness. Several algorithms have been developed to
tackle these problems:
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1. Single-Level Reformulations

• KKT Reformulation: The follower’s problem is replaced by its
Karush-Kuhn-Tucker (KKT) conditions, leading to a single-level
mathematical program with complementarity constraints (MPCC).

• Optimal-Value Function Reformulation: The bilevel prob-
lem is reformulated using the optimal-value function of the fol-
lower’s problem, resulting in a single-level problem with a nons-
mooth constraint.

• Strong-Duality Based Reformulation: The follower’s prob-
lem is replaced by its dual problem, and strong duality is used to
derive a single-level reformulation.

2. The Kth-Best Algorithm: This algorithm enumerates the vertices of
the shared constraint set Ω in order of increasing leader’s objective
value. The first vertex that is bilevel feasible (i.e., satisfies the follower’s
optimality condition) is the optimal solution. The Kth-best algorithm
is simple but computationally expensive for large problems due to the
need to enumerate vertices.

3. Branch-and-Bound: Branch-and-bound methods are widely used for
solving linear bilevel problems. The algorithm branches on the com-
plementarity constraints of the KKT reformulation or the binary vari-
ables introduced in the mixed-integer reformulation. This method is
more efficient than the Kth-best algorithm but still faces challenges
due to the nonconvexity of the problem.

4. Penalty Alternating Direction Methods (PADM): PADM is a heuristic
approach that alternates between solving the leader’s and follower’s
problems while penalizing violations of the bilevel constraints. While
PADM does not guarantee global optimality, it is often effective in
finding high-quality solutions for large-scale problems.

Linear bilevel optimization presents several challenges that complicate its
solution process. The nonconvexity of the feasible region makes it difficult to
guarantee global optimality, as most algorithms can only find local solutions.
Additionally, the NP-hard nature of these problems leads to high computa-
tional complexity, making it challenging to solve large instances efficiently,
even with advanced algorithms. Another difficulty arises when the follower’s
problem has multiple optimal solutions for a given upper-level decision, caus-
ing the bilevel problem to become ill-posed. To address this, optimistic and
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pessimistic approaches are used, but they introduce additional complexity.
Furthermore, the choice of single-level reformulation—such as using Karush-
Kuhn-Tucker (KKT) conditions, the optimal-value function, or strong dual-
ity—plays a crucial role in determining the efficiency and tractability of the
solution process.

Linear bilevel optimization has numerous applications in various fields:

1. Pricing Problems: A company (leader) sets prices for its products, an-
ticipating how customers (followers) will react by choosing the optimal
combination of products to purchase.

2. Toll Setting: A toll-setting agency (leader) determines tolls on a trans-
portation network, while travelers (followers) choose routes that mini-
mize their travel costs.

3. Energy Markets: A regulatory authority (leader) sets market rules,
while energy producers and consumers (followers) optimize their pro-
duction and consumption decisions.

4. Critical Infrastructure Defense: A defender (leader) allocates resources
to protect critical infrastructure, while an attacker (follower) chooses
targets to maximize damage.

5. Interdiction Problems: A defender (leader) interdicts resources to dis-
rupt an adversary’s (follower) operations, such as in drug smuggling or
network interdiction.

In conclusion, Linear bilevel optimization is a powerful tool for model-
ing hierarchical decision-making processes in various real-world applications.
Despite its linear structure, the bilevel nature of the problem introduces
significant complexity, making it challenging to solve. Researchers have de-
veloped a variety of algorithms, including single-level reformulations, the
Kth-best algorithm, branch-and-bound methods, and penalty alternating
direction methods, to tackle these problems. While linear bilevel optimiza-
tion remains an active area of research, its applications in pricing, toll setting,
energy markets, and critical infrastructure defense demonstrate its practical
importance. As computational techniques continue to advance, we can ex-
pect further progress in solving larger and more complex bilevel optimization
problems, unlocking new possibilities for modeling and optimizing hierarchi-
cal systems.

18



1.5 Heuristic methods

1.5.1 CMA-ES

Optimization is a fundamental problem in many scientific, engineering, and
machine learning domains. The goal is to find the best solution to a prob-
lem, often by minimizing or maximizing an objective function f : Rn → R.
Among the many optimization algorithms developed, the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) stands out as a pow-
erful, derivative-free method for solving difficult non-linear, non-convex op-
timization problems in continuous search spaces.

CMA-ES is a stochastic optimization algorithm that belongs to the class
of evolution strategies (ES), which are inspired by natural evolution prin-
ciples such as mutation, recombination, and selection. It is particularly ef-
fective for problems where the objective function is noisy, non-differentiable,
or has many local optima. The key innovation in CMA-ES is its ability to
adapt the covariance matrix of a multivariate Gaussian distribution, which
guides the search process by learning the problem’s underlying structure.

In this section, we provide a detailed and comprehensive overview of
CMA-ES, including its mathematical formulation, algorithmic components,
practical applications, and recent developments.

Evolution Strategies: The Foundation of CMA-ES

Evolution Strategies (ES) are a class of optimization algorithms inspired
by natural evolution. They maintain a population of candidate solutions,
which are iteratively improved through mutation, recombination, and
selection.

Mutation and Recombination

In ES, new candidate solutions are generated by mutation, which involves
adding random perturbations to the current population. The perturbations
are typically drawn from a multivariate normal distribution:

x′
i = xi + σzi,

where:

• xi is a candidate solution,

• σ is the step-size (mutation strength),
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• zi ∼ N (0,C) is a random vector sampled from a multivariate normal
distribution with mean 0 and covariance matrix C.

Recombination combines information from multiple parent solutions
to create offspring. For example, the weighted average of µ selected parents
can be computed as:

xrecomb =

µ∑
i=1

wixi,

where wi are weights assigned to the parents.

Selection

Selection is the process of choosing the fittest solutions from the population
to form the next generation. In ES, selection is typically based on the fitness
values f(xi). The µ best solutions are selected, and their information is used
to guide the search.

Limitations of Basic ES

The performance of ES depends heavily on the choice of the covariance ma-
trix C and step-size σ. If these parameters are not properly tuned, the algo-
rithm may converge slowly or get stuck in local optima. CMA-ES addresses
this limitation by introducing a mechanism to adapt the covariance ma-
trix and step-size during the optimization process.

The CMA-ES Algorithm

CMA-ES extends the basic ES framework by dynamically adapting the co-
variance matrix C and step-size σ based on information gathered during the
optimization process. The key components of CMA-ES are:

1. Covariance Matrix Adaptation: Adjusts the shape and orientation
of the search distribution.

2. Evolution Path: Tracks the movement of the population over itera-
tions.

3. Step-Size Control: Adjusts the overall scale of the mutation distri-
bution.

4. Population Update: Generates new candidate solutions through
sampling, recombination, and selection.
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Let’s explore each component in detail, with mathematical formulations.
Covariance Matrix Adaptation The covariance matrix C determines the

shape and orientation of the search distribution. In CMA-ES, C is adapted
iteratively using two mechanisms:

Rank-One Update

The rank-one update incorporates information from the evolution path pσ,
which accumulates the steps taken by the algorithm:

p(t+1)
σ = (1− cσ)p

(t)
σ +

√
cσ(2− cσ)µeff ·

m(t+1) −m(t)

σ(t)
,

where:

• cσ is the learning rate for the evolution path,

• µeff is the effective selection mass,

• m(t) is the mean of the population at iteration t.

The covariance matrix is then updated as:

C(t+1) = (1− c1)C
(t) + c1p

(t+1)
σ (p(t+1)

σ )⊤,

where c1 is the learning rate for the rank-one update.

Rank- Update

The rank- update incorporates information from the selected candidate so-
lutions:

C(t+1) = (1− cµ)C
(t) + cµ

µ∑
i=1

wiyiy
⊤
i ,

where:

• cµ is the learning rate for the rank- update,

• yi = (xi −m(t))/σ(t) is the normalized step,

• wi are weights assigned to the selected solutions.

The combined update rule for the covariance matrix is:

C(t+1) = (1− c1 − cµ)C
(t) + c1p

(t+1)
σ (p(t+1)

σ )⊤ + cµ

µ∑
i=1

wiyiy
⊤
i .
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Evolution Path

The evolution path pσ accumulates the steps taken by the algorithm over
multiple iterations. It is updated as:

p(t+1)
σ = (1− cσ)p

(t)
σ +

√
cσ(2− cσ)µeff ·

m(t+1) −m(t)

σ(t)
.

Step-Size Control

The step-size σ controls the overall scale of the mutation distribution. It is
adapted using the cumulative step-size adaptation (CSA) mechanism:

σ(t+1) = σ(t) exp

(
cσ
dσ

(
∥p(t+1)

σ ∥
E[∥N (0, I)∥]

− 1

))
,

where:

• cσ is the learning rate for the step-size,

• dσ is a damping factor,

• E[∥N (0, I)∥] is the expected length of a vector sampled from a standard
normal distribution.

Population Update

The population is updated iteratively by sampling new candidate solutions
from the multivariate normal distribution:

x
(t+1)
i = m(t) + σ(t)zi,

where zi ∼ N (0,C(t)). The mean m is updated as:

m(t+1) =

µ∑
i=1

wix
(t+1)
i .
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The CMA-ES Algorithm in Pseudocode

CMA-ES Algorithm
1: Initialize:
2: Mean vector m(0),
3: Covariance matrix C(0) = I,
4: Step-size σ(0),
5: Evolution path p

(0)
σ = 0.

6: Repeat until convergence:
7: Sample λ candidate solutions: xi = m+ σzi, where zi ∼ N (0,C).
8: Evaluate fitness f(xi).
9: Select the µ best solutions.

10: Update mean m.
11: Update evolution path pσ.
12: Update covariance matrix C.
13: Update step-size σ.

Practical Applications of CMA-ES

The CMA-ES algorithm has demonstrated successful applications across di-
verse domains, including hyperparameter tuning in machine learning,
engineering design optimization (such as aerodynamic shapes and struc-
tural design), robotics (including gait optimization and control policies),
financial portfolio optimization, and bioinformatics (notably protein
folding and gene network inference). The method offers several key ad-
vantages: its robustness enables handling of noisy, non-differentiable, and
non-convex functions; its adaptability allows it to learn problem struc-
ture through covariance matrix adaptation; and its efficiency makes it par-
ticularly effective for high-dimensional problems. However, CMA-ES also
presents certain limitations, including significant computational cost with
high memory and processing requirements for large dimensions n n, the need
for careful hyperparameter tuning, and a tendency to converge to local
optima when dealing with highly multimodal functions.

Conclusion

CMA-ES is a state-of-the-art optimization algorithm that combines robust-
ness, adaptability, and efficiency. Its ability to adapt the covariance ma-
trix and step-size makes it particularly effective for challenging optimization
problems. Despite its computational cost, CMA-ES remains a powerful tool
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for solving complex real-world problems, and ongoing research continues to
expand its capabilities and applications.

1.5.2 PSO

Particle Swarm Optimization (PSO) is a population-based stochastic opti-
mization technique inspired by the social behavior of bird flocking or fish
schooling. We cover the fundamental concepts, mathematical formulations,
variants, applications, and recent advances in PSO. The article provides
both theoretical foundations and practical implementation guidelines, mak-
ing it a valuable resource for researchers and practitioners in optimization
and computational intelligence. Particle Swarm Optimization (PSO) is a
computational method that optimizes a problem by iteratively trying to im-
prove a candidate solution with regard to a given measure of quality. First
introduced by Kennedy and Eberhart in 1995, PSO has become one of the
most popular swarm intelligence algorithms due to its simplicity, efficiency,
and effectiveness across a wide range of optimization problems. The algo-
rithm simulates the social behavior observed in flocks of birds or schools of
fish, where individuals (particles) adjust their movements based on their own
experience and the experience of their neighbors. In PSO terminology, the
"swarm" refers to the population of candidate solutions, and each "particle"
represents a potential solution to the optimization problem. In the standard
PSO algorithm, each particle i in the swarm is characterized by:

• A position vector x⃗i(t) = (xi1, xi2, ..., xiD) representing a potential
solution in D-dimensional space

• A velocity vector v⃗i(t) = (vi1, vi2, ..., viD) representing the direction
and magnitude of movement

• A personal best position p⃗i(t) = (pi1, pi2, ..., piD) representing the best
solution found by the particle so far

The swarm also maintains a global best position g⃗(t), which represents
the best solution found by any particle in the swarm up to time t.

The velocity and position update equations are:

v⃗i(t+ 1) = wv⃗i(t) + c1r1(p⃗i(t)− x⃗i(t)) + c2r2(g⃗(t)− x⃗i(t)) (1.10)

x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1) (1.11)

where:
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• w is the inertia weight

• c1 and c2 are cognitive and social acceleration coefficients

• r1 and r2 are random numbers uniformly distributed in [0,1]

Algorithm Pseudocode

Basic PSO Algorithm
1: Initialize swarm with random positions and velocities
2: while stopping criterion not met do
3: for each particle i do
4: Evaluate fitness f(x⃗i)
5: if f(x⃗i) < f(p⃗i) then
6: p⃗i ← x⃗i
7: end if
8: if f(x⃗i) < f(g⃗) then
9: g⃗ ← x⃗i

10: end if
11: end for
12: for each particle i do
13: Update velocity using equation (1)
14: Update position using equation (2)
15: end for
16: end whilereturn g⃗ as the best solution found

Parameters and Their Impact
The performance of PSO depends heavily on the proper setting of its

parameters:

Table 1.1: Key PSO Parameters and Their Effects

Parameter Typical Range Effect
Swarm size 20-25 Larger swarms explore more but increase computation
Inertia weight (w) 0.4-0.9 Controls exploration-exploitation trade-off
Cognitive coefficient (c1) 1.5-2.0 Influences attraction to personal best
Social coefficient (c2) 1.5-2.0 Prevents swarm explosion
Velocity clamping −vmax, vmax Prevents swarm explosion

Particle Swarm Optimization has evolved significantly since its incep-
tion, proving to be a versatile and powerful optimization tool. Its simplicity,
flexibility, and effectiveness have made it popular across numerous domains.
Current research continues to expand its capabilities through hybridization,
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theoretical analysis, and application to increasingly complex problems. Fu-
ture directions may include deeper theoretical foundations, adaptive param-
eter control, and applications in emerging fields like deep learning and big
data analytics.
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Chapter 2

The ATO Model

2.1 Notations

To state the mathematical model describing the ATO production planning
problem, let us introduce the following sets: the set of components I =
{1, . . . , I}, the set of end items J = {1, . . . , J}, the set of production re-
sources (machines)M = {1, . . . ,M}.

Furthermore, let us introduce the following parameters:

• Ci cost of component i ∈ I;

• Pj price of the end item j ∈ J ;

• Lm availability (in terms of time) of machine m ∈M;

• Tim processing time for end item i ∈ I on machine m ∈M;

• Gij number of components of type i ∈ I needed to assemble one end
item of type j ∈ J ; in manufacturing parlance, these numbers are
called gozinto factors.

• Hi inventory holding cost of component i ∈ I

• Ki lost sale penalty of end item j ∈ J

We define S as the set of scenarios. For each scenario s ∈ S, we have the
variables:

• xsi ∈ Z+, the amount of components i ∈ I produced or received in
the scenario s ∈ S. However, since the number of components has to
be determined in advance before any scenario is realized, we have to
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add a nonanticipativity constraint on xsi ∀i ∈ I,∀s ∈ S. Therefore, we
simply denote the quantity as xi ∀i ∈ I

• Isi ∈ Z+, the available inventory of components i ∈ I in the scenario
s ∈ S.

• ysj ∈ Z+, the amount of end itemsj ∈ J assembled in the scenario
s ∈ S.

• lsj ∈ Z+, the lost sales of end items j ∈ J in the scenario s ∈ S.

• αi ∈ Z+, the price of the component i ∈ I set by the assembler in the
first stage of the decentralized model.

2.2 Centralized model

max −
∑
i

Cixi +
∑
s∈S

πs

∑
j∈J

Pjy
s
j −

∑
j∈J

Kjl
s
j −

∑
i∈I

HiI
s
i

 (2.1)

s.t
∑

Timxi ≤ Lm ∀m ∈M (2.2)

Isi = I0i + xi −
∑
j∈J

Gijy
s
j ∀i ∈ I,∀s ∈ S (2.3)

dsj = ysj + lsj ∀j ∈ J , ∀s ∈ S (2.4)

xsi , y
s
j , I

s
i , l

s
j ∈ Z+ ∀i ∈ I,∀j ∈ J , ∀s ∈ S (2.5)

The objective function of the centralized model 2.1 is the net profit calcu-
lated by taking the expected revenue minus the total cost that the assembler
has to pay to procure components in the first stage. Constraints 2.2 regulate
the number of components that can be produced to meet the incoming de-
mands according to the current capacity of the assembler. In this centralized
model, the assembly company also plays the role of the manufacturer where
they produce their components to be assembled into the end items. Con-
straints 2.3 represent the relation between the components produced and the
number of assembled end items; the unused components in this period will
be carried over to the next one, the assembler paying for the storage costs.
Constraints 2.4 with the non-negativity of the decision variable guarantee
that the number of assembled end items does not exceed the supposed de-
mands in a scenario and calculate the lost sale. Constraints 2.5 specify that
all decision variables are nonnegative integers.
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2.3 Decentralized model

max
∑
s∈S

πs

∑
j∈J

Pjy
s
j −

∑
j∈J

Kjl
s
j −

∑
i∈I

HiI
s
i −

∑
i∈I

αi

∑
j∈J

Gijy
s
j

 (2.6)

s.t Isi = I0i + x∗i −
∑
j∈J

Gijy
s
j ∀i ∈ I, ∀s ∈ S (2.7)

dsj = ysj + lsj ∀j ∈ J , ∀s ∈ S (2.8)

ysj , I
s
i , l

s
j ∈ Z+ ∀i ∈ I, ∀j ∈ J , ∀s ∈ S (2.9)

x∗i ∈ Bi(αi) ∀i ∈ I (2.10)

max − Cixi + αiE

min

xi,
∑
j∈J

Gijd
s
j

 (2.11)

xi ∈ Z+ (2.12)

In the decentralized model, the objective function 2.6 is still the net profit
made by the manufacturer, but the decision variable in the first stage is no
longer the number of components produced determined by the manufacturer.
Instead, in this version of the problem, the assembler, in the first stage,
sets a price level αi for each component i ∈ I. In response, each supplier
will produce the number of components according to the information shared
about the incoming demands that optimize their objective 2.11. The supplier
problem is a Newsvendor model that has an analytical solution:

x∗i = F−1

(
αi − Ci

αi

)
,

for each i ∈ I and F (·) is the cumulative distribution function of demand.
The constraints 2.7 represent the inventory of the assembler, and the number
of received components is a constant from the assembler’s point of view. We
assume that the assembler keeps all the unused components and will pay for
the incurred holding costs, but as we can see in the objective function 2.6,
the assembler will only pay for the components that are used to make the
end items. The constraints 2.8 and 2.9 are the same as in the centralized
version of the model. This can be seen as a bilevel optimization problem or
the so-called Stalkerberg game where the leader makes the first move and all
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the followers respond accordingly; all actors in the game decide to optimize
their objective. In our model, the assembler is the leader who sets the price
they will pay to each of their suppliers, and the suppliers are the followers
who will respond by producing an appropriate number of components.

2.4 Heuristic Ascent Direction Algorithm

The most direct approach to solving a bilevel optimization problem involves
reformulating it as a single-level problem. This process typically begins
by discretizing and linearizing the lower-level problem. Subsequently, the
Karush-Kuhn-Tucker (KKT) conditions are applied to derive an equivalent
set of constraints for the resulting single-level formulation.

max − Cixi + αi

∑
s∈S

πsts (2.13)

ts ≤ xi ∀s ∈ S (2.14)

ts ≤
∑
j∈J

Gijd
s
j ∀s ∈ S (2.15)

xi, t
s ∈ Z+ ∀s ∈ S (2.16)

L(x, t, λ) = −Cixi+αi

∑
s∈S

πsts+
∑
s∈S

λs
1(xi−ts)+

∑
s∈S

λs
2(−ts+

∑
j∈J

Gijd
s
j)+λ3xi+

∑
s∈S

λs
4t

s

∇xi = −Ci +
∑
s∈S

λs
1 + λ3

∇ts = αiπ
s − λs

1 − λs
2 + λs

4

• 1. Primal feasibility

ts ≤ xi ∀s ∈ S (2.17)

ts ≤
∑
j∈J

Gijd
s
j ∀s ∈ S (2.18)

xi, t
s ≥ 0 ∀s ∈ S (2.19)
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• 2. Complementarity

λs
1(xi − ts) = 0 ∀s ∈ S (2.20)

λs
2(−ts +

∑
j∈J

Gijd
s
j) = 0 ∀s ∈ S (2.21)

λ3xi = 0 (2.22)
λs
4t

s = 0 ∀s ∈ S (2.23)

• 3. Dual feasibility

− Ci +
∑
s∈S

λs
1 + λ3 = 0 (2.24)

αiπ
s − λs

1 − λs
2 + λs

4 = 0 ∀s ∈ S (2.25)
λs ≥ 0 ∀s ∈ S (2.26)

The reformulated problem introduces nonlinearity into the objective func-
tion along with a set of complementarity constraints. While commercial
optimization solvers such as Gurobi can handle small-scale instances of this
problem, solving larger, more realistic instances using exact methods remains
computationally infeasible. To address this limitation, we propose a heuristic
approach to obtain high-quality solutions. The method is grounded in the
observation that the assembler must offer a strictly higher price to acquire
the necessary components for producing the final products. Specifically,
we initialize the parameter α0 = C and iteratively update it according to
αn+1 = αn + ∆α, where ∆α > 0, after a certain number of iterations, we
choose the best value achieved in the process. Finally, we refine the solution
using a local search technique to further improve the outcome.

Heuristic Ascent Direction
Require: Initial cost C, ascent direction ∆α > 0, number of iterations N
Ensure: Refined solution maximizing expected profit
1: Initialize α0 ← C
2: repeat
3: Update αn+1 ← αn +∆α
4: Compute the expected profit and store the result
5: until repeated N times
6: α∗ = α0 + argmaxn{αn} ∗∆α
7: return Refined solution.
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We can restrict the search space by finding an upper bound for α using
the following lemma.

Lemma 2.1. For each component i ∈ I, Ji = {j ∈ J | Gij > 0}, if
δi = maxj∈Ji

Pj−
∑

i∈I GijCi

GijCi
, then there exists α∗

i ≤ (1 + δi)Ci.

Proof. In the context of manufacturing, it is crucial to ensure that any in-
crease in the cost of a component does not exceed the profit margins of the
products that incorporate this component. This principle is essential because
if the cost increase leads to selling the final products at a loss, the optimal
strategy would be to cease assembling those products, thereby eliminating
the need for the cost increase in the first place. To formalize this, let’s con-
sider the optimal offer value for a component i, denoted as α∗

i = (1 + δ∗i )Ci,
where Ci is the base cost of the component and δ∗i is the margin that rep-
resents the additional profit above the base cost. The goal is to determine
the conditions under which δ∗i ensures that the products remain profitable.
Let Gij represent the quantity of component i used in product j, and let
Pj be the selling price of product j. The margin for product j is calculated
as Mj = Pj −

∑
i∈I GijCi, which is the difference between the selling price

and the total cost of the components used in the product. For any product
j that includes component i (i.e., Gij > 0), the increase in the component
cost, given by Gijδ

∗
iCi, must be less than the margin Mj to ensure that the

product is not sold at a loss. This condition can be expressed mathemati-
cally as Gijδ

∗
iCi < Pj −

∑
i∈I GijCi. By rearranging this inequality, we find

that there exists a product j in the set of products Ji that use component i
such that δ∗i ≤

Pj−
∑

i∈I GijCi

GijCi
. This implies that the margin δ∗i must be less

than or equal to the maximum margin ratio across all products that include
component i, which can be written as δ∗i ≤ maxj∈Ji

Pj−
∑

i∈I GijCi

GijCi
. There-

fore, by ensuring that δ∗i satisfies this condition, we can guarantee that the
increase in the component cost will not lead to selling any of the products
at a loss, thereby maintaining overall profitability.
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Chapter 3

Experiment Design

This chapter provides an overview of the technological and economic data
utilized to support our numerical experiments. The data encompass a range
of demand distributions, varying in complexity from relatively straightfor-
ward to challenging scenarios for identifying optimal solutions. In addition,
the configuration of the heuristic optimization framework employed in this
study is detailed.

3.1 Problem instance generation

The instance utilized in our numerical experiments is taken from Gioia et al.
[2024]. The problem instance is described by the following data:

• capacity requirements and availability (Tim, Lm).

• economic parameters, i.e., costs, penalties, and sale prices (Ci, Hi,Ki, Pj)

• product structures, i.e., the gozinto factors (Gij)

First of all, we set the number of components I and end items J according
to 3.1. In the centralized setting, we have the number of machines M and
tightness factor γ to generate the available capacity for each machine Lm,
concerning the average capacity requirement. In formulas:

Lm = γ
∑
i∈I

Tim

∑
j∈J

Gij d̄j

 (3.1)

The expected demand for end item j, denoted by d̄j , is estimated through
a sampling process involving 5,000 demand scenarios, given the complexity

33



of the demand generation mechanism described subsequently. In the experi-
mental setup, the parameter γ is specified according to Table 3.1, represent-
ing instances where production capacity is defined as the product of average
demand and γ. Higher values of γ facilitate the assembly company’s ability
to manufacture sufficient components to meet anticipated demand.

Regarding economic parameters, component costs are randomly gener-
ated following a uniform distribution within the range [1, 50]. The end items
are classified into three categories of profit margins, low, medium, and high,
whose proportions and respective ranges for uniform sampling are detailed in
Table 3.1. The cost of each end item is derived by combining the bill of ma-
terials with the associated component costs. The corresponding sales price
is calculated by applying a profit mark-up consistent with the designated
profit margin category. In addition, inventory holding costs for components
and lost sales penalties for end items are determined as fixed percentages of
component costs and sales prices, respectively.

In the literature, several standard structures for the gozinto matrix have
been proposed Atan et al. [2017]. Nevertheless, these structures are usually
considered for their theoretical properties rather than their realism. We
define the gozinto matrix as follows. First, we define families by partitioning
the set of items: each family has a given number of end items, and, within a
family, end items have some required components, either specific or common
with other members of the family. Moreover, we also introduce degenerate
families consisting of a single end item. Such end items are, in a sense,
different from the others and are called outcast items. In section 3.1, we
report the characteristics of standard families (number of common vs. total
components and number of items per family) and the number of outcast
items. Once the total number of components of a (standard) family is known,
we select the common components and the specific ones for each end item.
Then, we sample the number of each component required by the end item,
according to a discrete uniform distribution ranging from 1 to 9. On the
contrary, outcast items do not share any specific pattern with others, and
their components are picked according to a binomial distribution so that
each component is included and adopted for the computational experiments,
as depicted in ... The diagonal blocks correspond to the standard families
(five in this case), while the bottom rows correspond to the outcast items.
Each standard family shares several common components (the first columns
of each block).

The literature presents several standard structures for the gozinto matrix,
as discussed by Atan et al. Atan et al. [2017]. However, these structures are
often evaluated for their theoretical properties rather than their practical
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Parameter Value Parameter Value
No. end items (I) 35 No. components (J) 60
No. machines (M) 5 Tightness factor γ 0.25, 0.5, 0.75, 1.0, 1.25
Low margin profit 0.05, 0.2 % low margin items 40%

Medium margin profit 0.2,0.4 % medium margin items 30%
High margin profit 0.4, 0.6 % high margin items 30%
No. outcast items 5 No. families (R) 5

No. items per family [12, 7, 5, 3, 3] No. common components 2
No. components per family [11, 17, 12, 6, 9]

Lost sale penalty Kj 0.2Pj Holding cost Hi 0.1Ci

Table 3.1: Parameters defining a problem instance

applicability. In this work, we define the gozinto matrix as follows: items are
partitioned into families, each comprising a specified number of end items.
Within a family, end items share some required components, which may be
common across the family or specific to individual items. In addition, we
introduce degenerate families, which consist of a single end item. These
items referred to as outcast items, are distinct from other end items in terms
of structure.

The characteristics of the standard families, including the ratio of com-
mon to total components, the number of items per family, and the number
of outcast items, are summarized in Table 3.1. For standard families, once
the total number of components is determined, the common components
are identified and specific components are assigned to each end item. The
quantity of each component required by an end item is then sampled from
a discrete uniform distribution over the range [1, 9]. In contrast, outcast
items exhibit no shared structural pattern; their components are selected
independently following a binomial distribution.

For computational experiments, the resulting gozinto matrix is structured
as depicted in 3.1 Diagonal blocks in the matrix correspond to standard fam-
ilies (five in this example), where each block includes columns representing
shared common components and rows for specific components. The bottom
rows of the matrix represent the outcast items, which are characterized by
their unique sets of components.

3.2 Demand distributions

n the following, we test the effect of the aforementioned instance settings
with respect to different i.i.d. demand distributions. In particular, we con-
sider β4,1(0, 1300) and β1,4(0, 1300), N (300, 50), and a normal mixture (bi-
gaussian distribution) 0.8N (300, 50) + 0.2N (50, 15). We use the notation
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Figure 3.1: The generated gozinto matrix from the configuration

βα1,α2(dmin, dmax)to denote the a standard beta random variate X with
support (0, 1) with given parameters α1, α2 ≥ 1, re-scaled in the interval
[dmin, dmax] by dmin + (dmax − dmin)X. In the case of a Gaussian distribu-
tion, we write variance in such a way that the standard deviation is evident.
To generate the problem instances, we use a Python 3.9 script that directly
solves the optimization problem by Gurobi 9.5.2 interior point solver, with
default settings. By checking the out-of-sample stability of the problem, it is
possible to see that 100 scenarios are enough for achieving reasonable results
under given distributions for demands of our products. This is true under all
other settings used in our instance (this does not necessarily apply to other
settings). The number of out-of-sample scenarios S

′ has been set to 2000.
This number of scenarios is adequate to get a good estimate of expected
revenue for a given first-stage solution.
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Chapter 4

Numerical Result

In this chapter, we present a comprehensive analysis of the numerical ex-
periments conducted to evaluate the performance of our proposed solutions.
Through systematic testing, we assess the efficacy of multiple heuristic op-
timization algorithms, comparing their computational efficiency, scalability,
and solution quality under varying problem conditions. Based on these em-
pirical findings, we identify the most suitable algorithm for our framework
and subsequently refine its parameters through fine-tuning to enhance per-
formance.

Following this optimization phase, we conduct a comparative analy-
sis between centralized and decentralized implementations of our model.
This comparison not only highlights the trade-offs between the two ap-
proaches—such as computational overhead, coordination requirements, and
robustness—but also yields actionable managerial insights. These insights
are particularly valuable for decision-makers seeking to balance operational
efficiency with organizational flexibility in real-world applications.

By integrating theoretical rigor with empirical validation, this chapter
provides a robust foundation for understanding the practical implications of
our methodology.

4.1 Comparison between CMA-ES and PSO

In this computational experiment, unless otherwise specified, we generate
demand values from a normal distribution N (300, 50) and evaluate the per-
formance of a vanilla CMA-ES (Covariance Matrix Adaptation Evolution
Strategy) and PSO (Particle Swarm Optimization) across 100 scenarios. The
CMA-ES algorithm is initialized at the cost vector of the components, while
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CMA-ES PSO
population 16 16

number of iterations 20 20

parameters σ = 0.1
w = 0.9
c1 = 2
c2 = 2

PSO randomly samples its initial population within the search space; all vari-
ables are normalized using Lemma 2.1, with lower bounds set to the original
component costs and upper bounds determined by the same lemma. As
demonstrated in Figure 4.1, CMA-ES significantly outperforms PSO, which
is expected given CMA-ES’s inherent advantages in evaluation-expensive
optimization problems. Specifically, CMA-ES automatically adapts its step
size and search distribution—unlike PSO, which requires manual tuning of
parameters like inertia weight and acceleration coefficients—and leverages
covariance matrix learning to efficiently scale and rotate the search space,
a feature absent in PSO that often struggles with local optima. Further-
more, CMA-ES is grounded in probability theory and maintains invariance
under order-preserving transformations, offering theoretical robustness com-
pared to PSO’s heuristic approach. While PSO may excel in extremely
high-dimensional spaces or parallel evaluation contexts, CMA-ES generally
achieves higher precision with fewer function evaluations and minimal param-
eter tuning, making it a more reliable choice for most black-box optimization
problems.

4.2 Heuristic Profit Optimization

In this section, we integrate the heuristic algorithm (Algorithm 3) with Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) to demonstrate
its superior performance compared to a standalone implementation of vanilla
CMA-ES. First, we examine the rationale behind the proposed heuristic (Al-
gorithm 3). Theoretical observations indicate that an isolated increase in the
cost of a single component may not necessarily result in a loss 2.1, whereas
maintaining the original production cost could lead to procurement failure
because the supplier would reject to deliver any amount of components. How-
ever, the behavior of the objective function of the assembler remains unclear
when the prices of all components are adjusted simultaneously. To address
this, we seek an ascent direction with an appropriate step size to identify a
near-optimal solution.
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Figure 4.1: Comparing performance of CMA-ES vs PSO

Given that the impact of price adjustments varies across components,
a uniform increase is not uniformly advantageous. Consequently, further
refinement of the solution is necessary through optimization techniques. In
this study, we employ CMA-ES to fine-tune the solution, with particular
attention to the adaptation of the step size parameter (σ)

The behavior of the assembler’s objective function, as illustrated in the
problem landscape depicted in Figure 4.2, can be examined under two dis-
tinct directional perturbations. The first direction, denoted as 1, is analyt-
ically defined as the scaled difference between the upper bound vector UB,
derived from Lemma 2.1, and the lower bound vector LB, which comprises
the production costs of individual components in a vector, such that

∆1 = (UB − LB)/100

The second direction, ∆2 is characterized as a uniform step size across all
dimensions, expressed as

∆2 = 0.01 · 1|I|
,where represents a unit vector multiplied by a constant whose dimensional-
ity corresponds to the number of components under consideration. Empirical
observations over 200 iterations reveal a consistent and interpretable pattern
in the objective function’s response to these directional changes. Specifi-
cally, the objective exhibits an initial phase of rapid ascent, followed by a
distinct peak beyond which the function experiences a gradual decline in
value. This phenomenon aligns with economic intuition: while incremental
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increases in supply initially enhance the assembler’s capacity to fulfill mar-
ket demand—thereby improving profitability—exceeding a critical threshold
leads to diminishing returns, as excessive pricing adversely affects overall
profit margins. This behavior underscores the existence of an optimal oper-
ational range within which the assembler can maximize profitability before
encountering the detrimental effects of overpricing.

Figure 4.2: Illustration of the behaviour of the objective

Once a high-quality initial solution was obtained through the application of
our proposed heuristic, the CMA-ES algorithm was executed with varying
values of the step-size parameter σ, as illustrated in Figure 4.3. The results
demonstrate that retaining the same σ value used in prior stages proves sub-
optimal once an effective initial solution has been identified. In contrast,
empirical evidence indicates that reducing σ by an order of magnitude yields
significantly improved convergence behavior. Consequently, the primary re-
maining optimization task involves the precise calibration of σ to determine
an optimal value that balances exploration and exploitation, thereby maxi-
mizing algorithmic performance.

4.3 Centralized vs Decentralized

This section presents a systematic comparison between the performance out-
comes of centralized and decentralized operational models under varying
demand conditions. Specifically, we examine how each model responds to
demand patterns generated from different probability distributions, which
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Figure 4.3: Comparing different sigmas

allows us to assess their robustness across diverse market scenarios.
Through rigorous empirical analysis of the results, we derive several crit-

ical managerial insights that address the fundamental question of optimal
model selection.

A preliminary examination of the results reveals that both operational
models fail to generate positive profitability when confronted with left-skewed
demand distributions (β(1, 4)). This phenomenon proves particularly pro-
nounced in the decentralized model, where the observed outcome can be at-
tributed to suppliers’ rational response to anticipated heavy-tailed demand
characteristics.

The suppliers’ strategic behavior manifests as a requirement for substan-
tially increased component prices to justify expanded production capacity.
This pricing strategy emerges as a direct consequence of the Newsvendor
problem’s closed-form solution, which governs profit-maximization behavior
at the individual supplier level. Specifically, when facing demand distri-
butions with significant left-skewness, the critical fractile solution compels
suppliers to adopt more conservative production strategies unless compen-
sated through higher marginal returns. The mathematical foundation for
this behavior can be expressed through the Newsvendor optimization frame-
work:

q∗ = F−1

(
p− c

p− s

)
(4.1)

where F−1 represents the inverse CDF of the demand distribution, p denotes
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the selling price, c the production cost, and s the salvage value. For β(1, 4)
distributed demand, the inverse CDF yields particularly conservative order
quantities unless (p− c) demonstrates substantial margin improvement.

In the case of high uncertainty which is described by a multi-model distri-
bution (BiGaussian), the centralized model proved to be much more effective
4.5

When examining less challenging demand distributions, as illustrated in
Figures 4.4 and 4.7, our analysis reveals that the decentralized model does
not consistently generate inferior profitability compared to its centralized
counterpart. Specifically, the centralized model demonstrates suboptimal
performance relative to the decentralized approach in scenarios where the
assembler’s internal production capacity proves insufficient to meet market
demand. This capacity constraint creates a critical inflection point in the
make-or-buy decision framework, wherein outsourcing component produc-
tion becomes the economically superior strategy.

Figure 4.4: Centralized model in comparison decentralized model with gaus-
sian demand
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Figure 4.5: Centralized model in comparison decentralized model with gaus-
sian demand

Figure 4.6: Centralized model in comparison decentralized model with gaus-
sian demand

43



Figure 4.7: Centralized model in comparison decentralized model with gaus-
sian demand
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Chapter 5

Conclusions

In this work, we present a novel formulation for the decentralized assemble-
to-order (ATO) system. The proposed model addresses the optimal pricing
of individual components to ensure that the assembler maintains an efficient
inventory level in anticipation of future demand. Additionally, we introduce
a heuristic algorithm designed to yield high-quality solutions.

The heuristic ascent direction algorithm (Algorithm 3) operates in two
key phases. First, it identifies a heuristic ascent direction and iteratively
progresses along this direction until profit begins to decline, at which point
the best solution encountered during the search is selected. Subsequently,
the second phase employs supplementary optimization techniques to further
refine the obtained solution.

Additionally, we analyze the performance of the decentralized model
across different demand distributions in comparison with the centralized
benchmark, offering actionable managerial implications. However, in the
analysis of both centralized and decentralized model, the present study is
limited to the procurement phase. Although our model generates compo-
nent allocation plans for various scenarios, it does not prescribe an execution
strategy once actual demand materializes.

A promising direction for future research involves developing a method-
ology capable of deriving optimal solutions—or at least high-quality approx-
imations—for the decentralized model. Additionally, we intend to extend
this framework by formulating the problem within a multi-stage stochastic
optimization setting.
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