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[...] And perhaps that’s the reason that we fascinate you
so, because our puny behaviour shows you a glimmer of the

one thing that evades your omnipotence: a moral center.
And if so, I cannot think of a crueller irony than

destroying us, whose only crime is to be too human.



Abstract

This dissertation addresses the analysis of performance disparities between
subgroups of data within speech recognition models. More specifically, a par-
ticular focus is put on how the performance of subgroups evolves during the
training of the models themselves.
Having considered previous studies that have highlighted the presence of
subgroups and discriminatory biases in speech recognition models, this work
also focus on understanding how these disparities are created and propagated
during training. For instance, populations characterized by attributes such
as gender, accent, speech rate, or age may undergo either a decline or en-
hancement in the model’s performance as it develops.
In conclusion, we conducted a detailed examination of the evolution of these
disparities across diverse datasets and speech recognition models to acquire
an in-depth understanding of their propagation and found that although
overall accuracy improved across different models, some subgroups continue
to exhibit notable performance gaps. This analysis aims to contribute to the
advancement of these technologies towards enhanced fairness and accessibil-
ity in the future.
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Chapter 1

Introduction

The expanding deployment of speech models in applications—from virtual as-
sistants to accessibility technologies—necessitates uniform performance across
diverse demographic and linguistic groups. Although the advancement of
speech recognition systems has led to significant improvements in overall
accuracy, noticeable discrepancies still persist in model performance across
population subgroups. This being, for example, attributes such as gender,
accent, age, emotional expression, and pitch during the dialogue with a vocal
assistant. These discrepancies not only impact the overall model accuracy,
but are real challenges to the inclusivity and fairness of these technologies.
As Koenecke et al.’s study pointed out, we see that in the most currently
used ASR speech recognition systems, the African American Vernacular En-
glish (AAVE) speakers tend to have higher Word Error Rates (WER) when
compared to speakers of standard American English. The fact that the per-
centage of incorrectly predicted words is higher for the African American
subgroup points to language barriers that are well-present in many environ-
ments, showing how disparities between subgroups can be perpetuated even
in extremely well-established speech recognition models.
Building on the systematic approach established in "Towards Comprehensive
Subgroup Performance Analysis in Speech Models" [1], this thesis adopts a
structured methodology to gain a deeper understanding of subgroup-specific
performance trends in speech models and therefore helps us to comprehend
how Spoken Language Understanding (SLU) models perform across distinct
user demographics, revealing biases and performance discrepancies that may
otherwise remain obscured.
With the examination of subgroup performance under controlled conditions,
this study aims to underscore the necessity for dedicated evaluation metrics
that precisely capture model behaviour in real-world scenarios, where diverse
user characteristics are notably prevalent.
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During the development of this thesis, there will be a detailed discussion
on how the performance of a range of subgroups varies throughout the train-
ing of machine learning models for Spoken Language Understanding.
To gain this insight on how disparities evolve and propagate during the train-
ing of different models, this study will train multiple models using different
datasets, allowing us to systematically analyse the variations in model perfor-
mance and bias emergence, thereby gaining a deeper understanding of their
underlying mechanisms. With this analysis, it will be possible to observe
how certain disparities, such as gender or speaking rate, have an impact on
the performance of the model, both positively and negatively.

This dissertation also makes use of techniques and the research “Prioritising
Data Acquisition for End-to-End Speech Models” [2] and “Exploring Sub-
group Performance in End-to-End Speech Models” [3], such as methodolo-
gies on subgroup-specific error analysis and confidence-based evaluation. In
addition to these, this dissertation will make use of DivExplorer, a tool de-
veloped by E.Pastor in "Looking for Trouble: Analyzing Classifier Behavior
via Pattern Divergence" [4] to perform subgroup-identification strategies and
assisting in the identification of underperforming subgroups and subgroup
performance analysis techniques to assess subgroup disparities during the
models training.

Through this research, we will attempt to understand the manner in which
subgroup disparities might occur during model training and how it might in-
troduce performance disparities through subgroups, potentially contributing
to systematic bias and unfair treatment. Lastly, one might take the results
presented in this dissertation as a baseline for the study and implementation
of adaptive training techniques dynamically adjusting training weights to
mitigate subgroup disparities, fostering more equitable model performance,
and enhancing overall model quality.

1.1 Motivation

1.1.1 Uncovering the Temporal Dynamics of Subgroup
Disparities

Understanding how subgroup disparities are propagated throughout the model
training cycle is essential. Not only does this enable an understanding of
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how these disparities propagate, but it also offers insight into the model’s
evolution during training, allowing for real-time adjustments to improve its
subgroup performance. That is exactly why the main motivation for this
study is to gain a deeper understanding of the propagation of subgroup dis-
parities in models specialized in spoken language understanding.

We might, for instance, have a situation where a basic model behaves and
performs quite well for all types of speech, but once trained on a new dataset,
the resulting model might end up having a higher precision and accuracy over
slow male speech while it may have an harder time understanding a faster
female voice or one with a different accent. The introduction of these dispar-
ities could also happen if, during one of the model training steps, a subgroup
consisting of slow-speaking women performs better than fast-speaking men.
Herein lies the motivation behind this study, the desire to gain a greater
understanding of how these disparities propagate through model training.

These disparities, with varying degrees of severity, are inherently present
despite the outcome of the final model [5]. This is because standard machine
learning models, despite their complexity, seek to achieve the highest percent-
age of accuracy while very often overlooking or assigning lower significance
to aspects that do not directly contribute to optimal overall performance.

Recent studies, such as that of Dheram et al. (2022) [6], remind us that
there are certain turning points during the training of models at which the
performance of subgroups undergoes sudden changes. This research proposes
to find these inflection points and study them in order to gain a deeper un-
derstanding of the architectural factors of the models that determine these
changes, in the hope of paving the way for adaptive and dynamic training
procedures that can re-weight themselves in response to disparities and the
presence of subgroups.

1.1.2 Guiding Fairness-Driven Interventions and Adap-
tive Training

The second motivation behind this dissertation is the intention to understand
how subgroups incrementally propagate within models during their training.
The objective is to identify ways to intervene more proactively in the train-
ing in order to achieve a more generalised fairness of the model, with better
effectiveness than post hoc adjustments. In fact, the latter, in addition to
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being later applied, merely apply to the disparities that emerge from the final
model, which might omit others that are perhaps minor or eluded the analy-
sis. Conventional approaches also consider a change of weights or perhaps a
downsizing of the classes in the training datasets, which, only after training
the model, will supposedly create fewer disparities.
Therefore, we wish to investigate the area of real-time disparity tracking
during the training of the model. This would allow us to intervene on a
step-by-step basis by correcting and modifying the model’s internal weights
in such a way as to intervene on disparities without costly post-training in-
tervention.
Returning to the example cited earlier, if we observe during a training phase
that the model performs better on individuals who speak slowly to the detri-
ment of those who speak faster, it might be possible to calibrate the model
automatically via adaptive weighting methodologies to correct for these dis-
parities as they arise. In addition to correcting disparities, this approach
would also make the model better able to tackle instances of subgroup stag-
nation when it occurs. As seen in the study by Koudounas et al. (2024) [2], it
is demonstrated that once performance disparities are identified, one can use
them to build data acquisition strategies to address them. More specifically,
their approach prioritizes the collection of samples from subgroups exhibit-
ing lower performance, thereby addressing weaknesses in model training. By
adopting a divergence-aware acquisition strategy, they show that targeted
data selection can improve both overall model accuracy and fairness across
subgroups, making it a viable complement to real-time disparity tracking.

Similarly, Dheram et al. (2022) [6] show how early intervention can reduce
discrimination. Indeed, through over-sampling of the lower-performing sub-
groups resulted in improving the model’s WER (Word Error Rate) between
the best-performing and the lowest-performing subgroups from 56% to 38%.

We then consider that the limited existing research focuses solely and
exclusively on evaluating the performance of subgroups of models that have
already finished their entire training cycle. In this study, in fact, we want to
propose a more granular and incremental approach by examining the perfor-
mance of subgroups during the training process.
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1.2 Problem
This thesis aims to address the problem of subgroup disparities arising dur-
ing the training of speech recognition models. As has already been shown
in the previously mentioned studies [3, 1, 6, 7], the already trained models
are prone to the existence of disparities in speech comprehension for different
subgroups. This thesis aims to address this problem in greater depth, namely
to understand how these disparities in speech recognition can be introduced
and progress during the training of models. Such distortions will eventually
lead the model to perform better for some subgroups at the expense of oth-
ers. Ultimately, it is essential to ensure that individuals with different accents
and speech patterns are not effectively “discriminated against” in situations
where their voice is not understood.

Smart home devices such as Google Home and Amazon Alexa are prone
to misunderstanding or directly misinterpreting what the user is saying [8]
just because they have spoken with a particular accent or their speech has
not been optimized in training. We recognise that these discrepancies may be
introduced by a variety of factors, an imbalance of subgroups in the training
dataset, with perhaps the presence of one accent at the expense of others.
Otherwise, perhaps the problem could be found in the structure of the model
itself, which, in its quest to minimise error, inevitably favours one speech over
the others.

The real-world implications of these disparities are by no means to be un-
derestimated; it is not just a matter of inconvenience for the user, but one can
easily understand how these issues can easily imply real discrimination. More
recently in the USA, gestures such as the waiter taking orders are already
being replaced by voice recognition models, especially in fast-food chains [9].
As technology progresses, these pioneering developments show us just how
pervasive these technologies will become. If speech recognition models are not
developed to deal with subgroup disparities, we may soon have cases where
sub-groups of people, perhaps already poorly representative of the majority,
will be further discriminated against, further perpetuating societal problems.

It is for this very reason that it is emphasised that the main issue in
this thesis is that of the discrimination that speech recognition models in-
trinsically have and how this is to be considered. Tackling this issue is es-
sential in order to ensure that speech recognition systems are reliable, non-
discriminatory, and can bring real benefit to all users.
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1.3 Objectives
The purpose of this thesis is to study the identification and understanding
of subgroup disparities in speech recognition systems. More specifically, to
examine their appearance and progression during incremental training on
different models and datasets.

Indeed, the aim is to shed light on how these disparities, after appearing
in the training of the model, propagate and influence it during its develop-
ment. By concentrating on the training phase, this dissertation aims to study
and investigate the mechanisms by which subgroup disparities are created,
amplified, or potentially mitigated, and finally propagated until they appear
in the final model.

Such analysis is founded on research previously carried out by Pastor
et al. [4], which has already examined subgroup disparities across different
models and datasets. The intention behind this study is to continue their
work and analyse—not the presence of performance disparities of subgroups
in the final model—but rather to investigate how these phenomena shape the
model throughout its training phase.

It is precisely for this reason that we wish to understand how these sub-
group disparities are structural causes of disparities for the model, in the
desire to achieve a more theoretical as well as practical understanding of a
phenomenon that remains little explored to this day, especially in speech
recognition models.

With this greater understanding, the intention is to pave the way for
training methodologies that actively reduce disparities, promoting more eq-
uitable speech recognition models for disparate audiences.
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Chapter 2

Literature Review and State of
the Art

2.1 Spoken Language Understanding (SLU)
Spoken Language Understanding (SLU) represents a core component in the
development of intelligent speech systems, enabling machines to process and
interpret human speech for various downstream applications, such as virtual
assistants, transcription services, and accessibility tools [10, 11, 12]. SLU
models are typically built on deep learning architectures that transform raw
audio signals into structured representations—such as semantic slots and in-
tents—thereby capturing the meaning behind spoken utterances. Significant
advancements in SLU research have leveraged large-scale data, deep learning
architectures, and sophisticated training methodologies, yet the field contin-
ues to grapple with challenges such as subgroup disparities, fairness, and bias
mitigation [13].

Recent theoretical developments in deep learning further delve into these
challenges. A recent article in Quanta Magazine from 2024 [14] discusses a
novel link between modern deep neural networks and older kernel methods.
They mention that idealized conditions, infinitely wide neural networks, have
the exact behaviour as kernel machines. This changes the general perspective
and helps to demystify why over-parameterized models can reach a good
capacity for generalization despite their complexity. Even if this theoretical
framework is not directly aimed at subgroup analysis, as at the time of writing
this the current state of the art of SLU, it provides valuable insights into
the learning dynamics that may underlie the emergence and stabilization of
subgroup disparities during training.
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2.2 SLU and Subgroups in Speech Models
Recent studies have highlighted the growing importance of subgroup perfor-
mance analysis within SLU systems. For example, Koudounas et al. (Assess-
ing Speech Model Performance: A Subgroup Perspective) emphasize the role
of metadata, such as speaker demographics and acoustic features, in iden-
tifying performance disparities across subgroups. Their work demonstrates
how task-, model-, and dataset-agnostic frameworks can uncover intra- and
cross-model gaps, providing actionable insights for data acquisition strategies
aimed at reducing these disparities.

One critical challenge is the persistence of demographic biases in SLU sys-
tems, as demonstrated by Koenecke et al. (Racial Disparities in Automated
Speech Recognition). This study exposed significant word error rate (WER)
differences between racial groups in commercial ASR systems, tracing these
disparities to insufficiently diverse training datasets. Similarly, Toussaint and
Ding (SVEva Fair: A Framework for Evaluating Fairness in Speaker Verifica-
tion) propose fairness evaluation frameworks tailored to speaker verification
systems, revealing consistent underperformance for female speakers and cer-
tain nationalities, underscoring the broader implications of demographic bias
in SLU models.

Bias mitigation strategies have also been explored extensively. Koudounas
et al. in (A Contrastive Learning Approach to Mitigate Bias in Speech Mod-
els) [15] introduced the CLUES framework, which leverages contrastive learn-
ing to enhance subgroup-level representations, thereby reducing performance
disparities. Their approach demonstrated significant reductions in subgroup
performance gaps across diverse datasets and languages, highlighting the po-
tential of targeted representation learning techniques.

Additionally, methods focusing on post-training evaluation and correc-
tion have gained traction. For example, Baldini et al. in (Your Fairness
May Vary: Pre-trained Language Model Fairness in Toxic Text Classifica-
tion) [16] revealed the variability of fairness measures in fine-tuned language
models and proposed post-processing techniques to improve fairness without
retraining. These findings are relevant for SLU, where dynamic and scalable
mitigation strategies are essential to addressing evolving biases.

The broader implications of fairness and inclusivity in SLU extend to
practical applications. Automated systems must reliably serve diverse pop-
ulations to fulfill their potential as equitable tools. Koudounas et al.[1] em-
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phasize the importance of metadata-driven subgroup analyses for identifying
nuanced performance discrepancies, facilitating interventions during training
that improve model fairness.

2.3 Subgroup Analysis in Speech Models
The analysis of subgroup performance in speech models has emerged as a
critical area of research, highlighting disparities that affect the fairness and
inclusivity of these systems. Subgroup analysis focuses on understanding how
different segments of a population, characterized by demographic or acoustic
attributes, experience varying levels of model performance. Recent studies
provide a deeper understanding of these disparities and propose methodolo-
gies to identify, analyze, and mitigate them effectively.

A key contribution in this area is the study “Assessing Speech Model
Performance: A Subgroup Perspective” by Koudounas et al. [17], which em-
phasizes the importance of enriched metadata for subgroup analysis. The
study incorporates speaker demographics (e.g., gender and age) and signal-
related attributes (e.g., speaking rate and pauses) to uncover intra-model
and cross-model performance gaps. By identifying interpretable subgroups,
the methodology revealed significant disparities, such as poorer performance
for specific age groups or accents, providing a framework for targeted data
acquisition to improve subgroup performance.

Another influential work, “Houston We Have a Divergence: A Subgroup
Performance Analysis of ASR Models” by Koudounas and Giobergia [18], ex-
plored subgroup disparities in automatic speech recognition (ASR) models.
This study utilized metadata-rich subgroups to compare performance across
multilingual and monolingual ASR systems. Notably, it found that fine-
tuning reduced performance divergence among subgroups, suggesting that
training strategies could significantly influence subgroup equity. Moreover,
the research demonstrated that larger model sizes do not uniformly improve
subgroup performance, emphasizing the complexity of subgroup-specific chal-
lenges.

In “Assessing and Mitigating Speech Model Biases via Pattern Mining”
by Koudounas et al. [19] proposed an automated approach for identifying
critical subgroups through pattern mining techniques. This method identi-
fied subgroups with the largest intra- and cross-model performance gaps and
introduced data acquisition strategies that effectively reduced these dispari-
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ties. The study validated its approach across multiple tasks, including intent
classification and emotion recognition, underscoring its adaptability and ef-
ficacy in addressing subgroup biases.

The study “Your Fairness May Vary: Pre-trained Language Model Fair-
ness in Toxic Text Classification” by Baldini et al. [16] offered insights into
fairness evaluation, which has parallels in subgroup analysis for speech mod-
els. The study demonstrated that fairness characteristics can vary signifi-
cantly across model architectures and tasks, highlighting the need for subgroup-
level evaluations during model development. It also proposed post-processing
methods for bias mitigation, which can complement subgroup-specific train-
ing interventions in speech systems.

Subgroup analysis in speech models also extends to practical applications.
Martins Kronis, in “Harvesting Targeted Speech Data from Highly Expressive
Found Spontaneous Speech” [20], explored methods to isolate specific speaker
data in noisy environments. This work emphasized the importance of speaker
embeddings and metadata to extract meaningful subgroups, paving the way
for enhanced data curation strategies.

2.4 Gaps in the Literature
Insufficient Exploration of Incremental Subgroup Performance Dy-
namics

This thesis addresses a novel area within AI explainability: incremental sub-
group explainability, a subject that remains largely unexplored. Currently,
the closest research on this topic is that of Pastor, who identified and analyzed
disparities in fully trained models [4]. Pastor’s work infers that subgroup-
specific biases emerge as an inherent property of the training process, hinting
at the possibility that a more granular, incremental analysis of subgroup ex-
plainability could reveal previously overlooked facets of model behaviour.
Furthermore, Koudounas et al. (2023) [3] demonstrated how subgroup-level
performance analysis can identify performance variations across multiple
metadata-defined subgroups, reinforcing the need for finer-grained monitor-
ing during model training.
In addition, it is worth mentioning the research of Dr. Da-Wei Zhou [21],
whose studies have shown how models, this time in the context of image
recognition, were able to learn new classes while regressing their performance
on classes already seen. This issue, which she called catastrophic forgetting,
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resulted in a loss of performance, which is another characteristic tendency
for all kinds of model training. She describes various strategies to mitigate
this problem, such as exemplar replay and knowledge distillation.
Nevertheless, the techniques discovered neglect any subgroups and disparities
that may be introduced in them but instead focus only on the overall per-
formance of the model. Therefore, we highlight that incremental subgroup
explainability can mitigate possible biases and create models that are both
fairer and more effective.

Limited Representation in Training Datasets

Although automatic speech recognition (ASR) models are becoming increas-
ingly popular, one must be aware that the datasets used for their training
are very often unbalanced. In datasets for ASR in English, there are very
often demographic disparities such as gender, ethnicity, accent, other spoken
languages, and social characteristics.
Even if with good intentions, there have been attempts to attempt this issue
by trying to create new, more balanced datasets; however, these approaches
have often been unsuccessful as they have not been scalable and have in any
case failed to capture the diversity and complexity that the real world models
face.
As pointed out by Koeneke et al. [22], these shortcomings result in ARS
models exhibiting consistent inequalities in their performance, highlighted
above all by higher error rates for certain subgroups. Among these, we have
African American Vernacular English (AAVE) speakers compared to white
speakers.
Indeed, Koenecke shows that the main speech recognition models, including
those developed by reputable companies such as Amazon, Apple, IBM, and
Microsoft, exhibit an average error rate of 35% for black speakers compared
to 19% for white speakers. Such critical differences make it clear that these
companies, despite having the necessary resources at their disposal, are not
effectively managing the phonetics of minority subgroups. It is thus sug-
gested that larger datasets inclusive of the subgroups be created for greater
balance, including more speech and language variants such as AAVE.

Lack of comparative studies on incrementality

Another significant gap is the lack of comparative studies that analyse in-
crementality in both speech production and reading aloud within a single
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framework. While individual studies have investigated these modalities sep-
arately, a comprehensive comparison of how incrementality manifests in dif-
ferent contexts remains unexplored [19]. This is crucial, as it could reveal
how discourse context and cognitive resources affect planning scope differ-
ently during spoken language production and reading tasks.

Next Steps for Fair and Adaptive Speech Recognition

To address these gaps, future research should focus on developing incremen-
tal evaluation frameworks that track subgroup performance during train-
ing, enabling the identification of critical moments for intervention. Scalable
data balancing strategies should prioritise realistic representation of under-
represented groups, leveraging synthesis and dynamic sampling techniques.
Fairness-driven training algorithms must be integrated into the training life-
cycle to dynamically address biases as they develop.
Nuanced subgroup definitions incorporating socio-linguistic and acoustic fac-
tors could enhance the granularity of performance analyses.
Systematic cross-model benchmarking and the strategic use of metadata
could further inform the design of bias-resilient and universally applicable
speech models [23]. These advancements would contribute to the creation of
inclusive and equitable spoken language technologies.
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Chapter 3

Theoretical framework

3.1 Machine learning for speech
Machine learning is a branch of computer science focused on the develop-
ment of algorithms that depend on a set of examples of a given phenomenon
to “learn" something from them. To learn, we refer to the construction of
a statistical-mathematical model based on the examples that can infer and
extract information from them. If the models reach some capacity of ab-
straction, they can very well be used to solve practical problems inherent to
the data they have been trained with.
For example, in a spoken language understanding context, the models are
trained to interpret audio commands by mapping them to structured out-
puts such as semantic slots or intents. The development of the model will
rely on a big set of annotated data to provide a variety of examples of spoken
commands and their corresponding textual meaning.

3.1.1 Supervised Learning in SLU

In supervised learning for Spoken Language Understanding (SLU), the dataset
is a collection of labeled examples {(xi, yi)}Ni=1. Each element xi among N
is referred to as a feature vector. A feature vector is a vector where each
dimension j = 1, . . . , D contains a value that represents some aspect of the
example. This value is called a feature and is denoted as x(j). For instance,
if each example x in our dataset represents an audio command, then the first
feature, x(1), could describe the duration of the command in seconds, the
second feature, x(2), could describe the pitch range, and x(3) could describe
the presence of background noise, and so on. For all examples in the dataset,
the feature at position j in the feature vector always contains the same type
of information. This means that if x

(2)
i contains the pitch range for some
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example xi, then x
(2)
k will also contain the pitch range for every example

xk, k = 1, . . . , N .

The label yi can be a class from a finite set of intents {1, 2, . . . , C}, a seman-
tic slot value, or a more complex structure such as a tree or a graph. Unless
otherwise specified, in this context, yi typically represents either an intent or
a slot value. For instance, if the examples are audio commands for a smart
assistant, the intents could be {turn_on_lights, set_alarm, play_music}.
A class, in this context, refers to the intent category to which an example
belongs. For instance, an audio command “turn on the lights in the kitchen”
could belong to the intent class turn_on_lights.

The objective of a supervised learning algorithm in SLU is to use the dataset
to build a model that takes a feature vector x as input and outputs infor-
mation that helps deduce the corresponding intent or slot values for that
feature vector. For instance, a model trained on audio commands could take
as input a feature vector describing an utterance and output the probability
of the intent being turn_on_lights.

3.1.2 Advantages of Self-Supervised Pre-Training

Precisely by using self supervised learning methods, in recent years we have
seen a great development of speech recognition models which do not require
large amounts of labelled data. In particular, approaches such as wav2vec
2.0 or HuBERT use architectures based on Transformers to ‘mask’ parts of
the audio signal and predict missing portions or cluster assignments.
A major advantage of the transformers lies in their ability to analyse audio
sequences in parallel, as well as using systems such as self-attention, they are
able to capture long range speech and sound patterns in a more efficient and
scalable manner. Further advantages of this approach are the global pattern
perception of audio sequences as well as the high speed of the training pro-
cess.
Such an approach allows these models to generalise an understanding of lan-
guage by using extremely small labelled data sets since the model is already
able to recognise a large amount of audio signals.

3.1.3 Neural Networks and Deep Learning in SLU

Deep learning is a method of machine learning that independently builds
(trains) general rules as an artificial neural network from example data dur-
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ing the learning process. This is especially useful in the fields of machine
vision and spoken language understanding in which the neural networks are
trained by supervised learning to learn complex patterns leveraging the ex-
amples initially provided.

Deep learning uses a certain form of artificial neural networks (ANNs), which
must first be trained with sample data and then can be used for its tasks.
The use of a trained ANN is called “inference”. During inference, the ANN
reports back an assessment of the data supplied according to the learned
rules. This can be, for example, the estimation of whether an input image
represents a faulty or error-free object or, in our context, the predicted letters
of a spoken sentence [24].

Neurons, Layers and Connections

An ANN consists of layers of “neurons” that are linked together. In the sim-
plest case, these are an input layer and an output layer. The input layer
receives raw data, such as features extracted from audio signals, and serves
as the entry point for the network neurons. The output layer, on the other
hand, provides the final predictions or results of the network, such as classi-
fication labels, probabilities, or continuous values.
The links between these two layers allow the input data to be transformed
and mapped to the desired outputs through a series of mathematical opera-
tions. From a mathematical and programming perspective, one can consider
neurons and their links with each other as matrices in which each link matrix
contains, for each value of the input matrix, a connection to the values of the
result matrix. With the values of the link matrix containing the weighting
of the respective connection, the weighting of the input value with the value
of the logic matrix produces the respective value in the result matrix.

Deep Artificial Neural Network

The term deep learning describes the training of so-called “deep” ANNs.
These networks, besides having the input and output layer, also consist of
hundreds of additional “hidden” layers between the visible layers for input
and output. In this structure, the resulting matrix of a hidden layer serves
as the input matrix of the next layer, and so forth. Only the output matrix
of the last layer will contain the result (or prediction) of the model [25].
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Figure 3.1: Schematic representation of a deep neural network with its infor-
mation flow from the input layers to the output layer. Adapted from Resnik
and Hosseini(2024) [26].

3.2 Training a Deep Artificial Neural Network
In this section, we will explore how we can train a Deep Neural Network for
speech recognition.
Taking as our starting point a list of inputs and their outputs, respectively,
audio files of spoken text and their own transcriptions. Our goal is to predict
the output from the input. In the case of ASR, the input is an audio file and
the output is its transcription; for SLU, the output is its intent.

To do so, we must then seek the relationship - or function- mapping these
inputs to their output.
Within our ANN, we have several hidden layers of neurons that are nothing
more than matrices whose units are connected to the previous and following
layers. In each layer, the links between the neurons are represented by a
matrix. This matrix holds W-weights that are initially randomly initialised
and then combined with a bias factor. A weight determines the strength
and direction of the connection between neurons, influencing how much the
input contributes to the output, while the bias is an additional parameter
that shifts the output of a neuron, adding to the model’s adaptive possibilities
by adjusting the activation threshold.
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The training of the model sees a layer perform an operation that combines
the weights of the input connections in a continuous iteration on the weights
and biases. For each update, a non-linear activation function (such as ReLU
or sigmoid) is applied, which introduces non-linearity into the model. This
very operation makes the model, after many update steps, capable of learning
complex relationships between input and output.

Figure 3.2: Neural network diagramRights: TseKiChun, CC BY-SA 4.0

The aim of the model during its training is to minimise its error; this
is done by means of gradient descent. Gradient descent is an optimization
algorithm commonly used to train machine learning models and neural net-
works; its goal is to minimize errors between predicted and actual results.

A key component in this training process is the back-propagation. Back-
propagation is the algorithm that efficiently computes the gradient of the
loss function with respect to each weight and bias by propagating the error
backward through the network. Starting from the output layer, it applies the
chain rule of calculus to determine how much each parameter contributed to
the error. By systematically adjusting the weights and biases according to
these gradients, back propagation allows the network to learn from its mis-
takes and gradually improve its performance over time.
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Optimizers and Gradient descent

We now come to the optimisers which are a collection of algorithms central to
the training of any neural network. The main objective of these algorithms
is to find the minima of a loss function in order to determine all weights and
parameters of the neurons inside the neural network so that, iteration after
iteration, the performance of the model can be improved both in training
and in testing[25].
In our research we therefore deal with gradient descent, an optimisation al-
gorithm that is used extremely often during the training of neural networks.
The peculiarity of this algorithm is its basis on a convex function that iter-
atively modifies parameters with the ultimate aim of minimising a function
to a minimum. This algorithm begins by pseudo-randomly defining its ini-
tial parameters and then uses the differentiation calculation to modify these
values for each iteration in order to reduce the loss function and thus change
the performance of the model for the better or possibly for the worse.

Being more specific, the gradient descent uses the mathematical element
of the gradient. The gradient is essentially a partial derivative that is calcu-
lated with respect to the input values, this mechanism in fact allows one to go
and measure the change that a weight must have based on the observed error.
We can picture this algorithm graphically by imagining a straight line tan-
gent to a curved line. The steeper the slope of the tangent line, the faster the
model can learn. In cases where the slope is zero or close to zero, the model
will not learn or will learn very slowly. Indeed, this slope directly influences
the updates of the weights and the general bias of the model. The algorithm
hence operates in a multidimensional space where it searches through these
slopes to find where the loss function is most minimised, also referred to as
the convergence point3.3.
Ultimately, it should be noted that in this multidimensional curvilinear space,
there is an ideal minimum which, once reached, achieves an accuracy of 100%,
but there are also many local minima that are more or less efficient and where
the gradient descent algorithm may stop believing it has reached the global
minimum. These local minima will obviously lead to a lower performance
than the global minimum, but are nevertheless essential in the search for
points of convergence.

To get more specific, let us now examine how the gradient is calculated
mathematically. A cost function’s gradient f(w), where w represents the
vector of parameters or weights of the model, is defined as the partial deriva-
tive vector ∇f(w). During each iteration, the gradient descent algorithm
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Figure 3.3: Gradient Descent in 2D. The original uploader was Gpeyre at
English Wikipedia. Derivative work - This file was derived from: Gradient
Descent in 2D.webm, Public Domain.

updates the weights according to the formula:

w(t+1) = w(t) − η∇f
(
w(t)

)
,

in which η is the learning rate and ∇f
(
w(t)

)
identifies the direction of

maximum growth of the cost function; therefore, subtracting this term, which
is possibly scaled by η it “descends” in the direction of cost reduction.

Learning rate

The learning rate (also referred to as step size or the alpha) is the size of the
steps that are taken to reach the minimum. This is typically a small value,
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Figure 3.4: Gradient_descent.png: The original uploader was Olegalexan-
drov at English Wikipedia.derivative work: Zerodamage - This file was de-
rived from: Gradient descent.png:, Public Domain

and it is evaluated and updated based on the behaviour of the cost function.
High learning rates result in larger steps but risk overshooting the minimum.
Conversely, a low learning rate has small step sizes.
While it has the advantage of more precision, the number of iterations com-
promises overall efficiency as this takes more time and computations to reach
the minimum.
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Cost/Loss Function

The cost (or loss) function measures the difference, or error, between actual
y and predicted y at its current position. This improves the machine learning
model’s efficacy by providing feedback to the model so that it can adjust the
parameters to minimize the error and find the local or global minimum. It
continuously iterates, moving along the direction of steepest descent (or the
negative gradient) until the cost function is close to or at zero. At this point,
the model will stop learning. Additionally, while the terms cost function and
loss function are considered synonymous, there is a slight difference between
them. It’s worth noting that a loss function refers to the error of one training
example, while a cost function calculates the average error across an entire
training set. The most common cost function is the Quadratic loss function.
It’s main advantage is that an error of a certain magnitude above the target
produces the same loss as an error of the same magnitude below the target.
If we set the target as t for some constant C, the quadratic function is:

λ(x) = C (t− x)2

3.3 Speech Recognition
Voice and speech recognition represents one of the most fascinating areas
of machine learning and artificial intelligence. The latest developments in
speech recognition have, in fact, led to a simpler relationship between man
and machine.
If previously, for example, people had to write, now they can dictate; if pre-
viously they had to open a browser to do a search, now they can simply
activate a voice assistant with their voice. In addition to enabling more
‘natural’ interaction between humans and machines, this technological ad-
vancement has also become crucial for people with physical disabilities, for
whom speech recognition systems have become a valuable aid towards their
independence.
Over the last few years, partly due to advances in machine learning tech-
niques and the use of deep neural networks, speech recognition models have
reached very high levels of accuracy and reliability, making them easily im-
plementable in a multitude of systems and linking them with other artificial
intelligence models [27]. Of these, this thesis focuses on two in particular:
automatic speech recognition and intent detection.
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ASR

Automatic speech recognition, also known as ASR, is the field of speech
recognition models that allows human speech to be interpreted and tran-
scribed. Examples of ASR systems are dictators, a feature now integrated in
Microsoft Word and the Google Keyboard that, when activated, can compose
text using human dictation.
ASR models find, as a learning source, large datasets in which a written text
is associated with its transcription. These include audio books, films, videos,
and generally subtitled multimedia content, as well as text dictated and then
corrected by the user.
Despite the advances of the last few years, however, it must be acknowledged
that ASR systems are lacking in the understanding of different accents, di-
alects, and the handling of background noise [28].
However, research in ASR is progressing not only towards improving tran-
scription capabilities but also towards semantic analysis of speech, allowing
not only transcription but also the extrapolation of the intonation of senti-
ments and keywords in a speech stream.

Intent Detection

The detection of the intent, also called intent detection, has a fundamental
role in natural language understanding. This is because it allows us, by ex-
pressing brief vocal commands, to make a machine recognise an action that
we want it to perform. A simple example of intent detection can be related
to a vocal assistant. If we ask it to turn on the light in the kitchen or set
an alarm clock, it will follow up with understanding our command and the
subsequent implementation of what we have said. To be more specific, intent
detection aims at interpreting the user’s communicative intent by analysing
the vocal input and matching it with an action or behaviour [29].
While ASR models have their foundation in speech transcripts, intent detec-
tion models are trained on large labelled datasets that place a label repre-
senting an action to be performed on the spoken and transcribed language.

3.4 Training a Speech Model
When training a speech recognition model, the first step is to start with the
data and its preparation. As already mentioned, we remember that among
the data at our disposal, there is the path, i.e., the file path pointing to the
audio file and its transcript. Both these data, before being fed to the neural
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network, need to be pre-processed so that they can be interpreted by the
neural network.

With regard to the audio signal, which is basically a time wave, it is di-
vided into small segments, and its frequency content is analysed. Through
this process, it is then possible to generate matrices of numbers represent-
ing the time signal and its frequency. Among the possible representations
that can be extracted from this conversion, there is the spectrogram, which
represents the intensity of the audio signal spread over different time frequen-
cies. Another widely used option is the Mel Frequency Cepstral Coefficients
(MFCCs). Such coefficients capture the acoustic characteristics of speech by
transforming the audio signal into an easily interpretable sequence of data
for the model. An example can be seen in fig.: 3.5.

Figure 3.5: MFCCs graphs for the sentence: "turn down the temperature in
the bedroom" of the speaker 2ojo7YRL7Gck83Z3 of the FSC dataset.

Since the model cannot understand and associate characters with pho-
netic segments, the transcription of the spoken text must also be transformed.
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Therefore, a vocabulary is created, mapping each character or token to a
unique integer. In effect, this vocabulary covers all the letters of the alpha-
bet, numerals, and special symbols, if any, along with the UNK unknown token
that is used to handle characters or tokens not included in the vocabulary.

For example, taking the following string: ‘The smart watch costs $430,’ and
a vocabulary containing all the letters of the English alphabet (lowercase),
the space, the comma, and the UNK token, we would obtain the following
representation after transformation: ‘the smart watch costs i want it.’

There is one further problem that needs to be dealt with, which is the han-
dling of sequences with variable lengths. By this, we mean those audio inputs
and their transcripts that can have very different lengths, depending on the
duration of the input and the complexity of the speech. This can be handled
by two techniques: padding and truncation.

With padding, the shortest sequences are filled with a generic neutral value,
usually zeros, until a consistent length is achieved. Padding is very useful if
data is to be processed in batches, i.e., in groups, as it allows the model to
group values with the same length.
In contrast, truncation is the opposite of padding since this method cuts ex-
cessively long sequences to a predefined maximum length and decreases the
computational requirements for training the model.
Furthermore, a speech recognition model can be trained either from scratch
or from a template previously developed. Creating a model from scratch
requires randomly initialised parameters and weights and necessitates a very
large and diversified dataset in addition to a considerable amount of com-
puting power.
If instead, one chooses to start from a pre-trained model, this is referred
to as fine-tuning. Through fine-tuning, we can train the model on datasets
other than the one on which it was initially trained, perhaps even further
optimizing it for tasks that were not intended for the initial model.

3.5 Evaluation Metrics
It should come as no surprise to know that it is important to measure the
accuracy of any machine learning system. Whether it’s a self-driving car,
a Natural Language Understanding (NLU) system like Amazon Alexa, or
an Automatic Speech Recognition system, if one does not know how accu-
rate the machine learning system is, it’s impossible to use it in a real-world
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application.

Accuracy

Within the model evaluation metrics we are going to look at in this study,
we are going to use accuracy. This metric is a simple indication of how often
a model delivers correct predictions. In practice, accuracy is obtained by
dividing the number of correct forecasts by the total number of forecasts, i.e.
if the model has correctly categorised all predictions[30]. When the model
has got all predictions right, the accuracy is 100%. If it has got none right,
the accuracy is zero. Nevertheless, accuracy has some limitations when it is
used as a metric: as we can already guess, as it takes into account all equally
important classes, it assesses only the overall number of forecasts correctly
without distinguishing the severity of the errors or their distribution over the
forecasts as a whole. Recognising the importance of this matter, particularly
with respect to the issue of recognition of intent, we will, in fact, in the course
of the analysis, combine the accuracy metric with an in-depth analysis using
DivExplorer. Continuing with our discussion, we need to remember that in
some scenarios a high accuracy can be misleading as it may reflect a good
performance of the model on a class, probably the majority, but it hides
the discrete or low performance of the model when it comes to a class of
data that perhaps appears more rarely. For instance, we can take a speech
recognition model that may have a very high accuracy, but on unusual words
and unrepresented phonies and accents it almost always fails.

Word Error Rate (WER)

Word Error Rate is a measure of how accurately an Automatic Speech Recog-
nition (ASR) system performs, which has become the de facto standard for
measuring how accurate a speech recognition model is [31]. As the name
implies, it calculates how many errors are present in the transcription text
produced by an ASR system when compared to the correct human transcrip-
tion.

To calculate the math beyond WER, it’s quite easy. One needs to combine
the number of Substitutions (S), Deletions (D), and Insertions (N), divided
by the Number of Words (N).

WER =
S +D + I

N
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Considering the following sentence: “The quick brown fox”, if our ASR
system is not very good, it will predict the following transcription: “The
quick brown box". In this case, the WER would be 25%. That’s because
there was 1 Substitution: “fox” was substituted with “box.” In this case, the
ASR system predicted only: “The quick”, and for some reason didn’t even
predict the remaining words, our WER would be 50%. This is because there
are 2 Deletions—only 2 words were predicted by our ASR system when 4
words were actually spoken.

The lower the Word Error Rate, the better the performance of the ASR
model. One can think of word accuracy as 1− WER. So, if the Word Error
Rate is 20%, then the word accuracy, i.e., how accurate the transcription is,
is 80%.
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Chapter 4

Methodology

In the following chapter, we will provide a high-level overview of how we
will investigate the incremental performance of groups during the training
of speech recognition models. This will be accomplished over three distinct
phases: the fine-tuning of the model, the extraction of results and metadata
and finally the analysis of the subgroups.

Fine-tuning and Assessment

The first phase involves the fine-tuning of a previously trained speech recog-
nition model on a user-specified dataset. This can occur for both intent
recognition and ASR tasks. During its training, the model saves both itself
and its progression in a predetermined number of checkpoints.
Those checkpoints, whose performance and accuracy gradually increase over
time, will then serve as the basis for model evaluation and subgroup extrac-
tion. In fact, it is through these checkpoints that we can gain an insight into
the evolution of the performance of the model itself through their analysis,
and have a concrete possibility of seeing where it undergoes noteworthy vari-
ations.

In the second phase, we will use the previously saved checkpoints to use
them incrementally as predictors for the same dataset on which they have
been fine-tuned. This process, once used to predict both the test and train-
ing dataset, sees its results already containing the metadata of the dataset
enriched with additional metadata that is extracted from the context of the
recordings.
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Analysis and Subgroup Monitoring

The third phase eventually involves the subgroup analysis that will enable
this study to incrementally monitor the evolution of sub-group performance
during the training of a model on a given dataset. Initially, this phase will
take the results obtained from phase two and for each pair of results obtained,
i.e. training and testing, will discretise the quantitative variables if present.
For instance, if the results contains the variable ‘duration of speech’, which
we might assume ranges from 3 to 12 seconds, the program will discretize
them into three distinct bins such as: 3-6, 7-9, 10-12.
When the discretization is complete, we use DivExplorer to identify the sub-
groups via n attributes specified by the operator. Such attributes must be
present within the result dataset and may be, for example: mother tongue,
gender, age or length of speech. The subgroups that have a minimum sup-
port of 5% are identified using DivExplorer.
Having found the subgroups, they are then grouped by Jaccard similarity.
If the subsets are at least 80% similar, they will be merged to reduce the
complexity of the subsequent analysis.
Through this procedure, which as we have described will elaborate both train-
ing and testing subgroups for a given checkpoint, it will then be possible to
group them in order to obtain an overview of how they develop over time.
Indeed, once the results of all the checkpoints have been processed, we select
the five best and worst subgroups by performance for the first checkpoint
and then use a series of graphs to study their development over time.

Tools and Frameworks

The implementation of the models relied on popular machine learning frame-
works:

• PyTorch was used for model training, offering flexibility in defining
and optimizing neural network architectures.

• NumPy and Pandas were employed for data preprocessing and ma-
nipulation, enabling efficient handling of large datasets and metadata.

• Matplotlib was used for visualizing training metrics, including loss
and accuracy curves, to monitor the model’s performance over time.
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4.1 Dataset Description
In the following, we will examine which datasets were selected to be used
in this study. Such datasets are considered standard amongst the literature
and provide us with the opportunity to cover a variety of linguistic and
demographic characteristics. The selection of these datasets, in fact, will
indeed be instrumental in helping us during the analysis of the disparities
between subgroups and to assess their evolution during training.

Fluent Speech Commands (FSC) Dataset

The Fluent Speech Commands (FSC) dataset [32] comprises real audio record-
ings designed for spoken language understanding tasks, specifically geared to-
ward controlling smart-home appliances or virtual assistants. The dataset in-
cludes 30,043 utterances recorded by 97 speakers, all in 16 kHz single-channel
.wav format, with each file containing a single command such as "put on the
music" or “turn up the heat in the kitchen". These utterances are labeled
across three semantic slots: action, object, and location. Each slot can take
on various values; for instance, the location slot might be “none”, “kitchen”,
“bedroom”, or “washroom”. The combination of slot values constitutes the
intent of the utterance. For every intent, multiple verbal expressions can be
mapped to it. For example, the intent {action: “activate", object: “lights",
location: “none"} may correspond to phrases such as “turn on the lights",
“switch the lights on", or simply “lights on". In total, the dataset includes
248 distinct phrases mapping to 31 unique intents.

SLURP Dataset

The SLURP (Spoken Language Understanding Resource Package) dataset [33]
is a collection of spoken English audio files spanning 18 domains, which is
substantially larger and linguistically more diverse than previously existing
datasets. It is designed for the development of spoken language understand-
ing systems, particularly for end-to-end (E2E) models. It contains 72,000
audio recordings of single-turn user interactions with a virtual assistant in
various in-home settings, captured in typical home or office acoustic envi-
ronments. The dataset is annotated at three levels of semantics: Scenario,
Action, and Entities, covering 18 scenarios, 46 defined actions, and 55 unique
entity types.

An example of a labelled utterance might include a command such as “Make
a calendar entry for brunch on Saturday morning with Aaronson", which
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is annotated as: {Scenario: “Calendar", Action: “Create entry", Entities:
[event name: “brunch", date: “Saturday", timeofday: “morning", person:
“Aaronson"]}.

LibriSpeech Dataset

The LibriSpeech dataset [34] is a large-scale collection of English speech de-
rived from public domain audiobooks provided by the LibriVox project. It
contains approximately 1,000 hours of spoken English at 16 kHz audio and is
specifically designed for automatic speech recognition systems. LibriSpeech
audio data is aligned with the corresponding text from the audiobooks and
is partitioned into subsets based on the quality of the audio, such as “clean"
and “other" categories. The “clean" subset consists of audio with relatively
high recording quality and speakers whose accents are closer to standard
American English, while the “other" subset includes more challenging audio,
often with background noise or less standard accents.
The dataset is already divided into training, test, and validation sets, ensur-
ing no speaker overlap between sets, with approximately 40 hours of devel-
opment and test data combined and over 900 hours of training data across
various subsets.

ITALIC: An Italian Intent Classification Dataset

The ITALIC dataset represents the first audio data collection specifically
designed for intent classification in spoken Italian. It was introduced by
Koudounas et al. [35] and includes both text transcripts and voice record-
ings, each annotated with a total of 60 intent categories for the development
of spoken language understanding systems in Italian.
This dataset is based on the MASSIVE NLU collection [36], a popular dataset
that provides a set of annotated textual sentences for 60 types of intent. From
this basis, over 70 native Italian-speaking volunteers were then recruited to
record the dataset sentences in their voices. Beyond the creation process of
this dataset, the speakers also provided additional information about them-
selves, such as:

• age: the age of the speaker.

• is_native: whether the speaker is a native Italian speaker or not.

• gender: the gender of the speaker, self-annotated.
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• region: the region of the speaker, self-annotated.

• nationality: the nationality of the speaker, self-annotated.

• lisp: any kind of lisp of the speaker, self-annotated. It is empty in case
of no lisp. (a lisp is a speech defect in which s is pronounced like th in
thick and z is pronounced like th in this)

• education: the education level of the speaker, self-annotated.

• environment: the environment of the recording, self-annotated.

• device: the device used for the recording, self-annotated.

Dataset # Utterances Hours # Speakers Language Domain Notes
FSC 30,043 19 h 97 English Smart-home commands Age/gender
SLURP ∼72,000 58 h 177 English Virtual assistant Close/far mic
ITALIC 16,521 15.46 h 70 Italian Voice assistant Region, age, device
LibriSpeech ∼281k segments 1,000 h ∼2,456 English Audiobooks Public domain

Table 4.1: Datasets overview

4.2 Models Overview
This section offers an overview of the main speech recognition models used
in this research, in particular, the models developed by Facebook, such as
wav2vec 2.0 and HuBERT.

wav2vec 2.0 base

wav2vec 2.0 base is a self-supervised speech learning model capable of learn-
ing textual representations from audio sampled at 16 kHz [37, 38]. As the
model was trained via self-supervised learning, it does not include a tokenizer,
as its training was carried out exclusively on audio data without the inclusion
of textual data. Hence, it is necessary to create a custom tokenizer and then
subsequently fine-tune the model using textual data to be transcribed and
then labeled by the tokenizer.
Additionally, the wav2vec 2.0 model processes the raw signal through a con-
volutional encoder that extracts its characteristics and then passes it to a
transformer that captures its dependencies. Although this process may seem
complicated at first glance, it is the separation that takes place in the learn-
ing process from the acoustic representation to the decoding part of the text.
Because of this, the model can perform reasonably well even when the amount
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of textual data at its disposal is very limited; for example, if we only have
about ten minutes of labelled data, the model will still be able to achieve
very low errors following fine-tuning.
During the experiments made by the researches at Facebook it was see that
this model could achieve with LibriSpeech, up to 1.8-3.3% on WER.

Wav2vec2-xls-r-300m

Wav2vec2-xls-r-300m is an extension of the aforementioned wav2vec 2.0, as
this model specializes in a multilingual speech recognition domain [39, 40].
Like its predecessor, this model was trained through self-supervised learn-
ing with 436,000 hours of unlabeled audio from various sources such as
VoxPopuli[41], MLS[42], CommonVoice[43], BABEL[44], and VoxLingua107[45]
and comes to cover as many as 128 languages.
As this model is only trained on speech representations, it does not integrate
a tokenizer, so to use it for tasks such as speech recognition, a fine-tuning
step is required first to associate it with labelled data.
As for performance, the model reduces WER errors by up to 20/33% on
average on datasets such as Babel, MLS, and VoxPopuli when compared to
similar models; furthermore, its cross-language performance is good enough
to be useful in tasks such as translation from English to other languages.

wav2vec2-large-xlsr-53-italian

The wav2vec2-large-xlsr-53-italian model is a variant of wav2vec 2.0-large
that is fine-tuned to recognize the Italian language [46]. As the previous
model, this one is based on self-supervised learning and requires a tokenizer
when used. In detail, this model was refined using the Common Voice 6.1 [47]
dataset for the Italian language and, as the industry standard dictates, was
designed to process audio signals sampled at 16 KHz.

hubert-base-ls960

Hubert-base-ls960 is a model created through self-supervised learning for
speech learning based on the Hidden-Unit BERT (HuBERT) method [48,
49]. This methodology uses a clustering step (such as k-means clustering)
to generate labels via a semi-supervised process that allows the model to
still learn audio representations without the labelled data. This approach
allows the model to simultaneously learn both the acoustic characteristics of
certain aspects that are structural to language and allows it not to rely on a
predefined lexicon, thus differentiating itself from other models.
Similar to the previous models, since the model has been trained exclusively
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on audio data, it does not include a tokenizer, so it will be necessary to
fine-tune and associate a tokenizer with the model to use it.

hubert-large-ll60k

Model hubert-large-ll60k represents the large version of model hubert-base-
ls960 [50]. It was trained on the LibriLight [51] dataset and, like its coun-
terpart, uses a clustering mechanism to generate supervised labels that are
then used in prediction. With its greater depth and a much larger number
of parameters, the large version is not only more accurate but can capture
deeper relationships and dependencies in the audio signal. The model does
not have a tokenizer, and the results obtained with this model demonstrated
a significant reduction in WER errors on benchmarks such as LibriSpeech[34]
and LibriLight[52].

4.3 Implementation

4.3.1 Intent detection - Fine-tuning

The model training pipeline begins by taking the parameters passed in by
the user before setting the GPU as the computing device via CUDA if it is
available, else the CPU is set. The execution logic is followed by a series of
constraints which will load, from the arguments, the user’s specified model
as well as the specified dataset. As far as any intent detection model trained
with the FSC and SLURP datasets the pipeline works as follows:

First, the requested database is loaded into memory by customized meth-
ods. This methods are interchangeable and are used throughout the entire
program. They return the following variables: a trio of datasets (of which
the Train, testing and validation dataset), the number of labels and both
label to ID and ID to label mappings.
After this step, the pipeline loads the user specified model by passing the
related string parameter into "AutoModelForAudioClassification" from the
transformers library. This function recognizes the string argument and au-
tomatically loads the target model with its processor.

Next, the programme subsequently estimates the class weights by first
counting the frequency of occurrence of each label in the training dataset
then assigning a relevancy factor to each label using the inverse of its fre-
quency. The function returns class weights as a PyTorch tensor.
After the class weights have been calculated, the programme proceeds to dy-
namically define the training arguments in a function were will be defined the
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training parameters that the model will then use during its training. This
function has many parameters as it aims to allow the user to specify many
of the training parameters directly from the command line.

Within the plethora of parameters that can be used in this feature to cus-
tomise the training and properties of the model itself, we find:

• output_dir: The output directory where the model predictions and
checkpoints will be written.

• eval_strategy: The evaluation strategy to adopt during training.
Possible values are:

– "steps": Evaluation is performed (and logged) every eval_steps.

– "epoch": Evaluation is performed at the end of each epoch.

• per_device_train/validation_batch_size: The batch size per
GPU/CPU for training and validation.

• gradient_accumulation_steps: The number of update steps to ac-
cumulate the gradients for, before performing a backward/update pass.

• learning_rate: The initial learning rate for the AdamW optimizer.

• max_steps: The total number of training steps to perform. For a
finite dataset, training is reiterated through the dataset (if all data is
exhausted) until max_steps is reached.

• warmup_steps: The number of steps used for a linear warmup from
0 to learning_rate.

• save_steps: The number of update steps before the model performs
a checkpoint save.

After defining the training arguments and inserting them into the model,
the programme proceeds with the training of the model. When finished, the
programme will evaluate the model’s performance and save the final model
locally.
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4.3.2 Intent detection - Inference and extraction

The section related to intent detection and inference is the combination of
a file already in the initial repository of the thesis, the purpose of which is
to extract metadata from a dataset, and a pipeline developed specifically
for the inference task. In this pipeline, the inference tasks of saved models
are executed incrementally during training, while simultaneous extraction of
data occurs, preparing it for subsequent analysis.

Similarly to a standard fine-tuning approach, this module contains a num-
ber of user definable arguments that enable the programme to behave dy-
namically to the various challenges of the project.

The logic of this process starts similarly to the previous one: it first pro-
cesses the user input parameters and then determines whether to use a GPU
or CPU based on availability. Next, the programme enters a pipeline specific
to the user’s requested database and then begins the inferring and extracting
phase. Initially, as in the previous file, the read_data function is called in or-
der to load the various datasets into memory, then the programme proceeds
to analyse the checkpoints. This is done on either all the saved checkpoints
or on a specific one depending on the flag set by the user among the program
parameters.

After entering the function which analyses a checkpoint individually, the
program proceeds to load the saved checkpoint into memory via the path
provided by the user.
As a second step, specified training arguments are defined to avoid training
the model and use it only to extract metrics and to test it on the test data.
A trainer is then initialised via the previously loaded model, which is then
used to predict the entire test dataset.
These predictions that are currently in numerical format are converted in a
few lines of code from numbers to string literals by taking the intent that the
model found to be the most likely prediction.
It then calculates the accuracy percentage between the intents that the model
correctly predicted and those that it got wrong. Lastly, the programme saves
the predicted intent, the actual intent, the correctness and any metadata in
a .csv file.

4.3.3 Automatic Speech Recognition - Fine-tuning

As far as fine tuning for ASR is concerned, the program makes use of a
secondary pipeline specifically adapted for the purpose, which will now be
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outlined. First of all, a dataset such as LibriSpeech is loaded into memory by
calling the relevant function. This dataset is then converted into a pandas
dataset and then a function is called on it to remove its special characters.
The removal of special characters such as the question mark, the full stop,
the exclamation mark and the semicolon is crucial in an ASR environment.
This is because, as previously mentioned, each character in the text needs to
be encoded into a number so that the model will then be able to recognise it.
Special characters that we retain the apostrophe, this is because the apostro-
phe produces a very special sound in English that changes the phonetics of
spoken words. On the other hand, we do not consider commas, which do not
change the phonetics and could only confuse the model in its transcription
task.
The pipeline then proceeds to create a tokenizer for the model. The tok-
enizer includes all the vocabulary, space, apostrophe and four other special
characters which are then numbered to create a correspondence between the
model’s predictions and the actual characters. Among the special charac-
ters we have: <pad>, which is the padding token used to align sequences
of characters of different lengths, <s> and </s>, which are respectively the
start and end tokens of a sentence, and finally <unk>, a token representing
a unknown character in the event that, for example, we accidentally forget
to remove the commas from the text and the model does not know what to
assume for the comma.
After creating the vocabulary and processor, the next step is to filter out
all elements of the training and validation dataset that are deemed too long.
This is done via a parameter passed in by the user which is set to 15 seconds
by default. The compute_metrics function is then defined, a function that
will then be passed to the model to calculate the Word Error Rate (WER)
for each transcript predicted by the model.
Subsequently, the model designated for fine-tuning is loaded into memory
based on the user-specified parameters.
At this stage, the function freeze_feature_encoder is called. This function
will disable the gradient computation for the feature encoder so that its pa-
rameter will not be updated during training.
Once this is done to avoid training a finished model, the programme goes on
to define the training arguments and define the trainer, which in turn after
saving both the processor and the tokenizer will proceed to train the model
itself.

38



4.3.4 Automatic Speech Recognition - Inference and ex-
traction

As far as the inference step and data extraction for ASR is concerned, it can
be said to be quite similar to the intent detection pipeline. Here too, for
each saved model checkpoint, the script goes to load the model into memory
and then uses it to predict both the test and the Train dataset. Once the
inference is finished, the script then goes on to combine each data frame with
the metadata of the source dataset. When done, the programme will save
the .csv files in memory ready to be analysed.

4.4 Analysis
As far as the analysis is concerned, we make use of a thirt script to facilitate
the analysis of the data produced by the inference and metadata extraction
step. In detail, at first, the code processes the different .csv files representing
the predictions of the incremental model during its training phase on a spec-
ified dataset. These files include a variety of information such as metadata,
true label and predicted label, the accuracy as well as the Word Error rate,
which is only present in an ASR context. There can be two kinds of files of
.csv files for the program to analyse: half will contain the model inference
and metadata extraction on the test dataset, the others will be related to
train dataset.
From each file, the programme calculates the accuracy and subsequently dis-
cretises the numeric columns. Such columns, which may contain for instance
the duration of the audio or the average speech rate, are split into intervals
in such a way that they can be used for later subgroup analysis. The script
also gives the user the possibility to select the columns (the attributes) to be
analysed and to find subgroups by disregarding the others, this can be done
by the defining numeric_columns and attributes variables at the beginning
of the program.
Following the processing step, the code moves on to use DivExplorer by
Eliana Pastor, to identify subgroups with high divergence. Using this library,
the programme first defines the significant attributes to form the subgroups,
such as mother tongue, gender, age as well as the columns that have been
previously discretized. We then identify the subgroups with a minimum sup-
port of 5% so that significant subgroups are selected and then calculate the
divergence between the accuracy of each subgroup and the overall accuracy
of the model on the dataset.
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Due to the very nature of subgroups, many are similar to each other; indeed,
we may encounter some cases where subgroups differ in only a small detail.
For instance, we might have a subgroup ABCDEF and one ABCDE. Since
the metadata contained in .csv files is so large, this creates O(2n) subgroups;
therefore, to perform a better analysis, we apply a clustering technique using
the Jaccard similarity[53]. With this technique, we measure the similarity
between subgroups, and if they have a similarity greater than 80%, they are
merged into a single group.

We should also mention at this point that the pipeline that processes
the subgroups is also provided with a failsafe so that if it is noticed that
the sum of the support of the subgroups does not equal 1, i.e., the 100%,
then the program fails. This was done to ensure the consistency of the results.

The program continues with the analysis of the subgroups through the
training to extract further insights into how the model improves or worsens
for specific subgroups. This is done by loading the various .csv files into
memory, storing the subgroups found in the first step, and following their
evolution in the remaining steps. When this is done, we select the five best
subgroups, i.e. those with the least divergence in accuracy and the five worst
ones those with the greatest divergence in accuracy.
Eventually, after this process, we can generate a graph showing the evolution
of error divergence for the subgroups during the model training. On this
graph, the solid lines represent the 5 best subgroups, while the dashed lines
represent the subgroups with the worst performance.
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Chapter 5

Results

As already mentioned in the previous section, the program is able to create
up to four different charts per model and dataset combination. These graphs,
including a linear graph and a heatmap, can show the divergence trends of
subgroups during the model’s trading process.
These visualizations will, in fact, allow us to identify trends of improvement
or deterioration of the model on specific subgroups during its training. In
fact, we can see in detail how, for example, the gender of the subgroup im-
pacts its performance during the model’s training.
Therefore, in order to avoid going into a mechanical and sterile analysis of
each graph for each result, we will limit ourselves to setting out the most
interesting results and peculiarities for combinations of models and datasets.
However, the complete set of graphs generated by the program remains pub-
licly available via the link given in the appendix.

5.1 Performance Metrics
To evaluate the performance of the model, the program uses the same met-
rics as the model being trained. If it is intent detection, then it will use
accuracy, while if it is ASR, it will use word error rate. Specifically, if the
input .csv file contains the True label and predicted label columns, then the
code will automatically determine the classification errors and then retrieve
the global accuracy and divergence for the groups. For WER, the divergence
of subgroups is calculated as a function of the average WER of the subgroup
in relation to the overall WER.
The program then provides the support count, which indicates the propor-
tion of samples that fall into a specific subgroup with respect to the entire
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dataset. This statement helps us to understand how relevant a subgroup may
be in the overall dataset. By default, the program excludes subgroups with
less than 5% support.
Finally, the divergence value is calculated as the difference between the per-
formance of the subgroup and the overall metric of the entire dataset for a
single epoch.

5.2 Subgroup-Specific Analysis
The graphs produced by the analysis are then accompanied by a series of
metrics that the analysis program extracts from the .csv files together with
subgroups. They include divergence and support.
Divergence is calculated as the difference between the performance of the
subgroup and the overall metric of the entire dataset for a given epoch. For
example, if a subgroup ‘x’ has an accuracy of 0.68 and at epoch number 5, the
model has an accuracy of 0.75, then its divergence will be -0.07. A somewhat
similar calculation occurs for war where only the fact that the WER of the
subgroup is calculated as the average of the WERs of each instance of the
subgroup itself.
The program also provides the support count indicating how many samples
fall into a specific subgroup in comparison to the entire dataset. This value
helps us to understand the importance of the subgroup itself and how relevant
it may be as a whole. For example, we might find that a subgroup of women
has 61% support and performs 0.02 better than a subgroup of men with
39% support and performs 0.02 worse. The program is preset to exclude
subgroups with less than 5% support.
The program is also able to automatically change its internal processes based
on the type of file you pass to it as input, if the .csv files have the True label
and predicted label column, then it will be intent detection, and the program
will work with accuracy whereas if the program notices the WER column then
it will be ASR and the program will act accordingly.

5.2.1 wav2vec2-xls-r-300m and ITALIC

General disparities

First, we would like to observe the subgroups of table 5.1 evolve in graph 5.1.
Here we can notice the starting subgroups, especially D, C and B, have main-
tained their divergence in being predicted more easily by the model, while
we note that almost all of the subgroups that were initially less performing
with the model trained still have a slightly lower accuracy than the others.
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Figure 5.1: Accuracy divergence of subgroups for wav2vec2-xls-r-300m on
the ITALIC dataset.

Letter Group Type Attributes Accuracy Divergence (Delta) Support

A Better education=bachelor, nationality=italiana 0.021 (Delta: -0.049) 7.40%
B Better device=phone, education=bachelor 0.021 (Delta: -0.050) 5.63%
C Better education=bachelor

education=bachelor, field=close
education=bachelor, lisp=nessuno
is_native=False, education=bachelor

0.011 (Delta: -0.060) 11.95%

D Better education=bachelor, gender=male 0.008 (Delta: -0.062) 8.79%
E Better region=marche, environment=silent 0.008 (Delta: -0.063) 22.29%
F Worse region=sicilia, education=high_school -0.019 (Delta: -0.090) 5.08%
G Worse education=high_school, environ-

ment=quiet
-0.016 (Delta: -0.087) 7.91%

H Worse education=high_school, gender=male -0.012 (Delta: -0.082) 7.59%
I Worse region=sicilia, device=phone -0.010 (Delta: -0.081) 10.48%
J Worse device=computer, region=piemonte -0.007 (Delta: -0.078) 7.03%

Table 5.1: Mapping of Letters to Grouped Subgroups for Train for
wav2vec2-xls-r-300m on the ITALIC dataset

These include subgroup A representing male university graduates, subgroup
J representing speakers from Piedmont who record from their computer and
subgroup E representing speakers from the Marche region who record in a
silent environment. Moreover, we can observe how the performance of the
subgroups J, H and G, which were slightly underperforming at the beginning
of the model’s training, later improved to having near no divergence. This
subgroups contain different speaking accents, lower levels of education and
different recording devices. Their poorer performance of these subgroups may

43



therefore be explained by their underrepresentation or by their having acous-
tic characteristics that the model found during its training more difficult to
generalise.

Audio-related subgroup disparities

Figure 5.2: Accuracy divergence of subgroups for wav2vec2-xls-r-300m on
the ITALIC dataset.

In the graph 5.2 of wav2vec 2.0 trained on ITALIC, one can observe that
the subgroups all follow approximately the same trend. Of these, subgroups
I and B are even on the zero line as a divergence so small that it can be inter-
preted as 0. Of these two subgroups, the B line represents (device=phone)
and (field=close, device=phone) while the I line represents (field=close). We
can therefore assume that as far as the test dataset is concerned, the pattern
is hardly influenced at all by sounds that are recorded close up, perhaps from
a telephone.
A particularly interesting element of this graph is the dashed line F, which
starts with a divergence of -0.02 and ends with a divergence of approxi-
mately 0.05. The F line in this graph represents the following subgroups:
(device=computer), (environment=silent), (field=close). From this informa-
tion we can derive that, users recording their voice from a computer in a
silent environment where the microphone is close to the speaker, a better
audio quality can be produced.
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Regional and gender-based disparities

Figure 5.3: Accuracy divergence of subgroups for wav2vec2-xls-r-300m on
the ITALIC dataset.

Changing our focus instead onto any bias the model may have on the
people themselves requires a closer observation of how wav2vec 2.0 behaves
with the ITALIC dataset on the Train dataset. Here in graph 5.3 we are
working with very small differences in accuracy, something quite good as it
conveys the information that the model is not actively discriminating against
any subgroup of people.
Subsequently, we do find small differences between them, the line F for ex-
ample representing the subgroup: (gender=female, region=sicily).
At first the Sicilian women were marginally penalised by the model, but
they found a slight favour after the model was fully trained. Should this re-
search make any assumptions we might in fact say that the peculiar cadence
of Sicilian speech sounds better, thereby gaining some favour in the vocal
recognition of x. Supporting this claim, the G subgroup, representing per-
sons living in Sicily, initially have a slight disadvantage like the F subgroup
but then with the trained model they perform slightly better than the others.
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Figure 5.4: Accuracy divergence of subgroups for
wav2vec2-large-xlsr-53-italian on the ITALIC dataset.

5.2.2 wav2vec2-large-xlsr-53-italian and ITALIC

General disparities

With regard to the wav2vec 2.0-large-xlsr-53-italian model trained on ITALIC,
one can observe a general convergence of the subgroups towards a divergence
of accuracy close to or equal to zero. Indeed, all three previously illustrated
graphs for wav2vec2-xls-r-300m were generated and no noteworthy cases were
found.
The only feature worth noting is in graph 5.4, where it can be seen that
subgroup A, containing those with a university degree is best understood by
the model throughout its development.

5.2.3 facebookhubert-large-ll60k and LibriSpeech

General disparities

We now illustrate the model facebookhubert-large-ll60k on LibriSpeech. Be-
ing that for dataset LibriSpeech we only have gender as metadata the analysis
may have turned out to be inconclusive but nevertheless, analysing the evo-
lution of the model and the total subgroups in the training and test dataset
we can make some points that are very relevant to this research.
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Figure 5.5: WER divergence of subgroups for facebookhubert-large-ll60k
on the LibriSpeech dataset.

In fact, we note that when it comes to evaluating the test dataset in image:
??, the worst subgroups never manage to improve, remaining at +0.05%
WER while the subgroups with the best performance are stable at around
-0.02% WER.

As to the performance of the subgroups in the Train dataset, as seen in
image: 5.6, we can see that the worst subgroups have a fairly similar perfor-
mance trend throughout the training of the model, something that cannot be
said for the best subgroups, three of which, represented by the line E, D and
A, in fact deteriorate their performance by between 0.01% and 0.03%. These
subgroups have in common that they have many words: n_words_bin=31-
62.

5.2.4 Facebook hubert-base-ls960 and LibriSpeech

General disparities

Considering instead the Facebook hubert-base-ls960 model and analysing all
possible disparities, we note through the graphs and data at our disposal that
the spread of disparities between this model and the previous one is extremely
similar. This is reinforced by the fact that, as we can see from the tables 5.2
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Figure 5.6: WER divergence of subgroups for facebookhubert-large-ll60k
on the LibriSpeech dataset.

Figure 5.7: WER divergence of subgroups for facebookhubert-base-ls960
on the LibriSpeech dataset.

and 5.3 that the subgroups and their related support is very if not exactly
the same. We can therefore say with certainty that for the same model,
the large and basic versions have no substantial changes in the evolution of
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Letter Group Type Attributes Initial WER (Change) Support

A Best total_silence_bin=0-4,
n_words_bin=31-62

-0.010 (Improvement: 0.656) 0.10%

B Best speed_rate_word_trimmed_bin=0-1,
total_duration_bin=1-12
trimmed_duration_bin=0-11,
speed_rate_word_trimmed_bin=0-1

-0.005 (Improvement: 0.651) 0.85%

C Best total_silence_bin=0-4,
speed_rate_word_trimmed_bin=0-
1

-0.005 (Improvement: 0.651) 0.91%

D Best n_words_bin=31-62, gender=female -0.005 (Improvement: 0.651) 0.09%

E Best n_words_bin=31-62
speed_rate_word_trimmed_bin=0-1,
n_words_bin=31-62

-0.004 (Improvement: 0.650) 0.16%

F Worst speed_rate_word_trimmed_bin=0-1,
total_silence_bin=4-8
total_silence_bin=4-8

0.023 (Excess: -0.623) 7.77%

G Worst trimmed_duration_bin=11-21, gen-
der=male

0.012 (Excess: -0.634) 6.78%

H Worst gender=male, total_duration_bin=12-22 0.012 (Excess: -0.634) 6.50%

I Worst total_duration_bin=12-22,
total_silence_bin=4-8
trimmed_duration_bin=11-21,
total_silence_bin=4-8

0.012 (Excess: -0.634) 5.89%

J Worst speed_rate_word_trimmed_bin=0-1,
trimmed_duration_bin=11-21
trimmed_duration_bin=11-21

0.011 (Excess: -0.635) 12.71%

Table 5.2: Mapping of Letters to Grouped Subgroups for Train (WER) for
facebookhubert-large-ll60k on the LibriSpeech dataset.

the subgroups during their training as seen in 5.7. In addition, if we were
to examine this in more detail, we can see that subgroups with the worst
performance tend to have higher support when compared to subgroups with
better performance5.3. A potential explanation for this phenomenon is that
larger subgroups encapsulate a higher degree of feature heterogeneity, whilst
the smaller subgroups are more homogeneous and have specific patterns that
the model is able to capture more easily.
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Letter Group Type Attributes Initial WER (Change) Support

A Best n_words_bin=31-62,
total_silence_bin=0-4

-0.010 (Improvement: 0.656) 0.10%

B Best total_duration_bin=1-12,
speed_rate_word_trimmed_bin=0-1
trimmed_duration_bin=0-11,
speed_rate_word_trimmed_bin=0-1

-0.005 (Improvement: 0.651) 0.85%

C Best speed_rate_word_trimmed_bin=0-1,
total_silence_bin=0-4

-0.005 (Improvement: 0.651) 0.91%

D Best n_words_bin=31-62, gender=female -0.005 (Improvement: 0.651) 0.09%

E Best n_words_bin=31-62
n_words_bin=31-62,
speed_rate_word_trimmed_bin=0-1

-0.004 (Improvement: 0.650) 0.16%

F Worst total_silence_bin=4-8
total_silence_bin=4-8,
speed_rate_word_trimmed_bin=0-1

0.023 (Excess: -0.623) 7.77%

G Worst trimmed_duration_bin=11-21, gen-
der=male

0.012 (Excess: -0.634) 6.78%

H Worst total_duration_bin=12-22, gender=male 0.012 (Excess: -0.634) 6.50%

I Worst total_silence_bin=4-8,
total_duration_bin=12-22
total_silence_bin=4-8,
trimmed_duration_bin=11-21

0.012 (Excess: -0.634) 5.89%

J Worst trimmed_duration_bin=11-21
trimmed_duration_bin=11-21,
speed_rate_word_trimmed_bin=0-1

0.011 (Excess: -0.635) 12.71%

Table 5.3: Mapping of Letters to Grouped Subgroups for Train (WER) for
facebookhubert-base-ls960 on the LibriSpeech dataset.

5.2.5 hubert-base-ls960 and FSC

General disparities

As can be seen from Figure 5.8 with regard to the model hubert-base-ls960
on the FSC dataset, we can notice a very peculiar thing, namely that from
the very first it is noticeable that the majority of the best and worst 5 sub-
groups have no if very little divergence. The only outliers, which are then
immediately integrated into the learning of the model, are the subgroups F,
G and H.
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Figure 5.8: Accuracy divergence of subgroups for hubert-base-ls960 on the
FSC dataset.

5.2.6 wav2vec 2.0 and FSC

General disparities

On the other hand, as far as model wav2vec 2.0 trained on FSC is concerned,
we can see in graph ?? that in the training phase the model has a different
convergence on the three worst subgroups, which are still the same subgroups
mentioned in the previous section.

5.2.7 wav2vec 2.0 and SLURP

General disparities

Let us now analyse the general performance of wav2vec 2.0 on the SLURP
dataset, here we can see in figure ?? a very interesting general trend. When
the model is accurate for only 6.6% of the cases, all subgroups start with a
particularly low divergence of accuracy.
Once the model is trained, however, the subgroups that had a very slight di-
vergence in accuracy at the first evaluation are more easily predicted through-
out the training phase of the model. This is the opposite for the subgroups
that had been identified as the best in the first epoch, all of which had sig-
nificantly lower performance, decidedly opposite to the worst subgroups.
To better understand this strange evaluation we can then turn to the graph
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Figure 5.9: Accuracy divergence of subgroups for wav2vec 2.0 on the FSC
dataset.

Figure 5.10: Accuracy divergence of subgroups for wav2vec 2.0 on the
SLURP dataset.

??, where we find the subgroups in the test dataset, in this case we note that
the majority of the subgroups have a slightly negative performance with an
average of -0.01 while we have only one outliner, the F line. The F line
represents men who speak slowly.
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Figure 5.11: Accuracy divergence of subgroups for wav2vec 2.0 on the
SLURP dataset.

5.3 Intent classification Demographic Analysis
In this supplementary section of the investigation we will go into more detail
on how the performance of the subgroups and demographics of Wav2Vec 2.0
may differ on the SLURP, ITALIC and FSC datasets. The aim of this further
analysis is in fact to test whether significant differences emerge during the
training of the models that may lead to disparities and discrimination on
speaker demographics.

5.3.1 wav2vec2 and FSC

To begin with,as we observe Fig 5.12, we can state that where wav2vec2 is
trained with FSC, female speakers have a higher accuracy index than their
counterparts. In fact, subgroup F is the worst performing subgroup compris-
ing male speakers aged between 41 and 65, which is in direct contradiction to
the best performing subgroup C, this time comprising female speakers also
aged between 41 and 65. When the model training is complete, virtually all
subgroups except C are found to have almost no divergence. This highlights
how wav2vec2 trained on FSC does not lead to the creation of subgroup
demographic discrimination except for a slight bias towards older women.
We can therefore assume that this particular subgroup has a clearer way of
speaking and interacting with the model.
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Figure 5.12: Accuracy divergence of subgroups for wav2vec 2.0 on the FSC
dataset.

5.3.2 wav2vec2 and SLURP

Figure 5.13: Accuracy divergence of subgroups for wav2vec 2.0 on the
SLURP dataset.

Regarding wav2vec2 trained with SLURP, we can first notice in Fig 5.13
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Letter Group Type Attributes Accuracy Divergence (Delta) Support

A Better gender=Unknown | origin=Unknown
origin=Unknown, gender=Unknown

0.003 (Delta: -0.063) 9.68%

B Better gender=Female, origin=Native 0.003 (Delta: -0.064) 23.25%

C Better gender=Female 0.001 (Delta: -0.065) 57.45%

D Better origin=Native 0.001 (Delta: -0.066) 39.16%

E Better origin=Non-native, gender=Female -0.000 (Delta: -0.066) 34.20%

F Worse gender=Male, origin=Non-native -0.003 (Delta: -0.069) 16.96%

G Worse gender=Male -0.003 (Delta: -0.069) 32.87%

H Worse gender=Male, origin=Native -0.003 (Delta: -0.069) 15.91%

I Worse origin=Non-native -0.001 (Delta: -0.067) 51.16%

J Worse origin=Non-native, gender=Female -0.000 (Delta: -0.066) 34.20%

Table 5.4: Mapping of Letters to Grouped Subgroups for wav2vec 2.0 on
the SLURP dataset.

and table 5.4 how there are big differences between the performance of male
and female speakers. As a matter of fact, in this configuration the female
speakers tend to be closer to or above the average while the male speakers,
particularly the non-native speakers, are consistently below the average. As
we do not possess information on the age of the speakers for analysis, we re-
sort to yet another very important factor for demographics, which is whether
the speaker is a native speaker or not. In this analysis, we can observe, as
one might suppose, that being native speakers generally yields a slight im-
provement, although this is not as distinct as in other contexts. Furthermore,
we can also note that the subgroup I consisting of non-native male speak-
ers seems to show the worst combination. Lastly, we note how subgroup A,
comprising speakers whose gender is unknown, starts with a slight advantage
but as soon as the pattern starts to specialise it is penalised. This may also
be due to the fact that subgroup A is the subgroup with the least support
in the dataset so it is assumed that the model did not learn it well.

5.3.3 Wav2Vec 2.0 and ITALIC

Finally, when considering wav2vec2 and ITALIC in fig: 5.5, we immediately
notice the subgroups F and G, respectively comprising males aged between
43 and 64 and speakers also aged between 43 and 64. These two sub-groups
start off with a slight negative divergence in their accuracy but during the
training consistently perform better than all the other sub-groups. In this
case, G has 27% support while F has 9% support as seen in table: ??.
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Figure 5.14: Accuracy divergence of subgroups for wav2vec 2.0 on the
ITALIC dataset.

5.3.4 Wav2Vec 2.0 and ITALIC

Figure 5.15: Accuracy divergence of subgroups for wav2vec 2.0 on the
ITALIC dataset.
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Letter Group Type Attributes Accuracy Divergence (Delta) Support

A Better gender=male, age_bin=22-43 0.001 (Delta: -0.070) 49.36%
B Better gender=female, age_bin=43-64 0.001 (Delta: -0.070) 18.01%
C Better age_bin=22-43 0.001 (Delta: -0.070) 71.75%
D Better gender=female 0.000 (Delta: -0.071) 40.48%
E Better gender=male -0.000 (Delta: -0.071) 59.52%
F Worse gender=male, age_bin=43-64 -0.008 (Delta: -0.079) 9.33%
G Worse age_bin=43-64 -0.002 (Delta: -0.073) 27.34%
H Worse age_bin=22-43, gender=female -0.001 (Delta: -0.071) 22.39%
I Worse gender=male -0.000 (Delta: -0.071) 59.52%
J Worse gender=female 0.000 (Delta: -0.071) 40.48%

Table 5.5: Mapping of Letters to Grouped Subgroups for wav2vec 2.0 on
the ITALIC dataset.

Looking in greater detail, we can see that some of the lines of the sub-
groups are superimposed, so we will now refer to the heatmap in figure 5.15.
Here we can see that the male and female subgroups E and D have an ex-
tremely low divergence respectively. Therefore, we can conclude that the
model performs exceptionally well at recognising speech without discrimi-
nating by gender.

5.3.5 Results

Observing the data in its entirety, we can observe some common patterns
with respect to demographic characteristics. First among these is certainly
the gender distribution, in fact, in the FSC and SLURP datasets we find
that female speakers perform better than men. In ITALIC, on the other
hand, we notice how gender differences tend to decrease during the training
of the model. From this we can draw the conclusion that, given the balanced
representation in terms of numbers between female and male speakers in the
dataset, female speakers are better recognised as they are more homogenous
among themselves. Furthermore, we can also conclude that older speakers,
from 41 to 65 years old, have more accurate results especially if they are
female. This may indeed indicate a greater clarity or slowness of speech that
is very often typical for older age groups. Ultimately, we can conclude as per
our assumption that non-native speakers are often penalised by a different
accent or intuition in a less variant dataset.

5.4 Training Environment
The training process was conducted on Kaggle, which provided an accessi-
ble platform for model training. The experiments utilized a GPU-enabled
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runtime, specifically the NVIDIA Tesla P100 GPU, which offered high com-
putational power for training deep learning models. The Kaggle environment
also facilitated the seamless integration of dependencies with pre-installed li-
braries and a customizable configuration that streamlined the experimental
workflow. 1

The experimental setup for this study made use of Python 3.10.14.

5.5 Analysis and Discussion
Upon observing the data produced by our analysis of the models and datasets,
we can certainly conclude that the speech recognition models each show dis-
tinct patterns with regard to the handling of performance disparities between
the various subgroups. This is the case for the attributes of the dataset such
as gender, age and accent of the speaker as well as for other acoustic variables
such as speech speed and total length of the audio file.
The trend that was most frequently detected during the incremental analy-
sis and monitoring is that although the accuracy of the models is progres-
sively better some subgroups follow performance dynamics that on average
are slightly different from the overall average. This confirms our initial hy-
potheses where we assumed that model training could introduce biases and
divergences towards certain subgroups.
Amongst the divergences that our analysis brought to light, it was observed
that some subgroups consistently maintain systematic divergences by having
a static performance gap compared to the overall dataset, while others, al-
beit to a lesser extent, show recovery or deterioration trends but still tend to
conform towards zero divergence.
We can therefore assume with good confidence that the appearance of sub-
groups does not result from severe disparities in the training data but instead
from structural dynamics that the models have during their training. These
dynamics of performance disparities may in fact be triggered at specific points
during the training of the model where even the presence of slight imbalances
in the optimisation or distribution of the data may accentuate the disparities.
This opens up the way for future research where direct intervention in the
reallocation of model weights and targeted resampling of the data when sub-
groups are encountered that exceed an accuracy threshold or WER diver-
gence.

1In addition, the heaviest experiments were conducted by an NVIDIA 3080TI GPU
provided by Jacopo Franco Electronics PhD Student from Newcastle University, UK.
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5.6 Model Complexity vs. Dataset Complexity
Continuing our analysis of the results, one can examine everything together
and notice a particularly interesting fact. Indeed, we note that the more
complex and deeper model architectures with a larger number of parameters
(such as the ‘large’ models) are not necessarily going to guarantee a reduction
in the subgroup performance disparity.
Indeed, we can note that although the overall performance is better in more
complex models, this does not affect subgroups with minority speech patterns
and accents in the same way. We may explain this particular result by the
fact that large models are trained with a huge amount of data. It is precisely
because of the size of these training datasets that they are often unbalanced,
as we have previously seen, and the large amount of data results in a lack
of diversification. From this we can therefore say that the complexity and
variety of the data used to train large speech recognition models is funda-
mental in order to obtain balanced models and consequently fair results for
all subgroups in the training dataset.

5.7 Specific Subgroup Analysis
As stated in our observation of the results, one can easily notice that the
speech recognition models show very different behaviours once we examine
how the disparities in the performance of the subgroups evolve during train-
ing. As a matter of fact, if we examine the same model trained with two dif-
ferent datasets, we can observe that the evolution of the performance of the
subgroups, albeit with different subgroup scores, shows similar performance
trends. This suggests that there are specific cases in which the propagation
of differences between subgroups is not just a matter related to the dataset
used for model training, but also with the model itself, which with its ar-
chitecture and prior training adds a structural bias which then leads to the
creation of disparities.
With regard to accuracy, we then notice how, although the average perfor-
mance of the models has a positive trend, the performances of the subgroups
display three distinct behaviours. On some occasions the performance of a
subgroup begins advantaged and concludes advantaged, on other occasions
a disadvantaged subgroup starts the training at a disadvantage and stays
disadvantaged even when the training is finished. Then, there are a number
of subgroups that experience a ‘’bounce-back‘’. One can easily trace this
phenomenon back to a progressive adaptation of the model towards such
speech characteristics as, for example, accent and speed which were initially
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hard to predict. Furthermore, the performance of the other subgroups, i.e.
those that retain or sometimes even widen their gap compared to the overall
performance, show how the models have an insufficient ability to predict un-
common and non-dominant patterns while instead being more optimised on
common and dominant speech in the population. As a result, unless this set
of subgroups coincides both with the dominant features of the other speak-
ers in the dataset and with the architecture and fine-tuning with which the
initial model was created, it will be noted that the model tends to neglect
these subgroups, having limited recovery of the less performing ones in the
more advanced stages.

5.8 Limitations
With regard to the limitations addressed by this thesis, it can be seen that
it is first necessary to train less performing models in order to highlight
subgroup bias even more. This is because this research made use of well-
known models developed by Facebook, which, being a large company, will
certainly have had the opportunity to invest research and economic resources
to release models that perform well on all occasions, in our case as far as sub-
groups are concerned. This could be related to the need to use datasets with
unbalanced data not adequately representing all the real variations in the
population. This choice could have a further window of study on how groups
develop this time when they are unrepresentative.
Among the most important limitations that this thesis has faced is certainly
a difficulty in identifying precise dynamics that then lead to systematic dis-
crimination during model training. This problem was also exacerbated by
the limited computational resources for model trading and the limited possi-
bility of scaling up experiments to test various combinations of datasets and
models.

5.9 Improvements and Recommendations for Fu-
ture Work

Furthermore, concerning the improvement strategies (and recommendations
for the future), the following should definitely be considered. First and fore-
most is the leveraging of subgroup analysis when training the model to com-
prehend and correct in real-time any subgroup discrimination, and thus elim-
inate model bias in the making. Additionally, this might be accomplished
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through the implementation of DivExplorer and subgroup analysis during
each evaluation phase with specific Pytorch model overrides.
It is therefore highly recommended to further extend the experiments con-
ducted in this research by testing several more combinations of datasets and
models, including less performing and more unbalanced datasets, with the
aim of better highlighting the propagation of disparities between subgroups.
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Chapter 6

Conclusions

6.1 Summary of Results
The incremental subgroup analysis carried out in this research showed, as
a first step, how disparities between subgroups can emerge evolve and even
out during the training of speech recognition models, both in the area of
intent detection and ASR. Indeed, during the training of the models, many
points were recognised where the divergences between the subgroups changed
substantially, both positively and negatively compared to the baseline per-
formance. It can be concluded from the results that with the training of
several models of the similar architecture on the same dataset, very similar
subgroup disparities occur.
This is not the case, however, if different architecture models are trained on
the same dataset, which leads to different disparities between the groups.
This highlighted how important it is to use a variety of architectures to high-
light and better understand how they can influence subgroup bias and create
divergences in performance. Finally, the use of DivExplorer was instrumental
in enabling this research to study and monitor divergences between subgroups
during model training.
Lastly, we can say that the results found in this research bode well for the im-
plementation of an adaptive training framework that, by using DivExplorer
and recalibrating the model itself during training, may be able to automati-
cally correct disparities between subgroups in the bud so as to create models
without any perceptible disparity in performance. This analysis is the frame-
work adopted with this research wants to be part of the future ecosystem of
methodologies that will make speech recognition models fairer and less bi-
ased.
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Applicability to Contexts Beyond Speech Recognition

The focus of this study was entirely concentrated on the field of speech recog-
nition, either ASR or intent detection. Naturally, the analysis of subgroups
and their evolution through time certainly holds the potential to be extended
into other fields as well. For instance, this may occur for an image classifi-
cation context in which groups of classes with similar but not entirely equal
characteristics were to be analysed. Indeed, using the same techniques that
have been used in this research, one could incrementally monitor the appear-
ance of bias and disparities in image recognition models as well and then
provide the basis for corrective interventions. Therefore, the approach that
has been studied and is presented in this thesis has potential that can be ap-
plied anywhere machine learning algorithms and artificial intelligences were
used and not in domains strictly related to audio. This opens up the pos-
sibility for more cross-domain research and a deeper understanding of how
subgroup performance evolves and propagates within artificial intelligence
models.

6.2 Final Remarks
In conclusion, this research highlights how incremental subgroup analysis can
bring to light performance disparities that emerge during the training and
fine-tuning of speech recognition models. Although limited, the results ob-
tained from the research clearly show that the disparities that emerge during
training are clearly related to the intrinsic properties of the datasets and the
models that use them. Among the macro themes emerging from this research
we certainly have a better understanding of how subgroup disparities emerge
spread and then converge during training and fine tuning of a variety of mod-
els.
A more specific analysis of the subgroups associated with the metadata of
the datasets was then carried out, which led to a better understanding of
how certain socio-linguistic variables such as gender and accent can influence
the models’ ability to recognise all speech genres. Lastly, theoretical insights
were provided that, while remaining within the scope of analysis, will hope-
fully guide future studies for the development of speech recognition models
that can mitigate subgroup disparities at birth.
Although this research has interesting results, it nevertheless wishes to ac-
knowledge its limitations. These include the difficulty of generalising the
results to different datasets and, in general, the partial and incomplete un-
derstanding of the learning dynamics of the models. May these issues, in
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addition to overcoming the limitations mentioned above, be elements of fu-
ture studies that can deepen these dynamics.
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