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Abstract

It is a well-known fact that the security of traditional cryptographic techniques
relies on the algorithmic complexity of solving certain mathematical problems, such
as one-way functions and factorization algorithms. However, the advent of quantum
computers, which can solve factorization problems at unprecedented speeds, poses
a significant threat to this security paradigm. This has created an urgent need
for alternative cryptographic solutions. Two primary approaches have emerged:
Quantum Cryptography, which ensures security by modifying the physical trans-
mission of cryptographic information according to fundamental physical principles,
and Post-Quantum Cryptography, which adapts algorithmic processing to use tech-
niques resistant to quantum computing attacks. Among these, the Crystals Kyber
algorithm has been recognized as a candidate for new cryptographic standards.
This study specifically explored the integration of Post-Quantum Cryptography
within a satellite communication scenario. The project involved the design and
implementation of a Crystals Kyber-based encryption scheme and an information
protection mechanism leveraging error correction through Turbo codes. Both
components were developed and validated using the Rust programming language,
contributing to a secure communication framework suitable for future satellite
networks.
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Chapter 1

Introduction

1.1 Thesis Objectives
The primary objective of this project is to develop an efficient software implemen-
tation of the Crystals-Kyber cryptographic algorithm, simulating its application
in the space domain under non-ideal transmission conditions. This was achieved
using Rust, a programming language designed to ensure both high efficiency and
robust security. The project represents a preliminary approach to adapt high-level
requirements from space applications to the new challenges posed by emerging
technologies. Performance evaluations were conducted to compare the results
obtained with data available from the official documentation of well-known, thor-
oughly tested, and widely used algorithms in the industry. Since current validation
protocols employed by organizations such as NASA and ESA are highly rigorous
and require years before becoming de facto standards, they primarily use simple,
reliable architectures and programming languages like C, which have a proven track
record of dependability in critical environments. However, this project sought to
explore the potential of modern approaches, attempting to bridge the gap between
current practices and future needs. Using advanced features of Rust and the most
recent algorithms, the work aims to make this anticipated future more tangible,
providing a glimpse into how emerging technologies might reshape the landscape
of space applications.

1.2 Context
The transmission of data via satellite is a crucial and extremely important method
of communication and data transmission all over the globe. However, satellite
systems are exposed to some of the most extreme conditions on Earth, making
data increasingly susceptible to corruption due to various disruptive factors. For
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Introduction

example, data can be compromised during the encryption process because of
Single Event Upsets SEU and Multiple Event Upsets MBU caused by radiation, or
during transmission due to channel noise. Encryption and decryption are common
security operations handled by every system that ensures data integrity and/or
privacy, from earth to space and vice versa. For satellites, employing the most
advanced cryptographic methods is essential to safeguard data from alterations
during transmission or while stored. Cryptography and fault detection are the key to
addressing these challenges, ensuring the confidentiality of information and securing
the data transmission process. There are numerous hardware and software solutions
designed to mitigate these vulnerabilities, each employing different strategies to
distribute the encryption keys necessary to protect and restore the data [1].

1.2.1 Space Radiations
One of the main concerns about space data transmissions is represented by radia-
tions. The high presence of this natural phenomenon makes communication in one
of the harshest environments a real challenge, when dealing with noisy channels
and sensitive hardware. This natural radiation includes electrons and protons
trapped within planetary magnetic fields (e.g., Earth, Jupiter), high-energy protons
and heavier nuclei emitted during solar events, and cosmic rays originating from
supernova explosions both within and beyond our galaxy. Inside spacecraft such as
the International Space Station, primary cosmic rays, interact with the surrounding
material, producing secondary neutrons. These neutrons can contribute to Single
Event Effects SEE in electronic systems, adding complexity to space radiation
challenges.

The radiation dose in space is relatively low, ranging from 10−4 to 10−2 rad/s.
However, extended mission durations, often measured in years, result in significant
cumulative doses, reaching total ionizing dose TID levels of 105 rad or more.
This requires strict characterization and qualification of electronic devices to meet
mission-specific requirements.

Radiation effects are described using parameters like stopping power or linear
energy transfer LET, which quantifies the energy deposited per unit length as
charged particles pass through matter. The LET depends on factors such as the
energy, mass and charge of the particle, as well as the material properties of the
target. For example, in silicon, an absorbed dose of 100 erg per gram corresponds
to one rad, while the equivalent SI is gray (1 gray = 100 rad).

1.2.2 Single-Event Effects (SEEs)
The possibility of single event upsets was first postulated in 1962 by Wallmark
and Marcus [2]. SEEs occur when a charged particle deposits enough energy
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in an electronic device to exceed a critical charge threshold (Qcrit), causing a
transient or permanent malfunction. SEEs can be classified as either destructive,
leading to device failure, or nondestructive, resulting in temporary loss of data or
functionality. The mechanism behind SEEs involves energy loss through ionization
as a particle traverses the device. This process generates charge carriers (electron
hole pairs), the number of pairs proportional to the stopping power of the particle.
For example, in silicon, 22.5 MeV of deposited energy generates one picocoulomb
(pC) of charge. The collected charge may recombine or accumulate at sensitive
circuit nodes, triggering an SEE if Qcrit is exceeded. The SEE sensitivity test
involves controlled experiments using particle accelerators. By varying particle
mass, energy, and angle of incidence, researchers measure SEE rates as a function of
LET and cross-sectional area. These results are combined with spacecraft trajectory
data to estimate mission-specific SEE rates. Usually, particles entering sensitive
regions at oblique angles can deposit significantly more energy, effectively doubling
the LET at 60° incidence compared to normal angles. SEEs is a broad category
that includes all types of interactions in electronic components caused by a single
high-energy particle (e.g., a cosmic ray or a proton). Single-Event Effects (SEEs)
can be categorized into destructive and nondestructive types. For the purposes of
this project, the analysis was specifically limited to nondestructive effects, with
a particular emphasis on Single-Event Upsets (SEUs) and Multiple-Bit Upsets
(MBUs), as these were deemed to be the most relevant phenomena.

SEUs and MBUs

Single-Event Upsets (SEUs) refer to the alteration of the state of bistable
elements, such as flip-flops or memory cells, caused by the impact of energetic
particles like heavy ions or protons. These effects are nondestructive and can
typically be corrected by rewriting the affected element. SEUs occur when a
particle strike introduces sufficient charge to exceed a circuit node’s critical charge
Qcrit, leading to a change in the logic state, commonly referred to as a "bit flip".
The susceptibility of a device to SEUs is determined by two key parameters: the
threshold linear energy transfer (LET), representing the minimum energy needed
to cause an upset, and the saturation cross-section, which depends on the surface
area of SEU-sensitive nodes. Memory technologies such as Static Random Access
Memory SRAM and Dynamic Random Access Memory DRAM are particularly
sensitive to SEUs. DRAM cells also require periodic refreshing to retain data,
making them more prone to disturbances.

A Multiple Bit Upset (MBU) is a radiation-induced phenomenon in which
multiple bits within a memory system or a digital circuit are simultaneously altered
due to a single ionizing particle interaction. Unlike a Single Event Upset (SEU),
which affects only one bit, MBUs typically occur when bits located in close physical
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proximity experience correlated errors, often due to charge deposition across multiple
nodes. MBUs still represent a significant challenge in high-reliability systems,
as they can compromise data integrity and are more difficult to mitigate using
conventional error correction techniques. The likelihood of MBUs increases with
higher radiation levels, reduced feature sizes in integrated circuits, and increased
memory density.

1.3 Realistic Simulation
Testing and simulating the effects of radiation, particularly in space applications,
requires a meticulous and comprehensive approach that encompasses both hardware
and software considerations. As highlighted in a study [3] from 2019 focused on the
Single Event Effects (SEE) characterization of the AD9361 RF transceiver under
proton irradiation, the ability to replicate space-like environmental conditions is
essential to validate device performance in harsh environments. This research,
conducted by the German Aerospace Center, outlines the complexities involved
in simulating factors such as altitude, inclination angles, temperature variations,
and shielding effects, which directly influence radiation exposure. For instance, the
study investigates radiation conditions in Low Earth Orbit LEO using the NASA
AP-8 and CREME96 models, which predict the flux of protons and cosmic rays
at varying altitudes (e.g., 400 km and 800 km) and inclinations (e.g., 0°, 51.64°,
and 98°). To achieve meaningful results, the device was tested under a controlled
spectrum of proton energies, ranging from 4 MeV to 184 MeV, with fluence (fluence
= flux * time) levels tailored to replicate the reference mission profiles. While precise
replication is critical, strategic approximations, such as the adoption of a discrete
set of proton energies and limited total fluence, allow for early-phase assessments of
the device’s robustness and susceptibility to SEE. The research demonstrates that
a balanced approach combining accurate environmental replication with practical
approximations is vital for advancing space-qualified technologies. Moreover, the
inclination of the device relative to the incident radiation, as previously specified,
influences error correlations. Under different conditions, such as inclination, the
likelihood of Multiple Bit Upsets (MBUs) increases, causing several bits within
a localized region to be affected simultaneously. This phenomenon leads to a
higher degree of error correlation, making it challenging to accurately replicate
in simulations without real-world test cases. To address this complexity, Turbo
codes will be employed, considering an input scenario where errors are completely
uncorrelated. This approach allows for a more precise evaluation of turbo codes’
performance and potential, ensuring a clearer understanding of their effectiveness
in mitigating errors under varying conditions.

Based on this premise, several cases have been analyzed in order to use some
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valid approximations in the discussed implementation. This study [4], presented
at CERN, has been particularly interesting as framework when quantifying the
impact of radiation through analytical and experimental techniques, focusing on
the calculation of error rates in radiation environments and their implications for
space systems.

In this context, the error rate calculation is critical for predicting the reliability
of electronic components in space. The sensitivity of a circuit to SEU or any
SEE is characterized by its cross-section σ, which represents the effective area
where radiation interactions can induce an error. The cross-section is determined
experimentally by exposing the device to a particle beam and measuring the number
of errors N observed for a given particle fluence Φ, as follows:

σ = N

Φ ,

where Φ is the product of the particle flux ϕ (particles per unit area per second) and
the exposure time t. Once the cross-section is known, the error rate in a specific
radiation environment can be estimated by multiplying σ by the expected flux ϕ:

Error Rate = σ · ϕ.

For example, an SRAM irradiated with a proton beam of 100 MeV and flux ϕ =
105 p/cm2/s might exhibit N = 1000 errors for a total fluence of Φ = 1012 p/cm2.
Using the formula above, the cross-section is calculated as:

σ = 1000
1012 = 10−9 cm2.

In an operational space environment with a similar flux, the error rate can be
estimated as:

Error Rate = 10−9 · 105 = 10−4 errors/s.

This approach is directly applicable to space systems, where understanding the
error rate helps design radiation-hardened devices and implement error mitigation
strategies, such as redundancy or error correction codes. From NASA’s technical
reports archive (NTRS) [5], various node-to-node communication architectures
for space missions can be evaluated, with a particular focus on Earth vicinity
communications. Among the proposed configurations, these specific architectures
allow for 10 Mbps data transmission utilizing the Ka and X frequency bands: the
link between a LEO satellite and a GEO satellite, the reverse communication
from GEO to LEO, and the connection between a LEO satellite and a Shuttle.
These configurations are particularly relevant for applications requiring secure
and reliable data transmission, such as encrypted communications and secure
telemetry exchange. The selection of LEO-GEO communication links is motivated
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by their ability to provide global coverage with extended operational time, ensuring
continuous connectivity between spaceborne assets and ground stations. The LEO-
to-LEO and LEO-to-Shuttle links, on the other hand, are characterized by their
low-latency transmission, making them suitable for time-sensitive data exchanges
that require minimal propagation delay. The use of the Ka-band (26–40 GHz)
is advantageous due to its high bandwidth and superior data rates, which are
essential for transmitting encrypted data efficiently. However, since Ka-band is
susceptible to atmospheric attenuation, particularly in adverse weather conditions,
it is complemented by the X-band (7–8 GHz), which provides greater resilience
to signal degradation and has a long-standing history of use in military and space
applications. This dual-band approach ensures both high data throughput and
robust signal integrity, reducing the risk of interference or data corruption during
transmission. By leveraging these frequency bands and orbital configurations,
the communication links analyzed in the article offer a balance between security,
reliability, and efficiency, making them well-suited for space missions requiring
protected data transmission and robust communication infrastructure. In order to
evaluate the efficiency of a transmission algorithm in the aforementioned simulation,
a data rate of R = 10 Mbps and a bit error rate (BER) of 10−4 are considered.
The total number of bits transmitted per second is given by:

Ntotal = R× 1s = 107 bits/s (1.1)

Given the BER, the expected number of bit errors per second can be estimated
as:

Nerrors = BER×Ntotal = 10−4 × 107 = 103 (1.2)

This implies that, on average, 1000 erroneous bits occur every second. To assess
the robustness of an error correction algorithm, a simulation can be performed
by introducing errors at this rate and measuring the percentage of successfully
recovered data. The efficiency η of the algorithm can be defined as:

η = Ncorrected

Nerrors
× 100% (1.3)

where Ncorrected represents the number of errors successfully corrected. By
varying the BER and observing the impact on η, it is possible to determine the
algorithm’s reliability under different transmission conditions. The algorithm’s
efficiency will be further inspected in the next chapters.

6



Introduction

1.4 Quantum Computing
Modern (classical) computers struggle with some specific complex tasks, like solving
mathematical problems, forecasting the weather or modeling economies. We should
however recall that this is also the reason why the cryptographic algorithms
currently widely employed are (still) protecting us from cyber-attacks. Certain
complex problems (like factorization, which is at the core of current cryptographic
techniques) are (still) hard to solve for classical computers, because they are
inefficient by design. They work serially, which means they handle one task at
a time. Although parallel computing, which uses multiple processors to work on
different tasks simultaneously, has been explored, progress has been slow because
traditional processors are built for serial processing. True parallelism, performing
many tasks at once, is a feature of quantum computers. In quantum computing,
the smallest unit of information is called a qubit, which differs from a classical
computer’s bit. While a classical bit can only be in one of two states (either 0 or 1),
a qubit can exist in a combination, or superposition, of both states at once. This
means a qubit can represent 0, 1, or both simultaneously, with a specific probability
for each state.

The quantum mechanical system taken into account must be the qubit. By
definition [6], a qubit has a two-dimensional state space. Suppose |0⟩ and |1⟩ form
an orthonormal basis for that state space. Then an arbitrary state vector in the
state space can be written as:

|ψ⟩ = a|0⟩+ b|1⟩, (1.4)

where a and b are complex numbers. The condition that |ψ⟩ be a unit vector,
⟨ψ|ψ⟩ = 1, is therefore equivalent to:

|a|2 + |b|2 = 1. (1.5)

The condition ⟨ψ|ψ⟩ = 1 is often known as the normalization condition for
state vectors and it stems from Bohr’s conception of Copenhagen interpretation.

In quantum mechanic, superpositions of these two states, of the form a|0⟩+b|1⟩,
can also exist, in which it is not possible to say that the qubit is definitely in the
state |0⟩, or definitely in the state |1⟩.

Hence, any linear combination qi αi|ψi⟩ is a superposition of the states |ψi⟩
with amplitude αi for the state |ψi⟩. For example, the state:

|0⟩ − |1⟩√
2

(1.6)

is a superposition of the states |0⟩ and |1⟩ with amplitude 1√
2 for the state |0⟩,

and amplitude − 1√
2 for the state |1⟩.
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1.4.1 Quantum Threat
Quantum computers pose a significant threat to current cryptographic systems due
to their ability to perform many computations in parallel far beyond the capability
of traditional systems. Algorithms such as Shor’s (1994) could break widely used
encryption methods like RSA, while Grover’s (1996) algorithm could weaken
symmetric-key cryptography by reducing the complexity of brute force attacks.
This quantum threat has implications for the security of cyber-systems, potentially
compromising both the confidentiality and trust within these systems. To counteract
this threat, quantum-resistant cryptographic techniques are being developed, which
may include both classical and quantum-based solutions. The National Institute
of Standards and Technology NIST has already made progress in standardizing
post-quantum cryptographic algorithms and Crystals-Kyber successfully passed
round 3 submission. However, the transition to quantum-safe cryptography is
complex, requiring a well-coordinated development of new hardware and software,
the establishment of standards, and the migration from legacy systems. This
transition must be planned carefully to ensure cybersecurity is not compromised
during the shift to quantum-safe systems. To determine the urgency of transitioning
to quantum-safe cryptography, three critical parameters must be considered:

• Tshelf-life: The number of years for which the information should be pro-
tected.

• Tmigration: The time required to migrate the system to quantum-safe
solutions.

• Tthreat: The timeline for when quantum computers will be capable of
breaking current cryptographic systems.

The Mosca Inequality (2013) suggests that if the combined time required for
migration and the desired information protection period exceeds the time before
the quantum threat becomes concrete (TTHREAT), organizations may struggle to
secure their systems. The Mosca Inequality can be written as:

Tshelf-life + Tmigration ≤ Tthreat (1.7)

The concept of a “Harvest Now, Decrypt Later” attack indicates that adversaries
could intercept and store encrypted data now and decrypt it once a Cryptographi-
cally Relevant Quantum Computer CRQC becomes available. However, a rushed
transition to quantum-safe systems could introduce vulnerabilities, especially in
terms of interoperability and potential design flaws. The threat timeline (Tthreat)
is currently difficult to assess, given the many scientific and engineering challenges
in developing a quantum computer that can break modern cryptography. While
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current obstacles suggest that CRQCs are still years away, rapid advances in quan-
tum computing, fueled by substantial investments from governments and private
entities, may accelerate this timeline, increasing the urgency for a well-planned
transition to post-quantum cryptographic systems.

1.5 Reliable Data Transmission in Space: Chal-
lenges and Solutions

In order to enhance fault tolerance in space systems, various techniques can be
employed. As part of the "hardening" process, radiation-hardened electronics are
often shielded in a layer of depleted boron and mounted on insulating substrates,
rather than on standard semiconductor wafers. This design enables them to endure
far higher levels of radiation compared to commercial-grade chips. Radiation-
hardened electronics, also called rad-hard electronics, are electronic components
(circuits, transistors, resistors, diodes, capacitors, etc.), single-board computer
CPUs, and sensors that are designed and produced to be less susceptible to damage
from exposure to radiation and extreme temperatures (-55°C to 125°C). The main
concern of this project, though, is focusing on logic and software damages and how
to build a safe and reliable communication system.

1.5.1 Error Detection and Correction Techniques
Error detection and correction (EDAC) techniques are essential for ensuring the
integrity of digital data during transmission or storage. Error Detection involves
using additional information, like a checksum, to the data. This checksum allows the
receiver or storage system to verify data correctness. If the checksum doesn’t match,
an error has occurred, prompting retransmission or correction. Error Correction
incorporates redundancy into the data, which helps reconstruct the original data
in case of errors. Techniques such as Parity Checking, Hamming Codes, Reed-
Solomon, LDPC, Turbo Codes are widely employed in many fields. Turbo codes
algorithm was taken into account in this project, to perform a safe communication
of Crystals-Kyber’s byte arrays. Forward Error Correction FEC is a category
that implies adding redundancy bits to the data, enabling the system to reconstruct
the original data in case of errors. Common FEC codes include convolutional
codes and block codes. Convolutional codes are capable of processing the data
into streams of bits and add check bits based on current and previous data and
predefined coefficients. These are particularly effective in environments with high
error rates. Turbo codes exploit the parallelism of multiple convolutional codes
applied to bit streams in order to generate information in the form of coefficients
and iteratively improve error correction through a soft-decoding approach, that
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will be further inspected in the next chapters.
The structure of the document is organized as follows. Chapter 2 provides a detailed
overview of the Rust programming language main features, including some projects
fostering its applications in space. In Chapter 3, the CRYSTALS-Kyber algorithm
is presented, exploring the mathematical aspects on which the algorithm relies.
Chapter 4 focuses on the mechanisms and structures that Turbo Codes implement,
from the available literature. Chapter 5 illustrates the structure of the software
implementation in Rust of the previous illustrated concepts, summarizing the main
strategies and the modular approach. Chapter 6 shows the results obtained by
simulations. Chapter 7 concludes the document, summarizing the main findings
and providing recommendations for future research.
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Chapter 2

Rust Programming
Language

2.1 Introduction
Rust is a modern systems programming language [7] designed to address critical
challenges in software development, such as memory safety, concurrency, and
performance. It was originally developed by Graydon Hoare in 2006 and later
gained significant momentum under Mozilla Research’s sponsorship. The language
was officially introduced in 2010, with the first stable release, Rust 1.0, arriving in
2015. The primary motivation behind Rust’s creation was to overcome the inherent
safety and reliability issues often encountered in traditional low-level programming
languages like C and C++. Rust achieves this by providing strong guarantees
for memory safety and concurrency, enforced at compile time, without sacrificing
performance or requiring a garbage collector. This approach allows developers to
write efficient, low-level code while avoiding common pitfalls such as null pointer
dereferencing, buffer overflows, and data races.

Rust was initially developed to improve the security and performance of Mozilla’s
projects, most notably the Firefox browser. Components like the Servo web
rendering engine were built using Rust to demonstrate its capabilities in creating fast,
secure, and reliable software. The language’s emphasis on zero-cost abstractions
and strict compile-time error checking aligns it with the needs of industries that
demand high-performance, low-latency applications, including operating systems,
embedded systems, and real-time systems. From the beginning, Rust’s development
has been driven by an open-source community, with a strong focus on collaboration
and innovation. Its integrated tooling, including the Cargo build system and
package manager, ensures a seamless development experience, fostering widespread
adoption across various domains. Rust has since become a key tool for developers

11



Rust Programming Language

seeking to build software that combines low-level control with high-level safety
guarantees. The Rust Standard Library [7] will be used as a reference in the
following sections as the language is analyzed in more depth.

2.2 Main Features
Rust is a statically typed programming language specifically designed to optimize
both performance and safety, with a strong emphasis on secure concurrency and
efficient memory management. Its syntax is similar to that of C++. Since 2021, the
Rust Foundation has overseen its development, ensuring its continuous evolution
and adoption. While modern C++ has introduced mechanisms such as smart
pointers to enhance memory safety, several issues remain unresolved. A notable
example is the "use-after-free" error, which occurs when a program accesses a
pointer after the associated memory has been deallocated; for instance, invoking a
lambda function after its captured references have been freed. Rust mitigates such
issues through its ownership model and borrow checker, integral components of
the compiler that enforce strict reference management rules. These mechanisms
ensure that references cannot outlive the data they point to, thereby preventing
memory violations at compile time and eliminating the need for garbage collection.
Furthermore, Rust introduces the concept of lifetimes, which define the validity
scope of references, preventing the use of dangling references (a persistent issue in
C and C++). The significance of robust memory management becomes evident
when considering security vulnerabilities.

2.2.1 Security Vulnerabilities Based on Unsafe Memory
Access

Over the past decade, approximately 70% of security-related bugs in Microsoft
products have been attributed to memory safety issues, a figure that is similarly
reported for Google Chrome. In cybersecurity, various attacks exploit memory
vulnerabilities in low-level programming languages such as C and C++, which
lack strict memory safety guarantees. Memory vulnerabilities are often exploited
by attackers to steal sensitive information, such as passwords, financial data, or
intellectual property.

According to IBM’s data breach report in 2024, "the global average cost of a
data breach is estimated to be $4.45 million" [9]. Some vulnerabilities can lead to
significantly higher costs. For instance, the Heartbleed vulnerability in OpenSSL is
estimated to have caused damages exceeding $500 million. Data breaches can also
involve multi-stage attacks that move from an initial entry point to deep inside a
company’s network. A notable example is Operation Soft Cell, where attackers
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Figure 2.1: As the chart above illustrates, memory safety issues have remained
dominant for over a decade. Source: [8]

were able to gain access to the web-facing servers of telecom companies through a
code injection attack facilitated by a buffer overflow. This allowed them to steal
account credentials, which were then used to create high-privilege user accounts.
The most common types of memory vulnerabilities include:

• Buffer overflow and heap overflow: These attacks occur when a program
writes more data than allocated into a memory buffer, leading to the corruption
of adjacent memory locations. This vulnerability can allow attackers to
overwrite control structures, alter execution flow, or execute arbitrary code.
Buffer overflow typically affects stack memory, while heap overflow targets
dynamically allocated memory.

• Integer overflow: This occurs when an arithmetic operation results in a
value exceeding the maximum representable value of a data type, causing
wraparound behavior. Integer underflow, conversely, happens when the
result is lower than the minimum representable value. Attackers can exploit
these vulnerabilities to manipulate memory allocation sizes, bypass security
checks, or trigger unintended program behaviors.

• Pointer subversion: This involves the manipulation of pointers to modify
critical memory regions, potentially allowing attackers to alter program be-
havior. This includes overwriting function pointers, modifying virtual table
pointers (vtable hijacking), or corrupting structured exception handling SEH
mechanisms. Such techniques can lead to arbitrary code execution.

• Return-Oriented Programming ROP: This advanced exploitation tech-
nique circumvents security mechanisms like Data Execution Prevention DEP.
Instead of injecting new code, attackers use existing instruction sequences (gad-
gets) within legitimate code to chain together malicious operations, effectively
hijacking program execution.
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These vulnerabilities demonstrate the risks associated with manual memory
management in languages like C and C++. Rust mitigates such issues through
its ownership model and borrow checker, ensuring memory safety at compile time.
Rust offers two distinct modes of programming: Safe Rust and Unsafe Rust. Safe
Rust imposes constraints on developers, such as ownership and borrowing rules,
ensuring memory safety and preventing undefined behavior. Conversely, Unsafe
Rust provides lower-level access, including operations on raw pointers, thereby
offering greater flexibility but also increasing the risk of memory errors. To mitigate
potential issues, developers can encapsulate unsafe operations within high-level
abstractions that guarantee safety in their usage. Unlike C++, where unsafe code
may only manifest as a failure or security vulnerability at runtime, Rust’s approach
ensures that potential risks are identified and addressed at compile time. Rust’s
dual-mode system represents a significant advantage over traditional languages
like C++, providing a balance between strict safety guarantees and the ability
to perform low-level operations when necessary. This design philosophy not only
enhances software reliability but also improves security, making Rust an increasingly
preferred choice for system-level programming.

2.2.2 Common Programming Concepts
Borrowing and Ownership

Rust’s borrow checker is a core mechanism that enforces ownership rules to ensure
memory safety without relying on garbage collection. By preventing issues such
as use-after-free errors, dangling pointers, and data races, this system guarantees
safe memory access while maintaining performance comparable to manual mem-
ory management. Rust’s approach enables deterministic memory deallocation,
eliminating the runtime overhead typically associated with traditional garbage
collection. Various programming languages adopt different memory management
strategies. In garbage-collected languages such as Python, JavaScript, and C#,
memory deallocation occurs automatically at runtime, simplifying development but
introducing execution overhead and unpredictable pauses. In contrast, C and C++
rely on manual memory management, providing fine-grained control but increasing
the risk of memory leaks and undefined behavior. Rust introduces an alternative
paradigm through its ownership model, where the borrow checker enforces memory
safety at compile time, preventing invalid memory access and optimizing resource
utilization.

Memory management in Rust involves both stack and heap allocation. Stack
memory is used for storing fixed-size data with well-defined lifetimes, allowing for
fast access and automatic deallocation when a function scope terminates. Heap
memory, on the other hand, accommodates dynamically allocated data, requiring
explicit ownership handling to ensure proper deallocation. Rust’s ownership model
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dictates when memory is allocated and deallocated, enforcing safety guarantees
without requiring runtime intervention.

Ownership in Rust also governs how values are transferred between functions
and scopes. A value may be moved, transferring ownership and invalidating the
original reference, or cloned, creating a deep copy at the expense of additional
memory usage. Borrowing allows references to be passed without transferring
ownership, improving efficiency. Borrowing can be either immutable, permitting
multiple concurrent references without modification, or mutable, which restricts
access to a single reference at a time to prevent data races and maintain safety
guarantees.

Rust’s borrowing rules extend to concurrent programming by ensuring the
absence of data races at compile time. Shared data structures, such as mutexes,
enable safe concurrent access by enforcing exclusive access to mutable data when
necessary. This mechanism ensures that multiple threads cannot simultaneously
modify a shared resource in an unsafe manner. By enforcing these constraints, the
borrow checker allows Rust to achieve memory safety without requiring garbage
collection or runtime checks.

RAII Paradigm

Resource Acquisition Is Initialization RAII is a key programming paradigm orig-
inally introduced in C++, which ensures automatic and deterministic resource
management. This concept revolves around the idea that resources, such as memory
or file handles, are acquired during the initialization of objects and released when
they go out of scope. In Rust, this concept is fully embraced, as variables not only
hold data but also manage system resources like heap-allocated memory (Box<T>),
file handles, and network sockets. The beauty of RAII in Rust lies in the fact that
when a variable exits its scope, its destructor is automatically triggered, which
ensures that any associated resources are properly cleaned up. This approach
prevents memory leaks and guarantees safe and efficient resource management
throughout the lifecycle of the variable. In Rust, the RAII pattern is implemented
through the Drop trait, which defines the drop(&mut self) method that acts as a
destructor for the object. The Rust compiler enforces the automatic invocation
of this method in a deterministic manner. Specifically, the drop method is called
when a variable leaves its syntactical scope, which happens when the variable is no
longer needed. It is also triggered immediately before the variable is reassigned
a new value. This ensures that resources are released properly, allowing objects
to perform any necessary clean-up operations that are essential when following
the RAII design pattern. The design of the Drop trait in Rust is crucial for main-
taining memory safety without requiring manual intervention. Rust enforces a
critical design rule in relation to the Drop and Copy traits: if a type implements
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Drop, it cannot implement Copy, and vice versa. This design choice eliminates the
possibility of implicitly copying objects that require explicit resource deallocation.
By ensuring that a type cannot both copy and drop its resources, Rust prevents
potential issues like double freeing or premature deallocation of memory. This
mutual exclusion reinforces the safety guarantees that are central to Rust’s memory
model, ensuring that resources are managed correctly and preventing common
bugs that could occur in systems programming. In addition to the automatic
destruction mechanism provided by the Drop trait, Rust also provides a global
function called fn drop<T>(_x: T) {}. This function allows for explicit control
over the destruction of an object. By calling drop, the ownership of a value can
be transferred to a new variable, forcing its destruction immediately, even before
the end of its normal lifetime. This functionality can be useful in specific scenarios
where more control over resource management is needed. Below is a graphical
illustration of how the Drop trait functions in Rust:

Figure 2.2: The Drop Trait Mechanism in Rust

RAII in Rust provides a reliable and deterministic way of managing system
resources, which is one of the reasons why Rust is considered a safe and efficient
systems programming language. By leveraging the Drop trait, Rust ensures that
resources like memory, file handles, and network sockets are automatically and
safely cleaned up when they are no longer needed. This prevents common pitfalls
like memory leaks, double frees, and use-after-free errors. Rust’s ownership and
borrowing model, in combination with RAII, allows developers to write efficient,
high-performance code while minimizing the risks of manual memory management.
This powerful tool enables developers to create safe, fast, and reliable systems
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without having to manage memory manually.

Traits

Polymorphism, refers to the ability of a single interface to support multiple un-
derlying data types. In software engineering, polymorphism is a crucial principle
that enables code reuse and abstraction, reducing redundancy according to the
DRY (Don’t Repeat Yourself) principle. Rust implements polymorphism primarily
through traits, which define a collection of methods that a type can implement.
In Rust, traits serve a role similar to interfaces in Java and C# or pure abstract
classes in C++, allowing different types to share a common behavior while main-
taining type safety. Unlike traditional inheritance-based polymorphism, Rust’s trait
system avoids the overhead of virtual function tables (VTABLEs) unless dynamic
dispatch is explicitly used through &dyn TraitName. This enables more efficient,
zero-cost abstractions at compile time through static dispatch. A trait defines a
set of functions that types must implement. If a function does not take self as a
parameter, it behaves as a static method rather than an instance method. Traits
can also provide default method implementations, allowing types to override only
specific behavior while inheriting a general implementation.

Figure 2.3: Traits in Rust

• Trait Bounds: Generic functions in Rust can enforce constraints on the
types they accept using trait bounds (T: SomeTrait), ensuring compile-time
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verification of method availability.

• Supertraits: A trait can require the implementation of another trait, forming
a dependency hierarchy (trait SubTrait: SuperTrait {}).

• Associated Types: Traits can define associated types to specify generic
parameters that vary between implementations.

• Operator Overloading: Traits such as Add, Sub, and Mul enable operator
overloading.

• Trait Objects: Dynamic dispatch can be enabled using dyn Trait, incurring
a runtime cost but allowing heterogeneous collections.

Rust’s trait-based polymorphism provides a powerful yet efficient alternative to
traditional OOP inheritance. By leveraging static dispatch and avoiding unnecessary
memory overhead, Rust ensures high-performance, type-safe, and modular code
design. The combination of trait bounds, default implementations, associated
types, and dynamic dispatch makes Rust’s polymorphism system both flexible and
performant, aligning with modern software engineering principles.

Smart Pointers

In Rust, smart pointers play a crucial role in ensuring efficient and safe memory
management by integrating seamlessly with the language’s ownership model. Unlike
raw pointers, they enforce strict rules on resource management, preventing common
issues like memory leaks and data races at compile time. A fundamental example
is Box<T>, which enables heap allocation while maintaining exclusive ownership of
the stored value. This makes it particularly useful for recursive data structures that
require dynamically sized storage. When multiple owners need access to the same
value, Rc<T> provides reference counting in single-threaded contexts, while Arc<T>
extends this capability to multi-threaded environments through atomic operations.
To prevent memory from being retained unnecessarily due to cyclic references,
Weak<T> offers non-owning pointers that do not contribute to reference counts.
Rust also introduces mechanisms for controlled mutability. RefCell<T> allows
modifying values even when they are borrowed immutably, enforcing borrowing
rules dynamically at runtime instead of statically at compile time. Cell<T>, on
the other hand, enables interior mutability by allowing value replacement without
direct references. Another notable abstraction, Cow<T> (Clone-on-Write), optimizes
memory usage by postponing data duplication until a modification is required. By
leveraging these smart pointers, Rust provides both memory safety and flexibility,
eliminating many of the pitfalls associated with manual memory management. The
combination of strict ownership rules and specialized abstractions ensures that
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memory-related errors are caught early, leading to more reliable and performant
software.

2.3 The Role of Rust in Advancing Space Appli-
cations

On February 26, 2024, the U.S. White House issued a 19-page report [10] em-
phasizing the importance of adopting memory-safe programming languages in
software development. The report specifically recommended transitioning away
from languages such as C and C++ in favor of safer alternatives like Go, Java,
Ruby, Swift, and Rust. This announcement, released through the Office of the
National Cyber Director, was widely regarded as a signal of growing interest in Rust
and other memory-safe languages. In this field, research on emerging technologies,
including the use of Rust in space applications, has rapidly gained momentum.
One notable example is the study under consideration [11], which explores Rust’s
integration into safety-critical space systems. The increasing complexity of space
missions and the growing reliance on software-driven spacecraft systems highlight
the critical importance of software safety and security. For instance, the prolifer-
ation of CubeSats (small satellites), widely deployed in Low Earth Orbit (LEO),
reflect the growing shift toward miniaturization and increased accessibility in space
technology. Traditionally, aerospace software has been developed in C due to its
efficiency and established ecosystem. However, C’s lack of inherent memory safety
mechanisms leads to vulnerabilities such as buffer overflows, use-after-free errors,
and null pointer dereferences. These weaknesses pose significant risks, including
mission failure, hardware damage, and potential unauthorized access to spacecraft
systems. Safety-critical software in space must meet strict reliability and robustness
requirements. Standards for aerospace software and for automotive functional
safety define methodologies to mitigate risk through rigorous testing, verification,
and coding standards. However, many embedded and real-time operating systems
used in spacecraft lack modern security mitigations such as Address Space Layout
Randomization (ASLR) and non-executable stacks, making them susceptible to
exploitation. Furthermore, traditional security practices in space applications have
been inadequate, with many systems relying on security-by-obscurity rather than
proactive defense mechanisms. A key strategy for enhancing software reliability
is the selective replacement of C components with Rust, particularly in high-risk
areas. By rewriting critical functionalities while maintaining compatibility through
Foreign Function Interfaces (FFI), Rust can incrementally improve software se-
curity without requiring a complete overhaul of legacy systems. This approach
has been demonstrated in satellite communication protocols, where Rust-based
rewrites have identified and mitigated previously undetected vulnerabilities. In
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this scenario, cross-compilation plays a crucial role in deploying Rust-based soft-
ware to space-grade hardware. The Rust compiler supports multiple architectures,
including ARM Cortex-M and PowerPC, both of which are commonly used in
radiation-hardened spacecraft processors. By enabling Rust’s safety features on
these platforms, cross-compilation facilitates the integration of modern, memory-
safe programming techniques into existing aerospace systems, enhancing their
resilience against software faults and security threats.

2.3.1 The Embedded Rust Ecosystem

The applicability of a programming language in safety-critical space systems de-
pends on its ability to efficiently manage system resources and interface with
real-time hardware. Spacecraft, such as satellites, integrate multiple embedded
systems that require robust software support for various microcontrollers and
peripherals. To ensure hardware compatibility and maintainability, embedded
software development often relies on Hardware Abstraction Layers (HALs), which
allow device-independent driver implementation. Rust’s embedded-hal ecosystem
has grown significantly, now supporting a broad range of microcontrollers and
peripherals, demonstrating its increasing maturity for space applications. The
safety and security of embedded systems remain a critical concern, particularly
in environments where software failures can have severe consequences. Rust’s
ecosystem includes security-focused tools such as flip-link, which prevents stack
overflows in bare-metal environments by restructuring memory layout to ensure
that overflows trigger hardware exceptions rather than silent data corruption. This
proactive approach to memory safety is essential for space applications, where
physical debugging is often impossible. Ensuring Rust’s adoption in safety-critical
systems requires compliance with industry standards. The High Assurance Rust
initiative has introduced guidelines, establishing best practices for safe and secure
embedded software development. Additionally, compiler qualification efforts have
advanced significantly, with the Ferrocene Rust compiler recently achieving ISO
26262 (ASIL D) and IEC 61508 (SIL 4) certifications, demonstrating its reliability
for high-assurance domains. Future efforts aim to extend these qualifications to
aerospace standards such as DO-178C. These developments highlight the ongoing
progress in adapting Rust for safety-critical embedded systems, reinforcing its
potential as a viable alternative to traditional languages in the space sector.

2.3.2 Past Projects

• Evaluation of RUST usage in space applications by developing BSP and RTOS
targeting SAMV71 , initiated by ESA in 2023, aims to evaluate the viability of
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the Rust programming language for space applications. The focus is on devel-
oping a lightweight Real-Time Operating System (RTOS) tailored for space
missions, with a minimal feature set that supports the development of flight
software. The project will include the creation of a Board Support Package
(BSP) and a demonstration application for CubeSat-class missions, featuring
basic functionalities such as UART communication, mode management, and
sensor handling. The goal is to assess Rust’s safety features and growing
usage within the space sector, while aligning with ECSS software development
practices. The project will also document feedback, issues encountered, and
potential areas for improvement, providing valuable input for future space
projects using Rust.

• The project "cRustacea in Space – Co-operative RUST and C Embedded Appli-
cations in Space – Theory and Practice", conducted under ESA’s Discovery &
Preparation program, investigates the feasibility of using Rust as a program-
ming language for onboard software development in space missions. Given the
increasing complexity of space software requirements, traditional C-based ap-
proaches are being reassessed to enhance safety, reliability, and maintainability.
The primary goal of this initiative is to assess Rust’s suitability for real-time
space applications while ensuring compliance with ESA’s ECSS software en-
gineering and product assurance standards. The study [12] concludes that
Rust is a viable alternative for space software development, offering
significant safety improvements over C. While Rust’s learning curve remains
a challenge, its structured memory management and modern programming
paradigms make it a strong candidate for critical onboard applications.

2.3.3 What’s Next
The future of Rust in space applications looks promising, but several key aspects
need to be addressed to ensure its successful adoption. One of the primary challenges
is aligning Rust with the strict requirements of ECSS (European Cooperation for
Space Standardization) standards. Since space software demands high reliability
and certification processes can be rigorous, defining clear pathways for Rust’s
qualification will be essential. Another crucial area for improvement is real-time
performance. While Rust’s memory safety and concurrency features offer clear
advantages, further work is needed to guarantee deterministic execution and efficient
task scheduling for hard real-time systems. This goes hand in hand with enhancing
Rust’s ecosystem for embedded systems and RTOS (real-time operating systems).
Developing more specialized libraries and frameworks will be key to making Rust a
viable alternative to traditional aerospace languages. In the upcoming sections, the
simulation will not account for real-time operations, as the primary focus will be
on the transmission of cryptographic keys and error correction techniques. One of
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Rust’s strongest assets, its memory safety model, could also be leveraged to improve
fault tolerance in radiation-prone environments. Research into how Rust’s type
system and error-handling mechanisms can support software-based fault detection
and mitigation strategies could provide significant benefits in spacecraft software
development. Adoption within the space industry will also depend on fostering
collaboration between space agencies, research institutions, and industry partners.
Encouraging working groups dedicated to Rust in aerospace could accelerate
progress, ensuring that common challenges are addressed collectively. At the same
time, improving tooling for debugging, profiling, and formal verification will be
necessary to gain confidence in Rust’s reliability for mission-critical applications.
To support long-term adoption, it will be important to establish standardized best
practices for writing maintainable and efficient Rust code in space applications.
Stability is another key consideration. Providing Long Term Support (LTS) versions
of Rust would offer developers assurances regarding backward compatibility and
the longevity of the software, both of which are crucial for space missions that span
years or even decades. Comparative benchmarks with languages like C or Ada
could help demonstrate Rust’s strengths and identify areas for further optimization.
Additionally, ensuring that Rust integrates smoothly with existing space software
stacks would make its adoption more practical, allowing for a gradual transition
rather than requiring a complete overhaul of existing systems. In conclusion,
while Rust presents significant advantages for space software development, targeted
efforts in these areas will be necessary to make it a standard choice for future space
missions.
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Chapter 3

Crystals Kyber Algorithm

3.1 Main Mathematical Results
This section aims to explore and provide an overview of the mathematical concepts
underlying the Crystals Kyber algorithm, along with the existing security proofs.

3.1.1 Lattices and Fundamental Properties
In [13], a lattice L in Rn is defined as a discrete subgroup of Rn. Formally, a
lattice is defined as the integer span of a basis of Rn:

L = {a1v1 + a2v2 + · · ·+ anvn | ai ∈ Z} , (3.1)

where {v1, . . . , vn} is a basis of Rn. The integer n is the rank or dimension of
the lattice.

A lattice has multiple bases, but some are more suitable for computational
applications than others. The quality of a basis plays a crucial role in many
algorithms, such as lattice reduction techniques.

Given a basis B = {v1, . . . , vn} for a lattice L, the fundamental domain
associated with B is defined as:

F (B) = {t1v1 + t2v2 + · · ·+ tnvn | 0 ≤ ti < 1} . (3.2)

The determinant (or volume) of a lattice is given by:

det(L) = Vol(F (B)) = | detM(B)|, (3.3)

where M(B) is the matrix whose columns are the basis vectors.
This determinant is invariant under unimodular transformations, meaning that

if B and B′ are two different bases of L, then there exists a matrix A ∈ SLn(Z)
such that:

M(B′) = AM(B), (3.4)
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Figure 3.1: Fundamental domain of a lattice in R2.

ensuring that the volume remains unchanged:

Vol(F (B)) = Vol(F (B′)). (3.5)

The determinant provides a measure of the "density" of the lattice and is closely
related to computational problems in lattice cryptography.

3.1.2 Lattice Problems
Lattice-based problems play a crucial role in modern cryptography, particularly in
the development of quantum-resistant cryptographic schemes. Their underlying
hardness assumptions serve as a robust foundation for secure encryption, digital
signatures, and advanced cryptographic primitives. The NP-hardness of the prob-
lem underlying Crystals Kyber has already been established through reductions,
leveraging some of the most extensively studied fundamental algorithms in lattice
theory. Before listing some of the most important lattice problems, a clear definition
of minimum distance in lattice theory is required. It is defined in [14] as follows:

Definition 1 For any lattice L, the minimum distance of L is the smallest distance
between any two lattice points:

λ1(L) = inf{∥x− y∥ : x, y ∈ L, x /= y}.

The minimum distance of a lattice can also be defined as the length of the
shortest nonzero vector in the lattice:

λ1(L) = inf{∥v∥ : v ∈ L, v /= 0}.
This follows from the fact that lattices are additive subgroups of Rn, meaning

they are closed under both addition and subtraction of their vectors.
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3.1.3 Shortest Vector Problem
The exact version of the Shortest Vector Problem (SVP) has three primary for-
mulations. Without loss of generality, we consider integer lattices with integral
bases:

1. Decision: Given a lattice basis B and a real number d > 0, determine whether
λ1(L(B)) ≤ d or λ1(L(B)) > d.

2. Calculation: Given a lattice basis B, compute the value of λ1(L(B)).

3. Search: Given a lattice basis B, identify a nonzero vector v ∈ L(B) such
that ∥v∥ = λ1(L(B)).

Figure 3.2: Shortest Vector Problem in a lattice L.

Clearly, solving the Calculation version directly provides a solution to the
Decision problem. Formally, we express this as “Decision reduces to Calculation,”
denoted as Decision ≤ Calculation, highlighting the direction of reduction.

Conversely, the relationship Calculation ≤ Decision also holds. Using an oracle
for the Decision problem, we can determine λ1(L(B)) via binary search by system-
atically adjusting the parameter d. This condition holds because the minimum
distance corresponds to the square root of an integer and is constrained between 1
and n det(B)1/n, as given by Minkowski’s theorem. Since the determinant can be
computed in polynomial time, this upper bound is also within 2poly(|B|).

Additionally, it can be proved that the Search version of the problem is compu-
tationally equivalent to the other two formulations.

Approximate SVP

The γ-approximate Shortest Vector Problem (where γ = γ(n) ≥ 1 is a
function of the dimension n) has the following variations, again considering integer
lattices:

1. Decision (GapSVPγ): Given a lattice basis B and a positive integer d,
decide whether λ1(L(B)) ≤ d or λ1(L(B)) > γd.
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2. Estimation (EstSVPγ): Given a lattice basis B, compute an approximation
of λ1(L(B)) within a factor of γ, meaning the output must satisfy d ∈
[λ1(L(B)), γλ1(L(B))].

3. Search (SVPγ): Given a lattice basis B, find a nonzero vector v ∈ L(B)
such that 0 < ∥v∥ ≤ γλ1(L(B)).

Setting γ = 1 recovers the exact versions of these problems. Moreover, as
γ increases, the problems become computationally easier. More formally, the
reductions hold as follows:

GapSVPγ ≤ EstSVPγ ≤ GapSVPγ′

for any γ′ ≥ γ, with an analogous relationship for SVPγ.
Using a binary search strategy, we can establish that GapSVPγ ≤ EstSVPγ ≤

GapSVPγ′ , indicating that these two variants are equivalent.

3.1.4 Closest Vector Problem
Definition 2 Let L ⊂ Rn be a lattice. The Closest Vector Problem (CVP)
consists of finding, for a given target vector t ∈ Rn, a vector in L that is closest to
t.

In other words, the goal of CVP for a lattice L with target vector t is to find a
vector v0 ∈ L such that:

∥v0 − t∥ = min
v∈L
∥v − t∥.

In its most general form, solving the exact versions of both the Shortest Vec-
tor Problem (SVP) and the Closest Vector Problem (CVP) is computationally
challenging. However, in many practical applications, an approximate solution is
sufficient. This leads to the following relaxed formulation.

Definition 3 Let L ⊂ Rn be a lattice. The Approximate Closest Vector
Problem (apprCVP) consists of finding, for a given target vector t ∈ Rn, a
lattice vector that is reasonably close to t.

More precisely, for a given approximation factor γ ≥ 1, the apprCVP requires
finding a vector v0 ∈ L such that:

∥v0 − t∥ ≤ γ ·min
v∈L
∥v − t∥.
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3.1.5 Shortest Independent Vector Problem
The Shortest Independent Vector Problem (SIVP) is a fundamental compu-
tational challenge in lattice-based cryptography. The main objective is to minimize
the length of the longest vector in a basis while preserving the structure of the
lattice. In other words, the goal is to find a new basis for the same lattice where
the longest vector is as short as possible.

Definition 4 Given a basis B = {b1, b2, . . . , bn} of a lattice L, find n linearly
independent vectors V = {v1, v2, . . . , vn} such that:

∥vi∥ ≤ λn, ∀ 1 ≤ i ≤ n.

A more general version of this problem is the Approximate Shortest In-
dependent Vector Problem (SIVPγ), where an approximation factor γ(n) is
introduced.

Definition 5 Given a basis B = {b1, b2, . . . , bn} of a full-rank lattice L, output a
set V = {vi} ⊂ L of n linearly independent lattice vectors such that:

∥vi∥ ≤ γ(n) · λ(n)(L), ∀ i.

This problem has been extensively studied and is known to be NP-hard, as it
can be reduced from the Closest Vector Problem (CVP).

3.1.6 Short Integer Problem
The Short Integer Solution (SIS) problem, first introduced in cryptography by
Ajtai, is a fundamental computational problem in lattice-based cryptography. In
[15], it is defined as the problem of finding a short integer vector in the kernel of a
randomly chosen q-ary (i.e. mod q) matrix. Formally, it is defined as follows:

Definition 6 Given positive integers n,m, q and a real parameter β > 0, the
problem SISn,m,q,β consists of the following search task:

1. Sample a uniformly random matrix A ∈ Zn×m
q ;

2. Given A, find a nonzero integer vector z ∈ Zm such that:

Az ≡ 0 (mod q), and ∥z∥2 ≤ β.

The problem is trivially solvable using Gaussian elimination if no restriction
is imposed on the norm of the solution. However, finding a short solution is
computationally hard. For SIS to be intractable, it is necessary that q > β, since
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otherwise, a trivial short solution such as z = (q,0, . . . ,0) would always exist. A
valid solution to SIS is not guaranteed for all parameter choices. However, it has
been shown that a solution always exists when m and β are sufficiently large relative
to n and q.

Ajtai introduced a family of one-way functions directly derived from the compu-
tational hardness of the Short Integer Solution (SIS) problem with appropriately
chosen parameters.

Consider the function:

f : Zn×m
q × Zmq → Zn×m

q × Znq
defined as:

f(A, z) = (A,Az mod q).

Figure 3.3: One-way function derived from SIS problem, introduced by Ajtai

It follows that, assuming the hardness of SIS, this family of functions is one-way,
meaning that computing f(A, z) is efficient, but inverting it (i.e., recovering z given
only (A,Az)) is computationally infeasible. A one-way function of this type is a
fundamental building block for various cryptographic constructions. In particular,
its hardness assumption enables the design of several essential primitives, including
pseudorandom generators, symmetric-key encryption schemes and digital signature
schemes. These cryptographic mechanisms rely on the difficulty of inverting the
function, ensuring security against adversarial attacks.

Beyond its one-wayness, the family of functions defined above, also presents
collision resistance under the hardness assumption of the Short Integer Solution (SIS)
problem. More precisely, given a randomly selected matrix A, it is computationally
infeasible to find two distinct vectors z, z′ ∈ {0,1}m such that:
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Az ≡ Az′ (mod q).

This property further enhances its cryptographic utility, as collision-resistant
function families serve as a foundation for the design of secure hash functions and
other protocols.

3.1.7 Learning With Errors
The Learning With Errors (LWE) problem, initially introduced by Regev, requires
to invert a (random) system of linear equations perturbed by short errors. [16]
presents a more formal description of the simple version of the problem, upon which
the majority of lattice cryptography relies.

Definition 7 For positive integers m,n, q, and β < q, the LWEn,m,q,β problem asks
to distinguish between the following two distributions:

1. (A,As+ e), where A← Zn×m
q .

2. (A, u), where A← Zn×m
q , s← [β]m, e← [β]n and u← Znq .

The hardness of the problem LWEn,m,q,β, is based upon the presence of the
additional “error” vector e, which removes the possibility of a Gaussian elimination
attack. The parameters n,m, q, and β define the specific hardness of the problem.
In its original formulation, the LWE problem employed an error distribution
derived from a rounded Gaussian function. Specifically, a continuous, zero-centered
Gaussian distribution with a given standard deviation was sampled, and the result
was rounded to the nearest integer. This choice was crucial for the average-case
to worst-case reduction proofs, which established that solving LWE is at least
as difficult as solving certain worst-case lattice problems. However, subsequent
research has demonstrated that this specific restriction is not strictly necessary,
allowing alternative distributions to be used, such as the uniform distribution.
In practice, CRYSTALS-Kyber utilizes a binomial distribution to generate error
terms. This approach is often computationally more efficient, as it allows errors
to be produced by summing a sequence of randomly generated bits rather than
directly sampling from a uniform distribution over [β]. To account for different
distributions that one could use, the LWE problem relative to the distribution of
the secrets ψ can be defined as follows:

Definition 8 For positive integers m,n, q, and a distribution ψ, the LWEn,m,q,ψ

problem asks to distinguish between the following two distributions:

1. (A,As+ e), where A← Zn×m
q , s← ψm, e← ψn.
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2. (A, u), where A← Zn×m
q and u← Znq .

In order to study the encryption scheme that stems from the formal description,
some premises must be defined. For instance, the message µ, rather than being an
arbitrary element in Zq, will now come from the set {0,1}. The key generation is
modified to:

sk : s← [β]m, (3.6)
pk : (A← Zm×m

q , t = As+ e1), where e1 ← [β]m. (3.7)

To encrypt a message µ ∈ {0,1}, the encryptor chooses r, e2 ← [β]m and e3 ← [β],
and outputs:

uT = rTA+ eT2 , (3.8)

v = rT t+ e3 + q

2µ. (3.9)

To decrypt, one computes:

v − uT s = rT (As+ e1) + e3 + q

2µ− r
TAs+ eT2 s. (3.10)

Since the rTAs terms cancel out, the output is:

e+ q

2µ, (3.11)

where e ∈ [2mβ2 +β], and so if the parameters are set such that 2mβ2 +β < q/4,
the decryptor is able to obtain µ by checking whether the value is closer to 0 or
q/2.

The value q
2 is used as an encoding for the bit µ: since the message µ is binary

(i.e., µ ∈ {0,1}), it must be mapped into a larger numerical space, namely the field
Zq. The encoding scheme is designed such that:

• If µ = 0, the ciphertext value v should be close to 0.

• If µ = 1, the ciphertext value v should be far from 0 but not arbitrarily large.

A natural choice is to place the central value of the ring Zq as the representation
of 1. In a cyclic ring modulo q, the midpoint is given by q

2 . Upon decryption, the
receiver obtains (3.11) where e is the total noise term. To ensure correct decryption,
the noise e must remain sufficiently small relative to q

2 :

• If the result is close to 0, the receiver decodes µ = 0.
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• If the result is close to q
2 , the receiver decodes µ = 1.

This encoding guarantees that the two possible values of µ are well separated,
making decoding more robust against small noise perturbations. The error e must
satisfy the condition:

|e| < q

4 ,

ensuring that the received value remains clearly distinguishable between 0 and
q
2 . If the noise were larger, it could shift v − uT s toward the incorrect threshold,
leading to a decryption error.

Using q
2 to represent 1 is a strategic choice that:

• Clearly differentiates the two binary values in Zq.

• Minimizes decryption errors caused by noise.

• Allows for correct decoding using a simple thresholding mechanism.

3.2 Hardness Proof By Reduction

3.2.1 Computational Complexity
Computational complexity theory categorizes problems based on their computa-
tional difficulty. The primary complexity classes include:

P Problems

Problems in class P can be solved efficiently in polynomial time using a deterministic
Turing machine. These problems have a time complexity of the form:

T (n) = O(nk), for some constant k.

Examples include:

• Basic arithmetic operations (addition, multiplication, etc.).

• Sorting algorithms.

• Shortest path algorithms (e.g., Dijkstra’s algorithm).
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NP (Non-deterministic Polynomial-Time Problems)

Class NP consists of problems where a given solution can be verified in polynomial
time, though finding the solution may take exponential time. Their time complexity
is generally of the form:

T (n) = O(2n) or higher.

NP-Complete Problems

NP-Complete problems belong to NP and are the hardest in this class. They have
the property that if any NP-Complete problem is solved in polynomial time, then
all NP problems can be solved in polynomial time (P = NP ). These problems also
satisfy polynomial-time reducibility.

Examples:

• Travelling Salesman Problem.

• Knapsack Problem.

• Graph Coloring.

NP-Hard Problems

NP-Hard problems are at least as hard as NP problems but are not necessarily in
NP. This means they may not have solutions verifiable in polynomial time.

Examples:

• Halting Problem.

• Certain optimization problems.

The P vs. NP Problem

A fundamental open question in computer science is whether:

P = NP.

If true, this would imply that all NP problems can be solved in polynomial
time, which would have profound implications for cryptography, optimization, and
artificial intelligence.

• P problems are efficiently solvable.

• NP problems are difficult to solve but easy to verify.
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• NP-Complete problems are among the hardest in NP and are interconvert-
ible.

• NP-Hard problems are even more complex and may not be verifiable in
polynomial time.

3.2.2 LWE Hardness By Reduction
There have been numerous and diverse studies and attempts to analyze these
problems from various perspectives. However, the paper in question [17] provides a
thorough examination of the obtained results and the reasoning process that leads
to considering the hardness of Learning With Errors (LWE) problems sufficiently
strong for its use in cryptography. Cryptographic security often relies on compu-
tational problems that belong to the category of average-case problems, such as
the Short Integer Solution (SIS) and LWE problems. In these cases, the adversary
is provided with a randomly generated instance of the problem. For instance, in
SIS, the adversary receives a uniformly random matrix A ∈ Zn×m

q . Successfully
breaking SIS requires designing an algorithm capable of finding a short, nonzero
vector z in the kernel of A, but only for a small fraction of possible matrices A.

Conversely, computational complexity theory is primarily concerned with worst-
case problems, where an algorithm must reliably solve every instance of the problem
with a high probability of success. Notable examples include the approximate
Closest Vector Problem (γ-CVP) and the approximate Shortest Vector Problem
(γ-SVP). The theoretical foundations of worst-case problems are well established,
making their complexity easier to analyze compared to average-case problems.

Reduction from Worst-Case to Average-Case Problems

A common strategy for analyzing the complexity of an average-case problem is
to establish an efficient reduction from a well-studied worst-case problem. This
reduction ensures that each instance of the worst-case problem can be transformed
into an instance of the average-case problem. If such a reduction exists, then solving
the average-case problem is at least as difficult as solving the worst-case problem.
Consequently, any known hardness results for the worst-case problem also apply to
the average-case setting. One of the key results was established by Peter Van Emde
Boas in 1981, demonstrating that CVP is NP-hard by leveraging the well-known
Subset Sum problem as the basis for the proof. Over time, several results have
shown that SVP can be reduced to CVP, formally SVP ≤ CVP, implying that SVP
is at least as difficult as CVP. Moreover, one of the longstanding open questions
in cryptography was whether the security of cryptographic protocols could be
rigorously based on the worst-case hardness of a well-characterized computational
problem. This question was ultimately addressed by Ajtai, who demonstrated
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that one-way functions could be constructed based on the worst-case hardness
of the Short Integer Solution (SIS) problem. Furthermore, Ajtai established a
key theoretical result, showing that the average-case hardness of SIS is tightly
connected to the worst-case hardness of the approximate Shortest Vector Problem
(γ-SVP).

Hardness of SIS

Theorem 1 (Ajtai, informal) For any m = poly(n), any β > 0, and any suffi-
ciently large q ≥ β · poly(n), solving the SISn,m,q,β problem is at least as hard as
solving γ-SVP on worst-case n-dimensional lattices with high probability, for some
approximation factor γ = β · poly(n).

Hardness of Decision-LWE

Similarly, Regev established a corresponding reduction for the Decision-LWE
problem, demonstrating its worst-case hardness by linking it to γ-SVP in a quantum
computational setting. This result was later extended to the classical setting by
Peikert, leading to the following theorem:

Theorem 2 (Regev, Peikert, informal) For any m = poly(n), any q ≤ 2poly(n),
and any discretized Gaussian distribution χ with variance αq ≥ 2

√
n, solving the

Decision-LWEn,m,q,χ problem is at least as hard as solving γ-SVP on worst-case
n-dimensional lattices with high probability, for some approximation factor γ ≈ n/α.

In conclusion, the established reductions between SIS, LWE, and γ-SVP highlight
the importance of understanding the worst-case hardness of γ-SVP.

3.3 NIST Submission
Kyber is an IND-CCA2 secure key encapsulation mechanism (KEM), described in
detail in the official documentation [18]. In this project, round 3 version of Kyber
has been taken as the reference implementation, following the official documentation
guidelines. Its security relies on the difficulty of solving the module learning-with-
errors (MLWE) problem. The construction of Kyber proceeds in two stages: first,
an IND-CPA-secure public-key encryption scheme, known as Kyber.CPAPKE, is
introduced to encrypt fixed-length messages of 32 bytes; then, a slightly modified
Fujisaki–Okamoto (FO) transform is applied to convert this encryption scheme into
an IND-CCA2-secure KEM, referred to as Kyber.CCAKEM when emphasizing its
resistance to chosen-ciphertext attacks.
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3.3.1 Kyber.CPAPKE: Encryption Scheme
Kyber.CPAPKE is an encryption scheme derived from the LPR approach originally
proposed by Lyubashevsky, Peikert, and Regev for Ring-LWE, with its conceptual
origins extending back to Regev’s first LWE-based scheme and even to the NTRU
cryptosystem by Hoffstein, Pipher, and Silverman. In Kyber, the principal modifi-
cation involves replacing Ring-LWE with Module-LWE, thereby enhancing both
flexibility and security. Furthermore, the method for generating the public matrix
A follows the strategy outlined by Alkım, Ducas, Pöppelmann, and Schwabe, while
public keys and ciphertexts are compressed via bit-dropping techniques based on
learning-with-rounding. The scheme is parameterized by a set of integers, with
n = 256 and q = 7681 fixed throughout, and parameters du, dv, and dt set to 11, 3,
and 11 respectively; the parameters k and η are varied to achieve different security
levels. This structure underlines Kyber’s commitment to efficiency and robustness
in lattice-based encryption. The Kyber.CPAPKE encryption scheme follows these
steps:

Key Generation

1. Sample s, e← χ.

2. Compute:
sk = s, pk = t = As + e

Encryption

1. Sample r, e1, e2 ← χ.

2. Compute:
u← AT r + e1

v ← tT r + e2 + Enc(m)

3. The ciphertext is:
c = (u, v)

Decryption

1. Compute:
m = Dec(v − sTu)
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3.3.2 Design Decisions
The design of Kyber is primarily based on the module variant of the Ring-LWE
encryption scheme introduced by Lyubashevsky, Peikert, and Regev (LPR). This
scheme integrates a bit-dropping technique for efficiency and incorporates advance-
ments from previous lattice-based encryption implementations such as NewHope.

A key difference between Kyber and conventional Ring-LWE schemes lies in
the utilization of module lattices. While previous schemes performed operations of
the form As+ e, where all variables were polynomials in a structured ring, Kyber
instead treats A as a small matrix (e.g., 3× 3) over a polynomial ring of fixed size,
and s, e as vectors over the same ring.

Module-LWE: Balancing Structure and Efficiency

Kyber employs Module-LWE instead of either Ring-LWE or standard LWE. The
trade-offs are as follows:

• Ring-LWE provides high efficiency in terms of speed and memory but intro-
duces algebraic structures that may allow more efficient attacks.

• Standard LWE eliminates such structure, improving security, but at the
cost of significantly increased computational overhead.

• Module-LWE balances these factors, maintaining efficiency while reducing
the algebraic structure that could be exploited.

The used ring structure is:

R = Zq[X]/(X256 + 1), q = 7681

In Kyber’s case, the chosen parameters reduce structure compared to Ring-
LWE while allowing better scalability and performance when encrypting fixed-size
messages (e.g., 256-bit messages), using more generic rings.

Active Security Considerations

Unlike earlier passively secure KEMs used in transitional post-quantum security
settings (e.g., TLS migrations), Kyber is defined as an IND-CCA2 secure KEM.
Although passively secure KEMs have advantages such as higher tolerance for failure
probability and faster decapsulation (since they do not require a CCA transform),
active security is necessary for many cryptographic applications, including:

• Public-key encryption (via KEM-DEM constructions).

• Authenticated key exchange.
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• Secure ephemeral key caching in protocols like TLS.
Additionally, Kyber’s CCA transform protects against implementation vulnera-

bilities. For instance, passive schemes may fail to detect incorrect noise values (e.g.,
all-zero noise). Kyber’s re-encryption step ensures such anomalies are immediately
detected.

Role of the Number Theoretic Transform (NTT)

The Number Theoretic Transform (NTT) is a fundamental component in lattice-
based cryptography due to its ability to significantly accelerate polynomial mul-
tiplications while maintaining a compact memory footprint. Unlike traditional
multiplication methods, NTT-based multiplication does not introduce additional
memory overhead. Consequently, it has become standard practice to select cryp-
tographic parameters that optimize the efficiency of NTT operations. Several
post-quantum cryptographic schemes, including NewHope, integrate NTT oper-
ations directly into their design. Specifically, Kyber defines the matrix A in its
public-key encryption scheme (Kyber.CPAPKE) directly in the NTT domain. This
decision necessitates that all multiplications involving A must also occur in the
NTT domain. The selective integration of NTT in Kyber balances computational
efficiency and data compression. By defining matrix A in the NTT domain and
ensuring that multiplications are performed consistently in this representation,
Kyber minimizes unnecessary computations while preserving security and compact
ciphertext sizes.

Uniform Generation of Matrix A

The approach adopted for generating the public uniformly random matrix A follows
the "against-all-authority" principle. In this model, the matrix A is not a fixed
system parameter but is instead freshly generated as part of each public key. This
strategy offers two main advantages: first, it eliminates the need to discuss the
specifics of how a uniformly random system parameter is generated, thus avoiding
potential disagreements over this process. Second, it safeguards against the "all-
for-the-price-of-one" attack scenario, where an attacker could dedicate considerable
computational resources to finding a short basis for the lattice spanned by A and
subsequently use this basis to compromise all users. The trade-off associated with
this approach is the expansion of the matrix A, from a random seed during key
generation and encapsulation.

Noise Distribution: Binomial vs. Gaussian

In earlier implementations, discrete Gaussian noise was commonly used. How-
ever, this approach was found to be inefficient and vulnerable to timing attacks.
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The effectiveness of attacks against LWE encryption primarily depends on the
standard deviation and entropy of the noise, rather than its precise distribution.
Consequently, more efficient and secure noise distributions, such as the centered
binomial distribution, have gained attention. For instance, the Kyber encryption
scheme adopts centered binomial noise, leveraging LWE rather than learning-with-
rounding (LWR) as the underlying problem. Furthermore, Kyber’s Compress
function introduces additional noise during ciphertext compression, which enhances
security.

Handling Decapsulation Failures

A key design decision in Kyber revolves around whether to permit decapsulation
failures. Although setting the failure probability to zero simplifies security proofs
and mitigates concerns about failure-based attacks, this decision comes with trade-
offs:

• Decreasing the noise reduces security against lattice-based attacks.

• Increasing the lattice dimension to counteract this loss in security leads to
reduced efficiency.

Kyber opts for a failure probability of less than 2−140, ensuring that failures are
negligible while striking an optimal balance between security and performance.

3.3.3 Kyber’s Fujisaki-Okamoto Transform
Kyber is the selected Key Encapsulation Mechanism (KEM) from the NIST Post-
Quantum Cryptography Standardization project and is set to become the standard
post-quantum KEM. Similar to most post-quantum KEMs, Kyber is built upon a
CPA-secure Public Key Encryption (PKE) scheme, which is then transformed into
an IND-CCA-secure KEM using the Fujisaki-Okamoto (FO) transform. However,
Kyber does not employ the standard FO transform but rather a modified version,
leading to different security implications.

The modified FO transform used in Kyber, referred to as FOKyber, deviates from
the standard FO⊥ construction in two key areas:

• The randomness used in encryption is derived not only from the message but
also from an additional hash of the public key.

• The key derivation process differs by replacing the message with an interme-
diate pre-key and utilizing a hash of the ciphertext instead of the ciphertext
itself.
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These modifications complicate existing security proofs, particularly those lever-
aging implicit rejection techniques in the quantum random oracle model (QROM).
Previous direct proof attempts either relied on explicit rejection or introduced
additional complexity, such as collision terms that impact the security bound. This
work explores an alternative proof strategy that remains closer to prior methods
while introducing a slightly looser bound.

Comparison: Standard FO vs. FOKyber

Process Standard FO FOKyber

Randomness Gener-
ation

r = G(m) (K̃, r) = H1(m,H3(pk))

Key Derivation K = H(m, c) K = H(K̃,H2(c))
Ciphertext Valida-
tion

Re-encrypt and com-
pare with c

Compare H2(c) instead

Failure Handling PRF with ciphertext
input

PRF with hashed ciphertext
input

Table 3.1: Differences between Standard FO and FOKyber.

The security proof of FO-based KEMs often relies on an implicit rejection
technique, where decryption queries are simulated by manipulating the random
oracle used in key derivation. However, the modifications in FOKyber introduce the
following obstacles:

• The introduction of K̃ instead of m breaks existing proof techniques that rely
on plaintext knowledge.

• The use of H2(c) instead of the ciphertext c itself prevents direct message-
ciphertext validation.

• The collision resistance of H2 becomes a crucial factor, leading to an additional
collision term in the security bound.

Due to these issues, previous proof strategies either fail entirely or require
additional assumptions. The final security bound for FOKyber now includes:

• A collision term associated with H2.

• A term accounting for the indistinguishability of K̃.
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• A slightly looser bound compared to the standard FO transform.

Ultimately, these complications suggest that reverting to the standard FO
transform would provide a more straightforward and provable security guarantee,
avoiding the additional complexity introduced by FOKyber.

3.4 Security Analysis
Reporting from the official supporting documentation of NIST submission [18],
an evaluation of Kyber’s security is provided, under various assumptions. The
underlying hard problem that ensures the security of the schemes is the Module-
LWE problem. This problem involves distinguishing between uniform samples
(ai, bi) ∈ Rk

q × Rq and samples (ai, bi) ∈ Rk
q × Rq where ai ∈ Rk

q is uniformly
distributed, and bi = aTi s + ei, with s ∈ Bk being the same for all samples, and
ei ∈ B being freshly chosen for each sample. More formally, for an algorithm A,
this can be defined as:

Advm;k;η
mlwe (A) =

---Pr[b′ = 1 : A (Rm×k
q ; (s, e) ∈ Bk × Bm; b = AT s+ e)]

− Pr[b′ = 1 : A (Rm×k
q ; b ∈ Rq)]

---- (3.12)

One of the most important results is:

Theorem 3 Suppose XOF and G are random oracles. For any adversary A, there
exist adversaries B and C with roughly the same running time as that of A such
that

AdvKyber:CPAPKE
cpa (A) ≤ 2 · Advk+1;k;η

mlwe (B) + AdvPRF
prf (C).

The proof of this theorem is easily obtained by noting that, under the MLWE
assumption, public-key and ciphertext are pseudo-random.

Kyber.CCAKEM is obtained via a slightly tweaked Fujisaki-Okamoto transform
applied to Kyber.CPAPKE. The following concrete security statement proves
Kyber:CCAKEM’s IND-CCA2-security when the hash functions G and H are
modeled as random oracles.

Non-tight Reduction from MLWE in the QROM

In the quantum random oracle model (QROM), it has been demonstrated that
Kyber.CCAKEM is IND-CCA2 secure, assuming that Kyber.CPAPKE is IND-CPA
secure. A tighter reduction can be achieved by assuming that the base scheme
Kyber.CPAPKE is pseudo-random. Pseudo-randomness requires that, for any mes-
sage m, the ciphertext (c1, c2) = Kyber.CPAPKE.Enc(pk;m) is computationally
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indistinguishable from a random ciphertext (Compressq(u; du),Compressq(v; dv)),
where (u, v) are uniformly distributed. The proof of Kyber.CPAPKE’s IND-CPA
security confirms that it is tightly pseudo-random under the Module-LWE hardness
assumption.

Theorem 4 Suppose XOF, H, and G are random oracles. For any quantum
adversary A that makes at most qRO many queries to quantum random oracles
XOF, H, and G, there exist quantum adversaries B and C of roughly the same
running time as that of A such that

AdvKyber.CCAKEM
cca (A) ≤ 4qRO · q · Advk+1;k;η

mlwe (B) + AdvPRF
prf (C) + 8q2

ROϵ.

In the following table, classical and quantum core-SVP hardness of the different
proposed parameter sets of Kyber are listed, together with the claimed security
level. Complexities are given in terms of the base-2 logarithm of the number of
operations.

core-SVP (classical) core-SVP (quantum) Claimed security level
Kyber512 112 102 1 (AES-128)
Kyber768 178 161 3 (AES-192)
Kyber1024 241 218 5 (AES-256)

Table 3.2: Kyber parameter sets and corresponding security level.

However, the above security bound is non-tight and therefore can only serve
as an asymptotic indication of Kyber.CCAKEM’s CCA-security in the quantum
random oracle model.

Tight Reduction Under Non-Standard Assumption.

A tight security bound in the Quantum Random Oracle Model (QROM) can
be established by assuming that a deterministic variant of Kyber.CPAPKE, re-
ferred to as DKyber.CPAPKE, is pseudo-random in the QROM. In this ver-
sion, the random values r used during encryption are deterministically gener-
ated from the message m, i.e., r := G(m). The pseudo-randomness property
for DKyber.CPAPKE ensures that the encryption (c1, c2) of a randomly chosen
message is computationally indistinguishable from a random ciphertext of the
form (Compressq(u; du),Compressq(v; dv)), where (u, v) are uniformly distributed.
While in the classical Random Oracle Model (ROM), the pseudo-randomness of
DKyber.CPAPKE is tightly equivalent to the Module-LWE (MLWE) problem, the
reduction in the QROM is non-tight. This non-tightness is reflected in the term
qRO · q · Advk+1;k;η

mlwe (B) in Theorem 3, which leads to the following security bound:
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AdvKyber.CCAKEM
cca (A) ≤ 2 · Advk+1;k;η

mlwe (B)
+ AdvDKyber.CPAPKE

pr (C)
+ AdvPRF

prf (D) + 8q2
ROϵ. (3.13)

It should be noted that no quantum attack on deterministic Kyber.CPAPKE
has been identified that performs better than solving the MLWE problem.

3.4.1 Attacks on the Underlying MLWE Problem
In the realm of post-quantum cryptography, the Module Learning With Errors
(MLWE) problem, when applied to systems such as the Kyber cryptosystem, is
typically modeled as an extension of the Learning With Errors (LWE) problem.
This section explores several methods utilized to attack the MLWE problem, with
a particular focus on the Block Korkine-Zolotarev (BKZ) algorithm.

3.4.2 The SVP Oracle
The SVP oracle is a theoretical tool designed to solve the Shortest Vector Problem
in lattices. The SVP problem involves finding the shortest non-zero vector in a
lattice, and the oracle provides an idealized solution by returning this shortest vector
immediately. In cryptanalysis, the SVP oracle plays a crucial role, as algorithms
such as BKZ rely on it to evaluate lattice reduction performance. By offering
a "perfect" solution, it serves as a reference point for analyzing the efficiency of
lattice-based cryptographic attacks.

3.4.3 The BKZ Algorithm
The BKZ algorithm (Block Korkine-Zolotarev) is a lattice reduction method
that operates by splitting the lattice into smaller blocks of vectors. Each block
is processed using an SVP oracle. The frequency with which the SVP oracle is
queried depends on the lattice dimension and the size of the blocks involved. BKZ’s
main objective is to find short vectors within a lattice, which can then be leveraged
to break cryptosystems like Kyber. The computational complexity of the BKZ
algorithm is influenced by the block size and the dimension of the lattice.

3.4.4 Solving the SVP Oracle: Enumeration and Sieving
The two primary techniques used to solve the SVP oracle within the BKZ framework
are enumeration and sieving. These techniques offer different ways to efficiently
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identify short vectors in lattices, as an approximation of the ideal performance of
the oracle. In BKZ, two primary methods are employed to solve the SVP oracle:
enumeration and sieving, each offering distinct performance characteristics. Enu-
meration algorithms are known for their super-exponential time complexity, while
sieving algorithms exhibit exponential time complexity. Empirical results suggest
that enumeration is more efficient for lattices of smaller dimensions. However, siev-
ing algorithms are expected to surpass enumeration in higher dimensions, making
sieving a more practical choice for large-scale lattice-based cryptanalysis, such as
attacks against Kyber. Recent advancements in sieving techniques have minimized
the performance gap between enumeration and sieving, especially for exact-SVP
problems in dimensions ranging from 60 to 80. However, sieving algorithms are
considerably more memory-intensive, with their time and memory complexities
growing exponentially. This leads to practical challenges as memory usage in-
creases beyond the capacity of fast local memory (RAM). To estimate the practical
performance of both techniques, a conservative lower bound for their efficiency is
calculated within the RAM model, assuming that memory access is free of cost.
Under this assumption, sieving outperforms enumeration for dimensions above 250.
For Kyber, where dimensions as low as 390 are of interest, this RAM model provides
a conservative lower bound for the performance of both enumeration and sieving.
Recent improvements in sieving algorithms, such as the application of Locality
Sensitive Hashing (LSH), have enhanced their efficiency by reducing the hidden
sub-exponential factor. Additionally, quantum algorithms, like Grover’s search,
further lower the complexity of sieving techniques. The classical cost estimate for
both primal and dual attacks is 20.292b, while the quantum cost estimate is 20.265b
where b is the lattice dimension in bits.

3.4.5 Attacks against MLWE

The main attacks on the MLWE problem in the Kyber cryptosystem rely on the
BKZ algorithm, which can be used in two distinct attack strategies: primal and
dual.

Primal Attack

The primal attack involves creating a unique-SVP instance derived from the
LWE problem and then applying the BKZ algorithm to find a short vector in the
lattice. The success of this attack hinges on the ability to find a vector whose norm
satisfies specific conditions, allowing the cryptosystem to be compromised.
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Dual Attack

The dual attack targets the dual lattice by searching for a short vector within it.
The difficulty of this attack is influenced by the length of the vector found, and its
effectiveness depends on distinguishing LWE samples from a uniform distribution.

3.4.6 Algebraic Attacks on Kyber
At present, the predominant attacks on the MLWE instance underlying Kyber are
lattice-based, particularly focusing on algorithms like BKZ. However, algebraic
attacks that exploit the structure of ideal lattices have been considered in theoretical
discussions. While these algebraic methods are not yet a significant practical threat
to the security of Kyber, there is a possibility that future developments in quantum
algorithms could target ideal-SVP problems. Should such attacks be realized, they
could pose a potential risk to lattice-based cryptosystems such as Kyber in the
future.
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Chapter 4

Error Detection and
Correction

Turbo codes have gained significant attention due to their exceptional error cor-
rection capabilities, achieving performance close to the Shannon limit. Notably,
they can attain very low bit error rates even at low signal-to-noise ratio (SNR)
conditions.

4.0.1 Performance Comparison
Turbo codes, introduced by Berrou et al. in 1993 [19], represent a significant
breakthrough in coding theory. These codes use convolutional codes, pseudo-random
interleaving, and maximum a posteriori probability MAP iterative decoding to
achieve error correction performance close to Shannon’s capacity limit. Specifically,
turbo codes achieve a bit error rate (BER) that is only 0.7 dB below the channel
capacity limit in an additive white Gaussian noise AWGN channel. Remarkably,
this performance is achieved with lower computational complexity compared to
traditional convolutional codes. As clearly shown in [20], the ability of turbo codes
to approach the theoretical limits of error correction makes them highly applicable
to satellite communication systems, where low error rates are critical. In satellite
communications, turbo codes are particularly advantageous because they can
operate efficiently in the challenging AWGN environment, commonly encountered
in deep-space communication scenarios. The ability to reduce code rates further
enhances communication reliability by minimizing Bit Error Rates (BER). By
exploiting the channel’s bandwidth efficiently, turbo codes can overcome power
limitations in satellite systems, enabling better utilization of available resources.
A BER below 10−5 is generally considered to be acceptable in many engineering
applications. In addition, since the performance of each coding mode has a large
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difference, the Signal to Noise Ratio SNR scale in the simulation is non-uniform to
make the results more obvious. In Figure 4.1, it has been shown that turbo codes

Figure 4.1: Performance comparison of different encoding methods

have an obvious advantage over convolutional codes and Hamming codes, which
can achieve a very low BER with a small SNR.

Turbo Codes Performance Analysis

The Turbo code algorithm will be thoroughly analyzed in the following chapters;
however, its expected behavior is preliminarily examined in this section to evaluate
its suitability as a viable solution within this context, as shown in [21]. 4.3 illustrates
the performance of turbo codes as a function of the number of decoder iterations,
with uncoded BER provided for comparison. After the first iteration, the turbo
decoder’s performance aligns closely with that of convolutional codes. Increasing
the number of iterations enhances decoding performance: for instance, a gain of
approximately 1.2 dB is observed between the first and second iterations at a BER
of 10−4. This improvement continues up to the eighth iteration, beyond which the
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performance gain diminishes significantly (e.g., only 0.1 dB improvement between
the eighth and fourteenth iterations at BER 10−4). However, increasing the number
of iterations also raises the computational complexity of the decoding process.

Figure 4.2: Turbo coding BER performance using different numbers of iterations

The figure 4.3 illustrates the performance of turbo codes as a function of frame
length. In many applications, particularly those involving real-time transmission,
large frame lengths are impractical. For instance, frames of 256 bits are suitable
for voice transmission, while frame lengths ranging from 1024 to 2048 bits are
commonly used for video transmission. Systems employing larger frame lengths
are better suited for data transfer and non-real-time applications. The simulation
results indicate that turbo codes with a frame length of 65,536 bits achieve the best
performance. Specifically, a frame length of 65,536 bits provides a code gain of 0.35
dB compared to turbo codes with a frame length of 2048 bits and 0.6 dB compared
to codes with a frame length of 1024 bits, for a BER of 10−4. As the frame length
increases, the performance of turbo convolutional codes improves significantly.
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Figure 4.3: Effect of frame length on BER performance of turbo coding

Several different algorithms have been considered, but Turbo codes were deemed
the most suitable for the application in question.

Table 4.1 shows that turbo codes offer an excellent solution for satellite com-
munication systems due to their superior error-correction capabilities, low com-
putational complexity, and ability to approach the theoretical limits of error
correction. These properties make them particularly well-suited to the noise-rich,
bandwidth-constrained environments of satellite communication and cryptographic
applications, which rely on non-real-time interactions and involve larger frames,
such as encryption keys.

The remarkable performance of turbo codes is primarily attributed to two
fundamental principles: iterative decoding and interleaving between concatenated
parallel codes. The effectiveness of turbo codes can be understood by examining
the limitations of traditional error correction methods. In low SNR environments,
error correction capabilities are constrained by the minimum distance properties of
finite-length codes. Consequently, a single decoding pass may not be sufficient to
correct all errors. A straightforward approach to enhancing performance would be
to reapply the decoding algorithm multiple times. However, this method presents
a significant drawback: it can introduce structured error patterns, such as burst
errors, which are particularly prevalent in harsh transmission conditions like space
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Category BCH Code Turbo Code LDPC Code

Features Fast decoding with
limited error correc-
tion (up to 2 bits), 4/7
coding rate.

Parallel concate-
nation, 1/3 cod-
ing rate, 200 iter-
ations with ran-
dom interleaver.

1000 bits of
information
coded into 500
bits; uses belief
propagation for
decoding.

Performance Fastest decoding speed
among the three but
limited correction ca-
pability.

Superior perfor-
mance at low
SNRs (below 8.1
dB) with high ac-
curacy.

Outperforms
Turbo Code at
high SNRs, up
to 8.1 dB.

Complexity Low-complexity, suit-
able for low-error envi-
ronments where speed
is prioritized.

High complexity
but suitable for
environments
with low SNR
tolerance.

Less complex
than Turbo,
ideal for higher
SNR applica-
tions.

Applications Speed-critical, low-
complexity applica-
tions with minimal
error correction needs.

Low SNR ap-
plications need-
ing high error
correction perfor-
mance.

High-efficiency,
computationally
optimized appli-
cations at higher
SNRs.

Table 4.1: Performance Comparison of , Turbo, and LDPC Codes

and satellite communications. Rather than reducing errors, these patterns can
propagate and degrade decoding performance, requiring an alternative strategy to
ensure reliable data recovery.

To mitigate this issue, interleaving is introduced between successive decoding
stages. By redistributing errors over a longer sequence, interleaving prevents burst
errors from clustering, thereby enhancing the effectiveness of iterative decoding.
This principle extends to the encoding stage as well, ensuring that the transmitted
signal benefits from the same robustness against structured errors.

4.1 Turbo Encoding
The turbo code encoder is a fundamental component in modern error correction
techniques, designed to achieve near-optimal performance in noisy communication
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channels. Its structure consists of two identical recursive systematic convolutional
(RSC) encoders arranged in parallel and separated by an interleaver. Each RSC
encoder typically operates at a rate of r = 1

2 and is referred to as a component
encoder. To optimize efficiency, only one of the systematic outputs is retained,
while the other is discarded, as it is merely a permuted version of the retained
sequence.

In the figure below, a simplified diagram of a Turbo encoder structure is shown.

Figure 4.4: Fundamental Turbo Code encoder

A commonly used turbo encoder configuration operates at a rate of r = 1
3 ,

where the first RSC encoder produces a systematic output along with a recursive
convolutional output, while the second RSC encoder suppresses its systematic
sequence and provides only an additional recursive convolutional output. The
inclusion of an interleaver enhances error correction performance by dispersing
error patterns, thus improving the effectiveness of iterative decoding.

4.1.1 Recursive Systematic Convolutional Encoder
The recursive systematic convolutional (RSC) encoder is derived from a conventional
convolutional encoder by introducing a feedback loop. This structural modification
significantly enhances coding performance by increasing the randomness of the
encoded sequences, thereby reducing error propagation and improving the overall
robustness of the turbo code.

A conventional convolutional encoder is typically defined by a set of generator
polynomials, which determine the transformation of input data into encoded
sequences. The RSC encoder modifies this structure by feeding back one of its output
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sequences into the input, effectively creating a recursive process. This feedback
mechanism ensures that the generated sequences exhibit desirable properties such
as long pseudo-random distributions, which are crucial for effective error correction.
The use of an appropriate feedback polynomial further enhances performance
by generating maximum-length sequences, maximizing the interleaving gain, and
improving the distance properties of the code. In the figure below, a diagram of
the RSC that highlights the recursive mechanism.

Figure 4.5: Recursive Systematic Convolutional encoder

As shown in the figure, the RSC encoder operates by maintaining a set of
states and recursively combining these states with the current input. The encoder
produces two types of outputs:

• Systematic Output: This output directly corresponds to the input bits, ut,
where t denotes the time index. It is typically transmitted as is in the output
sequence: xt1(t) .

• Encoded Output: The encoded output depends not only on the current
input bit ut but also on the previous states of the encoder. These outputs are
denoted by xt1 and xt2, representing the encoded outputs that are generated
by the combination of the input and the previous states:

xt2(t) = g(st1(t), st2(t), ut)

where g is a function that combines the current input and the encoder states
to produce the encoded output. The encoded output is typically used to create
redundancy in the transmitted signal, providing error correction capabilities.
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The encoder maintains two internal states, st1 and st2, which evolve over time
based on the input sequence. The states and outputs at each time step t are updated
recursively as follows. Let the input bit sequence be denoted by u0, u1, u2, . . . , uN−1,
where N is the total number of input bits. At each time step, the encoder generates
two outputs: the systematic output and the encoded output. The internal states
of the encoder, denoted by st1 and st2, evolve over time according to the following
recurrence relation:

st1(t) = f1(st1(t− 1), st2(t− 1), ut)

st2(t) = f2(st1(t− 1), st2(t− 1), ut)

where f1 and f2 are functions that combine the previous states st1(t− 1) and
st2(t− 1), along with the current input bit ut, to determine the new state values
at time step t. The states st1 and st2 serve as the memory of the encoder and
are updated at each time step. To ensure the proper termination of the encoding
process and finalize the encoded output, the encoder may continue processing with
dummy input bits, often set to zero or a predefined value, after all valid input bits
have been processed. This is known as the termination phase and ensures that all
states are properly updated and the final encoded bits are produced. During the
termination phase, the states evolve according to the same recurrence relations, and
the final outputs are generated. The termination ensures that the encoder’s state
machine reaches a known final state, and all necessary encoded bits are produced.
This memory allows the encoder to spread information across multiple output bits,
increasing the error-correcting capability. The memory of the encoder ensures that
it is not only reacting to the current input but also to the history of the transmitted
data. This is important in the presence of noise or channel impairments, as errors
tend to occur in bursts. By using the memory of previous states, the encoder can
recover from errors that affect multiple bits in a burst.

4.1.2 Trellis Diagram
The trellis diagram is a fundamental representation used in convolutional coding
to illustrate state transitions over time. Convolutional codes, widely employed
in digital communication and error correction, encode data by generating output
symbols based on the current input and a memory of previous inputs. The trellis
diagram provides a structured visualization of the encoder’s state evolution, where
nodes represent states and branches correspond to valid transitions dictated by
the convolutional generator polynomials. Formally, a convolutional encoder can be
modeled as a finite-state machine, with its state determined by the contents of its
shift registers. The trellis unfolds this state transition process over discrete time
steps, creating a lattice-like structure. This representation is particularly useful in
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decoding algorithms, most notably the Viterbi algorithm, which performs maximum
likelihood sequence estimation by tracing the optimal path through the trellis. By
assigning path metrics to transitions and employing dynamic programming tech-
niques, the algorithm efficiently identifies the most probable transmitted sequence
while minimizing the probability of error. Beyond its theoretical significance, the
trellis diagram plays a critical role in practical implementations of convolutional
codes, particularly in communication systems that require robust error correction,
such as satellite communications and deep-space telemetry. Its structured nature
allows for computationally efficient decoding, reducing the complexity compared to
exhaustive search methods.

Figure 4.6: Trellis Diagram structure

In conclusion, the trellis diagram serves as both an analytical tool and a com-
putational framework in convolutional coding theory. It enables effective error
correction through structured state transitions and facilitates efficient decoding
algorithms, making it an essential component in modern digital communication
systems.

4.2 Interleaver Design
The interleaver plays a particularly crucial role in Turbo codes, as its design
strongly influences system performance, particularly in the error floor region, where
low-weight codewords contribute significantly to the bit-error rate (BER) and
frame-error rate (FER). Consequently, an optimally designed interleaver is essential
to mitigate performance limitations and suppress the error floor. A fundamental
aspect of turbo codes is the presence of recursive constituent convolutional codes
(CCs) combined with interleavers of specific lengths. While initial optimization
efforts have primarily relied on randomly chosen interleavers, there is no systematic
approach to interleaver design due to the inherent complexity of the problem.
[22] presents a systematic approach to interleaver design, specifically tailored to
given constituent convolutional codes (CCs), providing valuable insights into its
effectiveness in the software implementation of the project. The design process is
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influenced by several key parameters, including the characteristics of the constituent
CCs, the operating signal-to-noise ratio (SNR), the interleaver length, and the
decoding method. By optimizing interleaver construction with respect to these
factors, the proposed methodology enhances the overall performance of turbo codes.
This aspect is particularly crucial in space communications, where high burst
error rates pose a significant challenge. The interleaver plays a fundamental role
by acting on the input sequence, dispersing errors more uniformly, and thereby
improving decoding efficiency. As a result of the widespread use of such algorithms,
it has been demonstrated that a structured approach to interleaver design can yield
substantial performance gains by enhancing the distance spectrum of the resulting
code. For these reasons, the approach presented in [22] has been adopted in this
thesis work.

4.2.1 Minimal-Delay Interleaving and Causality
The delay in the interleaving process is a critical parameter, especially in applications
where latency must be minimized. The end-to-end interleaving-deinterleaving delay
is defined as the time interval between the arrival of the first input symbol at the
interleaver and the corresponding output symbol at the deinterleaver. A causal
interleaver must ensure that no output symbol is produced before its corresponding
input is received. The concept of cycles in permutations plays a key role in
characterizing interleaver delays. Any permutation can be expressed as a product
of disjoint cycles, with transpositions (cycles of length two) forming the fundamental
building blocks.

4.2.2 Definition and Structure of the Finite-State Permuter
(FSP)

The FSP is introduced as a model for implementing interleavers with minimal
memory requirements. The FSP operates using a sliding window mechanism that
transposes elements dynamically as the input sequence progresses. The delay
associated with an interleaver is determined by the transposition with the largest
span. Each permutation can be uniquely described by a transposition vector, which
encodes the sequence of swaps necessary to achieve the desired output order. An
example permutation is given as:

π = (4,1,3,2) (4.1)
where the transposition vector is derived step by step. The delay of this permu-

tation is determined by the largest transposition span. A modular implementation
of the FSP is proposed, using a queue-based approach. The transpositions are
applied sequentially, ensuring that elements are ejected in the correct order while
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maintaining a minimal memory footprint. Given a transposition vector for a
permutation π, the inverse permutation π−1 can be computed iteratively. The
recursive inversion algorithm is formulated using a sequence of logical operations
that reconstruct the original ordering.

4.2.3 Interleaver Construction
The design of interleavers is a fundamental aspect of turbo code optimization,
as it directly influences the performance of parallel concatenated convolutional
codes (PCCC). Specifically, the interleaver determines the mapping of input er-
ror sequences, which in turn affects the minimum distance of the code and the
multiplicity of low-weight codewords, both of which are critical to the overall bit
error rate (BER). Given the combinatorial complexity of interleaver selection, an
exhaustive search across all possible permutations is computationally impractical.
To address this challenge, the paper taken into consideration introduces an iterative
interleaver growth algorithm that incrementally constructs optimized interleavers
while maintaining polynomial computational complexity. To guide the interleaver
design process, a cost function is introduced to evaluate the impact of different
permutations on code performance. Consider a terminating error pattern of length
l and Hamming weight w associated with a recursive systematic convolutional
(RSC) constituent code. The interleaver of length N permutes these error patterns,
thereby altering their distribution within the code structure. A simplified version
of the cost function, denoted as C(π, e), is defined as:

C(π, e) =
mØ
i=1

h(di, wi), (4.2)

where di represents the minimum Euclidean distance of the codeword after
interleaving, and wi is the corresponding input weight. A commonly employed
formulation for h(d, w) is:

h(d, w) = w · e−d2/(2σ2), (4.3)
where σ2 denotes the noise variance. This function prioritizes configurations

that maximize the minimum distance while suppressing low-weight codewords, as
these contribute disproportionately to BER degradation. Rather than attempting
to optimize an interleaver in a single step, the proposed approach constructs an
interleaver progressively, expanding an initial configuration of size N to size N + 1
while ensuring that each modification minimizes the overall cost function. The
algorithm proceeds as follows:

1. Initialization: Begin with a small interleaver, either derived from an exhaus-
tive search for short sequences or selected from an established heuristic.
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2. Incremental Expansion: At each step, a new element is introduced into
the interleaver sequence. Multiple possible placements are evaluated, and the
one that minimizes the cost function is selected.

3. Termination: The iterative process continues until the interleaver reaches
the desired length N .

This method significantly reduces computational complexity compared to brute-
force approaches while still achieving near-optimal results. The computational
complexity of interleaver construction depends on the implementation of the
cost function. A straightforward approach results in a complexity of O(N3),
whereas an optimized version, leveraging probabilistic averaging over error patterns,
achieves a more efficient O(N2). This reduction is crucial for practical applications,
enabling the optimization of interleavers for large block lengths without excessive
computational overhead. Experimental validation confirms that the interleavers
designed using this approach yield significant performance gains, making them
highly suitable for noise-limited communication environments.

4.3 Input Sequence Generator
Pseudorandom sequence generators based on polynomial generators play a critical
role in fields such as cryptography, error-correction coding, and numerical simula-
tions. This section provides an overview of the theory related to the cyclicity of
the sequences, the logarithmic relationship to sequence length, and the criteria for
generating pseudorandom strings.

Polynomial generators are used to construct Linear Feedback Shift Registers
(LFSRs), which are one of the most widely used methods for generating pseudoran-
dom sequences. An LFSR is a shift register consisting of n bits, where the input
bit is calculated as a linear combination of previous bits, determined by a generator
polynomial:

P (x) = xn + cn−1x
n−1 + · · ·+ c1x+ 1

where the coefficients ci belong to the finite field F2 (i.e., they take values 0 or
1) and determine which bits contribute to the feedback. The sequence produced by
an LFSR has a maximum length of 2n− 1 if and only if the generator polynomial is
irreducible and primitive over F2. The sequences generated by an LFSR are cyclic,
meaning that after a certain number of steps, the register returns to a previously
encountered state, and the sequence repeats. If the generator polynomial is
primitive, the sequence will have the maximum possible period:

T = 2n − 1
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If the polynomial is not primitive, the period of the sequence will be less than
2n− 1 and could be a divisor of this value. The polynomials presents some common
behaviours:

• Every sequence generated by an LFSR is deterministic and repetitive.

• If a non-zero initial seed is selected, the sequence will always have the same
period and repeat the same values.

• The generator polynomials determine the behavior of the sequence and the
distribution of its bits.

The use of the logarithm of the sequence length refers to calculating the minimum
required register size to generate a sequence of a given length.

4.3.1 Assumption of Uncorrelated Input Bits

In the conducted project, it was initially assumed that the random bits generated
were completely uncorrelated, allowing for the straightforward use of these bits
as inputs for subsequent simulations and cryptographic operations. However,
during the verification phase, graphical analyses and simulations were performed,
comparing the public and private keys, as well as ciphertexts generated by the
Kyber encryption scheme, with other random inputs derived from polynomial-based
generators. The results revealed that the random bits were sufficiently independent,
as correlations between the bits could not be found.
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Figure 4.7: Simulation results with 2 different inputs: Kyber keys and Pseudo
Random Input

As shown in Figure 4.7, the simulations run with different input sequences report
the inability to reveal any correlation between bits. This finding is significant
because the quality of random bit generation has a direct impact on the security
and reliability of cryptographic systems. Specifically, when bits exhibit correlations
or lack independence, the effectiveness of cryptographic algorithms, such as Kyber,
may be compromised, as predictable patterns could be exploited by adversaries.
Therefore, ensuring that generated bits are adequately uncorrelated is crucial for
maintaining the robustness of cryptographic operations, statistical simulations, and
security protocols, all of which rely on the assumption of high-quality randomness.

4.4 Turbo Decoding
A detailed overview of the turbo decoder structure is presented in [19], followed
by the corresponding implementation in Rust programming language. The turbo
decoder is an iterative decoding scheme that relies on two soft-input soft-output
(SISO) decoders. Each decoder performs decoding in an iterative manner, improving

58



Error Detection and Correction

the estimation of the transmitted data sequence with each iteration. Initially,
the first SISO decoder receives soft channel inputs and provides a soft output
that estimates the original data sequence. In addition to the soft output, the
decoder generates an extrinsic output, which is based on surrounding bits and
the constraints imposed by the code, rather than directly on the channel input
for that bit. This extrinsic information is then used as a priori information by
the second SISO decoder, along with the channel inputs, to generate its own soft
output and extrinsic information. This process is repeated in subsequent iterations,
with each decoder receiving extrinsic information from the previous iteration and
refining the decoded sequence. The turbo decoder iteratively improves the Bit
Error Rate (BER) by leveraging both channel inputs and extrinsic information
from previous decoding steps. After a fixed number of iterations, typically between
2 and 12, or when a stopping criterion is met, the decoding process terminates,
and a final estimate of the transmitted sequence is provided. The iterative nature
of the turbo decoder enables it to achieve near-Shannon-limit performance with
relatively simple component codes, making it a powerful tool in error correction.
The decoder’s structure is clearly represented in the figure below.

Figure 4.8: Turbo Decoder scheme

4.4.1 SISO Decoder
Soft-In Soft-Out (SISO) decoding is an essential technique in modern error-
correcting systems, particularly in turbo and LDPC codes. Unlike conventional
hard-decision decoders, which operate on binary values, SISO decoders utilize
probabilistic (soft) information to enhance the reliability of decoded bits. This
approach enables iterative refinement of bit estimates, significantly improving error
correction performance.

The decoding process involves two fundamental operations:
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• Metric Combination: Input likelihood values are aggregated to compute a
reliability metric for each possible codeword configuration.

• Marginalization: The computed metrics are used to derive posterior proba-
bilities for individual transmitted bits, considering all valid codeword configu-
rations.

SISO decoders leverage iterative processing, where the extrinsic information from
one iteration serves as a priori information for subsequent iterations. Depending on
the decoding strategy, different computational approaches can be employed, such as
the min-sum algorithm in the log-likelihood ratio (LLR) domain or the sum-product
algorithm in the probability domain. These techniques balance complexity and
performance, making SISO decoding highly effective in mitigating errors introduced
by noisy communication channels.

The ability to process and refine soft information makes the SISO decoder a
crucial component of iterative decoding architectures, offering superior performance
over traditional hard-decision methods.

4.5 The BCJR Algorithm in Turbo Decoding
The BCJR algorithm, introduced in 1974 by Bahl, Cocke, Jelinek, and Raviv, is a
decoding method based on a posteriori probabilities. Initially, its adoption in prac-
tical applications was limited due to its computational complexity. However, with
the introduction of turbo codes in 1993 by Berrou, Glavieux, and Thitimajshima,
a modified version of this algorithm became fundamental in iterative decoding
techniques. The structure and the theory presented in [23] was crucial, in order to
implement the turbo decoder in the Rust project.

A convolutional or block encoder can be represented using a trellis structure,
which generates an output sequence x = (x1, x2, . . . , xN) consisting of N symbols.
Each transmitted symbol xk is associated with an input bit uk, which can take
values ±1 with an a priori probability P (uk). The reliability of these bits is
expressed through the log-likelihood ratio (LLR):

L(uk) = ln
A
P (uk = +1)
P (uk = −1)

B
. (4.4)

For uniformly distributed input bits, this ratio is initially zero. When the
sequence x is transmitted over an Additive White Gaussian Noise (AWGN) channel,
the received sequence y = (y1, y2, . . . , yN) is obtained. The BCJR algorithm
estimates the original bit sequence by computing the a posteriori LLR:

L(uk|y) = ln
A
P (uk = +1|y)
P (uk = −1|y)

B
. (4.5)
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The absolute value of L(uk|y) provides an indication of confidence in the esti-
mated bit: the larger the magnitude, the higher the reliability of the decision.

4.5.1 Computation of Joint Probabilities
The BCJR algorithm operates by evaluating the joint probability of state transitions
within the trellis. This probability is determined as follows:

P (s′, s, y) = α(s′)γ(s′, s)β(s), (4.6)

where:

• α(s′) represents the probability of reaching a given state s′ based on past
observations,

• γ(s′, s) denotes the probability of transitioning from state s′ to s, given the
received sequence,

• β(s) indicates the probability of reaching a final state from s.

4.5.2 Recursive Computation of Alpha and Beta
The BCJR algorithm employs a recursive approach to efficiently compute these
probabilities. The forward recursion (α) is given by:

αk(s) =
Ø
s′
αk−1(s′)γ(s′, s), (4.7)

while the backward recursion (β) follows the expression:

βk(s′) =
Ø
s

βk+1(s)γ(s′, s). (4.8)

These recursions allow the algorithm to propagate probability estimates both
forward and backward along the trellis, refining the likelihood values used in the
decoding process.

4.5.3 Computational Optimizations in MAP Decoding
Due to its inherent complexity, several approximations of the BCJR algorithm have
been developed to facilitate practical implementations:

• Log-MAP Algorithm: This variation preserves the original MAP formula-
tion but operates in the logarithmic domain, replacing multiplications with
additions to enhance numerical stability.
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• Max-Log-MAP Algorithm: A further simplification that approximates
the logarithmic sum using a maximum operation, reducing computational
complexity at the cost of minor performance degradation.

• Soft-Output Viterbi Algorithm (SOVA): A modified version of the
classical Viterbi algorithm that incorporates reliability information into the
path metric without explicitly computing LLRs.

4.5.4 Application in Turbo Decoding
In turbo decoding, the BCJR algorithm serves as a core component. A systematic
convolutional encoder generates multiple sets of parity bits, and decoding is per-
formed iteratively using two MAP decoders. The a posteriori LLR is decomposed
into different components:

L(uk|y) = Lcyk + La(uk) + Le(uk). (4.9)
The term Le(uk), known as extrinsic information, is exchanged between the

two decoders over multiple iterations, refining bit estimates progressively until
a convergence criterion is met. This iterative information exchange significantly
enhances decoding performance compared to non-iterative approaches.

4.6 Binary Symmetric Channel Model for Radia-
tion Induced Errors

In conventional Soft-In Soft-Out (SISO) decoding, the channel is typically modeled
as an Additive White Gaussian Noise (AWGN) channel, where Log-Likelihood
Ratios (LLRs) are computed based on received symbols affected by Gaussian noise.
However, in this implementation, the AWGN model has been replaced with a
Binary Symmetric Channel (BSC) to simulate errors induced by radiation effects
in memory systems.

In the BSC model, transmitted bits x ∈ {0,1} undergo probabilistic flipping
due to radiation-induced disturbances, leading to received bits y ∈ {0,1}. The
transition probabilities are given by:

P (y = 0|x = 0) = 1− p, P (y = 0|x = 1) = p, (4.10)

P (y = 1|x = 1) = 1− p, P (y = 1|x = 0) = p, (4.11)
where p represents the probability of bit inversion due to radiation-induced errors.
The corresponding LLRs are derived as:

LLR(y = 0) = log
A
P (y = 0|x = 0)
P (y = 0|x = 1)

B
= log

A
1− p
p

B
, (4.12)

62



Error Detection and Correction

LLR(y = 1) = log
A
P (y = 1|x = 0)
P (y = 1|x = 1)

B
= log

A
p

1− p

B
= −LLR(y = 0). (4.13)

Unlike the Gaussian noise model, where errors are continuous and follow a
probabilistic distribution, the BSC model directly represents discrete bit flips,
making it a more suitable approach for simulating the effects of radiation-induced
memory corruption. The SISO decoding process remains unchanged in structure,
utilizing the BCJR algorithm with forward-backward recursion, but now operates
under this modified channel model to reflect the targeted error environment.
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Chapter 5

Implementation of
CRYSTALS-Kyber and
Turbo Codes: A Modular
Approach

5.1 Implementation Structure of CRYSTALS-
Kyber

The project is structured to provide a modular and efficient implementation of the
CRYSTALS-Kyber post-quantum key encapsulation mechanism (KEM) in Rust.
The implementation is updated to the last NIST submission of Kyber, which is
Round 3, from the official documentation. The core components are organized into
multiple directories within the src folder, each responsible for different aspects of
the cryptographic protocol.

The functions module contains essential operations necessary for encryption
and key generation. This includes:

• compress.rs, which handles data compression techniques relevant to Kyber,

• encode.rs, responsible for encoding operations,

• hash.rs, which implements cryptographic hash functions,

• ntt.rs, managing Number Theoretic Transformations (NTT) to optimize
polynomial arithmetic, and
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• utils.rs, which includes auxiliary utility functions supporting various com-
putations.

The kem module, defined by mod.rs, implements the key encapsulation mecha-
nism, which is the core of CRYSTALS-Kyber. Similarly, the pke module contains
functionalities for public-key encryption, ensuring secure key exchanges.

The structures directory encapsulates fundamental algebraic and data repre-
sentations used in the cryptographic computations. Within this, the algebraics
submodule defines:

• mod.rs, which provides module definitions,

• bytearray.rs, managing byte-level data structures for efficient data handling,
and

• primefield.rs, which implements arithmetic operations over finite fields,
crucial for lattice-based cryptography.

This organization ensures a clean separation of concerns, promoting reusabil-
ity and efficiency while adhering to the principles of Rust’s memory safety and
performance optimization.

5.1.1 Compress and Encode functions

The provided function compress_integer(x, d, q) is a method for compressing
an integer x into a smaller range, determined by the parameter d, while incorporating
a scaling factor based on q. The function begins by calculating the value of m, which
is defined as m = 2d, representing the upper bound for the compressed result. This
bound defines the range within which the compressed integer will fall. Next, the
function computes a scaling factor f as the ratio m

q
, which is used to proportionally

adjust the input value x. The scaled value is then computed by multiplying x by f.
To ensure the result remains within the desired range, the scaled value is rounded
to the nearest integer, converted back to a usize type, and finally reduced modulo
m. This ensures that the compressed value lies between 0 and m− 1. The approach
effectively compresses x based on the specified scaling factor, providing a means of
reducing its size while retaining proportionality to the parameters d and q.
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Figure 5.1: Kyber’s Compress Function in Rust

The function encode_poly, implemented in Rust, is designed to encode a
polynomial into a byte array representation, a key operation in the Kyber encryption
scheme. It takes two parameters: a polynomial p of type Poly3329<N> and an
integer ell, which specifies the number of bits per coefficient. The function iterates
over the 256 coefficients of the polynomial p, converting each coefficient into its
binary representation and encoding it into a byte array. Initially, an empty byte
vector b is created, and a temporary variable c is set to zero, which will hold the
bits of the current byte during the encoding process. For each coefficient p[i],
the function converts it to an integer using to_int(). Then, for each coefficient,
it processes ell bits. Within each iteration, the bit value is checked, and if it
is set (i.e., if the least significant bit is 1), the corresponding bit in the current
byte c is updated. Once 8 bits have been processed (i.e., when s == 0), the
byte c is appended to the vector b, and a new byte is initialized for the next
group of bits. This process continues until all coefficients have been processed.
Finally, the function appends the last byte to the vector and returns the byte array
as ByteArray::from_bytes(b.as_slice()). This encoding method is crucial in
the Kyber scheme as it allows efficient storage and transmission of polynomial
coefficients in a compact binary format.
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Figure 5.2: Kyber’s Encoding Function in Rust

5.1.2 Number Theoretic Transform
The implementation of the Number Theoretic Transform (NTT) operates over
the finite field Z3329 and efficiently enables polynomial multiplication in the NTT
domain. The core components of the implementation include predefined constants,
transformation functions, and multiplication routines. The array ZETAS_256 stores
the 256-th roots of unity required for the NTT, while the function byte_rev(i)
serves as a placeholder for bit-reversal permutation, which is essential for ordering
input coefficients. The primary data structures include Poly3329<N>, represent-
ing polynomials in Z3329, PolyVec3329<N, D>, for vectors of polynomials, and
PolyMatrix3329<N, X, Y>, for polynomial matrices. The base case multiplica-
tion (BCM) routines perform direct multiplication in the NTT domain. The
function bcm() executes polynomial multiplication by leveraging the precomputed
roots of unity and a butterfly structure to update coefficients efficiently. The
function bcm_vec() extends this operation to vectors by computing element-wise
products and summing the results, while bcm_matrix_vec() applies the same
principle to matrix-vector multiplications. The forward transformation is han-
dled by base_ntt(), which maps a polynomial from coefficient space to the NTT
domain. This function iteratively updates coefficients using modular arithmetic
and the stored roots of unity. The function ntt_vec() extends this transforma-
tion to polynomial vectors by applying base_ntt() to each element. The inverse
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transform is implemented through rev_ntt(), which restores polynomials to their
original domain by applying inverse roots of unity and normalizing the coefficients
by (d/2) + 1. The function rev_ntt_vec() extends this operation to vectors by
applying rev_ntt() to each component. Polynomial multiplication in the NTT
domain is performed using ntt_product(), which computes a pointwise product of
two polynomials in the transformed domain, followed by an inverse NTT to recover
the final result. The functions ntt_product_vec() and ntt_product_matvec()
generalize this operation to vectors and matrix-vector products, respectively. To
ensure correctness, the implementation includes two validation tests. The function
rev_then_ntt() verifies that applying the inverse NTT followed by the forward
transform correctly restores the original polynomial. Applying ntt_then_rev()
guarantees that performing the NTT followed by its inverse reproduces the original
input polynomial, thereby verifying that the transformation is both consistent and
reversible.

5.1.3 Key Encapsulation Mechanism (KEM)
The structure KEM<N, K> encapsulates the underlying Public Key Encryption
(PKE) scheme and defines essential parameters such as key sizes, ciphertext size,
and security parameters.

The keygen() function follows Algorithm 7 of the Kyber specification, generating
a public-secret key pair. It first derives a random seed z and invokes the PKE’s
keygen() to generate sk_prime and pk. Hash values h1 and h2 of the public key
are computed using the hash function h(), and the final secret key is constructed
by concatenating sk_prime, pk, h1, h2, and z.

The encaps() function (Algorithm 8) generates a ciphertext and shared key
based on the recipient’s public key. A random message m is hashed, and the function
g() is applied to derive a key component k_bar and randomness r. The ciphertext
c is generated using the PKE encryption function. A key derivation function
(kdf()) then derives the final shared key from k_bar and a hash of the ciphertext.

The decaps() function (Algorithm 9) retrieves the shared key from the ciphertext
and secret key. The secret key is split into components: sk_prime, pk, a hash
of pk, and z. The ciphertext is decrypted to obtain m, and the same derivation
process as in encaps() is performed to recompute k_bar and a new ciphertext
c_prime. If c_prime matches the received ciphertext, the correct shared key
is derived; otherwise, a fallback mechanism using z ensures resistance against
chosen-ciphertext attacks.

The implementation includes test cases verifying the correctness of key genera-
tion, encapsulation, and decapsulation for different security levels (Kyber512 and
Kyber768). The tests ensure that after encapsulation and decapsulation, the shared
keys remain consistent, confirming the correctness of the implementation. The
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Rust implementation effectively follows the Kyber specification while leveraging
modularization and type safety for efficiency and security.

5.1.4 Public Key Encryption (PKE)

The structure PKE<N, K> encapsulates the cryptographic parameters such as mod-
ulus q, noise distribution parameter eta, and compression parameters du and dv,
which vary across different security levels.

The keygen() function (Algorithm 4, p. 9) generates a public-secret key pair.
It first derives a 32-byte random seed d, from which two auxiliary values, rho and
sigma, are computed via the function g(). The public matrix A is deterministically
generated from rho using an extendable output function (xof()), ensuring security
against key reuse attacks. The secret and error polynomials, s and e, are sampled
from a centered binomial distribution using the function cbd(), ensuring small
norm constraints. After applying the Number Theoretic Transform (NTT) to
obtain s_hat and e_hat, the public key is computed as t̂ = A · ŝ+ ê. The secret
key is stored as s_hat, while the public key consists of t_hat and rho.

The encrypt() function (Algorithm 5, p. 10) generates a ciphertext from
a given public key, message, and randomness. The public key is split into t
and rho, and the matrix A_t is regenerated using xof(). The randomness r
is used to sample ephemeral polynomials, which are transformed via NTT to
obtain r_hat. The ciphertext components are computed as u = AT · r̂ + e1 and
v = tT · r̂ + e2 + Decompress(m), where e1 and e2 are noise terms ensuring
security. The ciphertext is finally compressed using compress_polyvec() and
compress_poly().

The decrypt() function (Algorithm 6, p. 10) recovers the plaintext from a
given ciphertext and secret key. The ciphertext components are decompressed and
the secret key is retrieved. Using NTT, the intermediate polynomial x = sT · û
is computed, and the message is reconstructed as p = v − x. The plaintext is
recovered via decompression and output in its encoded form.

The implementation includes test cases validating key generation, encryption,
and decryption for Kyber512 and Kyber768 security levels. The encryption-
decryption consistency test ensures that decrypting an encrypted message yields
the original plaintext, demonstrating correctness and compliance with the Kyber
standard.

5.1.5 Integration Testing

Some standard integration tests have been written, in order to verify the correctness
of encryption and decryption functions in the Kyber implementation by simulating
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a real-world use case. The tests encompass both the Key Encapsulation Mechanism
and Public Key Encryption functionalities.

For KEM, the test follows the standard key exchange protocol: first, Alice
generates a key pair (sk, pk) using keygen(), keeping sk secret while publish-
ing pk. Bob uses encaps() with Alice’s public key to derive a shared secret k
and an encapsulated ciphertext c, which he sends to Alice. Alice then applies
decaps() with her secret key to recover k, ensuring correctness via assert_eq!(k,
k_recovered).

For PKE: first, Bob generates a random message m and randomness r. Alice
produces a key pair via keygen() and shares pk. Bob encrypts m with encrypt()
using pk and r, storing the ciphertext. The ciphertext is then appended to a file,
simulating real-world storage or transmission. Alice decrypts it with decrypt()
using sk, verifying correctness with assert_eq!(m, dec). This process ensures
that decryption consistently retrieves the original message across multiple runs,
validating both functional correctness and security compliance with the Kyber
standard.

5.2 Implementation Structure of Turbo Codes

The turbof directory in the project contains the core implementation of Turbo
Codes in Rust, structured to ensure modularity and maintainability. The module
is organized into multiple files, each handling a specific aspect of the encoding
and decoding processes. The primary components include bsc_channel.rs, re-
sponsible for simulating a binary symmetric channel, and rsc_encoder.rs, which
implements a recursive systematic convolutional (RSC) encoder. The decoding
functionality is split across siso_decoder.rs and turbo_decoder.rs, where the
former manages soft-input soft-output decoding, while the latter coordinates the
iterative decoding process. Additionally, turbo_utils.rs provides functions that
handle alpha and beta recursion, random input sequence and other operations
on ByteArrays. turbo_simulation.rs has a crucial structure, since it handles
the error counts on bits and blocks, the simulation length in turbo-blocks and
all the parameters applied to the algorithm, in order to analyze performance. In
tests/integration_test.rs some integration tests are provided, in order to con-
trol the flow of the whole encryption-decryption operation employed with the error
correction procedure. This modular design allows for efficient experimentation with
different encoding and decoding strategies while maintaining a clean separation of
concerns within the implementation.
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5.2.1 Generating Input Sequence
The function generate_pn_sequence implements a pseudo-random number (PN)
sequence generator based on a Linear Feedback Shift Register (LFSR). This function
takes as input two parameters: ndeg, representing the degree of the polynomial,
and ngen, which selects the specific set of polynomial coefficients to be used. The
implementation is structured as follows.

Initially, three predefined sets of polynomial coefficients (pol1, pol2, and pol3)
are defined in octal form. The selection of the polynomial set is determined by
the ngen parameter. The dig vector provides a mapping between the polynomial
degree and the number of active coefficients used in the sequence generation.

The function then constructs the characteristic polynomial polcn through an
iterative process, where each coefficient is expanded according to predefined rules
that map its value to specific bit patterns. This polynomial is used to determine
feedback connections in the LFSR.

The sequence generation process starts by initializing the LFSR with all ones.
For each iteration, a new bit is computed as a function of previous bits, following
the feedback structure dictated by polcn. The final sequence, extracted from the
LFSR evolution, contains 2ndeg − 1 elements, ensuring maximal-length sequences
given appropriate polynomial choices.

This implementation leverages recursion and bitwise operations to efficiently
compute sequences, which are widely used in cryptographic protocols and error
correction coding.

5.2.2 Interleaver Functions
Several functions are defined in the project, for interleaving and deinterleaving
sequences of integers and floating-point numbers. The primary functions, mapint
and mapint_f64, perform interleaving operations on integer and floating-point
vectors, respectively, while mapdint and mapdint_f64 execute the corresponding
deinterleaving processes.

The interleaving process is structured around a permutation vector that deter-
mines the reordering of elements within a data block. The algorithm partitions
the input sequence into smaller blocks of size determined by the permutation vec-
tor, iteratively distributing elements based on predefined patterns. Similarly, the
deinterleaving functions reverse this process, reconstructing the original ordering of
elements from the interleaved structure.

The implementation leverages vector indexing and slicing to manipulate subar-
rays dynamically. Placeholder elements are temporarily inserted to handle indexing
consistency, and conditional logic ensures correct assignments based on specific
permutation rules. The algorithm also incorporates range checks to prevent out-of-
bounds access, ensuring robustness in data handling.
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These functions are crucial in communication systems and data processing,
where interleaving is employed to mitigate burst errors and enhance error correction
performance. The structured yet flexible design of the Rust implementation enables
efficient and scalable interleaving and deinterleaving operations.

5.2.3 Turbo Encoder
The TurboEncoder is defined as a struct that encapsulates the core components
necessary for turbo encoding, a powerful error-correction technique widely used
in digital communication systems. The structure consists of an input sequence, a
permutation vector, and two Recursive Systematic Convolutional (RSC) encoders.
The constructor initializes the encoder by instantiating two RSC encoders, ensuring
that they match the length of the input sequence. The encode function performs
the encoding process in three main steps: first, the input sequence is encoded
by the first RSC encoder, producing both systematic and parity bits. Then, the
interleaved version of the input sequence is generated using a mapping function,
which applies the permutation vector. Finally, the permuted sequence is encoded
by the second RSC encoder, yielding another set of parity bits. The function
ultimately returns the original systematic bits, the interleaved sequence, and the
parity bits from both encoders, forming the complete turbo-coded output.

RSC Encoders

The RSCEncoder struct represents a convolutional encoder with memory, maintain-
ing an internal state vector that evolves based on the input sequence. The encoding
functions, encode1 and encode2, follow a structured approach: they iteratively
update the encoder’s internal state and compute parity bits while ensuring sys-
tematic bit extension and trellis termination. The first encoder operates directly
on the input, while the second processes a permuted version of the sequence to
introduce interleaving.

5.2.4 Turbo Decoder
The Turbo Decoder is implemented as a Rust struct, encapsulating the necessary
components for iterative decoding. It includes two instances of the SISO decoder
and vectors to store the received signals, extrinsic information, and interleaved data.
The decoder is initialized with the received sequences, coding parameters, and an
interleaver permutation. Upon initialization, the received sequence undergoes a
simulated transmission through a Binary Symmetric Channel (BSC), where
errors are introduced probabilistically. The decoder computes a priori log-likelihood
ratios (LLRs) for systematic and parity bits, serving as inputs for the iterative
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process. The decoding algorithm follows a sequence of iterative exchanges between
two SISO decoders:

1. The first SISO decoder processes the systematic and parity inputs, generating
an a posteriori probability (APP) estimate.

2. The extrinsic information from the first decoder is interleaved and provided
as an input to the second SISO decoder.

3. The second SISO decoder processes the interleaved information, producing
refined estimates.

4. The updated extrinsic information is deinterleaved and fed back into the
first decoder.

5. This iterative process continues for a predefined number of iterations, refining
the estimated transmitted sequence.

The decoder utilizes an interleaver to permute extrinsic information between
iterations. The permutation function is applied after the first decoding step and
reversed before feedback into the first decoder. This permutation enhances the
decoder’s ability to correct burst errors by redistributing them across different
iterations. At each iteration, the decoder evaluates the bit error rate (BER)
by comparing the estimated sequence with the transmitted sequence. The process
stops when a predefined number of iterations is reached or when the BER stabilizes,
indicating convergence. This Rust-based Turbo Decoder implementation efficiently
applies iterative decoding using SISO decoders and interleaving mechanisms to
enhance error correction performance. By exchanging soft information between
decoders, the system improves the reliability of received messages, making it suitable
for applications in modern digital communication systems.

SISO Decoder

The SISODecoder is implemented as a Rust struct, encapsulating the logic for
decoding based on log-likelihood ratio (LLR) computations. The core of the
decoding process consists of three main steps:

1. Forward recursion (Alpha computation)

2. Backward recursion (Beta computation)

3. A posteriori probability (APP) computation for bit estimation

The Alpha recursion computes the forward probability for each state transition
in the trellis.
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• Initialization is performed by setting initial state probabilities.

• At each time step, state probabilities are updated based on previous states
and transition metrics.

• Normalization ensures numerical stability.

• The recursion extends through the entire received sequence and incorporates
trellis termination conditions.

The Beta recursion follows a similar approach but operates in reverse:

• Initialization starts from the end of the sequence, assuming the final state
probabilities.

• The backward pass iterates to determine the probabilities of each state at
previous time steps.

• To improve efficiency, the recursion is processed in blocks, ensuring optimized
memory handling.

Once the alpha and beta values are computed, the decoder determines the most
likely transmitted bits:

• Log-likelihood ratios (LLRs) are computed for each bit using the extrinsic
information and trellis states.

• The maximum likelihood decision rule is applied to estimate the transmitted
bit sequence.

• A thresholding mechanism is used to finalize the decision for each bit.

To evaluate decoding performance, the decoder compares the estimated bit
sequence with the original transmitted sequence:

• A bit error count is computed by comparing the estimated bits with the
reference.

• The resulting metric allows for assessing decoder performance in iterative
decoding scenarios.

The Rust-based SISO Decoder effectively applies iterative probability-based
decoding to refine received signals. The combination of forward recursion,
backward recursion, and APP computation enables the decoder to provide
highly reliable bit estimates, making it a key component in Turbo Decoding
architectures.
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5.3 User Guide
This section is occupied by the readMe file written on the Github repository, in
order to guide the user.

5.3.1 Read Me
This project implements CRYSTALS-Kyber, a post-quantum cryptographic algo-
rithm, along with Turbo Codes, an advanced error correction technique used in
communication systems.

• Kyber is a lattice-based key encapsulation mechanism (KEM) that provides
secure encryption resistant to quantum attacks.

• Turbo Codes use Recursive Systematic Convolutional (RSC) encoders and
iterative decoding to achieve near-optimal error correction performance in
noisy channels.

The goal of this project is to implement a simulation of a Kyber post-quantum
encryption scheme, to be used in satellite communication in space. Rust is
the new programming language frontier and is now considered the future of space
missions. The use of Turbo Codes allows for detecting and correcting errors caused
by radiation in space, providing high performance.

5.3.2 Project Structure
The repository is structured into two main components:

Kyber Implementation (src/kcimpl/)

This folder contains the Kyber cryptographic implementation.

kem/

• mod.rs: Main module for the Kyber Key Encapsulation Mechanism
(KEM).

functions/

• mod.rs: Module handling.

• compress.rs: Implements Kyber’s compression function, as defined in the
official documentation.
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• encode.rs: Implements Kyber’s encoding function.

• hash.rs: Employes hash functions from the SHA-3 standard.

• ntt.rs: Implements the Number Theoretic Transform (NTT).

• utils.rs: Implements helper functions such as hash and PRF.

pke/

• mod.rs: Implements Public Key Encryption (PKE) using Kyber.

structures/

• algebraics/: Contains mathematical structures used in Kyber.

– bytearray.rs: Handles byte-level operations.
– primefield.rs: Implements operations over finite fields, crucial for cryp-

tographic computations.

5.3.3 Turbo Codes Implementation (src/turbof/)
This folder contains the Turbo Codes implementation for error correction.

• bsc_channel.rs: simulates a Binary Symmetric Channel (BSC), intro-
ducing controlled errors for testing.

• mapints.rs: implements interleaving functions to permute input bits and
improve error correction.

• rsc_encoder.rs: implements the Recursive Systematic Convolutional
(RSC) Encoder, the core building block of Turbo Codes.

• siso_decoder.rs: implements the Soft-Input Soft-Output (SISO) De-
coder for iterative decoding.

• turbo_encoder.rs: implements the Turbo Encoder, which consists of two
RSC encoders and an interleaver.

• turbo_decoder.rs: implements the Turbo Decoder, performing iterative
decoding for error correction.

• turbo_simulation.rs: runs simulations to evaluate Turbo Codes’ perfor-
mance under different channel conditions.

• utils.rs: provides helper functions for Turbo Codes processing.
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5.3.4 Other Files
Test Files (tests/)

• integration_test.rs: Contains integration tests for Turbo Codes and Kyber
implementations.

Data Files (.txt)

• input.txt: Example input data.

• interleaver.txt: Defines interleaving patterns for Turbo Codes.

• kyber_keys.txt: Stores cryptographic keys used in the Kyber algorithm.

• output.txt: Stores probabilities after correction, number of errors, bit and
block error rate, and the real uncoded probability.

Kyber Test (.rs)

• lib.rs: Stores tests for Kyber KEM and PKE schemes. It can be used to
simulate communication between Alice and Bob.

5.3.5 How to Use
In lib.rs, the user can configure the CRYSTALS-Kyber simulation, choosing
the complexity of the algorithm and running tests for KEM and PKE.

In integration_tests, various tests exist to validate the Turbo Code algorithm.
The function test_turbo_simulation_dyn() is the main test, running multiple
simulations to gather statistical data.

Modifiable parameters:

• simulation_length

• block_size

• error_probability

The interleaver is set to the same length as the turbo-block. The interleaver is
read from the file interleaver.txt (64,000 bits length). The results of simulations
are stored in the output.txt file.

By assuming that the randomly generated input consists of uncorrelated bits,
there is no difference between using a random sequence and using Kyber’s keys
(public key, secret key, or ciphertext). However, in turbo_simulation.rs, the
code for using Kyber keys as input is commented out and can be activated at lines
81-82 by using an input.txt file.
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Chapter 6

Results

6.1 Introduction
In this chapter, a comprehensive analysis of the Rust implementation is presented,
focusing on two key aspects: the performance evaluation of the Crystals-Kyber
algorithm and the simulation outcomes of Turbo Codes. The first section examines
various performance metrics, including computational efficiency, key generation
time, encryption/decryption latency, and security robustness, derived from the
experimental data. The results are presented through graphical representations
that illustrate the code’s behavior over time after a sufficient number of executions.
In the second section, the simulated behavior of Turbo Codes under different signal-
to-noise ratio (SNR) conditions and error probabilities is analyzed, evaluating their
error correction capabilities and decoding latency. The graphical analysis enables a
comparative study of the efficiency of Turbo Codes in high-noise environments and
their potential integration with post-quantum encryption schemes. The extensive
literature on Turbo Codes allows for a comparison with existing studies, validating
the current results and ensuring their consistency with expected performance. Ulti-
mately, this project aims to develop a functional and efficient Rust implementation,
providing a solid foundation for further optimization and real-world deployment.

6.2 CRYSTALS-Kyber Performance Analysis
The performance evaluation of the Rust implementation of the Crystals-Kyber
algorithm, as illustrated in the provided figures, highlights key aspects of computa-
tional efficiency. The first graph, depicting CPU usage normalized per iteration,
shows an initial peak followed by a rapid stabilization around 20%. This trend
suggests that the system experiences an initial overhead, likely due to resource
allocation and other optimizations inherent in Rust’s execution model. As execution
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progresses, the CPU utilization remains relatively stable with minor fluctuations,
indicating a consistent and predictable computational demand. The normalized
view is fundamental for analyzing CPU usage independently of the underlying
hardware.

Figure 6.1: CPU Usage Normalized Average per Iteration

Figure 6.2 shows the raw CPU utilization based on the actual cores employed
by the machine.

Figure 6.3, illustrating execution time per iteration, exhibits an average runtime
oscillating between 19 and 22 milliseconds, with moderate variability. The decreas-
ing trend in execution time fluctuations over iterations suggests an optimization
effect, potentially attributed to caching mechanisms and branch prediction improve-
ments. Overall, these results confirm that the Rust-based implementation achieves
a balance between computational efficiency and execution stability, demonstrating
its suitability for post-quantum cryptographic applications. Further optimiza-
tions could focus on reducing execution time variability to enhance performance
consistency, particularly in latency-sensitive scenarios.

The memory usage per iteration is depicted in figure 6.4. The graph shows
a significant peak in memory consumption at the initial iteration, reaching ap-
proximately 1.2 × 106 KB. This behavior suggests a high allocation cost at the
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Figure 6.2: Raw CPU Utilization per Iteration

beginning of the execution, possibly due to the initialization of large data struc-
tures such as polynomials, key pairs, or precomputed tables. After this initial
peak, the memory usage stabilizes at a much lower level, with occasional small
spikes. These fluctuations could be attributed to the dynamic allocation and
deallocation of temporary buffers or the execution of cryptographic transformations.
The overall trend indicates that, once the fundamental structures are set up, the
implementation maintains a relatively low memory footprint, which is crucial for
resource-constrained environments such as embedded and space applications.
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Figure 6.3: Execution Time per Iteration

Figure 6.4: Memory Usage per Iteration
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6.3 Turbo Code Performance Analysis
This section presents the performance analysis of Turbo Codes implemented in
Rust, focusing on the impact of varying interleaver lengths (K) on bit error rate
(BER) as a function of error probability (1− P ). The results are visualized in the
following graphs. The findings highlight the coding gain achieved with increasing
block lengths and the substantial improvement over uncoded transmission.

The key parameters are:

• Total simulated block length: 1,000,000 bits

• Interleaver lengths (K): {6400, 10000, 16000, 32000, 64000}

• Channel: Binary symmetric channel (BSC) with varying error probability
(1− P )

• Decoding: Log-MAP iterative decoding

• Performance metric: Bit Error Rate (BER)

Figure 6.5 illustrates the BER performance of Turbo Codes as a function of
error probability (1− P ) for different values of K. The key observations are:

• As K increases, the BER performance improves significantly, particularly
in the high reliability region (1 − P > 0.85). This is expected, as larger
interleaver sizes provide better randomness, reducing error propagation in
iterative decoding.

• The uncoded bit error rate remains consistently high across all error probabil-
ities, demonstrating the necessity of coding.

• For small values of K, the Turbo Code provides limited coding gain. However,
as K increases to 64000, the BER drops to approximately 10−4, highlighting
the advantages of long interleavers.

• The waterfall region, where the BER rapidly declines, occurs at approximately
1− P ≈ 0.86 for large K, p=1.4, aligning with typical Turbo Code behavior.
This value of p is significantly higher than the error rate induced by space
radiations, showing that the proposed scheme is able to protect data stored in
a satellite memory from errors due to space radiations.

• As expected, there is a small region around 1 − P ≈ 0.81 where the Turbo
Code is no longer able to correct errors efficiently. This occurs because the
decoding algorithm relies on previously received information, which becomes
less reliable in this regime.
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Figure 6.5: Simulation with same input sequence varying K

The figure 6.6 illustrates the BER and BLER for an interleaver length of
K = 64000 as a function of the error probability P . As expected, the BER (red
curve) decreases significantly for P > 0.86, indicating the strong error-correcting
capability of Turbo Codes in this region. The BLER (blue curve) follows a similar
trend but remains consistently higher, as an entire block must be error-free to avoid
a block error. The uncoded error probability (black curve) remains nearly constant
across all values of P , underscoring the necessity of channel coding.
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Figure 6.6: Bit Error Rate and Block Error Rate for Turbo Codes with interleaver
length K = 64000

The figure 6.7 examines BLER for varying interleaver lengths K. As K increases,
the performance improves, with a more pronounced waterfall region occurring at
higher values of 1 − P . This behavior confirms that larger interleavers enhance
randomness in the encoded sequence, facilitating better iterative decoding perfor-
mance. For small values of K, BLER remains high even in the low-error probability
region, highlighting the limitations of shorter interleavers in achieving reliable
transmission.
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Figure 6.7: Block Error Rate (BLER) for Turbo Codes with different interleaver
lengths K as a function of 1− P .

The figure 6.8 presents a comparative analysis of error rates in a Turbo coding
scheme with a total codeword length of 1,000,000 and a block length of K =
64,000. The bit error rate (BER) and block error rate (BLER) are shown alongside
theoretical estimates derived from the probability of an uncoded block error. The
theoretical block error probability PBL is computed using the formula:

PBL = 1− (1− pB)K , (6.1)

where pB denotes the probability of a single bit error, and K represents the block
length. The results indicate that the uncoded error probability remains relatively
high, while the application of Turbo coding significantly reduces both BER and
BLER, especially at higher values of (1 − Perror). Notably, the simulated block
error rate aligns well with the theoretical predictions at lower error probabilities
but diverges as the coding gain improves. This divergence suggests the impact
of interleaving and iterative decoding in practical Turbo-coded systems, which
enhance error correction beyond theoretical uncoded estimations.
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Figure 6.8: Comparison of theoretical and simulated error rates in a Turbo-coded
system.
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Chapter 7

Conclusions

The results presented in the previous chapter are consistent with the existing
literature on turbo codes theory and CRYSTALS-Kyber software implementations.
They support the ultimate goal of this project: developing a software framework
that facilitates the adoption of Rust in harsh environments, enhancing security and
reliability by leveraging the potential of emerging technologies.

There are numerous avenues for further exploration and testing, ranging from the
utilization of specialized hardware architectures to the deployment of purpose-built
computing units and real satellite communication protocols. Future research should
also focus on validating these approaches through rigorous testing under strict
operational constraints, ensuring robustness and resilience in space applications.

This work has demonstrated the feasibility of employing Rust for secure and
reliable cryptographic and error-correcting code implementations in space systems.
By integrating state-of-the-art post-quantum cryptography with high-performance
error correction techniques, the work presented here lays the groundwork for
subsequent studies that will further optimize these methods, bridging the gap
between theoretical developments and their practical deployment in next-generation
aerospace technologies.
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Code Structure

The implementation of the proposed scheme is structured in a modular and hierar-
chical manner to ensure clarity, maintainability, and extensibility. The project is
organized into multiple directories, each encapsulating a specific set of functionali-
ties.

The src directory contains the main implementation files, structured as follows:

• functions: Includes fundamental operations such as:

– compress.rs - Implements data compression techniques.
– encode.rs - Handles encoding functionalities.
– hash.rs - Provides cryptographic hash functions.
– ntt.rs - Implements the Number-Theoretic Transform (NTT).
– utils.rs - Contains utility functions used throughout the project.

• kem: Manages the Key Encapsulation Mechanism (KEM).

– mod.rs - Main module handling KEM operations.

• pke/mod.rs: Implements public-key encryption functionalities.

• structures: Defines algebraic and mathematical structures.

– algebraics/mod.rs - Centralizes algebraic operations.
– matrix.rs - Implements matrix operations.
– polynomial.rs - Provides polynomial arithmetic.
– polyvec.rs - Handles polynomial vector computations.
– bytearray.rs - Defines a custom byte array structure.
– primefield.rs - Implements operations over finite fields.
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• turbof: Implements Turbo Codes for error correction.

– mod.rs - Main module for Turbo Codes.
– bsc_channel.rs - Models the Binary Symmetric Channel (BSC).
– mapints.rs - Contains mapping and interleaving functions.
– rsc_encoder.rs - Implements Recursive Systematic Convolutional en-

coding.
– siso_decoder.rs - Implements Soft-Input Soft-Output decoding.
– turbo_decoder.rs - Implements Turbo decoding.
– turbo_encoder.rs - Implements Turbo encoding.
– turbo_simulation.rs - Provides a framework for Turbo Code simula-

tions.
– utils.rs - Contains additional helper functions.

Additionally, the project contains several configuration and data files:

• input.txt - Input data for simulations.

• interleaver.txt - Interleaver parameters.

• kyber_keys.txt - Precomputed cryptographic keys.

• output.txt - Stores the results of executed tests.

• Cargo.toml - Rust package configuration file.

• Cargo.lock - Dependency lock file.

• LICENSE - License file of the project.

The project follows best practices in Rust development, leveraging traits and
generics to promote flexibility and efficiency. The modular design enhances code
reusability, simplifies debugging and testing, and allows for easy extension of
functionalities. Integration tests are included in the tests directory to validate
the correctness and performance of the implementation.

89





Acknowledgements

I would like to thank my supervisors, Prof. Marina and Prof. Fred, for guiding
me through this project, for all the good coffee, and for supporting my artistic
aspirations. I am also grateful to Prof. Seth for letting me play his guitar in the
office. A big thank you to all the wonderful people I met along this journey on and
off stage: Tia, Jacopo, Barbara, Troy, Amar, Don, Dane, Mort, Lucas, Luz and
many others.
Until we meet again.
Grazie a Marco, Michele, Francesca, Giulia, Paola, Giorgio, Samuele, Andrea,
Arianna, Giulia, Jacopo, Aurora, Riccardo, Lorenzo, Andrea, Francesco. Grazie
ai Cinemini e tutte le persone che sono diventate una seconda famiglia. Grazie a
Serena, Stefano, Luciano, per avermi accolto nella scena torinese quando ancora
non avevo vinto Martina Franca. Grazie ad Angelo, Andrea e tutte le persone
con cui ho condiviso parte di questa esperienza. Grazie di cuore alla mia famiglia,
ai miei genitori: tutti i traguardi che ho raggiunto sono vostri, e tutti quelli che
raggiungerò.

91



Bibliography

[1] Atif Farid Mohammad, Pamela Almeida, Yasmin Soliman, Ajay Sadhu,
Keerthi Kata, and Jeremy Straub. «Secure Satellite Database Transmis-
sion». In: 2019 IEEE Aerospace Conference. 2019, p. 1. doi: 10.1109/AERO.
2019.8741992 (cit. on p. 2).

[2] J.T. Wallmark and S.M. Marcus. «Minimum size and maximum packaging
density of non-redundant semiconductor devices». In: Proceedings of the IRE
50 (1962), pp. 286–298. doi: 10.1109/AERO.2019.8741992 (cit. on p. 2).

[3] Jan Budroweit, Mattis Paul Jaksch, and Maciej Sznajder. «Proton Induced
Single Event Effect Characterization on a Highly Integrated RF-Transceiver».
In: Avionic Systems (2019) (cit. on p. 4).

[4] Federico Faccio. Radiation effects in devices and technologies. Lecture notes
on radiation effects at CERN. 2005 (cit. on p. 5).

[5] Kul Bhasin and Jeffrey Hayden. «Developing Architectures and Technologies
for an Evolvable NASA Space Communication Infrastructure». In: NASA/TM—2004-
213108 (2004) (cit. on p. 5).

[6] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010 (cit. on p. 7).

[7] The Rust Standard Library (cit. on pp. 11, 12).
[8] Matt Miller. «BlueHatIL». In: Trends, challenge, and shifts in software

vulnerability mitigation. 2019 (cit. on p. 13).
[9] IBM. Cost of a Data Breach Report 2024. Tech. rep. IBM, 2024 (cit. on p. 12).

[10] ONCD. «Back to the Building Blocks: A Path Toward Secure and Measurable
Software». In: ONCD (2024) (cit. on p. 19).

[11] Lukas Seidel and Julian Beier. «Bringing Rust to Safety-Critical Systems in
Space». In: IEEE (2024) (cit. on p. 19).

[12] ESA and DLR. cRustacea in Space - Co-operative RUST and C embedded
applications in Space - Theory and Practice. Tech. rep. ESA, 2024 (cit. on
p. 21).

92

https://doi.org/10.1109/AERO.2019.8741992
https://doi.org/10.1109/AERO.2019.8741992
https://doi.org/10.1109/AERO.2019.8741992


BIBLIOGRAPHY

[13] Joseph H. Silverman. An Introduction to Lattices, Lattice Reduction, and
Lattice-Based Cryptography. Department of Mathematics, Box 1917, Brown
University, Providence, RI 02912 USA, 1997 (cit. on p. 23).

[14] Daniele Micciancio. «Minkowski’s Theorem». In: CSE (2014) (cit. on p. 24).
[15] João Ribeiro. «Notes 2: Cryptography from LWE and SIS». In: FCT-UNL

(2023) (cit. on p. 27).
[16] Vadim Lyubashevsky. Basic Lattice Cryptography The concepts behind Kyber(ML-

KEM) and Dilithium (ML-DSA). IBM Research Europe, Zurich, 2025 (cit. on
p. 29).

[17] João Ribeiro. «Notes 3 & 4: Hardness of SIS, LWE, and lattice problems».
In: FCT-UNL (2024) (cit. on p. 33).

[18] CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation
(cit. on pp. 34, 40).

[19] Ashraf I. Mahroos Moataz M. Salah Salah S. El-Agooz. «Illuminating the
Mechanism of Iterative Turbo Code Decoding Process». In: 12-th International
Conference on Aerospace Sciences & Aviation Technology (2007) (cit. on pp. 45,
58).

[20] Juntao Ni. «Turbo Codes in Satellite Communication». In: Electronic Infor-
mation Engineering Beihang University (2012) (cit. on p. 45).

[21] Jakub Sedy, Pavel Silhavy, Ondrej Krajsa, and Ondrej Hrouza. «PERFOR-
MANCE ANALYSIS OF TURBO CODES». In: Communications - Scientific
letters of the University of Zilina (2013) (cit. on p. 46).

[22] Marina Mondin Fred Daneshgaran. «Design of Interleavers for Turbo Codes:
Iterative Interleaver Growth Algorithms of Polynomial Complexity». In: IEEE
TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, (1999)
(cit. on pp. 53, 54).

[23] Silvio A. Abrantes. «From BCJR to turbo decoding: MAP algorithms made
easier». In: Information and Telecommunication Technology Center (ITTC)
of the University of Kansas (2004) (cit. on p. 60).

93


	List of Tables
	List of Figures
	Introduction
	Thesis Objectives
	Context
	Space Radiations
	Single-Event Effects (SEEs)

	Realistic Simulation
	Quantum Computing
	Quantum Threat

	Reliable Data Transmission in Space: Challenges and Solutions
	Error Detection and Correction Techniques


	Rust Programming Language
	Introduction
	Main Features
	Security Vulnerabilities Based on Unsafe Memory Access
	Common Programming Concepts

	The Role of Rust in Advancing Space Applications
	The Embedded Rust Ecosystem
	Past Projects
	What's Next


	Crystals Kyber Algorithm
	Main Mathematical Results
	Lattices and Fundamental Properties
	Lattice Problems
	Shortest Vector Problem
	Closest Vector Problem
	Shortest Independent Vector Problem
	Short Integer Problem
	Learning With Errors

	Hardness Proof By Reduction
	Computational Complexity
	LWE Hardness By Reduction

	NIST Submission
	Kyber.CPAPKE: Encryption Scheme
	Design Decisions
	 Kyber's Fujisaki-Okamoto Transform

	Security Analysis
	Attacks on the Underlying MLWE Problem
	The SVP Oracle
	The BKZ Algorithm
	Solving the SVP Oracle: Enumeration and Sieving
	Attacks against MLWE
	Algebraic Attacks on Kyber


	Error Detection and Correction
	Performance Comparison
	Turbo Encoding
	Recursive Systematic Convolutional Encoder
	Trellis Diagram

	Interleaver Design
	Minimal-Delay Interleaving and Causality
	Definition and Structure of the Finite-State Permuter (FSP)
	Interleaver Construction

	Input Sequence Generator
	Assumption of Uncorrelated Input Bits

	Turbo Decoding
	SISO Decoder

	The BCJR Algorithm in Turbo Decoding
	Computation of Joint Probabilities
	Recursive Computation of Alpha and Beta
	Computational Optimizations in MAP Decoding
	Application in Turbo Decoding

	Binary Symmetric Channel Model for Radiation Induced Errors

	Implementation of CRYSTALS-Kyber and Turbo Codes: A Modular Approach
	Implementation Structure of CRYSTALS-Kyber
	Compress and Encode functions
	Number Theoretic Transform
	Key Encapsulation Mechanism (KEM)
	Public Key Encryption (PKE)
	Integration Testing

	Implementation Structure of Turbo Codes
	Generating Input Sequence
	Interleaver Functions
	Turbo Encoder
	Turbo Decoder

	User Guide
	Read Me
	Project Structure
	Turbo Codes Implementation (src/turbof/)
	Other Files
	How to Use


	Results
	Introduction
	CRYSTALS-Kyber Performance Analysis
	Turbo Code Performance Analysis

	Conclusions
	Code Structure
	Bibliography

