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Abstract

This thesis presents a framework for AI-assisted storyboarding that leverages state-
of-the-art text-to-image diffusion models and efficient fine-tuning techniques to
generate visually coherent and narrative-consistent storyboards. The work begins
with a comprehensive review of image synthesis architectures—from VAEs, to
GANs to diffusion models—and explores critical components such as attention
mechanisms, latent diffusion, and CLIP-based conditioning, establishing a solid
technical foundation for the study. Building on this background, the thesis surveys
contemporary text-to-image systems (Stable Diffusion, GLIDE, DALL-E, Imagen,
MidJourney) and fine-tuning methodologies such as Dreambooth, LoRA, Textual
Inversion, Custom Diffusion, ControlNet.

The work then delves into storyboarding by investigating how shot types shape
visual narratives and by synthesizing insights from recent approaches like Story-
GAN, AR-LDM and StoryDALL-E. These findings directly inform the design of an
interactive storyboard generation system that aims to maintain character consis-
tency and shot type fidelity across frames. To achieve these goals, the proposed
approach combines efficient Dreambooth LoRA fine-tuning with a targeted prompt
engineering and inpainting strategy. High-quality training datasets are constructed
from curated movie stills and synthetic character images to refine a pre-trained
Stable Diffusion model. The interactive storyboarding system proposed in the work
integrates automated prompt refinement via ChatGPT, user control mechanisms,
and an inpainting-based module for post-generation adjustments, enabling iterative
enhancement of storyboard frames.

Experimental evaluations, including quantitative metrics and human assessments,
demonstrate that the proposed method effectively preserves the stylistic character-
istics of various shot types and the identity consistency of characters. Overall, this
work leverages personalized text-to-image generation to offer a practical, accessible,
and open-source tool for pre-production and creative storytelling, providing a
solution that bridges the gap between high-level narrative intent and detailed visual
execution.
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Chapter 1

Introduction

Storyboarding is a cornerstone of visual storytelling, providing filmmakers, ani-
mators, and content creators with a critical pre-production tool. Traditionally,
storyboards have been crafted by hand or with limited digital assistance, requiring
extensive time resources and laborious manual input. In today’s fast-paced cre-
ative environment, new methods for efficient, automated storyboard generation are
finding fertile ground.

Recent advancements in the domain of text-to-image generation —particularly
through diffusion models— offer a promising solution. These models can synthesize
visuals directly from textual descriptions and have rapidly progressed in their
ability to generate highly detailed, semantically rich images. When combined with
novel personalization techniques, diffusion models show remarkable potential in
learning new concepts and reproducing them across diverse scenes. Building on
these advances, this thesis proposes a framework for AI-assisted storyboarding that
bridges the gap between high-level narrative intent and frame-level visual output.

The proposed system leverages personalized diffusion models to generate visually
coherent and narratively consistent storyboards. By integrating fine-tuning tech-
niques with prompt engineering and iterative refinement, the system can produce
sequences that adhere to specific cinematic shot types—ranging from extreme
close-ups to extreme long shots—while maintaining character consistency across
multiple frames, including multi-character scenes. These capabilities are essen-
tial for achieving visual and narrative continuity, a core requirement for effective
storyboarding.

The work is motivated by the key challenges in both traditional storyboard creation
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Introduction

and contemporary text-to-image generation models. Manual creation is time-
consuming and lacks scalability. At the same time, diffusion models struggle to
accurately reproduce varied shot compositions or maintain consistent character
identity across contexts without dedicated fine-tuning. Furthermore, even after
successful fine-tuning of individual concepts, combining them in multi-concept
scenes often leads to concept bleeding or concept confusion.

Addressing these limitations, this work explores the development of an interactive
system for generating storyboards, aimed at assisting creatives in the pre-production
process. The system is based on Stable Diffusion 1.5 and is designed to gener-
ate consistent and contextually coherent storyboards through the following key
components:

• Learning shot type characteristics: We created dedicated datasets for
eight distinct shot types - from extreme close up to extreme long shot- by
collecting high-quality movie stills. Then we employed Dreambooth LoRA
finetuning to teach the model the framing and compositional logic specific to
each type.

• Ensuring character consistency: We created dedicated datasets for seven
distinct character identities through Midjourney. Then we applied Dreambooth
LoRA finetuning to teach the model each character’s unique visual features,
ensuring consistent appearance across different frames and scenes.

• Enhancing narrative coherence through prompt engineering: We cre-
ated a prompt template that, by leveraging large language models, transforms
broad scene descriptions into detailed, structured prompts that specify shot
type, environment, character identities and their arrangement for each frame
of the storyboard. These prompts play a crucial role in producing coherent
and narratively aligned visuals.

• Providing interactive refinement: The system supports user-in-the-loop
editing by allowing to generate multiple images per prompt, select preferred
outputs, regenerate alternatives, or adjust the prompt during the process —
thereby supporting an iterative creative process.

• Mitigating challenges in multi-character scenes: An inpainting-based
refinement module allows users to correct inconsistencies in character repre-
sentation, addressing common limitations of diffusion models when merging
multiple LoRA concepts in a single frame.

To systematically address these objectives, this thesis is organized as follows:

Chapter 2: Technical Background This chapter reviews the evolution of image
synthesis methods -from early generative adversarial networks (GANs) and
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variational autoencoders (VAEs) to diffusion models. It covers key components
such as attention mechanisms and ViTs, latent diffusion, and CLIP-based
conditioning.

Chapter 3: State-of-the-art Text-to-Image Models This chapter provides a
survey of state-of-the-art text-to-image models, including Stable Diffusion,
GLIDE, DALL-E, Imagen, and MidJourney.

Chapter 4: Fine-tuning techniques This chapter explores modern fine-tuning
approaches such as Dreambooth, LoRA, Textual Inversion and ControlNet,
which allow to customize and tweak the output of diffusion models to specific
needs.

Chapter 5: Storyboarding This chapter provides an overview of story visual-
ization research. It begins by outlining the fundamentals of shot types in
visual storytelling and their role in shaping narrative focus. It then reviews
key works in the domain of AI-assisted story generation — such as StoryGAN,
StoryDALL-E, StoryDiffusion — analyzing their methodologies. The chap-
ter also presents core challenges in multi-LoRA generation, such as concept
bleeding, confusion, and omission, introducing mitigation strategies and sur-
veying recent multi-subject consistency frameworks developed to address these
limitations.

Chapter 6: Experiments and Results This chapter describes the full pipeline
of the proposed framework, starting with the collection and preparation of
training datasets for the eight shot types and the seven distinct characters. It
then details the fine-tuning process of Stable Diffusion 1.5 using DreamBooth
LoRA, followed by the design of a structured prompt template for auto-
mated storyboard prompt generation and refinement using ChatGPT. The full
storyboard generation pipeline is presented, including the inpainting-based
refinement module for correcting inconsistencies. The chapter also provides a
comparative analysis on the impact of descriptive captions during training,
and showcases a selection of fully generated storyboards. Finally, it reports
both quantitative and qualitative evaluation results, using metrics such as
CLIPScore, ICA, and DINOv2, alongside manual annotations and human
assessment.

Chapter 7: Discussion and Future Work This chapter discusses our findings,
strengths and limitations of the proposed approach. Particularly, it outlines
potential directions for future works to enhance the expressiveness, control, and
versatility of the proposed framework for AI-assisted storyboard generation.
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In summary, this thesis analyzes the integration of artificial intelligence within
the visual storytelling pre-production step, proposing an approach to AI-assisted
storyboarding. By integrating advancements in text-to-image models, fine-tuning
techniques and interactive refinement methods, this work aims to bridge the gap
between narrative intent and visual execution through AI. Beyond the experimental
validation of the proposed system, the research also provides an examination of the
technological landscape, including the evolution of generative models and existing
works in the field of storytelling. By addressing key challenges such as shot type
consistency, character fidelity, and user interactivity, this thesis contributes to the
development of AI-driven tools that aim to support the pre-production creative
process, laying groundwork for future improvements.
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Chapter 2

Background

2.1 Overview of Image Sythesis Models

The field of image synthesis has experienced a transformative journey, with signifi-
cant advancements across multiple generations of architectures.

2.1.1 Variational Autoencoders (VAEs)

Early breakthroughs were marked by the introduction of Variational Autoencoders
(VAEs) in 2013 by Kingma and Welling [1].

Autoencoders are a class of unsupervised neural networks that can represent
data in a lower-dimensional space, also known as latent space, to learn efficient
representations. Applications include compression, denoising, feature extraction,
and generative models. Autoencoders are trained by first encoding data into a
latent space and then decoding them back into the original representation, a process
known as reconstruction, while minimizing the difference between the original input
and the reconstructed data.

The model consists of two neural networks: an encoder, which maps the input to a
distribution over latent variables, and a decoder, which reconstructs the original
data from samples drawn from this latent space. While autoencoders are excellent
at near-perfect reconstruction, they lack the ability to generate entirely new data.

Variational Autoencoders address this limitation by treating the latent space
probabilistically. Unlike traditional autoencoders, which map inputs to fixed
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Figure 2.1: Autoencoder architecture from [2]

vectors, VAEs represent the input as a probability distribution over the latent
space. This probabilistic representation allows VAEs to generate entirely new data
while sacrificing their ability to perfectly reconstruct existing data.

Each point in the latent space is represented by the mean µ and standard deviation
σ of a Gaussian distribution, meaning that every latent variable is defined by two
values instead of one. An image can then be reconstructed by sampling from this
distribution:

z = µ+ r · σ (2.1)

where r is a random value drawn from a standard normal distribution N (0,1).

Variational autoencoders differ from standard autoencoders by encoding input
data into two distinct vectors: one capturing the mean and another the standard
deviation of the latent representation. These vectors combined are used to sample
a latent encoding, which the decoder then utilizes to reconstruct the original input.

The training process optimizes a variational lower bound (ELBO), balancing two
objectives: minimizing the reconstruction loss to make the generated image as close
as possible to the original while ensuring a structured latent space so that similar
latent representations produce similar outputs. This shifts the model between
perfect reconstruction and the ability to generate new images.

However, while VAEs excel at learning structured and interpretable latent spaces,
the images they generate often appear blurry. This occurs because VAEs sac-
rifice reconstruction precision by learning average images—represented by their
mean—rather than perfectly fitting the input data, leading to blurred outputs.
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Figure 2.2: VAE flow from [3]

Figure 2.3: Illustration of variational autoencoder model with the multivariate
Gaussian assumption from [2]

To address this limitation, Vector Quantized Variational Autoencoders (VQ-VAE)
were introduced in 2017 by van den Oord et al. [4].

VQ-VAEs replace continuous latent variables with discrete categorical codes, using
a vector quantization (VQ) mechanism to enforce structured latent representations.
Instead of encoding data into a probabilistic latent space, VQ-VAEs assign each
input to the closest entry in a learned codebook of discrete embeddings. This
approach allows VQ-VAEs to capture meaningful patterns in data while reducing
redundancy. The training process ensures that the encoder effectively utilizes the
learned codebook by optimizing two additional loss terms:
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Figure 2.4: The architecture of VQ-VAE from [4]

• Commitment loss: encourages the encoder to make consistent use of the
discrete codes by ensuring embeddings do not change drastically.

• Codebook loss: ensures that the codebook entries remain as close as possible
to the encoder embeddings.

As a result, VQ-VAEs provide a more compact and interpretable latent space. The
reconstructions generated by VQ-VAEs are significantly less blurry than those from
VAEs, making them well-suited for high-quality image generation tasks.

2.1.2 GANs

In 2014, the advent of Generative Adversarial Networks (GANs) by Ian Goodfellow
et al. [5] marked an important advancement in the field of image synthesis,
employing an adversarial training framework. This framework consists of two
neural networks: a generator, which synthesizes data, and a discriminator,
which evaluates the authenticity of the data. The generator aims to produce data
that can deceive the discriminator, while the discriminator tries to distinguish
between real and synthetic data, creating a dynamic and competitive learning
process. In the training process, whenever the discriminator incorrectly classifies
a generated (fake) image, it receives a penalty, while the generator is rewarded.
Additionally, the discriminator is either rewarded or penalized based on its accuracy
in recognizing real images. This competitive dynamic drives both the discriminator
and generator to progressively enhance their performance.

The adversarial training of GANs can be formulated as a two-player minmax game:
the generator G and discriminator D are adversaries optimizing the following
objective function:
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min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.2)

Here:

• x ∼ pdata(x) represents samples from the true data distribution.

• z ∼ pz(z) represents samples from a prior distribution, typically Gaussian or
uniform noise, which serves as input to the generator.

• G(z) represents the synthetic data generated by G.

• D(x) is the probability assigned by the discriminator that x is a real sample
from the data distribution.

The generator G aims to minimize this function by producing images that deceive
the discriminator, while the discriminator D attempts to maximize it by correctly
distinguishing between real and fake images.

Despite their success, GANs present several training challenges:

• Training instability: the adversarial nature of GANs makes optimization
difficult, often causing the models to oscillate without converging.

• Mode collapse: the generator may learn to produce a limited variety of
outputs, leading to low sample diversity.

• Vanishing gradients: if the discriminator becomes too strong early in
training, the generator may receive insufficient gradient updates.

Since the introduction of the original GAN model, numerous variants have been pro-
posed to expand its capabilities. One example is the Conditional GAN (cGAN)[6],
proposed soon after GANs first emerged. which incorporates additional context

—like class labels or textual descriptions—to guide and condition the image genera-
tion process. One notable application of this framework was StackGAN (2016)[7],
which leveraged text conditioning to generate high-quality images from textual
descriptions through a two-stage process of coarse-to-fine generation. In 2015, Deep
Convolutional GANs (DCGANs)[8] incorporated convolutional layers into both the
generator and discriminator, making GANs more stable and capable of generating
higher-quality images. Later, in 2017, Wasserstein GANs (WGANs) by Arjovsky
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Figure 2.5: The GAN framework.

et al. [9] addressed challenges such as training instability and mode collapse by re-
placing the traditional GAN loss function with the Wasserstein distance, providing
smoother gradients and more stable training dynamics and leading to improved
performance in GAN training. Building on these advancements, StyleGAN (2018)
[10] enabled control over image styles and structures by manipulating the latent
space, setting a new standard for high-resolution and stylized image generation.

2.1.3 Autoregressive Models

During the same period when VAEs were being refined and GANs were gaining
attention, autoregressive models like PixelRNN and PixelCNN [11] [12] presented
a different approach to image synthesis. Rather than generating entire images
at once, these models modeled the conditional distribution of each pixel based
on its neighbors and sequentially generated images, pixel by pixel, ensuring that
each pixel is informed by its predecessors, leading to high-quality and coherent
images. However, this sequential generation process is computationally intensive
and time-consuming, especially for high-resolution images, making it challenging
to parallelize and thus inefficient for large-scale image synthesis. While PixelCNN
introduced convolutional layers to mitigate some inefficiencies of PixelRNN, it still
required sequential processing during image generation, limiting its practicality
for real-time applications. Additionally, PixelCNN faced challenges like the "blind
spot" issue, where certain pixels were not conditioned on all relevant preceding
pixels, potentially affecting image quality. [13]
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2.1.4 Diffusion Models

The next major breakthrough in the field of image synthesis came with the emer-
gence of Diffusion Models in 2020, specifically the Denoising Diffusion Probabilistic
Models (DDPMs) introduced by Ho et al. [14]. These models conceptualized image
generation as the reversal of a noise-adding process. In the forward step, random
noise is gradually applied to an image until all structure is destroyed, while the
reverse step learns to progressively denoise the image to recover its original form.
Unlike GANs, diffusion models produce diverse and high-quality outputs without
suffering from mode collapse, although their early implementations were compu-
tationally expensive [15]. In 2022, the introduction of Latent Diffusion Models
(LDMs) [16] like Stable Diffusion [17] marked the next major advancement: these
models perform the diffusion process within a compressed latent representation
instead of directly operating on pixel-level data, therefore allowing the generation
of high-resolution images at a fraction of the computational cost.

2.1.5 Transformers

Parallel to these developments, transformer architectures [18], originally designed
for natural language processing, began influencing the field of image synthesis.
Transformers excel at capturing long-range dependencies and relationships, which
makes them ideal for modeling complex interactions between different modalities,
such as text and images. This foundation paved the way for attention mechanisms,
which allow models to focus dynamically on the most relevant parts of their inputs,
greatly enhancing performance of generative models. For instance, cross-attention
mechanisms, inspired by transformer designs, are integral to diffusion models like
Stable Diffusion, where they align text embeddings with image features during the
denoising process. At the same time, models like DALL·E 2[19] and Imagen[20]
combine transformer-based text encoders with diffusion-based image generation,
leveraging multi-head self-attention to process textual prompts and encode semantic
information to condition the diffusion process.

This progression from VAEs and GANs to diffusion models and transformers
illustrates a trajectory toward models that not only produce photorealistic images
but also incorporate semantic understanding and enable unprecedented user-guided
control and coherence in text-to-image generation tasks.

The next sections cover more in depth Attention, Vision Transformers, Diffusion
and Latent Diffusion Models, CLIP and Classifier Free Guidance.
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2.2 Attention

Attention mechanisms are a cornerstone of modern deep learning architectures,
enabling models to dynamically focus on the most relevant parts of their input.
Introduced as part of the Transformer architecture in the landmark paper Attention
is All You Need by Vaswani et al. (2017)[18], attention mechanisms have since
become a key driver of advancements in fields like natural language processing,
computer vision, and multimodal learning. At their core, attention mechanisms
allow models to assign different levels of importance to input elements, enabling
them to capture long-range dependencies and relationships in sequences effectively.

The attention mechanism revolves around three key concepts: Query (Q), Key
(K), and Value (V). These concepts define how relationships between elements
are evaluated and used to determine relevance:

• Query (Q): the query represents the element that seeks relevant information
from the input. It serves as a request for context, determining how much
attention should be given to different parts of the input. For instance, in a
translation model, a word in the decoder (e.g., "ate" in an English sentence)
acts as the query when deciding which words in the input (e.g., corresponding
French words "a" and "mangé") should be attended to.

• Key (K): the key acts as an identifier for each element in the input, helping
the model evaluate which parts are most relevant to the query. Continuing with
the translation example, each word in the source sentence (e.g., "a", "mangé")
has an associated key that determines its importance when responding to the
query "ate."

• Value (V): the value contains the actual content or representation that will
be used in the output. It is unchanged by the attention mechanism and is
combined in a weighted sum once the relevance scores have been determined.
For example, if "mangé" is considered the most relevant source word for "ate,"
its value contributes more significantly to the translated output.

The process works as follows: given a set of queries, the attention mechanism
computes the relevance of each query to all keys using a dot product, resulting in a
set of alignment scores. To maintain numerical stability, these alignment scores are
scaled by the square root of the key dimensionality (

√
dk). Subsequently, the scaled

scores are transformed into a probability distribution via the softmax function.
Finally, the weighted sum of the values is computed, where elements with higher
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alignment scores contribute more to the result:

Attention(Q,K, V ) = softmax
A
QK⊤
√
dk

B
V

In this way, attention makes the model focus dynamically on the most relevant
parts of the input for each query, producing a context-sensitive output. To enhance
computational efficiency and scalability, the attention mechanism processes multiple
queries simultaneously in a matrix form. Queries are organized into a query matrix
Q, while the associated keys and values are represented as matrices K and V ,
respectively. This parallelized, matrix-based computation significantly improves
the speed and scalability of the attention mechanism

Multi-Head Attention

Multi-head attention extends the basic attention mechanism by allowing the model
to focus on information from multiple representation subspaces simultaneously.
Instead of applying one attention mechanism to the full-dimensional input vectors
of size dmodel, the input is split into multiple smaller subspaces of size dk, and each
head independently processes a subspace, focusing on different aspects or patterns
in the data. By processing multiple attention heads in parallel, the model becomes
able to explore diverse regions of the input simultaneously and seize intricate
relationships and deeper patterns within the data. The outputs from each "head"
are then concatenated and transformed back to the original dimensionality:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO,

where:

• The model learns separate weight matrices W i
Q, W i

K , and W i
V for each attention

head i, where i = 1, . . . , h and h is the number of heads. These matrices
project the input into h subspaces:

Qi = XW i
Q, Ki = XW i

K , V i = XW i
V .

• Each weight matrix has dimensions dmodel × dk, with dk = dmodel/h.

• Attention is computed independently for each head:

headi = Attention(Qi, Ki, V i).
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Figure 2.6: Multi-head attention mechanism.

• Once each attention head produces its output, these outputs are concatenated
into a single vector. This combined representation is then projected back
to the original model dimension dmodel using a learned weight matrix WO ∈
R(h·dk)×dmodel , effectively merging the information from the different subspaces.

• The matrix WO ∈ Rhdk×dmodel combines the outputs of the h heads into a single
representation.

To ensure that multi-head attention remains computationally efficient:

• The size of each subspace (dk) is reduced such that dk = dmodel/h, keeping the
total computational cost similar to single-head attention.

• The projections W i
Q, W i

K , and W i
V are adjusted to dimensions dmodel × dk,

minimizing the overhead of processing h heads in parallel.

For example, with dmodel = 512 and h = 8, each head processes subspaces of size
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dk = 512/8 = 64, ensuring that the total number of operations remains comparable
to single-head attention while providing the additional benefits of multi-head
diversity.

Self-Attention

Self-attention [21] is a particular form of the attention mechanism in which the
queries, keys, and values are all derived from the same input sequence. This mech-
anism allows the model to dynamically evaluate dependencies within a sequence.
For example, in text-based applications, self-attention can capture long-range
dependencies, such as subject-verb relationships in sentences, irrespective of their
position. In vision tasks, it enables models to directly model long-distance spatial
interactions, offering an alternative to convolutional operations.

Unlike convolutions, which apply fixed local filters, self-attention dynamically
aggregates information from adaptive neighborhoods, allowing models to better
capture spatial relationships and improve feature representation [21]. Instead of
computing attention over the entire image, local self-attention restricts computation
to a spatial neighborhood around each pixel. This local region, referred to as the
memory block, is denoted as N (i, j), where (i, j) is the spatial position of the
target pixel. Each pixel xij (with dimensionality din) and its neighbors are linearly

Figure 2.7: Self-attention mechanism in a Transformer model.

projected into queries (qij), keys (kab), and values (vab) using learned weight
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matrices:

qij = WQxij, kab = WKxab, vab = WV xab, ∀(a, b) ∈ N (i, j).

These projections determine which neighboring pixels the target pixel should attend
to and how much influence each should have.

The similarity between the query qij and each neighboring key kab is computed using
a dot product, followed by a softmax normalization to obtain attention weights:

yij =
Ø

a,b∈N (i,j)
softmaxab

1
q⊤
ijkab

2
vab.

This weighted sum determines the updated representation of the pixel (i, j), inte-
grating contextual information from its local neighborhood.

A limitation of standard self-attention is its lack of positional information, making
it permutation equivariant—a property that limits expressivity in vision models.
To address this, relative position embeddings are introduced, encoding spatial
relationships between pixels.

Instead of computing attention scores based solely on pixel content, the similarity
between a query qij and a neighboring key kab is now influenced by their relative
spatial position:

yij =
Ø

a,b∈N (i,j)
softmaxab

1
q⊤
ijkab + q⊤

ijra−i,b−j
2
vab.

Here, ra−i,b−j represents the relative distance encoding, capturing both the row
offset a − i and column offset b − j. This ensures that attention weights are
modulated by both the feature content and the relative displacement of the element
from the query.

By infusing relative position information, self-attention achieves translation equiv-
ariance, similar to convolutions, meaning that learned representations remain stable
even when objects shift within the image. This property is crucial for vision tasks
where spatial consistency is necessary, such as segmentation and object detection.
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Attention in the Transformer Architecture

The Transformer architecture, built entirely on attention mechanisms, revolutionizes
sequential data processing by handling input data in parallel, unlike traditional
recurrent networks that process sequences step by step. Transformers consist of
two main components: the encoder and the decoder stacks, which work together
to transform an input sequence into an output sequence (e.g., a sentence into a
translation). These stacks are composed of multiple identical layers, with each layer
including self-attention, feedforward layers, normalization, and residual connections.

Tokenization and input processing: before entering the Transformer, the input
sequence (e.g., a sentence) is first tokenized—split into smaller units such as words,
subwords, or characters, depending on the task and tokenizer used. Each token is
then mapped to a numerical vector through a process called embedding. These
embeddings are fixed-size dense vectors (of dimension dmodel) that represent the
semantic meaning of each token. Since attention mechanisms do not inherently
capture the order of tokens in a sequence, positional encodings are added to these
embeddings. Positional encodings are numerical values that encode the position
of each token in the sequence, enabling the Transformer to distinguish between
tokens at different positions.

Encoder: the encoder’s role is to process the input sequence and capture rela-
tionships between all parts of the input. For example, in a sentence, it learns how
words relate to one another. Each encoder layer performs the following operations:

• Self-Attention: compares each token in the input sequence to every other
token, computing relevance scores that help capture dependencies and context.

• Feedforward layers: apply transformations to the representations output by
the self-attention mechanism, processing each position independently to refine
token representations.

• Layer normalization: ensures stable and efficient training by regulating the
range of outputs at each layer.

• Residual connections: shortcuts that bypass each layer, ensuring that informa-
tion from earlier layers is preserved.

After processing the input, the encoder generates a sequence of embeddings enriched
with contextual information, which are subsequently fed into the decoder to guide
the generation process.
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Figure 2.8: Architecture of the transformer model

Decoder: The decoder generates the output sequence (e.g., a translated sentence
or generated text) by attending to both:

• The encoder output representations (through cross-attention), aligning the
information from the input sequence with the corresponding positions in the
output.

• The previously generated tokens (via masked self-attention), ensuring that the
decoder cannot access future tokens and thus preserving the autoregressive
property.
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Each decoder layer has a structure similar to the encoder, but with the addition of
cross-attention. Specifically:

• Masked Self-Attention: like the encoder, the decoder uses self-attention to
evaluate relationships within the output sequence. However, masking ensures
that each position can only attend to itself and earlier positions, preserving
the autoregressive nature of sequence generation.

• Cross-Attention: this mechanism integrates information from the encoder’s
output, allowing the decoder to align its generated sequence with the input
sequence.

• Feedforward Layers: These layers refine the token representations further,
applying transformations at each position.

• Layer normalization and residual connections: as in the encoder, these mecha-
nisms ensure stable training and effective gradient flow.

The final output of the decoder is passed through a linear projection followed by
a softmax function, generating a probability distribution over the vocabulary for
each position in the sequence.This allows the model to predict the next token in
the sequence.

In essence, the encoder models the global dependencies within the input sequence,
producing a comprehensive representation. The decoder then leverages this infor-
mation to generate the output sequentially, ensuring contextual consistency at each
step. The combination of self-attention, cross-attention, and feedforward processing
makes the Transformer architecture powerful for sequence-to-sequence tasks, such
as machine translation and text generation.

Applications of Transformers include:

• NLP: capturing word dependencies for translation, summarization, and ques-
tion answering (e.g., BERT, GPT).

• Vision: modeling spatial relationships in images (e.g., Vision Transformers).
• Multimodal Models: aligning text and images in tasks like text-to-image

synthesis (e.g., DALL·E, Stable Diffusion).
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2.3 Vision Transformers (ViTs)

Vision Transformers (ViTs) represent a groundbreaking application of the Trans-
former architecture in the field of computer vision, introduced by Dosovitskiy et al.
in the paper “An Image is Worth 16x16 Words” (2020)[22].

Computer vision has traditionally relied on convolutional neural networks (CNNs) as
the foundational architecture. Attention mechanisms have typically been integrated
alongside CNNs or used to substitute specific components while preserving the
overall convolutional structure. This paper, however, shows that the transformer
architecture—initially developed for processing sequential data such as text—can
successfully capture both local and global patterns in images without the need for
any convolutional layers.

ViTs apply the Transformer architecture to image data by treating an image as
a sequence of patches. Each patch acts as a token, analogous to words in NLP,
allowing the self-attention mechanism to directly model long-range dependencies
and global context across the image.

Figure 2.9: ViT architectute.

Input representation: an image x of size H ×W × C (height, width, channels)
is split into a sequence of fixed-size non-overlapping patches xp of size P × P × C,
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resulting in
N = HW

P 2

patches.

To prepare the image patches for further processing, each one is mapped into a
latent embedding space of dimension Dthrough a learnable linear transformation:

zp = xpE, E ∈ R(P 2·C)×D, zp ∈ RN×D

Class token: the sequence of patch embeddings is augmented by prepending a
learnable class token, denoted as

z0
0 = xclass

After passing through the Transformer encoder, the final state of this token, z0
L

is used as the resulting image representation y, allowing the model to aggregate
information from all patches. The class token is updated during the attention
process and is used as the final representation for classification tasks

Adding positional encodings: since attention mechanisms lack inherent posi-
tional awareness, positional encodings Epos ∈ R(N+1)×D are introduced to retain
the spatial structure of the image. These encodings are added to the correspond-
ing patch embeddings, enabling the model to differentiate between positions. As
a result, the Transformer receives as input the element-wise sum of the patch
embeddings and their associated positional encodings

The input to the Transformer becomes:

z0 = [xclass;xp1E;xp2E; . . . ;xpNE] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D

The Transformer encoder, adapted from the original Transformer model, processes
the input embeddings through multiple layers of multi-headed self-attention (MSA)
and feedforward networks (MLPs):

Multi-Headed Self-Attention: to capture global relationships within the image,
each patch embedding—including the class token—attends to all others in the
sequence. Through self-attention, the model computes a weighted combination
of all patch embeddings for each individual patch, where the weights reflect the
contextual relevance between patches. This mechanism enables the model to
recognize long-range dependencies and dynamically focus on the most informative
regions of the image.
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For each layer ℓ:

z′
ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . , L

Feedforward network (Multi-Layer Perceptrons): each token embedding,
after self-attention processing, is passed through a feedforward neural network (typi-
cally an MLP) to introduce non-linearity and model complex dependencies between
patches. This component generally consists of two fully connected layers with a
GELU activation in between. The output is processed with layer normalization
and added back to the input via a residual connection:

zℓ = MLP(LayerNorm(z′
ℓ)) + z′

ℓ, ℓ = 1, . . . , L

Layer normalization and residual connections: layer normalization is applied
before both the self-attention and feedforward sub-layers, stabilizing training and
improving convergence, while residual connections are introduced to preserve
information across layers and prevent vanishing gradients.As a result, the encoder
stack processes the input sequence iteratively through multiple layers, producing a
sequence of refined embeddings.

After L encoder layers, the output embedding z0
L corresponding to the class token

is extracted and normalized to obtain the final image representation:

y = LN(z0
L).

ViTs and CNNs: the paper also discusses ViTs compared to CNNs.

Vision Transformers (ViTs) differ significantly from Convolutional Neural Networks
(CNNs) in their architectural inductive biases. CNNs naturally encode locality,
spatial hierarchy, and translation equivariance through convolutional layers and
pooling. In contrast, ViTs are largely agnostic to the two-dimensional structure of
images.

ViTs rely on global self-attention, which lacks inherent locality or spatial continuity.
The only explicit 2D structure is introduced during preprocessing—when the input
image is divided into fixed-size patches—and during fine-tuning with positional
embeddings. Unlike CNNs, where spatial relationships are encoded at every layer,
ViTs must learn these relations from data, making them more data-hungry but
also more flexible once sufficiently trained. Because of their lack of strong priors,
ViTs tend to require large-scale datasets to achieve competitive performance. This
limitation is often addressed by pretraining on massive datasets (e.g., ImageNet-21k
or JFT-300M), or by using hybrid architectures that combine convolutional layers
with Transformer blocks to improve local feature extraction.
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Fine-tuning at higher resolutions. It is common practice to fine-tune ViTs
using input images of higher resolution than those used during pre-training. While
the patch size is kept constant, increasing the image resolution leads to a larger
number of patches, and consequently, a longer input sequence for the Transformer.
Although the Transformer architecture can handle sequences of variable length,
this change introduces complications with positional embeddings, because, since
the positional embeddings learned during pre-training are tied to a fixed sequence
length, they may not align properly with the extended sequence during fine-tuning,
potentially impairing model performance due to positional misalignment.

To address this, the pre-trained positional embeddings are adjusted using two-
dimensional interpolation based aligning them with the new patch grid based on
their original positions in the image. This adjustment ensures that the spatial
relationships learned in the pre-trained model remain meaningful even after a
change in resolution.

Resolution scaling and patch extraction introduce the only explicit inductive bias
related to the two-dimensional structure of images, as the Vision Transformer does
not inherently encode spatial priors.

2.4 Diffusion Models

Diffusion models were introduced in 2020 with the paper Denoising Diffusion
Probabilistic Models (DDPMs) by Ho et al [14]. These models conceptualize image
generation as the reversal of a process that gradually adds noise to data, destroying
its structure. By learning to iteratively denoise a starting sample of pure noise,
diffusion models can reconstruct highly realistic and diverse outputs.

Diffusion models rely on the concept of a Markov chain, a mathematical framework
for modeling systems where the next state depends only on the current state, not on
the full history. In the context of diffusion models, the forward process is modeled
as a Markov chain in which Gaussian noise is gradually added to the data over a
series of steps, eventually transforming the data into pure noise.

Figure 2.10: Diffusion process as a Markov chain
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During generation (the reverse process), the model learns to reverse this Markov
chain by denoising step-by-step, reconstructing the original data starting from
pure noise. This iterative refinement process allows diffusion models to generate
diverse and coherent outputs, and with recent advancements, they now produce
highly realistic and detailed images, suitable for applications such as text-to-image
synthesis and art generation.

2.4.1 Forward process

The forward diffusion process consists of iteratively adding Gaussian noise to a real
sample x0 ∼ q(x) over T discrete time steps until the data distribution becomes
indistinguishable from pure Gaussian noise. The transition between steps follows a
Markov chain, where each step applies a controlled amount of noise determined by
a variance schedule {βt ∈ (0,1)}Tt=1:

q(xt|xt−1) = N (xt;
ñ

1− βtxt−1, βtI).

where:

• βt ∈ (0,1) is a variance schedule controlling the amount of noise added at each
step.

•
√

1− βt xt−1 represents the retained signal from the previous step.
• βtI is the variance (noise) added at step t.

By iteratively applying this process, the sample is transformed into pure noise as
T →∞. The entire sequence of noisy samples can be described as:

q(x1:T |x0) =
TÙ
t=1

q(xt|xt−1).

To generate new samples, the model must learn to reverse this diffusion process,
sampling from q(xt−1|xt) to reconstruct the original data from a Gaussian noise
input xT ∼ N (0, I). However, directly estimating the true posterior distribution
q(xt−1|xt) is intractable, as it requires computing the entire data distribution.
Instead, the model learns a reverse process pθ(x0:T ), which consists of a sequence
of Gaussian transitions that approximate q(xt−1|xt):
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pθ(x0:T ) = p(xT )
TÙ
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

This learned denoising process consists of a sequence of Gaussian transitions that
progressively reconstruct the original sample from noise.

The variance Σθ(xt, t) in the reverse process is typically set as a trainable or
predefined function, and training is performed by maximizing the variational lower
bound (ELBO) on the negative log-likelihood:

E[− log pθ(x0)] ≤ Ex0,1:T

C
− log pθ(x0:T )

q(x1:T |x0)

D
.

The forward diffusion process introduces noise into the data over T timesteps using
a schedule of variance parameters βt, which can either be predefined or learned
through reparameterization. An important characteristic of this process is the
ability to directly sample a noised latent xt from the original input x0 at any
arbitrary timestep t, thanks to a closed-form expression based on cumulative noise
scaling.

Letting αt = 1− βt and ᾱt = rt
s=1 αs, the distribution of xt given x0 is:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

This formulation allows efficient training and denoising, as the model only needs to
learn how to reverse these Gaussian transitions by predicting the noise added at each
step, that is, it learns to approximate Gaussian transitions with a parameterized
mean function.

The full loss function can be expressed as a sum of KL divergence terms, where
each term compares a Gaussian posterior to a learned Gaussian approximation:

LVLB = LT + LT−1 + · · ·+ L0.

Since LT is constant (as xT is simply Gaussian noise), it is ignored during training.
The term L0 is modeled using a separate decoder trained to reconstruct the original
data sample. The reverse process mean function µθ is optimized to predict a
denoised estimate µ̃t, which leads to a simplified training objective:
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Lsimple
t = Et,x0,ϵ

è
||ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

é
.

By using this simplified training objective, diffusion models achieve high-quality
generative performance with improved stabilit, making them effective for generating
realistic images, text, and other structured data.

2.4.2 U-Net architecture

The U-Net is the core architecture used in many diffusion models for denoising. The
following explanation largely comes from [23]. The U-Net is a convolutional neural
network with an encoder-decoder structure. The encoder progressively downsamples
the noisy image xt to extract hierarchical features, while the decoder upsamples
these features to reconstruct the denoised image xt−1. Skip Connections are
introduced between the encoder and the decoder to preserve important information
and improve gradient flow. The time step t is encoded using a sinusoidal positional
embedding and injected into the network to inform it of the particular time step
(noise level) it is operating.

Figure 2.11: Unet architecture in Diffusion models.

As the core building block of the U-Net model, the DDPM authors employed
a Wide ResNet block [24]. Next, the attention module is added to both the
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encoder and decoder part of the U-Net, usually between ResNet blocks, and
convolutional/attention layers are interleaved with group normalization.

The network is built up as follows:

• First, a convolutional layer is applied on the batch of noisy images, and
position embeddings are computed for the noise levels.

• Next, a sequence of downsampling stages are applied. Each downsampling
stage consists of 2 ResNet blocks + group normalization + attention + residual
connection + a downsample operation.

• At the middle of the network, again ResNet blocks are applied, interleaved
with attention.

• Next, a sequence of upsampling stages are applied. Each upsampling stage
consists of 2 ResNet blocks + group normalization + attention + residual
connection + an upsample operation.

• Finally, a ResNet block followed by a convolutional layer is applied.

2.4.3 Sampling process

Figure 2.12: Sampling algorithm in Diffusion models

After training, the model generates new samples by iteratively denoising a pure
noise input sampled at time step T from a Gaussian distribution:xT ∼ N (0, I)
until we end up at time step t = 0 with an image that ideally looks like it came
from the real data distribution. The sampling process is:

1. Initialization: start with xT .

2. Reverse Diffusion: for t = T down to 1:

(a) Predict µθ(xt, t) or ϵθ(xt, t).
(b) Sample xt−1 from pθ(xt−1 | xt).
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3. Output: the final output x0 is the generated image.

2.4.4 Improved Denoising Diffusion Probabilistic Models
(DDPMs)

While DDPMs produce high-quality images, their log-likelihood scores remain
suboptimal, indicating that while the models generate visually realistic samples,
they do not always capture the full diversity of the real data distribution. Nichol
and Dhariwal’s Improved Denoising Diffusion Probabilistic Models [25] introduced
key refinements aimed at improving log-likelihood while maintaining high sample
quality.

One major improvement is learning the variance term Σθ(xt) in the reverse process
rather than keeping it fixed. The original DDPMs set Σθ to a constant value,
which limited flexibility. However, learning Σθ directly was found to be unstable.
The improved approach parameterizes the variance as an interpolation between an
upper bound βt and a lower bound β̃t, formulated as:

log Σθ(xt) = v log β̃t + (1− v) log βt

where v is a learnable parameter that determines the weighting of the two variance
bounds. This formulation allows for stable variance learning, improving log-
likelihood without degrading sample quality.

Additionally, Improved DDPMs optimized the training objective by introducing a
hybrid loss function:

L = Lsimple + λLvlb

where Lsimple is the standard mean squared error (MSE) loss between predicted and
real noise, and Lvlb is the variational lower bound (VLB) loss, which incorporates
the learned variance. The weight λ (set to 0.001) ensures that the model primarily
optimizes for sample quality while still improving likelihood estimation.

A significant refinement was made to the noise scheduling strategy. The original
DDPMs used a linear schedule for the noise variance βt, interpolating between 10−4

and 0.02. However, this approach added noise too aggressively in the early timesteps,
causing unnecessary information loss. Improved DDPMs instead proposed a cosine
noise schedule:
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ᾱt = cos
A
t/T + s

1 + s

π

2

B2

where s = 0.008 prevents singularities at the start of the process. This adjustment
allows the model to retain more image information for longer, improving training
stability and sample quality. Compared to the linear schedule, the cosine schedule
prevents excessive noise accumulation in the early timesteps, leading to smoother
training and improved likelihood scores.

2.5 Latent Diffusion Models

Latent Diffusion Models (LDMs) address the computational inefficiency of tradi-
tional diffusion models by shifting the diffusion process from pixel space to a learned
latent space. Standard diffusion models operate directly on high-dimensional pixel
data, making training and inference computationally expensive, often requiring hun-
dreds of GPU days. LDMs mitigate this by encoding images into a compact latent
space where the generative process takes place, significantly reducing computational
costs while maintaining high-quality synthesis.

Proposed by Rombach et al. in 2022 [12], LDMs operate by performing the diffusion
process in a lower-dimensional latent space instead of directly in the pixel space.
This latent space is learned through a variational autoencoder (VAE) or a similar
encoding mechanism, which maps the high-dimensional input data (e.g., images)
into a compressed latent representation. The latent space captures the essential
structure and semantics of the data, reducing the dimensionality while preserving
the quality of the generated outputs.

In the forward process, Gaussian noise is added step-by-step to the latent repre-
sentation of the image, gradually destroying its structure. The reverse process
then iteratively removes this noise to reconstruct the latent representation. Finally,
the VAE decoder maps the denoised latent representation back into the high-
dimensional pixel space, producing the final image. The efficiency of LDMs comes
from performing the computationally intensive diffusion process in the compact
latent space, which drastically reduces the number of required operations compared
to pixel-space diffusion.
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Figure 2.13: Structure of Latent Diffusion Models.

2.5.1 Perceptual image compression

The foundation of LDMs lies in learning an efficient lower-dimensional representation
where diffusion can occur. This is achieved through an autoencoder consisting of
an encoder E and a decoder D, which map an input image x ∈ RH×W×3 into a
latent representation z:

z = E(x), z ∈ Rh×w×c

where h = H/f and w = W/f represent the spatial dimensions after downsampling
by a factor f . The decoder reconstructs the original image:

x̂ = D(z) = D(E(x))

To prevent high variance in the latent space, two regularization techniques are
experimented:

• KL regularization (KL-reg): encourages the latent distribution to follow
N (0, I), similar to Variational Autoencoders (VAEs).

• Vector Quantization regularization (VQ-reg): introduces a vector quan-
tization layer, similar to VQGANs, which helps control the variance while
preserving local realism.

Because the diffusion model operates within a two-dimensional learned latent
space z = E(x), relatively mild compression rates can be used while maintaining
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high-quality reconstructions. This contrasts with previous approaches that relied
on aggressive spatial compression, ignoring much of its inherent structure. By
leveraging a structured latent space, LDMs are able to preserve finer details of x
more effectively, resulting in superior reconstructions without excessive compression
artifacts.

2.5.2 Diffusion process in the latent space

After training the autoencoder, the diffusion process is applied directly within
the latent space rather than on pixel-level data. The forward diffusion process
progressively adds Gaussian noise to the latent representation over T discrete
timesteps. At each step t, the transition is defined as:

q(xt|xt−1) = N (xt;
ñ

1− βt xt−1, βtI)

where βt represents a predefined variance schedule that controls the amount of
noise injected at each timestep.

The full forward process is thus a Markov chain formulated as:

q(x1:T |x0) =
TÙ
t=1

q(xt|xt−1)

As t increases, the latent representation xt becomes progressively noisier, eventually
approaching an isotropic Gaussian distribution.

To reverse this process and recover the clean latent from noise, the model learns a
denoising distribution. Since the true posterior q(xt−1|xt) is intractable, a neural
network ϵθ is trained to approximate the added noise. The learned reverse process
is modeled as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Here, µθ and Σθ denote the predicted mean and variance, respectively, at timestep
t, both conditioned on the current noisy latent xt. This formulation allows the
model to iteratively denoise and reconstruct the original latent code from pure
noise.
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2.5.3 Training objective and optimization

Rather than applying an autoregressive, attention-based approach, LDMs take
advantage of image-specific inductive biases. The diffusion process operates within
a U-Net built primarily from 2D convolutions, making it significantly more efficient
than using a transformer-based generative model.

The training centers on reconstructing the noise added during the forward diffusion
process, using an objective function that is expressed as a simplified version of the
Evidence Lower Bound (ELBO):

LLDM = EE(x),ϵ∼N (0,I),t
è
∥ϵ− ϵθ(zt, t)∥2

2

é
where:

• zt denotes the latent representation corrupted by Gaussian noise at timestep
t,

• ϵθ(zt, t) is the model’s prediction of the added noise.

To enhance computational efficiency, LDMs streamline the training process by
applying the forward diffusion directly in latent space: instead of first encoding the
image and then performing diffusion, both operations are integrated into a single
step. Likewise, reconstruction involves decoding the denoised latent back into the
pixel space in a single decoding pass.

2.5.4 Conditional generation and cross-attention

LDMs facilitate conditional image generation by learning the conditional probability
distribution p(z | y), where y denotes auxiliary information such as text prompts,
segmentation maps, or other modality-specific inputs. This conditioning is incor-
porated into the denoising process through a conditional denoising autoencoder
ϵθ(zt, t, y), which leverages the conditioning signal y to steer the generation toward
semantically aligned outputs.

To achieve this, the U-Net backbone is augmented with a cross-attention mechanism.
A domain-specific encoder τθ maps the conditioning input y into an intermediate
representation:

τθ(y) ∈ RM×dτ

This representation is integrated into the attention layers of the U-Net using:
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Figure 2.14: Overview of the conditioning mechanism

Figure 2.15: Conditioning mechanism details

Attention(Q,K, V ) = softmax
A
QKT

√
d

B
V

where:

Q = W
(i)
Q ϕi(zt), K = W

(i)
K τθ(y), V = W

(i)
V τθ(y)

The switch in the above diagram is used to control between different types of
conditioning inputs. For text inputs, they are first converted into embeddings
(vectors) using a language model τθ(e.g. BERT, CLIP), and then they are mapped
into the U-Net via the (multi-head)

Attention(Q,K, V )

layer. For other spatially aligned inputs (e.g. semantic maps, images, inpainting),
the conditioning can be done using concatenation.
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The training objective for the conditional Latent Diffusion Model involves minimiz-
ing the discrepancy between the true noise and the model’s predicted noise across
varying timesteps. Formally, the loss function is defined as:

LLDM = EE(x),y,ϵ∼N (0,I),t
è
∥ϵ− ϵθ(zt, t, τθ(y))∥2

2

é
In this setup, both the conditioning encoder network τθ, which processes the input
condition y, and the denoising network ϵθ, which predicts the noise at timestep t,
are trained simultaneously.

Figure 2.16: Samples of text-to-image synthesis shown in the paper.

By performing diffusion in a lower-dimensional space, LDMs achieve substantial
computational savings. Training and inference require significantly fewer opera-
tions compared to pixel-space diffusion models. Additionally, the use of U-Net
architectures with 2D convolutions provides an effective balance between efficiency
and quality.

Compared to autoregressive generative models, which rely on transformers operating
in a highly compressed latent space, LDMs allow for a more structured approach.
By leveraging spatial inductive biases and a mild compression ratio, they produce
high-fidelity outputs without excessive loss of detail.

LDMs support a wide range of tasks, including:

• Text-to-Image synthesis: generating images from textual descriptions using
token-based conditioning mechanisms.

• Inpainting: filling in missing regions of an image based on surrounding pixels.
• Super-Resolution: enhancing the resolution of low-quality images.
• Domain adaptation: adapting images to different styles or semantic contexts.

During inference, the entire process—encoding the input into latent space, applying
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the diffusion model, and decoding back to pixel space—is performed efficiently in a
single pass at each stage, making LDMs highly practical for real-world applications.

2.6 CLIP

CLIP (Contrastive Language–Image Pretraining) [26] is a powerful model developed
by OpenAI that bridges the gap between vision and language by aligning images
with their natural language descriptions in a shared embedding space. Unlike
traditional supervised models that aim to classify images into specific predefined
class labels, CLIP learns to associate images with text descriptions, providing a
more flexible and general approach to understanding and generating multimodal
content.

The central principle behind CLIP is to learn a joint embedding space for images
and text that captures semantic similarity through contrastive learning. Rather
than requiring exact textual-image alignment, CLIP is trained to draw together
the representations of corresponding image-text pairs while pushing apart those
of unrelated ones. This is accomplished via a contrastive loss function, which
maximizes the cosine similarity for positive pairs (i.e., matching images and captions)
and minimizes it for negative pairs (i.e., mismatched combinations). The resulting
model ensures that semantically aligned visual and textual data are positioned
closely within the shared latent space.

CLIP is composed of two primary modules: an image encoder and a text encoder.
The image encoder transforms visual inputs into fixed-size embeddings using either
convolutional architectures such as ResNet-50 or more recent alternatives like Vision
Transformers (ViT). These embeddings are then aligned with those produced by
the text encoder, enabling cross-modal retrieval and zero-shot classification tasks.

The choice of encoder significantly impacts CLIP’s performance and behavior.
ResNet-based encoders, with their convolutional structure, introduce strong in-
ductive biases that favor local feature extraction, similar to traditional CNNs. In
contrast, Vision Transformers operate on image patches and lack these inductive
biases, leading to a more flexible but data-hungry model. ViTs are often preferred
for their ability to model global context by processing images as sequences of
patches, or even feature maps, allowing for a hybrid architecture.

The text encoder implemented as a Transformer-based model transforms the
tokenized textual inputs into vector embeddings. These embeddings are then
projected into a shared latent space alongside visual representations and the
correspondence between image and text pairs is evaluated by computing the cosine
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Figure 2.17: Summary of the CLIP approach.

similarity. The encoder processes text in a manner analogous to standard large
language models, utilizing special tokens such as [SOS] and [EOS] to denote the
start and end of a sequence. The final embedding for a given input is obtained from
the activation associated with the [EOS] token at the final layer of the transformer,
encapsulating the semantic summary of the entire sequence.

Training involves passing batches of images and their corresponding text descriptions
through their respective encoders. The model computes cosine similarities between
all image-text pairs in the batch, applying a contrastive loss to pull matching pairs
closer and push mismatched pairs apart. This process aligns the image and text
embeddings in a way that facilitates cross-modal understanding.

A key challenge in CLIP training is ensuring that the model learns robust and
generalizable representations. Unlike standard classification models that rely on
predefined categories, CLIP learns from natural language supervision, meaning
that it is less constrained by dataset-specific biases but more sensitive to variations
in text phrasing.

CLIP’s primary strength lies in its ability to generalize and excel in multimodal tasks
by aligning images and text in a shared embedding space. This alignment enables
zero-shot classification, where CLIP can classify images into arbitrary categories
defined by textual descriptions without requiring fine-tuning. For instance, it can
identify an image as "a dog playing in a park" simply by comparing the image’s
embedding to embeddings of descriptive text prompts.

One of the major considerations when using CLIP for classification is the impact of
prompt engineering. Unlike traditional models that rely on fixed class labels, CLIP
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is highly sensitive to the phrasing of textual inputs. Rewriting labels into more
descriptive phrases, such as replacing "cat" with "a photo of a cat," significantly
improves classification accuracy. This sensitivity arises because CLIP was trained
on internet-scale text, where descriptions often include contextual information
rather than single-word labels. Additionally, CLIP’s reliance on large-scale natural
language supervision introduces challenges related to polysemy (words with multiple
meanings). Effective prompt design can mitigate these issues by ensuring that
descriptions are precise and contextually relevant.

In text-to-image generation systems such as Stable Diffusion, CLIP plays a pivotal
role. Text inputs are converted into embeddings using CLIP (or a CLIP-like
encoder), which then condition the image generation process, ensuring that the
generated visuals align semantically with the input text. Beyond text-to-image tasks,
CLIP’s architecture supports applications like text-guided image retrieval, retrieving
the most relevant images for a given textual query by comparing embeddings in
the latent space. It also facilitates tasks like image segmentation and localization,
where textual prompts guide the identification of objects or regions within an
image.

A central innovation introduced by CLIP lies in its use of natural language as a
supervisory signal, moving away from the reliance on fixed category labels typical
of traditional image classification models. By training on large-scale collections
of image-text pairs sourced from the web, CLIP bypasses the need for manually
annotated datasets and predefined class taxonomies. This strategy enables remark-
able generalization capabilities, allowing CLIP to perform zero-shot classification
across a wide range of tasks. Its ability to learn visual concepts directly from
textual descriptions makes it more flexible and broadly applicable than conventional
models trained on datasets like ImageNet. Nonetheless, this design choice also
brings certain limitations—particularly in cases involving ambiguous or polyse-
mous language—where careful prompt formulation becomes crucial for accurate
interpretation.

Additionally, tasks requiring complex or systematic reasoning, such as counting
objects or estimating spatial proximity, remain difficult for CLIP. Unlike structured
classification models that explicitly learn numerical relationships, CLIP’s embedding
space primarily captures semantic similarity, making it less effective for tasks
requiring precise quantitative reasoning.

Like many large-scale AI models, CLIP also inherits biases from its training data.
Since it learns from diverse internet sources, its representations can reflect social
biases present in online content. This has implications for fairness and robustness,
as certain concepts may be overrepresented or underrepresented depending on their
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prevalence in the training data.

2.7 Classifier-Free Guidance

Classifier-Free Guidance (CFG) [27] is a critical innovation in the evolution of
conditional diffusion models, enabling efficient and flexible integration of condition-
ing inputs (e.g., text prompts) into the image generation process. Unlike earlier
approaches that required a separately trained classifier to guide the generative
process, CFG eliminates the need for an external classifier by integrating conditional
guidance directly into the diffusion model.

In the early stages of conditional diffusion models, classifier guidance [15] was
the dominant approach for steering the image generation process toward specific
conditions. This method relied on a separately trained classifier p(y | x) to predict
the conditional probability of a desired condition y (e.g., a label like “cat”) given
the image x. During the reverse diffusion process, the gradients of the classifier
with respect to the image x served as a signal to guide the denoising process.
Mathematically, this involved computing

∇x log p(y | x),

which adjusted the denoising trajectory to align with the specified condition.

Mathematically, the guided score function is given by:

∇x log pγ(x | y) = ∇x log p(x) + γ∇x log p(y | x),

where:

• p(x) is the unconditional image distribution.
• p(y | x) is the conditional probability from the classifier.
• γ is the guidance scale amplifying the conditioning signal.

Despite its effectiveness, classifier guidance introduced significant challenges. It
required training a noise-robust classifier specifically for the purpose of guidance
additional computational resources to train and integrate the classifier, and the
resulting model often suffered from instability and artifacts. Moreover, this method
was limited to predefined conditions, making it less suitable for handling flexible or
descriptive inputs like free-form text prompts.

Classifier-Free Guidance (CFG) addresses these issues by integrating conditional
guidance directly into the diffusion model, therefore eliminating the classifier while
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still providing class guidance to the model. This is achieved by training the
diffusion model to handle both conditioned and unconditioned outputs through
conditioning dropout, where a fraction of training steps replaces the conditioning
input y with a null token. Consequently, the model learns both the conditional score
function ∇x log p(x | y) and the unconditional score function ∇x log p(x). This
dual capability enables CFG to interpolate between conditional and unconditional
outputs during inference, allowing for fine-grained control over prompt adherence
and diversity. By interpolating between these two, the effective score function
becomes:

∇x log pγ(x | y) = (1− γ)∇x log p(x) + γ∇x log p(x | y),

where:

• γ is the guidance scale determining the balance between unconditional and
conditional guidance.

• ∇x log p(x), unconditional score function, promotes diversity.
• ∇x log p(x | y), the conditional score function, enhances adherence to the

conditioning signal.

In practice, CFG is implemented by interpolating between two predictions:

• The noise prediction conditioned on the input, denoted as ϵθ(xt, t, y), where y
represents the conditioning input (e.g., a text embedding).

• The unconditional noise prediction ϵθ(xt, t), which provides a more diverse
and less constrained output.

The interpolated (or guided) prediction is given by:

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y)−
√

1− ᾱtw∇x log p(y | xt)

which can be rewritten as:

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y) + w(ϵθ(xt, t, y)− ϵθ(xt, t))

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

where w ≥ 1 is the guidance scale. A higher w increases the influence of the
conditioning prompt, ensuring that the generated image closely aligns with the
input text. However, excessively high values may introduce artifacts or overly
constrained results, whereas lower values allow for more creative and diverse outputs
at the expense of prompt adherence.
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Figure 2.18: Comparison between non-guided conditional sampling and CFG
sampling.

Classifier-Free Guidance (CFG) has become a standard technique in modern
diffusion models such as Stable Diffusion and OpenAI’s GLIDE. One of its key
advantages is that it eliminates the need for an external classifier, enabling the
diffusion model to use its own internal representations for guidance. This not only
streamlines the architecture but also allows the model to better leverage its pre-
trained knowledge. Additionally, CFG facilitates conditioning on complex and open-
ended inputs—like natural language descriptions—which are often challenging to
handle with conventional classifiers, thereby supporting more flexible and expressive
generation.

For instance, text-conditioning dropout was used during training for Stable Dif-
fusion 1.4 and 1.5 to improve robustness and enhance the classifier-free guidance
mechanism. During inference, the CFG parameter (commonly referred to as the
guidance scale) can be adjusted dynamically enabling users to balance between
prompt adherence and output diversity.
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Chapter 3

State-of-the-art
Text-to-Image Models

3.1 Stable Diffusion

Stable Diffusion[17] [28]is a state-of-the-art generative model that was first released
in 2022 by Stability AI in collaboration with CompVis and Runway. It is designed
for efficient and high-quality image synthesis, particularly excelling in text-to-image
tasks but also applied to inpainting, outpainting, and image-to-image tasks. Stable
Diffusion builds on the Latent Diffusion Models (LDMs) framework, leveraging a
compact latent space for computational efficiency while maintaining high-resolution
and semantically rich outputs.

Stable Diffusion’s architecture is composed of three primary components: a Varia-
tional Autoencoder (VAE), a denoising U-Net, and an optional text encoder for
conditional generation. During training, the VAE encoder compresses input images
into a latent representation that retains their semantic structure while operating in
a lower-dimensional space, enabling more efficient computation. The forward diffu-
sion process involves gradually perturbing these latent vectors by adding Gaussian
noise over multiple time steps.

To reverse this process, the U-Net is trained to iteratively denoise the latent
representation, effectively learning to reconstruct the original clean signal. After
the denoising phase, the VAE decoder transforms the refined latent vector back
into pixel space, producing the final image output.

The denoising process can be conditioned on various modalities, through the use of
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cross-attention mechanisms embedded within the U-Net. For text-guided synthesis,
Stable Diffusion incorporates a frozen CLIP-based text encoder, which transforms
textual prompts into vector embeddings. These embeddings serve as context vectors,
guiding the U-Net’s attention throughout the denoising steps and ensuring that
the resulting image aligns with the semantic content of the prompt.

Stable Diffusion is built upon a U-Net backbone, comprising three main compo-
nents: an encoder, a central processing block, and a decoder connected via skip
connections. The encoder and decoder are each composed of 12 blocks, while the
middle block completes the architecture, bringing the total to 25 blocks. Out of
these, 8 are dedicated to spatial resolution changes through down-sampling and
up-sampling convolutions. The remaining 17 blocks form the core processing units,
each integrating 4 ResNet layers along with 2 Vision Transformer (ViT) modules.
These ViTs embed multiple layers of cross-attention and self-attention operations,
enabling rich contextual interactions and fine-grained conditioning throughout the
diffusion process.

During the inference phase, the generation process starts from a latent tensor
initialized with pure Gaussian noise. Through a series of iterative denoising steps,
the model transforms this noise into a structured and meaningful image. This
denoising is guided by conditioning inputs, which may include textual descriptions,
visual references, or other modality-specific features. In the case of text prompts,
Stable Diffusion utilizes a frozen, pre-trained text encoder to convert the prompt
into a sequence of embeddings. These embeddings are integrated into the U-Net
architecture via cross-attention layers. Specifically, queries derived from the latent
representation interact with keys and values computed from the text embeddings,
allowing the network to assign higher relevance to semantically important parts of
the prompt. This mechanism ensures that the final output remains faithful to the
intended textual guidance throughout the generation process.

3.1.1 Training datasets

Stable Diffusion is trained on large-scale datasets of image-text pairs to achieve
robust generalization and high-quality outputs. Key datasets include:

LAION-5B: publicly available dataset[29] comprising over 5 billion image-text
pairs sourced from the internet. This dataset offers immense diversity, including a
wide range of styles, objects, and scenarios.

Filtered Subsets of LAION: for Stable Diffusion, subsets of LAION are cu-
rated and filtered to improve quality. For example, LAION-Aesthetics focuses on
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aesthetically pleasing images, filtering out low-quality or irrelevant samples.

The use of diverse and large-scale datasets ensures that Stable Diffusion can handle
a variety of prompts, from highly specific queries to abstract or creative descriptions.

3.1.2 Released versions

Stable Diffusion has evolved significantly since its initial release, with each version
aiming to improve in terms of resolution, training methodology, text-to-image
alignment, and usability. Below is a detailed comparison of the key versions,
highlighting their architectural features, use cases, and limitations.[30]

Stable Diffusion 1.x

The first generation of Stable Diffusion, released in 2022, includes versions 1.1
through 1.5. These models are trained on a dataset of 512× 512 pixel images, with
a text encoder based on CLIP ViT-L/14 for text conditioning.

Stable Diffusion v1-1:

• 237,000 steps at 256× 256 on LAION-2B-en.
• 194,000 steps at 512× 512 on LAION-high-resolution.

Stable Diffusion v1-2 (resumed from v1-1):

• 515,000 steps at 512× 512 on LAION-improved-aesthetics.

Stable Diffusion v1-3 (resumed from v1-2):

• 195,000 steps at 512× 512 on LAION-improved-aesthetics.
• Included 10% text-conditioning dropout for classifier-free guidance.

Stable Diffusion v1-4 (resumed from v1-2):

• 225,000 steps at 512× 512 on LAION-aesthetics v2 5+.
• Included 10% text-conditioning dropout for classifier-free guidance.

Stable Diffusion v1-5 (resumed from v1-2):

• 595,000 steps at 512× 512 on LAION-aesthetics v2 5+.
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• Maintained 10% text-conditioning dropout for classifier-free guidance.

The models have 860 million parameters and excel in generating diverse outputs
with relatively low computational requirements. However, the reliance on 512× 512
resolution limits their performance when generating images at higher resolutions,
often resulting in degradation or inaccuracies. Additionally, poor data quality
for human limbs and faces in the LAION database contributed to challenges in
generating anatomically correct images, especially hands and facial features. Despite
these limitations, the open-source nature of 1.x models led to extensive community-
driven fine-tuning, resulting in specialized checkpoint models like DreamShaper,
Realistic Vision, or Juggernaut, which improve on the base model’s performance
for specific tasks such as photorealism or anime-style generation.

Stable Diffusion 2.x

Released in late 2022[31], the 2.x series (versions 2.0 and 2.1) introduced significant
improvements in resolution and prompt alignment. These models were trained on
LAION-Aesthetics v2, a filtered dataset emphasizing higher-quality, aesthetically
pleasing images. The resolution was increased to 768 × 768 pixels, enabling
sharper and more detailed outputs. Additionally, the text encoder was upgraded
to OpenCLIP ViT-H/14, which allowed for more expressive and nuanced prompts.
The number of parameters remained consistent with 1.x models at 860 million. In

Figure 3.1: Samples from the Stable Diffusion 2.x series.

addition to standard text-to-image generation, 2.x introduced advanced features
such as depth-to-image generation and enhanced inpainting capabilities, enabling
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precise edits to specific regions of an image. While 2.x improved image quality and
alignment with text descriptions, the changes in text encoding made it difficult
to transfer prompts from the 1.x series, limiting its adoption in the open-source
community.

Stable Diffusion XL (SDXL)

Released in July 2023, Stable Diffusion XL (SDXL)[32] represents a major leap
forward in generative modeling, offering native 1024× 1024 resolution and vastly
improved handling of human anatomy, including limbs and faces. SDXL was
trained on datasets with multiple aspect ratios, moving beyond the square-only
focus of earlier versions. The model employs a dual text encoder system, combining
OpenCLIP ViT-G/14 and CLIP ViT-L/14, which significantly enhances semantic
understanding and alignment between text and image. SDXL also features a

Figure 3.2: Samples generated by SDXL.

much larger architecture, with 3.5 billion parameters for its base model and a
6.6 billion parameter ensemble pipeline, enabling improved photorealism, color
depth, and compositional accuracy. While SDXL delivers outputs comparable to
systems like MidJourney and DALL-E, it requires more computational resources,
making it challenging to run on consumer-grade hardware without optimizations.
Open-source fine-tuning has led to specialized models such as Juggernaut XL and
RealVisXL, which cater to specific artistic or photorealistic styles.
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SDXL Turbo

SDXL Turbo [33] is a lightweight, high-speed variant of SDXL specifically opti-
mized for real-time image synthesis at a resolution of 512× 512. Despite having
a smaller footprint—approximately 3.5 billion parameters—it preserves the same
text-conditioning framework as its predecessor. The core innovation lies in its use
of Adversarial Diffusion Distillation, a training strategy that enables the model to
generate coherent and high-quality images in a single forward pass. This dramati-
cally accelerates the generation process, making SDXL Turbo particularly suited for
interactive applications and rapid prototyping. However, it is distributed under a
non-commercial license, restricting its use to research and personal experimentation.

Many third-party open-source interfaces exist for Stable Diffusion, each catering to
different user needs. The most popular is AUTOMATIC1111 Web UI, which offers
an extensive feature set, including inpainting, extensions, and advanced prompt
handling, making it the go-to choice for power users. Fooocus, on the other hand,
simplifies the prompting process, focusing on an intuitive experience that reduces
the need for complex textual inputs, making it more beginner-friendly. ComfyUI
takes a different approach by providing a node-based interface, allowing users
to create complex image generation workflows akin to procedural 3D modeling
software. This modular design makes ComfyUI particularly appealing to researchers
and advanced users who wish to experiment with custom pipelines. The variety of
these interfaces highlights the flexibility and customization options available for
Stable Diffusion users.

3.2 GLIDE

GLIDE, which stands for Guided Language-to-Image Diffusion for Generation
and Editing [34], introduces novel techniques to improve text-conditional image
synthesis using diffusion models. GLIDE not only focuses on generating images from
textual descriptions but also supports targeted inpainting, enabling fine-grained
control over image modifications.

GLIDE builds on the base diffusion model described by earlier works, incorporating
key improvements to enhance quality and flexibility.

Learnable variance schedule: unlike the original diffusion model presented by
Ho et al. (2020) where the variance schedule is fixed, GLIDE adopted the approach
proposed by Nichol & Dhariwal (2021)[25], where the variance Σθ is a learnable
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Figure 3.3: Iterative generation of a complex scene with GLIDE.

parameter during training. This was found to allow high-quality images to be
generated in fewer denoising steps.

Advanced text conditioning: the model builds upon the Autoregressive Diffusion
Model architecture [35], incorporating enhanced mechanisms for conditioning on
textual input. At each timestep t, given a noisy image xt and its associated caption
c, the model estimates the distribution p(xt−1 | xt, c), guiding the denoising process
according to the semantics of the input text. The textual prompt is first embedded
using a transformer encoder, yielding a sequence of token representations denoted as
K. These embeddings are then linearly projected to align with the dimensionality
of the attention layers within the diffusion network, enabling effective integration
of linguistic context during image generation.

These embeddings are injected into the ADM architecture through cross-attention
mechanisms, where they are concatenated with the key and value components of
the model’s attention layers at each step of the reverse diffusion process. This
design ensures that the generated image aligns closely with the semantics of the
text prompt, effectively guiding the denoising trajectory.

The paper compares two primary guidance techniques—Classifier-Free Guidance
(CFG) and CLIP Guidance.

Classifier-Free Guidance (CFG): CFG allows the model to learn both con-
ditioned and unconditioned outputs during training, without using an explicit
classifier during the diffusion process. This is achieved by randomly replacing the
conditioning text c with a null token (∅) in a fraction of the training steps (typically
10-20%).

During inference, the conditioned and unconditioned predictions are interpolated
as follows:
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ϵ̂θ(xt|c) = ϵθ(xt|∅) + s · (ϵθ(xt|c)− ϵθ(xt|∅))

where s is the guidance scale. A higher s enforces stricter adherence to the
conditioning prompt, enhancing semantic alignment at the cost of reduced diversity.
CFG eliminates the need for a separate classifier, simplifying the architecture and
reducing computational overhead.

CLIP Guidance: CLIP guidance leverages a noise-aware version of the CLIP
model to align the generated image with its textual description. During the denois-
ing process, the model assesses how well each intermediate image xt corresponds to
the input text c by comparing their respective CLIP embeddings. This is done by
computing the cosine similarity between the visual representation f(xt) and the
textual embedding g(c), and using the gradient of their inner product to influence
the denoising trajectory. The reverse diffusion step is thus modified by adjusting
the predicted mean based on this alignment objective, encouraging the model to
generate content that more closely matches the semantic intent of the prompt:

µ̂θ(xt|c) = µθ(xt|c) + s · Σθ(xt|c)∇xt(f(xt) · g(c))

Regular CLIP models (not explicitly trained to be noise-aware) can still be used
for guidance but with limitations, such as susceptibility to adversarial gradients,
which can lead to artifacts in generated images.

The experimental setup involved training a 3.5 billion parameter diffusion model
conditioned on text inputs at a base resolution of 64× 64, along with an additional
1.5 billion parameter model for upsampling to 256× 256. Additionally, a noised
CLIP model using a ViT-L architecture was trained at 64× 64 to provide guidance
during generation.

The experiments trained a 3.5 billion parameter text-conditional diffusion model at
64× 64 resolution, and another 1.5 billion parameter text-conditional upsampling
diffusion model to increase the resolution to 256 × 256. For CLIP guidance, a
noised 64× 64 ViT-L CLIP model was trained.

Classifier-free guidance yielded more photorealistic and semantically accurate
outputs compared to CLIP-based guidance. It is hypothesized that with CLIP
guidance, the diffusion model may generate adversarial samples—images that
maximize the CLIP score but fail to align with the actual semantics of the prompt.
These adversarial gradients can lead to artifacts or incoherent outputs.

While GLIDE excels in generating photorealistic images, it faces challenges with
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complex prompts that require a high level of detail and nuance. To address this,
GLIDE supports targeted image editing, allowing users to remove or modify specific
portions of an image while preserving the surrounding context.

3.3 DALL-E

DALL-E 1[36], introduced in January 2021, marked the first successful attempt at
directly generating images from textual prompts. The model combines a two-stage
training process with autoregressive modeling to generate high-quality images
from textual descriptions. The methodology is structured to balance efficiency
and precision, leveraging advanced encoding techniques to map the relationship
between text and image data effectively.

In the first stage, a discrete Variational Autoencoder (dVAE) learns to compress
high-resolution RGB images (256× 256× 3) into a compact grid representation of
32× 32 discrete tokens, each capable of assuming one of 8192 unique values. This
compression reduces the spatial resolution of the input while preserving key visual
features. The resulting 1024 tokens act as a latent representation of the image.
The encoder function (qϕ) maps the original image x to the discrete latent space of
tokens, while the decoder function (pθ) reconstructs the image from these tokens
during generation.

In the second stage, the input text is tokenized into up to 256 Byte Pair Encoding
(BPE) tokens. These tokens are concatenated with the 1024 image tokens produced
by the dVAE from the first stage, forming a sequence of 1280 tokens. This joint
sequence serves as input to an autoregressive transformer, which is trained to model
the joint distribution pψ(y, z), where y and z denote the text and image tokens,
respectively. The training objective is to predict the next token in the sequence,
enabling the model to generate tokens for the image that align with the textual
description. This is achieved using a transformer with 12 billion parameters trained
on a dataset of 250 million image-text pairs.

The learning objective is formulated to optimize the evidence lower bound (ELBO),
which provides a tractable approximation of the joint probability distribution
pθ,ψ(x, y) over an image x and its corresponding caption y. This joint distribution
is modeled by introducing a set of latent image tokens z, and can be decomposed
as:

pθ,ψ(x, y, z) = pθ(x|y, z)pψ(y, z)

where:
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• pθ(x|y, z): is the likelihood of reconstructing the image x from the image
tokens z and text tokens y, modeled via the dVAE decoder.

• pψ(y, z): defines the joint distribution over the text and image tokens, learned
via an autoregressive transformer.

The ELBO is expressed as:

ln pθ,ψ(x, y) ≥ Ez∼qϕ(z|x) [ln pθ(x|y, z)− βDKL(qϕ(y, z|x)||pψ(y, z))]

where:

• qϕ is the posterior distribution over discrete image tokens, as produced by the
dVAE encoder.

• pθ is the distribution over the RGB images generated by the dVAE decoder
given the image tokens.

• DKL is the Kullback-Leibler divergence between the approximate posterior
and the learned prior

• β is a scaling factor to balance reconstruction fidelity and prior regularization.

During inference, the model first encodes the text prompt into 256 tokens using
the BPE tokenizer. Then, it predicts the next 1024 image tokens autoregressively
using the transformer. Finally, it decodes the full sequence of 1024 image tokens
into an image using the dVAE decoder.

3.3.1 DALL-E 2

Released in April 2022, DALL-E 2 [37] refined the methodology established in its
predecessor by incorporating CLIP into a two-stage generative process. Unlike
DALL·E 1, which relied on a fully autoregressive approach, DALL·E 2 shifted to a
diffusion-based image synthesis pipeline, improving realism and semantic coherence.
The model generates images through a two-step process: first predicting a CLIP
image embedding conditioned on the text prompt, then generating an image from
this embedding. The probability distribution of image generation in DALL·E 2 is
formulated as:

P (x|y) = P (x|zi, y)P (zi|y)

where:
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• P (zi|y) predicts the CLIP image embedding zi conditioned on the textual
description y, leveraging CLIP model.

• P (x|zi, y) produces the final image x from the predicted CLIP image embedding
zi, optionally using the text y as an additional condition.

In the first stage, the model predicts an image embedding zi from the text y. Two
different methods were explored for modeling this prior: Autoregressive (AR) prior,
which employs a causal transformer and PCA-based quantization to predict zi as
discrete tokens; and Diffusion prior, which models zi as a continuous vector using
a Gaussian diffusion process trained to predict the unnoised zi.

The diffusion prior was found to be more effective at capturing the semantics of
the text and was ultimately favored in later refinements.

In the second stage, once the image embedding zi is obtained, the final image
is generated through a cascaded diffusion model. The process begins at a low
resolution of 64× 64 pixels, which is then progressively upsampled to 256× 256,
and finally to 1024× 1024. Each upsampling stage uses a dedicated diffusion model
trained to reconstruct finer details from slightly corrupted images. By iteratively
refining the image through diffusion-based denoising, DALL·E 2 significantly
improves upon the sharpness and alignment of generated images with textual
prompts. Compared to its predecessor, DALL·E 2 demonstrated substantial

Figure 3.4: Samples from DALL·E 2
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advancements in:

• Text-Image consistency: the integration of CLIP embeddings improved seman-
tic alignment between the generated image and the input text.

• Compositional reasoning: the model better understands and combines multiple
visual elements specified in the prompt.

• Style transfer & refinement: CLIP embeddings allow conditioning on artistic
styles, enhancing creativity and fine-grained control over image attributes.

• Image quality: the diffusion-based generation method introduced smoother
gradients, reducing unnatural artifacts commonly seen in purely autoregressive
models.

3.3.2 DALL-E 3

DALL-E 3 [38], launched in 2023, builds on DALL-E 2, addressing the challenge of
prompt adherence by introducing dataset recaptioning to improve caption fidelity
and image quality. Earlier models, including DALL·E 2, occasionally struggled
to interpret complex prompts accurately, sometimes omitting crucial details or
misrepresenting the intended concepts. To overcome this, DALL·E 3 introduced
a novel recaptioning approach, allowing the model to generate synthetic captions
that enriched training data and improved alignment between text descriptions and
visual outputs. The training framework of DALL·E 3 incorporated a CLIP-based

Figure 3.5: Samples from DALL·E 3

architecture where a language model L(t, i), augmented by image features, was
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optimized to generate high-quality synthetic captions:

L(t, i) =
Ø
j

logP (tj|tj−k, . . . , tj−1;F (i); Θ)

where F (i) represents the CLIP image embedding, and Θ denotes the model
parameters. This recaptioning approach helped the model better understand
nuanced user prompts, reducing instances where generated images failed to capture
the full semantic meaning of the input text.

The training process was divided into two key phases:

1. Short synthetic captions: focused on the primary subject of an image.
2. Descriptive synthetic captions: included detailed surroundings, styles,

and object placements.

Beyond improving textual alignment, DALL·E 3 introduced optimizations for
image quality. The model was trained on a dataset of 1 billion images, leveraging
a T5-conditioned diffusion architecture across 500,000 training steps. The diffusion
process was further refined to generate high-resolution images at multiple aspect
ratios, including 1024 × 1024, 1792 × 1024, and 1024 × 1792, providing greater
flexibility for practical applications.

A major breakthrough in DALL·E 3 is its native integration into ChatGPT, which
enables to leverage ChatGPT as a brainstorming partner and refiner for the user’s
prompts. This integration enables a more interactive and coherent image generation
experience, as the language model can suggest prompt modifications to enhance
clarity and specificity. The synergy between natural language processing and image
synthesis also makes the system more intuitive for non-technical users, broadening
its accessibility.

Compared to earlier iterations, DALL·E 3 significantly improved image-text
alignment and visual quality, producing more coherent, detailed, and aesthetically
pleasing results. The model’s ability to interpret complex prompts accurately
and generate high-resolution outputs positioned it as a leading advancement in
generative AI.

3.4 MidJourney

MidJourney[39], first released in 2022, is a generative AI model that has gained
immense popularity for its ability to convert natural language prompts into highly
stylized and visually captivating images. Positioned alongside major players like
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DALL-E and Stable Diffusion, MidJourney distinguishes itself by focusing on
artistic creativity and abstraction rather than strict photorealism. Unlike open-
source models, MidJourney operates on closed-source proprietary technology, with
its underlying architecture and methodology kept confidential.

MidJourney is accessible through its Discord server, where users interact with the
bot by typing prompts in designated channels, and, more recently, also through its
new user-friendly web-based platform. Key features and capabilities include:

• Image variations: after generating an initial set of images, users can select
specific outputs to refine further, exploring nuanced differences in style, color,
or composition. This iterative feature allows for a high degree of customization.

• Style conditioning: MidJourney excels in applying artistic styles to gen-
erated content, and prompts can specify particular artistic movements or
predefined aesthetics, enabling users to achieve highly tailored outputs.

• Image referencing: users can upload their own images as references, al-
lowing MidJourney to base its generation on the uploaded content, which is
particularly useful for maintaining visual consistency.

• Character referencing: by feeding character reference images, the model
supports prompts that develop consistent characters across multiple genera-
tions.

• Stylization and detail control: users can specify the level of abstraction
or realism in the output.

• Aspect Ratio Flexibility: MidJourney supports custom aspect ratios,
enabling users to generate images optimized for specific formats.

• Blend mode: this unique feature allows users to combine multiple prompts
or reference images, resulting in blended outputs that integrate styles, themes,
or subjects.

• Zoom out and pan: introduced in recent versions, this feature enables users
to extend the canvas of an existing image, creating a broader scene while
preserving the coherence of the original content.

Since its debut, MidJourney has undergone continuous improvement, with new
versions released every few months introducing enhanced features, improved image
quality, and better prompt adherence. As of now, the latest released version is 6.1,
released in July 2024.

MidJourney also focuses on the community, creating a space for users to actively
share their creations, discuss techniques, and exchange tips, making the platform
as much a social hub as a creative tool.
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3.5 Imagen

Imagen[20], introduced by Google Research in 2022, is a state-of-the-art text-to-
image synthesis model that innovatively combines the semantic power of large
pre-trained language models with the high-fidelity generation capabilities of diffusion
models.

Unlike earlier models that rely on multi-modal embeddings (e.g., CLIP), Imagen
leverages a purely text-based large language model -a pre-trained T5-XXL text
encoder-, to convert textual prompts into dense semantic embeddings. This choice
allows for a deeper and more nuanced understanding of complex, compositional
prompts thanks to the LLM’s exposure to vast textual corpora during training.
At the core of Imagen’s design is a diffusion model framework that generates

Figure 3.6: Samples from Midjourney

images through an iterative denoising process. The synthesis pipeline begins
with a base diffusion model that produces low-resolution images (64 × 64) from
random Gaussian noise. These initial outputs are then refined via a cascaded
super-resolution process, where a first upsampling phase increases the resolution to
256 × 256, and a subsequent phase further refines the image to a high resolution
of 1024 × 1024.

During each step, the diffusion model is trained to minimize the noise prediction
error defined by:

L = Ex,c,ϵ,t
5
wt
...xθ1αtx+ σtϵ, c

2
− x

...2

2

6
, (3.1)

where x is the image, c represents the text embedding, αt and σt are time-dependent
scaling factors, and ϵ is Gaussian noise.
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To enhance image quality and ensure faithful adherence to text prompts, Imagen
employs classifier-free guidance (CFG). In this approach, the noise prediction is
interpolated between conditional and unconditional predictions:

ϵθ(zt, c) = w ϵθ(zt, c) + (1− w) ϵθ(zt), (3.2)

where the guidance scale w balances prompt adherence against diversity in the
generated images.

A critical aspect of the Imagen framework is the management of output pixel
ranges, which is achieved through thresholding techniques. Two approaches are
considered:

• Static thresholding: in this method, the predicted image x0 is directly
clipped to a fixed range (typically [−1, 1]). Clipping refers to limiting the
pixel intensity values to a predefined range, to prevent extreme pixel values
from causing visual artifacts or distortions. Static thresholding is simple and
computationally efficient, but it can be overly rigid, potentially discarding fine
details and leading to artifacts if many values are clipped.

• Dynamic Thresholding: Here, the threshold value is adaptively determined
at each sampling step based on the distribution of pixel intensities (e.g.,
by computing a specific percentile). If the computed threshold s exceeds
1, the pixel values in x0 are clipped to [−s, s] and normalized by s. This
adaptive approach is more flexible, preserving subtle variations while effectively
preventing oversaturation, and was found to yield superior photorealism and
better text-to-image alignment.

Another key innovation in Imagen is the freezing of the text encoder during training.
This strategy allows for precomputed embeddings and reduces computational costs
while emphasizing that scaling up the text encoder significantly improves both
image quality and text alignment.

Recent advancements in the Imagen series further refine these techniques. Imagen 2,
launched in December 2023, introduced enhancements in image fidelity, contextual
understanding, and multilingual support. Building on these improvements, Imagen
3, introduced in August 2024, offers even sharper photorealism, simplified prompt
interpretation, and stronger safety features. Together, these iterations underscore
Imagen’s pioneering role in text-to-image generation and its continuous push toward
improved creative and technical capabilities.
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Fine Tuning Techniques

4.1 Textual Inversion

Textual Inversion[40] is a fine-tuning method designed to personalize text-to-image
diffusion models, such as Stable Diffusion, by introducing new visual concepts
without altering the underlying model weights. This technique works by introducing
a novel pseudo-word, denoted as S∗, into the text-to-image diffusion model’s
vocabulary. This pseudo-word corresponds to a specific subject or concept that the
user wishes to integrate into the generative model. Instead of retraining the entire
model, the method leverages the model’s existing text embedding space and injects
the new concept by optimizing a unique embedding v∗, for S∗, using only a few
example images, typically 3–5, making it efficient and accessible. The result is a
mechanism that enables users to include custom subjects in textual prompts. The
training process aims to optimize the token embedding v∗ so that it effectively binds
the desired subject to the pseudo-word within the model’s latent space, all while
keeping the pre-trained model’s weights frozen. The goal is therefore to minimize
the reconstruction error between the generated images and the provided samples,
enabling the model to map the unique identifier to the desired visual concept
effectively. Mathematically, this involves optimizing the embedding v∗ to ensure
alignment with the model’s broader and pre-existing latent space. The process
leverages the model’s existing understanding of generic concepts (e.g., "chair" or
"style"), enabling it to capture the new concept’s specificity while maintaining
generalization.

The optimization process is grounded in the standard Latent Diffusion Model
(LDM) framework. Using text-image pairs as input, the model applies random
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Figure 4.1: Textual Inversion process

noise to the image embeddings and then learns to reconstruct the original image
using only textual conditioning. The objective function for this process is as follows:

v∗ = arg min
v

Ez∼E(x),y,ϵ∼N (0,1),t
è
∥ϵ− ϵθ(zt, t, cθ(y))∥2

2

é
where zt represents the noisy latent representation, t is the time step in the noise
schedule, ϵ ∼ N (0,1) is the noise, and cθ(y) is the text conditioner derived from
CLIP embeddings. During training, random context texts are sampled to diversify
the conditioning and encourage broader generalization of the embedding.

This approach aligns the learned embedding v∗ with the model’s existing knowledge,
ensuring the new concept integrates seamlessly into its vocabulary. By leveraging the
existing text embedding space and optimizing only the embeddings for the unique
identifier, Textual Inversion avoids the computational overhead of fine-tuning the
entire model and maintains the robustness of the pre-trained system. The resulting
embeddings allow for creative applications, enabling users to generate images
featuring specific objects, styles, or concepts by simply including the corresponding
pseudo-word in their textual prompts.

Textual Inversion represents a significant step forward in making diffusion models
more personalizable and flexible. However, the limitations mentioned in the original
paper primarily regard two areas: precision in capturing shapes and optimization
efficiency. While Textual Inversion successfully encodes the "semantic essence" of a
concept, it can struggle to reconstruct precise shapes or more complex relational
prompts such as spatial arrangements between objects. This trade-off makes the
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method particularly suitable for artistic applications, where capturing the general
feel of a subject is often sufficient. However, it is more evident for tasks requiring
exact replication of structural details. Additionally, the process is time-intensive,
with the current setup requiring roughly two hours to learn a single concept. The
authors suggest that this could be significantly reduced by developing an encoder
trained to directly map a set of images to their corresponding textual embedding,
which could streamline the process.

4.2 DreamBooth

DreamBooth is a fine-tuning technique designed to personalize image generation
models like Stable Diffusion, presented in the paper [41]. By default, these models
can generate a wide variety of subjects within a given class, but they struggle to
consistently reproduce the same subject in various contexts or accurately mimic an
existing subject within the generated image. DreamBooth, developed by Google
Research, addresses this limitation by enabling the model to generate highly
customized and contextually adaptable images based on a specific subject or object
from a limited number of reference images—typically as few as 3 to 5. The method
introduces a unique identifier token (e.g., "[V]") into the model’s vocabulary,
associating it with the subject during training. This token enables the model
to recognize and reproduce the subject in various contexts while maintaining its
overall coherence and style diversity.

DreamBooth employs a class-specific loss function to ensure that the fine-tuned
model retains its general knowledge and does not overfit to the reference images.
For example, if fine-tuning a model on images of a specific dog, the training process
compares outputs not only against the subject-specific images but also against a
broader class of dogs. This dual-focus approach prevents the model from "forgetting"
how to generate other dogs while still excelling at generating the specific target
dog in diverse scenes and settings.

To guide this process, each training image is annotated with the format "a
[identifier] [class noun]": the identifier is a unique token chosen to rep-
resent the specific subject—typically a rare or unused token to avoid semantic
interference—while the class noun corresponds to the broader category of the
subject. In this way, the model is able to anchor the new concept within its
existing knowledge space, facilitating accurate and context-aware synthesis of the
personalized subject across diverse scenes.

The process of selecting unique identifiers in fine-tuning aims to minimize the
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Figure 4.2: Dreambooth fine-tuning example

influence of pre-existing linguistic or model priors. Using common English words is
generally discouraged, as these tokens are already semantically loaded, making them
less effective for learning a new, specific concept. naive alternative might involve
generating random alphanumeric strings,but such sequences are often tokenized into
smaller units or individual characters, each of which may still carry their own prior
meanings, therefore this kind of identifiers can still introduce noise and ambiguity.
The preferred approach is to identify rare tokens in the model’s vocabulary that
have minimal prior associations. These rare tokens are identified through a lookup
in the model’s tokenizer, focusing on sequences of 1 to 3 tokens that are relatively
infrequent (e.g., tokens with index values in the range of 5000–10000 for the
T5-XXL tokenizer, which tend to occur less frequently and thus carry weaker
semantic associations). These tokens are then inverted into text space using a
detokenizer, generating unique sequences of characters that form the identifier. By
selecting tokens with weak priors and avoiding spaces or lengthy sequences, this
method ensures that the identifier is both distinct and effectively integrated into
the fine-tuning process without unintended biases.

DreamBooth fine-tunes all layers of the model, which allows it to tightly integrate
the new subject into the generative process. However, this comprehensive fine-
tuning can lead to challenges such as language drift—where the model gradually
loses some of its general textual understanding—and reduced output diversity, as
the model may overfit to the limited subject images. To mitigate these issues,
DreamBooth employs a class-specific prior preservation loss. This loss function
ensures that, while the model learns to generate the specific subject, it also retains
broader class knowledge by supervising the model on both subject-specific images
and class-level samples. The overall loss is defined as:

Ex,c,ϵ,ϵ′,t
è
wt∥xθ(αtx+ σtϵ, c)− x∥2

2 + λw′
t∥xθ(α′

txpr + σ′
tϵ

′, cpr)− xpr∥2
2

é
where the first term enforces high fidelity to the target subject and the second
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Figure 4.3: Dreambooth fine-tuning process

term, weighted by λ, is the prior-preservation term that encourages diversity and
prevents overfitting by retaining knowledge of the original class through generated
samples xpr.

DreamBooth has found applications in personalized art generation, character design,
and even photorealistic customization of individuals, making it an invaluable tool
for creators and designers. Its strength lies in its ability to blend the unique
features of a subject with the creative flexibility of Stable Diffusion, opening up
new possibilities in custom content creation.

The limitations noted in the DreamBooth approach primarily concern its ability to
handle rare or complex subject-context combinations. When such combinations are
underrepresented in the training data, the model may generate inaccurate or weak
contextual details, resulting in less reliable priors. Additionally, the model can
sometimes entangle the subject’s appearance with the contextual prompts, leading
to unintended alterations—such as shifts in color or style—that compromise the
subject’s identity. Overfitting is another significant challenge, especially when the
prompts closely mirror the subject’s original training context, which limits the
diversity of the generated outputs. While DreamBooth performs effectively for
common subjects like dogs and cats, rarer subjects often yield fewer variations
and lower fidelity, with instances of hallucinated features further degrading subject
accuracy. These issues highlight the need for improved training data diversity.
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In comparison, Textual Inversion optimizes only the embedding vector for a new
pseudo-word while keeping the rest of the model frozen. This lighter-weight
approach reduces the risk of overfitting and language drift, but it may not capture as
much detail or achieve the same level of subject and prompt fidelity as DreamBooth.
Quantitative evaluations and user studies indicate that DreamBooth generally
provides superior performance, making it the preferred method when high-fidelity
subject reproduction and contextual adaptability are critical.

4.3 LoRA

LoRA (Low-Rank Adaptation)[42] is a technique that enables efficient fine-tuning
of large pre-trained models by introducing small, trainable parameter matrices
into specific layers, rather than updating the entire weight matrices. In traditional
approaches for adapting large language models and diffusion models, full fine-tuning
is often employed to develop downstream applications. However, as models scale to
hundreds of billions of parameters, such fine-tuning becomes increasingly resource-
and time-intensive.

To address these challenges, alternative methods have been proposed—such as
limiting the number of trainable parameters or employing external networks (known
as hypernetworks[43]) to adapt inputs toward desired outputs. Although these
techniques reduce computational demands, they often involve a trade-off between
efficiency and quality, rarely matching the performance achieved by full fine-tuning.

LoRA leverages the insight that the changes required during model adaptation
tend to have a low intrinsic rank. This means that the essential modifications can
be captured by a small number of parameters. Instead of updating full weight
matrices, LoRA optimizes low-rank decomposition matrices that encapsulate the
necessary weight changes. By doing so, it drastically reduces the number of trainable
parameters while maintaining high adaptation quality.

Instead of updating the full weight matrix W0 ∈ Rd×k of a pre-trained model during
fine-tuning, LoRA injects two low-rank matrices A and B such that:

W = W0 + ∆W, where ∆W = B × A

where B ∈ Rd×r and A ∈ Rr×k, and the rank r ≪ min(d, k). This decomposition
significantly reduces the number of trainable parameters, as the rank r is much
smaller than the dimensions of the original weight matrix d.
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Figure 4.4: LoRa reparametrization.

During fine-tuning, only A and B are optimized, while the original pre-trained
weights W0 remain frozen. The modified weights W effectively incorporate the
adaptation required for the specific task, while the low-rank nature ensures that
the updates are computationally lightweight.

As a result, LoRA significantly reduces the computational and hardware demands
of the fine-tuning process, making it more accessible and energy-efficient. Moreover,
the fact that the original weight matrix W0 remains untouched during training
allows for seamless reversion to the base model if needed. At the same time, learned
low-rank matrices can be easily interchanged or composed across different tasks,
enabling a modular and versatile adaptation strategy without the need to retrain
the entire model. An additional advantage is that the method generates compact
files containing only the low-rank updates, which can be easily distributed and
integrated into any compatible pre-trained model—minimizing both storage needs
and deployment complexity.

As a practical example of LoRA benefits, the paper describes the results obtained
on GPT-3 175B. LoRA reduces VRAM usage during training from 1.2TB to 350GB,
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allowing training on fewer GPUs and avoiding I/O bottlenecks. Moreover, the
storage requirements for task-specific checkpoints are dramatically lowered—from
350GB down to just 35MB, representing a 10,000× reduction. This compact
representation allows for rapid task switching by simply loading the lightweight
LoRA weights over the pre-trained model. Additionally, LoRA accelerates training
by 25% compared to full fine-tuning, as gradients are computed only for the small
subset of trainable parameters. This efficiency makes LoRA both scalable and
cost-effective when adapting extremely large models.

In the transformer architecture, low-rank adaptation is usually applied to the weight
matrices in the self-attention modules, such as Wq, Wk, Wv, and Wo, enabling
efficient fine-tuning across various tasks. More specifically, the paper examines
which weight matrices benefit most from LoRA under a fixed parameter budget
(e.g., 18M trainable parameters in GPT-3 175B). Experimental results reveal that
applying LoRA to all self-attention weight matrices simultaneously yields high
performance only when a very low rank (e.g., r = 2) is used to stay within the
budget. In contrast, selectively adapting the query (Wq) and value (Wv) matrices
strikes the best balance between performance and efficiency, achieving superior
results with a slightly higher rank (r = 4). Adapting only Wq or Wk in isolation,
however, leads to significantly lower performance, indicating that these weights alone
are insufficient to capture the required information for task-specific adaptations
while the joint adaptation of Wq and Wv is more effective at capturing the relevant
task-specific transformations under constrained conditions.

The optimal rank for LoRA has also been a subject of investigation. The analysis
shows that even extremely low ranks, such as r = 1, can achieve competitive
performance when applied to both Wq and Wv. This suggests that the weight
update matrix ∆W inherently has a low-dimensional structure, meaning that
the most crucial adaptations for the downstream task reside in a small subspace.
Further experiments involving subspace similarity reveal that the dominant singular
vector directions of adaptation matrices (for example, when comparing r = 8 to
r = 64) overlap substantially, while the remaining directions contribute little or
merely capture noise. This confirms that low-rank adaptation matrices efficiently
encode the critical adjustments required for effective fine-tuning, ensuring high
performance with minimal additional computational overhead.

4.4 Custom Diffusion

Custom Diffusion[44] is a fine-tuning method built on Stable Diffusion, designed to
adapt pre-trained text-to-image diffusion models to incorporate new user-specified
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concepts efficiently. Similarly to LoRA, Custom Diffusion updates only a limited set
of parameters, thus retaining the pre-trained model’s broad generative capabilities
while drastically reducing computational and memory overhead. Moreover, it
specifically focuses on compositional fine-tuning, the ability to extend beyond a
single concept and compose multiple concepts together.

Custom Diffusion selectively fine-tunes the key (Wk) and value (Wv) projection
matrices in the cross-attention layers of the U-Net architecture used in Stable
Diffusion. This design choice minimizes computational and memory requirements
while proving sufficient to encode new concepts. By restricting training to these
parameters (approximately 3% of the total model weights), the method avoids the
overhead of full-model fine-tuning while achieving high-quality results.

Each target concept is associated with text captions. When a descriptive caption
exists, it is used directly. In personalized scenarios—such as generating a specific
individual or pet that belongs to a broader category—a unique identifier token
V ∗ is introduced. This token is initialized with a rarely occurring embedding
from the model’s vocabulary—minimizing interference from existing concepts—and
is optimized alongside the cross-attention parameters. This joint optimization
ensures that the fine-tuned model can generate the target concept accurately across
various contexts. STarting from a few images of the new concept, the method

Figure 4.5: Custom diffusion process: training dataset and fine-tuning.

first retrieves additional real images with from a large dataset (e.g., LAION-400M)
with captions similar to the target concept (measured via CLIP feature similarity).
These retrieved images are used to create a regularization dataset that helps prevent
overfitting and preserves the model’s prior knowledge of related concepts during
fine-tuning. In addition, data augmentation is applied by resizing target images
and appending modifiers such as "zoomed in" or "far away" to the text prompts.
This augmentation improves generalization and variation in the generated outputs.
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Custom Diffusion is also designed to handle multiple concepts simultaneously.
In multi-concept fine-tuning, training datasets for each concept are combined
and each concept is assigned its own unique modifier token V ∗

i . These tokens
and the selected cross-attention parameters are optimized jointly during training.
Alternatively, separately fine-tuned models for individual concepts can be merged
via a closed-form constrained optimization:

W ∗ = W0 + v⊤d, d = C(C⊤
regCreg)−1, v⊤ = (V −W0C

⊤)(dC⊤)−1

where W0 represents the pre-trained model weights, C denotes the combined text
features of all target concepts, and Creg represents regularization features. This
approach avoids retraining while ensuring compatibility of multiple concepts.

While Textual Inversion typically adds a new token (or optimizes a new token
embedding) while keeping the rest of the model unchanged. It focuses solely
on learning the embedding that represents the new concept. In contrast, Cus-
tom Diffusion not only optimizes a new token but also fine-tunes part of the
model—the cross-attention parameters—to better integrate that concept with the
image-generation process. DreamBooth fine-tunes the entire diffusion model (or a
large subset of its parameters) to adapt to a specific concept, which can be very
resource-intensive and sometimes lead to overfitting. Custom Diffusion, on the
other hand, restricts fine-tuning to only the cross-attention layers and the new
token to achieve greater efficiency.

4.5 ControlNet

Despite their general capabilities, large text-to-image models often fail to precisely
capture the specific user’s intent or the nuanced idea behind the prompt. However,
enhancing such models to specialize in task-specific generation is challenging, given
their scale—often trained on datasets comprising over 5 billion data points—and
the computational demands of retraining or fine-tuning them. ControlNet[45]
aims to tackle this problem by introducing spatial conditioning controls to large,
pretrained architectures such as Stable Diffusion, allowing users to provide specific
image-based conditioning inputs—like edge maps, depth maps, segmentation masks,
and human pose skeletons.

Instead of fine-tuning the original model directly, ControlNet creates a "trainable
copy" of the pretrained model: gradients are updated exclusively on the trainable
copy, while the original weights are retained in a frozen state. This approach allows
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Figure 4.6: ControlNet: controlling Stable Diffusion with learned conditions.

leveraging the generalization capabilities of the original while enabling targeted
learning on the cloned copy for task-specific requirements.

The core architecture of ControlNet leverages the structure of pretrained text-to-
image diffusion models while introducing a trainable mechanism for spatial control.
This is achieved by freezing the parameters of the pretrained model and adding
a parallel, trainable copy of its encoding layers, which are connected via zero
convolution layers. These zero-initialized convolution layers ensure that no noise is
introduced into the pretrained model during the initial stages of training, preserving
its capabilities while enabling the gradual incorporation of new conditional inputs.
For each conditioning input (e.g., depth map, pose, or edge map), the architecture

Figure 4.7: ControlNet architecure scheme

introduces a lightweight encoder to preprocess the input into a latent representation
compatible with the Stable Diffusion latent space. The resulting conditioning vector
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is integrated into the trainable branch of ControlNet, influencing the output through
the carefully designed connections between the frozen and trainable components.

Within the Stable Diffusion framework, ControlNet is implemented by augmenting
the U-Net architecture. The U-Net consists of an encoder, a middle block, and a
skip-connected decoder, with 25 primary blocks spanning four spatial resolutions:
(64× 64, 32× 32, 16× 16, and 8× 8). ControlNet introduces parallel, trainable
versions of the encoder and middle block, which are linked to the original network
through zero convolution layers and process spatial conditioning inputs to steer
the generation process. Since the original encoder remains frozen during training,
this setup minimizes computational overhead by avoiding gradient updates on the
locked parameters, allowing for efficient fine-tuning.

Figure 4.8: ControlNet integrated into Stable Diffusion’s U-Net at the encoder
and middle blocks.

To ensure compatibility, ControlNet preprocesses the conditioning images into
latent representations matching the U-Net’s input resolution. This preprocessing is
achieved using a lightweight encoder with a sequence of convolutional layers that
encode the spatial conditions into compact representations.

Stable Diffusion uses latent images, converting 512× 512 pixel-space images into
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a 64× 64 latent space. ControlNet integrates condition-specific input ci into this
latent space using an encoder network E(·):

cf = E(ci),

where cf is the feature-space conditioning vector.

The encoder E(·) consists of four convolution layers with kernel size 4 × 4 and
stride 2× 2, activated by ReLU, and progressively increasing channel dimensions
(16, 32, 64, 128). This ensures that input conditions are downscaled and aligned
with the latent space dimensions of Stable Diffusion.

ControlNet training involves the same objective as traditional diffusion models,
where the model learns to predict noise progressively added to an image during
the forward diffusion process. The key difference lies in the inclusion of additional
spatial conditions during training. The loss function is:

L = Ez0,t,ct,cf ,ϵ∼N (0,1)
è
∥ϵ− ϵθ(zt, t, ct, cf )∥2

é
where zt represents the noisy latent at timestep t, ct the text condition, cf the
spatial condition, and ϵθ the noise predictor.

To improve robustness, the training process involves replacing 50% of the text
prompts with empty strings. This compels the model to depend more strongly on
spatial conditioning signals, ensuring reliable performance even when textual input
is absent at inference time.

ControlNet also employs Classifier-Free Guidance Resolution Weighting (CFG-
RW). As we have seen, CFG in Stable Diffusion balances between unconditional
ϵuc and conditional ϵc outputs, controlled by a weight βcfg. When ControlNet adds
conditioning images, directly applying them to both outputs can overly weaken or
strengthen guidance. To resolve this, CFG-RW scales the influence of ControlNet’s
conditioning based on block resolution by a connection’s weight (wi) that is inversely
proportional to the block size (hi):

wi ∝
1
hi

This adjusts guidance strength dynamically across model layers, ensuring adherence
to spatial inputs without over-dominating the text-based conditions.
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ControlNet also supports compositional conditioning, allowing multiple ControlNets
(e.g., for depth and pose) to be applied simultaneously in the generation process
by simply summing the outputs of the respective ControlNets without additional
weighting or interpolation.

This modularity allows users to specify multiple spatial conditions, effectively guid-
ing the generative process while preserving high fidelity to the provided constraints.
The ability to integrate multiple spatial conditions makes ControlNet particularly
useful for applications requiring high levels of control, such as pose-guided character
generation, architectural visualization, or depth-aware image synthesis.

70



Chapter 5

Storyboarding

5.1 Storyboarding and Shot Types

Storyboarding is the process of visually planning a narrative by creating a sequence
of drawings or images that represent each shot or key moment in a scene. Each
panel of a storyboard typically includes sketches of the scene’s composition, camera
angles, character positions, and actions, often accompanied by notes on dialogue,
movement, lighting, or sound.

Storyboarding is extensively utilized in industries such as film, animation, advertis-
ing, and multimedia to plan and pre-visualize how the narrative will unfold before
shooting begins, serving as a blueprint for technical execution.

Shot types in particular are a key element in storyboarding, determining how
subjects and objects are framed within a scene. By varying camera placement
and screen size, different effects can be achieved—guiding the viewer’s focus and
perception. This makes shot types a critical tool for shaping narratives and evoking
specific responses in visual storytelling.

Our work focuses on 8 common shot types based on the field size, defined as follows:

• Extreme Close Up: The human figure is framed from the chin up.
• Close Up: The human figure is framed from above the shoulder up.
• Medium Close Up: The human figure is framed from half the torso up.
• Medium Shot: The human figure is framed from the waist up.
• American Shot: The human figure is framed from above the knee up.
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Figure 5.1: Eight shot types

• Full Shot:The human figure is framed entirely (or almost entirely) and
occupies more than 2

3 of the frame in height.
• Long Shot The human figure is framed entirely and occupies between 2

3 and
1
3 of the frame in height.

• Extreme Long Shot The human figure occupies less than one third of the
frame in height, or is absent.

5.2 Storyboarding Works

In recent years, an increasing number of studies have focused on leveraging genera-
tive AI for story visualization and continuation. The following subsections provide
an overview of key methodologies and systems in this domain.

5.2.1 StoryGAN

The StoryGAN paper [46] introduces the task of story visualization, which consists
in generating a sequence of images from a multi-sentence narrative, with each image
corresponding to a sentence in the story. The key challenge is to ensure that each
image faithfully represents its sentence while maintaining global consistency across
the full sequence—preserving continuity in characters, scenes, and narrative flow.

StoryGAN addresses this with a sequential conditional GAN architecture com-
posed of a generator and two discriminators. The generator includes three main
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components: the Story Encoder, the Context Encoder, and the Image Generator.

Figure 5.2: The StoryGan framework.

Given a full story S = [s1, s2, ..., sT ], the Story Encoder compresses it into a
global context vector h0 ∈ Rd. This vector is sampled from a learned Gaussian
distribution h0 ∼ N (µ(S),Σ(S)) and is used to initialize the hidden state of
the Context Encoder. It captures the semantic summary of the entire story and
introduces variation during generation.

The Context Encoder is a two-layer RNN that dynamically tracks the progression
of the story: at each timestep t, the model receives a sentence embedding st and
random noise ϵt, which are combined and processed to produce a local feature
vector it. This vector is then merged it with the evolving context hidden state
ht−1, producing an updated context ht and an output vector ot. ot encodes both
local (sentence-level) and global (story-level) information, thus preserving the
broader narrative’s continuity while capturing the information relevant to the
current moment in the story.

The Image Generator uses this vector ot to produce an image x̂t that visually
represents the corresponding sentence st, grounded in the overall story context.

To ensure the quality and consistency of these images, StoryGAN utilizes two
discriminators:

• Image discriminator: this module evaluates whether each generated image
aeach image x̂t is realistic and semantically aligned with its sentence st and the
global initial story context h0. It compares a triplet of inputs—the sentence,
the encoded story context, and the generated image—and assigns a "real"
or "fake" label based on how well the generated image matches the sentence
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description and the broader context.

• Story discriminator: this component assesses whether the sequence of
generated images [x̂1, ..., x̂T ] is coherent with the full story S. It evaluates
the coherence of the entire sequence, ensuring that the images collectively
represent a unified and logical narrative. The Story Discriminator encodes
both the image sequence and the story text into separate fixed-length vectors,
combines them via element-wise product, and scores their alignment using a
fully connected layer with sigmoid activation.

The generator and discriminators are trained adversarially, with the generator
aiming to fool both discriminators. A KL divergence regularization term is also
applied to the Story Encoder to encourage smoothness in the latent space.

The feedback from these discriminators is backpropagated through the generator
network, allowing it to refine its parameters via gradient descent. This iterative
training process enables the generator to produce images that are not only more
aligned with the sentence descriptions at the image level but also more coherent
across the sequence at the story level. As training progresses, the model improves
its ability to maintain consistency in characters, settings, and actions across frames,
making StoryGAN a foundational approach in the field of story visualization.

5.2.2 AutoStory

AutoStory[47] combines Large Language Models (LLMs) and text-to-image diffusion
models to transform user input into coherent visual narratives.

The process begins with converting the input (either a detailed story or a short
description) into a structured, multi-panel narrative using an LLM such as GPT-4.
The LLM segments the story into panel-wise descriptions, then generates a global
prompt for each panel and localized object prompts paired with sparse spatial
layouts in the form of bounding boxes. These form the backbone of the scene
layout and help decouple complex storytelling into simpler compositional tasks.

These sparse bounding box layouts are further refined into dense control conditions,
such as sketches or keypoints, to accurately extract object boundaries. Techniques
like segmentation and edge detection are used to enhance visual precision and
ensure that important details are preserved. These object-level control signals are
composed into a full-scene dense condition, aligned with the original bounding box
layout in order to achieve spatial coherence while allowing detailed control during
generation.
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Figure 5.3: The Autostory pipeline.

For identity preservation of characters, AutoStory employs Embedding-Decomposed
LoRA (ED-LoRA) for lightweight fine-tuning, ensuring that character appearances
remain consistent across frames. Given only a few reference images, this method
learns identity-specific adaptations without full model retraining. Gradient fusion
is then applied to merge multiple ED-LoRAs for multi-character scenes. In cases
where no reference images are provided, AutoStory supports automatic character
generation using a training-free method. It treats multi-view generation as a video
modeling problem by applying extended self-attention across frames: each frame’s
latent features attend to those in the first and previous frames, enforcing identity
consistency. To enhance variation, 3D-aware image translation methods (e.g.,
One-2-3-45) are used to generate diverse character poses and viewpoints.

Once the multi-view character images are synthesized, sketches or keypoints are
extracted to serve as detailed structural control signals. These are injected into
the latent space of the diffusion model to further refine image quality and ensure
alignment with the intended character design.

In the image generation stage, AutoStory uses Stable Diffusion enhanced by T2I-
Adapter to incorporate both sparse layout information and dense control signals.
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The generation process:

Ii = DM(pglobal
i ; σi, {A, Ci}, ∆W )

where σi denotes the layout, Ci the dense condition, A the T2I-Adapter, and ∆W the
customized LoRA weights for character identity preservation. The layout controls
the spatial positioning of objects, while the dense conditions guide structural and
stylistic fidelity.

5.2.3 AR-LDM Methodology

The AR-LDM methodology[48] addresses the challenge of maintaining frame-
to-frame consistency in visual story synthesis, a critical factor for generating
coherent narratives. Unlike single-caption text-to-image tasks—where each image
is generated independently—story synthesis requires the model to incorporate
contextual information from preceding frames. Captions are interdependent, and
the model must ensure continuity in both visual and narrative elements across the
sequence. To achieve this, the paper introduces a history-aware latent diffusion
approach that incorporates both past captions and previously generated images
into the generation process, ensuring visual and narrative coherence throughout
a multi-frame sequence. The method generates each frame conditioned not only

Figure 5.4: The AR-LDM process and architecture.

on its current caption but also on a structured multimodal history of preceding
caption-image pairs. This conditioning is achieved via a dedicated history-aware
encoding module. The module uses CLIP to encode the current sentence and
BLIP to jointly encode each prior frame along with its associated caption. These
representations are then fused—along with type and position embeddings—into a
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comprehensive multimodal condition vector φj, which guides the reverse diffusion
process for the current latent z[j]

0 .

The generation process proceeds sequentially: for each frame j, the model estimates
the posterior p(xj | x<j, c≤j) and samples the image latent z0 in the compressed
space. This latent is then decoded using a pretrained decoder D to produce the
final image x̂j. This strategy allows AR-LDM to ground each image in both the
current narrative input and the evolving visual context of the story, resulting in
coherent characters, spatial relationships, and scene progression across frames.

To support generalization to unseen characters—especially those referenced vaguely
or via pronouns—AR-LDM introduces a special placeholder token ⟨char⟩. This
token is initialized using an embedding of a semantically similar word (e.g., “man”
or “woman”) and is fine-tuned using 3–5 reference images of the new character.
During adaptation, the full AR-LDM model is fine-tuned (except for the encoder
and decoder), allowing it to learn character-specific visual traits without retraining
from scratch.

By integrating history-aware conditioning and auto-regressive generation, AR-
LDM provides a robust solution for synthesizing multi-frame visual stories while
preserving character identity, spatial coherence, and contextual alignment across
all frames.

5.2.4 StoryDALL-E

StoryDALL-E [49] adapts the DALL-E text-to-image model for the task of story
continuation, where the goal is to generate a coherent sequence of images given
a series of captions and an initial (source) image. Unlike standard text-to-image
models that treat each image independently, StoryDALL-E ensures visual and
narrative consistency across frames by conditioning each image on both the caption
and a shared context, as well as copying relevant elements from a previously seen
source frame.

To achieve this, the model introduces two main architectural components: a Global
Story Encoder, which utilizes self-attention to process all story captions in parallel,
creating a global story embedding that encodes overarching context. To maintain
sequence structure, sinusoidal positional embeddings are added, encoding the
frame’s position within the narrative. Additionally, retro-fitted cross-attention
layers are added to each self-attention block of the DALL-E transformer, which
allow the model to integrate visual cues from the source frame during the generation
of target frames.

77



Storyboarding

Figure 5.5: Illustration of the StoryDALL-E architecture for the prompt-tuning
setting

To optimize efficiency, StoryDALL-E supports both full model fine-tuning and a
parameter-efficient prompt-tuning strategy. In the latter, the pretrained model
weights remain frozen, and only task-specific prompt embeddings (i.e., learnable
virtual tokens), the global story encoder, and cross-attention modules are trained.
These learned prompt embeddings are prepended to the caption embeddings and
processed alongside global story embeddings and source frame embeddings to guide
generation.

The generation pipeline processes these concatenated inputs—caption embed-
dings, global story embeddings, source frame embeddings, and prompt embed-
dings—through the modified DALL-E transformer. Within this transformer, self-
attention layers textual components (caption + prompt + story embeddings), while
cross-attention layers integrate source frame embeddings, allowing the model to
attend to the source frame. The model then predicts image tokens for the current
frame, modeling the joint distribution of text and image tokens. The predicted
tokens are decoded into the RGB image using a pretrained VQVAE decoder.

Through this combination of pretrained knowledge, global context modeling, and
source-frame conditioning, StoryDALL-E significantly improves visual consistency
and semantic alignment in generated image sequences.

5.2.5 StoryDiffusion

StoryDiffusion[50] is a methodology designed to convert textual narratives into
detailed and visually coherent storyboards through a structured process that
combines text segmentation, parameterized prompt generation, image synthesis,
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and user-driven refinement, with a specific focus on supporting user experience
(UX) design workflows.

The process begins with GPT-4 analyzing a narrative provided by the user—ranging
from abstract ideas to detailed descriptions—and extracting key elements such as
characters, actions, objects, emotional tone, setting, and artistic style. The narrative
is then segmented into a fixed number of frames (typically six), each corresponding
to a panel in the storyboard. For each frame, GPT-4 generates structured prompts
composed of multiple parameters that control specific visual aspects, including
general description, objects, characters, actions, emotions, background, style, and
shot type.

To enhance consistency and clarity across the generated sequence, StoryDiffusion
employs a prompt parameterization strategy, ensuring element preservation across
frames and logical progression throughout the story. GPT-4 uses task-specific
system prompts and intermediate steps to refine each generated prompt, aligning
them more closely with the intended story elements before submission to Stable
Diffusion.

Figure 5.6: StoryDiffusion framework: parameters and co-creation pipeline

The final prompts are fed into Stable Diffusion, which produces the storyboard
images. Users can then engage in interactive refinement, editing the narrative,
individual prompts, or visual styles directly through a natural language interface.
The system supports frame-by-frame editing and regeneration, enabling designers
to adjust visuals incrementally without restarting the entire process, making it a
flexible tool for dynamic storytelling.

StoryDiffusion’s process is tailored for design workflows, incorporating features
like parameter visibility toggling, prompt editing in natural or structured formats,
and integration with tools like Figma for post-processing. A key insight from user
studies is that the system supports both AI-directed and user-directed creative
strategies—allowing designers to either lead the creation process or iterate based
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on AI-generated suggestions. This flexibility makes StoryDiffusion effective for
both concept ideation and concept illustration tasks, enabling fast generation of
design ideas as well as refined visual documentation of user journeys.

5.2.6 StoryGPT-V

StoryGPT-V[51] is a two-stage framework for generating multi-frame visual stories
from narrative text while maintaining character consistency, background coherence,
and accurate reference resolution. It combines the generative capabilities of Latent
Diffusion Models (LDMs) with the contextual reasoning power of Large Language
Models (LLMs), enabling coherent visual storytelling over extended sequences.

The first stage fine-tunes a Stable Diffusion model into a Character-Aware LDM by
integrating visual features of characters directly into the text conditioning process.
Using CLIP, text tokens corresponding to character names are fused with their
image features via an MLP to create augmented embeddings. To further enhance
accuracy, the model introduces cross-attention control, where segmentation masks
(generated by SAM) guide the attention maps to focus on the correct spatial regions
for each character. This supervision ensures that each character token influences
the appropriate area of the image during generation. While this stage improves
image quality and faithfulness, it is limited to generating images from isolated
captions without inter-frame continuity.

Figure 5.7: StoryGPT-V Framework
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To ensure temporal consistency and resolve co-referential ambiguity (e.g., pronouns
like "he" or "they"), StoryGPT-V introduces a second stage where a pretrained
LLM (e.g., OPT or LLaMA2) processes interleaved sequences of text and visual
embeddings from earlier frames. Using causal language modeling, the LLM tracks
narrative flow and resolves ambiguous references by reasoning over the context.
For instance, if a later caption says "they entered the room," the LLM uses the
preceding visual-textual history to determine whether "they" refers to specific
characters previously introduced.

As the story unfolds, the LLM predicts special placeholder tokens, denoted as
[IMG], which indicate where a new frame should be generated. These tokens are
not images themselves, but abstract representations of the next visual content
to be rendered, serving as placeholders for upcoming frames. To convert these
placeholders into image-guiding inputs, StoryGPT-V uses a Transformer-based
LDM Mapper.

The LDM Mapper is trained to translate the [IMG] tokens into fused embedding
vectors that align with the conditioning format used by the Character-Aware Latent
Diffusion Model (Char-LDM) in Stage 1. These fused embeddings encapsulate
the necessary character, scene, and context information for the next frame. By
mapping LLM outputs into the visual generation space, the system seamlessly
integrates reasoning and diffusion-based synthesis, enabling coherent multi-frame
visual storytelling.

StoryGPT-V’s structured two-stage approach enhances the quality and consistency
of AI-generated visual stories, enabling more immersive and coherent storytelling.

5.2.7 DreamStory

DreamStory [52] is a training-free framework for open-domain story visualization
that transforms a textual narrative into a series of visually consistent and seman-
tically aligned story scenes. The system is built upon two primary components:
(1) a Large Language Model (LLM), which acts as a Story Director and (2) a
Multi-Subject Consistent Diffusion Model (MSD), which ensures subjects and
scenes remain visually coherent across frames. DreamStory begins with an LLM
(e.g., GPT-4 or Yi) performing story comprehension. It parses the input narrative
to extract detailed descriptions of key subjects (e.g., characters or objects) and
scenes. Through Chain-of-Thought (CoT) prompting, the LLM generates struc-
tured prompts and performs necessary rewrites—for example, replacing ambiguous
names like “Kondo” with descriptive phrases such as “a towering gorilla.” This
enhances compatibility with text-to-image diffusion models, which may struggle
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Figure 5.8: DreamStory Framework.

with novel or unfamiliar names.

Next, the system uses a pretrained text-to-image diffusion model to generate
subject portraits from the rewritten prompts. These portraits are paired with their
corresponding text and serve as multimodal anchors, capturing the appearance
and semantic attributes of each subject. These anchors provide both visual and
textual grounding for consistent subject rendering in the following scene generation
step. To maintain character fidelity across scenes, DreamStory introduces a Multi-

Figure 5.9: Multi-Subject Consistent Diffusion Model in DreamStory

Subject Consistent Diffusion Model (MSD) module that includes two key attention
mechanisms:

• Masked Mutual Self-Attention (MMSA): enforces appearance consis-
tency by allowing each subject in the target image to query only the correspond-
ing subject in the reference images. A subject-specific attention mask ensures
that visual features are not mistakenly shared across unrelated subjects.
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• Masked Mutual Cross-Attention (MMCA): injects subject-specific se-
mantic attributes by allowing each subject to selectively attend to its own
reference text. This ensures that rich details (e.g., clothing, posture) are
accurately and independently transferred from the prompt to the final image.

These mechanisms are applied at all decoding layers of the diffusion model and are
guided by segmentation masks. The masks are generated using GroundingSAM
and refined during the denoising process via a fusion of self-attention and cross-
attention maps. This ensures precise subject boundaries and avoids unwanted
blending between multiple characters.

As a result, DreamStory generates a series of narrative-aligned, visually coherent
images, ensuring a seamless and immersive storytelling experience.

5.2.8 Online storyboarding tools

Several online storyboarding tools leverage AI-driven image generation and provide
functionalities for editing, customization, and character consistency. Notable
platforms include Storyboarder.ai[53], Boords[54], and Katalist.ai[55], each offering
unique features tailored to streamlining the storyboarding process.

These platforms enable users to generate AI-assisted visuals while providing tools to
refine and adapt images according to their needs. Beyond simple image generation,
some of them also address character consistency, ensuring that the same characters
maintain a cohesive appearance throughout different frames and projects.

For instance, Boords and Katalist.ai offer a predefined, pre-made set of characters
to choose from, but also provide additional tools, allowing users to create and store
custom AI-generated characters that can be reused across multiple storyboarding
projects. This feature ensures that characters remain visually recognizable and
consistent, improving continuity in long-form storytelling.

By integrating AI-based generation with manual customization, these platforms
bridge the gap between automation and creative control, making storyboarding
more efficient, flexible, and accessible to artists, filmmakers, and content creators.

The field of storyboarding with generative AI is rapidly evolving. Each method-
ology—whether based on GANs, diffusion models, or hybrid LLM-Diffusion ap-
proaches—addresses the dual challenges of visual quality and narrative coherence.
As research progresses, improvements in model architectures, training techniques,
methodologies and computational efficiency are expected to further push the
boundaries of automated story visualization.
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5.3 Concept bleeding, omission, and confusion in
multi-LoRA image generation

Fine-tuning diffusion-based text-to-image models like Stable Diffusion 1.5 using
LoRA (Low-Rank Adaptation) enables the efficient addition of new visual concepts,
such as specific characters, without full retraining. However, generating multi-
character scenes by loading multiple LoRAs simultaneously introduces challenges,
most notably: concept bleeding, concept omission, and concept confusion. These
issues compromise visual fidelity, as models fail to maintain clear separations
between distinct concepts.

5.3.1 Overview of the phenomena

Concept bleeding occurs when features from one concept undesirably transfer to
another. For example, if LoRA A encodes a character with blue hair and LoRA
B encodes a character with glasses, both characters might end up with glasses
or blue hair.This phenomenon is formally known as attribute leakage, where one
concept’s learned visual attributes apply to another concept, and typically stems
from overlapping feature representations and attention conflicts within the model.

Concept omission happens when one or more intended concepts are entirely missing
from the output. A typical case involves only one character being rendered in
a scene where two LoRAs are prompted. This may occur because one concept
dominates the image generation process, and the omitted concept is essentially
overshadowed or “forgotten” by the model during generation.

Concept confusion refers to misassigned attributes or identities— meaning the
model might merge features into a hybrid, swap their attributes, or duplicate one
concept in place of the other. The output might technically contain both subjects,
but not in the correct form or relationship that the prompt intended. For example,
if LoRA A is meant to produce character Alice and LoRA B produces character
Bob in a scene, a confused result could be that the image shows two copies of Alice
(with no Bob), or a single person who has a mix of Alice’s and Bob’s features,
or Bob wearing Alice’s clothing. his phenomenon is closely related to (and often
co-occurs with) concept bleeding, additionally covering cases of mistaken identity
or duplicates.
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5.3.2 Underlying causes

Linear composition overlapping updates: In Stable Diffusion, multiple LoRAs
are applied by linearly adding their weight deltas to the base model at inference
time. While simple, this method doesn’t account for the nonlinear dynamics
of the diffusion process. As a result, concepts that work well in isolation may
interfere when combined. For example, if Concept A modifies early U-Net layers
(affecting composition or layout) and Concept B alters later layers ((affecting
textures or details), the dominance of A can suppress B. Additionally, when LoRAs
are trained on similarly structured datasets (e.g., centered characters, similar
lighting), they tend to update overlapping channels of the model—especially in
cross-attention—leading to blending and identity merging.

Nonlinear interference: due to the nonlinear nature of diffusion, combining
LoRAs can produce emergent effects. Due to the model’s nonlinear denoising
dynamics, applying LoRA A and B together can result in an unintended third
output—neither A nor B, but a hybrid concept (C) Each LoRA shifts the predicted
noise differently, and the joint result might converge toward a visual compromise
that does not cleanly express either concept, but rather a blended or diluted version
that misrepresents both.

Imbalanced influence (weight dominance): if one LoRA has a higher weight
multiplier or encodes more visually dominant features (e.g., high contrast, bright
colors), it can overshadow the other. Because inference runs through a single
pipeline, the stronger LoRA often steers the generation process, resulting in partial
or full omission of the weaker concept. This imbalance is frequently observed when
adjusting weights—raising one often causes the other to disappear.

Feature space entanglement: LoRA-injected concepts are embedded in the
same latent space as the base model, which lacks mechanisms for isolating them. If
two characters share similar styles, proportions, or training captions, their learned
representations are likely to occupy overlapping dimensions in the model’s latent
space. In these cases, the denoiser may interpret both concepts as variants of the
same visual entity, resulting in visual traits bleeding between concepts.

Shared latent space during diffusion: the denoising process operates within
a shared latent image that evolves over time. All concept features—regardless of
which LoRA they originate from—are fused into a single latent vector field that
the denoiser refines iteratively. There is no native partitioning between “concept
A’s latent” and “concept B’s latent,” which would allow isolated control over
their evolution. Instead, all information coexists and interacts at every step.This
interaction causes the features of both concepts to influence one another.
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Entangled attention maps: cross-attention layers in the U-Net map text tokens
to spatial image features. When two concept tokens attend to overlapping regions
(e.g., both heavily influence the central area of the image where the characters are
positioned), the attention maps blend their visual attributions, producing hybrid
or duplicated characters. Self-attention compounds this across the image, letting
different parts of the image influence each other. This is especially common when
LoRAs are trained on similarly composed images, and without explicit spatial
guidance, the model often fails to distinguish between them.

Attention map competition: even when attention maps do not overlap spatially,
one concept may dominate the attention maps if its features are more distinctive
or its LoRA exerts stronger influence. This can occur regardless of equal weight
settings, simply due to one LoRA having more salient or well-trained features,
causing the model to focus on one concept while underrepresenting or omitting the
other.

Lack of disentanglement in training: Stable Diffusion was trained to interpret
scenes holistically rather than decomposing them into separable entities. Therefore,
fine-tuned LoRAs inherit this limitation, embedding new concepts into preexisting
subspaces without enforcing independence, which increases the risk of feature
blending or overwriting.

Implicit inter-concept relationships: the model often assumes relationships
between co-present subjects based on patterns from pretraining. This can override
prompts and produce stereotyped interactions like hugging or kissing, even when
instructed otherwise. The entanglement here is not purely representational, but also
semantic and structural: the model is implicitly deciding how these two concepts
“belong together” in the image, often at the cost of clarity or separability.

Prompt ambiguity: when a prompt lacks clear structure or fails to assign
attributes explicitly to each subject, the model struggles to distinguish between
concepts. For example, “Alice (a young woman with blue hair) stands next to
Bob (a tall man with glasses)” provides more clarity than the vague “Alice and
Bob stand together.” Without differentiating descriptors or spatial cues, the model
often merges or misassigns features. Instead, using structured phrasing (e.g.,
“on the left/right,” “the first/second person,” or separate sentences) helps direct
attention more accurately. Also using identical phrases for both concepts—such as
describing both characters with “a red shirt”—can lead to attribute confusion, as
the model may incorrectly assign shared features to both characters, duplicate one
of them, or omit the attribute from one concept due to ambiguity in token-to-feature
mapping.Therefore, while prompt design alone cannot fully prevent interference, it
plays an essential role in guiding the model’s attention to distinguish concepts.
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Trigger token overlap: many character LoRAs are trained with tags that include
generic terms like “woman”, “man” or “1girl.” When multiple LoRAs share these
tags, the model may interpret them as redundant instructions, often resulting in
visually similar outputs or duplicated characters instead of distinct identities.

Embedding similarity between tokens: even with different trigger words,
similar concepts can occupy nearby positions in CLIP’s embedding space. This
proximity causes the model to treat tokens as related or interchangeable. For
instance, two LoRAs trained on young female characters may both cluster near
“woman” in CLIP space, leading to feature mixing, loss of distinction, or generation
of an averaged, generic identity.

5.3.3 Mitigation strategies

To address concept interference phenomena in multi-character image generation,
a range of mitigation strategies has emerged. These strategies target different
stages of the text-to-image generation pipeline—from prompt design to latent
denoising—aiming to improve the model’s ability to render distinct, coherent, and
identity-consistent subjects within the same image. Below, we outline key general
approaches used to reduce these challenges.

Prompt structuring. Carefully constructed prompts play a foundational role
in guiding the attention mechanism. Describing each subject in a distinct clause
with unique attributes—such as “on the left,” “with blue hair,” or “wearing
glasses”—helps the model allocate separate visual space and attribute sets to
each concept. Furthermore, assigning unique and unambiguous trigger tokens to
each concept (e.g., character-specific tags) helps avoid embedding-level semantic
overlap in the text encoder, particularly within CLIP, which is known to cluster
similar embeddings closely. Negative prompts can complement a well structured
prompt and serve as a soft constraint against undesirable outcomes. FOr example,
by including terms like “fused face,” “hybrid creature,” or “extra limbs” in the
negative prompt, the model is nudged away from common failure modes typically as-
sociated with concept confusion or bleeding. While not a precise control mechanism,
this can reduce the likelihood of generating mixed or malformed subjects.

LoRA weight balancing. Fine-tuning the strength (multiplier) of each LoRA
is important to ensure balanced representation. Excessive weight for one concept
can dominate the denoising trajectory, suppressing the appearance of the other.
Empirically, moderate multipliers (e.g., 0.6–0.8) often strike a better balance, even
though, in some cases, uneven influence may still occur due to internal feature
dominance, so careful experimentation remains necessary.
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Joint representation learning. When separate LoRAs exhibit persistent in-
terference during co-inference, an alternative is to train a unified module that
learns both concepts simultaneously. By conditioning on joint occurrences (e.g.,
co-tagged training images), the model learns the relationship between the concepts
in a consistent way. Although this reduces modularity and reusability of individual
concepts, it can improve compositional fidelity by embedding multi-concept priors
directly into the learned representation.

Cross-Attention guidance and separation mechanisms. Several approaches
modify the cross-attention mechanism during inference to prevent token interference.
Techniques include spatial masking, region-aware token injection, and contrastive
conditioning, all of which aim to allocate unique attention maps or regions to each
concept. Disentangling the attention paths aims to mitigate visual overlap and
help preserve identity separation across subjects.

Spatial conditioning and layout-aware generation. Assigning spatial con-
straints—such as bounding boxes or masks—to each subject can dramatically
reduce feature interference. By enforcing region-specific attention or latent updates,
the model is guided to render each concept in its intended zone. This approach
reduces the risk of concept overlap, attribute leakage, and positional ambiguity,
particularly in scenes involving close proximity or interaction.

Latent space isolation during denoising. Another class of strategies focuses
on isolating the denoising process of each concept. By generating latent features
for each subject independently—either through segmented passes or controlled
conditioning—and then compositing them, models can avoid entanglement in both
feature and attention space, maintaining clean visual boundaries and reducing
mutual influence between subject representations.

Modular and sequential concept injection. Instead of applying all LoRA
modules simultaneously, staggered or scoped injection techniques introduce each
concept with limited or sequential influence. For instance, selectively applying one
concept’s weights to specific spatial regions, time steps, or attention heads helps to
preserve modularity while avoiding global interference, enabling more controlled
multi-concept synthesis without needing retraining.

Below, we present a selection of recent frameworks that implement these types of
strategies through various architectural and inference-time modifications.

88



Storyboarding

5.4 Multi-Subject Consistency Frameworks

5.4.1 Mix of Show

The Mix-of-Show method[56] is a comprehensive approach to address the challenges
of multi-concept customization in text-to-image diffusion models.These models can
produce high-quality text-conditioned images and, through low-rank adaptations,
they can easily learn new concepts, yet they face limitations when trying to integrate
multiple concept LoRAs into a single image. The main challenges are concept
conflict, where different concepts interfere with one another resulting in overlaps
or unintended modifications, and identity loss, where the unique characteristics
of each concept are diluted or overwritten, leading to less coherent outputs. To

Figure 5.10: Pipeline of Mix-of-Show

address these challenges, Mix-of-Show introduces two key innovations. First is the
use of Embedding-Decomposed LoRA (ED-LoRA) for single-client concept tuning.
Traditional LoRA embeddings concentrate concept identity into shared weights,
making it difficult to preserve each concept independently during fusion. ED-LoRA
instead decomposes concept embeddings into layer-wise, learnable vectors. This
allows embeddings to encode in-domain characteristics, while LoRA weights capture
fine-grained or out-of-domain features. This structure offloads fine-grained and
out-of-domain attributes to LoRA weights, minimizing conflicts when merging
multiple concepts later. The concept token v is decomposed across layers as:

v = [v1, v2, ..., vL], vℓ ∈ Rd, for ℓ = 1, ..., L,
where L is the number of layers and vℓ is injected into the ℓ-th layer of the diffusion
U-Net.

Secondly, Mix-of-Show introduces Gradient Fusion, a method for combining multiple
concepts at the central node. Traditional fusion methods simply average the weights
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of different LoRA models, which often causes characters or objects to lose their
unique features. In contrast, Gradient Fusion aligns the behavior of individual
concepts by optimizing input and output features from their respective LoRA
layers. This means that Gradient Fusion looks at how each LoRA model behaves —
specifically, how it transforms input features into output features during generation-
and then adjusts the shared model so that it can reproduce the behavior of all
individual LoRAs.

min
w

NØ
i=1

...f (l)
i (x;w)− f (l)

i (x;wi)
...2
,

where: - wi is the weight of LoRA for concept i, - f (l)
i (x;wi) is the feature produced

at layer l using weight wi, - w is the unified (fused) weight to be optimized.

This approach ensures that the fused model retains the distinct characteristics
of each concept while maintaining consistency in the output. Gradient Fusion
is particularly effective in reducing identity loss, allowing the model to handle
multiple customized concepts without significant degradation in quality.

An additional essential feature of Mix-of-Show is regionally controllable sampling,
which addresses common issues in direct multi-concept generation, such as missing
objects or attributes being incorrectly assigned to the wrong concept. This feature
enables users to define global and regional prompts associated with bounding
boxes, mapping each concept to a specific spatial zone in the image. Through a
region-aware cross-attention mechanism, the model aligns each subject’s visual and
textual representations with its assigned spatial location in the image.

Figure 5.11: Multi-concept image generation with regionally controllable sam-
pling.

Given a global prompt P g and n regional prompts P ∗
r , the model first incorporates

the global prompt via cross-attention with the latent feature z:
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h = softmax
A
Q(z)K(P g)⊤

√
d

B
V (P g)

Next, for each region i, a binary mask Mi ∈ {0,1}H×W is used to extract the
masked latent representation:

zi = z ⊙Mi

A region-specific attention is then performed using the regional prompt P ∗
ri

:

hi = softmax
A
Q(zi)K(P ∗

ri
)⊤

√
d

B
V (P ∗

ri
)

Finally, the model integrates the regionally refined features by substituting the
corresponding areas in the global output, ensuring localized control while preserving
overall coherence.

h[Mi] = hi

This procedure ensures that each subject or object is rendered with high fidelity
in its designated area while maintaining a coherent global context. It effectively
addresses issues such as attribute leakage and concept overlap, which are common
in multi-concept generation.

The full pipeline begins with per-client tuning with ED-LoRA for each concept.
Then, each client’s concept is sent to the central node, where Gradient Fusion
combines the LoRAs into a unified model. During the generation process, Regionally
Controllable Sampling is employed to ensure the accurate integration of multiple
concepts into a cohesive image.

Mix-of-Show’s contributions are substantial in advancing the field of multi-concept
generation. It provides a scalable framework for integrating diverse concepts, of-
fering flexibility for creative applications such as storytelling, game design, and
animation. Despite its strengths, the framework is not without limitations. At-
tribute leakage, where characteristics from one region influence others, remains
a challenge, although it can be mitigated with carefully crafted prompts. Also,
the computational cost of Gradient Fusion, especially for large-scale models, can
be significant, and the generation of small facial details remains difficult due to
information loss in the underlying model architecture.
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5.4.2 MuDI

The MuDI (Multi-subject Personalization for Decoupled Identities) framework[57]
is designed to address the challenge of generating high-quality images containing
multiple distinct subjects in text-to-image diffusion models. Current models often
struggle with identity mixing, where attributes of different subjects blend, especially
for visually or semantically similar subjects. MuDI provides a solution by decoupling
the identities of multiple subjects during both training and inference. The core idea
is to leverage segmented subjects extracted through segmentation models to train
text-to-image models. A major innovation of MuDI is the introduction of Seg-Mix,

Figure 5.12: The MuDI framework.

a data augmentation method that relies on segmenting subjects and randomly
positioning them within a composition. This approach eliminates background
details and irrelevant artifacts, allowing the model to focus on the subjects’ identity.
The training process consists of three phases: first, reference images are processed
through tools like the Segment Anything Model (SAM) to extract segmentation
masks of individual subjects. After subject segmentation, augmented compositions
are created using the extracted masks; segmented subjects are resized and placed
randomly within a scene, allowing overlaps to create realistic interactions. Finally,
the framework uses DreamBooth to fine-tune the pre-trained diffusion model on
the augmented dataset. During this process, prior preservation is enabled to ensure
that the model retains its general image-generation abilities while fine-tuning it for
the new subjects.

To further enhance differentiation between subjects, descriptive classes are used
during training. Instead of generic labels like "dog" or "cat," detailed descriptors
(e.g., "brown robot toy") are employed, providing richer contextual information.
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For inference, MuDI introduces a novel mean-shifted initialization technique.
Rather than starting from standard Gaussian noise, MuDI initializes the diffusion
process using a combination of noise and subject-specific latent embeddings, which
provides a signal for separating identities without missing. This initialization
prevents certain subjects from dominating the composition and reduces the chances
of missing subjects during generation. It helps align the generation process with
the specific layout and characteristics of the desired subjects, providing a better
starting point for multi-subject compositions.

The MuDI framework also supports control over the relative size and positioning
of each subject by adjusting segmentation scale during Seg-Mix. Furthermore,
Seg-Mix enables modular customization, allowing separately trained single-subject
LoRA modules to be composed into one coherent image through controlled spatial
arrangement.

5.4.3 Isolated Diffusion

The Isolated Diffusion method[58] is a training-free approach designed to address the
issue of "concept bleeding" in text-to-image diffusion models. Concept bleeding refers
to the unintended merging or interference of multiple concepts within generated
images, such as mixing colors, shapes, or subjects when handling multi-concept
prompts. This problem is particularly evident in state-of-the-art models like Stable
Diffusion.

The central idea of Isolated Diffusion is to isolate the generation process for each
concept, thereby reducing mutual interference and improving text-image consistency.
The method leverages pre-trained object detection and segmentation models to
process and separate the individual elements of a prompt, ensuring that each
component is synthesized independently before combining them into a coherent
image.

Modern text-to-image diffusion models encode complex text prompts into fixed-
length tokens through pre-trained text encoders. This encoding process can
compress multiple concepts into overlapping latent representations, leading to
unintended interactions between elements in the image. For example, a prompt
like "a baby penguin wearing a blue hat, a red scarf, and a green shirt" might
produce an image where colors are incorrectly assigned to attachments. Similarly,
in prompts involving multiple subjects, such as "a dog next to a cat," models may
produce results with concept mixing or entirely incorrect representations (e.g., "a
cat next to a cat").
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Isolated Diffusion splits the synthesis process into isolated steps for individual
attachments or subjects. The text prompt is decomposed into simpler components
using GPT4, where each attachment is individually bound to a base subject. For
example, the prompt "a baby penguin wearing a blue hat, a red scarf, and a green
shirt" is split into "a baby penguin," "a baby penguin wearing a blue hat," "a baby
penguin wearing a red scarf," and "a baby penguin wearing a green shirt."

• Base prompt: pbase (e.g., "a baby penguin")

• Attachment prompts: p1, p2, . . . , pk (e.g., "a baby penguin wearing a blue hat")

The noise prediction during denoising is computed as:

ϵ̂(xt, t) = (1− λ)ϵθ(xt, t, cucon) + λϵθ(xt, t, cbase) +
kØ
i=1

λ (ϵθ(xt, t, ci)− ϵθ(xt, t, cbase))

(5.1)
Here, λ is a guidance scale, cucon is the unconditional embedding, and ci are the
CLIP-encoded attachment prompts. During the denoising process, the variance
between the noise predicted for the base subject and each attachment is calculated
and added sequentially, ensuring that each attachment is synthesized independently,
avoiding interference.

For images involving multiple distinct subjects, separate prompts for each subject
are created, then the framework uses YOLO and SAM to detect subjects and
segment them into masks M1, . . . ,Mk. The image is then processed in two stages:
first, the overall layout is synthesized using the base prompt. Secondly, the regions
corresponding to individual subjects are isolated by replacing other regions with
random noise.

x
(i)
t = xt ⊙ (1−Mothers) + ϵ⊙Mothers (5.2)

Each subject is then denoised separately using its corresponding text prompt,
preventing attention overlap between different subjects.

ϵi = (1− λ)ϵθ(x(i)
t , t, cucon) + λϵθ(x(i)

t , t, ci) (5.3)

Once all subjects or attachments have been synthesized independently, they are
combined into a single image using the generated masks, and the background is
refined in the final stages of denoising to ensure a harmonious and visually coherent
result.

ϵ̂(xt, t) = ϵ0 ⊙ (1− ∪iMi) +
Ø
i

ϵi ⊙Mi (5.4)

This method prevents attention overlap and identity confusion by isolating the
denoising paths for each concept.
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Figure 5.13: Isolated Diffusion framework.

Isolated Diffusion requires no retraining and is compatible with any pre-trained
diffusion model. It also integrates with widely-used segmentation and detection
tools . However, its performance depends on the accuracy of these tools.

The key advantages of Isolated Diffusion are that it is training-free, working directly
with pre-trained diffusion models, and is compatible with any text-to-image diffusion
model. It can also be integrated with various pre-trained object detection and
segmentation models like YOLO and SAM. However, it relies on the performance
of the chosen models. If subjects are not detected or the base diffusion model
omits elements, the final output may still be inconsistent. Additionally, it requires
extra computational steps during inference due to the segmentation and isolated
denoising processes.

5.4.4 FastComposer

FastComposer[59] is a framework designed for personalized multi-subject text-
to-image generation that eliminates the need for subject-specific fine-tuning. It
addresses two major challenges in current approaches: the computational overhead
of personalization and the issue of identity blending, where visual characteristics of
distinct subjects merge unintentionally. FastComposer circumvents these problems
by introducing three key innovations: subject embedding augmentation, cross-
attention localization, and delayed subject conditioning.
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Figure 5.14: Training and inference pipeline of FastComposer.

FastComposer achieves subject-driven image generation without any additional
fine-tuning, by enriching the textual prompt with visual information derived from
reference images of the subject. This integration of visual cues allows the model
to condition its output on specific identities in a zero-shot manner. Given a
prompt P = {w1, w2, . . . , wn}, a set of reference images S = {s1, . . . , sm}, and
index mapping I = {i1, . . . , im} associating each subject with a word token in the
prompt, the system first encodes the prompt and subject images using CLIP text
and image encoders ψ and ϕ. Subject embeddings are then concatenated with the
corresponding text embeddings and processed through a multi-layer perceptron
(MLP) to yield the final conditioning vector c′ ∈ Rn×d:

c′
i =

ψ(P )i, i /∈ I
MLP(ψ(P )i∥ϕ(sj)), i = ij ∈ I

(1)

Training is performed on the subject-augmented image-text dataset, allowing
the model to generate images featuring specific subjects directly from textual
instructions and reference images, without requiring fine-tuning for each subject
and thereby significantly reducing computational costs and memory requirements.
At inference time, FastComposer leverages these learned associations to generate
high-quality images of multiple subjects in diverse scenarios.

To address the problem of identity blending, FastComposer employs cross-attention
localization during training. In diffusion models, cross-attention maps determine
how textual tokens relate to specific regions of the image. Without regulation,
these maps can link multiple textual tokens to overlapping regions, causing identity
blending. FastComposer enforces spatial alignment by supervising cross-attention
maps using segmentation masks extracted from reference images of each subject.
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This mechanism ensures that the model learns to direct each subject’s attention to
its corresponding spatial region.

Formally, given cross-attention maps A ∈ [0, 1](h×w)×n, where Ai ∈ [0, 1]h×w denotes
the attention map for subject token i, and mj represents the segmentation mask
for subject j, a regularization loss is applied to encourage each token’s attention to
remain focused within its designated mask area:

Lloc = 1
m

mØ
j=1

1
mean(Aij [m̄j])−mean(Aij [mj])

2
(2)

This localization term is added to the denoising loss to form the total training
objective:

L = Lnoise + λLloc (3)

where λ = 0.001 is a weighting hyperparameter. This attention supervision ensures
that each subject’s identity is spatially isolated during training, thus improving
generation quality in multi-subject settings.

Another innovation is delayed subject conditioning, which addresses the issue of
subject overfitting. Overfitting occurs when the model overly relies on reference
images, resulting in limited flexibility to edit subjects through textual instructions.
FastComposer delays the application of subject embeddings in the denoising process
during inference, using only text embeddings in the early stages of diffusion to
establish the image layout. Once the layout is defined, subject embeddings are
introduced to refine the appearance of each subject. This is formalized as:

ϵt =

ϵθ(zt, t, c), t > αT

ϵθ(zt, t, c′), otherwise
(4)

where c is the pure text embedding, c′ is the augmented embedding with subject
information, and α ∈ [0.6, 0.8] controls the transition point in the denoising steps.
This approach strikes a balance between subject identity preservation and flexible
editing via the text prompt.

Despite its advantages, FastComposer has some limitations, the main being that,
because the dataset used for training is relatively small and predominantly composed
of headshots, the model may be limited when generating complex scenes with more
than three subjects or depicting a wide range of actions and scenarios with significant
background interaction.
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5.4.5 LoRA Composer

LoRA-Composer[60] is a framework designed for seamlessly integrating multiple
LoRAs in the same image, addressing the major challenges of concept vanishing
-where certain concepts fail to appear in the generated image- and concept confusion,
where distinct concepts blend or interfere with each other.

Unlike earlier methods such as Mix-of-Show, which rely on fusion training and
additional image-based conditions, LoRA-Composer leverages only layout and
textual guidance, enhancing both usability and computational efficiency.

The framework introduces two main constraints: concept injection constraints
and concept isolation constraints, along with a latent re-initialization technique.
Concept injection constraints address concept vanishing by directly injecting LoRA

Figure 5.15: LoRA-Composer pipeline.

features into pre-specified regions of the image using layout masks. For each concept
i, the queries, keys, and values in the cross-attention layers are modified as follows:

Qi = Mi ⊙W 0
Q(z), Ki = W i

K(τi(Pi)), Vi = W i
V (τi(Pi)),

where Mi is the layout mask for concept i, τi is the CLIP text encoder with
LoRA, and WQ,WK ,WV are projection matrices for the attention module. The
cross-attention is computed as:

hi = softmax
A
QiK

⊤
i√
d

B
Vi.
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To encourage more detailed and region-complete synthesis, LoRA-Composer adds
a concept enhancement constraint composed of two losses. The first, Lc, applies
a Gaussian-weighted top-k activation mask to ensure high response in the target
region:

Lc =
NØ
i=1

1− 1
S

Ø
j∈E

topk(Aji ⊙Mi ⊙G,S)
 ,

where Aji is the cross-attention map for concept token j, G is a Gaussian map, and
S is the number of selected elements. The second loss Lf penalizes underfilling of
the layout box:

Lf = 1
L

NØ
i=1

Ø
j∈E

1
1−

î
Mi ⊙ aji (w),Mi ⊙ aij(h)

ï2
,

where aji (w) and aji (h) are max-pooled projections of Aji along the spatial axes.

On the other hand, concept isolation constraints tackle the issue of concept confusion.
To prevent concept overlap, the framework introduces concept region masks in the
self-attention layers to restrict attention only within a concept’s designated area.
To further avoid feature leakage into unintended regions, it introduces a region
perceptual restriction loss:

Lr = 1
S

NØ
i=1

topk(Ā[Mi, 1−Mi], S),

where Ā denotes the self-attention map sliced between the concept and non-concept
areas.

The total constraint loss is given by:

L = Lc + αLf + βLr,

and used to update the latent at each timestep:

z′
t ← zt − ϕt · ∇L,

where ϕt is a decaying step size. The updated latent z′
t is then fed into the U-Net

for denoising.

The latent re-initialization mechanism is a technique that adjusts the latent space
before denoising begins, aligning the initialized latent features with the layout
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conditions provided by the user, thus improving the precision of object placement
in the generated image. In particular, since standard LoRA lacks localization,
LoRA-Composer refines the layout alignment by re-initializing the latent space zt
using one update step of L. It then selects the highest scoring candidate layout
region from a set of crops:

Âi = {Φ(Ai, [x, y],W,H)} ,

where Φ(·) crops a region of size W ×H from position (x, y) in the attention map
Ai. This improves alignment of concepts to their designated spatial regions.

LoRA-Composer integrates constraints and control mechanisms directly into the
cross-attention and self-attention layers of the diffusion model’s U-Net architecture.
Moreover it eliminates the need for retraining for each combination of multiple
LoRAs—a requirement in prior methods such as Mix-of-Show-, because it allows for
on-the-fly composition without additional training, making it both more efficient
and adaptable to diverse generation scenarios.

The method’s ability to handle diverse scenarios, including anime and realistic
styles, highlights its versatility and robustness. However, LoRA-Composer has
some limitations. When concepts are placed too closely together, their boundaries
may blur due to spatial overlap, leading to potential blending. Additionally, objects
can sometimes extend beyond their designated layout regions, a limitation inherited
from the generalized assumptions of Stable Diffusion. Finally, the inference process
involves loading multiple LoRA checkpoints and updating latent representations,
which introduces a slight delay in generation time.

5.4.6 CLoRA

CLoRA (Contrastive LoRA)[61] is a training-free inference-time approach designed
to reduce concept entanglement in multi-LoRA text-to-image generation. Rather
than modifying model weights or retraining, CLoRA leverages contrastive learning
over cross-attention maps to disentangle concept regions, ensuring that each LoRA
affects only the intended parts of the image.

The key insight is that concept confusion arises when tokens from different LoRA
modules activate overlapping attention regions. CLoRA addresses this by generating
attention maps for each concept in isolation and then applying a contrastive
attention loss to suppress overlapping activations during joint inference.

For a prompt like “a woman with an umbrella,” CLoRA constructs modified
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Figure 5.16: Overview of the CLoRA method.

prompts that isolate each concept via LoRA activation:

• The base prompt activates neither LoRA.
• The first variant activates only L1 (e.g., “an L1 woman with an umbrella”) to

localize the "woman" concept.
• The second activates only L2 (e.g., “a woman with an L2 umbrella”) to localize

the "umbrella" concept.

From these, CLoRA extracts cross-attention maps for each relevant token (e.g.,
“woman,” “L1,” and “umbrella,” “L2”) and groups them by concept. For each
concept group G, attention maps are expected to be similar internally and distinct
from other groups. The InfoNCE loss enforces this structure:

LInfoNCE = − log exp(sim(Aj, Aj+)/τ)q
n∈{j+,j−

1 ,...,j
−
N }

exp(sim(Aj, An)/τ) (5.5)

where sim(u, v) = uT v
∥u∥∥v∥ is cosine similarity and τ is a temperature parameter.
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This loss updates the latent zt during each diffusion step as:

z′
t = zt − αt∇ztLInfoNCE (5.6)

To reinforce spatial disentanglement, CLoRA employs binary attention masks. For
an attention map A[x, y], the mask is computed via:

M [x, y] = I
3
A[x, y] ≥ τ ·max

i,j
A[i, j]

4
(5.7)

These masks are aggregated per concept using union operations and applied to
blend the corresponding LoRA latents into the global latent space:

MLoRA = Mtoken1 ∪Mtoken2 ∪ . . . (5.8)

Once the binary masks are computed for each concept—by thresholding the atten-
tion maps and aggregating token-specific activations—CLoRA uses them to restrict
each LoRA’s influence to its intended image region. The global latent is updated
by blending the base and LoRA-modified latents using the masks:

zt = (1−MLoRA)⊙ zbase
t +MLoRA ⊙ zLoRA

t (5.9)

This mechanism ensures that each concept modifies only its relevant region, reducing
identity confusion and attribute leakage. Since CLoRA operates entirely at inference
time—without retraining or architectural changes—it is compatible with arbitrary
LoRA modules and preserves modularity.

Its main trade-offs are increased inference time due to contrastive optimization,
and reliance on attention map quality for accurate spatial disentanglement. Still,
CLoRA offers a practical and effective solution for multi-LoRA composition, using
attention-based contrastive learning to enforce semantic and spatial separation.

5.4.7 Subject Diffusion

Subject-Diffusion[62] introduces a zero-shot framework for personalized text-to-
image generation, enabling subject-specific synthesis from just one reference im-
age—without any test-time fine-tuning. Unlike prior methods such as DreamBooth
or Custom Diffusion, which demand fine-tuning on multiple reference images,
Subject-Diffusion operates in an open domain and is designed to scale efficiently to
single and two-subject generation.
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A key contribution of the method is the construction of the Subject-Diffusion
Dataset, a large-scale multimodal dataset comprising 76M images and 222M
entities. Each image is annotated with generated captions (via BLIP-2), object
detection boxes (via Grounding DINO), segmentation masks (via SAM), and refined
noun phrase tags (via spaCy). Such a dataset enables the model to learn rich
representations of subjects and their variations in appearance, context, and style.

Figure 5.17: The Subject Diffusion framework.

Subject-Diffusion integrates textual and visual information through a structured
prompt and multi-modal conditioning pipeline. The prompt is reformulated to
include placeholders that represent subject identities—e.g., a prompt like "a dog
on a cobblestone street" becomes "a dog is [PH_0] on a cobblestone street", where
[PH_0] is a placeholder linked to a reference image. During encoding, the embed-
ding of this placeholder token is replaced with the corresponding subject’s image
representation, specifically the “CLS” token extracted from a CLIP image encoder.
This substitution allows the model to associate the subject reference image directly
with the placeholder in the text, enabling identity-aware generation in a zero-shot
setting.

These combined inputs—text with image-conditioned tokens—are passed through
a U-Net-based diffusion model. Unlike prior methods that freeze the text encoder,
Subject-Diffusion jointly trains the text encoder to improve alignment between text
descriptions and visual features. Within the U-Net, lightweight adapter modules
are inserted between self-attention and cross-attention layers to inject dense subject-
specific visual features. These adapters guide the network to focus on detailed
visual identity cues from the reference images while preserving semantic alignment
with the text prompt.
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Fine-grained image patch features v are extracted using a CLIP image encoder
from segmented subject images. These are fused with subject location coordinates
l using a Fourier transformation and a learnable MLP:

he = MLP([v,Fourier(l)]),

The adapter layer updates the intermediate latent La as:

La := La + β · tanh(γ) · S([La, he]),

where β is a fixed balance constant, γ is a learnable scalar, and S(·) is a self-attention
operator.

To ensure spatial separation of multiple subjects, Subject-Diffusion supervises the
cross-attention maps to match ground-truth segmentation masks. For each subject
k, the attention map CAℓ(zt, yk) at layer ℓ is defined as:

CAℓ(zt, yk) = Softmax(Qℓ(zt) ·Kℓ(yk)T ),

and the attention loss is defined as:

Lattn = 1
N

NØ
k=1

Ø
ℓ

∥CAℓ(zt, yk)−Mk∥1 ,

where Mk is the segmentation mask for subject k. penalizing attention deviations
from the expected subject regions.

The overall training loss includes the standard denoising loss and attention align-
ment:

L = Ex0,y,ϵ∼N (0,1),t
è
∥ϵ− ϵθ(zt, t, y, xs, l, lm)∥2

é
+ λattn · Lattn.

Subject-Diffusion also supports controlled interpolation between text and image
guidance. During inference, text and image control are applied in different diffusion
phases:

ϵt =

ϵθ(zt, t, y′), if t > αT,

ϵθ(zt, t, y), otherwise,

where y′ is a blended prompt embedding that incorporates image placeholder
tokens.

Subject-Diffusion achieves a balance between fidelity, flexibility, and generalization
in open-domain, zero-shot personalized image generation. The main limitations of
this framework are in handling attributes and accessories in user-provided images
and challenges in generating coherent compositions for more than two subjects.
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Chapter 6

Contribution

6.1 Contribution

Diffusion models[14] have demonstrated remarkable text-to-image generation capa-
bilities, enabling users to guide the generation process through natural language
while achieving impressive levels of artistry and authenticity. These advancements
have opened new possibilities for a range of creative applications, including visual
storytelling.

However, large-scale text-to-image diffusion models face inherent challenges in
producing consistent subjects and styles across different frames—an essential
requirement for creating cohesive and meaningful narratives. This limitation has
driven increasing interest in the development of efficient personalization techniques,
which allow models to represent specific subjects or styles in novel contexts without
requiring resource-intensive retraining.

Among the diverse application areas of text-to-image models and fine-tuning tech-
niques, storyboarding emerges as a particularly interesting use case. Traditionally,
storyboards are created manually, either through hand-drawing or digital sketching
tools—a process that is both labor-intensive and time-consuming. Therefore, we
decided to leverage the personalization capabilities of text-to-image models to teach
Stable Diffusion[17] specific character identities and cinematic shot types.

Shot types play a crucial role in establishing the emotional tone and spatial
framing of a scene, while character consistency across frames is vital for preserving
narrative continuity. Teaching the model to internalize these two components—via
DreamBooth LoRA fine-tuning—enables the generation of storyboards that are
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actually meaningful for planning and visualizing shots ahead of their practical
execution.

As discussed in the previous chapter, an additional key challenge arises in the
generation of multi-character scenes. Merging multiple LoRA modules often leads
to concept bleeding, confusion, or omission, which severely impacts the reliability
of generated outputs. Several frameworks have been introduced in recent years
to tackle this limitation and to address the task of story generation. However, a
widely adopted standard approach has yet to emerge, and each method presents its
own set of limitations. Among the methods discussed, only a few have made their
code publicly available for practical experimentation, and many of the approaches
for story visualization have been trained primarily on cartoon-style datasets with
a fixed roster of characters, making them less adaptable to broader domains and
more diverse visual styles.

Additionally, while online tools for AI-assisted storyboarding are being developed,
they often lack open-source accessibility, offer limited free trials, and provide no
technical insights into their implementations.

In response to these challenges, this work presents an approach based on efficient
fine-tuning, prompt engineering, and iterative refinement to enable AI-assisted
storyboard creation. As fine-tuning technique, we decided to employ Dreambooth
LoRA[41][42], which is widely regarded in the online community for its ability
to dramatically reduce not only training time and computational requirements
compared to full-fledged fine-tuning, but also the size of the output, producing
model weight files that are only a few MBs in size and easy to store and share.

Recognizing that fine-tuning performance is heavily dependent on the quality
of training data, a key focus of this work is to present a structured process for
data gathering and preparation. Additionally, to address the challenges posed by
combining multiple character LoRAs in a single image, we developed an inpainting-
based approach that enables users to generate masks for inpainting characters
automatically, mitigating issues such as concept bleeding or confusion.

Therefore, our contributions are as follows:

• Outlining a process for building high-quality and diverse datasets for fine-
tuning: shot type datasets curated from real movie stills, and character identity
datasets generated using MidJourney’s character reference feature.

• Applying Dreambooth LoRA to Stable Diffusion to efficiently fine-tune the
model on eight distinct shot types and seven character identities, enabling
personalized and consistent image generation.
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• Introducing a structured prompt template to transform broad scene descrip-
tions into detailed, frame-level prompts, leveraging ChatGPT—improving
narrative consistency and control across storyboard sequences.

• Developing an interactive storyboard generation system that enables users to
generate, review, and refine storyboard frames in real time, including features
for prompt revision, image selection, and inpainting-based character correction.

Project files will be available at the following GitHub Repository.

6.2 Method

6.2.1 Training data collection and preparation

The first step to effectively fine-tune the model is to build a high-quality training
dataset. This is crucial to obtain good results later on when generating images
with the desired shot type and/or character.

Specifically, we needed to create a dataset for each shot type and each character.

Shot type dataset

We built the dataset for the shot types from FILMGRAB[63], a popular online
portal that features a large collection of stills from a wide range of movies. To
automate the data collection process, we first analyzed the HTML structure of the
FILMGRAB website pages and then developed a web scraper to download the still
galleries of movies, filtering those released from 2013 to 2024, in order to ensure
good image resolution and quality. The resulting number of downloaded images
was 63,482 from 1,075 movies.

When determining the ideal number of training images per shot type, we considered
insights from the community and literature. While there is no universally agreed-
upon number, fine-tuning diffusion models typically benefits from curated datasets
ranging from dozens to a few hundred images per concept. Using too many samples,
especially without sufficient diversity, can lead to overfitting, where the model
memorizes specific visual details instead of learning general patterns. On the other
hand, using too few samples may result in underfitting, where the model fails to
learn the concept effectively and generalizes poorly.

After testing several dataset sizes, we decided to use 200, manually selected images
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Figure 6.1: Shot type and character Fine-tuning

per shot type. We selected images with a diversity in terms of movie genres,
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Figure 6.2: Method overview

character poses, backgrounds, and lighting conditions, all while ensuring consistency
in the framing specific to each shot type. This curated selection step was essential
to avoid overfitting on specific lighting conditions, poses or styles, and instead help
the model internalize the general framing rules that define each shot type.

We focused on eight canonical cinematic shot types, defined as follows:

• Extreme Close-Up: The human figure is framed from the chin up.
• Close-Up: The human figure is framed from above the shoulders up.
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• Medium Close-Up: The human figure is framed from mid-torso upward.
• Medium Shot: The upper half of the human figure is framed.
• American Shot: The human figure is framed from above the knee or mid-

thigh upward.
• Full Shot: The human figure is framed entirely or almost entirely, occupying

more than 2/3 of the image in height.
• Long Shot: The human figure is framed entirely and occupies between 2/3

and 1/3 of the screen height.
• Extreme Long Shot: The subject is either very small (less the 1/3) in the

frame or entirely absent, with the environment dominating the composition

After selecting 200 images for each category, we used the online tool birme.net to
batch resize them to a resolution of 512×512 pixels. In some cases, we manually
adjusted the crop to avoid incorrect framing of the human figure, such as having
heads or limbs unintentionally cut off.

This uniform resolution is important for compatibility with the Stable Diffusion 1.5
model, which was chosen for its wide adoption, support for LoRA-based fine-tuning
and elevated number of specialized checkpoints available, allowing our proposed
framework to extend to a variety of already available styles.

Character dataset

After preparing the datasets for shot type fine-tuning, we moved on to the next
stage of our pipeline: creating the training data for the individual characters that
would be featured in our storyboards.

To construct a robust training set for each character, we needed images that
portrayed the subject across diverse visual settings while maintaining visual identity
and recognizability. However, sourcing such images from the web or real people
raises potential legal and ethical concerns related to copyright and privacy. To
avoid these issues entirely and retain full creative control, we chose to generate our
own original characters from scratch.

At this point, a key technical decision involved selecting a tool or method capable
of producing consistent visual portrayals of characters across multiple generations.
Given the need for high-quality imagery, time constraints, and efficient generation
at scale, we selected MidJourney as our tool of choice. In early 2024, MidJourney
introduced a Character Reference feature, specifically designed to support the
consistent depiction of fictional or stylized characters across a wide range of
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prompts. This feature was particularly suitable for our task.

The process began by prompting MidJourney to generate a six-panel collage (or
grid) of close-up character portraits on a white background for each character. In
the prompt, we specified core attributes such as age, ethnicity, skin tone, eye color,
hairstyle, and hair color of the character. The neutral background ensured clarity
and minimized distraction, allowing us to better evaluate each generated character
design. After reviewing the four results generated by Midjourney, we selected one
preferred grid and extracted the individual portraits.

From each grid, we chose four representative images to serve as reference images for
future prompt-based generations. MidJourney’s character reference feature includes
a parameter called –cw, which adjusts the strength of the character conditioning:

• –cw 0: emphasizes only the character’s face, ideal for wide shots or scenes
with minimal facial detail.

• Higher –cw values: enforce stronger conditioning, preserving more detailed
facial and clothing characteristics, ideal for close-ups or medium shots.

Using this approach, we generated a dataset of 70 high-resolution images for 7
distinct characters -70 images per character- portraying each character in a variety
of scenes, poses, actions, lighting conditions, and shot types, in order to provide the
model with sufficient diversity to be capable of generalizing to unseen compositions.
To maintain temporal and visual consistency within our storyboards, we fixed the
clothing style of each character throughout their respective datasets, minimizing
intra-character variation while allowing for contextual and compositional diversity.

Before fine-tuning, all images were uniformly resized to 512×512 pixels using the
online batch image tool available at https://www.birme.net/, ensuring compati-
bility with the Stable Diffusion 1.5 architecture, which operates on square 512-pixel
inputs.

6.2.2 Training

As previously mentioned, we selected DreamBooth LoRA as our fine-tuning tech-
nique of choice after reviewing the most widely adopted methods for personalizing
Stable Diffusion models. This decision was mainly informed by insights from prac-
titioner communities and open-source projects. DreamBooth LoRA offered an ideal
trade-off between training speed, memory efficiency, and quality of personalization,
making it particularly suitable for our dual fine-tuning goals: encoding specific
characters and shot types.
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Given the limited availability of local high-performance computing resources, all
training and inference tasks were carried out in Kaggle [64], which provides access
to free GPU-enabled environments via hosted Jupyter notebooks.

DreamBooth is a fine-tuning framework developed to enable a pre-trained text-
to-image diffusion model to learn how to generate new content centered around a
specific subject or visual style, even when provided with as few as 3 to 5 example
images. The core idea behind Dreambooth is to train the model to associate
the desired subject or style with a unique identifier. This token is inserted into
textual prompts during training, often alongside a general class label (e.g., “a [V]
dog”), allowing the model to anchor new visual information to an existing semantic
category. The model thereby benefits from its prior knowledge about the broader
class while learning the distinguishing features of the specific instance.

To prevent catastrophic forgetting and overfitting -two common pitfalls in low-
sample fine-tuning— DreamBooth also supports class regularization and prior
preservation loss. These help ensure that the model retains its ability to generate
generic examples from the base class, even as it learns to specialize in a new subject.
In practice, this involves generating or including a set of reference images from
the base class during training and penalizing deviation from the original model’s
outputs on those samples.

In our work, we applied DreamBooth LoRA fine-tuning in two different contexts:
shot type learning and character personalization.

The training prompt for shot type fine-tuning was designed to explicitly reference
the target framing style (e.g., “medium shot picture of a person”), allowing the
model to associate each prompt with its corresponding visual composition. Because
shot types represent stylistic camera compositions that the model already has
visual priors for (e.g., the model already has a concept of how a medium shot or
close-up generally look like) — we did not apply class regularization, as fine-tuning
in this context does not introduce entirely novel concepts but rather reinforces
pre-existing visual knowledge. The primary objective was to sharpen the model’s
internal understanding of these framing conventions and encourage more consistent
output across generations. Additionally, the inherent diversity of our training data,
spanning a broad range of visual contexts, helped mitigate the risk of overfitting.
Each shot type was fine-tuned into a separate LoRA module, allowing us to switch
between them as needed at inference time without retraining, offering both flexibility
and modularity in the generation process.

For character fine-tuning instead, we adopted a more cautious approach, using class
regularization and prior preservation loss during training to prevent overfitting
and concept drift. Character fine-tuning was performed on a smaller number of
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images (70 per character), making it more prone to overfitting -where the model
memorizes the exact appearance of the character in the training dataset rather
than learning how to generalize their features in different contexts. Each character
was assigned a unique, space-free name token (e.g., “cathrinannett”, “kaitoyosuke”)
and linked to a general category such as “man” or “woman” within the training
prompts. This strategy allowed the model to preserve its general understanding
of the broader class while simultaneously learning the distinct visual features of
each individual character. Regularization mitigated the tendency of the model to
memorize the specific training images and helped ensure generaliztion to new poses,
environments, and lighting conditions during generation.

As anticipated, we did not perform full fine-tuning, but instead combined Dream-
booth with LoRA for efficient adaptation. Originally developed for large language
models (LLMs), LoRA has been adapted for use in image generation models,
becoming a popular technique: instead of fine-tuning the entire model, which is
computationally expensive, LoRA adopts a more efficient approach by freezing the
original pre-trained weights W and introducing trainable low-rank matrices into
selected layers, focusing only on a residual subset of the model parameters, ∆W .

In Stable Diffusion fine-tuning, LoRA is typically applied to the attention mecha-
nism of the U-Net component of the model, though additional LoRA layers can
optionally be trained for the text encoder for improved fidelity to the subject.

The new weight set of the model is computed as:

W ′ = W + ∆W

where:

• W is the original set of weights.
• ∆W represents the residual updates.

LoRA further decomposes the residual update matrix as:

∆W = ABT

where A and B are low-rank matrices, significantly reducing the number of trainable
parameters.

The advantages of using LoRA include:

• Drastic reduction in training time and lower computational requirements.
• Smaller output size: LoRA model weights are only a few MBs in size, nearly

1000 times smaller than the original U-Net model, making them easier to store
and share.
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• Flexible control over fine-tuning: the contribution of the fine-tuned weights
∆W to the overall model is controlled by a scaling factor α:

W ′ = W + α∆W
α = 0 corresponds to retaining the original model weights unchanged, and
α = 1represents the use of fully fine-tuned weights.

• Multiple adapters can be combined: different LoRAs can be activated simul-
taneously to fine-tune multiple aspects of the model at inference time.

After training, the LoRA adapter weights can be loaded into the diffusion pipeline
and activated with a specific weight.

Training implementation

We performed fine-tuning using the official DreamBooth LoRA training script
provided by the Hugging Face Diffusers library [65].

All training and inference were executed in the cloud using Kaggle notebooks with
GPU acceleration. The training configuration and hyperparameters used for shot
type and character fine-tuning respectively are outlined below.

Shot Type Training Configuration:

!accelerate launch train_dreambooth_lora.py \
--pretrained_model_name_or_path=
"stable-diffusion-v1-5/stable-diffusion-v1-5" \
--instance_data_dir=... \ # path to the training dataset
--output_dir=... \ # path to the output folder
--instance_prompt="close up of a person" \
--learning_rate=1e-4 \
--use_8bit_adam \
--train_text_encoder \
--resolution=512 \
--checkpointing_steps=1000 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--max_train_steps=3000 \
# 4000 steps for medium, american and full shot
--mixed_precision="fp16"
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Each shot type (e.g., medium shot, american shot, full shot) was trained indepen-
dently to produce dedicated LoRA weights. Prompts were adapted accordingly
to describe the framing:"extreme close up of a person", "close up of a person",
"medium shot picture of a person", "american shot picture of a person", "full body
picture of a person", "long shot picture of a person", "extreme long shot view of a
person".

Character Training Configuration:

!accelerate launch train_dreambooth_lora.py \
--pretrained_model_name_or_path=
"stable-diffusion-v1-5/stable-diffusion-v1-5" \
--instance_data_dir=... \ # path to the training dataset
--output_dir=... \ # path to the output folder
--class_data_dir=... \ # path to the class regularization dataset
--instance_prompt="picture of <charactername> man/woman" \
--class_prompt="picture of a man/woman" \
--learning_rate=1e-4 \
--use_8bit_adam \
--train_text_encoder \
--resolution=512 \
--checkpointing_steps=1000 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_train_epochs=4 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--max_train_steps=2000 \
--mixed_precision="fp16" \
--with_prior_preservation \
--prior_loss_weight=1.0

For character-specific fine-tuning, we employed prior preservation with regulariza-
tion images from the base class (“man” or “woman”) and set the –prior_loss_weight
to 1.0 to balance memorization and generalization.

Contextually to fine-tuning, we investigated the impact of using specific captions
for training images. By default, the Diffusers DreamBooth LoRA script uses a
single, fixed instance prompt applied uniformly to all training images. However,
the script can be modified to support individual captions for each training image.
Due to mixed findings in the online community and a lack of consensus on best
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practices, we conducted comparative experiments on selected shot types (medium,
american, full shot) and characters. Specifically, we tested:

1. Single instance prompt: first, we trained using the default script, with
one uniform prompt for all images, such as "medium shot picture of a
person" or "picture of petkotomov man".

2. Descriptive captions: then, we modified the training script to load per-
image captions. Each training image was paired with a tailored, detailed
caption describing the subject’s action / pose and the setting. In this case,
the training dataset folder also contains a .txt file for each image (with the
same filename) containing its corresponding caption.

These parallel tests were aimed at assessing whether individualized captioning
would lead to improvements in generalization and prompt fidelity. The outcomes
of this comparison are discussed in Section??.

6.2.3 Prompt generation

After obtaining the fine-tuned LoRA weights for both shot types and characters,
we developed a structured approach for generating frame-level prompts to guide
the storyboard creation process. This method aims to produce visually consistent
frames that accurately reflect the intended cinematic composition, narrative context,
and character continuity. To achieve this, we designed a prompt template to be
used within ChatGPT, which transforms a general scene description—along with
optional framing instructions—into a set of detailed prompts suitable for text-
to-image generation using Stable Diffusion. We iteratively refined this template
through empirical testing, evaluating its impact on three key areas: shot type
accuracy, setting consistency, and character representation.

Final prompt template for ChatGPT

Prompt instructions: Given a general scene description, character names, and
the number of frames (or, optionally, a detailed sequence of shot types), generate a
series of prompts—one per frame—to be used in a storyboard generation pipeline
powered by a text-to-image diffusion model. Each prompt should be formatted to
accurately reflect the intended shot type, characters involved, and setting.
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Example scene description: “The detective is searching for clues in an abandoned
house.”

Optional shot sequence: A numerical list indicating the shot types to be used
for each frame: 2, 3, 8, 3, 3, 3, 4, 9, 3, 4, 9, 3, 4, 3, 3, 3, 9

Shot type definition and mapping:

• 1: Extreme close-up shot (frames the character’s face or part of it from the
chin up).

• 2: Close-up shot (the human figure is framed from above the shoulders up).
• 3: Medium close-up shot (the human figure is framed from half the torso up).
• 4: Medium shot (the human figure is framed from the waist up).
• 5: American shot (the human figure is framed mid-thigh to head).
• 6: Full body shot (the human figure is framed entirely or almost and occupies

more than 2/3 of the frame in height).
• 7: Long shot (the human figure is framed entirely or almost and occupies

from 2/3 to 1/3 of the frame in height, surrounded by a larger portion of the
environment).

• 8: Extreme long shot (the human figure occupies less than one-third in height
or is absent within a wide environment).

• 9: Detailed shot (focus on objects, hands, or close details of an action).

If no shot sequence is provided, include a natural mix of different shot types based
on the scene type (e.g., dialogue, fight, adventure, investigation...) and narrative
needs.

Prompt format requirement: Each generated prompt must begin with an
explicit shot-type phrase:

"[Shot type] of ..."

Comment: this formulation ensures proper use of the corresponding LoRA weights
during image generation.

Character specification:

• Always use the complete character name + class (e.g., "kaitoyosuke man",
"jiyeonmun woman") instead of generic terms such as "a man" or "a woman."
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Comment: this is essential to correctly trigger the appropriate LoRA weights
during inference.

• For each individual frame, only mention the character or characters that are
intended to be actually present in the image. .

Framing sensitivity: To ensure correct use of the target shot type, consider
their given definition and follow these guidelines:

• Avoid referencing legs or lower body parts in medium to extreme close-up
shots.

• For medium close-ups or medium shots, explicitly mention shoulders or hands
when needed to prevent the model from mistakenly generate close ups.

• In long and extreme long shots, prioritize environment description and do not
include facial expression or specific pose details.

• For medium to long shots, avoid emotional cues or expressions, as they often
bias the model toward generating closer compositions.

Comment: this instruction set helps avoiding inaccurate shot type representation.

Clarity in multi-character scenes: When multiple characters appear in the
same frame, specify each character’s name, position, and action in separate sentences.
Comment: this instruction proved effective to reduce concept confusion and concept
omission.

• Bad Example: "Medium close-up shot of jiyeonmun woman and petkotomov
man talking and smiling, with a city street in the background."

• Improved Example: "Medium close-up shot of two people talking: jiyeonmun
woman is on the left, while petkotomov man is on the right, smiling warmly
as they exchange words, with a city street in the background."

Setting specification: Each prompt must include a clear and brief reference to
the background or setting (e.g., “in a dusty library,” “inside a car at night”) and
lighting condition (e.g., "soft daylight", "sunset light") .

Comment: specifying the setting and lighting proved significantly effective to enhance
coherence across storyboard frames, and although exact background details may not
be preserved, consistency in the general environment is sufficient for storyboarding
purposes.
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Conclusion

This prompt template served as an essential bridge between high-level narrative
intent and frame-level image generation. Through iterative. empirical refinement,
we were able to define a prompt generation pipeline that balances expressiveness,
visual fidelity, shot-type accuracy and multi-character control—enabling ChatGPT
to function as a powerful support tool for semantic-to-visual translation within our
storyboard generation framework.

Despite the robustness of the final prompt structure, certain scenes still required
minor manual adjustments during the generation phase. These included clarifying
ambiguous elements, refining character placement, or simplifying overly complex
descriptions. Nevertheless, we empirically consolidated the most recurrent and
impactful instructions into the final template, aiming to minimize inconsistencies
and make the prompt design process as complete and reproducible as possible.

6.2.4 Storyboard generation system

With both the fine-tuned LoRA weights and the prompt generation pipeline in
place, our next objective was to build an interactive system to support the process
of AI-assisted storyboard creation. The system needed to be both flexible and
interactive, guiding step-by-step through the storyboard generation process while
still offering control to make manual adjustments when needed.

All necessary code was developed within Kaggle notebooks, which currently serve
as the front-end interface for the storyboard generation system. The main notebook
consolidates all essential components—including prompt input, model selection,
LoRA activation, negative prompt handling, inference configuration, and output
management—into a unified and accessible workflow.

To start the generation process, the user needs to specify the sequence of prompts
(generated either with ChatGPT through our proposed template or manually), the
Stable Diffusion checkpoint to be used, the destination directory for saving outputs,
and the file paths for both shot type LoRA weights and character-specific LoRA
weights. This modular structure allows the user to flexibly swap different models
or weights.

Given our focus on generating high-quality, realistic characters, we selected the
Realistic Vision v5.1 model for inference, available via HuggingFace at https:
//huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE. This checkpoint,
based on Stable Diffusion 1.5, has been fine-tuned to produce photorealistic images,
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and aligns well with our use case involving visually consistent and cinematic outputs.

For inference, we used a configuration of num_inference_steps = 50

and guidance_scale = 7.5. Negative prompts were also carefully crafted and
dynamically selected to improve adherence to the intended shot type: while we
started from the base negative prompt suggested in the model card of Realistic
Vision v5.1, we expanded and customized it per shot type. For instance:

• For medium shots, we included in the negative prompt terms such as “legs,
feet, lower body, fullbody” to discourage the model from generating wider
compositions.

• For full shots, we included keywords such as “cropped, out of frame, cut-off feet,
close-up, missing feet, missing head” to promote complete subject visibility
within the frame.

The code automatically selects the appropriate negative prompt to use, depending
on the shot type specified in the prompt.

To automate LoRA activation, we implemented specific functions that parse the
textual prompt, detect the specified shot type, and automatically load the corre-
sponding LoRA weight into the inference pipeline. Similarly, character names are
parsed from the prompt to activate one or more character LoRA weights. If multiple
characters are detected, the system applies them simultaneously with appropriate
balancing. Moreover, LoRA influence is adjusted based on the expected framing:
for closer shots (e.g., close-up or medium close-up), character LoRA weights are
increased to ensure better facial consistency, while for longer shots, the weights
are reduced slightly to avoid over-constraint and promote flexibility in pose and
composition.

For each prompt, the system generates a batch of candidate images, with the
number of outputs customizable by the user. These candidates are displayed
side-by-side in a horizontal layout within the notebook interface, allowing for easy
visual comparison. The user is then prompted to select their preferred image,
request a new batch, or optionally refine the prompt before re-generating. This
design establishes an interactive feedback loop that supports creative control and
iterative refinement throughout the storyboard generation process.

Once the user selects a preferred image, it is saved to the specified output directory
using sequential naming (shot_0.png, shot_1.png, ...). This process continues
iteratively until all prompts in the sequence have been processed. At the end of
the session, the system compiles the selected frames into a final storyboard grid,
offering a clear visual overview of the entire scene progression.
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6.2.5 Inpainting and storyboard refinement

As previously discussed, one of the persistent challenges in text-to-image generative
models is the accurate and consistent depiction of multiple distinct characters
within the same frame.

When using LoRA-based personalization, the standard method for incorporating
multiple fine-tuned weights involves merging them into a single inference pass.
However, this often leads to undesirable effects such as feature blending between
characters or the complete omission of one character’s attributes. Moreover,
preserving the distinct visual identity of each character—while simultaneously
coordinating their poses, spatial arrangement, and interactions within a coherent
scene—adds an additional layer of complexity to the generation process.

To address these shortcomings, we integrated an interactive inpainting refinement
step as an optional final stage in the storyboard generation framework. This
module enables users to selectively correct or modify specific regions of a generated
image—particularly in cases where character fidelity has been compromised—by
leveraging a guided masking process combined with a Stable Diffusion-based
inpainting pipeline.

The inpainting system was implemented using the StableDiffusionInpaintPipeline
from the Diffusers library. The pipeline was initialized with a specialized inpaint-
ing checkpoint (krnl/stable-diffusion-v15-inpainting), and all character-
specific LoRA adapters were preloaded to allow for dynamic activation based on
the prompt content during inference.

The inpainting process begins with the user selecting the image to be edited.
To enable localized refinement, we incorporated a flexible and interactive mask
generation module based on the Segment Anything Model (SAM) [66]. This
component allows the user to define the inpainting region through two alternative
methods:

• Point-based mask generation: The user selects a single point on the image,
providing coordinates x, y,

x ∈ [0, 511], y ∈ [0, 511]

that falls within the region of the character to be edited. This point coordinates
are passed to SAM, which then generates a set of three candidate segmentation
masks based on the image content around the selected point. The system
presents these masks to the user for visual selection. Once a mask is chosen,
it can be optionally refined using classical image processing operations—such
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as Gaussian blurring, dilation, and morphological closing—to avoid harsh
borders and produce a clean binary mask suitable for inpainting. This method
is fast and user-friendly, although its precision may vary depending on the
complexity of the image content around the selected point: if the selected
point falls on an ambiguous or overlapping region, the resulting segmentation
may not align perfectly with the desired character silhouette and generation
may result in failure cases, where the character is simply removed rather than
regenerated—despite the correct activation of the corresponding LoRA.

• Bounding box-based mask creation: As an alternative, the user can
manually define a bounding box by specifying the coordinates of the top-left
and bottom-right corners. A rectangular binary mask is then generated to
cover the specified region. This method offers greater control and precision,
especially in cases where automatic segmentation does not yield satisfactory
results or where character boundaries are visually complex or occluded. For
instance, different characters’ silohuettes may not align, leading point-based
mask generation to poor results: in this case, specifying the broader region is
more beneficial. This is because inpainting models tend to prioritize global
visual coherence over localized reconstruction. If regenerating a small masked
area disrupts the broader scene context, the model may respond by erasing or
blending it to preserve overall harmony. Additionally, identity conditioning
via LoRA tends to be more effective when applied to the full image rather
than to isolated regions, where spatial attention may be weaker or diffused,
therefore selecting a wider area for inpainting improves the output quality.

Once a valid mask has been finalized, it is combined with the original image and
passed to the inpainting pipeline for refinement. The pipeline is configured with
a pre-trained inpainting model and dynamically enhanced with character-specific
LoRA weights based on the input prompt. As in the earlier stages of the system,
the user is presented with a batch of refined image options to choose from. This
process can be repeated iteratively until all desired corrections are completed. Once
refinement is finalized, the updated set of images is saved to the specified output
directory.

This iterative, user-in-the-loop process empowers the user to maintain fine-grained
control over the visual narrative, while leveraging the generative capabilities of
diffusion models. Importantly, inpainting only affects the masked region of the
image, preserving the surrounding context and maintaining overall frame coherence,
and, even though this module is focused on character correction in our specific
application, it can be used as is also for adding a new character or objects to the
image.
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Combined with careful prompt crafting, this inpainting module offers an efficient
solution to one of the core challenges in text-to-image generation, multi-character
scenes. By combining automatic segmentation, prompt-driven LoRA activation,
and interactive inpainting, the proposed system enables high-fidelity storyboard
refinement while maintaining narrative consistency and user control.

6.3 Experiments and results

In this section, we present the results obtained from fine-tuning LoRA adapters
for eight distinct shot types and seven original characters, and we analyze the
performance of the resulting models under various prompt and framing conditions.
We also present a selection of storyboards generated using our framework.

6.3.1 Shot type fine-tuning

We trained individual LoRA models for the following eight shot types, each corre-
sponding to a standardized cinematic composition:

• Extreme Close-Up: The human figure is framed from the chin up, focusing
exclusively on facial details.

• Close-Up: The subject is framed from just above the shoulders, capturing
facial expressions and head positioning.

• Medium Close-Up: The subject is framed from mid-torso upward, providing
a balance between facial detail and upper-body posture.

• Medium Shot: The upper half of the body is shown, typically from the waist
up, allowing for basic gesture visibility.

• American Shot: The subject is framed from mid-thigh to the head, commonly
used in dynamic or action-oriented contexts.

• Full Shot: The entire human figure is framed, occupying more than two-thirds
of the frame height.

• Long Shot: The full human figure is shown while occupying between two-
thirds and one-third of the image height, offering broader context.

• Extreme Long Shot: The subject occupies less than one-third of the frame
height or may be absent altogether, with focus placed on the surrounding
environment.

As previously discussed, each shot type was initially fine-tuned using a single
instance prompt without detailed per-image captions. This approach proved
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effective for certain shot types —particularly extreme close-up, close-up, medium
close-up, long shot, and extreme long shot— which produced highly consistent
results in terms of framing and subject positioning.

However, other shot types, namely medium, american, and full shot, presented
recurring challenges. With medium and american shots, the most common issue was
the model generating full-body compositions when prompts included action-related
verbs such as “walking,” “standing,” or “posing,” or even simply referenced more
elements of the background setting. Conversely, prompts that emphasized facial
expressions or emotional cues tended to bias the model toward medium close-up
shots. Similarly, the full shot category occasionally failed to maintain the expected
framing, resulting in shots longer or shorter than expected, depending on the
prompt.

To address these limitations, we conducted a second training round for the prob-
lematic shot types, this time using detailed, manually curated captions for each
training image. The goal was to reinforce shot-type-specific spatial priors and
improve the alignment between the training data and the model’s output during
inference.

The following figures present a comparison across twenty prompts, highlighting the
impact of using captions for the three most challenging shot types, 6.3, 6.4, 6.5, 6.6,
6.7, 6.8. In the figures, the two left columns show generations using LoRA models
trained with captions, while the two right columns display results from training
without captions.

Overall, the comparative results demonstrate that both captioned and non-captioned
training approaches are capable of producing high-quality images and generally
satisfactory outcomes. In practice, the effectiveness of each method often depends
on the specific prompt. Inaccuracies in shot-type framing appear in both settings,
particularly in cases involving challenging prompts—such as those describing ac-
tions like “walking” or “standing”. These actions tend to bias the model toward
wider framings, regardless of whether captions were used during training.

While captioned prompts tend to yield slightly more consistent and reliable framing,
especially for ambiguous or edge cases, the difference is often subtle. In many
instances, non-captioned prompts perform comparably well, with generated images
matching the shot type as accurately as their captioned counterparts. This sug-
gests that the LoRA weights—once properly trained—are largely responsible for
controlling framing behavior, even without detailed guidance from captions.

Captions, therefore, offer a modest but not hyper decisive improvement in framing
fidelity. They encourage better adherence to the intended composition, but their
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Figure 6.3: Impact of captions on american shot generations. Left two columns:
with captions; right two columns: without captions.
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Figure 6.4: Impact of captions on american shot generations. Left two columns:
with captions; right two columns: without captions.
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Figure 6.5: Impact of captions on medium shot generations. Left two columns:
with captions; right two columns: without captions.
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Figure 6.6: Impact of captions on medium shot generations. Left two columns:
with captions; right two columns: without captions.
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Figure 6.7: Impact of captions on full shot generations. Left two columns: with
captions; right two columns: without captions.

129



Contribution

Figure 6.8: Impact of captions on full shot generations. Left two columns: with
captions; right two columns: without captions.
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influence remains conditional —shaped by the clarity of the shot-type LoRA, the
specific actions or expressions described in the prompt, and the relative emphasis
placed on the subject versus the environment. While not essential, captions can
serve as a useful enhancement when higher precision is required, particularly for
more nuanced or constrained scenes.

Figures 6.9, 6.10, showcase generations and their corresponding prompts for each
trained shot type. For medium, american, and full shot, the model trained with
captions was used.

6.3.2 Character fine-tuning

For the characters, we aimed for diversity in age, ethnicity, and physical features.
Figure 6.11 presents a selection of generations for each trained character.

Initially, we trained character LoRAs using only the general instance prompt.
However, we later tested and compared the results obtained by incorporating
captions during training. Figures 6.12, 6.13 and 6.14 illustrate this comparison
across a set of various prompts.

In the figures, for each prompt, the two left images were generated by the captioned
model, while the two right images were generated by the non-captioned model.

Figures show that, while both captioned and non-captioned approaches are ca-
pable of generating high-quality and visually coherent character images, captions
contribute to better alignment between the intended prompt and the generated
output.

Prompts involving fine-grained emotional cues (such as surprise, sorrow, or joy),
specific object interactions (like holding a book or camera), or spatial positioning
(e.g., sitting cross-legged or leaning against a windowsill) are more consistently
and accurately rendered when supported by the use of descriptive captions during
training, which help guiding the model toward more precise results.

An area where captions offer value is pose accuracy and gesture fidelity. The LoRA
trained with captions maintains intended body positioning and limb articulation —
elements that often drift with the non-captioned LoRA, where the model might
default to more generic or comfortable poses. This is particularly important for
character-driven outputs that rely on subtle emotional storytelling or realistic scene
dynamics.

Scene composition and object grounding also benefit from captioned training images.

131



Contribution

Figure 6.9: Extreme Close Up, Close Up, Medium Close Up and Medium Shot
images generated with the LoRA weights.

Objects referenced in the prompt (like flowers, books, or musical instruments) are
more likely to be present and correctly placed in the scene. Without captions, these
elements sometimes disappear entirely or appear in ambiguous ways, suggesting
that object presence is more fragile in caption-free setups.

Overall, the core visual identity, clothing style, and aesthetic of the characters
remain remarkably stable across both conditions. This indicates that LoRA weights
trained specifically for character fidelity are sufficiently strong to preserve identity
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Figure 6.10: American Shot, Full Shot, Long Shot and Extreme Long Shot images
generated with the LoRA weights.

features even in the absence of caption guidance. This underscores an important
distinction: while captions can fine-tune the content of the scene, they are not the
primary driver of character coherence or visual quality.

Interestingly, in a few cases, non-captioned generations show a bit more composi-
tional creativity, offering alternate camera angles, framing, or stylized takes that
deviate slightly from the expected outcome. While this can lead to minor inaccura-
cies, it also reflects the model’s capacity to generalize and interpret prompts with
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Figure 6.11: Enter Caption

some flexibility — which may be more desirable.

In summary, captions function as a powerful tool for enhancing precision, fi-
delity, and alignment in character image generation, especially when prompts are
action-rich or emotionally nuanced. However, they are not strictly necessary for
maintaining character integrity or generating visually pleasing results, particularly
when strong character-specific LoRA models are used. Therefore, captions are
a valuable tool for interpretability and control, but not a strict prerequisite for
quality.

6.3.3 Full storyboard generation

Following model training, we conducted a comprehensive evaluation of the full
storyboard generation system, testing it across a diverse range of cinematic scenes.
These included dialogue, farewell, investigation, and dream scenes — each designed
to test the system’s ability to capture distinct narrative tones, emotional beats,
and compositional dynamics.
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Figure 6.12: Comparison of jiyeonmun woman character generations with(left)
and without(right) captions.

To assess the effectiveness of our storyboard generation pipeline, we conducted
a comparative analysis between our finetuned model — which leverages LoRA
weights for both shot type control and character identity preservation — and the
baseline Stable Diffusion 1.5 model without any finetuning applied.

Figures 6.15, 6.16, 6.17, 6.18, 6.19, 6.20 present the complete storyboards and
corresponding prompts generated by both models across all scenes. The storyboards
from the finetuned model have already gone through the inpainting step, the impact
of which is shown in figure 6.21.

In the baseline setting, prompts were preserved except for the specific subject
identities: we replaced the names of the characters with generic subject references
(e.g., “man,” “woman”).
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Figure 6.13: Comparison of kaitoyosuke man character generations with(left) and
without(right) captions.

This comparison is not intended as a direct benchmarking exercise or an adversarial
evaluation aimed at proving absolute superiority. Rather, it serves to demonstrate
the qualitative and measurable benefits of task-specific fine-tuning over a generic,
non-specialized baseline.

The fine-tuned system is specifically designed to enforce visual consistency across
frames, maintain character identity, and adhere more closely to cinematic shot
conventions. The baseline, in contrast, naturally generates inconsistent characters
from shot to shot as generic terms are employed, and often does not adhere to the
specified shot type.

Interestingly, during the generation of the house investigation scene, we observed a
recurring bias in the base model, which frequently rendered frames in black and
white. This behavior was not explicitly prompted and likely stems from latent
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Figure 6.14: Comparison of cathrinannett woman character generations with(left)
and without(right) captions.

associations in the model’s training data, where investigative or suspenseful themes
are often linked to noir or grayscale aesthetics. In contrast, the fine-tuned model
produced outputs that aligned more closely with the intended visual tone, reflecting
the stylistic tendencies learned from the character and shot type training data.
This observation further illustrates how task-specific fine-tuning can help override
unintended stylistic priors, enabling more controlled and context-appropriate visual
generation.

Finally, figure 6.21 below demonstrates the effectiveness of the inpainting refinement
step, displaying the shots before and after inpainting was applied.
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6.3.4 Metrics

To conduct a quantitative evaluation of our storyboard generation pipeline, we
adopted three complementary metrics that assess different aspects of image quality
and semantic relevance. These are:

• CLIPscore [67], which measures the semantic alignment between a generated
image and its corresponding text prompt. It does so by computing the cosine
similarity between their respective CLIP embeddings. The score ranges from
0 to 100, with higher values indicating better semantic alignment between
visual content and textual description.

• Image Composition Assessment (ICA) Metric[68], a metric designed to evaluate
the aesthetic and compositional quality of an image. The score ranges from 1
to 5, reflecting principles of visual balance, composition rules, object placement,
and general photographic appeal.

• DINOv2 score [69], which quantifies the semantic similarity between two
images. The score ranges from 0 to 1, with values closer to 1 indicating higher
visual-semantic consistency.

Together, these metrics allowed us to evaluate not just the accuracy of the prompt-
image alignment (via CLIPScore), but also image quality (via ICA) and image
similarity between the finetuned and base models (via DINOv2). Quantitative
evaluations were performed on all storyboard pairs presented in this work.

CLIP score

To assess prompt fidelity, we computed the CLIPScore for each frame in every
storyboard. For each scene, we then averaged the individual scores across all shots,
allowing us to compare the overall alignment performance between the fine-tuned
model and the base model.

The results in Table 6.1 show that both models achieve comparable CLIPScore
values across the board, with the base model slightly outperforming the fine-tuned
model in most cases. However, these differences are marginal (typically within 1
point) and should be interpreted with caution.

CLIPScore evaluates alignment between the image and its prompt using global CLIP
embeddings. However, it does not account for whether fine-grained elements—such
as specific shot types, emotional cues, or spatial arrangements—are accurately
rendered. Moreover, CLIPScore assesses each frame in isolation, without considering
temporal or narrative continuity across sequences. As a result, it may fail to capture
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Scene Fine-tuned Model Base Model
Cookie scene 34.1279 33.1410
Bench dialogue scene 30.4116 30.5454
Dream scene 31.6787 30.7279
Goodbye scene 28.1581 28.7286
Bus stop dialogue scene 30.3008 31.6678
House investigation scene 28.8912 30.7103

Table 6.1: Average CLIP score for the fine-tuned model and the base model across
the different storyboard scenes.

the nuances that are critical for evaluating storyboard coherence, such as character
consistency, emotional progression and narrative flow, or adherence to cinematic
structure.

To illustrate the limitations of CLIPscore, figure 6.22 shows selected examples from
different scenes where the base model significantly outperformed the fine-tuned
model, by 5 points or more. A qualitative inspection reveals that these higher
scores do not correspond to significantly better understanding of the narrative
intent, image quality or nuances.

Therefore, while CLIPScore offers a first-order metric for prompt-image alignment,
it is insufficient for evaluating the richer aspects of cinematic generation. It should
be complemented with metrics (like DINOv2 and ICA) and especially qualitative
analysis to capture the full scope of the storyboarding task..

Image Composition Assessment

Similarly to CLIPScore, we computed the Image Composition Assessment (ICA)
metric for each individual shot in both the fine-tuned model and base model
storyboards and then averaged the results across all shots. ICA is designed to
assess the aesthetic and compositional quality of an image by analyzing spatial
balance, symmetry, saliency distribution, and conformity to classical photography
rules such as the rule of thirds, leading lines, and golden ratio alignment.

Table 6.2 reports the average ICA score for each scene: Across all scenes, the
fine-tuned model demonstrates a consistent —although modest— advantage in
compositional quality. This slight edge for the fine-tuned model suggests that it
has a marginal advantage in placing characters or elements according to classical
composition techniques, contributing to more visually pleasing and balanced outputs.
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Scene Fine-tuned Model Base Model
Cookie scene 2.7575 2.6077
Bench dialogue scene 3.0920 2.9204
Dream scene 2.7865 2.7644
Goodbye scene 3.0148 2.7476
Bus stop dialogue scene 2.9126 2.5228
House investigation scene 2.7155 2.6464

Table 6.2: Average ICA score for the fine-tuned model and the base model across
the different storyboard scenes.

A likely contributing factor is the use of Midjourney-generated images for fine-
tuning. Midjourney is known for producing artistically high-quality images with
well-balanced compositions, often following rules like the rule of thirds, symmetry,
and the golden ratio. This may have implicitly taught the model to position
characters and scene elements in a more deliberate and artistically pleasing manner.

Similarly to CLIPscore, the ICA metric also presents certain limitations. As a
context-agnostic measure, it evaluates each image independently, without consider-
ing the narrative intent or functional role of a shot within a sequence. For example,
an off-center or asymmetrical composition might be deliberately chosen to convey
tension or focus, yet ICA could penalize it for deviating from classical compositional
rules. As such, while ICA is useful for assessing aesthetic and structural qualities,
it does not fully capture the expressive or storytelling dimensions of visual design.

In conjunction with other metrics and qualitative analysis, however, ICA reinforces
the observation that the fine-tuned model offers notable advantages—producing
compositions that are more aesthetically coherent and aligned with cinematic
conventions.

DINOv2 score

Finally, we assessed the semantic similarity between the storyboards generated by
the fine-tuned and base models by computing the average DINOv2 score for each
scene. This metric was calculated by averaging the individual similarity scores
for each pair of corresponding shots. DINOv2 evaluates the similarity between
image embeddings, capturing high-level visual features such as object configuration,
composition, and overall scene structure.

Table 6.3 reports the average DINOv2 score for each scene:
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Scene DINO score
Cookie scene 0.8604
Bench dialogue scene 0.7596
Dream scene 0.7861
Goodbye scene 0.8117
Bus stop dialogue scene 0.8117
House investigation scene 0.7691

Table 6.3: Average DINOv2 score for the fine-tuned model and the base model
across the different storyboard scenes.

The results indicate a consistently high semantic similarity between the outputs
of the fine-tuned and base models. All DINOv2 scores are above 0.75, indicating
that, despite differences between the models, the generated images remain quite
similar in terms of overall content and semantic structure. This aligns with the
observation that the fine-tuned model does not drastically deviate from the base
model in terms of high-level scene layout, but rather focuses on enhancing identity
fidelity, pose realism, and contextual grounding.

The DINOv2 metric is optimized for general semantic similarity and compares
individual image pairs, without understanding whether visual semantics match the
intended textual meaning. Therefore, again, it is to be considered along with other
metrics and qualitative evaluation.

6.3.5 Shot Type accuracy evaluation.

To evaluate how accurately the generated images matched the shot types specified
in the prompts, we conducted a manual annotation of all frames where shot-type
LoRAs were applied. For each image, we assessed whether the visual composition
aligned with the definition of the intended shot type. Results were aggregated as
correct matches over the total number of evaluated frames (excluding object-centric
shots where no shot-type LoRA was applied), and reported per model and per
scene. See Table 6.4.

The fine-tuned model correctly matched the intended shot types in 59 out of 75 cases,
yielding an accuracy of approximately 78.7%. In contrast, the base model achieved
only 26 correct matches out of 75, corresponding to an accuracy of 34.7%. These
results confirm the efficacy of LoRA-based fine-tuning in teaching shot-type-specific
visual patterns, nearly doubling the accuracy over the base model.

The most frequent mismatches observed in the fine-tuned model involved transitions
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Scene Fine-tuned Accuracy Base Accuracy
Cookie 8/10 4/10
Bus Stop Dialogue 10/12 4/12
Goodbye 6/10 5/10
Bench Dialogue 9/14 4/14
House Investigation 15/16 3/16
Dream 11/13 6/13
Total 59/75 (~78.7%) 26/75 (~34.7%)

Table 6.4: Shot type accuracy across scenes for the fine-tuned model and the base
model.

between visually adjacent categories —such as medium close-ups and medium shots,
or medium shots and american shots. Conversely, the base model displayed wider
and more inconsistent deviations, for example mistaking medium for full shots,
american for long shots, or even medium close up for american, full or long shots,
indicating a weaker grasp of shot type semantics.

To better contextualize these findings, it is worth noting that minor mismatches
between visually adjacent shot types are expected and may not always be interpreted
as true errors. Cinematic framing often leaves room for interpretive variation, and
even human annotators may disagree on borderline cases where, strictly speaking, a
shot would fall in between two categories. Additionally, prompt phrasing, inherent
stochasticity in the generation process, whether the image is multi-character, or
more subtle character positioning, are all contributing factors to small deviations.
As such, most mismacthes observed in the fine-tuned model may still fall within
an acceptable range of expressiveness rather than indicating failure.

In contrast, mismatches in the base model tend to be more erratic and pronounced,
often involving jumps across non-adjacent shot types (e.g., medium to full or long
shots, medium close ups to american or full shots), revealing a less structured
internal representation of spatial framing.

Overall, the fine-tuned model demonstrates significantly superior shot-type fidelity,
with consistent adherence to prompt-specified framing and reduced variance across
scenes. This suggests that LoRA fine-tuning effectively enhances the model’s ability
to internalize and apply shot-type visual conventions in a structured and reliable
manner.
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6.3.6 Human evaluation

To complement the quantitative metrics and gain deeper insight into how human
subjects perceive the quality and effectiveness of the generated storyboards, we
conducted a human evaluation study comparing outputs from the fine-tuned model
and the baseline Stable Diffusion 1.5 model.

A structured survey was designed, in which participants were shown pairs of
storyboards —one generated by the fine-tuned model and the other by the base
model— for each of the six narrative scenes presented in this work. Each pair was
accompanied by a concise description of the scene to provide narrative context.

Participants were asked to respond to the following four questions for each story-
board:

• How would you score each storyboard based on visual quality (composition
and aesthetics)?

• How would you score each storyboard based on overall coherence and consis-
tency of characters and environmental objects?

• Based on the given broad description of the scene, how well do you think each
storyboard communicates the implied narrative?

• How emotionally engaging do you find each storyboard?

Each question was answered on a 5-point Likert scale, where 1 indicated a very
poor rating and 5 an excellent one.

We collected responses from a total of 63 participants, and the results, reported as
average scores across participants, are summarized in Tables: 6.5 and 6.6.

Table 6.5: Human evaluation scores for Visual Quality and Consistency of
characters and setting.

Scene Visual Quality Consistency
Finetuned Base Finetuned Base

Cookie scene 3.73 3.14 3.71 2.71
Bench dialogue scene 2.89 3.30 3.32 2.78
Dream scene 3.70 3.30 3.96 3.02
Goodbye scene 3.37 3.20 3.62 2.67
Bus stop dialogue scene 3.24 3.21 3.63 2.55
House investigation scene 3.89 2.71 3.92 2.24
Average 3.47 3.14 3.69 2.66
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Table 6.6: Human evaluation scores for Narrative Clarity and Emotional Rele-
vance.

Scene Narrative Clarity Emotional Relevance
Finetuned Base Finetuned Base

Cookie scene 3.51 2.63 3.37 2.36
Bench dialogue scene 2.96 2.60 2.98 2.55
Dream scene 3.75 3.19 3.49 2.76
Goodbye scene 3.68 2.73 3.30 2.71
Bus stop dialogue scene 3.54 2.60 3.21 2.54
House investigation scene 3.73 2.19 3.47 1.87
Average 3.53 2.66 3.30 2.46

The average scores were overall closer than initially expected, suggesting that
the base Stable Diffusion model already possesses strong generative capabilities.
Nonetheless, the fine-tuned model outperformed the base model across all four
evaluation dimensions, proving that the fine-tuning pipeline provides tangible
benefits.

Giving a deeper look into the results:

• Visual quality: the fine-tuned model was generally perceived as producing
more aesthetically pleasing and compositionally balanced outputs. The average
difference between the two models was the smallest among all categories (3.47
vs. 3.14). This narrower gap may be attributed to the already strong generative
capabilities of the base Stable Diffusion model in producing visually pleasing
compositions. Aspects such as lighting, color harmony, and photographic
framing can be effectively handled even without targeted fine-tuning, which
may explain why human evaluators rated both models similarly in terms of
visual appeal.

• Consistency of characters and setting: Here, the improvement was
substantial (3.69 vs. 2.66), indicating that fine-tuning played a key role in
maintaining visual consistency across frames. This aligns with one of the core
challenges in storyboard generation, where character identity continuity is
essential.

• Narrative Clarity: The fine-tuned model was also rated higher in its ability
to visually communicate the story (3.53 vs. 2.66), suggesting that, beyond
producing more attractive images, the storyboards benefited from better
alignment with the narrative intent.
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• Emotional Relevance: Interestingly, this was the category with the strongest
relative gain (3.3 vs. 2.46), suggesting that the fine-tuned model better
captured the emotional undertone of each scene, which led to more engaging
and impactful storyboards and highlights the benefit of fine-tuning for affective
storytelling.

These human evaluation results also help contextualize the findings and limita-
tions of current quantitative metrics. Although CLIPScore slightly favored the
base model in several scenes, participants consistently preferred the fine-tuned
model —highlighting how CLIPScore, which assesses prompt-image alignment on a
frame-by-frame basis, overlooks narrative structure, emotional nuance, and visual
continuity. In contrast, the ICA metric showed a trend more aligned with human
judgment on the dimension of visual quality, with a better performance of the
finetuned model even though by a modest gap. DINOv2 scores aligned with human
evaluation in that they confirmed both models produce visually similar content at a
high level of abstraction; however, the fine-tuned model consistently outperformed
in aspects that DINOv2 does not capture—such as character identity preservation,
emotional nuance, and narrative structure. This further emphasizes the impor-
tance of complementing automated metrics with human-centered evaluations when
assessing storyboards and narrative visualizations.

Overall, the human evaluation underscores the added value of targeted fine-tuning
strategies in achieving better semantic alignment, expressive depth, and coherence
in visual storytelling.
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Figure 6.15: Cookie scene - finetuned vs base model
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Figure 6.16: Bench dialogue scene - finetuned vs base model
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Figure 6.17: Dream scene - finetuned vs base model
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Figure 6.18: Goodbye scene - finetuned vs base model
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Figure 6.19: Bus stop dialogue scene - finetuned vs base model
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Figure 6.20: House investigation scene - finetuned vs base model
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Figure 6.21: Results of the inpainting refinement step, showing shots before and
after refinement.
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Figure 6.22: Examples where the base model achieved significantly higher CLIP-
Score than the fine-tuned model
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Chapter 7

Conclusions and future
developments

This thesis presents a comprehensive exploration of the current landscape of image
synthesis, with particular focus on the evolution of diffusion-based models and their
application to visual storytelling. Alongside a detailed overview of the architectures
and fine-tuning techniques that have shaped modern generative pipelines, the work
contributes a practical system tailored for a relatively underexplored but highly
impactful task: multi-frame storyboard generation.

Unlike traditional text-to-image applications, storyboard generation requires models
to produce sequences of visually consistent images, aligned not only to a prompt
but also to narrative continuity, character fidelity, and cinematic conventions such
as shot composition and emotional nuance. While several recent works in the
field of story visualization have tackled aspects of this challenge (as discussed in
Chapter 5), no single approach has yet emerged as a robust solution for cinema-style
storyboard creation. This thesis addresses this gap by proposing a method that
combines fine-tuning, prompt engineering, and inpainting in a coherent generation
pipeline.

The core contribution of this work lies in adapting Stable Diffusion 1.5, a state-
of-the-art diffusion model, towards storyboard generation through DreamBooth
LoRA finetuning, LLM-based prompt generation, and inpainting-based corrections.
This pipeline enables the creation of storyboard sequences that maintain character
identity across shots, follow predefined shot-type constraints, and align with the
intended visual narrative.
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Two distinct fine-tuning phases were conducted: one targeting character identity
and another for shot-type specificity. Experiments demonstrated that the model
successfully learned to render coherent characters across multiple scenes and gen-
erate shots with a high degree of alignment to cinematic conventions. We also
explored the use of captions on both shot type and character-specific LoRA training,
showing their degree of impact on controllability and semantic accuracy.

The proposed prompt generation strategy leverages modern LLMs to further
streamline the process, especially the sequence generation step. To achieve this
goal, we empirically built a prompt for the LLM to convert broad scene descriptions
into detailed and carefully crafted prompts, one for each storyboard frame. This
proved effective to allow the system to serve as a practical pre-visualization tool
for early-stage cinematic design.

Further refinement was achieved through inpainting steps, which allowed for tar-
geted corrections in individual frames—enhancing local and global coherence in
a controlled way that can easily scale to the inclusion of specific props and fine
details.

Quantitative metrics such as CLIPScore, DINOv2, and the Image Composition
Assessment (ICA) metric were used to evaluate the generated outputs against a
Stable Diffusion 1.5 baseline. While CLIPScore results were comparable between
the base and fine-tuned models, further analysis revealed that higher scores from
the base model often do not correspond to significanlty better alignment. ICA
results provided moderate evidence that the fine-tuned model inherited better
compositional tendencies—likely influenced by the high-quality, stylistically con-
sistent training data. DINOv2 confirmed a strong semantic similarity between
corresponding frames of base and fine-tuned models, reinforcing the fact that both
pipelines capture core prompt semantics.

However, key storytelling aspects such as shot-type control, character consistency,
and emotional clarity—where the fine-tuned model excels—are not adequately
captured by these metrics: qualitative human evaluation consistently highlighted
the superiority of the fine-tuned model in generating visually expressive, narratively
coherent, and stylistically unified storyboards. The presented pipeline therefore
offers a foundation for controllable storyboard generation, bridging the gap between
narrative intent and visual execution.

Along with the promising results, also several areas emerged for improvement.

The current system shows limitations in areas such as nuanced control over spatial
layout and character positioning, accurate rendering of emotional expressions or
physical interactions, and prompt interpretability for complex, multi-character
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compositions.

For instance, in scenes involving multiple characters, unintended interactions (e.g.,
hugging or kissing) were often generated even when not specified in the prompt.
Moreover, while LoRA provides a lightweight and modular finetuning framework,
it struggles when merging multiple concepts into a single frame, requiring careful
prompt design and inpainting corrections to limit and correct concept bleeding and
concept omission.

Building on these insights, future research could explore the following directions to
further elevate the quality and versatility of storyboard generation systems:

• Adopt more advanced diffusion architectures: upgrading from Stable Dif-
fusion 1.5 to more powerful models such as SDXL could enhance prompt
understanding, dynamic range, and visual fidelity.

• Perform systematic hyperparameter optimization: current training and in-
ference settings are based on empirical tuning and insights from the online
community. A structured grid search could lead to significant performance
improvements.

• Explore alternative fine-tuning techniques: a comparative study between
DreamBooth, full model fine-tuning, and Textual Inversion may shed light
on the performance of different strategies and the trade-offs between control,
flexibility, and efficiency.

• Incorporate diverse visual styles and cinematic grading: our work mainly
focused on photorealistic storyboards, but supporting cartoon, anime or
comic-book styles alongside color grading profiles like “teal and orange” or
monochrome can expand the creative potential and application domains.

• Enrich character training datasets: increasing the diversity of character training
images—covering more facial expressions, body poses and interactions—may
improve generalization capabilities and support the rendering of more complex
emotional cues or interactions.

• Integrate ControlNet and region-based prompting: these tools can provide
localized, fine-grained control over composition, enabling precise action chore-
ography and interaction design in multi-character scenes, while also tackling
the common issues of LoRA merging.

• Explore recent story visualization approaches: it would be valuable to conduct
practical experimentation with recently proposed approaches in the field of
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story visualization, as discussed in Chapter 5—especially as soon as open-
source implementations or reproducible code become available. This would
enable a direct comparison and potentially allow for hybrid solutions that
combine the strengths of multiple methods.

• Expand inpainting and outpainting capabilities: beyond character fixes, in-
painting can be used to integrate objects, refine environments and adjust
spatial elements, while outpainting could help maintain continuity across scene
transitions or larger panoramic shots.

• Introduce sketch-based or layout-guided conditioning: using sketches, segmen-
tation masks or spatial maps to guide generation can provide more determin-
istic control over composition, especially in complex scenes.

An exciting direction for future work is also the transition from static images
generation to dynamic video creation. Leveraging emerging text-to-video models
opens the door to generating animated storyboards (animatics), or even full video
clips, conditioned on script segments or scene descriptions.
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