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Abstract

Voice disorders are a significant health problem, affecting approximately 7% of
the adult population each year, and impacting social and occupational health.
However, the majority of clinical diagnostic methods continue to rely on invasive
techniques, that may cause patient discomfort and high costs, limiting the acces-
sibility of early screening. This highlights the need for automated, non-invasive
diagnostic solutions. With the advancement of artificial intelligence (AI) and deep
learning, Transformer-based models have shown great potential in voice disorder
diagnosis, using self-attention mechanisms to capture long-term dependencies in
voice. However, voice disorder diagnosis technology still faces many challenges due
to data limitations, variability of voice signals, and the need to improve diagnostic
accuracy. Existing methods have limitations in dealing with small, unbalanced
datasets, and environmental noise interference, which restricts the generalization
ability of the model. To address these issues, this study proposes a Transformer-
based, end-to-end voice disorder detection and classification model. We use data
augmentation techniques to alleviate data shortages, and improve the robustness of
the model under different conditions. In addition, multimodal fusion is incorporated
further. Specifically, we design a time-domain-based audio augmentation pipeline
with three different augmentation strengths–30%, 50%, and 70%, to examine its
impact on generalization. Furthermore, we focus on two different types of voice
recordings — sentence reading (CS) and sustained vowel voicing (SV) — we design
and evaluate five multimodal fusion strategies at three levels: early, mid, and
late. The results show that in the binary classification task, combining multimodal
fusion with data augmentation improves accuracy by up to 7% and macro-F1 by
up to 8.9% compared to the single-modality baseline. On unseen data, controlling
augmentation intensity further boosts accuracy by up to 6.4%, and macro-F1 by
up to 23.3%. In the multi-class task, the optimal fusion strategy yields accuracy
improvements of up to 13.7%, and macro-F1 gains of up to 22.1%. These results
demonstrate the strong generalization ability of the proposed approach, and its
potential for non-invasive voice disorder diagnosis.
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Chapter 1

Introduction

Voice disorders, also called voice diseases or voice pathologies, are conditions that
affect a person’s speech due to abnormalities in the pitch, loudness, or quality of the
sounds produced in the larynx. Voice disorders have a significant impact on people’s
daily lives. According to surveys, an average of 7% of adults suffer from voice
disorders each year. Surprisingly, these voice disorders may lead to communication
difficulties, reduced work efficiency (an average of 7.4 working days lost each year),
and even career changes, with 4% of patients reporting career changes due to
voice problems [1, 2]. Voice disorders can result from vocal overuse, tumors, or
neurological conditions, and are commonly categorized as organic, functional, or
psychogenic [3, 4]. Since these disorders can cause throat pain and discomfort, and
even impair swallowing function, and cause breathing difficulties, they seriously
affect overall physical health. Therefore, accurate early diagnosis is crucial for
effective treatment.

Although traditional techniques such as laryngoscopy [5, 6] plus voice assessment
are widely used in clinical practice, they have obvious limitations. First, these
methods are invasive, causing discomfort—especially for patients requiring repeated
examinations (e.g., cancer patients). Second, these technologies often rely on expen-
sive equipment, and highly specialized operators, which limits their accessibility in
resource-poor settings. Third, traditional evaluation methods rely on the subjective
judgment of doctors, and may introduce subjectivity in the evaluation results. In
recent years, the application of non-invasive methods has also been very extensive,
such as computed tomography (CT) [7], which provides detailed images of the
larynx and its surrounding structures, but the cost is expensive. These methods
are mainly used for diagnosis when symptoms are obvious, rather than as active
preventive screening tools, which limits their early detection of voice disorders.

The development of artificial intelligence technology, especially the application
of deep learning in the field of audio and sound processing, has provided new
possibilities for overcoming the above challenges [8]. By achieving automated,

12



Introduction

non-invasive, and efficient diagnosis, deep learning methods can reduce the cost of
diagnosis, reduce the demand for professionals, and make detection more accessible.
In addition, these technologies can be integrated into portable devices or mobile
applications, for active screening and real-time monitoring, providing a new solution
for the early detection and intervention of voice disorders.

Recently, transformer-based models have been shown to be effective tools for
automatic detection and diagnosis of voice disorders [9, 10]. Their core advantage
is the ability to capture long-term dependencies in time series data, which is
crucial for analyzing complex voice patterns. Through the self-attention mecha-
nism, transformers can not only effectively process large-scale datasets, but also
extract complex patterns that determine voice characteristics. However, due to
the complexity and diversity of pathological voice characteristics, this field is still
under-researched and some problems remain unsolved. First, voice disorder data
is difficult to obtain on a large scale, Transformer is prone to overfitting in low-
resource environments, limiting its generalization ability. Second, noise interference
in real-world environments (such as hospitals and homes) will weaken its advantage,
in training on clean data and affect diagnosis accuracy. In addition, voice data
usually combines different vocalization modalities, doctors often ask patients to
pronounce vowels ’/a/’ first, and then evaluate them by reading sentences. In the
following paragraphs, we will introduce how we use the advantages of transformers,
to solve some challenges in the field of voice disorders.

Data augmentation and generalization In reality, the collection of medical
data is often limited by the number of rare cases and the high cost of annotation.
This data scarcity problem limits the training and generalization capabilities of
deep learning models.

To address this problem, we adopted a comprehensive data augmentation
strategy, to artificially expand the scale and diversity of the dataset. By applying
transformation methods such as pitch shifting, time stretching, and noise injection,
a variety of acoustic changes can be simulated, thereby helping the model learn more
generalizable feature representations. The experimental results also prove this point.
Using data augmentation strategies alone can achieve a 3% to 4% performance
improvement in accuracy and macro-F1 score in voice disorder detection, and a 5%
to 6% improvement in the classification.

In addition, the recording conditions of medical voice vary depending on eco-
nomic costs and equipment availability, and usually involve two different collection
methods: one is collected in a standard environment using professional microphones,
and the other is obtained using mobile devices. The latter usually exhibits higher
noise levels and other distortions, and its distribution may deviate greatly from the
controlled clinical environment, making it difficult for the model to maintain stable
performance in different devices and environments. In fact, data augmentation

13



Introduction

technology not only expands data, but also plays a vital role in cross-domain
generalization. By introducing more severe controlled noise and transformation,
the model is more robust to data from mobile devices.

In addition, introducing a small amount of mobile-recorded data during fine-
tuning, resulted in notable improvements across both detection and classification
tasks, demonstrating the model’s improved adaptability to real-world acoustic
conditions.

Multimodal learning In practice, doctors perform different patient voice assess-
ments, to evaluate different voice properties, such as requiring the patient to read
pre-defined five sentences and emitting sustained vowels. Our study addresses this
challenge by designing a framework for multimodal voice disorder detection and
classification. Specifically, by processing two types of voice data: sentence reading
and sustained vowels. We design a unified model to process them together. Three
fusion strategies, early fusion, mid-level fusion, and late fusion, are investigated,
which are carried out at the data level, feature level, or decision level to effectively
integrate cross-modal information.

We empirically demonstrate that, fusing two modalities is beneficial to improving
model performance. In particular, using cross-attention on the detection task,
fusion alone can achieve an accuracy of up to 88.5%, and when combined with data
augmentation, the accuracy is further improved to up to 89.7%. It illustrates the
feasibility of multimodal Transformer-based models in clinical applications, and
lays a solid foundation for further advancing automatic speech disorder diagnosis.

Summary This study focuses on deep learning-based voice disorder detection
and classification, with experiments focusing on data augmentation, multimodal
integration, and cross-domain generalization. We demonstrate that data augmenta-
tion can effectively improve the robustness of the model, and enhance adaptability
under different recording conditions. In addition, multimodal fusion can capture
complementary diagnostic features. Finally, we also evaluate pre-trained model
selection, and compare detection-based models and non-detection-based methods
in multi-class classification.

The rest of this thesis is organized as follows: Chapter 2 reviews the research
work in the field of voice disorder diagnosis, including basic medical knowledge,
acoustic feature extraction, common augmentation techniques, and the evolution
of deep learning techniques for diagnosing voice disorders. Chapter 3 details
our approaches, including data processing, model selection, and fusion strategies.
Chapter 4 presents experimental results, Chapter 5 discusses our main findings and
limitations, and finally Chapter 6 concludes this thesis and highlights potential
directions for future research.
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Chapter 2

Related Work

In this chapter, I will provide an overview of the relevant research and methodologies
that have been applied in the field of voice disorder detection and diagnosis. First,
I will discuss in Section 2.1 the medical background of voice disorders, including
their epidemiology, classification, and the clinical diagnostic tools commonly used
in practice. Following this, I will explore in Section 2.2 various techniques for voice
feature analysis, focusing on feature extraction and the use of data augmentation to
enhance model performance. Finally, I will review the state-of-the-art classifiers for
voice disorder detection and classification in Section 2.3, covering both traditional
machine learning techniques and recent advancements in deep learning, such as
CNN, RNN, and transformer-based models. In addition, some mixture of expert
models are introduced to further enrich the diversity and effectiveness of the
classifiers. This chapter aims to provide a comprehensive overview of the tools and
methods that form the foundation for the work presented in subsequent chapters.

2.1 Medical Background

Voice disorders affect a significant portion of the population and have a variety of
causes, ranging from neurological conditions to voice abuse. Understanding the
medical background of these disorders is essential to developing effective detection
and diagnostic methods. This section will first explore the epidemiology of voice
disorders, focusing on their prevalence and risk factors (Sec.2.1.1). I will then
discuss the various types of voice disorders and their clinical classification (Sec.2.1.2).
Finally, I will review commonly used clinical diagnostic tools to provide context
for the need for more advanced automated detection and diagnostic methods
(Sec.2.1.3).
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2.1.1 Epidemiology of Voice Disorders
Epidemiological studies of voice disorders are typically examined from three main
aspects: prevalence, potential risk factors, and occupational impact.

Early research, such as the 2005 survey by N. Roy et al.[1], which covered more
than 1,300 people found that nearly 30% of people had experienced voice disorders
in their lifetime. This study highlighted that factors such as voice use patterns and
needs, esophageal reflux, chemical exposure, and frequent colds or sinus infections
(excluding tobacco or alcohol) have significant impacts on voice disorders. In recent
years, N. Bhattacharyya [2] used the data from the 2012 National Health Interview
Survey (NHIS) in the United States to analyze and show that voice problems have
a substantial impact on work and life. On average, individuals with voice disorders
lose 7.4 working days per year, and approximately 4% of people reported changing
careers due to their voice issues. Despite the ten-year gap between the two surveys
[1, 2], the percentage of adults they surveyed who experienced voice disorders
within a year was still very similar, around 7%.

Voice disorders are well-documented to have effects that extend beyond physical
discomfort [3, 4]. These disorders often involve vocal cord damage, which can lead to
throat pain and discomfort. Additionally, they can also impair swallowing function
and cause breathing difficulties, significantly impacting overall physical health.
Additionally, the consequences extend to psychological and social dimensions.
Individuals may face communication challenges in daily life, and those who rely
on their voice professionally—such as teachers, singers, and call center workers,
might be forced to change careers [4]. This can even lead to social isolation and
contribute to mental health issues like depression and autism.

Epidemiological studies provide us with extensive data on the prevalence and
potential risk factors of voice disorders. However, voice disorders are not a single
condition, they have different causes and manifestations. To better address this
diversity, it is crucial to conduct deeper research into the classification of voice
disorders (Sec.2.1.2). Through accurate classification, we can not only identify the
unique characteristics of different types of disorders but also provide a basis for
developing personalized intervention and treatment strategies, to more effectively
improve patients’ speech function and quality of life.

2.1.2 Classification of Voice Disorders
Voice disorders, also known as vocal diseases or voice pathologies, are medical
conditions involving abnormal pitch, loudness, or quality of the sounds produced
by the larynx, affecting speech.

Voice disorders have been classified into distinct categories in several pathological
studies [11, 12, 13], based on their etiologies and clinical presentations. Organic
disorders include vocal nodules, vocal polyps, and vocal paralysis. Vocal nodules
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usually cause hoarseness, accompanied by voice fatigue or loss of voice, and patients
may feel tension in the larynx when speaking. Vocal polyps often manifest as
hoarseness, laryngeal discomfort, and intermittent voice disorders. Their presence
may lead to decreased sound quality and difficulty in pronunciation. Vocal cord
paralysis manifests as hoarseness and difficulty in pronunciation, and in severe
cases may affect breathing and swallowing functions. Functional disorders include
functional voice disorders and vocal overuse. Patients with functional voice disorders
may have abnormal pitch, volume, or quality of voice, but no obvious organic lesions.
Common symptoms include voice fatigue and laryngeal discomfort. Vocal overuse is
mainly manifested as hoarseness, laryngeal pain, and decreased voice control ability,
which is usually related to prolonged or improper use of the voice. Psychological
speech disorders are speech problems caused by psychological or emotional factors,
where the patient’s voice may suddenly become hoarse, dysphonia, or complete loss
of voice, often accompanied by emotional stress, anxiety, or traumatic experiences,
and the voice abnormality may worsen or improve with emotional fluctuations.
Psychogenic speech disorders are speech problems caused by psychological or
emotional factors.

The classification of voice disorders offers a foundational framework for clinical
diagnosis, but achieving accurate detection and diagnosis typically requires the use
of various clinical tools to thoroughly assess vocal cord function. While different
types of voice disorders may exhibit similar symptoms, traditional clinical tools
remain crucial for uncovering their underlying causes. In the following section
2.1.3, I will present the primary clinical tools and techniques currently employed
for detecting and diagnosing voice disorders.

2.1.3 Clinical Diagnostic Tools
Traditionally, the detection and diagnosis of voice disorders relied heavily on invasive
procedures. Invasive medical devices, such as direct and indirect laryngoscopes
[5, 6], are used to visually inspect the state of the vocal cords. Although these
methods provided direct observation of vocal cord movement and morphology, they
often caused discomfort, required local anesthesia, and were associated with high
costs. Moreover, these procedures required professional operation and specialized
equipment, limiting their accessibility.

As technology advanced, non-invasive methods for diagnosing voice disorders
became more prominent. Techniques like Computed Tomography(CT) [7] and
Magnetic Resonance Imaging (MRI) [14] provided detailed images of the larynx
and its surrounding structures, offering a less invasive alternative to traditional
methods. These methods, though more comfortable, still involve expensive and
complex equipment. High-frequency voice wave imaging, a non-invasive and real-
time technique, also emerged but remains mainly in research and clinical trial
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stages.
In recent years, acoustic analysis technologies based on machine learning and

deep learning, have become increasingly accurate in identifying and classifying
various types of voice disorders by collecting and analyzing large amounts of
voice data. These advancements have significantly improved diagnostic accuracy.
Furthermore, with the rise of mobile devices, the development of telemedicine and
mobile applications has enabled patients to record their voices remotely and receive
preliminary diagnoses, reducing the need for hospital visits. This trend not only
facilitates early detection of voice disorders but also paves the way for personalized
treatment plans.

In the following sections, we will explore the specific applications of acoustic
feature extraction, machine learning, and deep learning in the diagnosis of voice
disorders.

2.2 Voice Feature Preprocessing

This section introduces key techniques for voice feature extraction (Sec.2.2.1) and
data augmentation (Sec.2.2.2), which are essential for the accurate detection of
voice disorders.

Voice feature extraction focuses on extracting meaningful features from voice
signals, such as MFCC and prosodic features, which are essential for distinguishing
healthy voices from pathological voices and classifying voices of different pathological
types.

Next, we will explore voice data augmentation, a method used to enhance the
performance of machine learning systems. These systems, often referred to as
models, are computer programs designed to learn from data and make predictions
or decisions based on that learning. Voice data augmentation can enhance these
models by generating new training examples from existing recordings, thereby
expanding the dataset’s size and diversity. This may lead to improved reliability
and effectiveness of these models.

2.2.1 Voice Feature Extraction

When processing voice signals, digitization is essential for effective analysis. This
section is organized into two main parts: first, we will review the key terms and
techniques related to traditional feature extraction for voice data (Sec.2.2.1) [15],
and then we will delve into models used for feature extraction (Sec.2.2.1).
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Traditional feature extraction methods

Traditional voice features are generally categorized into three types: time-domain
features, frequency-domain features, and time-frequency domain features. Here, we
focus on the acoustic parameters commonly used in clinical acoustic analysis.

Time-domain features include fundamental frequency (F0), jitter, and shim-
mer. F0 represents the pitch of the voice, while jitter and shimmer reflect the
stability and consistency of the speech signal.

Figure 2.1 displays the speech waveform of a healthy individual reading a sentence.
The horizontal axis represents time, while the vertical axis indicates amplitude.
The variations in volume throughout the utterance are readily observable, with
pauses and emphasis in the sentence clearly reflected in the changes in amplitude.
The periodic fluctuations of F0 correspond to the speech tone, demonstrating good
overall stability and coherence. Additionally, the irregularities in the waveform
suggest minor variations in frequency and amplitude, highlighting the presence of
jitter and shimmer.

Figure 2.1: Waveform diagram

Note: The diagram shows the time domain characteristics of a audio signal, and illustrates the
amplitude variation over time for a healthy individual reading a sentence.

Research has shown that significant differences in these acoustic parameters
can be observed between individuals with and without speech disorders [16]. For
example, increased jitter and shimmer may indicate conditions such as Parkinson’s
disease or vocal cord nodules, which affect voice stability. These time-domain
features have been shown to be useful in classifying various laryngeal diagnoses,
including voice disorders caused by vocal cord polyps, unilateral vocal cord paralysis,
etc. [17]. When combined, these acoustic measures can significantly enhance a
classifier’s ability to differentiate between a healthy larynx and various laryngeal
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pathologies. Additionally, by comparing parameters such as jitter and shimmer,
it is possible to assess which treatments may offer advantages in improving vocal
cord function and voice quality [18].

Figure 2.2: Spectrum

Note: The figure illustrates the energy distribution across different frequencies in the audio signal
of a healthy individual.

Frequency-domain features analyze signals from the perspective of spectral
characteristics. Figure 2.2 shows the speech spectrum of a healthy individual
reading a sentence. The figure reveals the energy distribution of different frequency
components in the signal, with particularly strong energy observed in the low-
frequency range, which is closely related to the position of the fundamental frequency
and the formants. This spectrum is instrumental in evaluating the sound quality
and timbre characteristics of the voice.

Commonly used clinical features include formant frequency and HNR [15].
Formants are critical for distinguishing vowels and assessing articulatory function,
and changes in them often indicate vocal cord dysfunction. In [19], formant analysis
has been used to distinguish between healthy and pathological voices, and in [20]
has been used to distinguish between pathological types. HNR is frequently used to
assess the balance between harmonics and noise in speech signals, providing insight
into the overall quality of speech. Studies have shown that HNR is a sensitive
indicator of changes in speech quality and is therefore useful for detecting subtle
pathologies [21, 22].

Time-frequency domain features, such as the MFCC, wavelet transform
and so on, effectively combine temporal and spectral information, making them
well-suited for capturing dynamic and non-stationary speech patterns.

MFCCs represent the short-term power spectrum of sound, providing a compact
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representation of the spectral characteristics of speech. Figure 2.3 illustrates the
MFCC features extracted from a healthy individual’s speech. These coefficients
capture the spectral characteristics of the speech signal, particularly the formant
information, which is crucial for understanding the overall quality of speech. MFCCs
exhibit smooth and stable characteristics in healthy speech, making them vital for
speech recognition and classification tasks. Their design simulates human auditory
perception, allowing for enhanced modeling of voice quality and dynamic speech
patterns. For further details on MFCCs, refer to [23]. Wavelet transforms, on

Figure 2.3: MFCC feature map

Note: The figure shows the voice characteristics of healthy individual reading sentences,
simulating the frequency characteristics perceived by the human ear.

the other hand, analyze signals at multiple scales and frequencies, allowing for
identifying variations in speech over time. For detailed explanation of this technique,
see[24]

Among these, MFCC has shown great promise in both voice recognition and
pathology detection by simulating the human auditory system. Studies demonstrate
that when MFCC is paired with certain classifiers, it significantly enhances the
identification of complex voice disorders [25, 26]. One notable study combined
time-domain features, like the zero-crossing rate, with frequency-domain features,
such as formant frequencies, and time-frequency features like MFCC, achieving
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higher accuracy and sensitivity in vocal cord disease classification [27]. Additionally,
wavelet transforms have been employed in various models, including MLPs, to
distinguish between nodules and Reinke’s edema [28]. Further exploration of both
continuous and discrete wavelet forms has improved classification accuracy in voice
pathology when used in conjunction with MLP [29].

In practice, computer vision models (like CNNs) usually process three-channel
(RGB) images [26]. The first three MFCC dimensions are mapped to the red, green,
and blue channels respectively, and then these values are normalized to 0-255 pixels,
and finally combined into an RGB image. This method retains more time-frequency
information than a single grayscale image, while meeting the processing advantages
of CNNs for multi-channel data.

While traditional methods for extracting acoustic features have been shown to
be effective in identifying various voice pathologies, they often rely heavily on data
preprocessing steps and manually computed features, which limits their flexibility
and adaptability. In contrast, deep learning [8] has demonstrated its powerful
feature extraction capabilities in medical image interpretation, pathology diagnosis,
and gastroenterology, reducing the strong need for manual feature engineering.

Model-based feature extraction method

Model-based feature extraction is good at processing high-dimensional complex
data, and it can identify subtle and nonlinear patterns that are difficult to capture
with manual feature extraction.

CNNs automatically learn hierarchical features from input data, making them
highly effective for tasks like image and audio classification. CNN architectures come
in three main types: 1D, 2D, and 3D, where "D" refers to the dimensionality of the
input data (see Figure 2.4) [30, 31]. The 1D CNN is optimized for one-dimensional
data such as time series and audio signals, applying convolution operations along
the time dimension to effectively capture local temporal features and patterns,
which is particularly useful for tasks like speech and sound classification [32]. The
2D CNN extends this concept to two dimensions, making it ideal for processing
images and spectrograms generated from audio signals. When an audio signal
is converted into a two-dimensional spectrogram, the 2D CNN can analyze the
spatial relationships among different frequency components over time, enhancing
its ability to detect key patterns in audio classification tasks [33]. Finally, the 3D
CNN is designed for data that has both spatial and temporal dimensions, making
it suitable for analyzing sequences of images or volumetric data, thereby capturing
complex patterns across time and space.

In summary, CNNs play a crucial role in feature extraction, enabling the
identification of a wide variety of audio signals and their respective features [34].
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Figure 2.4: 1D, 2D, and 3D CNN [30]

For example, a CNN can convert a one-dimensional speech signal into a two-
dimensional spectrogram, extract local time-frequency features through convolution
operations, and capture anomalies such as formant shifts and irregular frequencies
[35, 36, 37, 38]. These features are extracted layer by layer through multiple
layers of convolution, helping the model understand time-frequency information at
different scales, the overall architecture of the CNN can be seen in Figure 2.6 in
Section 2.4.1.

An RNN or LSTM is good at capturing temporal dependencies in speech,
especially dynamic changes such as jitter and pitch fluctuations, which are difficult
for manual methods to accurately capture in the long-term temporal context [37,
38].

Transformer captures global and local features at the same time through the
self-attention mechanism, analyzes the entire speech signal, and can identify long-
term dependencies and complex patterns across time periods, surpassing traditional
manual methods [9, 39, 40, 41, 42, 43].

Compared with manual feature extraction, model-based feature extraction is
more automated and adaptable, can learn complex features from data, and is
particularly suitable for processing dynamic changes in speech signals. This makes
deep learning models perform well in sound barrier detection and classification
tasks, and can more accurately identify and classify pathological voice signals.
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2.2.2 Voice Data Augmentation
ML and DL techniques play an important role in automatic voice pathology
detection and classification, but these methods usually require a large amount
of training data. However, the high sensitivity of patient medical history makes
it challenging to collect large numbers of samples, as this information is often
considered important private data. As a result, the available datasets are often
limited [8]. To address the challenge of limited datasets, data augmentation
techniques have gained widespread attention in recent years and have become a
crucial method for improving model performance. Data augmentation refers to a
set of techniques that artificially enlarge the size of a training dataset by creating
modified versions of existing data samples. This process enhances the diversity
of the training data without the need for additional real-world samples, which is
particularly valuable in fields such as medical diagnostics, where acquiring new
data can be costly or raise ethical concerns. By augmenting the dataset, models
can better generalize to unseen data, increasing their robustness and accuracy.

Currently, commonly used audio data augmentation methods include three time
domain methods (noise addition, pitch shifting, and time stretching), one time-
frequency domain method (Spectrogram Augmentation), and two vocoder-based
methods (HNR) modification and glottal pulse length modification) [44, 45, 46].

Time-Domain Methods:

• Noise addition: This technique improves the model’s robustness in noisy
environments by adding background noise to speech samples.

• Pitch shifting: Alters the pitch to generate a variety of tone samples, allowing
the model to adapt to different speech inputs.

• Time stretching: Adjusts the speech duration and speaking speed without
changing the pitch, enabling a better representation of diverse speech patterns.

Time-Frequency and Vocoder-Based Methods:

• SpecAugment: Randomly covers part of the time or frequency area on the
spectrum to enhance the model’s learning ability for speech features.

• HNR modification: Adjusts the ratio of harmonics to noise, improving the
model’s adaptability to changes in sound quality.

• Glottal pulse length modification: Simulates different pronunciation styles
and enriches the diversity of speech samples by changing the duration of the
glottal pulse.

24



Related Work

These techniques can be used individually or combined to achieve good results
[10]. By retaining the labels of pathological and healthy voice samples in existing
datasets, they generate new voice samples on the original data. As a result, they
significantly improve the model’s robustness and accuracy in processing pathological
sounds, thereby contributing to more reliable detection and classification of voice
pathologies, even when the available data are limited. As data augmentation
techniques continue to advance, they hold the potential to further improve the
performance of speech pathology detection models, making them more effective
and adaptable across various clinical settings.

2.3 Advanced tools for Voice Disorder Detection
and Classification

Detecting and diagnosing voice disorders has transitioned from traditional clinical
assessments to modern computational methods involving ML and DL classifiers.
Initially, traditional approaches relied on gathering detailed medical histories
and conducting physical exams, often using invasive techniques like laryngoscopy.
While these methods were effective, they required specialized equipment, and skilled
professionals, and could cause discomfort to patients. With advances in technology,
non-invasive methods based on ML and DL classifiers are becoming increasingly
important. These models are trained on large datasets of voice recordings and
can automatically learn patterns that distinguish between healthy and disordered
voices. This shift offers improved diagnostic accuracy, accessibility, and scalability,
addressing the limitations of traditional methods while providing faster and more
reliable results for detecting voice disorders.

2.3.1 Machine Learning
Traditional machine learning methods have made significant progress, which pro-
vides a solid foundation for the application of deep learning methods. Especially in
early-stage research where computing resources are scarce. These classifiers have
demonstrated their effectiveness in the detection and classification of various voice
disorders, yielding promising results in practical medical environments.

SVM is a commonly used supervised learning algorithm, mainly used for
classification and regression tasks [47]. The basic principle of SVM is to find an
optimal hyperplane to separate data points of different categories. This hyperplane
achieves optimal classification by maximizing the interval (i.e. "margin") between
categories. It has proven to be particularly effective for classifying voice disorders,
especially when clear decision boundaries exist between normal and pathological
voice features [48, 49, 50]. A notable study by R. Behroozmand and F. Almasganj
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used SVM combined with genetic algorithms to improve classification accuracy
for vocal cord paralysis, underscoring the clinical utility of SVM in diagnosing
voice disorders [51]. Despite their success, SVMs require careful hyperparameter
tuning and perform best with well-structured data, making them less suitable for
large-scale unstructured speech datasets.

KNN is also a simple and effective supervised learning algorithm widely used in
classification and regression tasks [52]. The basic idea of the algorithm is to classify
or predict by measuring the distance between new samples and known samples in
the training set. Specifically, new samples are assigned to the majority category
among their K nearest neighbors. This voting mechanism based on neighboring
samples enables KNN to flexibly adapt to different data types and distributions
when dealing with problems such as pattern recognition and medical diagnosis.
It has been applied to various tasks in early diagnosis systems, such as detecting
Parkinson’s disease by classifying subtle speech abnormalities [53]. L. Chen and C.
Wang demonstrated that KNN can perform even better when used with advanced
techniques, showing its versatility in clinical contexts [54]. However, KNN can
struggle with large, high-dimensional datasets, which limits its scalability and
efficiency in more complex voice disorder applications.

HMM is a statistical model widely used to analyze and model sequence data,
especially in speech processing, natural language processing, and bioinformatics [55].
HMM is based on the Markov process, where the current state depends only on the
previous state, and contains hidden states (unobservable) and observable states
(measurable). Through transition probabilities and emission probabilities, HMM
describes the transitions between hidden states and the likelihood of observing a
certain observable state in a specific state. The model analyzes observable sequences
to infer the most likely hidden state sequence and thus performs well in applications
such as speech recognition, part-of-speech tagging, and gene sequence analysis.
Which are designed for sequential data and have been an important method for
voice signal processing for many years. In voice disorder detection and classification,
HMM can effectively capture the dynamic changes and nonlinear characteristics in
speech by modeling the sound signal. One study indicates that HMM has been
applied to analyze features such as MFCCs and pitch dynamics[56]. For example,
Arias-Londoño et al. optimized HMMs to enhance accuracy in diagnosing voice
disorders, demonstrating the algorithm’s effectiveness in medical applications [57].
However, HMMs tend to perform best on smaller datasets with linear relationships,
and their limitations become more evident when applied to larger, more complex
datasets.

GMM is a mixed probability model that is widely used to describe datasets
composed of multiple Gaussian distributions [58]. The model regards the data
as a combination of multiple Gaussian distributions, each of which represents
a subgroup in the data. By learning the mean, moment, and weight of each
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subgroup, GMM can effectively capture the complex distribution characteristics of
the data and provide more accurate modeling of the data. In the context of voice
disorder detection and classification, GMMs serve as a commonly used classifier
that effectively models voice features to distinguish between various voice signals.
They have demonstrated considerable accuracy in differentiating between different
vocal conditions, including vowel classification and various voice disorders [25, 59].
Despite their ability to model voice feature distributions, GMMs, like GMMs, face
challenges when dealing with non-linear patterns in speech data, which are better
handled by more advanced techniques like deep learning.

Hybrid models have been developed to combine the strengths of different
traditional machine learning methods and overcome the limitations of individual
classifiers. One example is the combination of GMMs and SVMs, as demonstrated
by Fethi Amara et al., where MFCC features were used, resulting in a 2%–4% im-
provement in diagnostic sensitivity compared to standalone classifiers [27]. Another
study achieved 94.3% classification accuracy by combining wavelet transforms and
MFCC features with GMM and SVM classifiers, a significant increase over the
81.4% accuracy achieved by using SVM alone [60].

Although traditional machine learning methods and hybrid models have made
significant progress in the field of voice disorder classification, deep learning offers
the potential to capture more complex patterns and handle large-scale datasets
more effectively. The next section will explore how deep learning models are applied
as classifiers for the detection and classification of speech disorders (Sec 2.3).

2.4 Deep Learning for Voice Disorder Detection
and Classification

(a) RNN architecture [61] (b) Multilayered Perceptron [61]

Figure 2.5: Visualisation of differences between RNN and MLP

Deep learning classifiers have proven to be highly effective in the detection and
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classification of voice disorders, which often involve complex, nonlinear, and tempo-
ral data. These models, including MLP, RNN and CNN (Sec.2.4.1), Transformers
(Sec.2.4.3), process raw speech signals directly, allowing them to automatically
learn relevant features, rather than requiring explicit feature extraction methods
such as MFCCs or spectrograms.

In this section, we will focus on the commonly used deep learning classifiers
for voice pathology detection and classification. We will discuss how these models
operate and tackle the task of classifying voice disorders, emphasizing their unique
advantages and capabilities in managing the complexity of voice data.

2.4.1 MLP, RNN and CNN in Voice Pathology

MLP

Multilayer PerceptronMLP is a fundamental deep learning architecture composed
of multiple layers of neurons, where each neuron in one layer is fully connected to
every neuron in the next layer, as illustrated in Figure 2.5 (b).

The forward propagation process in a MLP consists of two main equations [61].
The hidden layer output is computed using the equation :

H = ϕh(XWxh + bh) (1)
where H represents the output of the hidden layer, X is the input vector (features),
Wxh is the weight matrix connecting the input to the hidden layer, bh is the bias
vector for the hidden layer, and ϕh is the activation function applied to introduce
non-linearity (such as ReLU or sigmoid). The output layer is calculated by the
equation :

O = ϕo(HWho + bo) (2)
where O denotes the network output, Who is the weight matrix connecting the
hidden layer to the output layer, bo is the bias vector for the output layer, and ϕo

is the activation function for the output (for example, softmax).
Although MLPs are generally considered simpler than specialized models like

CNNs or RNNs, they have been effectively applied to various speech-processing tasks.
This effectiveness arises from the fact that speech features, such as MFCCs, already
capture essential time-frequency relationships within the signal. For instance, as
demonstrated in Study [62], five different features extracted from the audio signal
were input into an MLP to predict emotions, achieving an accuracy of up to 70%
with this straightforward architecture.

RNNs and CNNs are two powerful deep-learning architectures widely used
in various applications, including the identification and classification of voice
pathologies. Their ability to manage complex, high-dimensional data makes them
particularly effective for analyzing voice signals.
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RNN

Recurrent Neural Networks RNN, on the other hand, are specifically designed for
sequential data, such as time series or speech signals [61]. Unlike MLPs (Figure 2.5
(a)), RNNs maintain a memory of previous inputs through recurrent connections
(Wh), allowing them to capture temporal dependencies within the data. This makes
RNNs particularly suited for tasks where the order of inputs is crucial, such as
speech recognition or voice disorder detection.

The hidden state at time step t is computed as follows:

Ht = ϕh(XtWxh + Ht−1Wh + bh) (3)

where Ht is the output of the hidden layer at time t, Xt is the input vector at time
t, Wxh is the weight matrix from the input to the hidden layer, Ht−1 is the hidden
state from the previous time step, Wh is the weight matrix for the hidden state, bh

is the bias vector for the hidden layer, and ϕh is the activation function.
The output at time t is given by:

Ot = ϕo(HtWho + bo) (4)

where Ot denotes the network output at time t, Who is the weight matrix from the
hidden layer to the output layer, bo is the bias vector for the output layer, and ϕo

is the activation function used for the output.
However, traditional RNNs can struggle with long-range dependencies, which

has led to the development of specialized architectures like LSTM networks. LSTMs
incorporate mechanisms called gates that regulate the flow of information, enabling
the model to learn which inputs to remember and which to forget over longer
sequences [38]. This capability is essential for analyzing voice data, where variations
in pitch, tone, and rhythm over time can indicate specific pathological conditions
[61].

Figure 2.6: Traditional structure of a CNN model.

Note: The diagram shows the typical CNN architecture with varying numbers of convolutional,
pooling, and fully connected layers, culminating in an output layer. Source: [63].
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CNN

Convolutional Neural Networks CNNs are designed to process data with a grid-like
topology, such as images or spectrograms [31]. They use a series of convolutional
layers to apply filters to the input data to detect local patterns (See Figure 2.6).
The convolution process can be mathematically expressed by the following equation
[33]:

y = x · h(n1, n2) =
∞Ø

k1=−∞

∞Ø
k2=−∞

x(k1, k2)h(n1 − k1, n2 − k2) (5)

where h(k1, k2) represents the filter or kernel applied in the convolutional layer, and
x(k1, k2) denotes the input matrix. The filter h(k1, k2) is first flipped to h(−k1, −k2)
and then translated by n1 and n2, effectively sliding across the input. The negative
sign in h(n1 − k1, n2 − k2) indicates this convolutional operation. Finally, the sum
across k1 and k2 multiplies the input x(k1, k2) by the filter values to compute the
output y(n1, n2), producing the convolved feature map.

The core idea behind CNNs is to learn a spatial hierarchy of features, where
lower layers capture simple patterns (such as edges) and higher layers capture more
complex structures (such as shapes or objects). After applying the convolution
operation, CNNs often use pooling layers to reduce the dimensionality and increase
the model’s robustness to input variations. This property makes CNNs particularly
effective in extracting features from spectrogram representations of speech signals,
enabling them to effectively distinguish between healthy and pathological sounds.

A CNN-based model has been applied to classify pathological voice using both
standard voice recordings and electroglottogram (EGG) signals, which capture
changes in glottal impedance [35, 36]. These models consist of a feature extrac-
tion network and a classification network. Once feature extraction is completed
(whether from voice signals or other modalities), CNNs process these features di-
rectly, avoiding the need for hand-crafted features, which often lead to information
loss. Another CNN-based approach involves the combination of MFCC features
with a shallow CNN classifier to detect voice disorders [26]. In this method, after
performing basic preprocessing (such as voice activity detection and audio clipping),
the MFCC coefficients are passed into a shallow CNN architecture for classification.
This architecture is lightweight and computationally efficient, making it particularly
well-suited for smaller datasets. However, shallow CNNs may struggle to capture
intricate patterns in more challenging datasets. Because these networks primarily
identify relatively simple features, they find it difficult to recognize complex rela-
tionships and high-order interactions among different features in pathological voice
data. As a result, when confronted with diverse and complex pathological voice
samples, the classification performance of shallow CNNs may decline.
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2.4.2 Hybrid models
To address these limitations, Hybrid models that combine CNNs and RNNs offer a
more comprehensive solution. While CNNs excel at spatial feature extraction and
effectively capture local patterns and structures in data, such as mel-spectrograms,
they are limited by their inability to process sequential information. This limitation
arises from their reliance on fixed-size inputs and a lack of internal mechanisms
to maintain contextual information over time. In contrast, RNNs, particularly
LSTM networks, are specifically designed to handle temporal dynamics. They
retain information across sequences, allowing them to understand context and
relationships that evolve over time. For example, in Parkinson’s disease detection,
a hybrid CNN-LSTM model was used to classify voice signals after applying a
mel-spectrogram as the input feature [37, 38]. First, the CNN component extracts
spatial features, and then the LSTM network captures the sequential nature of
voice patterns. By leveraging the strengths of both architectures, hybrid models
significantly enhance classification performance on diverse and complex voice
data. This model achieved higher classification accuracy than traditional machine
learning classifiers, such as SVMs and XGBoost [64], on the PC-GITA dataset [65].
While these hybrid CNN-LSTM models have demonstrated enhanced classification
accuracy, they come with increased computational costs. Both CNN and LSTM
networks are resource-intensive, requiring more time and higher computational
power compared to simpler models.

2.4.3 Transformer-Based Methods
The Tansformers model, introduced by Vaswani et al. in 2017 [9], utilizes a
self-attention mechanism to process input sequences in parallel, allowing it to
effectively manage long-range dependencies and complex relationships in data.
Unlike MLPs, RNNs, and CNNs, which typically specialize in extracting local
and temporal features, Transformers capture both local and global dependencies
in sequential data. Through multi-head self-attention, the model can focus on
various parts of the input sequence simultaneously, making it especially suitable for
handling intricate, multi-level temporal patterns in speech signals. Thanks to these
advantages, Transformers have gained widespread adoption in tasks like speech
recognition and synthesis, and more recently, in the detection and classification of
voice disorders. Their ability to process high-dimensional and complex voice data
makes them a valuable tool in medical AI, significantly enhancing the accuracy of
pathological voice analysis and diagnosis.

The original Wav2Vec model [66], introduced by Baevski et al. in 2019, revolu-
tionized speech representation learning through its specialized CNN architecture,
designed for self-supervised pre-training on large-scale unlabeled audio data (See
Figure 2.7a). The model primarily consists of a feature encoder that transforms
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(a) Wav2Vec [66]

(b) Vq-Wav2Vec [67]

Figure 2.7: Visualisation of differences between Wav2Vec and Vq-Wav2Vec

raw audio input X into latent representations Z, employing convolutional layers
to effectively capture local dependencies within the audio signal. Additionally, it
incorporates a quantization layer that maps these continuous latent representations
into discrete codes C, aiding in information compression while retaining critical
audio features. Wav2Vec leverages contrastive learning as its training objective
on unlabeled data, optimizing a loss function L that distinguishes between real
encoded samples (positive examples) and randomly chosen negative samples. De-
spite its strong performance on ASR benchmarks [68], the model struggles with
capturing long-range dependencies in speech data, primarily because of its reliance
on separate steps for feature extraction and classification. This limitation has been
gradually addressed by integrating transformer architectures, which unify feature
extraction and classification while improving the model’s ability to learn more
complex, long-range temporal relationships in speech data.
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On the other hand, the Vq-Wav2Vec model is a variant of the Wav2Vec model
[67] (See Figure 2.7b), introducing vector quantization (VQ) to achieve discrete
speech representation by using techniques such as Gumbel Softmax [69]. The model
works as follows: first, the encoder maps the raw audio X into dense latent repre-
sentations Z. These representations are then quantized into discrete codes Ẑ using
vector quantization. The quantized representations Ẑ are subsequently aggregated
into contextualized representations C, which capture temporal relationships in the
audio signal. The training objective for Vq-Wav2Vec involves predicting future
time steps, ensuring the model learns temporal dependencies across the audio data.
Using these discrete feature representations, models like BERT [39] can be trained
on audio tasks, enabling Vq-Wav2Vec to achieve impressive results in tasks that
require detailed interpretation of audio signals. This model opens new possibilities
for applications like voice pathology detection and classification by providing more
efficient and powerful speech representations.

Figure 2.8: Wav2Vec2.0 [40]

Building on these foundations, Wav2Vec 2.0 retains some key features from the
original Wav2Vec while introducing enhancements for improved performance [40]
(See Figure 2.8). Specifically, it maintains the self-supervised learning paradigm,
where the model learns to extract useful representations from raw audio data
X without extensive labeled datasets. However, it enhances this approach by
incorporating a gumbel softmax quantization module from Vq-Wav2Vec, which
allows for better representation learning through discrete encoding. Gumbel softmax
quantization module in Vq-Wav2Vec with a BERT-like Transformer model. Unlike
its predecessor, Wav2Vec 2.0 is designed as an end-to-end ASR model that combines
feature extraction and classification tasks in a seamless process. The raw speech
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signal is initially encoded through a 1D CNN, which is specifically tailored to
capture the temporal features of the audio signal. The CNN extracts high-level
features from the raw waveform, such as pitch, volume, and timbre, enabling the
model to focus on relevant acoustic properties. Some of the latent variables Z
are mapped to discrete representations Q through a gumbel softmax quantization
module, while others are masked at random locations and fed into a Transformer
network to obtain contextual feature representations C. The model computes the
self-supervised loss L by contrastive learning over the masked locations. Wav2Vec
2.0 differs from vq-Wav2Vec and earlier Wav2Vec models in that it no longer relies
on multiple independent steps (such as feature extraction followed by classification),
but instead adopts a unified process of pre-training and fine-tuning. During the
fine-tuning phase, a randomly initialized linear layer is usually added on top of the
pre-trained Wav2Vec 2.0 model. This layer acts as a classifier to map the high-level
features extracted by the model from the audio input to specific target outputs,
such as phonemes or words. On this basis, the model is trained with the CTC loss
[70] to perform ASR tasks. This end-to-end approach enhances the model’s ability
to extract meaningful features from speech signals, especially in the medical field
where discerning subtle acoustic features is critical for diagnosing voice pathologies.

Figure 2.9: Hubert [42]

HuBERT [42] continues the evolution of self-supervised learning initiated by
models like Wave2Vec 2.0, but introduces a different mechanism through masked
prediction for hidden units. While both models rely on self-supervised learning, the
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key difference lies in how the representations are learned (Compare figures 2.8 and
2.9). Wave2Vec 2.0 learns to distinguish between true and negative samples at the
feature level using contrastive learning, whereas HuBERT learns through a masked
prediction framework, where part of the input is hidden and the model is trained
to predict the missing parts. This allows HuBERT to capture more contextual
relationships within the speech signal [42]. In HuBERT, let X denote the speech
utterance, represented as a sequence of frames X = [x1, x2, . . . , xT ], where T is
the total number of frames and each xt represents a feature vector of the t-th
frame. The speech signal is discretized into hidden units Z = [z1, z2, . . . , zT ], where
each zt ∈ [C] is a categorical variable corresponding to one of C clusters. These
hidden units are generated by applying an unsupervised clustering method, such as
k-means, to the feature frames. HuBERT’s pre-training involves a masked language
modeling (MLM) approach, where part of the input sequence is masked, and the
model learns to predict the hidden speech tokens zt from the surrounding unmasked
context. This is achieved by masking portions of the input speech X and then using
the unmasked frames to predict the hidden units Z. By doing so, HuBERT captures
both local acoustic features and long-range dependencies in the speech signal. This
framework differs from Wave2Vec 2.0, which focuses on learning continuous latent
representations without explicit discretization. In contrast, HuBERT’s use of
discrete hidden units enhances its ability to model fine-grained acoustic details
and capture subtle variations in speech, making it particularly effective for tasks
such as detecting pathological speech patterns. The use of the MLM strategy in
HuBERT allows the model to infer missing information from the broader speech
context, promoting a deeper and more nuanced understanding of the signal.

Figure 2.10: AST [41]
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Further expanding on transformer-based methods is the Audio Spectrogram
Transformer AST) [41]. As illustrated in Figure 2.10, the AST model introduces
attention-based layers from the Vision Transformer (ViT), and replaces traditional
convolutional layers. The input to AST is a log-Mel spectrogram, which is split into
multiple overlapping patches. These patches are linearly projected into embeddings
(denoted as [P1] − [P8]) and are then passed into a transformer encoder. A special
classification token [ECLS] is appended to the sequence of embeddings, and position
encodings [E1, E2, . . . , E8] are added to the patch embeddings to provide location
information. The resulting sequence [ECLS, P1, P2, . . . , P8] is fed into the transformer
encoder, which utilizes multi-head self-attention to capture both local and global
contexts across all layers. By capturing long-range dependencies effectively, AST
excels in audio classification tasks that require modeling of complex global patterns.

While AST eliminates CNNs, it reintroduces log-Mel spectrograms as inputs,
which are processed entirely through the self-attention mechanism, allowing it
to capture both local and global contexts. AST’s ability to handle long-range
dependencies across all layers makes it particularly effective for audio classification
tasks. Additionally, by pre-training the ViT on the ImageNet dataset [71], AST
benefits from knowledge transfer from the image to audio domain. This significantly
improves performance compared to PSLA model[72], especially in tasks like sound
event detection and classification, where capturing detailed global information is
crucial..

Figure 2.11: WavLM [43]

Moreover, WavLM [43], a large-scale self-supervised pre-trained model, takes
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these developments even further by providing a comprehensive framework for full-
stack speech processing tasks, as shown in Figure 2.11. WavLM first processes the
input audio signal using CNN encoders to extract feature representations (denoted
as [X1] − [X6]). These features are then passed into a transformer encoder that
incorporates gated relative position bias to better handle sequential information
in the speech signal. During pre-training, WavLM employs noise masking and
time-segment reconstruction tasks. Mask tokens [M ] are inserted into the input
sequence, and the model is trained to predict the masked portions (e.g., [Z2] − [Z4])
based on the surrounding context. This pre-training strategy, combined with a
mask prediction loss function, enhances the model’s robustness in handling noisy
or mixed speech inputs.

The flexibility of WavLM across different tasks shows great potential in han-
dling diverse speech-related medical applications, including the detection and
classification of voice disorders.

End-to-end architectures like Wav2Vec 2.0 highlights the critical advantage of
these models: by integrating feature extraction and classification within a single
process, they minimize the need for multiple independent steps and deliver superior
performance. In medical diagnostic tasks, where precise acoustic feature extraction
is crucial, these models provide a robust foundation for detecting subtle patterns in
pathological voice, opening new possibilities for the early detection and monitoring
of voice disorders.

2.4.4 Multimodal Approaches in Medical AI
In medical AI, particularly for tasks like detecting Alzheimer’s disease, multimodal
machine learning—which integrates different data types like speech, text, and
images—has shown great promise. Transformer-based models have been especially
effective in combining these diverse inputs for more accurate diagnoses [73, 74].
Multimodal data fusion can be achieved through three strategies (See Figure 2.12):

Early fusion:

In early fusion, input data from different modalities are concatenated, and the
resulting vector is treated as a single input.

This means the model does not distinguish between the modalities from which
the features originated. For example, Thung et al. used a joint fusion approach
for combining PET and MRI images [75], and their approach can be classified as
early fusion because they concatenated clinical and imaging features into a single
feature vector before inputting it into the neural network. [76].

As emphasized in the study by S.R.Stahlschmidt et al.[74], early fusion is
relatively easy to implement because it does not require separate modeling of
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Figure 2.12: (a) Early fusion strategies (b) Mid-term fusion strategies (c) Late
fusion strategies [74]

individual modalities. However, it has a weaker ability to capture deeper correlations
between modalities and is more suitable for situations where the modalities are
quite homogeneous, such as combining different types of imaging data.

Late fusion:

Instead of combining the original data or features, late fusion trains separate models
for each modality and uses an aggregation function to combine their predictions to
make a final decision.

Common aggregation functions used in the late fusion [74]: Average, which
is a majority vote on the average of the predicted probabilities of each model,
where each model makes a classification prediction and the final classification is
the class with the most votes; Weighted voting, where each model’s prediction is
weighted based on factors such as accuracy or confidence, and the class with the
highest weighted score is selected; Meta-classifier, where a trained model uses the
predictions of each individual model as input and learns how to best combine these
predictions to provide a final decision. After the aggregation step, classification is
determined by evaluating the combined or weighted predictions to determine the
final class or output.

In one study [10], A. Koudounas et al. added a late fusion approach into a
framework, where separate models were trained on voice vowel audio data and
sentence reading audio data. The final decision was made by selecting the output
from the model with the highest confidence, which was estimated by the entropy
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of the predicted probabilities. This approach effectively leveraged the unique
characteristics of each data type, leading to better performance compared to
single-model methods.

While late fusion is suited for handling heterogeneous modalities [74], it cannot
capture interactions between features from different modalities, making it more
appropriate for different modalities with low correlation.

Mid-term fusion:

This approach first extracts features from the input of each modality, converts the
raw data into a feature vector, and then fuses the features of different modalities
together and merges them into the final model as input. [74].

A practical example of this approach is detecting dementia using both speech
and text data. In recent studies, log-Mel spectrograms and MFCCs (features from
audio) are processed through a ViT, while text data is analyzed by BERT [77].
The model uses a cross-modal attention mechanism to dynamically focus on the
most important features from each modality, leading to better results. Additionally,
a gated multimodal unit [78] ensures the model emphasizes relevant information
and ignores irrelevant data. This is crucial in medical diagnoses, where different
data types (e.g., speech patterns or text) may provide varying levels of importance
at different stages of the disease.

The benefit of intermediate fusion is that it allows the model to capture the
unique characteristics of each modality and explore potential correlations between
them at the feature level. However, because the feature dimensions of different
modalities can be highly unbalanced, careful processing is required to prevent
information loss [74].

2.5 Conclusion
In summary, existing research on voice pathology detection and classification covers
a wide range of methods from traditional machine learning to modern deep learning.

Traditional methods such as SVM and KNN rely on manual feature extraction.
Although they have achieved some success in the early stage, they have difficulty in
handling complex nonlinear voice features. With the rise of deep learning, methods
such as CNN, RNN, and Transformer have shown better performance in voice
pathology identification through automated feature extraction and powerful pattern
recognition capabilities. However, deep learning still faces some challenges, such as
dependence on large-scale data and unstable performance in small sample scenarios.

In order to cope with the problem of data scarcity, data enhancement techniques
such as noise addition and time stretching are widely used to improve the robustness
of the model. In addition, multimodal fusion methods are expected to further
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improve the accuracy of diagnosis by combining different types of voice data, such
as monosyllabic pronunciation and sentence reading combined in this study.

Based on these observations, this study proposes an end-to-end model based on
deep learning, combined with multimodal voice data, to improve the accuracy and
robustness of speech pathology detection. The following sections will introduce the
design and experiments of the model in detail.
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Methodology

This chapter introduces some comprehensive approaches we mainly use, to solve
the problem of data scarcity, to explore the application of multimodal data in the
detection and classification of voice pathologies.

Section. 3.1 describes the data acquisition and processing process in detail,
including the characteristics of IPV and New datasets, collection methods, and
multiple preprocessing techniques to ensure data consistency, reduce noise, and
address data imbalance. Specifically, we regularize the data by truncating the
audio length and normalizing the input, while mapping category labels in multi-
classification tasks to unify data form, and ensure fair and reliable experimental
evaluation. In addition, to address the challenges of data sparsity, multiple data
augmentation techniques are designed and implemented to improve the model’s
adaptability to diverse scenarios.

Section. 3.2 examines the selection of three different architectures: MLP, 2D-
CNN, and Wav2Vec2.0. Wav2Vec2.0 as an end-to-end framework, outperforms
traditional MLP and 2D-CNN by extracting hierarchical features directly from raw
audio, making it well-suited for tasks with limited labeled data. The comparison
provides a theoretical and practical foundation for model design in subsequent
experiments.

Section. 3.3 introduces early, mid-level, and late fusion strategies, to integrate
complementary information from different modalities. These strategies address
the limitations of single-modal analysis, and they are systematically evaluated
using mathematical formulations, architecture diagrams, and experimental results,
highlighting their effectiveness in voice pathology tasks.

Through strict preprocessing, reasonable model selection, and innovative multi-
modal fusion strategies, this chapter constructs a complete method framework to
support subsequent experiments and analysis.
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Healthy Pathological CS SV T (s)
IPV 362 672 517 517 12.95
New 58 158 108 108 19.91

Table 3.1: Summary of dataset characteristics. Note: Healthy and Pathological
represent the number of healthy and diseased samples, respectively. CS indicates
sentence reading samples, SV represents syllable articulation samples, and T (s) is
the average audio duration in seconds.

3.1 Data Acquisition and Processing

3.1.1 Datasets
IPV The Italian Pathological Voice (IPV) dataset is a novel and diverse resource,
designed specifically for voice pathology research, currently unpublished and in-
troduced in [10]. Collected from participants in Italian otolaryngology and voice
therapy clinics, the dataset includes both healthy individuals and patients with
different pathological types of voice disorders. All recordings were conducted under
strict standardization protocols in quiet environments, ensuring high-quality sam-
ples with a signal-to-noise ratio exceeding 30 dB and a fixed microphone distance
of 30 cm. The dataset includes two modalities: sustained phonation of the vowel
/a/ (SV) and reading of five phonetically balanced sentences (CS) adapted from
the Italian version of CAPE-V [79]. Each sample includes detailed diagnoses of
health conditions from experienced physicians. Table 3.1 summarizes the dataset
characteristics, with the distribution of healthy and pathological samples, average
audio duration, and modal information. Notably, the dataset is relatively small,
with only 1034 samples in total, posing challenges for developing robust and gener-
alizable models. The label distribution of pathological samples in the IPV dataset
is depicted in Figure 3.1, where certain macro-categories, such as label 3 (Benign
Neoplasms), are more frequent, while others, like label 2 (Hemorrhagic Laryngitis),
are underrepresented. This imbalance is critical for understanding the challenges
in training robust models for multi-class classification tasks.

New dataset It was collected using the mobile device in a less controlled en-
vironment, including background noise in the clinic and slight variations in the
recording equipment. The samples also come from otolaryngology and voice therapy
clinics in Italy, and are annotated in the same way as the IPV dataset, covering
both sustained phonation (SV) and sentence reading (CS) modalities, with health
status labels. As shown in Table 3.1, the New dataset has fewer samples compared
to the IPV dataset, with 58 healthy and 158 pathological recordings. The label
distribution for pathological samples, depicted in Figure 3.1, reveals significant
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Figure 3.1: Label distribution of pathological samples in a single modality. Note:
The ’label’ corresponds to the ’macro-category’ field in the dataset, representing
high-level diagnostic groupings. Green indicates the IPV dataset, while red indicates
the New dataset. For the specific names of labels, please refer to Table 3.2.

Label Italian English
0 disfunzionali presbifonie Dysfunctional Presbyphonia
1 edema di reinke Reinke’s Edema
2 laringiti emorragie Hemorrhagic Laryngitis
3 neoformazioni benigne Benign Neoplasms
4 neoformazioni potenzialmente maligne Potentially Malignant Neoplasms
5 paralisi Paralysis
6 spasmodica tremore Spasmodic Tremor
7 sulcus vergeture Vocal Cord Sulcus

Table 3.2: Italian-English pathological label mapping.

class imbalance, with some macro-categories being heavily underrepresented. For
example, there are only three types of diseases (Label:1,3,4), and compared with
IPV, there are 5 types missing. It can be said, that incorporating different recording
conditions and different data distributions together, provides valuable insights into
how the model performs in real-world scenarios.
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The consistent structure and annotation methods between the IPV dataset and
the New dataset facilitate integration. The high-quality recordings of the IPV
dataset, combined with the environmental diversity of the New dataset, provide
a solid foundation for developing and validating voice pathology detection and
classification models under controlled and real-world conditions.

3.1.2 Data Preprocessing Techniques
Effective data preprocessing ensures consistency, reliability, and robustness of model
training, especially when dealing with multimodal data and small imbalanced
datasets. In the following, several preprocessing steps were adopted, including data
cleaning, truncation, normalization, label harmonization, and data augmentation.

Data cleaning and Standardization In order to implement the fusion strategy
and enable all experiments to be compared on the same data, this study eliminated
samples that only contained single-modal recordings (for example, individuals who
only has sentence reading records and vowel pronunciation records). Since the
number of such samples was extremely small, with only two individuals, their
removal had no significant impact on the overall experimental results.

Furthermore, to ensure the consistency of audio duration, and facilitate meaning-
ful comparison, the audio samples in the dataset were truncated to a fixed length:
the audio samples of the CS and SV modalities were truncated to 19 seconds, and
18 seconds, respectively. If the duration is shorter than them, it is extended to a
fixed length using zero padding. These truncation lengths are designed to cover
approximately 90% of the samples in each modality, which can not only preserve
the integrity of the audio information, but also effectively reduce the impact of
abnormal samples that are too long, thereby improving the generalization ability
of the model.

The audio data was then standardized using a predefined processor of the
Wav2Vec2.0 framework. The processor first resamples the audio to 16 kHz to
ensure compatibility with the framework, while reducing the overhead of computing
resources. The feature representation generated after standardization, can effectively
capture the key information of the voice signal, providing efficient and consistent
input for subsequent model training.

Label Harmonization In the multi-classification task, the consistency of cate-
gory definitions between the new dataset and the IPV dataset is very important, so
a labeling rule based on the macro-category mapping of the IPV dataset was used.
Specifically, for the categories in the new dataset that were not defined in the IPV
dataset (a total of 16 samples), we removed them to avoid the impact of category
inconsistency on model training and evaluation. Through this mapping process,
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the uniformity of category definitions between different datasets is guaranteed,
enhancing the fairness and reliability of the comparative experiment.

Dataset Partitioning In addition, in order to solve the problem of fewer healthy
samples in pathological voice data, we adopted a stratified sampling method in the
data segmentation process. This method can separate the representative samples
proportionally. The entire dataset is divided into training set, validation set, and
test set in a ratio of 8:1:1, to ensure the fairness and repeatability of the experiment.
First, the test set is divided using a fixed random seed, and then the training
set and validation set are further divided using three different random seeds, to
generate multiple data partitions. Finally, by calculating the average performance
across these partitions, the robustness and reliability of the evaluation results are
improved.

Algorithm 1 Data Augmentation and Feature Extraction
Require: AudioPaths, Labels (L), FeatureExtractor, Max duration (D), Sampling

rate (sr), flag, ratio
Ensure: ProcessedFeatures, ProcessedLabels

1: Define DataProcessor with attributes: {FeatureExtractor, D, sr}
2: function ProcessFile(AudioPath, Label)
3: Load audio from AudioPath with sampling rate sr

4: if flag is True and random probability < ratio then
5: Apply augmentation: {Noise, Time Stretch, Pitch Shift, Combined}
6: end if
7: Truncate then Pad to D
8: Extract features using FeatureExtractor
9: return Processed features, Label

10: end function

Data Augmentation For the data sparsity issue caused by the small dataset,
this study introduced a data augmentation pipeline during the training process.

We perform data augmentation on the training data, and randomly apply four
augmentation ratios to 30%, 50%, 70% of the samples for exploration: adding
Gaussian noise, time stretching, pitch shifting, and combined augmentation. The
first three belong to voice data augmentation in the time domain (the methods
mentioned in Section. 2.2.2), and combined augmentation refers to mixing these
three.

Figure 3.2 provides an intuitive visualization of the effects of each augmentation

45



Methodology

Figure 3.2: Waveforms of the original audio and augmented signals using different
techniques. Note: For visualization purposes, the parameters of augmentation
methods (e.g., noise intensity, stretch rate, and pitch shift) were intentionally
exaggerated to highlight the effects. In practice, these parameters should be carefully
controlled to avoid distorting the original signal.

method on a waveform, showing the original signal and the augmented versions.
It is important to note that while exaggerated parameter values were used for
illustration purposes in the figure, the actual augmentation applied during training
involved significantly smaller adjustments. This careful control of the parameters
ensured that the augmented samples remained representative of the original audio,
preserving the essential features necessary for robust model training.

The following algorithm 1 illustrates the augmentation process in pseudocode
form. For each audio sample, we first determine whether augmentation is applied.
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If we decide to augment, randomly select an augmentation method, and pass the
processed audio to the feature extractor.

The remaining unaugmented samples retain their original features to ensure
the reliability of the dataset. By balancing the augmented and original data, this
method can create a more powerful training set, that can be generalized to various
audio scenarios.

Feature Extraction To ensure a consistent input length, all audio samples
are first truncated to 18 or 19 seconds according to their modality. If shorter,
zero-padding is applied to extend them to this fixed duration. For baseline models
such as MLP and 2D-CNN, MFCCs are extracted from the processed audio.
In the case of the 2D-CNN model, the MFCCs are further transformed into
RGB images to leverage spatial feature extraction (introduced in Subection2.2.1).
These features provide compact and perceptually relevant voice representations for
machine learning models, by capturing key frequency components and temporal
variations of voice signals. In contrast, Wav2Vec2.0-based models process raw
audio signals directly through the framework’s built-in processor. The processor
automatically extracts task-related features from the raw waveform in an end-to-end
manner, without the need for manual feature engineering. As a result, the model
can more effectively adapt to diverse and complex speech tasks, and demonstrate
stronger feature learning capabilities.

3.2 Model Selection
Selecting an appropriate model is critical to the success of voice disorder detection
and classification tasks. Three models are evaluated in this study: MLP, 2D-CNN,
and Wav2Vec2.0. The first two are used as baseline models for fine-tuning, providing
simple and computationally efficient comparison points. In contrast, Wav2Vec2.0
is the primary focus of iur study, because it has an advanced architecture, supports
direct processing of raw audio waveforms, and facilitates extensive exploration of
model extensions and multimodal fusion strategies. This systematic comparison
not only highlights the relative strengths and limitations of each model, but also
lays the foundation for the detailed investigations presented in subsequent sections.

3.2.1 Compared models
MLP It was chosen as the benchmark model due to its simplicity and computa-
tional efficiency. It processes MFCC features directly, avoiding complex feature
extraction. As shown in the left side of Fig. 3.3, the architecture consists of two
dense layers with ReLU activations, followed by average pooling, and a final dense
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Figure 3.3: Comparison of three architectures: MLP, 2D-CNN (MobileNetV2),
and Wav2Vec2.0. Note: The figure illustrates the distinct processing pipelines of
these architectures, from feature extraction to final prediction.

layer with softmax activation for classification. The lightweight design of the MLP
makes it a suitable starting point for benchmarking audio classification tasks.

The MLP has several advantages such as low computational effort, easy training,
and is well suited for small datasets or resource-constrained scenarios. However,
its limitations include the lack of ability to extract complex patterns from audio
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features and heavy reliance on the quality of pre-computed MFCC features.

2D-CNN It employs a MobileNetV2 backbone, and serves as a stronger bench-
mark by leveraging convolutional operations to extract features from audio inputs.
As shown in the middle of Figure 3.3, unlike MLP, 2D-CNN operates on MFCC
features converted to RGB format, allowing it to utilize convolution operations
for feature extraction. The MobileNetV2 backbone can be fine-tuned or frozen
according to our choice, and the extracted features are further processed using
average pooling, dense layers, and dropout for classification.

The advantage of 2D-CNN is that it can effectively capture temporal and
frequency correlations, providing richer feature representations compared to MLP.
In addition, using a pre-trained MobileNetV2 backbone can speed up training
and enhance generalization capabilities. However, this model requires additional
preprocessing to convert MFCC features to an image-like format, which incurs
computational overhead. It is also less efficient than MLP in resource-constrained
environments.

3.2.2 Wav2vec2.0
Wav2vec2.0 model is a state-of-the-art approach in the field of audio, chosen as the
base model because of its simple architecture and ability to directly process raw
audio waveforms. This end-to-end architecture does not require manual design or
feature extraction, instead learning hierarchical feature representations through
its Transformer-based design. As shown in Fig. 3.3, the model first normalizes the
original waveform using a Wav2Vec2 processor, and then directly extracts feature
representations through the Wav2Vec2 backbone. Finally, it is fine-tuned on a
task-specific dataset to optimize performance (for more details on the internal
mechanism of Wav2Vec2, see the Fig. 2.8 in the previous subsection 2.4.3).

Compared with MLP and 2D-CNN, Wav2Vec2 has significant advantages. It
eliminates the reliance on hand-crafted features and, thanks to the pre-training
strategy, performs particularly well in tasks with limited labeled data. In addition,
due to its simple architecture, it is also easier to implement the multimodal fusion
strategies introduced in subsequent sections 3.3, laying a solid foundation for further
expansion work.

3.3 Fusion Strategies
This section presents our contributions to multimodal fusion strategies, focusing
on voice pathology detection and multi-class classification tasks. By leveraging
the Wav2Vec2 model, we explore robust feature extraction and fusion methods,
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proposing and analyzing three-level fusion strategies: early, mid-level, and late
fusion. These strategies systematically integrate features extracted from both
modalities, allowing for a comprehensive evaluation, of their effectiveness in pro-
cessing complementary information. Two voice-based modalities are employed in
this study, each designed to capture unique and complementary characteristics of
voice functionality:

1. Sentence reading recording (original feature x1): captures dynamic voice
patterns reflecting natural communication.

2. Sustained vowel pronunciation (original feature x2): provides insights into
voice stability, resonance, and sustained phonation capabilities.

The raw waveforms from these modalities are input into a pre-trained Wav2Vec2.0-
based multimodal architecture f , which integrates features at various stages via
the fusion strategy. The model outputs a probability distribution ŷc over C classes,
where C denotes the number of target classes. This unified framework supports
both binary detection (C = 2) and multi-class classification (C > 2) tasks.

For all fusion strategies, the final predicted class label ŷ is obtained by selecting
the class with the highest predicted probability:

ŷ = arg max
c∈{1,...,C}

ŷc (3.1)

3.3.1 Early Fusion
The early fusion strategy integrates the original features of the two modalities, into
a unified input representation, enabling the model to directly learn cross-modal
relationships. In order to standardize the input, and reduce the deviation caused
by different sample lengths, all audio samples are first truncated or padded to a
consistent length. The features of the two modalities are then combined in sequence,
where modality x1 is followed by modality x2, and there is 1-second (s) of silence
between them, which serves as a clear separator to ensure that the distinction
between the modalities is maintained. This process generates a unified feature
vector, as illustrated in Fig. 3.4, and can be formulated as:

xearly = [x1; s; x2] (3.2)

where:

• x1, x2: Represent the features of the two modalities.

• s: Denotes the 1-second silence padding.

• [; ]: Indicates the concatenation operation.
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The concatenated feature vector xearly is input into the model f . Then the
model computes a probability distribution ŷearly

c over C classes using the softmax
function:

ŷearly
c = exp(fc(xearly))qC

j=1 exp(fj(xearly))
, c ∈ {1, . . . , C} (3.3)

where:

• fc(xearly): Logit (unnormalized output) output for class c produced by the
Wav2Vec2 model f with early fusion.

• exp(r): Exponential function, defined as er, ensuring that logits remain
positive.

• ŷearly
c : Probability for class c, obtained by normalizing logits via the softmax

function.

Figure 3.4: Diagram of the early-fusion

This method effectively preserves modality-specific characteristics, while leverag-
ing the silence padding to maintain a clear distinction between modalities, making
it a simple yet effective approach, for integrating complementary information from
different data sources.

3.3.2 Mid-Level Fusion
Mid-level fusion incorporates modality-specific features at the intermediate stages
of the Wav2Vec2 model. This process occurs after the initial CNN-based encoding,
but before the transformer-based processing, allowing the features to be combined
into a shared representation space. By leveraging this shared space, the model
promotes richer and more meaningful interactions between modalities.

We initially considered four different approaches (For how to choose, please
see the section. 4.2), but after preliminary evaluation, we chose two mid-level
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fusion methods that worked best for our dataset: concatenated embeddings and
cross-attention mechanisms. Details of the selection process are in the experiments
section.

Figure 3.5: Mid-level fusion with concatenated embeddings

Concatenated Embeddings In this strategy, high-dimensional features h1,
h2 from each modality are optionally normalized before concatenation, then are
extracted using separate CNN-based encoders (e1 and e2), projected into a high-
dimensional space, and then concatenated to form a unified representation xmid.
The overall process can be expressed as f = e ◦ g, where e = [e1, e2] represents the
modality-specific encoders, and g is a shared transformer encoder. The concate-
nated embeddings are normalized and optionally passed through a dimensionality
reduction layer to align with the transformer input size. The process is formalized
as follows:

h1 = e1(x1), h2 = e2(x2) (3.4)
xmid = [h1; h2] (3.5)

where:

• h1 and h2: high-dimensional embeddings extracted from modalities x1 and x2
using a CNN extractor, respectively.

• xmid: Concatenated feature embeddings from both modalities.

xmid is then processed by g, which outputs logits for each class c:

ŷmid1
c = exp(gc(xmid1))qC

j=1 exp(gj(xmid1))
, c ∈ {1, . . . , C} (3.6)

This method efficiently combines the features of both modalities while main-
taining their modality-specific characteristics, as depicted in Fig. 3.5.
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Figure 3.6: Mid-level fusion with cross-attention

Cross-Attention Mechanism The cross-attention mechanism dynamically iden-
tifies relationships between the two modalities by computing attention scores that
emphasize critical features. Given feature matrices h1 and h2, we derive the Query
(Q), Key (K), and Value (V ) matrices as:

Q = h1WQ, K = h2WK , V = h2WV (3.7)

Here, WQ, WK , and WV are learnable weight matrices for the query, key, and value,
respectively. Next, we calculate the attention matrix A between the Query (Q)
and the Key (K) by measuring their similarity, then normalized using softmax.
The attention weight is used to perform a weighted sum of the Value V to generate
output features O:

A = softmax
A

QK⊤
√

dk

B
, O = AV (3.8)

where:

• A is the general attention matrix.

• dk is the dimension of the key,
√

dk is the normalization factor used for scaling.

To capture bidirectional interactions, cross-attention is performed in both direc-
tions:

1. We use h1 as the query and h2 as the key and value to compute the attention.

2. We reverse the roles of the modalities and use h2 as the query and h1 as the
key and value.
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O1→2 = CrossAttention(h1, h2) (3.9)
O2→1 = CrossAttention(h2, h1) (3.10)

The outputs from both directions O1→2 and O2→1 are concatenated to form the
fused representation:

xmid2 = [O1→2; O2→1] (3.11)
This fused feature vector xmid2 is input to the transformer encoder g for classifi-

cation, producing probability for each class as:

ŷmid2
c = exp(gc(xmid2))qC

j=1 exp(gj(xmid2))
, c ∈ {1, . . . , C} (3.12)

As shown in Fig. 3.6, the bidirectional cross-attention mechanism enables the
model to dynamically emphasize salient features from both modalities.

Figure 3.7: Two late fusion strategies

3.3.3 Late Fusion
Late fusion differs from other fusion strategies, allows the model of each modality
to be optimized independently, in that its operation occurs at the decision stage.
During the fusion process, the outputs of each modality (such as probability
distributions or classification results) are combined to generate a unified prediction
result. The primary advantage of late fusion lies in its flexibility and modular design.
The model of each modality can be trained, replaced, or optimized independently
without redesigning the entire system architecture.

In this study, we adopt two specific late fusion methods: simple averaging and
shallow mixture of experts (MoE). Simple averaging method is an efficient and
straightforward fusion method that assumes each modality contributes equally
to the final prediction; while the MoE method dynamically adjusts the modality
weights, to more flexibly adapt to the relative importance of different modalities to
the task, thereby further optimizing the fusion performance.
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Simple average In this method as in Fig. 3.7, in the case of two data modalities,
the outputs of two models are combined, by calculating the average of the predicted
probability distributions, ŷ1,c and ŷ2,c, for all classes c, we made both models
contribute equally to the final prediction. The combined output is calculated as
follows:

ŷlate1
c = 1

2(ŷ1,c + ŷ2,c), c ∈ {1, . . . , C} (3.13)

where:

• ŷ1,c and ŷ2,c: Predicted probabilities for class c from the first and second
models, respectively.

• ŷlate1
c : Combined predicted probability for class c using the simple average

strategy.

This method is both computationally efficient and simple, as it avoids the
introduction of additional parameters, or the need for further training.

MoE As the second late fusion strategy, we introduce a shallow mixture of
experts (MoE) method, to improve the overall system performance , by dynamically
adjusting the output weights of two independent models. Compared with the simple
averaging method, MoE can weight the contribution of each model prediction to
the final output, thereby achieving more flexible and adaptive fusion.

As illustrated in Fig. 3.7, the MoE approach utilizes a simple MLP with a single
hidden layer, to predict weights for combining the outputs of the two models. The
input to the MLP is the probabilistic concatenation of the predicted probability
distributions from the two models, denoted as xlate2:

xlate2 = [ŷ1; ŷ2] (3.14)

The output layer applies a softmax function to ensure that the sum of the
predicted weights to 1:

wq = exp(zq)q2
p=1 exp(zp)

, z = MLP(xlate2), q ∈ {1, 2} (3.15)

In this equation:

• xlate2 = [ŷ1; ŷ2]: The input to the MLP, which is the concatenation of the
predicted probability distributions from the two models.

• z = [z1, z2]: The logits outputted by the MLP for each of the two models.
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• wq: The normalized weight for the q-th model, computed via the softmax
function. The softmax ensures that w1 + w2 = 1, making the weights inter-
pretable as probabilities. Higher values of zq result in larger wq, allowing the
model to assign greater importance to one modality over the other.

During inference, the final prediction for each class c is computed, by weighting
the predicted probabilities from the two models as follows:

ŷlate2
c = w1 · ŷ1,c,test + w2 · ŷ2,c,test, c ∈ {1, . . . , C} (3.16)

where:

• [w1, w2]: Weights predicted by the MLP based on xlate2 = [ŷ1; ŷ2] from the
validation set.

• ŷ1,c,test and ŷ2,c,test: Predicted probabilities for class c from the first and second
models on the test set, respectively.

• ŷlate2
c : Final predicted probability for class c after combining the outputs of

both models using MoE.

Note that we use the non-adaptive weighting method, for the same data, the
weight of each class is fixed. This method is relatively simple and easier to
implement.
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Chapter 4

Experiments and Results

In this chapter, we will present the overall design and specific settings of the exper-
iment, which focus on two main tasks: voice disorder detection and classification.
In the first part Section 4.1, we introduce the evaluation metrics, that will be used
to measure the performance of the model. For the detection task, we take into
account accuracy and macro F1 Score; for the classification task, in addition to
these two indicators, we add the confusion matrix as well, in order to provide a more
detailed analysis of model performance across different categories. In the second
part Section. 4.2, we mainly introduce how the two ways of intermediate fusion are
selected through specific experiments. Then in 4.3, we describe the computing
environment in detail, including the hardware devices (GPU and CPU configura-
tion) used to conduct the experiment, and the version information of the relevant
software libraries. It also includes the specific configuration of the model used,
as well as the parameters and specific steps used during the experiment. Finally,
in Section 4.4 the experimental results are presented, providing a comprehensive
comparison, and analysis for evaluating the performance of the model on different
tasks and datasets. Through systematic experimental design, we can ensure that
our model’s ability in voice disorder tasks is strictly and comprehensively evaluated.

4.1 Evaluation metrics
To evaluate the performance of the model, we used the following key metrics:

Accuracy Accuracy measures the proportion of correctly predicted samples
to the total number of samples, providing an overall assessment of the model’s
performance:

Accuracy = Number of Correct Predictions
Total Number of Samples (4.1)
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While accuracy is a useful general metric, it may be less informative in the presence
of class imbalance. Therefore, additional metrics are used to provide a more
comprehensive evaluation.

Macro F1-Score Macro F1-Score is used to better handle class imbalance by
evaluating performance between all classes equally. It is calculated as the average
F1-Score of each class and incorporates precision and recall as core components.

To compute Precision and Recall, we first define the following terms:

• True Positives (TP): Positive samples correctly predicted positive samples.

• False Positives (FP): Negative samples incorrectly predicted as positive.

• False Negatives (FN): Positive samples incorrectly predicted as negative.

• True Negatives (TN): Negative samples correctly predicted as negative.

Based on these definitions, Precision and Recall are formulated as:

Precision = TP

TP + FP
(4.2)

Recall = TP

TP + FN
(4.3)

The F1-Score is a metric that balances Precision and Recall, providing a single
measure of a model’s accuracy for a specific class. For a given class i, the F1-Score
is defined as the harmonic mean of Precision and Recall:

F1i = 2 · Precision · Recall
Precision + Recall (4.4)

To evaluate performance across multiple classes, the Macro F1-Score is computed
as the average F1-Score across all C classes:

Macro F1-Score = 1
C

CØ
i=1

F1i (4.5)

Where:

• C: Total number of classes.

• F1i: F1-Score of class ith, which depends on the class-specific Precision and
Recall values.

Macro F1-Score ensures that the performance of minority classes is adequately re-
flected, making it particularly suitable for voice disorder detection and classification
tasks.
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Figure 4.1: Confusion matrix

Confusion Matrix We further evaluated the model using a confusion matrix,
shown in Figure 4.1, which provides a detailed view of the model’s performance
across all classes. Diagonal elements represent correct predictions, while non-
diagonal elements represent incorrect classifications. For example, it can identify
whether certain diseases are frequently misclassified as other categories, or whether
underrepresented categories have a higher error rate. These findings can provide
insights for targeted improvements, such as improving model architecture.

4.2 Mid-fusion method selection
When choosing three different levels of fusion strategies, early fusion, and late
fusion use common methods. However, the mid-level fusion is more complicated,
and there are many specific implementation methods. We need to choose the
appropriate method to use on our dataset. In the selection process, we initially
considered 4 specific methods, and finally selected two of them for application in
our experiments based on the effect and cost. This section will describe how we
selected them.

Based on the concept of mid-level fusion, we should integrate high-dimensional
features of different modalities to enhance classification performance. Wave2Vec2.0
consists of a CNN feature extractor followed by a Transformer encoder. Given this
structure, we considered the following four fusion methods:

1. Pre-class fusion: For the two modalities (CS, SV), feature extraction is
performed through two pre-trained Wave2Vec2.0 models, and features are
concatenated after the Transformer encoder outputs, and finally input into
the classifier for decision-making.
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2. Concatenated embeddings: The features of the two modalities from CNN are
directly concatenated, and then input into a shared Transformer encoder for
further modeling.

3. Cross-attention: Similar to the previous one, but not directly concatenated,
using bidirectional multi-head attention to allow CS and SV modalities, to
interact with each other to enhance cross-modal information sharing, then
concatenate the two attention matrices and put them into a shared Transformer
encoder.

4. Co-attention: After CNN extracts features, each modality interacts with each
other, through a dedicated 3-layer cross-attention Transformer (each layer
contains 2 multi-head attention mechanisms). The final encoded features
are then averaged using average pooling, and passed into the classifier for
decision-making.

4.2.1 Synthetic dataset construction
In order to select a suitable model, we constructed a synthetic dataset based on
the original dataset IPV. By artificially introducing noise, we simulated various
noise interference situations that may be encountered in real environments, and
preliminarily evaluated the adaptability and robustness of each fusion model under
noise conditions.

The specific construction method is to randomly select individuals in IPV, and
their CS and SV are processed in 1, 2, 3, or 4 ways according to the following rules,
and then put them into the synthetic dataset after processing. This cycle repeats
from 1 to 4 until all samples in IPV are used up:

1. (CS, SV): Both modes are clean;

2. (CS+noise, SV): Only CS has noise;

3. (CS, SV+noise): Only SV has noise;

4. (CS+noise, SV+noise): Both modes have noise.

Each pair in the ( ) corresponds to the same individual. Noise means adding
stronger 0.1 Gaussian noise, and the number of samples of each type in the final
synthetic dataset is basically the same.

4.2.2 Experimental protocol
We evaluated the effectiveness of these different mid-level fusion strategies, on a
4-class classification task using a synthetic dataset. The goal is to predict whether
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there is noise in CS or SV. Each sample belongs to one of the following four
categories: no noise in both modalities; only CS has noise; only SV has noise; both
have noise. For two modalities, they are fed as input to Wav2Vec2.0, and based on
different mid-level fusion strategies, the model predicts whether there is noise in a
given modality.

Since our goal is to compare ensemble methods rather than optimize hyper-
parameters, we ensure fair evaluation by using the same training settings for all
ensemble strategies. We use the AdamW optimizer with a learning rate of 1e-5 and
a batch size of 8. Each model is trained for a maximum of 30 epochs with early
stopping based on validation loss to avoid overfitting.

To evaluate the models, we use the confusion matrix because it allows us to
analyze the error distribution, see how well each fusion strategy distinguishes clean
and noisy conditions, and intuitively compare the reliability of different fusion
strategies.

4.2.3 Results & Analysis
According to the confusion matrix in Figure 4.2, let’s analyze their results:

• Model (1) (Top Left): This model appears to be overly sensitive to noise
features, which may lead to overfitting of noise patterns rather than effectively
distinguishing between clean and noisy conditions.

• Model (2) (Top Right): This is the best-performing model, achieving the
highest classification accuracy across all categories and demonstrating strong
robustness to noise.

• Model (3) (Bottom Left): Although some miss classifications occur in the
noisy CS category, the overall performance remains good.

• Model (4) (Bottom Right): This model also performs poorly, however, unlike
Model (1), it struggles to distinguish whether SV contains noise but retains
strong identification ability for CS.

Due to the poor performance of Models (1) and (4) in distinguishing noise, we
will focus on improving the better-performing models (2) and (3), as described in
Section 3.3.

4.3 Experimental design
This section introduces the experimental setup, including the computing environ-
ment, baseline models, training configurations, and experiment settings used in our
study.
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Pre-class fusion Concatenated embedding

Cross-attention Co-attention

Figure 4.2: Confusion matrix of synthetic data fused in four intermediates

We first outline the hardware and software configurations used for model training
and evaluation in Subsection 4.3.1, followed by the introduction of the baseline
models used for comparison, detailing their architectures and hyperparameter
settings in Subsection 4.3.2. Furthermore we can see Subsection 4.3.3, which
describes the training procedures for voice pathology detection and multi-class
classification tasks, including learning rate scheduling, optimizer selection, loss
functions, and strategies to prevent overfitting. Finally, we present the settings for
all experimental strategies, focusing on explaining the specific architecture hidden
layers, as well as the transfer learning settings from 8 categories to 6 categories, and
the specific practices of domain adaptation on new datasets in Subsection 4.3.4.
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4.3.1 Experimental environment
All our experiments were run in a virtual environment 1, mainly using an NVIDIA
Tesla P100 GPU for model training and inference. This GPU is equipped with 16
GB of memory to effectively handle large-scale matrix calculations in deep learning
tasks. The environment also includes an Intel(R) Xeon(R) CPU @ 2.00GHz
processor with 4 logical cores and 38.5 MiB of L3 cache. In addition, there is 29
GB of RAM available for data loading and processing, and 20 GB of temporary
storage for datasets and intermediate results.

The experiments used Python version 3.10.14 and the PyTorch framework
(v2.4.0) for model training and evaluation. Other libraries used include NumPy
(v1.26.4) for numerical calculations, Pandas (v2.2.2) for data processing, and Scikit-
learn (v1.2.2) for performance evaluation and metric calculation. Since a GPU is
used, its CUDA version is 12.3 and cuDNN version is 90000, which ensures efficient
execution of computationally intensive tasks.

And to ensure reproducibility, we apply a fixed random seed in all stages of
training and evaluation. The random number generators of Python, NumPy, and
PyTorch random number generators (CPU and GPU operations) are configured
with the same seed value of 42. This unified setting can reduce randomness in the
experimental results, thus ensuring that experiments under the same conditions
can be reliably reproduced.

4.3.2 Baseline Model
To make the comparisons of our approach clearer, this section is based on the
baseline model architectures, introduced in the methodology section (Section 3.2.1)
and the architecture diagram (Fig. 3.3). We will explain in detail the specific settings
and considerations for the baseline model during training. And the benchmark
experiments are mainly for unimodal data, with slightly different configurations for
detection and classification tasks.

MLP For this model, 40-dimensional MFCC features are used as input, a two-
layer fully connected network is designed with 50 hidden units in each layer, and
ReLU activation function to extract high-dimensional features. Then, they are
aggregated by using a global average pooling layer and a softmax output layer is
used to complete binary or multi-classification tasks.

1We gratefully acknowledge the computational resources provided by Kaggle (https://www.
kaggle.com/) for this research. We also appreciate the early-stage support from HPC@Polito
(http://www.hpc.polito.it).
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The optimizer used is Adam, the learning rate is 0.01, and the batch size is 16.
Moreover, the loss function is selected depending on the task: binary cross-entropy
is used for binary classification tasks, and categorical cross-entropy is used for
multi-classification tasks.

Model training is set with a maximum of 50 epochs, and early stopping is imple-
mented (if the performance is not improved with 10 epochs) to avoid overfitting.

2D-CNN In the 2D-CNN model, the 40-dimensional MFCC features are first
converted to 3-channel RGB images suitable for CNN input. Then, the ImageNet
pre-trained MobileNetV2 model is used as the basis, the top classification layer is
removed, and a GlobalAveragePooling2D and a fully connected layer containing
512 units are added. In order to enhance the generalization, the dropout operation
with 0.5 is added to the top network, and then the detection or classification task
is completed through the Softmax layer.

We used two fine-tuning strategies in model training: full fine-tuning and
head-only fine-tuning. In full fine-tuning, all layers of MobileNetV2 are involved
in training to optimize the overall performance; while in head-only fine-tuning,
only the newly added classification head is updated, and the pre-trained feature
extraction layer is frozen to retain the common features learned from ImageNet.
Regardless of the strategy adopted, the training hyperparameters are consistent
with the MLP model, including optimizer, learning rate, batch size, and early
stopping strategy.

4.3.3 Training Configuration
To ensure the controllability and repeatability of the training process, this subsection
introduces key hyperparameters and optimization strategies, including optimizers,
learning rate scheduling, loss functions, early stopping mechanisms, etc. We also
adjusted the class imbalance problem of multi-classification tasks. In addition,
we explain the reason for using the Hugging Face Trainer framework and why a
custom PyTorch training loop is needed.

The experiments were all completed within 50 epochs, and a fixed random
seed was used to ensure the reproducibility of the results. We used the common
AdamW optimizer (weight decay = 0.01), and optimized using the linear learning
rate scheduler. This scheduler has no warm-up and decays the learning rate
linearly with the training steps. The initial learning rate was optimized by manual
adjustment, with 6e-6 used for the cross-attention method involving mid-level
fusion, and 1e-5 used for all other methods (unimodal, augment only, early fusion,
concatenated embeddings of the mid fusion, late fusion). In multi-classification
tasks, due to the severe imbalance in the distribution of categories, we use weighted
cross-entropy as the loss function, and calculate the weights according to the
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category distribution in the training dataset to reduce the model’s bias towards
the majority class. For the detection task, the ratio of healthy to pathological in
the IPV dataset is about 1:2, and the category imbalance is not particularly severe,
so using a normal cross-entropy loss is also sufficient.

By default, we use the Trainer 2training framework provided by Hugging Face
to simplify the code, and take advantage of its optimization capabilities for the
standard Transformer structure. Trainer is suitable for single-modal training, data
augmentation, early fusion, and late fusion, and can automatically manage tasks
such as data loading, gradient updates, and learning rate scheduling. However, once
mid-level fusion is involved, the architecture of Wav2Vec2.0 is modified to adopt
a dual-stream Wav2Vec2.0 + shared Transformer structure, which makes Trainer
unable to adapt directly. If it is forced to use it, a lot of custom modifications to
Trainer are required, which is too costly. Therefore, in the mid-level fusion, we
manually wrote a PyTorch training loop, including custom data loading, model
forward propagation (through their own Wav2Vec2.0, and then into the shared
Transformer structure), loss calculation, backpropagation, gradient update, and
early stopping strategy.

The default batch size is set to 8, but in the mid-Level fusion task, due to
the large memory usage of the model, we adjust the batch size to 4 and use
gradient accumulation twice, to make it equivalent to a batch size of 8 to ensure
the uniformity of the training method. To improve training efficiency and prevent
overfitting, we use an early stopping strategy. When the validation set performance
does not improve significantly within 10 epochs, the training is terminated early.
More experimental details can be found in the GitHub repository of this article 3.

4.3.4 Experimental Settings
This subsection provides the implementation details of our experiments, focusing
on parameters unrelated to model training.

These methods are based on the pre-trained Wav2Vec2.0 model (trained on
the LibriSpeech 960-hour dataset), mainly including unimodal fine-tuning, data
augmentation, and multimodal fusion strategies. We first apply these methods to
binary classification tasks, and then extend them to multi-class classification. In
addition, we fine-tune the model on previously unseen subsets of data, significantly
improving model generalization. Additionally, we transition from an 8-class to a
6-class classification task, to investigate whether fine-tuning on a pre-trained binary
classification model yields better results than directly training on a multi-class.

2For details in https://huggingface.co/docs/transformers/en/main_classes/trainer
3https://github.com/qingqingkk/qingqingkk-Thesis.git
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Data augmentation Our data augmentation pipeline is mainly based on three
time-domain augmentation techniques, where parameters are randomly sampled
from a uniform distribution to ensure training data diversity. The parameter
selection is based on the physical properties of human voice signals, to preserve
natural variations while preventing excessive distortion.

• Gaussian white noise is added to the waveform, and the noise amplitude is
randomly selected in U(0.001, 0.015) 4, ensuring that the noise level is neither
too weak to be effective, nor too strong to reduce speech intelligibility, thereby
enhancing the model’s robustness to different noise environments.

• Time stretching is applied by randomly adjusting the playback speed within
U(0.8, 1.25), which is consistent with natural speech rate variations, while
avoiding excessive time distortion.

• Pitch shifting is performed by randomly changing the pitch within U(−4, 4)
semitones to simulate different vocal characteristics of different speakers.

In addition to individual augmentations, we also adopt a combined augmentation
strategy, which is a sequential combination of noise injection, time stretching, and
pitch shifting on selected samples. This approach enhances the model’s ability to
generalize across different acoustic conditions, and adapt to speakers with different
voice characteristics.

Fusion strategies Early fusion is performed by directly concatenating the raw
audio of CS, SV and adding 1 second of silence after the total length of the audio
(38 seconds) to avoid feature loss. This concatenation is performed on the same
individual. The concatenated audio signals are uniformly processed in a Wav2Vec2.0
processor to ensure consistency in feature extraction.

Mid-level fusion is based on two fine-tuned Wav2Vec2.0 models, initialized with
pre-trained Wav2Vec2 parameters. In practice, we use unimodal models that have
been pre-trained on our dataset, and freeze the CNN encoder, allowing only the
shared Transformer layers to be fine-tuned. This approach significantly reduces
training costs. At this stage, the first mid-fusion directly concatenates the features
extracted from CS and SV, and the second one implements feature interaction
through a bidirectional cross-modal attention mechanism. The number of attention
heads is set to 4.

Late fusion utilizes the fine-tuned CS and SV models to generate the final
classification result, by combining the probabilities of the two modes, either through

4U(a, b) represents a uniform distribution, where values are sampled from the continuous
interval [a, b].
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simple averaging or shallow part (MLP with 10 hidden nodes), with mode weighting
determined based on the probabilities of the training and validation sets.

Figure 4.3: Label distribution comparison between IPV+1/2New and 1/2New (8
classes)

Generalization to unseen data We also conducted some interesting experi-
ments, to evaluate the generalization ability of the 8-class classification model, we
first evaluate the unimodal method on the new dataset, which contains 3 categories
with environmental noise, while there are 8 categories in IPV. This distribution
difference poses a challenge for domain adaptation. To address this problem, we
consider using an adaptive approach based on fine-tuning the model. Randomly
split half of the new dataset by category, select 4, 6, and 25 samples from labels 1,
3, and 4, respectively, and integrate them into the IPV dataset before fine-tuning
Wav2Vec2.0. The label distribution of the integrated IPV dataset and the remaining
half of the new dataset is shown in Fig. 4.3. Finally, we evaluate the fine-tuned
model on the remaining unseen half of the new dataset, to check its adaptation
performance in noisy environments.

In addition, we use the same method to conduct generalization experiments in
the binary classification task. However, since the ratio of healthy and diseased
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categories in the new dataset, which is similar to the IPV dataset (such as the
number of samples in Table 3.1), we directly randomly select half of the healthy
and diseased categories in the new dataset, and add them to IPV for fine-tuning.

4.4 Results
Next, we present experimental results, first comparing unimodal and multimodal
methods for binary and multi-class classification. Then, we analyze the per-
formance improvement, and generalization achieved by our data augmentation
method. Finally, we explore the impact of fine-tuning adaptation methods on
model performance.

4.4.1 Unimodal vs. Multimodal

Figure 4.4: Comparison of average confusion matrices for Wav2Vec2 single-
modality (CS, left), and multimodal cross-attention (right) in the detection task.

Voice pathological detection In Table. 4.1, we can see that in the detection
task, Wav2Vec2.0 performs significantly better than other unimodal models, with
an accuracy improvement of 0.058 (CS) and 0.077 (SV) over MLP, and 0.192 (CS)
and 0.154 (SV) over CNN (training all layers). And its macro F1 score is also
the highest among unimodal methods, confirming the powerful feature extraction
ability of self-supervised learning. This is why we prefer Wav2Vec2.0 as the base
model.

When moving from an unimodal model to a multimodal model, the multimodal
fusion strategy further improves the performance of Wav2Vec2.0 without data
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Accuracy Macro F1
Modality Method CS SV CS SV

Single

MLP 0.801 ± 0.011 0.750 ± 0.058 0.767 ± 0.022 0.686 ± 0.053
2D-CNN (Train all layers) 0.667 ± 0.011 0.673 ± 0.000 0.400 ± 0.004 0.402 ± 0.000
2D-CNN (Fine-tune classify head) 0.789 ± 0.019 0.782 ± 0.048 0.765 ± 0.021 0.723 ± 0.063
Wav2Vec2.0 0.859 ± 0.029 0.827 ± 0.000 0.837 ± 0.038 0.793 ± 0.000

Multi

Early Fusion 0.859 ± 0.011 0.829 ± 0.016
Mid (Concatenated Embeddings) 0.878 ± 0.011 0.838 ± 0.014
Mid (Cross Attention) 0.885±0.000 0.843 ± 0.005
Late (Simple Average) 0.853 ± 0.022 0.824 ± 0.027
Late (MoE) 0.872 ± 0.011 0.857±0.012

Table 4.1: Performance comparison for detection tasks on IPV.

augmentation. Mid-Level cross attention achieves the highest accuracy at 0.885,
improving CS by 0.026 and SV by 0.058 compared to Wav2Vec2.0. Meanwhile,
MoE achieves the best macro F1 at 0.857, improving CS by 0.02 and SV by
0.064. These results highlight that cross-modal interactions enhance deeper feature
learning, particularly benefiting SV, which sees a larger improvement compared
to CS. However, early fusion (0.859 accuracy) does not improve over unimodal
Wav2Vec2.0 in either CS or SV, indicating that simply merging features at an
early stage, may not fully utilize the complementary nature of the modalities. The
mid-level concatenation approach provides moderate improvements (CS: +0.019,
SV: +0.051), while late fusion (simple average) and MoE improve macro F1
more significantly than accuracy, suggesting that these methods are particularly
useful for balancing class distributions rather than improving overall correctness.
The confusion matrix 4.4 shows that, Wav2Vec2.0 has achieved stable binary
classification performance under CS unimodality (left), while the cross-attention
method (right), further improves the balance of classification. This once again
proves that in binary classification tasks, it is reasonable not to apply weighting
during training. The model achieves balanced performance without the need for
distribution adjustments.

When testing our baseline and fused models on new datasets, we can see
some different trends, as shown in Fig. 4.2. Mid-level fusion using concatenated
embeddings is the best-performing method (accuracy: 0.741, macro F1: 0.501),
while cross-attention fusion does not bring additional gains. Early fusion fails
completely (accuracy: 0.278, macro F1: 0.219), but late fusion (MoE) achieves
better generalization than simple averaging (accuracy: 0.735, macro F1: 0.444),
consistent with its effectiveness in balancing class distribution.

In summary, although Wav2Vec2.0 is a strong end-to-end model, fusion (es-
pecially mid-level cross-attention and MoE) further improves its performance on
our dataset, demonstrating the power of multimodal learning for voice disorder
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Accuracy Macro F1
Modality Method CS SV CS SV

Single

MLP 0.716 ± 0.012 0.719 ± 0.014 0.576 ± 0.029 0.543 ± 0.030
2D-CNN (Train all layers) 0.719 ± 0.014 0.747 ± 0.011 0.428 ± 0.012 0.562 ± 0.027
2D-CNN (Fine-tune classify head) 0.725 ± 0.005 0.756 ± 0.005 0.431 ± 0.017 0.543 ± 0.022
Wav2Vec2 0.735 ± 0.005 0.735 ± 0.014 0.444 ± 0.037 0.529 ± 0.026

Multi

Early Fusion 0.278 ± 0.000 0.219 ± 0.018
Mid (Concatenated Embeddings) 0.741 ± 0.000 0.501 ± 0.039
Mid (Cross Attention) 0.741 ± 0.009 0.475 ± 0.048
Late (Simple Average) 0.728 ± 0.005 0.432 ± 0.019
Late (MoE) 0.735 ± 0.005 0.444 ± 0.037

Table 4.2: Performance comparison for detection tasks on the New dataset.

detection.

Accuracy Macro F1
Modality Method CS SV CS SV

Single

MLP 0.578 ± 0.017 0.490 ± 0.017 0.167 ± 0.058 0.193 ± 0.085
2D-CNN (Train all layers) 0.520 ± 0.017 0.510 ± 0.017 0.131 ± 0.017 0.096 ± 0.022
2D-CNN (Fine-tune classify head) 0.549 ± 0.017 0.549 ± 0.017 0.144 ± 0.010 0.188 ± 0.043
Wav2Vec2.0 0.637 ± 0.068 0.549 ± 0.045 0.410 ± 0.110 0.175 ± 0.071

Multi

Early Fusion 0.686±0.017 0.303 ± 0.040
Mid (Concatenated Embeddings) 0.598 ± 0.045 0.203 ± 0.039
Mid (Cross Attention) 0.608 ± 0.061 0.258 ± 0.185
Late (Simple Average) 0.618 ± 0.059 0.396±0.100
Late (MoE) 0.598 ± 0.034 0.372 ± 0.093

Table 4.3: Performance comparison of 8-class classification tasks.

Voice disorder 8-class classification The classification task is significantly
more challenging than the detection task, with all methods performing at a lower
level (Tab. 4.3). Not surprisingly, Wav2Vec2.0 again leads the unimodal methods,
achieving 0.637 accuracy on CS and 0.549 on SV, while CNN (train all layers)
performs the worst (0.520 accuracy on CS and 0.510 on SV). The macro F1 scores
further highlight the class imbalance issue, with CNN (train all layers) performing
poorly (0.131 on CS, 0.096 on SV) while Wav2Vec2.0 achieves a much higher
0.410 F1 on CS, suggesting that self-supervised learning provides better feature
generalization. However, since labels 3 and 5 account for 67% of the total IPV, the
model has learned the features of these two categories more fully, resulting in a
clear bias in the prediction results towards them.

Confusion matrix analysis (Fig. 4.5) confirms this bias: in the CS modality
(IPV dataset), class 3 has the highest correct classification rate (43.1%), while
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Figure 4.5: Average confusion matrix on IPV for Wav2Vec2.0 single-modality
(CS) in the 8-class classification task.

class 5 is also well-classified (8.8%). However, substantial confusion exists between
class 4 and class 5, likely due to their similar acoustic features. On the New
dataset, performance drops sharply (accuracy: 0.216, macro F1: 0.116), with class
4 misclassified as class 5 in 36.6% of cases, illustrating the impact of training data
imbalance on generalization.

Unlike detection (binary classification), multimodal fusion does not always
provide a significant improvement in 8-class classification. Early fusion achieves
the highest accuracy (0.686), improving Wav2Vec2.0 by 0.049 (CS) and 0.137 (SV),
but its macro F1 drops by 0.107 on CS, indicating a persistent class imbalance.
Surprisingly, mid (concatenated) and late fusion (MoE) do not improve overall
accuracy over Wav2Vec2.0 and even decrease CS performance.
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4.4.2 Data augmentation
This subsection shows the effects of different augmentation levels on binary and
multi-classification tasks. First, we analyze the effects of augmentation on unimodal
(CS and SV) and multimodal models, and compare their performance differences
under different augmentation strengths. Then we explore the impact of data
augmentation on the generalization ability of new datasets, and evaluate the
effectiveness of different augmentation strategies in improving model adaptability.

IPV NewMethods Modality Augmentation
Strength Accuracy F1 Macro Accuracy F1 Macro

0 0.859 ± 0.029 0.837 ± 0.038 0.735 ± 0.005 0.444 ± 0.037
30% 0.853 ± 0.011 0.838 ± 0.019 0.744 ± 0.033 0.506 ± 0.102
50% 0.885 ± 0.000 0.862 ± 0.011 0.753 ± 0.028 0.508 ± 0.082

wav2vec2 CS

70% 0.853 ± 0.029 0.833 ± 0.029 0.799 ± 0.014 0.677 ± 0.037
0 0.827 ± 0.000 0.793 ± 0.000 0.735 ± 0.014 0.529 ± 0.026

30% 0.859 ± 0.011 0.801 ± 0.079 0.759 ± 0.037 0.610 ± 0.087
50% 0.849 ± 0.024 0.833 ± 0.027 0.787 ± 0.019 0.676 ± 0.039

SV

70% 0.821 ± 0.011 0.787 ± 0.023 0.747 ± 0.014 0.572 ± 0.052
0 0.885 ± 0.000 0.843 ± 0.004 0.741 ± 0.009 0.475 ± 0.048

30% 0.897 ± 0.011 0.882 ± 0.016 0.738 ± 0.005 0.499 ± 0.048
50% 0.891 ± 0.011 0.875 ± 0.018 0.759 ± 0.032 0.576 ± 0.112

Mid (cross attention) Multi

70% 0.846 ± 0.033 0.818 ± 0.050 0.741 ± 0.019 0.532 ± 0.050

Table 4.4: Evaluating augmented models on IPV and New datasets for the
detection task.

Augmentation for detection and classification The intensity of data aug-
mentation has a significant impact on both binary and multi-classification tasks
on the IPV dataset. The following describes the performance comparison of the
model with and without augmentation.

In binary classification (left side of the Table 4.4), for CS, 50% augmentation
produces the highest accuracy 0.885(+0.026) and macro F1 0.862(+0.025), however,
at 70% augmentation, the accuracy drops to 0.853 and macro F1 drops to 0.833;
for SV, the best performance occurs at 30% augmentation, achieving the highest
accuracy 0.859(+0.032), indicating that SV benefits from lighter augmentation. At
50%, accuracy increases to 0.849, but macro F1 to the peak of 0.833(+0.04), however,
at 70%, both accuracy and macro F1 drop. These results suggest that CS benefits
most from moderate augmentation (50%), while SV achieves the highest accuracy
at lower levels (30%). We also experimented with the best multimodal model,
the cross-attention method combined with data augmentation, which achieved
the highest improvement at 30% augmentation. The accuracy improved by 0.012,
reaching 0.897, and the macro F1 increased by 0.039, reaching 0.882.

Table. 4.5 shows the effects of different augmentation strengths on the 8-class
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Modality Augmentation Strength Accuracy F1 Macro

CS

0 0.637 ± 0.068 0.410±0.110
30% 0.676 ± 0.029 0.355 ± 0.148
50% 0.686±0.017 0.386 ± 0.051
70% 0.598 ± 0.034 0.240 ± 0.135

SV

0 0.549 ± 0.045 0.175 ± 0.071
30% 0.608±0.017 0.252±0.080
50% 0.598 ± 0.017 0.226 ± 0.058
70% 0.569 ± 0.017 0.212 ± 0.063

Table 4.5: Effect of different augmentation strengths on 8-class classification
performance in the IPV dataset.

classification performance of CS and SV modalities in the IPV dataset. Similar
to binary classification, CS and SV achieve the best performance at different
augmentation strengths, with CS benefiting the most at 50% and SV peaking at
30%. However, the effect of augmentation on multi-class classification is more
pronounced. For CS, 50% augmentation yields the highest accuracy 0.686(+0.049),
but unlike binary classification, macro F1 does not improve proportionally (0.386,
-0.024), suggesting that while augmentation helps overall classification, it does not
necessarily improve class balance. In contrast, 70% augmentation results in a large
drop in accuracy (-0.039) and an even larger drop in macro F1 (-0.17). For SV, the
best performance occurs at 30% augmentation, with an accuracy of 0.608 (+0.059)
and macro F1 of 0.252 (+0.077), however, unlike binary classification, 50% or 70%
augmentation is still effective for SV, but here accuracy compares with 30% to
drop at 50% and drops further at 70%.

These results show that CS benefits the most from moderate augmentation,
while SV is better suited at a lower augmentation level. Although augmentation
can improve performance, excessive augmentation can introduce negative effects.

Impact of data augmentation on generalization to New data Data aug-
mentation plays a crucial role in improving the generalization ability of new datasets,
especially when dealing with distribution changes. Among them, CS achieves the
best generalization at 70% augmentation, while SV or multimodal benefits the
most at 50% augmentation.

As shown on the right side of Table 4.4, in the detection task, the appropriate
use of augmentation strategies significantly improves the accuracy of new datasets.
For CS, 70% augmentation achieves the highest accuracy (0.799, +0.064) and
macro F1 (0.677, +0.233) on the new dataset, indicating that strong augmentation
significantly improves the generalization ability on unseen data, and the higher
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variability of training data helps the model adapt to domain changes, thereby
reducing overfitting on the IPV dataset. However, in the IPV dataset itself,
70% augmentation has a negative impact on accuracy, confirming that the model
sacrifices in-domain accuracy in exchange for better generalization ability. For SV,
the best generalization occurs at 50% augmentation, with an accuracy of 0.787
(+0.052) and a macro F1 of 0.676 (+0.14). In the multimodal setting, the best
generalization also occurs at 50% augmentation, but the results show that the
generalization performance of multimodal models is weaker compared to unimodal
models. Therefore, applying a dataset-specific or model-specific augmentation
strength is critical to reach the best generalization performance.

4.4.3 The impact of fine-tuning strategies
This subsection compares, a model trained exclusively on the IPV dataset, to a
model fine-tuned using a combination of samples from the IPV and new datasets.
The results highlight how incorporating new data impacts in-domain accuracy,
cross-domain generalization performance, and thus provide insights into optimal
fine-tuning strategies for improving model robustness.

Fine-tuning Test Accuracy Macro F1
CS SV CS SV

IPV IPV 0.859 ± 0.029 0.827 ± 0.000 0.837 ± 0.837 0.793 ± 0.000
New 0.735 ± 0.005 0.735 ± 0.014 0.444 ± 0.037 0.529 ± 0.026

IPV+1/2New IPV 0.920 ± 0.026 0.891 ± 0.010 0.911 ± 0.029 0.878 ± 0.008
New 0.747 ± 0.047 0.747 ± 0.028 0.597 ± 0.098 0.574 ± 0.051

Table 4.6: Effect of incorporating half New dataset into fine-tuning (2 Classes)

Detection As shown in Table 4.6, in the binary classification task, when only
IPV data is used for fine-tuning, the model has high accuracy and macro F1 on
the IPV test set. However, the generalization ability on the new dataset is poor,
with the accuracy dropping to 0.735 (CS and SV), and the macro F1 dropping to
0.444 (CS) and 0.529 (SV).

After introducing half of the new data for fine-tuning, the performance on the
IPV dataset is further improved, with the accuracy of CS and SV increasing to
0.920 and 0.891, respectively, and the macro F1 increasing to 0.911 and 0.878,
respectively. The generalization ability on the new dataset is also improved, with
the accuracy of CS and SV both slightly increasing to 0.747, and the macro F1
improving more significantly, reaching 0.597 (CS) and 0.574 (SV).
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Although hybrid fine-tuning improves the performance of the model on IPV
and new datasets, the improvement in generalization ability is still limited. The
accuracy on the new dataset only increases slightly by +0.012 (CS and SV), but
the macro F1 improvement is more obvious (CS +0.153, SV +0.045).

Fine-tuning Test Accuracy Macro F1
CS SV CS SV

IPV IPV 0.637 ± 0.068 0.549 ± 0.045 0.410 ± 0.110 0.175 ± 0.071
New 0.185 ± 0.042 0.194 ± 0.155 0.078 ± 0.022 0.106 ± 0.074

IPV+1/2New IPV 0.520 ± 0.017 0.510 ± 0.045 0.210 ± 0.004 0.126 ± 0.036
New 0.611 ± 0.083 0.509 ± 0.069 0.236 ± 0.073 0.234 ± 0.047

Table 4.7: Effect of incorporating half New dataset into fine-tuning (8 Classes)

Classification Table 4.7 shows the impact of introducing new data during fine-
tuning on 8 categories. The results show that fine-tuning only on the IPV dataset,
results in poor generalization of the model on new datasets, with CS accuracy as
low as 0.185 and SV accuracy as low as 0.194. Especially when there are many
categories and the categories are severely imbalanced, fine-tuning only on IPV data
is difficult to adapt to unseen data. The macro F1 score is lower (CS: 0.078, SV:
0.106), and the model performs poorly on multi-class classification tasks in new
domains compared to the generalization performance of detection tasks (Table 4.4).

To solve this problem, half of the new data is introduced for fine-tuning, and the
results show that the generalization ability of the new dataset can be significantly
improved. The accuracy on the CS and SV datasets is improved to 0.611 (+0.426)
and 0.509 (+0.315), respectively. At the same time, the macro F1 also improves
significantly (CS: 0.236, SV: 0.234. However, this improvement comes at the
expense of accuracy on the IPV dataset (CS drops by 0.117, SV drops by 0.039).
This shows that although mixed-domain data fine-tuning can improve cross-domain
performance, it may slightly affect the in-domain performance.
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Discussion

This chapter analyzes the results and reasons for all the experiments we conducted
on the Wav2ve2.0 model, and introduces and focuses on multimodal learning, data
augmentation, fine-tuning-based generalization, and task-specific transfer strategies
for both CS and SV modalities.

We first explore how different fusion strategies affect model performance in
Section 5.1, and analyze the early, middle, and late strategies in combination with
the two tasks of detection and classification. Section 5.2 studies data augmentation,
but unlike the research focus of [10], it mainly emphasizes that the optimal aug-
mentation level varies depending on the dataset and task, and the augmentation
strategy should be carefully adjusted according to specific needs. In addition, we
discuss the impact of cross-domain fine-tuning on unseen data in Section 5.3. Over-
all, our research results emphasize the need for customized fusion, augmentation,
and training strategies to balance accuracy and generalization, thereby improving
the robustness of voice disorder detection and classification models.

5.1 Effectiveness of multimodal learning
Our study has found that multimodal learning, which has great potential power in
combining sentence reading modality(CS), and sustained vowel pronunciation(SV)
information. By integrating their voice features, multimodal fusion can effectively
improve the accuracy, and robustness of detection and classification tasks.

However, the actual effectiveness of multimodal learning, is closely related to spe-
cific fusion strategies and task requirements. In the task of voice disorder detection,
especially for the mid-level fusion method, it adopts the cross-attention mechanism,
to achieve the highest classification accuracy, by learning cross-modal dependency
relationships. However, simple early fusion did not significantly outperform with
single modal Wav2Vec2.0, indicating if we directly merge data at the original
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feature level, it may not fully utilize the complementarity between two modalities.
In contrast, the expert of mixture (MoE) method improved the macro-F1 score,
indicating its advantage in dealing with class imbalance problems. Another impor-
tant finding is that SV benefits more from multimodal fusion compared to CS. This
may be because the voice acoustic characteristic of SV is relatively limited, and the
information content is relatively simple, so it relies more on the additional features
provided by CS. However, CS itself contains more contextual information and has
relatively low additional requirements for SV. Interestingly, on the new dataset,
fusion is not particularly helpful for improving the generalization of unknown data,
which may be due to the fitting with the known data.

In voice disorder classification tasks, multimodal fusion does not always bring
significant improvements, due to the very small size of the dataset and the unstable
distribution of categories. For example, although early fusion improved overall
accuracy, the macro-F1 score actually decreased, indicating that class imbalance
is still an issue that cannot be ignored. In contrast, MoE’s late fusion strategy
focuses more on optimizing F1 scores rather than accuracy, indicating that it has
certain advantages in balancing class distribution, but may not necessarily improve
the overall classification accuracy.

Therefore, relying solely on fusion strategies is not enough to completely solve
the generalization problem and category imbalance problem. In order to fully
leverage the advantages of multimodal learning in complex classification tasks,
additional techniques such as modality-aware weighting, may need to be introduced
to more effectively adjust the contribution ratio of each modality, to ensure that
the model can achieve more balanced learning between different categories.

5.2 Impact of data augmentation
When designing a data augmentation pipeline, the level of augmentation needs to
be careful, and it should match the generalization required for the task.

Unimodal Based on the results in the previous chapter, for the IPV dataset
(recorded with the microphone in a standard environment), moderate augmentation
(50%) works best for CS, while low augmentation (30%) works better for SV.
However, excessive augmentation (70%) may harm performance. This is because
adding too much variation introduces a lot of noise, and makes the audio lose its
original characteristics, thereby reducing the model’s accuracy for similar sounds.
This effect is particularly evident in voice classification, where the effect of aug-
mentation is significant. Although the accuracy has improved overall, maintaining
class balance remains a challenge for this task.

On the other hand, when evaluating the model generalization on a new dataset
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recorded on a mobile device, the situation changes. The higher the augmentation
(70% for CS and 50% for SV), the better the results.

Multimodal For the multimodal model combined with data enhancement, this
framework can both exploit the complementary information of the two modalities,
and improve the robustness of the model, so it achieves the best performance on the
IPV dataset. However, the generalization performance on new data is not as good
as that of the unimodal augmentation model. This may be because the framework
causes overfitting on the IPV dataset, which negatively affects the model’s ability
to generalize to new datasets.

It can be seen that, although a large strength of augmentation may reduce
the accuracy within the same dataset, it helps the model better adapt to new
environments, and changes in data distribution. Therefore, augmentation should
not be applied in the same way in all datasets or tasks. Instead, it should be
tailored to the specific dataset, and specific cases to balance in-domain accuracy
and generalization to unseen data.

5.3 Fine-tuning and cross-domain generalization
As expected, fine-tuning on a single dataset (such as IPV) will limit the general-
ization ability of the model on new datasets. This problem is particularly evident
in multi-classification tasks with uneven category distribution. Due to insufficient
samples, some categories are difficult for the model to accurately identify, resulting
in poor classification results.

To improve the generalization ability, we added some new data during the
fine-tuning process. The experimental results show that, this method can indeed
significantly improve the generalization ability of the model, especially the improve-
ment of accuracy and macro-F1 score, proving that the introduction of new data
helps the model adapt to different data distributions. In addition, this approach
has low requirements for the amount of data and is suitable for data shortages in
the medical field.

However, the addition of new data has different effects on the performance of the
model on the original data (IPV). For the binary classification task, the accuracy
of the model on the IPV dataset is improved after adding new data. This may
be because the category ratio of the new data is similar to that of the original
data, so it does not cause much interference with the learning of the model. In
the multi-classification task, the situation is the opposite - the performance on
the IPV dataset decreases after adding new data. This may be related to the
difference in data distribution. The classification in multi-classification tasks is
more complicated. The distribution of new data is quite different from that of
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original data, which affects the performance of the model on the original data.
Therefore, when adopting a fine-tuning strategy, it is best to analyze the

distribution of the original data first, and then decide how to introduce new data.
Reasonable selection of additional data sources, to ensure that they match the
original data, can improve generalization capabilities while minimizing the impact
on in-domain performance.
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Conclusion

In this study, we explored how multimodal learning, data augmentation, and fine-
tuning affect the performance of voice disorder detection and classification using
Wav2Vec2.0, an end-to-end Transformer-based model.

We found that combining features from two modalities, CS (sentence reading)
and SV (sustained vowels), helped improve the model’s performance. However,
not all fusion methods were equally effective. Mid-level fusion with cross-attention
performed best on the detection task, while simple early fusion worked well on
the classification task. The MoE (mixture of experts) method helped balance the
class distribution. Interestingly, SV benefited more from multimodal learning than
CS, perhaps because SV has fewer features and benefits more from the additional
information.

Data augmentation also had a significant impact on the results. We found that
moderate augmentation (50%) worked best for CS, while mild augmentation (30%)
was more effective for SV and multimodal learning. However, over-augmentation
actually degraded performance, probably because it introduced too much noise,
making the original audio features harder to distinguish. The effect became more
interesting when we tested the model on new data. Stronger augmentation helped
the model adapt to unseen data, although it sometimes reduced accuracy on the
original dataset. Notably, when combined with data augmentation, unimodal
models generalized better to new data than multimodal models. This suggests
that multimodal fusion may lead to overfitting of the training dataset. Therefore,
augmentation strategies should not be uniformly applied to all tasks. Instead,
they should be carefully tuned based on the characteristics of the dataset and the
specific task.

We also studied fine-tuning to solve cross-domain problems. For example, in
the classification problem, if we only fine-tune on one dataset (such as IPV), the
model will have some trouble processing new data. But when we add some new
data during the fine-tuning process, the model generalizes better. This provides a
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possible solution to the scarcity of medical data. By gradually adding new disease
categories to the existing medical model, we can help the model predict new diseases
more accurately and reduce the cost of medical research and development. In
addition, the multi-class pre-trained model performs better than the model based
on binary classification pre-training, which may be because the pre-trained binary
model focuses too much on distinguishing "healthy" from "unhealthy", and cannot
capture fine-grained features when extended to multi-classification.

Limitation Despite these findings, our work still has limitations:

1. The experiments are based on two modes of homogeneous audio, and the
dataset size is still relatively small. The robustness of the model to a wider
range of pathological variations requires further validation.

2. Augmentation uses a fixed enhancement ratio (e.g. 30%, 50%, 70%), but
in fact adaptive augmentation technology is more suitable for different data
types. A more flexible augmentation strategy can improve performance.

3. Although we explored different fusion strategies, our study was limited to the
audio-based modality. Multimodal learning coupled with other inputs such as
laryngoscopy images could provide deeper insights.

Future work To address these limitations and further improve speech disorder
detection and classification models, future research could explore:

1. Larger and more diverse datasets can be explored, including pathological
samples that combine sounds with other types of patterns, not limited to
audio scenes, such as laryngoscope images, to verify the robustness and
adaptability of our model.

2. Adaptive augmentation methods such as AutoAugment or RandAugment can
be explored to automatically adjust the augmentation strength, to dynamically
adapt it to the data distribution.

3. The fusion strategy and augmentation framework can also be used for multi-
classification tasks, such as identifying different pathological conditions. It
can also be applied to other pre-trained models, like HuBERT and WavLM.
This helps to better evaluate how effective and useful the model is.

Ethical considerations As AI models become more common in medical applica-
tions, we need to carefully consider their ethical implications. Voice data is highly
sensitive, and issues of privacy, security, and potential abuse cannot be ignored.
A major concern is that attackers can extract private information from model
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representations through inversion attacks. To prevent this, privacy-preserving tech-
niques such as differential privacy and secure federated learning should be explored.
When publishing and deploying these models, we must also ensure that they are
fair and unbiased, as failure to generalize across different patient populations, can
lead to misdiagnosis and unequal medical outcomes. Most importantly, AI-powered
diagnostic tools should be used as assistive tools, not replacements for human
medical experts. Automation can also carry the risk of bias, and over-reliance on
AI predictions can make it difficult to critically evaluate, making transparency
and explainability essential—models should be designed in a way, that users can
understand and trust their decisions.

In the future, research should focus not only on improving accuracy, but also on
ensuring fairness, accountability, and ethical responsibility. By addressing these
challenges, we can create AI-driven tools that truly support clinicians and provide
better and safer care for patients.
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