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Summary

Innovations in Artificial Intelligence (AI), Robotics, and Computer Vision are
revolutionizing industrial monitoring by automating traditionally manual and
time-consuming tasks, increasing both efficiency and safety.

This thesis explores the integration of these technologies into a proprietary
AT framework, to enhance industrial visual analysis through Autonomous Mobile
Robots (AMRs), focusing on two key tasks:

1. Automated gauge reading addresses the challenge of continuously moni-
toring pressure gauges in large-scale industrial environments, a process tradi-
tionally performed by human operators and prone to errors and inefficiencies.

To overcome these limitations, this study employs Boston Dynamics’ Spot, a
quadruped robot functioning as a mobile Internet of Things (IoT) platform
capable of executing pre-configured inspection missions. Equipped with high-
resolution cameras and LiDAR sensors, Spot captures images of both analog
and digital gauges that are then analyzed using state-of-the-art AI models,
including Optical Character Recognition (OCR), Computer Vision techniques,
and Multimodal Large Language Models (LLMs).

The study compares different approaches for extracting and interpreting gauge
readings, highlighting the strengths and limitations of each model.

2. Autonomous surveillance in restricted areas focuses on autonomous
surveillance, leveraging the DJI Matrice 3TD, a drone designed for industrial
applications, integrated into an alarm system to conduct real-time inspections
in restricted areas.

By employing Computer Vision and Deep Learning models such as YOLO
(You Only Look Once) for object detection, the system enables the drone
to rapidly identify anomalies, unauthorized intrusions, and potential safety
hazards with high accuracy.

This section examines multiple analyses performed on the dataset used, aiming
to optimize results based on key reference metrics.
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Using a research-driven approach, all models and methodologies are evaluated
based on quantitative metrics and real-world applicability.

The findings demonstrate significant improvements in efficiency, accuracy, and
safety, contributing to the advancement of Al-driven industrial automation and
monitoring.

Future research will focus on enhancing model robustness, potentially integrat-
ing multimodal sensor data, and expanding capabilities to additional industrial
applications.
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Chapter 1

Introduction

1.1 Context and objective

In recent years, advancements in Artificial Intelligence (AI), Robotics, and Computer
Vision have significantly transformed the industrial sector, that requires continuous
monitoring of equipment to ensure operational efficiency, prevent failures, and
enhance workplace safety.

Traditionally, these tasks have been performed by human operators (Fig. 1.1);
however, manual inspections are time-consuming, prone to human error, and
inefficient in large-scale industrial environments.

Figure 1.1: Equipment monitoring in industrial manual inspection

The increasing demand for automation in industrial monitoring has led to the
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Introduction

adoption of Autonomous Mobile Robots (AMRs) equipped with Computer Vision
and Al-driven visual analysis: these technologies enable real-time inspection and
enhanced data collection efficiency, also reducing the need for human intervention
in potentially hazardous environments.

This thesis work is part of a project carried out by Sprint Reply [1] (Fig.
1.2), the IT consulting company within the Reply group that specializes in the
implementation of Artificial Intelligence (Al) solutions, dedicated to optimizing
business processes.

REPLY

Figure 1.2: Sprint Reply logo

Thanks to them, I had the opportunity to carry out my activities within "Area42"
(2] (Fig. 1.3), Reply’s research center in Turin, where creative ideas can be explored
and brought to life by leveraging the potential of cutting-edge technologies across
various fields, including Industrial IoT, Autonomous Warehousing, Smart Mobility,
Robotics, and the Metaverse.

Figure 1.3: Reply research lab "Area42"

In particular, the Robotics Lab, as a central component of my experience, is the
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Introduction

space where the aforementioned robot functionalities and opportunities are tested.

Here, other than directly providing consulting services to clients, Sprint Re-
ply’s objective is to operate as a product company, with the ultimate goal being
experimentation and research.

Specifically the product is a proprietary Al framework, available as a web
application built in Python, an object-oriented programming language.

Being modular, it is fully divided into components (modules) that operate
independently within the system, each performing specific functions.

The concept behind this framework is to provide a set of useful “features” for
various visual analysis applications in the industrial sector, integrating Robotics,
Computer Vision, and Generative Al

On its opening screen, the tabs “Streaming” and “Processing” are immediately
visible, specifically:

o Streaming is the section of the framework that allows users to select a video
source (this could be an integrated or external webcam, a video file, or one of
the various components from the robot fleet, which we will discuss in detail in
the next section) to analyze in real-time using Computer Vision algorithms.

o Processing is the section that takes a single image or video file as input,
then performs an analysis using the aforementioned algorithms or with the
application of Generative Al

With reference to this framework, the objective of this work is to develop,
evaluate and integrate new Al-powered features, focusing on two key tasks:

1. Automated Gauge Reading: Developing Al-based methodologies for reading
both digital and analog gauge measurements

2. Autonomous Surveillance in Restricted Areas: Integrating a drone into an
alarm system, to conduct real-time inspections in industrial facilities

To this end, some crucial steps were evaluating different Al models and frame-
works, including Optical Character Recognition (OCR), Multimodal Large Lan-
guage Models (LLMs), and other Computer Vision techniques within a real-world
industrial setting.

Chapter 2 presents the related work in the form of an in-depth exploration of
the technologies used, while Chapter 3 details all the steps followed during the
execution of the proposed tasks.



Chapter 2

Used technologies

2.1 Robotics

In industrial facilities around the world, specialists carry out numerous control
activities (Fig. 2.1) daily, including visual inspections of plants, verification of
proper equipment functionality, and checking instruments like pressure gauges,
thermometers, and valves.

The purpose of these inspections is to maintain the reliability and safety of all
the components of the plant that workers regularly interact with.

Figure 2.1: Human plant inspection

However, what can be a monotonous, repetitive, and time-consuming task for
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humans (often more than one person) can be easily automated with the help of
modern autonomous mobile robots (AMRs).

Specifically, these robots enable the creation and execution of so-called “missions”,
predefined patrol routes within the facility, with customizable frequencies and
strategic stops at designated locations.

During these inspections, the robots collect a vast amount of data in multiple
formats, thanks to the numerous sensors and cameras they are equipped with.
Their applications range from industrial plants, where they can detect abnormal
temperatures or gas leaks, to natural disaster scenarios, where they can assist
rescuers in locating survivors.

2.1.1 Boston Dynamics - Spot

A significant added value in my internship experience has been the partnership
between my company and Boston Dynamics [3] (Fig. 2.2), with which we collaborate
and regularly interact.

“

Figure 2.2: Boston Dynamics logo

It is an American engineering and robotics design company, global leader in
developing and deploying highly mobile robots (Fig. 2.3), founded in 1992 as a
spin-off from the Massachusetts Institute of Technology (MIT) [4].

Figure 2.3: Part of Boston Dynamics robots fleet
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Headquartered in Waltham, Massachusetts, it was first acquired by Google in
2013 and then by SoftBank in 2017; it is now owned by the Hyundai Motor Group
as of 2020.

Over the years, Boston Dynamics has developed a series of robots that, since
2019, have been made commercially available to reduce the dangerous, repetitive,
and physically difficult aspects of work.

Among those, the one that best meets the diverse needs of clients in the industrial
sector is Spot [5] (Fig. 2.4), the quadruped robot with canine-like features.

Figure 2.4: Boston Dynamics "Spot" during a routine plant inspection

It allows for the easy, precise, and safe automation of routine inspections and
hazardous tasks for humans, thanks to remote control capabilities.

With a base cost of approximately $75,000, Spot can be considered a mobile,
agile, and autonomous [oT station, highly customizable with numerous “payloads”
such as thermal, panoramic, and high-resolution optical zoom cameras; temperature,
humidity, acoustic, and gas sensors, all of which can trigger notifications if values
exceed predefined ranges.

Equipped with integrated edge computing units, Spot conducts inspection
rounds, accurately and frequently collecting large volumes of data via its various
sensors. This data is then processed according to the use case or simply stored on
a data platform for further analysis and review by specialists.

Designed for use on unstructured terrains or in restricted spaces, Spot is equipped
with an obstacle avoidance system supported by its numerous cameras and inte-
grated sensors. Moreover, its stability is robustly ensured by specific reinforcement
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learning (RL) techniques.

Spot also has an IP54 protection rating, meaning it can withstand dust and
rain but is not resistant to high-intensity sprays or immersion.

For more detailed information, refer to the specification tables below:

Base Robot Battery & Payload

DIMENSIONS LOCOMOTION TERRAIN SENSING CONNECTIVITY
Length Max Speed Horizontal Field of View WiIFi
100 mm (43.3in ) 1.em/s 360° 2.4GHz / 5GHz b/a/n
Width Max Slope Range Ethernet
500 mm (19.7 in) +30° 4 m (13 ft)
Height (Sitting) Max Step Height Lighting
191 mm (7.5 in) 300 mm (1.8 in) >2 Lux
Default Height (Walking) ENVIRONMENT Collision avoidance
610 mm (24.0 in) maintains set distance from
stationary obstacles
Max Height (Walking) Ingress Protection
700 mm (27.6 i) PS4
Min Height (Walking) Operating Temp.
520 mm (20.5 in) -20°C to 55°C

Net Mass/Weight (Spot with
battery)
32.7 kg (721 Ibs)

Figure 2.5: Spot Base Robot Specifications

Base Robot Battery & Payload

BATTERY PAYLOAD MOUNTING
Battery Capacity Max Weight

564 Wh 14 kg (30.9 Ibs)

Average Runtime* Mounting Area

90 mins 850 mm (L) x 240 mm

(W) x 270 mm (H)
Standby Time

180 mins Mounting Interface

M5 T-slot rails
Recharge Time

60 mins Connector
DB25 (2 ports)

Length

324 mm (12.8 in) Power Supply
Unregulated DC 35-58.8V,

Width

150W per port
168 mm (6.6 in)

Integration
Height

93 mm (3.7 in)

Awailable software API
and hardware interface

Mass/Weight control document

52 kg (115 Ibs)

“Runtime may vary depending on

payloads and environmental factors

Figure 2.6: Spot Battery and Payload Specifications
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2.1.2 DJI - Matrice 3TD

DJI, an acronym for Da-Jiang Innovations (in Chinese, “Great Frontier Innova-
tions”), is a Chinese technology company (Fig. 2.7) headquartered in Shenzhen that
designs and manufactures commercial unmanned aerial vehicles (UAVs), commonly
known as drones, primarily for aerial photography and videography.

[ |

Figure 2.7: DJI logo

The company was founded in 2006 by Frank Wang, who began by selling flight
control modules to the niche market of drone enthusiasts from his dormitory [6].

As of June 2024, DJI accounted for over 90% of the global consumer drone
market, to the point that its technology is widely used across industries such as
music, television, and film.

Among the numerous series of models produced by DJI, the "Matrice" series is
specifically designed for industrial applications, including surveying, inspection,
search and rescue, and firefighting.

In particular, I had the opportunity to work with the "Matrice 3TD" model
[7] (Fig. 2.8), an advanced drone equipped with a wide-angle fisheye camera,
a telephoto lens, and an infrared camera: these features enable the capture of
high-quality, real-time images, significantly enhancing the precision of operations.

Figure 2.8: DJI Matrice 3TD
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The Matrice 3TD allows fully autonomous route configuration with complete
safety, thanks to the six-direction collision avoidance system it is equipped with.

The system’s advanced sensors can analyze the surrounding environment even
before takeoff, ensuring an accurate site assessment.

The drone boasts a maximum flight time of 50 minutes and an operational range
of up to 10 kilometers; it is also equipped with dual antennas with RTK module
for centimeter-level precise localization of the RTH (Return To Home) position.

Additionally, the Matrice 3TD has an IP55 certification, making it resistant to
dust and water, which is ideal for operation in challenging environmental conditions.
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2.2 Computer Vision

Computer vision is an interdisciplinary field of artificial intelligence that leverages
machine learning and neural networks to teach computers and systems to derive
meaningful information from digital images, videos, and other visual inputs [8].

One might say that if Al enables computers to think, computer vision enables
them to see, observe, and understand the world as humans do.

Generally, these methods involve an initial acquisition phase, followed by pro-
cessing, and ultimately analysis and comprehension of the input, made possible by
extracting high-dimensional numerical or symbolic information.

Within computer vision, there are numerous tasks [9], each with a specific goal
and use case, that can be applied across various fields, from autonomous driving
(Fig. 2.9) to defect detection, medical diagnosis, and video surveillance.

Figure 2.9: An example of real world computer vision application

Image Classification

The simplest task is undoubtedly image classification, as it involves classifying the
entire image into one or more predefined classes based on its content.

The output of an image classifier consists of the class label(s) (Fig. 2.10),
optionally followed by a confidence score indicating how certain the model is that
the image belongs to a specific class.

Image classification is useful when you only need to know which objects are
present in an image, without needing to determine their locations or shapes.

10
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r

PERSON ' TRIPOD @ SAFETY VEST

Figure 2.10: Image classification example

Object Detection

Object detection, on the other hand, involves both identifying the class and
localizing the position of objects: it first classifies the detected objects into different
categories based on their features and then draws bounding boxes around them.

Thus, the output of an object detector is a set of bounding boxes that enclose
the objects in the image (Fig. 2.11), along with the corresponding class labels and
confidence scores for each box.

Object detection is a good choice when it’s necessary to identify objects of
interest in a scene and determine their locations, but knowing their exact shapes is
not essential.

Person 92%

i B |
Traffic cone 93%

Traffic cone 94%

1

.
’l'}
| =

Figure 2.11: Object detection example

Instance Segmentation

Instance segmentation takes object detection further by identifying individual
objects in an image and accurately delineating their boundaries, separating each
object from the background.

To achieve this, each pixel in the image is assigned a specific category label, so
the output of an instance segmentation model includes a set of masks or contours

11
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outlining each object in the image (Fig. 2.12), along with class labels and confidence
scores for each object.

Instance segmentation is useful when you need to know not only where objects
are in an image, but also their exact shapes.

MEDICAL HOOK SCISSORS
'

Figure 2.12: Instance segmentation example

Pose Estimation

Pose estimation is a task focused on detecting the locations of specific points,
known as keypoints, which are used to track movements or poses.

These keypoints can represent various parts of an object, such as joints, land-
marks, or other distinctive features, and are typically represented as a set of 2D or
3D coordinates.

The output of a pose estimation model is a set of points that mark the keypoints
on an object in the image (Fig. 2.13), usually along with confidence scores for each
point.

Pose estimation is ideal when you need to identify specific parts of an object in
a scene and understand their relative positions to one another.

Figure 2.13: Pose estimation example
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2.2.1 Ultralytics - YOLO (You Only Look Once)

Ultralytics [10] is a company specializing in Al and computer vision technologies,
founded in 2019, that gained recognition through the development of open-source
models and tools, making these technologies accessible to a wide range of users,
from researchers to industrial developers, for real-world applications.

The company’s namesake library (Fig. 2.14), built on PyTorch, includes tools to
automatically train, test, and deploy models for various tasks on multiple devices.

@f vitralytics

Figure 2.14: Ultralytics logo

Ultralytics is renowned for developing optimized versions of YOLO, the acclaimed
real-time object detection model originally created by Joseph Redmon and Ali
Farhadi at the University of Washington in June 2015, as introduced in their
research paper "You Only Look Once: Unified, Real-Time Object Detection" [11].

Prior approaches to object detection repurposed classifiers in a slow and complex
pipeline that (1) generates potential bounding boxes, (2) runs a classifier on
these proposed boxes and (3) post-process to refine the boxes, eliminate duplicate
detections, and rescore them based on the presence of other objects in the scene.

In this way each component was trained separately, making the workflow heavy.

YOLO revolutionized this by framing object detection as a single regression
problem, drawing inspiration from how humans can glance at an image and instantly
recognize what objects are present, where they are, and how they interact.

It uses a simple pipeline (Fig. 2.15) that processes the image in one go to predict
both the objects and their locations simultaneously.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.15: YOLO detection system. It (1) resizes the input image to 448x448,
(2) runs a single CNN on it, and (3) thresholds the resulting detections by the
model’s confidence.
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In particular, a single neural network predicts bounding boxes and class proba-
bilities directly from the entire image, leveraging global context to make predictions
across all classes simultaneously.

Unlike methods that rely on Region Proposal Networks, which detect potential
regions of interest and then classify them in separate and multiple iterations, YOLO
eliminates the need for this two-step process by using a single fully connected layer.

YOLO divides the input image into an SxS grid, where each grid cell is responsible
for detecting objects whose centers fall within it.

Each grid cell predicts B bounding boxes and associated confidence scores,
indicating both the likelihood that the box contains an object and the accuracy of
the box’s dimensions.

Each bounding box consists of five parameters:

e x and y: coordinates of the center of the box relative to the grid cell
o« w and h: width and height of the box, relative to the entire image

» confidence score: indicating the certainty that the box contains an object
and the accuracy of the bounding box

Since multiple bounding boxes may be generated for the same object, leading
to overlapping or redundant predictions, YOLO uses Non-Maximal Suppression
(NMS), a post-processing technique that removes unnecessary or incorrect bounding
boxes (Fig. 2.16).

==
. s e
Bounding boxes + confidence

Final detections

Class probability map

Figure 2.16: Non-Maximal Suppression (NMS) applied to a YOLO SxS grid
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This step greatly enhances the clarity and accuracy of YOLO’s object detection
results by ensuring that only one bounding box per detected object is retained.

The architecture of the convolutional neural network (CNN) that serves as the
backbone of YOLO is inspired by GoogLeNet, incorporating 24 convolutional layers
to extract features from the image, followed by 2 fully connected layers to predict
the output probabilities and coordinates (Fig. 2.17).

Instead of using GoogLeNet’s Inception modules, it employs a combination of 1x1
and 3x3 convolutional layers, to reduce the features space from preceding layers.

YOLO’s convolutional layers are pretrained on the ImageNet classification task
using a reduced half resolution of 224x224, that is then doubled for object detection,
improving its accuracy without compromising speed.

0 -

12,

448

3
EF 56|
3Q —_—

448 3 4 28 36 \

(e e | P 1 24
nz

: il

56 28 3
[ | 7 7 7
3 192 256 512 1024 1024 1024 4096 30

Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-52 3x3x192 1x1x128 1x1x2567 g 1x1x512 7 .5 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-5-2 2x2-5-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-52
Maxpool Layer  Maxpool Layer
2x2-52 2x2-52

Figure 2.17: YOLO original architecture

Since its initial release in June 2015, several versions [12] (Fig. 2.18) of YOLO
have introduced significant enhancements:

« YOLO v2 (Dec. 2016), also known as YOLO9000, introduced a different CNN
backbone called Darknet-19 (a variant of the VGGNet architecture), batch
normalization layer including a regularization to prevent overfitting, higher
resolution of inputs (448x448), and convolution layers with anchor boxes.

« YOLO v3 (Mar. 2018) introduced Darknet-53 (a variant of the ResNet
architecture), anchor boxes with different scales and aspect ratios, and feature
pyramid networks to detect objects at multiple scales.

« YOLO v4 (Apr. 2020) introduced a new CNN architecture called CSPNet
(still a variant of ResNet), dimensionality clustering to find anchors using
K-Means, and Spatial Pyramid Pooling block to increase the receptive field.
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COCO mAPSQ~ 9%

YOLO v5 (Jun. 2020) introduced EfficientDet (based on EfficientNet), and a
new method for generating the anchor boxes called "dynamic anchor boxes".

YOLO v6 (Jun. 2022) introduced a variant of the EfficientNet architecture
called EfficientNet-L2, and a new method for generating the anchor boxes
called "dense anchor boxes".

YOLO v7 (Jul. 2022) introduced the Extended Efficient Layer Aggregation
Network (E-ELAN), the processing of images at a resolution of 608x608 pixels,
and a concept known as "trainable bag-of-freebies".

YOLO v8 (Jan. 2023) introduced anchor-free split Ultralytics head, and
advanced CSPDarkNet backbone and path aggregation.

YOLO v9 (Feb. 2024) introduced a new technique that optimizes gradient
flow during training called “Programmable Gradient Information” (PGI), and

an enhancement that further improves feature learning and aggregation called
“Generalized Efficient Layer Aggregation Network” (GELAN).

YOLO v10 (May 2024) introduced an enhanced version of CSPNet (Cross Stage
Partial Network) as backbone, the elimination of non-maximum suppression
(NMS) thanks to the One-to-One Head that generates a single best prediction
per object, and Path Aggregation Network layers for multiscale feature fusion.

YOLO 11 (Sep. 2024) introduced an improved backbone with C3K2 blocks
and neck architecture, SPFF (Spatial Pyramid Pooling Fast), and advanced
attention mechanisms like C2PSA.
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Figure 2.18: YOLO models performance comparison
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2.2.2 Ultralytics - SAM (Segment Anything Model)

Ultralytics has also integrated SAM by Meta Al [13] (Apr. 2023), a groundbreaking
model for zero-shot segmentation capable of segmenting any object in an image
without requiring specific training for that object, thanks to his ability to learn a
general concept of what constitutes an "object".

The goal of SAM is to develop a foundation model for many segmentation tasks,
inspired by the success of foundation models in NLP that exhibit strong zero-shot
and few-shot generalization using prompting techniques, carefully crafted text
inputs that guide the model to generate meaningful outputs.

Similarly, SAM leverages flexible prompts to guide its segmentation process,
introducing a promptable interface (Fig. 2.19) that enables users to specify what
to segment in an image through various forms of input, such as points, bounding
boxes, textual prompts, or edges.

valid mask

model
rel TN
° ® cat with
e black ears
segmentation prompt image

Figure 2.19: SAM flexible promptable interface

The output is a wvalid mask that delineates the selected object in real time,
where the "valid" requirement ensures that even when a prompt is ambiguous (e.g.,
overlapping objects or unclear references), the output is reasonable and corresponds
to at least one of the intended objects.

The architecture of SAM (Fig. 2.20) is built on three components:

« an Image Encoder that processes the input image to compute an high dimen-
sional image embedding, capturing rich visual features

o a Prompt Encoder that converts user-provided prompts into embeddings
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o a Mask Decoder that combines the image and prompt embeddings to predict
segmentation masks

O

mask decoder
image | %
encoder
] conv rompt encoder
0 [P
image T T 1 T

embedding mask  points  box text

Figure 2.20: SAM architecture

By separating SAM into a powerful image encoder and a lightweight prompt
encoder/mask decoder, the same image embedding can be reused with different
prompts and its cost amortized.

SAM 2 [14] (Oct. 2024) is the extension of SAM to video (Fig. 2.21), by
considering images as a video with a single frame, whose design is a simple
transformer architecture equipped with a memory attention module, that stores
information about the object and previous interactions.
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Figure 2.21: SAM 2 promptable video segmentation

This allows it to generate mask predictions throughout the video and effectively
correct them based on the stored memory context of the object from previously

observed frames.
In detail, the components (Fig. 2.22) in SAM 2 are:

o a hierarchical Image Encoder (allowing the use of multiscale features dur-
ing decoding), which is run only once for the entire interaction to provide
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unconditioned tokens (feature embeddings) representing each frame

e a Memory Attention module, which conditions the current frame features on
the past frame features and predictions as well as on any new prompts

« a Prompt Encoder, identical to the one in SAM, which can be prompted by
clicks (positive or negative), boxes, or masks to define the extent of the object
in a given frame

o a Mask Decoder, whose design largely follows SAM’s but differs in how it
ensures valid masks. Unlike SAM, where there is always a valid object to
segment given a positive prompt, in video (where ambiguity can extend across
frames), it is possible for no valid object to exist in some frames, for example
due to occlusion

o a Memory Encoder, which generates memory of frames by downsampling the
output mask using a convolutional module and then summing it element-wise
with the unconditioned frame embedding from the Image Encoder, placing
them in a bank

o a Memory Bank, which retains information about past predictions for the
target object in the video by maintaining a FIFO queue of memories of up to
N recent frames and storing information from prompts in a FIFO queue of up
to M prompted frames

l
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' N image __ memory i \\. | 5 ECEluryy ¥
¥ encoder attention encoder bank
time - = e S35 prompt encoder ‘

maqk pmm: box

Figure 2.22: SAM 2 architecture

It is important to know that the frame embedding used by the SAM 2 decoder
is not directly from an image encoder, but is instead conditioned on memories
of past predictions and prompted frames, which can also come “from the future”
relative to the current frame.
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2.3 Generative Al

Generative Artificial Intelligence (GenAl) is a subset of artificial intelligence that
employs generative models to create text, images, or other types of data [15].

These models analyze the underlying patterns and structures in their training
data, enabling them to generate new data based on the given input, which is often
provided in the form of natural language prompts.

Generative Al is applied across various industries, including software develop-
ment, healthcare, finance, entertainment, customer service, sales and marketing,
art, writing, fashion, and product design.

However, concerns have been raised about its potential misuse, such as enabling
cybercrime, spreading fake news or deepfakes to deceive or manipulate people, and
leading to the large-scale replacement of human jobs.

Additionally, intellectual property law issues arise with generative models trained
on and mimicking copyrighted works of art (Fig. 2.23).

Figure 2.23: "Théatre D’opéra Spatial’, an image made using Generative Al

From Discriminative models...

Since its inception, the field of machine learning has employed both discrimina-
tive and generative models to analyze and predict data: these approaches are
fundamentally different, making each suited to specific tasks.

In general, discriminative models focus on dividing the data space into classes
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by learning the boundaries between them, whereas generative models aim to
understand how the data are embedded within the space (Fig. 2.24).
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Figure 2.24: Discriminative (left) and Generative (right) models difference

Starting in the late 2000s, the rise of deep learning significantly advanced
research and performance in tasks such as image classification, speech recognition,
and natural language processing.

During this period, neural networks were predominantly trained as discriminative
models, largely due to the challenges associated with generative modeling.

...to the first Generative models

In 2014, significant advancements led to the development of the first practical deep
neural networks capable of learning generative models, including:

« Variational Autoencoders (VAEs), models that generate new data as variations
of the input data they are trained on.

Unlike traditional autoencoders, which encode a discrete, fixed representation
of latent variables, VAEs encode a continuous, probabilistic representation of
the latent space: this enables them not only to reconstruct the original input
accurately, but also to use variational inference to generate new data samples
that resemble the input data

» Generative Adversarial Networks (GANs), that consist of two neural networks
working together, a generator that creates image samples that resemble the
training dataset, and a discriminator that, on the other hand, evaluates
whether a given image is a "real" image from the training data or a "fake"
image generated by the generator.
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These networks are trained jointly through a zero-sum game (Fig. 2.25), where
feedback from the discriminator helps the generator improve its outputs, until
the discriminator can no longer distinguish between real and fake samples.

Training Set%é//‘ Discriminator
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Figure 2.25: Generative Adversarial Networks (GANs) workflow example

These deep generative models were the first to output not only class labels for
images but also entire images.

Long Short-Term Memory (LSTM)

Following these advancements came the era of Long Short-Term Memory (LSTM)
[16], a type of recurrent neural network (RNN) designed to address the vanishing gra-
dient problem that traditional RNNs (Fig. 2.26) often face during back-propagation.
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Figure 2.26: Recurrent Neural Network (RNN) standard architecture

LSTMs are distinguished by their ability to maintain information over extended
sequences, by providing a short-term memory mechanism that can persist for
thousands of timesteps.
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An LSTM unit (Fig. 2.27) typically consists of a cell, which retains values over
arbitrary time intervals, and three gates that regulate the flow of information into
and out of the cell:

o Forget gate, determining which information from the previous state should
be discarded. It maps the previous state and the current input to a value
between 0 and 1, where a value of 1 indicates retention of the information and
a value of 0 indicates discarding it.

o Input gate, deciding which pieces of new information should be stored in the
current cell state, using a mechanism similar to the forget gate.

o Output gate, controlling which pieces of information from the current cell
state should be output, assigning a value to the information based on the
previous and current states.

Updated cell state to help
determine new hidden state

Cell state

Hidden state
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: update
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Figure 2.27: Long short-term memory (LSTM) recurrent unit

By selectively outputting relevant information from the current state, LSTMs
can maintain useful long-term dependencies, enabling them to make predictions
across both current and future timesteps.
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However, LSTM networks are not without limitations, as they can still encounter
the exploding gradient problem and are constrained by their sequential processing
nature, as they process tokens one at a time, from the first to the last, like most
other RNNs: this limitation prevents them from operating in parallel over all tokens
in a sequence.

Sequence-to-Sequence (Seq2Seq)

LSTM remained the standard architecture for long sequence modeling until the
publication of the 2017 paper "Attention Is All You Need" [17], which described
sequence-to-sequence models and introduced the Transformer architecture.

Sequence-to-Sequence (or Seq2Seq) [18] refers to a deep learning architecture
that transforms an input sequence, like a sequence of words in a sentence, into a
different sequence.

Seq2Seq models are particularly effective in tasks like language translation (Fig.
2.28), where a sequence of words in one language is converted into a sequence of
words in another language.

Er liebte zu essen

He loved to eat

Figure 2.28: Sequence-to-Sequence (Seq2Seq) model in language translation

A common choice for Seq2Seq models has been Long Short-Term Memory
(LSTM)-based models; this is because LSTM modules are well-suited for sequence-
dependent data (for example sentences, where the order of words is crucial for
understanding), for which they can interpret the sequence while selectively remem-
bering important parts and forgetting unimportant ones.

A Seq2Seq model typically consists of:

o an Encoder, that processes the input sequence and maps it into a higher-
dimensional space, represented as an n-dimensional vector

e a Decoder, which takes the abstract vector produced by the Encoder and
transforms it into an output sequence
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As mentioned, a simple implementation of a Seq2Seq model can use a single
LSTM for both the Encoder and the Decoder.

Transformers

To better understand Transformers, it is essential to first grasp the concept of the
attention mechanism, which examines an input sequence and determines, at each
step, which other parts of the sequence are important.

This might sound abstract, but it is similar to the process we use when reading a
text: while focusing on the word we are currently reading, our mind simultaneously
retains key keywords from the text to provide context.

In technical terms, for each input processed by the Encoder, the attention
mechanism evaluates other inputs in the sequence and assigns different weights
to them, based on their importance: this allows the model to focus on the most
relevant parts of the sequence when encoding information.

The Decoder then uses the encoded representation of the sequence, along with
the weights assigned by the attention mechanism (Fig. 2.29), to generate the
output sequence.

Important
[pose | [0 ] [journee ]
A A
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Unimportant

|How|| WasHyourH day‘

Figure 2.29: Example of the "Attention" mechanism

As anticipated, the landmark paper “Attention Is All You Need” presented at
NeurIPS conference by Google researchers also introduced a novel architecture
called Transformer, that uses the attention-mechanism we saw earlier and, like
LSTM-based models, transforms one sequence into another one with the help of
two parts, the Encoder and the Decoder.

However, the Transformer [19] (Fig. 2.30) differs from the previously described
or existing sequence-to-sequence models, because it has the advantage of having no
recurrent units, therefore requiring less training time compared to earlier recurrent
neural network (RNN) architectures.
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Figure 2.30: Transformer architecture

Both the Encoder and Decoder consist of modular components that can be
stacked multiple times, as represented by "Nx" in the figure: these components
mainly include Multi-Head Attention and Feed Forward layers.

Since raw text cannot be processed directly, inputs and outputs are first embed-
ded into an n-dimensional space.

A key aspect of the model is positional encoding, which assigns a distinct
position to each word in the sequence; that is because, unlike recurrent neural
networks which inherently preserve input order, the Transformer requires positional
encoding to capture the sequence structure. These positional values are added to
the embedded representation (n-dimensional vector) of each word to encode the
relative order of words in the sequence.

Another fundamental element is the Multi-Head Attention layer, which we will
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analyze in detail by first examining the Attention mechanism, that can be described
by the following equation:

Attention(Q, K, V') = softma <QKT> Vv
ntion(Q, K, V') = softmax
e

in which:
e () is the matrix of the query (vector representation of one word in the sequence)
o K are all the keys (vector representations of all the words in the sequence)

o V are the values, i.e. the vector representations of all the words in the sequence

To simplify, we could say that the values in V are multiplied and summed with
some attention-weights a, defined by:

= soft ( : T)
a = soItmax
\/dk

This implies that the weights a are determined by how each word in the sequence
(represented by ) is influenced by all other words (represented by K).

To ensure a normal distribution, the SoftMax function is applied such that
the resulting values are then used to weight all words in the sequence, which are
introduced in V' (where ) and V are the same for the encoder and decoder but
differ in the module that connects them).

This attention mechanism can be parallelized into multiple instances operating
simultaneously (Fig. 2.31).
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Figure 2.31: Attention and Multi-Head Attention layers
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By doing so, the attention process is repeated several times, each using different
linear projections of @), K, and V.

This enables the system to learn from different representations of @), K, and V'
by applying weight matrices W, which are learned during training: this flexibility
enhances the model’s ability to capture complex patterns.

The matrices @), K, and V vary depending on their position within the attention
modules—whether in the encoder, decoder, or the connection between them.

This distinction is necessary because the attention mechanism needs to focus
either on the entire encoder input sequence or only a portion of the decoder input
sequence.

The multi-head attention module linking the encoder and decoder ensures that
both the encoder’s input sequence and the decoder’s input sequence (up to a certain
position) are considered together.

Following the multi-head attention layers in both the encoder and decoder, a
pointwise feed-forward layer is applied.

This feed-forward network is the same for every position in the sequence and
can be seen as applying an identical linear transformation independently to each
element in the sequence.

Embeddings from Language Model (ELMo)

Transformers were initially developed as an improvement over earlier deep learning
architectures for machine translation, but they became the foundation for an Al
boom in generative systems during the early 2020s: to make the discussion simpler
and more understandable, let’s break it down step by step.

An instrumental step in the evolution toward transformer-based language model-
ing was ELMo (Embeddings from Language Model) [20], a word embedding method
that represents a sequence of words as a corresponding sequence of vectors.

ELMo was historically significant as a pioneer of self-supervised generative
pretraining followed by fine-tuning: in this approach, a large model is first trained
on a large corpus to reproduce text, and then augmented with additional task-
specific weights and fine-tuned on supervised task data for specific applications.

After the 2017 publication of Transformer architecture, the architecture of ELMo
was changed from a multilayered bidirectional LSTM to a Transformer encoder,
giving rise to BERT.

Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) [21] is a language
model introduced in October 2018 by Google researchers, that can be considered
as a first example of what today a Large Language Model (LLM) is.
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BERT is trained by masked token prediction and next sentence prediction: this
way it learns contextual, latent representations of tokens in their context, using
self-supervised learning.

Although the original Transformer architecture includes both encoder and
decoder, BERT is an encoder-only model (Fig. 2.32) comprising four main modules:

o Tokenizer, a module that converts a piece of text into a sequence of integer
"tokens'

o Embedding, that transforms the sequence of discrete tokens into an array of
real-valued vectors, mapping into a lower-dimensional Euclidean space

« Encoder, a stack of multiple transformer blocks with self-attention mechanisms,
but without causal masking

o Task head, a module that converts the final vector representations into one-
hot encoded tokens again, by producing a predicted probability distribution
over the token types; it serves as a simple decoder, transforming latent
representations back into token types, and is sometimes referred to as an
"un-embedding layer"
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Figure 2.32: Bidirectional Encoder Representations from Transformers (BERT)
model

By 2023, academic and research usage of BERT began to decline due to rapid
advancements in decoder-only models (on which are based LLMs), which demon-
strated simplicity, good zero-shot generalization, and cheaper training cost to attain
a reasonable performance.
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Large Language Models (LLMs)

Large Language Models (LLMs) are a class of advanced foundation models trained
on vast amounts of textual data; these models are capable of understanding
and generating natural language, enabling them to support numerous use cases,
applications, and a wide range of tasks.

As language models, LLMs acquire these abilities by learning statistical rela-
tionships from extensive text corpora, during a combination of self-supervised and
semi-supervised training processes.

In general, an LLM operates by being provided with a "prompt", a combination
of input data and instructions specifying what to do with that input, so that, based
on the prompt, the LLM generates an output tailored to the particular use case
described (Fig. 2.33).

Content Generation

Summarization

Translation

Classification

Transformer Model
Chatbots

Figure 2.33: Example on how an LLM works

Their versatility contrasts sharply with the traditional method of building and
training domain-specific models for individual tasks: so it is easily understandable
why, due to their size and computational demands, LLMs are typically too large to
run on a single computer. Instead, they are offered as a service through APIs or
web interfaces, eliminating the need for local downloads or installations.
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Multimodal Large Language Models (LLMs)

But while LLMs have demonstrated remarkable capabilities in understanding and
generating text, there are many scenarios where we require them to work with
more than just textual data.

For instance, we might want them to handle multiple modalities of data, where
a modality refers to a specific type or form of information, such as text, images,
audio, or video.

To address this need, Multimodal LLMs [22] (Fig. 2.34) were developed: these
models extend traditional LLMs by incorporating multimodality, meaning they can
process and generate content across several data types, enhancing even more their
versatility and broadening their understanding of real-world phenomena.
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Figure 2.34: Example on how a Multimodal LLM works

When dealing with multimodal data, it is crucial to use a model that can jointly
represent information from different modalities: this enables the model to capture
and leverage the combined insights offered by these diverse forms of data.

A common approach to creating multimodal models from an LLM involves
tokenizing the output of a trained encoder (a vision encoder is used to process
images or video, while an audio encoder is employed to handle audio files).

Using this method, a wide range of multimodal LLMs have been developed,
including Audio-Text-to-Text, Image-Text-to-Text, Visual Question Answering,
Document Question Answering, Video-Text-to-Text, and more in general Any-to-
Any, opening up virtually infinite possibilities for use cases and applications.

2.3.1 OpenAl - Generative Pre-trained Transformer (GPT)

Among the various LLM providers currently on the market, the most well-known
is undoubtedly OpenAl (Fig. 2.35), an American Al research organization founded
in December 2015 and headquartered in San Francisco, California.
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@ OpenAl

Figure 2.35: OpenAl logo

OpenAl’s stated mission is to develop "safe and beneficial" Artificial General
Intelligence (AGI), which it defines as "highly autonomous systems that outperform
humans at most economically valuable work" [23].

The organization comprises the non-profit OpenAl, Inc., and its for-profit
subsidiary introduced in 2019, OpenAlI Global, LLC, on which Microsoft holds ap-
proximately 49% equity, having invested $13 billion, while also providing computing
resources through its cloud platform, Microsoft Azure.

OpenAl is primarily known for ChatGPT, an Al tool launched in November 2022,
built on the proprietary Generative Pre-trained Transformer (GPT) [24] family
of LLMs and fine-tuned for conversational applications through a combination of
supervised learning and reinforcement learning from human feedback (RLHF).

ChatGPT enables users to ask questions in natural language (Fig. 2.36), re-
sponding within seconds while considering previous user prompts and replies as
context, and moreover delivering answers tailored to the desired length, format,
style, level of detail, and language.

Figure 2.36: ChatGPT web interface

The release of ChatGPT marked a significant milestone in the AI boom as, by
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January 2023, it had become the fastest-growing consumer software application in
history, reaching over 100 million users within two months.
Let’s revisit the timeline of releases for the various models in the GPT family:

e In June 2018 the original paper on the generative pre-training of a transformer-
based language model, referred to as "GPT-1", was published as a preprint on
OpenATl’s website.

It demonstrated how a generative language model could acquire world knowl-
edge and process long-range dependencies by pre-training on a diverse corpus
containing long stretches of contiguous text.

o In February 2019, the same year OpenAl transitioned from a non-profit
to a "capped" for-profit organization, the company announced GPT-2, an
unsupervised transformer language model that gained attention for its ability
to generate human-like text, and served as the successor to OpenAl’s original
GPT model.

o In May 2020, OpenAl introduced GPT-3, a language model trained on ex-
tensive internet datasets and designed for tasks such as answering natural
language questions, translating between languages, and generating coherent,
improvised text.

OpenAl stated that the full version of GPT-3 contained 175 billion parameters,
two orders of magnitude larger than the 1.5 billion parameters in GPT-2: this
dramatic increase significantly improved benchmark results over GPT-2.

e In November 2022, OpenAl launched a free preview of ChatGPT, an Al
chatbot based on their new GPT-3.5.

o In March 2023, OpenAl announced GPT-4, capable of processing both text
and image inputs and writing code in all major programming languages.

From this point onward, OpenAl declined to disclose various technical details
and statistics about GPT models, such as their precise size.

o In May 2024, OpenAl announced and released GPT-40 (“0” for “omni”), which
can process and generate text, images, and audio, achieving state-of-the-art
results in voice, multilingual, and vision benchmarks.

o In July 2024, OpenAl introduced GPT-40 mini, a smaller and more cost-
effective version of GPT-4o, priced at $0.15 per million input tokens and $0.60
per million output tokens (compared to $5 and $15, respectively, for GPT-40),
designed for enterprises, startups, and developers seeking to automate services
with Al agents.
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« In September 2024, OpenAl released the ol (or Strawberry) and ol-mini
models, which have been designed to take more time to think, generating
a long “chains of thought” before returning a final answer: this approach
improved performance in tasks requiring scientific reasoning, coding, and
complex problem-solving.

OpenAl described ol as a complement to GPT-40 rather than a successor, as
this ability to think before responding represents a new, additional paradigm,
which is improving model outputs by spending more computing power during
the generation process (Fig. 2.37), in contrast to the classic scaling paradigm,
enhancing outputs by increasing model size, training data and computational
resources.

Pre-training Post-training  Inference

v

Most LLMs

Pre-training Post-training Inference

Figure 2.37: OpenAl ol (or Strawberry) new scaling paradigm

o In December 2024 OpenAl unveiled 03, the successor to the ol reasoning
model, along with its lighter and faster version 03-mini, further expanding the
range of available models.
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Chapter 3

Proposed tasks

3.1 Reading of gauge measurements

Context and motivation

A gauge is an instrument available in various forms and materials (Fig. 3.1),
designed to measure pressure (but not only) from gases, liquids, vapors, or solid
bodies across numerous applications and industries.

e, RN

Figure 3.1: An industrial machinery equipped with digital and analog gauges

They are critical components in most industrial processing systems, where they
must be reliable, accurate, and easy to read to ensure safety and maintain workflow
integrity in daily operations: for instance, detecting an overheating motor in advance
can make the difference between a minor repair and a complete replacement [25].

However, it is not just about preventing operational downtime, which can be
costly; equipment failures can also be dangerous and, in certain circumstances,
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potentially life-threatening.

Consider a reactor (Fig. 3.2) where chemical reactions generate heat: the
temperature and pressure gauges in the reactor can reveal a thermal runaway or
the accumulation of excess energy, where chemicals react more rapidly, escalating
the risk of an explosion.
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Figure 3.2: A chemical Continuous Stirred Tank Reactor (CSTR)

In such situations, safety mechanisms like a shutoff valve, the introduction of
inert elements, or rapid cooling can prevent disaster; however, before executing
these methods, it is crucial to recognize the need for action.

Thus, the first step is to establish a system capable of reading gauge data,
processing the information, and determining whether measurements have reached
a critical threshold: in cases where thresholds are breached, it is fundamental to
respond immediately.

Setup

To monitor the gauge measurements in industrial plants, it is essential to first
consider the specific use case: is continuous monitoring required, or is it sufficient
to check the gauge at fixed intervals?

In the first case, the issue can be addressed using a classic surveillance camera
directed at the pressure gauge while, in the second case, it is much more efficient
to leverage what we previously introduced as Autonomous Mobile Robots (AMRs).

As mentioned earlier, these robots can be configured to perform autonomous
“missions” (Fig. 3.3), namely patrol routes with predefined stops at strategic points
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and frequencies, during which they collect a variety of data in multiple formats
using the cameras and sensors with which they are equipped.

Boiler 1 - Feed Temperatur

SpotCam - PTZ v

Figure 3.3: An example of autonomous mission configuration

In the specific use case I analyzed, continuous monitoring was not necessary;
however, the site in question was a large facility with a vast number of machines
equipped with pressure gauges.

Therefore, the most functional choice was Spot, which, as described earlier, can
be considered an [oT platform with customizable accessories.

For this purpose, I chose to equip Spot with:

« a Pan-Tilt-Zoom (PTZ) camera with 30x optical zoom and a 360° x 170° field
of view (Fig. 3.4, on the head), to allow readings even at significant distances.

Figure 3.4: Spot equipped with payloads
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« a LIDAR (Light Detection And Ranging) sensor (Fig. 3.4, on the back), a
tool that determines the distance of an object surface by measuring the time
between the emission of a laser pulse and the reception of the reflected signal.

Integrated with Spot’s Reinforcement Learning techniques, this sensor helps
the robot navigate a constantly changing environment, such as an industrial
plant: in fact, using the LIDAR sensor, Spot can map its surroundings up to
a distance of 100 meters (Fig. 3.5) and, if a large obstacle blocks its path, the
system calculates the shortest alternative route to reach the destination.

Figure 3.5: Spot’s LIDAR mapping

« a Dock recharging station (Fig. 3.6) that automatically supplies power to
recharge Spot’s batteries via a dedicated connection on the rear alignment
tower: this allows Spot to autonomously return for recharging when necessary.

Figure 3.6: Spot’s docking station
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Charging is automatically initiated by Spot after it detects the fiducial sticker
(similar to a QR code), properly aligns itself on the dock, and activates the
power flow by sitting on top of it.

The final pipeline ensures that Spot performs its inspection rounds at regular,
adjustable intervals, capturing photos (Fig. 3.7) of all pressure gauges included in
its mission before returning to its docking station until the next iteration.

Figure 3.7: Spot’s autonomous gauge mission

Simultaneously, every photo is immediately sent for processing to a system that
reads the measurement displayed on the gauge and acts based on where the value
falls within the optimal or allowed range: for example, it may request further
verification by human personnel (Fig. 3.8) or directly trigger an alert.

Figure 3.8: Verification by human personnel of an anomalous measurement
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However, not all pressure gauges can be processed in the same way, as they are
divided into digital and analog types: these differences will be analyzed in detail in
the following chapters.

3.1.1 Digital gauges

From OCR to Multimodal Large Language Models

In general, a digital gauge is a device equipped with a display that shows one or
more values (Fig. 3.9), each associated with its corresponding unit of measurement.

Figure 3.9: An example of digital gauge

A common approach (the one used until now) involves the use of Optical
Character Recognition (OCR) [26], an Al field of research within computer vision
and image pattern recognition, which is the electronic or mechanical conversion of
images of handwritten or printed text into machine-encoded text (Fig. 3.10).

I
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Figure 3.10: Optical Character Recognition (OCR) of a label

Early versions of OCR required training with images of each character and were
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limited to working with one font at a time; instead, advanced systems capable of
achieving high accuracy with most fonts are now common, along with support for
a variety of image file formats.

However, even though OCR models are capable of structuring their output in
formats like json, it is not possible to provide them with instructions so they are
not able to filter which content to keep and which one not to, unless a support
script is provided.

For this reason, what I was specifically requested for was a focus on the OCR
capabilities integrated into modern Multimodal Large Language Models (LLMs),
which are more flexible in handling different types of input data or recognizing
various kinds of text.

To this end, I decided to compare various models, some available as services
through API calls, as they are too large and computationally intensive to run
locally; others, due to their smaller size, can be executed on-premises (on-prem, as
opposed to software as a service, or SaaS).

Among the first category, I selected OpenAl’'s GPT-4, GPT-40, and GPT-40
mini, the latest released models, excluding ol and ol-mini, which, however, do not
promise noteworthy improvements for an OCR task.

As for the second group, it is necessary to first make a distinction based on the
hardware capabilities available to support the chosen models.

Indeed, LLMs are computationally expensive to run, as they require substantial
memory to store the model parameters and intermediate calculations at inference
time.

System memory (RAM) is not ideal for this purpose because it is slower than
GPU memory, specifically designed for high-performance computing tasks such as
deep learning, offering the speed and bandwidth required to efficiently perform the
complex computations of LLMs, without encountering bottlenecks caused by data
transfer between memory and processing units.

To estimate the GPU memory required for serving an LLM [27], we refer to the
formula

in which:

M is the required GPU memory, expressed in Gigabyte

P is the amount of (billion) parameters in the model

4B indicates 4 bytes, expressing the bytes used for each parameter

32, as there are 32 bits in 4 bytes
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o Q (Precision or Size per parameter) is the amount of bits that should be used
for loading the model (it can be 16, 8 or 4 bits)

o 1.2 represents a 20% overhead factor, needed for additional memory used
during inference, such as storing activations (intermediate results) of the
model

Thus, to determine the maximum size of the LLM supported by our GPU we
can refer to the inverse formula

. M-32
- 12-Q-4B

that, since I had an 8 Gigabyte GPU, leaded me to a 3.33B parameters model.

Fortunately, there is one approach to reduce GPU memory requirements for
serving LLMs: quantization, a technique that decreases the precision of the model’s
parameters, by converting them from a higher to a lower precision format; this can
significantly reduce memory usage, without a significant impact on accuracy.

In the previous formula, the corresponding parameter for the precision is Q that,
for lower values, allows to run a 6.66B (Q=8) or 13.33B (Q=4) parameters model.

These values can vary, and, especially in tasks where the input includes not only
text but also an image, a higher overhead coefficient must be taken into account.

As for the group of on-premise models, I chose to explore those available on
Hugging Face Hub [28] (Fig. 3.11), a platform that allows users to share machine
learning models and datasets by Hugging Face, Inc., an American company founded
in 2016 by French entrepreneurs and based in New York City.

P
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Tasks Librar censes Models 1,268,261 ## Filte e Full-text search 11 Sort: Trending

Audio-Text-to-Text Image-Text-to-Text deepseek-ai/DeepSeek-V3
Updated 11 ¢ ago + ¥ 75.9K « &

@ hexgrad/Koko:

Text-to-Speech - U

blas forest-labs/FLUX.1-dev
< Depth Estimation Image Classification & Text- nage + Update 2024 + L 1.09M -+ 4 - O 7.85k

Figure 3.11: Hugging Face Hub interface

Initially aimed at developing a chatbot app for teenagers, the company now
focuses on computational tools for building applications using machine learning.
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The platform enables access to a vast number of models through its Transformers
library, a Python package that provides open-source implementations of transformer
models, compatible with multiple deep learning frameworks.

Among these models, in particular the ones referred to as image-text-to-text
and also called vision-language models (VLMs), I selected:

1. LLaVA (Large Language and Vision Assistant) [29] [30], a large multimodal
model (Fig. 3.12) combining the capabilities of:

o a pre-trained CLIP (Contrastive Language-Image Pre-training) ViT-L/14
visual encoder to align images with textual descriptions, allowing the
model to perform zero-shot learning across various visual tasks.

This module processes input images (Xv) through Transformer layers to
extract feature representations (Zv), enabling the model to interpret visual
information efficiently; however, CLIP is mainly designed to establish
high-level connections between images and text and does not inherently
support deep reasoning or conversational interactions.

« a Vicuna-1.5 (7B and 13B) language model (f¢ in the figure) on which
LLaVA’s linguistic capabilities rely, to achieve general-purpose visual and
language understanding and generation capabilities.

Vicuna processes and generates language responses (Xa) based on input
language instructions (Xq), complementing the functionality of CLIP.

« a Linear Projection, represented by a trainable matrix (W) acting as a
bridge between the visual features (Zv) and the language model’s embed-
ding space: this transformation converts visual features into visual tokens
(Hv), ensuring alignment with the language model’s word embeddings
and enabling seamless multimodal interaction.

Vision Encoder

Xy Image Xq Language Instruction

Figure 3.12: LLaVA (Large Language and Vision Assistant) architecture
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Unlike conventional static datasets, LLaVA generates dynamic and instructive
data using ChatGPT-4, actively incorporating this data into the training
process to capture a broader range of human-like interactions: this enables
LLaVA to engage in more complex reasoning and conversational tasks.

Following the release of the base LLaVA (1.5), LLaVA-NeXT (also known as
LLaVA-1.6) [31] [32] was introduced as a model promising improved reasoning,
OCR capabilities, and enhanced world knowledge.

LLaVA-NeXT incorporates a higher input image resolution using the “AnyRes”
technique (Fig. 3.13), which segments the image into a grid of sub-images (or
patches) with various configurations.

LLM

resize

.. flatten
|

Figure 3.13: LLaVA-NeXT "AnyRes" technique

Additionally, alongside Vicuna, other LLMs were integrated including Mistral-
7B and Nous-Hermes-2-Yi-34B, enabling LLaVA to address a broader range
of users and scenarios effectively.

. Phi-3.5-Vision [33], a 4.2B parameter model by Microsoft that excels in
reasoning tasks and is adept at handling both single or multi-image and text
prompts as inputs, subsequently generating textual outputs.

It consists of two primary components:

o a CLIP ViT-L/14 image encoder, the same used in LLaVA, which processes
visual inputs

e a Phi-3.5-mini Transformer decoder, which generates the model’s textual
outputs

In Phi-3.5-Vision, the extracted visual tokens are combined with text tokens
in an interleaved manner (Fig. 3.14), with no specific order required for image
and text tokens while, to handle high-resolution images and various aspect
ratios, a dynamic cropping strategy is employed, splitting the input image
into a 2D array of blocks.
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3. Idefics2 (Image-aware Decoder Enhanced a la Flamingo with Interleaved Cross-
attentionS) [34], an open-access visual language model based on Flamingo, a
language model developed by DeepMind, available in two different sizes (9B
or 80B parameters).

It accepts interleaved sequences of images and texts as input (Fig. 3.14) and
generates coherent text as output, showing strong in-context few-shot learning
capabilities.

LLM
Decoder

A 4 A
(
Vison-Language
Connector

!

Vision Encoder

}

e

Figure 3.14: Generation of "interleaved" sequence of images and texts

Dataset

LLMs are trained on massive amounts of data, which makes them highly effective in
zero-shot learning tasks, situations where at test time a model encounters samples
from classes that were not observed during training, or more generally, when the
distribution of training data differs from that of test data.

For this reason, training an LLM from scratch requires computational resources
that very few possess; moreover, the wide availability of pre-trained open-source
models makes this process unnecessary.

45



Proposed tasks

What is simpler to perform instead is fine-tuning, an approach to transfer
learning where the parameters of a pre-trained neural network are adjusted on new
data to specialize the model for a specific task of interest.

Fine-tuning can involve the entire neural network or only a subset of its layers:
in the latter case, the layers that are not fine-tuned are said to be "frozen", meaning
they are not updated during backpropagation.

Even so, fine-tuning requires datasets with at least a few thousand curated
examples, which are often difficult to create unless they are already available.

What can be done, however, is experimenting with the model’s textual input
through prompt engineering, an iterative trial-and-error process used to structure
the instructions given to the LLM (the prompt) to ensure it is better interpreted
and generates the desired results.

Through this approach, requiring only a small test dataset consisting of a few
hundred instances, I eliminated the need for a large dataset and built one consisting
in 97 images, each with one or more value and unit of measurement couples (Fig.
3.15), for a total of 150 labels.

Figure 3.15: Example of an image for the digital gauge dataset

{
"type": "digital",
"values": [
{ "val": 20.0, "unit": "bar"},
{ "val": 100, "unit": "FS"}
]
}
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Results

Since reading digital values is an "exact" method, it makes no sense to discuss
about approximation errors or errors relatively to the measured value: for instance,
in the example provided above, the measurement "700 FS" is considered just as
incorrect as "108 FS".

To create a benchmark for the models, I decided to treat each "val-uom" pair as
a string, focusing not on string similarity but on exact matches, obviously after a
proper format standardization process.

In particular, T used the confusion matrix paradigm [35] (Fig. 3.16), commonly
employed in classification tasks: a specific table layout visualizes the performance
of a supervised algorithm by distinguishing real (actual) values from predicted ones,
which can be either positive or negative.

Actual Values
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Figure 3.16: Confusion matrix in classification

Depending on these values, each instance is assigned to a corresponding portion
of the matrix, allowing us to compute several performance metrics:

o Precision, the accuracy with which the model predicts positive classes, consid-
ering how many are actually positive, reliable when the cost of False Positives
is high

e Recall (or Sensitivity), the ratio of correctly identified positive instances

considering how many were predicted as positive, suitable when the cost of
False Negatives is high
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o F1 Score, the harmonic mean of Precision and Recall, particularly useful when
seeking a balance between them, as it achieves a high score only when both
metrics are high

In our case, positives and negatives will not indicate the presence or absence of
specific classes but rather the presence of certain values.

Addictionally, since we aim to detect each value correctly without making
multiple predictions for a single value, we will primarily rely on the F1 Score to
obtain balanced results.

In Table 3.1, we can see the results of an initial evaluation of the models
mentioned above.

| Model Precision (%) Recall (%) F1 Score (%) |
GPT-40 76.46 79.89 77.26
GPT-40 mini 70.06 73.30 71.08
GPT-4 64.95 66.22 64.93
LLaVA-1.5-Vicuna 2.10 5.67 2.99
LLaVA-1.6-Vicuna 3.99 10.31 5.52
LLaVA-1.6-Mistral 10.91 19.76 13.61
Phi-3.5-Vision 16.44 24.97 18.70
Idefics2 0.00 0.00 0.00

Table 3.1: LLMs comparison on digital gauge reading task

It is immediately evident that the large models from the first section achieve
significantly better results compared to the smaller on-premise models from the
second section.

They additionally boast a processing time of just 3 seconds, compared to an
average of about 30 seconds for the on-premise models, due to computation on
local hardware.

This outcome was expected, as the various GPT models were considered a strong
baseline to numerically quantify a gap that we already knew existed.

Despite this, the next step was to identify and test approaches that could bridge
this gap, including:

« providing the image as input to a traditional OCR model, then extending the
LLM’s prompt with the OCR’s output: to this end I choose EasyOCR, [36], a
Python package for detecting and extracting text from images, particularly
flexible and easy to use
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» converting the image to grayscale before passing it to the LLM as it is well
known that OCR models, whose capabilities are often embedded in LLMs,
benefit from variations in the chromatic scale [37] (Fig. 3.17)

Figure 3.17: Image preprocessing for OCR improvement

At this point, I decided to focus only on the two best-performing models from
Table 3.1, as the others either failed to provide acceptable results in terms of scores
or were unable to produce outputs in the required format.

In Table 3.2, we can observe the results of the potentially improving approaches
discussed earlier, from which it is evident how performing an image pre-processing
helps the model read the display.

| Model Precision (%) Recall (%) F1 Score (%) |
Phi-3.5-Vision 16.44 24.97 18.70
Phi-3.5-Vision (OCR) 11.26 14.94 12.08
Phi-3.5-Vision (grayscale) 23.07 33.01 25.60
LLaVA-1.6-Mistral 10.91 19.76 13.61
LLaVA-1.6-Mistral (OCR) 7.15 11.34 8.41
LLaVA-1.6-Mistral (grayscale) 15.31 26.12 18.63

Table 3.2: Possible improvements on digital gauge reading task

In conclusion, this section aimed to analyze the performance of various multi-
modal models, both on-premise and cloud-based, quantifying the numerical gap
between the two categories; this analysis enabled the proposal of various alternatives
to clients, each with its own pros and cons.

Possible future improvements could include the use of local models with a larger
number of parameters, enabled by upgrades to the available hardware, or the

exploration of other pre-processing techniques and more advanced image-to-text
models like GOT-OCR2.0 [38].
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3.1.2 Analog gauges

Even though most of the useful data available today has already been digitized, a
surprising number of gauges and meters remain analog [39].

In fact, analog gauges are designed to be easily readable by humans, but they
still pose significant challenges for even state-of-the-art computer vision algorithms
because of the wide variety of gauge designs, units, and measurement scales.

The most obvious solution to this issue is to replace analog dials with digital
sensors and displays; however, this is not always feasible due to cost, compatibility
issues, or constraints imposed by equipment or manufacturers.

Previous methodology

To read analog gauge measurements, the company had already developed a pipeline
based on [40], consisting of two phases:

1. Calibration, in which were involved computer vision models specifically trained
to recognize the center of the dial and the tip of the needle (Fig. 3.18).

Figure 3.18: Calibration phase in previous methodology

2. Measurement, where they used the obtained information to calculate the angle
of the needle and identify the correlation between the dial’s angle and the
value it pointed to (Fig. 3.19).
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Figure 3.19: Measurement phase in previous methodology

However this application, involving a considerable amount of trigonometry, had
the limitation of requiring the user to manually provide the unit of measurement,
as well as the range of values and angles on the scale in the format

{
"min_angle": 45,
"max_angle": 315,
"min_value": O,
"max_value": 200,
llunitll : llpsi"

Without these informations, it was impossible to perform any analysis: for this
reason, I tried finding an alternative solution that would be more generalizable.

New proposed approach

Based on [41], T adopted a method that requires no prior knowledge of the gauge
type, the range of the scale or the units used, as it is capable of extracting such
information automatically.

To propose a robust and modular algorithm, this new approach relies on a set
of reasonable assumptions:
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the gauge has a linear scale with at least 5 visible major notches aligned in an
arc on the gauge face

there are numerical scale markers along the scale, and the gauge face is flat

the midpoint between the start and end notches of an unrotated gauge is
positioned at the bottom

the needle points towards the symmetry axis of the needle

This method splits the reading task into distinct steps, also enabling the detection
of potential failures at each stage.

1.
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Gauge detection

As a first step, the method detects (Fig. 3.20a) the gauge, crops (Fig. 3.20b)
and resize it to a 448x448 resolution, to isolate individual gauges, if multiple
are present, while also reducing background noise.
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Figure 3.20: Gauge detection and crop

To achieve this, the smallest YOLOvS detection model was used, as it proved
more than sufficient for this task.

Initially pretrained on the COCO dataset, the model was further fine-tuned
on a small, task-specific dataset.
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2. Notch detection

The method detects the major notches on the gauge scale using a keypoint
detection algorithm, that leverages a pretrained DINOv2 vision transformer
backbone to predict a heatmap (Fig. 3.21), where each pixel’s intensity
corresponds to the probability of it being a notch.
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Figure 3.21: Heatmap prediction and clustering

Predicted Heatmap Start Predicted Heatmap Middle

50
100 100
150 150
200 200
250 250
300 300
350 350

400 400

100 200 300 400 4] 100 200 300 400

The heatmap is then clustered to extract individual notch points, which are
categorized into three types (Fig. 3.22): Start notch, Intermediate notches,
and End notch.

Predicted Key Point End

Predicted Key Point Start Predicted Key Point Middle

Figure 3.22: Notch detection and categorization

The start and end notches are particularly important, as they are used to
estimate and, if necessary, correct the orientation of the gauge in a later stage
of the pipeline.

3. Ellipse fitting

To approximate the arc of the gauge scale, an ellipse is fitted through the
coordinates of the keypoints corresponding to the detected notches (Fig. 3.23),
with a minimum of 5 required.
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Figure 3.23: Ellipse fitting through keypoints

This step is crucial for correcting perspective distortions by warping the gauge
image so that the computed ellipse is transformed into a perfect circle.
4. Needle segmentation and line fit

The task of estimating the position and direction of the gauge needle is
addressed in two steps (Fig. 3.24):

» pixels belonging to the needle are segmented using the same COCO-
pretrained (and fine-tuned) YOLOv8 model size

« a line is fitted through the segmented pixels applying Orthogonal Distance
Regression, to minimize the shortest distance of each point to the line

Figure 3.24: Needle pixels segmentation and line fitting
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5. Detection of scale numbers and unit

Since the algorithm does not have prior knowledge of the scale’s range, it
extracts the numbers (at least two scale markers are required) and the unit
displayed on the gauge face using an OCR model (Fig. 3.25).

The OCR process relies on a two-stage pre-trained neural network in which a
DBNet model [42] with a ResNet-18 backbone focuses on text detection, while
an ABINet architecture [43], which combines a vision model and a language
model, predicts the text contained within the detected bounding boxes.

ocr results full

100

150

200

Figure 3.25: Detection and extraction of scale numbers and unit

6. Computing the final reading

After running the previous stages of the pipeline, it computes the reading of
the gauge using the following steps:

e Projection and interpolation of scale markers
From the text recognized during the OCR stage, the algorithm selects
only the subset of recognitions that can be interpreted as numerical values,
projecting the center of the corresponding bounding boxes onto the ellipse
to anchor the markers and determine the needle angle for each marker.
Using these angles, the algorithm fits a correspondence line that maps
the angles on the ellipse to the scale readings (Fig. 3.26) using linear
regression with least squares.
Moreover to handle outliers, such as faulty OCR readings, it employs
RANSAC (Random Sample Consensus) to identify and remove them.
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Figure 3.26: Projection and interpolation of scale markers

For gauges with multiple scales, the model distinguishes between markers
for inner and outer scales by checking whether the it lies inside or outside
the ellipse: once this distinction is made, the algorithm fits separate linear
models for each scale and calculates the corresponding reading.

Intersection of needle and ellipse

The final step involves determining the point on the ellipse that the
needle is pointing to, by finding the intersection of the needle line and the
estimated ellipse; then the algorithm computes the angle of the point on
the ellipse and predicts the reading (Fig. 3.27) by performing interpolation
with the previously fitted linear model that maps angles to readings.

0 50 100 150 200 250 300 350 400

Figure 3.27: Intersection of needle line and estimated ellipse
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Dataset

Since the models utilized in the new methodology were already pre-trained, there
was no need for a large dataset: a small test dataset was more than sufficient to
evaluate and validate the new approach.

To this end, I created a manually labeled dataset consisting of 63 images of analog
gauges, including both single-scale and dual-scale gauges (Fig. 3.28), following a
standard format.

—

Figure 3.28: Example of an image for the analog gauge dataset

{
"type": "analog",
"values": [
{ "val": 6, "range": 25, "unit": "bar"},
{ "val": 90, "range": 360, "unit": "psi"}
]
}
Results

In this case, unlike digital gauges, where an "exact" method was used, it makes
sense to talk about approximation errors and errors relative to the measurement
scale’s range.

This is because the final result is not derived from an attempt to read numerical
characters by a Generative Al model, but is instead the output of a complex
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Computer Vision pipeline that accumulates a certain degree of approximation error
at each step.

To establish a benchmark, I decided to define various percentage tolerance levels
relative to the total range of the gauge scale: 5, 10, 20 and "infinite" (c0), that
represents the algorithm’s ability to successfully reach the final stage of the pipeline
and return a value, regardless of its accuracy.

Alongside the previous methodology, which without prior knowledge of the gauge
is incapable of returning any value, I included the new algorithm in its original
form as well as a couple of its variants testing different architectures, specifically
for the optical character recognition (OCR) step, which has proven to be the most
critical stage of the pipeline.

Specifically, for both variants, instead of using the DBNet model with a ResNet-
18 backbone for text detection, I opted for a DBNetpp [44] with a ResNet-50
backbone, to enhance the model’s capabilities.

Regarding text recognition, I continued to use ABINet for variant 1, while
for variant 2 I replaced it with ABINet-Vision, which isolates the vision model
component of ABINet.

| Methodology oo tol. (%) 20 tol. (%) 10 tol. (%) 5 tol. (%) |

Old 0.0 0.0 0.0 0.0
New (original) 53.3 45.0 41.7 35.0
New (variant 1) 71.7 61.7 55.0 48.3
New (variant 2) 71.7 60.0 55.0 50.0

Table 3.3: Methodology comparison on analog gauge reading task

From Table 3.3 it is evident that, compared to the original model, both variants
achieve approximately a 15% improvement at each tolerance level, allowing for the
reading of more gauges while also reducing relative error.

In conclusion, this section introduced a reading method that aims to achieve
robust performance across gauges found in real-world scenarios with diverse ap-
pearances, scales, and units, as it does not require any prior information.

Possible future improvements could include fine-tuning the OCR reader on text
specific to gauges, identifying other useful pre-processing steps, or even combining
readings from different images.

58



Proposed tasks

3.2 Autonomous surveillance on restricted areas

Context and motivation

Ensuring the security and operational integrity of industrial facilities, critical
infrastructures, and restricted areas is a major challenge across various sectors,
including manufacturing, energy, logistics, and defense.

Traditional surveillance methods rely heavily on fixed cameras, security personnel,
and scheduled inspections, which often come with limitations in coverage, response
time, and human resource efficiency.

Modern industrial sites require a more dynamic, intelligent, and autonomous
approach to surveillance, capable of detecting anomalies, unauthorized access, and
potential hazards in real time.

Specifically, for this second task, the objective was to detect the presence of
unauthorized individuals and vehicles within a restricted-access area (Fig. 3.29),
which could belong to an industrial facility or potentially even to a private property.

Figure 3.29: Example of surveillance on a region of interest (ROI)

Compared to traditional approaches, these type of systems aim to offer greater
flexibility, wider coverage, and the ability to operate in hazardous or hard-to-reach
areas without human intervention.
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Setup

For this use case, a video source with broad-spectrum visibility was required,
preferably from an elevated position, so a standard surveillance camera could have
been suitable.

But given the large area to be monitored, the alternatives were either installing
multiple cameras or using a source capable of covering vast distances quickly: for
this reason, the choice fell on the previously described DJI drone.

Additionally, to enable the autonomous execution of multiple missions, we used
the DJI Dock 2 [45] (Fig. 3.30), a hangar compatible with many DJI drones, that
is recognized by the drone through positioning markers on the landing platform,
allowing for precise landings without the need for direct human control.

Figure 3.30: DJI’s hangar, Dock 2

The Dock 2 is designed to operate reliably for extended periods, even in harsh
climates and environments, and integrates various sensors, including rain, wind
speed, and temperature indicators, to detect real-time weather changes: these, along
with online weather forecasts, can provide timely alerts or stop flight operations if
conditions become hazardous.

The final implementation includes the integration of a system that monitors a
dedicated email inbox in real time, specifically created to receive alerts from the
alarm system in case of intrusions; based on the email’s content (Fig. 3.31), the
system can extract information about the specific breached area and immediately
launch the corresponding autonomous drone mission to that area.

Once deployed for surveillance, the drone will search for individuals, and if
any are detected, it will capture images and send them (along with other relevant
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AF Automated Surveillance Framework @ S « 2 O
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Warning,
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Figure 3.31: Template of email triggering drone missions

information such as location) to a list of authorized recipients, including the
property owner, the security company, or law enforcement authorities.

Only when the inspection is complete, the drone can return to its initial position,
ready for the next mission.

Dataset

Treating it as a detection task, I searched for publicly available pre-labeled datasets,
as manually labeling such data would be extremely costly and time-consuming.

Among the various options available on platforms like Roboflow, I chose to use
VisDrone [46] (Fig. 3.32), a large-scale benchmark captured by various drone cam-
eras available for different computer vision tasks, covering a wide range of aspects,
including location, environment (both urban and rural), objects (pedestrians, cars,
bicycles, etc.), and density (ranging from sparse to crowded scenes).

Figure 3.32: A VisDrone dataset labelled instance
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Results

By comparing the areas of the ground truth and predicted bounding boxes, it was
possible to use the previously mentioned metrics [47], along with:

o mAP50: Mean Average Precision calculated at an Intersection over Union (IoU)
threshold of 0.50, representing accuracy based only on the "easy" detections

o« mAP50-95: The average Mean Average Precision calculated across varying
IoU thresholds, ranging from 0.50 to 0.95

Table 3.4 presents the results of an initial training performed using a YOLO
model of a reference version and size, while keeping the class definitions from the
VisDrone dataset unchanged.

‘Setup Precision Recall mAP50 mAP50—95‘
| ALl classes  0.47955  0.34217 0.35128  0.20542 |

Table 3.4: Results from the first train on VisDrone detection dataset

By closely analyzing the confusion matrix and the distribution of instances
within the dataset (Fig. 3.33), it became evident that the model struggles with the
presence of multiple sub-classes of the main categories of people and vehicles.
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Figure 3.33: Distribution of instances across classes in VisDrone dataset
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For this reason, I decided to merge these sub-classes into broader categories,
specifically creating the macro-classes "person" and "vehicle", for which Table 3.5
presents the results of a second training using this new categorization.

‘Setup Precision Recall mAPS50 mAP50—95‘

All classes 0.47955  0.34217 0.35128 0.20542
All_classes merged  0.69427 0.49799 0.57311 0.31330

Table 3.5: Results from the second train on VisDrone detection dataset

While it is evident an improvement in results, the metrics curves (Fig. 3.34)
reveal that the model tends to specialize heavily in detecting vehicles (in red),
while neglecting people (in blue).
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Figure 3.34: Validation curves in VisDrone dataset

At this point, I decided to train two separate models for the two macro-classes
to determine whether the lower performance on people was due to the inherent
difficulty of the class, since they are harder to recognize due to their smaller size,
or if it was primarily a consequence of the imbalance in the number of instances
compared to vehicles.
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‘Setup Precision  Recall mAPS50 mAP50—95‘

All_ classes 0.47955 0.34217 0.35128  0.20542
All _classes merged 0.69427 0.49799 0.57311 0.31330
Only persons. merged 0.66056 0.47518 0.53231  0.22796
Only vehicles merged  0.8217  0.60716 0.71128 0.4445

Table 3.6: Results from the third train on VisDrone detection dataset

From the results in Table 3.6, we can conclude that, to maximize evaluation
metrics for a single model, it would be beneficial to expand the dataset to balance
the two macro-classes and, additionally, comparing different versions and sizes of
the YOLO model while carefully considering the trade-off between accuracy and
performance.
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Chapter 4

Conclusion

4.1 Challenges and Opportunities

This thesis explored the integration of Robotics, Computer Vision, and GenAl in
industrial automation through an interdisciplinary approach that leverages state-
of-the-art technologies, combined with advanced Al models, to improve efficiency,
accuracy, and reliability in industrial monitoring.

1. In the domain of automated gauge reading, we offered a scalable solution for
real-time monitoring of both digital and analog gauge data, while also revealing
challenges such as dataset limitations and model performance variations based
on gauge design.

Future improvements could focus on expanding training datasets, refining
OCR models, and integrating additional pre-processing techniques to enhance
accuracy.

2. For autonomous surveillance of restricted areas, we designed and tested
a vision-based anomaly detection system using UAVs and Computer Vision
models, offering an alternative to traditional surveillance methods.

Future research could involve improving model generalization, and advance-
ments in low-power Al hardware for onboard inference, as real-time processing
constraints remain areas for further development.

Overall, this thesis has demonstrated that the convergence of Robotics, Computer
Vision, and GenAl holds immense promise for revolutionizing industrial automation:
while challenges persist, the continued evolution of Al models and robotics platforms
will likely unlock new capabilities, paving the way for more intelligent, autonomous,
and efficient industrial monitoring systems.
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