
POLITECNICO DI TORINO
MASTER’s Degree in Data Science Engineering

MASTER’S Thesis

A Nearest Neighbors Gaussian Process
Approach to Modeling Customer
Electricity Consumption Profiles

Supervisors

Prof. Enrico BIBBONA

Prof. Gianluca MASTRANTONIO

Candidate

Ilaria ZERBINI

April 2025

Summary

This thesis addresses the modeling of customer energy consumption profiles
within an energetic community by leveraging data analysis techniques and
Nearest Neighbors Gaussian Processes (NNGP). A comprehensive dataset of
energy consumption was initially analyzed to extract insights and identify
inherent patterns, including short-term correlations, 24-hour cyclic behaviors,
and weekly periodicities.

A model was developed that incorporates these multi-scale repetitive
patterns and whose formulation is designed to describe the temporal dy-
namics of the consumption data, by accounting for both immediate sample
dependencies and longer cyclic trends.

To estimate the model parameters, an NNGP framework was employed,
offering a computationally efficient approach for simulation and inference.
The performance of the proposed model was validated by comparing its
outputs with synthetic data specifically generated to mimic the observed
patterns, as well as against the real dataset.

The results show that the NNGP-based model effectively captures the
essential features of customer energy consumption.

ii

Acknowledgements

I would like to express my heartfelt gratitude to my family and friends for
their unwavering support and encouragement throughout this journey.
Their patience, understanding, and belief in me have been invaluable.
I am also deeply thankful to everyone who has supported me along the way,
whether through guidance, collaboration, or simply by offering words of
motivation.
Your contributions have been truly meaningful and greatly appreciated.

iii

Table of Contents

1 Introduction 1
1.1 Probability Background . 1

1.1.1 Set Theory . 1
1.1.2 Definition of Probability 3
1.1.3 Conditional Probability 4
1.1.4 Random Variables 5
1.1.5 Mean and Variance 8
1.1.6 The Likelihood Function 9

1.2 Bayesian Probability Notions 11
1.2.1 Multivariate Normal 13
1.2.2 Gaussian Processes 15

1.3 Time Series . 20
1.3.1 The lag plot . 22

1.4 Rstudio and Stan . 24

2 Dataset Analysis 26
2.1 Introduction . 26
2.2 Energy Consumption Dataset 27

2.2.1 Finding Hidden Patterns in the Dataset 36

3 Generative NNGP Model 45
3.1 Nearest Neighbor Gaussian Processes 45
3.2 Generic Stan Model Assumption 47
3.3 NNGP Model . 48

3.3.1 Implementation of the Model 49
3.4 Choice of the priors . 51

3.4.1 Priors for σ, σ24, and σsett 51
3.4.2 Priors for ϕ, ϕ24, and ϕsett 52

v

3.4.3 Priors for β . 55
3.4.4 Priors for τ . 56

4 Synthetic Data Generation 57
4.0.1 Approach . 57
4.0.2 Parameter choice . 58
4.0.3 Results and comparison with original series 59

5 Results 62
5.1 Application to Synthetic Data 62

5.1.1 Parameter Series Comparison 63
5.1.2 Visual Comparison 67

5.2 Applying the Model on the Real Data 70
5.2.1 Parameter Series Comparison 70
5.2.2 Visual Comparison 70

5.3 Conclusion . 73

6 Code 75
6.1 Generation of synthetic data 75

6.1.1 Stan model on the synthetic data 77
6.1.2 Set up variables and matrices for stan model call . . 77
6.1.3 Stan model implementation 81

Bibliography 86

vi

Chapter 1

Introduction

In order to facilitate the comprehension of this work, it is convenient to
provide a brief introduction to the fundamental concepts that will be covered
throughout the latter.
In particular, the two key concepts on which all this study revolves around
are probability and time series analysis.
For this reason, the following introductory section is divided into two parts,
each focusing on one of these topics.

1.1 Probability Background
The material presented in this section follows [1].

1.1.1 Set Theory
Definition 1 The set S of all the possible outcomes of a particular experiment
si called sample space for the experiment.

As an example, consider the toss of a coin as experiment, in this case the
sample space consists of only two outcomes:

S = {Heads, Tails}

There are further classification of sample space, but for the work presented
in this thesis it is enough to highlight that it can be either countable, if its
elements can be put in a 1-1 correspondence with a subset of the integers

1

Introduction

numbers, or else uncountable.

Definition 2 An event is any collection of possible outcome of an experi-
ment. Therefore any subset of S, including itself, it called event.

Now, let A ⊆ S be a certain event. A is said to occur if the outcome of
the experiment is in the latter.
Moreover, it is also possible to establish an ordering between events.
The following two relationships hold and allow to define it:

Definition 3 Let B, A ⊆ S be two events.
The following two relationships hold:

• containment: A ⊂ B ⇐⇒ x ∈ A =⇒ x ∈ B

• equality: A = B ⇐⇒ A ⊂ B and B ⊂ A

Moreover, for any two events both intersection and union set properties, still
hold:

Definition 4 Let B, A ⊆ S be two events.
The intersection of two events, denoted A ∩ B, is the set of outcomes that
belong to both A and B:

A ∩ B = {x | x ∈ A and x ∈ B}. (1.1)

Meanwhile, the union of two events, denoted A ∪ B, is the set of outcomes
that belong to at least one of the events:

A ∪ B = {x | x ∈ A or x ∈ B}. (1.2)

Finally, the complement of A, written Ac, is the set of all the outcomes
that are not in A:

Ac = {x | x /∈ A}

Last definition in this section is disjoint events:

2

Introduction

Definition 5 Let B, A ⊆ S be two events.
A and B are said to be disjoint, or mutually exclusive, events if

A ∩ B = ∅

Moreover, let Ai ⊆ S, with i = 1, . . . , N , be a series of events. Such events
are said to be pairwaise disjoint if

Ai ∩ Aj = ∅, ∀ i /= j

1.1.2 Definition of Probability
When an experiment is performed, its realization is one of the possible out-
comes in the sample space.
If such experiment is then repeated a number of times, it could happen that
some of the outcomes will show up again. The frequency of occurrence of
each outcomes, represents its probability.
Therefore, probability is a measure that quantifies the likelihood of a given
outcome when it is not yet known whether the event will happen or not.
This likelihood is represented by a number between 0 and 1.

Although, to give a more accurate and mathematical definition, it is
necessary to introduce the concept of sigma algebra, even if just briefly
since it will not be focal for this work:

Definition 6 A collection of subsets of the sample space S is called sigma
algebra, denoted by B, if it satisfies the following three properties:

• ∅ ∈ B

• If A ∈ B then Ac ∈ B

• If A1, A2, ... ∈ B, then ∪∞
i=1Ai ∈ B

Definition 7 Given a sample space S and an associated sigma algebra B, P
is a probability function defined on B if it satifies:

• P (A) ≥ 0, ∀A ∈ B

3

Introduction

• P (S) = 1

• If A1, A2, · · · ∈ B are pairwise disjoint =⇒ P (∪∞
i=1Ai) = q∞

i=1 P (Ai)

These three properties are usually referred to as the Axiom of probability.
It must be noted that the probability function isn’t unique, as multiple
different ones can exist for each sample space S.

1.1.3 Conditional Probability
Conditional probability allows us to update our beliefs about the occur-
rence of an event, given that another event has already occurred, playing a
fundamental role in statistical inference and decision-making.

Definition 8 Let A and B be events in a given sample space S, and assume
that P (B) > 0.
Then, the conditional probability of A given B is denoted by P (A|B) and is
defined as

P (A|B) = P (A ∩ B)
P (B) , (1.3)

In particular, when computing P (A|B) the sample space S is "updated",
and effectively becomes equal to B, so that P (B|B) = 1. Therefore, if
A ∩ B = ∅, then it follows that P (A|B) = P (B|A) = 0.

An important result, called Bayes’ Rule, allows a rewriting of conditional
probability:

Definition 9 Let A and B be events in a given sample space S, and assume
that P (B) > 0. Then the following holds:

P (A|B) = P (B|A)P (A)
P (B) (1.4)

The oroginal formulation extends this result to a generic partition of the
sample space S.
Let A1, A2, . . . be a partition of the sample space S, and let B be any set.
Then, for each i = 1,2, ... it holds:

P (Ai|B) = P (B|Ai)P (Ai)q∞
j=1 P (B|Aj)P (Aj)

(1.5)

4

Introduction

As it can occur that two events result to be linked in some way, it can also
happen the opposite, so that the particular occurrence of a certain event B
doesn’t impact at all another event A belonging to the same sample space.
Considering the latter situation in terms of conditional probability, these
two events are such that P (A|B) = P (A).
Leveraging Bayes’ Rule (1.5) introduce above, in this case it holds:

• P (B|A) = P (A|B)P (B)
P (A) = P (A)P (B)

P (A) = P (B)

• P (A ∩ B) = P (A)P (B)

In the situation described, A and B are called independent events:

Definition 10 Two events, A and B, are statistically independed if

P (A ∩ B) = P (A)P (B)

1.1.4 Random Variables
In probability theory, it is often useful to represent uncertain outcomes using
numerical values rather than dealing directly with complex sample spaces.
A random variable provides a structured way to quantify randomness by
mapping elements of a sample space to real numbers:

Definition 11 A random variable is a measurable function from a sample
space S into the real numbers

Moreover, to each random variable X it is associated a cumulative distri-
bution function:

Definition 12 The cumulative distribution function (cdf) of a random vari-
able X, denoted by FX(x) is defined by:

FX(x) = PX(X ≤ x), ∀x

where PX is a probability function defined on X as:

PX(X = xi) = P ({sj ∈ S|X(sj) = xi})

The cdf can be either continuous or discontinuous and has to satisfy three
conditions:

5

Introduction

Definition 13 The function F(x) is a cdf ⇐⇒ the three following properties
hold:

• limx−→−∞ F (x) = 0 and limx−→∞ F (x) = 1

• F(x) is a nondecreasing fucntion of x

• F(x) is right continuous =⇒ limx↓x0 F (x) = F (x0)

If the cdf of a given random variable X is continuous, then X is a continuous
random variable, else it is a discrete random variable.
A random variable is completely defined by its cdf, stating its probability
distribution.

Another important function is associated with a random variable and its
cdf: the probability density function (pdf).

Definition 14 The probability density function of a discrete random variable
X is defined as:

fX(x) = P (X = x), ∀x

Meanwhile for continuous random varibles, the pdf is the function that satis-
fies:

FX(x) =
Ú x

−∞
fX(t) dt for all x.

Moreover, there are two requirements necessary for a pdf to be defined so,
which are direct consequencies of its definition:

Definition 15 A function fX(x) is a pdf of a random variable x ⇐⇒

• fX(x) ≥ 0 for all x

• q
x fX(x) = 1 (discrete) or s∞

−∞ fX(x) dx = 1 (continuous)

The pdf is usually used to specify the probability of X falling within a
particular range of values [a, b], more than taking one particular value.
Such probability corresponds to the integral of f(X) over the desired range,
therefore it’s the area underneath the curve described by f(X):

P (a ≤ X ≤ b) =
Ú b

a
f(x) dx.

6

Introduction

Figure 1.1: A probability density function illustrating the probability of
a random variable X lying between the value a and b. The shaded region
under the curve corresponds to P (a ≤ X ≤ b) [2]

Since the probability density function of the Normal, or Gaussian, distri-
bution is particularly relevant to this thesis, its pdf is also reported:

f(x) = 1√
2πσ2

exp
A

−(x − µ)2

2σ2

B
,

where µ and σ2 are taken to be the mean and variance, which will be briefly
described in the following section.

7

Introduction

Figure 1.2: The Gaussian curve shows that the most-likely value is the
mean, x̄. Two other values have been defined, x̄ ± σ, where σ is the standard
deviation and σ2 is called the "variance "[3]

1.1.5 Mean and Variance
Two important tools used to describe and characterize the PDFs are mean
and variance.
The first one, also known as average, is the long-run arithmetic average value
of a random variable having that distribution.
Given a random variable X, then its mean is also known as the expected
value of X, denoted E(X).
For a continuous distribution, the mean is defined as:

E(X) =
Ú ∞

−∞
xf(x) dx

where f(x) is the probability density function.
The variance instead, is the expected value of the squared deviation from

the mean of a random variable. This means that is a measure of dispersion,
which measures how far the set of possible outcomes is spread out from their
average value.

8

Introduction

Var(X) = E[(X − µ)2]

A disadvantage of the variance for practical applications is that its unit
of measure differ from the random variable’s one. For this reason, usually
instead of the variance it is used the standard deviation, which is obtained
by doing the square root of the variance.
Another disadvantage is that the variance is not finite for many distributions.

Figure 1.3: Impact of changing the mean and variance of a normal distribu-
tion. The left plot shows how shifting the mean while keeping the variance
constant affects the location of the distribution. The right plot demonstrates
how increasing the variance while keeping the mean constant results in a
wider, more spread-out distribution[4]

1.1.6 The Likelihood Function
Another key concept in statistics is the likelihood function.
The likelihood function measures how well a statistical model explains ob-
served samples by calculating the probability of seeing that outcome setting
a different value for a parameter in the model.

9

Introduction

Let X = (X1, X2, ..., Xn) be a vector of random variables with a joint
probability density function f(X; θ), where θ ∈ Θ denotes a parameter or a
vector of parameters of f .
If the value of the vector θ is fixed, another way to express the pdf is:

X → f(X | θ),

Following the same notation, but fixing the vector of observed data x =
x1, .., xn instead, the likelihood function is thus obtained:

Definition 16 Let f(x|θ) denote the joint pdf of the samples X = (X1, X2, ..., Xn).
Then, given that X = x is observed, the function of θ defined by:

L(θ | x) = f(x|θ)

is called likelihood function.

To clarify this concept, let X be a discrete random vector, and x the
vector of realizations, then

L(θ | x) = Pθ(X = x).

Now, comparing the likelihood function at two distinct parameter points,
assume that this holds

Pθ1(X = x) = L(θ1 | x) > L(θ2 | x) = Pθ2(X = x). (1.6)

Then this means that the observed sample x is more likely to have occurred
with θ = θ1 than θ = θ2. In terms of likelihood, this means that the value
θ = θ1 is a more plausible true value for θ than θ2 is.

The big difference between the pdf and the likelihood function is which
variable is considered "fixed" and which is varying instead. In the pdf, f(x|θ),
x is varying, meanwhile for the likelihood L(θ | x), x stays fixed.

When having to manipulate the likelihood, usually it’s more convenient
to apply the logarithm on the function. In this case it is commonly called
log-likelihood function, is defined by

ℓ(θ) = log L(θ).

10

Introduction

Therefore, by definition, the following equality holds:

arg maxθ L(θ | x̄) = arg maxθ f(x̄ | θ) = arg maxθ f(x1, ...xn|θ). (1.7)

This means that maximizing the probability density function at xj corre-
sponds to maximizing the likelihood of the specific observation xj. Moreover,
since the likelihood function summarizes all the evidence provided by the
data, choosing the value of θ that maximizes the likelihood makes it the
most "plausible" explanation of the observed data.

Again, since the normal distribution will be widely used during this work,
it’s convenient to introduce the likelihood of an independent sample for the
normal distribution.
If X1, X2, . . . , Xn are independent and normally distributed with mean µ
and variance σ2, their probability density function is given by

f(xi; µ, σ2) = 1√
2πσ2

exp
A

−(xi − µ)2

2σ2

B
.

The likelihood function for the entire sample is obtained as

L(µ, σ2) =
nÙ

i=1

1√
2πσ2

exp
A

−(xi − µ)2

2σ2

B
.

Taking the logarithm, the log-likelihood function is derived as

ℓ(µ, σ2) = −n

2 log(2πσ2) − 1
2σ2

nØ
i=1

(xi − µ)2.

1.2 Bayesian Probability Notions
Bayesian probability has been developed as an alternative to classical
statistical approaches. The adoption of Bayesian methods has been applied
across multiple scientific domains in recent decades [5].
A fundamental distinction between the two formulations can be found in
how probability is interpreted.
Probability has been defined through the frequency of repeated events, while

11

Introduction

in the Bayesian framework, probability has been conceived as a measure of
belief. This belief can be modified when additional data is collected.
The practical value of this approach has been demonstrated in scenarios
where uncertainties must be measured and updated continuously when new
evidence is found out.
An example of the difference between the two formulation is the likelihood
function. In traditional statistics the likelihood revoles around these three
key facts:

• The likelihood is seen as a function of the parameters given fixed data

• It’s used to find point estimates

• Parameters are treated as fixed, unknown constants

Meanwhile in the Bayesian setting:

• The likelihood is combined with the prior distribution using Bayes’
theorem (which will be introduced soon)

• It helps update prior beliefs about parameters to get posterior distribu-
tions

• Parameters are treated as random variables with probability distributions

In the Bayesian setting, parameters, usually gathered under the symbol
θ, are treated as random variables, with their variability encoded in a prior
distribution π(θ).
This prior distribution represents the experimenter’s subjective belief about
the parameter and can incorporate results from previous studies, expert
knowledge, or be specified as a non-informative distribution when little prior
knowledge exists.
All Bayesian inference revolves around the possibility of using the Bayes rule
(1.5) to find out the posterior distribution of a certain parameter θ.
This can be done using the following:

π(θ|X) = f(X|θ)π(θ)
m(X) (1.8)

where π(θ|X) is defined as the posterior distribution, f(X|θ) as the
likelihood, π(θ) as the prior probability, and m(X) as the normalizing factor,
calculated as:

12

Introduction

m(X) =
Ú

f(X|θ)π(θ)dθ (1.9)

In this context, the conditional probability conveys the relationship be-
tween data and model parameters.
The likelihood function f(X|θ) instead, represents the conditional probability
of observing the data X given specific parameter values θ.
Similarly, the posterior distribution π(θ|x) represents the conditional proba-
bility of the parameters given the observed data.
The posterior distribution π(θ|X) explains both the variability of the param-
eter and its location.
While it is possible to summarize this distribution into a single value through
expectation or other measures, the full posterior distribution provides a
deeper understanding of the parameter’s uncertainty.

A particularly useful concept in Bayesian analysis is that of conjugate
families [6]. These are pairs of prior and likelihood distributions where the
posterior distribution belongs to the same family as the prior, simplifying
the computations for the Bayesian inference.
In such cases, updating the parameter estimates reduces to updating the
parameters of the prior distribution with information from the sample.

Even though Bayesian inference is particularly suitable for some kind of
problem, the calculation of the posterior distribution often involves intractable
integrals, particularly in the computation of the normalizing constant m(X).
This computational complexity is an important drawback of this approach,
more so for large-scale problems.

1.2.1 Multivariate Normal
In order to introduce Gaussian processes, which form the core of this work,
it is first necessary to present the Multivariate Normal distribution and
its key properties [7].
The multivariate normal distribution generalizes the one-dimensional normal
distribution to higher dimensions. In fact, a random vector is said to be
k-variate normally distributed if every linear combination of its k components
follows a univariate normal distribution.

13

Introduction

Therefore, a k-dimensional random vector X = (X1, . . . , Xk)T follows
a multivariate normal distribution if, given the vector µ ∈ Rk and the
symmetric positive definite matrix Σ, then

P (X) = 1
(2π)n/2|Σ|1/2 exp

A
−1

2(x − µ)T Σ−1(x − µ)
B

(1.10)

and it is denoted as
X ∼ Nk(µ, Σ). (1.11)

In the previous expression, the k-dimensional vector µ ∈ Rk represents the
mean of X:

µ = E[X] = (E[X1],E[X2], . . . ,E[Xk])T , (1.12)

while Σ represents its covariance matrix:

Σi,j = E[(Xi − µi)(Xj − µj)] = Cov[Xi, Xj] (1.13)

where, in both cases, 1 ≤ i ≤ k and 1 ≤ j ≤ k.

Two fundamental properties of multivariate normal distributions are
marginalization and conditioning:

Marginalization

Given a Gaussian partitioned random vector X = [XA, XB]T , the marginal
distributions are obtained by integrating out the other variables:

P (XA) =
Ú

P (XA, XB)dXB (1.14)

P (XB) =
Ú

XA

P (XA, XB; µ, Σ), dXA (1.15)

More importantly, this operation preserves normality:

XA ∼ N (µA, ΣAA) (1.16)

XB ∼ N (µB, ΣBB) (1.17)

where
µ =

C
µA

µB

D
, Σ =

C
ΣAA ΣAB

ΣBA ΣBB

D
(1.18)

14

Introduction

The conditional distribution of XA given XB remains normal:

XA|XB ∼ N (µA|B, ΣA|B) (1.19)

where
µA|B = µA + ΣABΣ−1

BB(XB − µB) (1.20)

ΣA|B = ΣAA − ΣABΣ−1
BBΣBA (1.21)

Although this property is widely applied, as models must be updated con-
tinuously when new data becomes available, conditioning presents significant
computational challenges.
In particular, the formula requires the inversion of ΣBB, which has a com-
putational complexity of O(n3) for an n × n matrix. In large-scale problems,
matrix inversion becomes computationally prohibitive in terms of both time
and memory requirements, making approximations the only feasible solution.
These considerations are particularly relevant in applications such as Gaussian
processes, where conditioning operations are performed repeatedly during
model fitting and prediction.
The approach presented in this work leverages a specific type of approxima-
tion known as the Nearest Neighbor Gaussian Process, which will be
introduced in the third chapter.

1.2.2 Gaussian Processes
As stated above, the multivariate normal distribution is used to model finite
collections of real-valued variables. Its direct extension is the Gaussian
process, which is used to model infinite-sized collections of real-valued
variables[8].
The distinctive property of Gaussian processes is that they are not merely
considered distributions over random vectors but rather distributions over
random functions.
More generally, Gaussian processes belong to the class of stochastic pro-
cesses, which are collections of random functions, {f(x) : x ∈ X}, indexed
by elements from some set X, known as the index set. Often, the indices
x ∈ X represent time points, so that the variables f(x) describe the temporal
evolution of a quantitative phenomenon.

15

Introduction

Gaussian processes are such that any finite subcollection of random vari-
ables follows a multivariate Gaussian distribution.
In other words, a collection of random variables {f(x) : x ∈ X} is said to be
drawn from a Gaussian process with mean function µ(·) and covariance func-
tion K(·, ·), also known as Kernel, if and only if, for any finite set of elements
x1, . . . , xm ∈ X, the joint distribution of the corresponding set of random
variables {f(x1), . . . , f(xm)} follows a multivariate normal distribution.

f(x1)
...

f(xn)

 ∼ N



µ(x1)

...
µ(xn)

 ,


K(x1, x1) · · · K(x1, xn)

...
K(xn, x1) · · · K(xn, xn)


 (1.22)

and it is indicated as
f ∼ GP(µ(·), K(·, ·)) (1.23)

Moreover, given x1, x2 ∈ X, the mean and covariance functions are defined
as:

µ(x1) = E[f(x1)] (1.24)
K(x1, x2) = E[(f(x1) − µ(x1))(f(x2) − µ(x2))] (1.25)

Regarding the mean function, there are no strict constraints, except that
it must be real-valued. It is common practice to assume that it is identically
zero, as uncertainty about the mean function can be accounted for by intro-
ducing an additional term in the covariance function.

Meanwhile, given a certain covariance function K(·, ·), for any finite set
of elements x1, . . . , xm ∈ X, the resulting covariance matrix

Σ =


K(x1, x1) . . . K(x1, xm)

...
K(xm, x1) . . . K(xm, xm)

 (1.26)

must be positive semidefinite.

This implies that the matrix Σ ∈ Rm×m must satisfy the following condi-
tion:

x⊤Σx ≥ 0 for all vectors x ∈ Rm.

This formulation leads to several key properties that serve as verification
criteria:

16

Introduction

• Symmetry: The matrix Σ must satisfy Σ = Σ⊤.

• Non-negative Eigenvalues: All eigenvalues of Σ must be non-negative.

• Quadratic Form: For any vector x, the quadratic form x⊤Σx must
always be non-negative.

Exponential Kernel

In order clarify the relationship between the covariance matrix Σ and the
kernel K(·, ·), it is convenient to show example.
Consider the following Gaussian process:

f(·) = GP(0, K(·, ·))

where f : R → R. As for the choice of the covariance function, it is set to
the squared exponential kernel, which is defined as:

KSE(x, x′) = exp

A
− 1

2τ 2 ||x − x′||2
B

, τ > 0

As the GP chosen has mean zero, the expectation is that the drawn
functions will tend to be distributed around zero.
Then, given this kernel choice, for any pair of elements x, x′ ∈ R:

• f(x) and f(x′) will tend to have high covariance when x and x′ are
similar in the input space (i.e., ∥x − x′∥ ≈ 0), so that K(x, x′) =
exp

1
− 1

2τ2 ∥x − x′∥2
2

≈ 1).

• f(x) and f(x′) will tend to have low covariance when x and x′ are
dissimilar (i.e., ∥x−x′∥ ≫ 0), so that K(x, x′) = exp

1
− 1

2τ2 ∥x − x′∥2
2

≈
0).

This behavior can be summed up as functions drawn from a zero-mean
Gaussian process prior with the squared exponential kernel will tend to
be “locally smooth” with high probability. This translates to the fact that
closer function values are highly correlated, and this correlation decrease as
a function of distance in the input space (see Fig.1.4).

17

Introduction

Figure 1.4: Samples from a zero-mean Gaussian process prior with KSE

(·, ·) covariance function, using (a) τ = 0.5, (b) τ = 2, and (c) τ = 10.
Note that as the bandwidth parameter τ increases, then points which are
farther away will have higher correlations than before, and hence the sampled
functions tend to be smoother overall [7].

Gaussian Processes for Regression Tasks

One of the most significant applications of Gaussian processes is their use in
regression tasks [9, 10]. Regression involves finding a best-fitting function to
describe an underlying phenomenon, given only a set of observed samples.

Consider the dataset S = {(xi, yi)}n
i=1, where (xi, yi) are independent and

identically distributed (i.i.d.) samples.
In the Gaussian process regression model, the observations are assumed to
follow:

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2
n) (1.27)

where a zero-mean Gaussian process prior is placed on the function f(·):

f(·) ∼ GP(0, Σ(·, ·)) (1.28)

for a valid covariance function Σ(·, ·).

Now, let T = {(x(i)
∗ , y

(i)
∗)}m∗

i=1 be the test set, consisting of i.i.d. variables
drawn from the same unknown distribution as S.

To ease the notation, fix the following

18

Introduction

X =


− (x(1))⊺ −
− (x(2))⊺ −

...
− (x(m))⊺ −

 ∈ Rm×n, f̃ =


f(x(1))
f(x(2))

...
f(x(m))

 (1.29)

ϵ̃ =


ϵ(1)

ϵ(2)

...
ϵ(m)

 , ỹ =


y(1)

y(2)

...
y(m)

 ∈ Rm, (1.30)

X∗ =


− (x(1)

∗)⊺ −
− (x(2)

∗)⊺ −
...

− (x(m∗)
∗)⊺ −

 ∈ Rm∗×n, f̃∗ =


f(x(1)

∗)
f(x(2)

∗)
...

f(x(m∗)
∗)

 (1.31)

ϵ̃∗ =


ϵ

(1)
∗

ϵ
(2)
∗
...

ϵ
(m∗)
∗

 , ỹ∗ =


y

(1)
∗

y
(2)
∗
...

y
(m∗)
∗

 ∈ Rm∗. (1.32)

Since the marginalization property of Gaussian processes holds, any func-
tion f(·) drawn from a GP prior with covariance function k(·, ·) must satisfy
that the marginal distribution over any finite subset of X follows a joint
multivariate normal distribution.
This property applies in particular when concatenating the training and test
sets:  f⃗

f⃗∗

 ----X, X∗ ∼ N
A

0⃗,

C
Σ(X, X) Σ(X, X∗)
Σ(X∗, X) Σ(X∗, X∗)

DB
, (1.33)

where

Σ(X, X) = Σ(x(i), x(j)), Σ(X∗, X∗) = Σ(x(i)
∗ , x(j)

∗)

Σ(X, X∗) = Σ(x(i), x(j)
∗), Σ(X∗, X) = Σ(x(i)

∗ , x(j)).
Moreover, since it is assumed that the noise terms in both the training

and test sets are i.i.d., it follows that:

19

Introduction

C
ε⃗
ε⃗∗

D
∼ N

A
0,

C
σ2I 0
0T σ2I

DB
.

Now, recalling the standard regression model:

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2
n), (1.34)

and given the Gaussian process prior, it follows that the sum of normal
random variables remains normally distributed. As a result, the model
formulation extends to:C

y⃗
y⃗∗

D ----X, X∗ =
 f⃗

f⃗∗

 +
C

ε⃗
ε⃗∗

D
∼ N

A
0,

C
Σ(X, X) + σ2I Σ(X, X∗)

Σ(X∗, X) Σ(X∗, X∗) + σ2I

DB
.

The posterior predictive distribution is then obtained by conditioning the
joint Gaussian distribution on the observations:

y⃗∗|y⃗, X, X∗ ∼ N (µ∗, Σ∗), (1.35)

where:
µ∗ = Σ(X∗, X)

è
Σ(X, X) + σ2I

é−1
y⃗ (1.36)

Σ∗ = Σ(X∗, X∗) + σ2I − Σ(X∗, X)
è
Σ(X, X) + σ2I

é−1Σ(X, X∗). (1.37)

While this formulation is particularly convenient, it suffers from the
same computational limitations as the multivariate normal distribution.
Specifically, although the posterior is well-defined, inverting a potentially
large covariance matrix introduces significant computational challenges in
many practical applications.

1.3 Time Series
Time series analysis is recognized as a fundamental tool for understanding
and forecasting the behavior of measurable phenomena over time[11].
In practice, observations are collected at discrete time points to capture the
evolution of the underlying process [12]. These observations may represent a
single characteristic (univariate time series) or multiple correlated character-
istics (multivariate time series).

20

Introduction

Let t0 denote the initial time point and T the final time point of the recordings.
The time series S is then defined as the ordered sequence of observations:

S = {xij : i = 1, . . . , p; j = t0, . . . , T},

where xij represents the observation of the i-th feature at time j and p
denotes the number of recorded features.
The overall duration of the series is given by T − t0.

Time series data may exhibit a variety of patterns including trends, sea-
sonalities, and cyclic behaviors. These patterns are analyzed to uncover the
underlying dynamics, and such analysis is crucial for the development of
accurate predictive models[13].

Trends

A trend represents a long-term, persistent increase or decrease in the data
over an extended period. Trends are typically linked to systematic changes
such as technological progress, demographic shifts, or economic growth.
They are modeled separately to allow for the isolation of short-term variations
from the long-term movement of the data.

Seasonal Patterns

Seasonal patterns refer to regular, periodic fluctuations that occur within
fixed intervals, such as daily, monthly, or yearly cycles.
These patterns are generally induced by recurring events, for instance, weather
conditions, holidays.
Methods such as seasonal decomposition are employed to extract and model
the seasonal component from the overall time series.

Cyclic Behaviors

Cyclic behaviors involve fluctuations that occur over periods longer than a
season.
Unlike seasonal patterns, cyclic variations do not have a fixed periodicity and
are often influenced by economic or business cycles. These cycles can vary

21

Introduction

in duration and amplitude, and their detection generally requires advanced
techniques that accommodate non-stationary dynamics.

The presence of outliers and irregular fluctuations is also checked during
model formulation. Figure 5.5 illustrates a typical time series, highlighting
its key components and variations over time [14].

Figure 1.5: Time series reporting the population of Ireland and Europe
between 1750 to 2005[15]

1.3.1 The lag plot
A lag plot is a graphical representation used in statistics and probability to
analyze the dependence between successive values of a time series.
Given a discrete-time stochastic process {Xt}, the lag-k plot is defined as
the set of points

{(Xt, Xt−k) | t = k + 1, . . . , n}.

This representation allows to visualize trends and seasonal dependencies in
the data.

22

Introduction

Figure 1.6: A plot showing 100 random numbers with a "hidden" sine
function, and an autocorrelation plot of the series on the bottom[16]

If a structured pattern is observed in the plot, statistical dependence
between Xt and Xt−k exist.
In contrast, if the points are randomly scattered, the observations are taken
to be weakly correlated or uncorrelated.
The presence of structure in lag plots is related to the autocorrelation
function (ACF), which indicates the correlation between Xt and its lagged
values, and for this reason the two are interchangeable.
The exact formula for the autocorrelation for a given time series {Xt} is

ρ(k) = E[(Xt − µ)(Xt+k − µ)]
E[(Xt − µ)2] (1.38)

while its "empiric" version is

ρ̂(k) =
qn−k

t=1 (xt − x̄)(xt+k − x̄)qn
t=1(xt − x̄)2 (1.39)

23

Introduction

where x̄ represents the mean of the time series.

Figure 1.7: Autocorrelation function (ACF) plot illustrating key trend
patterns. The spike at lag 0 represents the trivial correlation of the series
with itself and can be ignored. The "tail-off pattern" indicates a gradual decay
in correlation, which could shown seasonality in the data. The "threshold
levels" (dashed lines) mark the significance boundaries, helping to identify
whether the autocorrelation at different lags are statistically significant[17]

1.4 Rstudio and Stan
To execute the data analysis, cleaning and visualization R studio[18] was
used.
This choice has been led by the fact that R is rich of statistical based libraries,
and has a direct integration with STAN. The latter has been used to develop
the model itself, and it’s a Software for Bayesian Data Analysis.
It enables highly complex statistical modeling using Bayesian inference,
allowing for more accurate and interpretable results in complex data scenarios.
Since at the start of this work it wasn’t clear how complex the model needed
would turn out to be Stan’s flexibility for a wide range of applications, from
simple linear regression to multi-level models and time-series analysis was

24

Introduction

ideal.

25

Chapter 2

Dataset Analysis

2.1 Introduction
Energy is considered to be a fundamental resource that is used to drive
modern societies by powering homes, industries, and economies. As the
global demand for energy is observed to continue rising, its efficient use and
management are gettign more and more important [19].
One key area for future improvements is the monitoring and forecasting of
energy consumption.
By accurately monitoring and forecasting energy consumption, resource
allocation can be optimized to ensure a more sustainable and responsible
use.
Obtaining clean, high-frequency energy consumption data for households is
a challenging task, and the process is further complicated by the presence of
outliers in the available data.
Current methods for forecasting energy consumption have been based on the
application of statistical techniques to datasets that are collected from smart
meters. These datasets are considered to be expensive and time-consuming
to obtain and are affected by issues such as sparsity and irregularities.
In addition, residential energy consumption data is even more problematic,
since in recent years personal privacy concerns have risen [20].
One of the possible solutions to address these problems consists in using
already available data to train new generative model. This would allow
the use of generative, synthetic, data as basis for the data analysis and
forecasting, avoiding the problems linked to gathering real data.
Although, in order to create a high-quality model, it is necessary to analyze

26

Dataset Analysis

existing data to gather domain knowledge about common user behaviors and
factors that may affect energy consumption [21].
The aim of this work is to identify the most important consumption patterns
from a small energy consumption dataset, to create a statistical model that
is used to describe these patterns in a simple manner, and to use this model
to generate new data. The quality of the new data is then assessed in
comparison with the original dataset.
The analysis is based on an in-depth exploration of the dataset, with both
short-term and long-term trends being extracted and key features, such as
daily cycles, being highlighted.
These patterns are used to inform the construction of a comprehensive model
that is able to generate data that are observed to closely resemble the original
dataset.
The model is validated through a comparison with synthetic data generated
from the original dataset, both visually and in terms of its underlying trends.

2.2 Energy Consumption Dataset
The dataset used in this work originates from a small energy community
located in the city of Pinerolo, Italy.
The data collection starts on January 1st, 2022, and covers one full year of
energy consumption for all community members.
Although the dataset is not extensive, it is well diversified, including users of
different types.
The dataset is divided into two distinct collections: Measurements and
Attributes.
While the user base is shared between them, the grouping and focus of the
data differ. However, for both collections, the data granularity is one hour,
resulting in a multivariate time series of length 365 × 24 for each user.
In the following subsections, the two collections are described in detail.

Measurements Dataset

The Measurements dataset is structured as follows:

• Dimensions: The dataset consists of 115 columns and 8760 rows.

• Data: The first column contains the timestamp, starting from January
1st, 2022, at 00 : 00 : 00. The remaining columns represent 114 distinct

27

Dataset Analysis

users, where each entry corresponds to the hourly energy consumption
of a user, expressed in kWh.

As shown in Fig.2.1, users are identified through a code, which is introduced
in the Attributes dataset.

Figure 2.1: First rows of the Measurements dataset.

The dataset does not contain any missing values. However, numerous
instances are present where the recorded energy consumption is equal to
zero.

28

Dataset Analysis

Figure 2.2: Distribution of zero consumption values.

These cases pose a challenge in identifying user consumption patterns. A
consumption value of zero indicates that the user has completely turned off
their power, making the data point "meaningless."

29

Dataset Analysis

Figure 2.3: Time series of energy consumption for the user dom2_10
throughout 2022.

For this reason, users with an excessive number of zero entries were
excluded from the analysis.
Specifically, as shown in Fig.2.2, all users with 1000 or more zero entries
were discarded.
For users with 100 < #zeros < 1000, the consumption time series was
analyzed and the following procedure was applied:

• If the zero values were consecutive, indicating that the power was turned
off for a few days, a small value of 0.0001 was added to these entries.
This adjustment was necessary for the application of a log transformation
to the time series.

• If the zero values were scattered, possibly due to a blackout or measure-
ment error, each zero entry was replaced with the value recorded at the
same hour on the preceding day.

30

Dataset Analysis

Attributes Dataset

The Attributes dataset exhibits a structure that differs significantly from
that of the Measurements dataset.
The dataset comprises 114 rows (one for each user) and 14 columns, which
are listed and briefly described below:

• user: Represented by the same code as in the Measurements dataset;

• type: Derived from the user code, indicating whether the user belongs
to the “bta” or “dom” category. The “dom” category includes domestic
users (households), while the “bta” category (which stands for "bassa
tensione e altri usi" in italian) comprises entities that are not considered
private apartments (e.g., offices, sports centers, and buildings in general);

• class: The power level, identified by the number following the type;

• category: A general categorization of the kind of user;

• activity_type: The specific activity carried out in the building;

• voltage_level: Indicates the supply voltage level, which may be either
220V or 380V . Typically, household contracts are set to 220V , whereas
some businesses (such as bakeries and restaurants) use 380V . Higher
voltage generally implies higher consumption (see Fig.2.5);

• yearly_energy: Total energy consumed during 2022, measured in Kw;

• p_mean, p_std, p_min, p_q1, p_median, p_q3, p_max: Vari-
ous statistical measures regarding the energy consumption, including
mean, median, and quantiles;

Figure 2.4: First rows of Attributes dataset.

31

Dataset Analysis

Figure 2.5: Histogram of the yearly energy consumption for the whole
Attributes dataset. The two colors indicates which voltage level the user has
chosen in the electricity contract. It seems that higher voltage is correlated
with higher consumption.

The Attributes dataset is considerably cleaner than the Measurements
dataset, containing only two NAN values, one in the column “category” and
one in “activity_type”. As neither of these will be used in the analysis, no
cleaning has been performed.
Below, a grouped count for each “category” type is visualized:

32

Dataset Analysis

Figure 2.6: Histogram showing a grouped count of each category for each
class in Attributes dataset.

Basic data exploration has been applied to the dataset to gain further
insight and to identify hidden patterns.
Initially, the total energy consumption was visualized with respect to “activ-
ity_type” and “category”:

33

Dataset Analysis

Figure 2.7: Histogram showing the mean yearly energy consumption for
each category in the Attributes dataset.

34

Dataset Analysis

Figure 2.8: Histogram showing the mean yearly energy consumption for
each activity type in the Attributes dataset.

It is evident that consumption behavior differs significantly across cate-
gories. However, even within a single category, it is difficult to box the data
(e.g., Fig.2.9).

35

Dataset Analysis

Figure 2.9: Histogram of yearly energy consumption for Residential users

Consequently, the study has been focused on households, as it is presumed
that common patterns may be more readily identified among domestic users
despite differences in individual habits.

2.2.1 Finding Hidden Patterns in the Dataset
After the dataset was analyzed to identify the available information and its
potential uses, the next step involved searching for specific patterns in the
energy consumption time series.
As previously noted, the Attributes dataset was initially used to assess the
value of leveraging various categories and activity types.
Consequently, the analysis now focuses solely on the residential (household)
category.
Prior to the detailed analysis, a box plot of the distribution of yearly energy
consumption for the household category was generated:

Figure 2.10 clearly shows that some users are outliers, exhibiting energy
consumption values that are substantially higher than those of the remainder
of the dataset.
By excluding samples with a total consumption greater than 7000 kW, the
distribution appears much cleaner:

After this, the time series plot of the energy consumption for the user

36

Dataset Analysis

Figure 2.10: Boxplot showing the distribution of the energy consumption
for the residential customer of type "dom". In the plot two outliers are clearly
identified.

“dom2_10” is presented again with a different focus, to evaluate whether
reducing the amount of data improves clarity and reveals a pattern:

37

Dataset Analysis

Figure 2.11: Boxplot showing the distribution of the energy consumption
for the residential customer of type "dom", taking out the outlier identified in
the previous step. After the cleaning the boxplot seems shows more clearly
information about the distribution of the users.

Figure 2.12: Classic line plot of the energy consumption time series for
the user dom2_10. In particular the data about the first week of January is
shown. The vertical lines signals the start of a new day.

38

Dataset Analysis

Figure 2.12, which displays the energy consumption for the first week of
January, reveals a day-to-day pattern indicated by discontinuous vertical
lines.
To investigate this pattern further and understand its nature, a heatmap of
the consumption was generated:

Figure 2.13: Heatmap of the energy consumption time series for the user
dom2_10. To create the plot, data manipulation has been applied, creating
the adding the weekday as new feature for the data. In the plot no clear
tren is shown except for a seasonal one.

The heatmap represents the average monthly energy consumption
aggregated by weekdays.
The x-axis corresponds to the months, while the y-axis corresponds to the
days of the week (in Italian). The color intensity indicates the level
of energy consumption, with darker green shades signifying higher
consumption and lighter shades indicating lower consumption.
Some main patterns are easily identified:

• During the summer season, particularly in July and August, lighter
colors are observed, indicating lower consumption as expected due to

39

Dataset Analysis

the absence of heater use during warm months;

• Certain weekdays, such as Friday and Sunday, exhibit darker shades
in some months, suggesting higher energy usage;

• Conversely, during the winter season, particularly in November and
December, energy consumption increases, which is expected due to
heater usage and festivities during which families tend to cook more.

Unfortunately, as the dataset covers only one year, focusing on seasonal
patterns is not advisable due to insufficient data.
In addition, no clear pattern for the weekdays was observed; therefore, this
possibility was not further investigated.
The next step involved a deeper investigation of the pattern highlighted in
Fig. 2.12.
To validate the presence of a day-to-day pattern in the data, a lag plot was
employed.
Lag plots display the time series against lagged versions of itself, which helps
visualize autocorrelation even when standard auto-correlations vanish.
Thus, if a pattern is visible in the lag plot, complex dependencies in the time
series can be identified.
Figure 2.14 displays an initial lag plot, also known as an ACF (autocorrelation
function) plot:

40

Dataset Analysis

Figure 2.14: Autocorrelation function plot of the energy consumption time
series for the user dom2_10. In this case no other specification has been
passed to the function, therefore the max_lag value is 40

A correlation is observed with a lag between 20 and 30 samples, with
a higher peak at the 25th sample. To further identify recurring behaviors,
the same lag plot was generated for 170 samples (see Fig. 2.16) and for 500
samples (see Fig. 2.15):

41

Dataset Analysis

Figure 2.15: Autocorrelation function plot of the energy consumption time
series for the user dom2_10. In this case the maximum lag has been set to
500, in order to be able to catch weekly pattern. It is clear that a repetitive
behavior is present.

42

Dataset Analysis

Figure 2.16: Autocorrelation function plot of the energy consumption time
series for the user dom2_10. In this case the maximum lag has been set to
170, to focus on daily patterns. Moreover, non continuous vertical lines have
been plotted each 24 entries. Such lines overlap with the peak value for the
correlation.

Figure 2.16 confirms that the daily dependence is a long-term pattern.
Such dependence appears to be stable, maintaining the same intensity
throughout an entire week. Vertical discontinuous lines have been plot-
ted every 25 samples, overlapping with the peak of each high-correlation
group. This observation is consistent with the expectation that each user
follows a daily routine.
In Figure 2.15, the same pattern is observed even across several weeks of
lag. Furthermore, as shown in Fig. 2.17, three specific groups have been
highlighted, corresponding to samples that represent the same reference
weekday lagged by one, two, or three weeks.
The peaks of these groups are slightly higher than those of the surrounding
groups, suggesting that a weekly pattern is present in addition to the daily
pattern, with a stronger dependence at a one-week lag.

43

Dataset Analysis

Figure 2.17: Autocorrelation function plot of the energy consumption
time series for the user dom2_10. In this case the maximum lag has been
set to 600, in order to be able to catch weekly pattern. The highlighted
sections show that in correspondence of the weekly pattern the peak of the
autocorrelation seem to be even higher than in the ther instances.

44

Chapter 3

Generative NNGP Model

3.1 Nearest Neighbor Gaussian Processes
Nearest Neighbor Gaussian Process (NNGP) based models are defined
as a family of highly scalable Gaussian process based models.
The key concepts for the formulation of these models is lays in the Vecchia’s
approximation [22].
Given three events A, B, and C, their join distribution P (A, B, C), can be
expressed as

P (A, B, C) = P (A)P (B|A)P (C|A, B) (3.1)

With Vecchia’s approximation, the latter can be rewritten as

P (A, B, C) ≈ P (A)P (B|A)P (C|A) (3.2)

such approximation becomes more accurate when events B and C are close
to be conditionally independent given knowledge of A.
Alternative formulations can be created, but this require knowledge of which
events are close to be conditionally independent given others.
This last assumption is then used to construct the NNGP models, extending
Vecchia’s approximation to a process by assuming conditional independence
given information from neighboring locations.
As explained in the previous introductory chapters regarding the Gaussian
processes, using the conditioning property is computationally expensive, but
required for GP based models.
A possible solution, is in fact applying the Nearest Neighbors approximation
[23].

45

Generative NNGP Model

This approach has been designed to address computational constraints while
preserving the adaptability of traditional Gaussian Processes, making it an
optimal choice when the sample size becomes prohibitive.

Given a certain quantitative phenomenon y(s), where s ∈ S are usually
temporal indices, the general formulation of the NNGP model is written as

y(s) = mθ(s) + w(s) + ϵ(s) (3.3)

where:

• mθ(s) = x(s)⊤β, indicates a linear dependency with a generic covariate
x(s)

• w(s) is a latent process

• ϵ(s) ∼ iid N(0, τ 2) indicates an error factor

Next, it is assumed that w(s) is modeled as a Gaussian process

w(s) ∼ GP
1
0, Cθ(·, ·)

2
,

where Cθ is the covariance function that describes how correlation decays
with time.
Following the Bayesian formulation, the parameters θ will have a certain
prior distributions:

θ ∼ p(θ) (3.4)
which reflects prior knowledge about the parameters.
From these two statements it’s possible to create two different models: a
"bulkier" one, called latent GP model and a lighter one called response
GP model[24].
The latent GP model comes straight from the above formulation:

y(s) ∼ GP(mθ(s) + w(s), τ 2In) (3.5)

While the response GP model comes from conditioning the observations y(s)
over the Gaussian process w(s), therefore removing the need to explicitly
model it, obtaining:

y(s) ∼ GP(mθ(s), Cθ(·, ·) + τ 2In) (3.6)

46

Generative NNGP Model

The actual difference between the two formulations lies in the covariance
matrix of w(s).
Since this work focuses on the more parsimonious response NNGP model,
the construction of this simplification is explained in more depth. Given the
starting process y(s), this can be modeled as:

y(s) ∼ GP(mθ(s), {Cθ(·, ·) + τ 2In}∗) (3.7)

where
{Cθ(·, ·) + τ 2In}∗ = (I − A)T D−1(I − A)

To construct the matrices A and D used in the latter formulation, let N(si)
denote the set of at most M closest time indexes precedent to si.
For i > 1, the ith row of A has nonzero entries at the positions indexed by
N(si). These nonzero entries are calculated by

A(i, N(si)) = Cθ(si, N(si))
3

Cθ(N(si), N(si)) + τ 2I
4−1

. (3.8)

The ith diagonal element of D is defined as

D(i, i) = Cθ(si, si)+τ 2−Cθ(si, N(si))
3

Cθ(N(si), N(si))+τ 2I
4−1

Cθ(N(si), si).
(3.9)

Doing this, even if the dimension of the dataset grows, all the computa-
tions regarding the covariance matrix can be simplified, restricting them to
only the non-zero neighboring location for each index.
Such entries are interpreted as the weights obtained by predicting y(si) based
on the values of y(s) at the time indexes inN(si). This technique is called
kriging[25].
The diagonal elements in D instead, represent the variance of y(si) condi-
tioned on its neighbors in the “past” y(N(si)).

3.2 Generic Stan Model Assumption
The objective of this work is taken as demonstrating the potential of the
Nearest Neighbor approximation when applied to Gaussian processes.

47

Generative NNGP Model

To this end, a statistical generative model was developed, capable of syn-
thesizing a sample time series that closely resembles the real-world hourly
consumption dataset introduced in the previous chapter.

A key feature that favored the use of the Nearest Neighbors approximation
was its ability to reduce the complexity of the model, thereby permitting
the implementation of a more sophisticated distance function that better
describes the underlying trends in the data.

Based on the results obtained in the previous section and guided by
common domain knowledge, several key assumptions regarding the behavior
of the hourly energy consumption of a generic user were made.
In particular, given the energy consumption of a user during a given hour on
a generic day, the following considerations were taken as the starting point
for the generative model:

• The consumption is assumed to be similar to, or at least influenced by,
the consumption observed during preceding hours;

• Given that a 24-hour pattern was observed in the real-world data, in
agreement with empirical knowledge, it is assumed that the consumption
tends to resemble that registered on previous days at the same hour;

• A stronger similarity was noted during weekly cycles; consequently, it is
assumed that the consumption tends to mirror that registered at the
same hour of the same weekday on previous weeks, thereby highlighting
a weekly pattern.

These assumptions were drawn from the observation that energy consump-
tion generally follows user habits and tends to exhibit repetitive patterns.
Moreover, under these assumptions, the NNGP approximation is considered
particularly well-suited to this scenario.

3.3 NNGP Model
To tailor the NNGP model on the energy consumption dataset, an ad-hoc
covariance matrix has been created.
Such matrix is based on three different distance functions, whose purpose
is to mimic each of the trends observed in the original data and used as
assumptions.

48

Generative NNGP Model

Given si and sj two possible hour-samples, they covariance is then defined
as:

Cθ(si, sj) = σ2 exp
1

− ϕ · Distlin(si, sj)
2

+ σ2
24 exp

1
− ϕ · Dist24(si, sj)

2
+ σ2

sett exp
1

− ϕ · Distsett(si, sj)
2
, si, sj ∈ S,

where the distances are defined as:

• Distlin = |si − sj|;

• Dist24 = min (Distlin mod 24, 24 − (Distlin mod 24));

• Distsett = min (Distlin mod 168, 168 − (Distlin mod 168)),

For what concerns the other parameters below there is a brief introduction,
but they will be better explained later in this chapter:

• σ standard deviation for the samples close in time, it defines their order
of variability

• σ24 standard deviation for the samples registered at the same hour but
on preceding days, it defines their order of variability

• σsett standard deviation for the samples registered at the same hour
of the same weekday but on preceding weeks, it defines their order of
variability

• ϕ decides how fast the linear distance’s contribution decays

• ϕ24 decides how fast the daily distance’s contribution decays

• ϕsett decides how fast the weekly distance’s contribution decays

3.3.1 Implementation of the Model
To apply the Nearest Neighbors approximation for the covariance matrix, a
set of matrices is defined as follows:

• NN_matrix: In the i-th row, the values of the neighbors corresponding
to the i-th sample are stored in order.

49

Generative NNGP Model

• NN_idx_matrix: In the i-th row, the indices of the neighbors corre-
sponding to the i-th sample are stored in order.

• NN_dist_matrix: In the i-th row, the linear distances between the i-th
sample (si) and its neighbors (sj) are stored. This distance depends
solely on time:

Distlin = |si − sj|;

• NN_dist_matrix_24: In the i-th row, the circular distances modulo 24
(representing daily cycles) between the i-th sample and its neighbors are
stored. This distance is defined as:

Dist24 = min
3

Distlin mod 24, 24 −
1
Distlin mod 24

24
;

• NN_dist_matrix_sett: In the i-th row, the circular distances mod-
ulo 168 (representing weekly cycles) between the i-th sample and its
neighbors are stored. This distance is defined as:

Distsett = min
3

Distlin mod 168, 168 −
1
Distlin mod 168

24
.

In the Nearest Neighbors approximation, it is assumed that each sample
is influenced only by a selected subset of samples defined as its "neighbors,"
rather than by the entire dataset.
This assumption serves to reduce the computational complexity of the model.
For the purpose of modeling hourly energy consumption, the neighbors of a
given sample si are classified into the following categories:

• Immediate Past Neighbors: A sample sj is classified as an immediate
past neighbor if j = i − k for k = 1, . . . , 18.

• Previous Day Neighbors: A sample sj is classified as a previous day
neighbor if j ∈ {i − 25, i − 26, i − 27}.

• Weekly Cycle Neighbors: A sample sj is classified as a weekly cycle
neighbor if j ∈ {i − (7 · 24 + 1), i − (7 · 24 + 2), i − (7 · 24 + 3)}.

Thus, for each sample, given that N is the length of the time series, the
full RN×N distance matrix is approximated by a reduced RN×num_neighbors

matrix.

50

Generative NNGP Model

3.4 Choice of the priors
An important step in constructing every Bayesian model is the selection of
prior distributions.
In theory, given a well-structured model and unlimited computing power,
the definition of the priors may not be critical.
However, when computational resources are limited, the proper setup of
priors becomes fundamental for achieving acceptable results within a short
time span.
Consequently, common domain knowledge and statistical theory have been
applied to define these priors, while still keeping them non informative.
The following subsections describe the choices made for the different groups
of parameters.

3.4.1 Priors for σ, σ24, and σsett

It is worth noting that the priors have been applied to the squared transfor-
mations of each σ parameter.
Domain knowledge suggests that most household energy contracts impose
a limit of 3 kW/h. Hence, the range of possible values for the variance
parameters has been constrained accordingly.

• A strict condition (> 0) has been forced for all the σ parameters to
ensure that the variance is non-negative.

• Based on the 3 kW/h limit, the maximum variance in a time series would
occur if consumption alternates between 0 and 3 kW/h, resulting in a
variance of 9 kW/h. However, since a logarithmic transformation has
been applied to the series, the maximum variation becomes log(9) ∼ 2.

Consequently, the priors have been defined as:

σsq ∼ inv_gamma(1, 1);

σ24sq ∼ inv_gamma(1, 1);

σsettsq ∼ inv_gamma(1, 1).

51

Generative NNGP Model

This configuration ensures that the probability density is concentrated
around the desired value range without rendering the priors overly informative
(see Fig. 3.1).

Figure 3.1: Inverse Gamma Prior Density

3.4.2 Priors for ϕ, ϕ24, and ϕsett

The selection of the priors for the parameters ϕ is guided by their role in the
covariance matrix, where they control the rate of decay of the dependency
between two samples.
These parameters determine the strength of the contribution of the distance
function to the covariance, and their ranges were chosen based on the desired
model behavior in limit cases rather than on specific domain knowledge.
Therefore, a Uniform(a, b) distribution was selected for each parameter.
The ranges for a and b were set by analyzing the model’s behavior at the
limit cases:

• Linear Dependency (ϕ): The parameter ϕ influences the linear de-
pendency between samples according to

exp
1

− ϕ · Distlin(si, sj)
2
.

52

Generative NNGP Model

The maximum linear distance between two samples corresponds to the
length of the series (365 days × 24 hours), and the minimum distance is
1 (excluding zero).
Therefore, the prior for ϕ is defined as:

ϕ ∼ Uniform
3 3

365 · 24 , 3
4

.

The lower bound ensures that the correlation remains strong for samples
close in time and decays to approximately e−3 ≈ 0.05 at a one-year
distance:

exp
3

− 3
365 · 24 · 365 · 24

4
→ e−3.

The upper bound ensures rapid decay such that even at the minimum
distance the correlation is weak.
If simulation results yield a value near the upper bound, it would indicate
that the linear dependency is not significantly impacting the model.

• Daily Dependency (ϕ24): The parameter ϕ24 regulates the daily
dependency between samples via

exp
1

− ϕ24 · Dist24(si, sj)
2
.

In this formulation, the maximum daily distance between two samples
is 12 (due to the modulo 24 operation), while the minimum distance is
1 (excluding zero).
Thus, the prior for ϕ24 is defined as:

ϕ24 ∼ Uniform
3 3

24 , 3
4

.

The lower bound ensures strong correlation for samples corresponding
to the same hour on different days, with the correlation decaying to
nearly e−3 ≈ 0.05 at a 12-hour distance:

exp
3

− 3
24 · 12

4
→ e− 3

2 .

The upper bound ensures rapid decay even at the minimum distance,
implying a weak daily dependency if selected by the simulation.

53

Generative NNGP Model

• Weekly Dependency (ϕsett): The parameter ϕsett governs the weekly
dependency between samples, as expressed by:

exp
1

− ϕsett · Distsett(si, sj)
2
.

Here, the maximum weekly distance (after the modulo 168 operation) is
84, and the minimum distance is 1 (excluding zero).
Consequently, the prior for ϕsett is defined as:

ϕsett ∼ Uniform
3 3

24 · 7 , 3
4

.

The lower bound ensures strong correlation for samples corresponding
to the same hour in different weeks, decaying to nearly e−3 ≈ 0.05 at a
12-hour distance:

exp
3

− 3
24 · 7 · 12

4
→ e− 3

14 .

The upper bound ensures that even at the minimum distance the corre-
lation remains weak.
If simulation results yield a value near this upper bound, it would
indicate that the weekly dependency is not strongly influencing the
model.

Figure 3.2: Prior distributions for the ϕ parameters

54

Generative NNGP Model

3.4.3 Priors for β

Since the mean of the Gaussian process has been set to zero, the offset
parameter β determines the overall mean of the model.
Domain knowledge suggests that, because common household energy con-
tracts typically limit consumption to 3 kW/h, the model’s mean should not
exceed this value.
Moreover, experimental results confirmed that the simulation runtime was
unaffected by the choice of the mean prior—neither a highly informative
prior nor a broad, generic one significantly altered performance.
Therefore, a very broad prior has been selected for β:

β ∼ Norm(0,100).

Figure 3.3: Prior density for β

55

Generative NNGP Model

3.4.4 Priors for τ

For the variance parameter τ , the prior has been applied to its squared
transformation.
Although no specific domain knowledge is available for τ , it represents a
variance and thus must adhere to the same non-negativity constraints as the
σ parameters.
Consequently, the same non-informative prior used for the σ parameters has
been chosen:

τ ∼ inv_gamma(1, 1).

56

Chapter 4

Synthetic Data Generation

4.0.1 Approach
In a first attempt to validate the model presented, the latter has been applied
to a synthetic series based on the original one.
To create this series the following step have been taken:

• Apply a log transformation to the data: this step was necessary since
the original data is always non-negative, while the Gaussian distribution
can take values in all R;

• Compute the mean of the original series;

• Set an initial estimate of the same parameters used in the model (ϕ, σ,
ϕ24, etc.);

• Create the covariance matrix: the covariance is time-dependent and
defined as

Cθ(si, sj) = σ2 exp
1

− ϕ · Distlin(si, sj)
2

+ σ2
24 exp

1
− ϕ · Dist24(si, sj)

2
+ σ2

sett exp
1

− ϕ · Distsett(si, sj)
2
, si, sj ∈ S, (4.1)

where this implementation will be explained in depth in the next chapter;

• Draw samples from a multivariate normal distribution with the mean
vector and covariance matrix defined above.

57

Synthetic Data Generation

Figure 4.1: Plot of the chosen covariance function behavior

4.0.2 Parameter choice

To generate the model, the following setup was chosen:

Parameter Value Parameter Value
σ2 0.5 ϕ2

24 2.5
σ2

24 0.5 ϕsett 1
σ2

sett 0.5 τ 2 1
ϕ 0.5 β -1.5

Table 4.1: Parameter choices used in the Bayesian analysis

Since the aim of the synthetic data was just validating the model’s pa-
rameters, the initialization wasn’t optimized.
What has drive this particular setup was obtaining three distance functions
enough different to have distinct behaviors.
This choice, as can be seen in Fig.(4.2) permits to easily distinguish the three
contributions to the variance.

58

Synthetic Data Generation

Figure 4.2: The plot shows the behavior of the three distance function
used inside the covariance of the model. The less they overlap, the easier it
should be to see their influence on the simulations.

4.0.3 Results and comparison with original series

The original and synthetic series were compared using their respective auto-
correlation functions (ACFs), as this is the simplest method to check if the
two series share similar behavior. The analysis can be divided into two parts,
as shown in Fig. (4.4):

• Short-Term Patterns: The synthetic series replicates the short-term
behavior of the original series, having a peak in the first few indices and
various spikes at lag 24;

• Long-Term Patterns: Over longer lags (over 168 hours, a week),
the synthetic series exhibits a weekly correlation pattern. However,
the periodicity is less distinct compared to the original series, as the
correlation weakens with increasing lag.

59

Synthetic Data Generation

Figure 4.3: ACF plots with lag 24 (left) and 168 (right) of the original
series of energy consumption data.

Figure 4.4: ACF plots with lag 24 (left) and 168 (right) of synthetic data,
with 1200 samples generated.

• Top Row (ACF over 5 weeks): The ACF starts high and gradually de-
creases, showing weekly repetitive pattern. Visible 128-hour correlation.

60

Synthetic Data Generation

The periodicity isn’t as clear as in the original series, as it becomes less
correlated as lag increases.

• Bottom Row (ACF over shorter lags): visible peaks for the daily, 24-
hours correlations

In both cases the peaks seem to be on spot, but the overall sinusoidal trend
isn’t visible in the synthetic series.

61

Chapter 5

Results

In this chapter the validation of the proposed model and its application on
the real-world dataset are presented.
Fine tuning and optimization were required to obtain satisfactory results
with the available computational resources, which won’t be shown in this
work.
The results are organized as follows:

• Visualization of the simulated parameter series;

• Comparison of the simulated parameter distributions with their true
values;

• Visual comparison between the reference series and the simulated series;

• Analysis of lag trends using lag plots;

5.1 Application to Synthetic Data
As a preliminary step, the model was validated against the synthetic series
generated using known parameter values.
Due to the model’s complexity and the limitations of an 8-core machine, the
total number of iterations was limited to 2000.
It is important to note that a Stan model does not output a single final value;
rather, it generates a series of samples that represent possible outcomes.
Over iterations, these samples should converge toward the optimal values,
forming a dense cloud of points around them.

62

Results

This validation is crucial because it allows for direct comparison between the
simulated parameter series and the true values used to generate the synthetic
data.
Moreover, this phase enabled significant computational savings by allowing
fine tuning before applying the model to the real dataset.

5.1.1 Parameter Series Comparison
The effectiveness of the model has been first assessed by examining the
behavior of the simulated parameter series.
Two key evaluations are performed:

• Series Analysis: Evaluating the spread of each parameter’s series to
determine whether additional iterations or fine tuning are required;

• Distribution Comparison: Comparing the resulting distribution of
each parameter with the true value used to generate the synthetic data;

Figure 5.1 shows the evolution of all model parameters during the itera-
tions.

Figure 5.1: Evolution of model parameters over iterations.

Key observations include:

63

Results

• For parameters like σ2
24, the series exhibit small fluctuations remaining

within a narrow value window;

• For others, such as ϕsett, the dispersion is higher, although a good portion
of the samples is already concentered around a specific window;

The primary goal of this first section is to ensure that the true values used
in the synthetic series fall within the range spanned by the sampled values.
The following summarizes the comparison for each parameter: The following
summarizes the comparison for each parameter:

• β: The 90% confidence interval for β is [−1.5838, −1.5758], which
securely includes the true value β = −1.57.

• τ 2: The 95% confidence interval for τ 2 is [1.0039, 1.0637]. Meanwhile
the 97.5% is [0.9995, 1.067] and includes the true value τ 2 = 1. Both
the intervals are very similar, meaning that the samples are tightly
distributed;

• σ2: The 95% confidence interval for σ2 is [0.5083, 0.5610]. The true
value σ2 = 0.5, is slightly falls slightly off of it.

• σ2
24: The 95% CI for σ2

24 is [0.3755, 0.4043], excluding the true value
σ2

24 = 0.5.

• σ2
sett: The 95% confidence interval for σ2

sett is [0.4606, 0.5021], which
includes the true value σ2

sett = 0.5.

• ϕ: The 95% CI for ϕ is [1.0368, 1.1695], which does not include the true
value ϕ = 0.5. In this case the distribution results to be quite sparse.

• ϕ24: The 90% confidence interval for ϕ24 is [2.466, 2.551], securely in-
cluding the true value ϕ24 = 2.5.

• ϕsett: The 95% CI for ϕsett is [2.0745, 2.1977], which excludes the true
value ϕsett = 1. In this case the prediction is quite off track.

64

Results

Figure 5.2: Plot of the samples simulated in stan for µ and τ 2. The real
value for both parameter is shown as a vertical red line.

Figure 5.3: Plot of the samples simulated in stan for σ2 and σ2
24. The real

value for both parameter is shown as a vertical red line.

65

Results

Figure 5.4: Plot of the samples simulated in stan for σ2
sett and ϕ. The real

value for both parameter is shown as a vertical red line.

Figure 5.5: Plot of the samples simulated in stan for ϕsett and ϕ24. The
real value for both parameter is shown as a vertical red line.

In summary, the parameter analysis confirms that the true values used to

66

Results

generate the synthetic series are, within reasonable margins, encompassed
by the sampled values.
Despite some parameters exhibiting a wide dispersion or minor fluctuations,
the overall behavior of the model is considered adequate for further analysis
and for comparison with the synthetic data.

5.1.2 Visual Comparison
Before comparing the synthetic and generated series visually, again it is
necessary to give a brief explanation of the Stan model output and how the
subsequent comparison process has been outlined.
As noted earlier, Stan produces candidate values for the parameters at each
iteration rather than a single final value. The focus here is on generating
a noise-free series by drawing new samples from the Gaussian process w(s)
conditioned on the observed data.
ù Since both the synthetic series y(s) and w(s) are Gaussian, the posterior
distribution after conditioning is given by:

w(s) | y(s) ∼ Norm
3

µw(s)|y(s), Kw(s)|y(s)

4
,

where

• µw(s)|y(s) = µw + Covw Cov−1
y (y − µy − µw),

• Kw(s)|y(s) = Covw − Covw Cov−1
y Cw.

In this case, since µw = 0, the mean simplifies to:

µw(s)|y(s) = Covw Cov−1
y (y − µy),

with:

• µw = 0, consistent with the assumed distribution of w(s);

• Covw defined by the custom covariance function for the energy consump-
tion dataset;

• Covy = Covw + τ 2In, since the covariance of the sum of two independent
Gaussian processes is the sum of their covariances;

67

Results

The covariance remains:

Kw(s)|y(s) = Covw − Covw Cov−1
y Cw.

For visual comparison, a single "representative" series is extracted from
the posterior w(s) | y(s) by taking the mean of all draws, denoted as wmean.
Figure 5.6 displays wmean alongside the synthetic series.
The two series are very similar, although wmean appears less dispersed and
more stable.

Figure 5.6: Comparison between wmean and the synthetic series.

Lag plots further validate the similarity in behavior between the synthetic
series and wmean.
Figures 5.7 and 5.8 illustrate that both series exhibit comparable underlying
patterns, particularly with respect to the 24-hour and 168-hour cycles.

68

Results

Figure 5.7: ACF plots with lag 24 (left) and 168 (right) of the synthetic
series

Figure 5.8: ACF plots with lag 24 (left) and 168 (right) of wmean, showing
refined and repetitive patterns

69

Results

5.2 Applying the Model on the Real Data
After validating the model on synthetic data, the final step involves applying
it to the original dataset. The objective is to verify whether the generated
representative series, wmean, exhibits the same key features as the real data.

5.2.1 Parameter Series Comparison
When comparing with the original series, no "true" parameter values exist,
so the evaluation focuses solely on the behavior of the parameter series.
In this case, the parameter series appear more stable, with reduced fluctua-
tions compared to the synthetic validation.
This increased stability can be attributed to both a higher number of itera-
tions (5000 versus 2000) and a real dataset that is three times longer than
the synthetic one.

Figure 5.9: Parameter series for the real dataset.

5.2.2 Visual Comparison
For visual evaluation, the original series is compared with the representative
series wmean.
The simulated series closely mirrors the original, albeit with a more stable

70

Results

appearance.
To illustrate this, two views are provided:

• A truncated view that enhances clarity by focusing on a segment of the
series (Figure 5.10).

• A full view of the series (Figure 5.11).

Figure 5.10: Plot of the original and simulated series. To improve the
clarity and visualize the similarities between the two, the series have been
truncated to the first 1000 samples.

71

Results

Figure 5.11: Full plot of the original and simulated series.

Lag plots further confirm that the underlying behavior of the series is
consistent.
Although both series display similar patterns, the lag plot of wmean exhibits
more pronounced peaks, likely due to the noise reduction in its computation.

Figure 5.12: ACF plots with lag 24 (left) and 168 (right) of wmean

72

Results

Figure 5.13: ACF plots with lag 24 (left) and 168 (right) of the original
energy consumption dataset

5.3 Conclusion
In this work, a generative Nearest Neighbors Gaussian Process (NNGP)
model was developed to simulate hourly energy consumption profiles.
The model was designed to capture three different temporal patterns: recent,
daily, and weekly.
This have been done by employing a custom covariance function and apply-
ing the Nearest Neighbors approximation on Gaussian processes, which has
significantly reduced the computational complexity.
Initially the model has been validated on synthetic data.
The analysis of parameter series, distributions, and lag plots demonstrated
convergence towards the true values used in data generation.
When applied to the real-world dataset, the representative series wmean closely
mirrored the original consumption patterns, showing improved stability and
clearer cyclical trends.
These results confirm the model’s effectiveness in capturing the intrinsic
behavior of energy consumption.
Future work may focus on further refining the model parameters and extend-
ing the approach to larger, more diverse datasets.
Additionally, this approach could be followed by a clustering algorithm, in

73

Results

order to not only be able to create data depending on a particular user, but
mroe in general on a specific customer-category.

74

Chapter 6

Code

6.1 Generation of synthetic data

Listing 6.1: Set up
1

2 # Read the datase t
3 data <− read_csv (" p i n e r o l o /measurements . csv ")
4

5 # Log−transform the data
6 l og_s e r i e s <− log (data $dom2_1 0 [1 : 1 2 0 0])
7 time_index <− seq_along (l og_s e r i e s)
8

9 # S e r i e s parameters
10 N <− length (l og_s e r i e s)
11 mean_est imate <− mean(log_s e r i e s)
12

13

14

15 # Paramters c o n f i g u r a t i o n
16 phi <− 0 .5
17 phi24 <− 2.5
18 phi_weekly <− 1
19

20 sigma_sq <− 0.5
21 sigma24_sq <− 0.5
22 sigma_weekly_sq <− 0.5
23 tausq <− 1

Listing 6.2: Covariance Matrix

75

Code

1 # Function to compute the covar iance f o r the datase t . I t j u s t
depends on the time indexes

2 compute_covar iance <− func t i on (N, sigma_sq , phi , sigma24_sq , phi24 ,
sigma_weekly_sq , phi_weekly) {

3

4 # Generate d i s t anc e i n d i c e s
5 d i s t anc e_matrix <− abs (outer (1 :N, 1 :N, "−"))
6

7 # Compute i n d i v i d u a l d i s t anc e matr i ce s
8 D_l i n e a r <− d i s t anc e_matrix
9 D_d a i l y <− pmin (d i s t anc e_matrix %% 24 , 24 − (d i s t anc e_matrix

%% 24))
10 D_weekly <− pmin (d i s t anc e_matrix %% 168 , 168 − (d i s t anc e_

matrix %% 168))
11

12 # Compute the covar iance matrix
13 cov_matrix <− sigma_sq ∗ exp(−phi ∗ D_l i n e a r) +
14 sigma24_sq ∗ exp(−phi24 ∗ D_d a i l y) +
15 sigma_weekly_sq ∗ exp(−phi_weekly ∗ D_weekly)
16

17 re turn (cov_matrix + diag (tausq , N, N))
18 }

Listing 6.3: Synthetic Data Generation
1

2 s e t . seed (98989)
3

4 # Create mean vec tor and compute covar iance matrix
5 mean_vecto r <− rep (mean_est imate , N)
6 cov_matrix <− compute_covar iance (N, sigma_sq , phi , sigma24_sq , phi24

, sigma_weekly_sq , phi_weekly)
7

8 # Generate s y n t h e t i c s e r i e s us ing m u l t i v a r i a t e normal
d i s t r i b u t i o n

9 s y n t h e t i c_s e r i e s <− mvrnorm(
10 n = 1 ,
11 mu = mean_vector ,
12 Sigma = cov_matrix
13)

76

Code

6.1.1 Stan model on the synthetic data

6.1.2 Set up variables and matrices for stan model call

Listing 6.4: Distance matrices
1 c r e a t e_matr i ce s <− func t i on (X, Y, k_ne ighbors) {
2 n <− length (X)
3

4 # The d i s t a n c e s f o r the nea r e s t ne ighbors you want
5 num_neighbors <− length (k_ne ighbors)
6

7 # I n i t i a l i z e the matr i ce s
8 NN_matrix <− matrix (0 , nrow = n − 1 , nco l = num_ne ighbors)
9 NN_idx_matrix <− matrix (0 , nrow = n − 1 , nco l = num_ne ighbors)

10 NN_d i s t_matrix <− matrix (0 , nrow = n − 1 , nco l = num_ne ighbors
)

11 NN_d i s t_matrix_24 <− matrix (0 , nrow = n − 1 , nco l = num_
neighbors)

12 NN_d i s t_matrix_s e t t <− matrix (0 , nrow = n − 1 , nco l = num_
neighbors)

13 # Loop through each po int (xi , y i)
14 f o r (i in 2 : n) {
15 ne ighbors <− c ()
16 neighbor_i n d i c e s <− c ()
17 neighbor_d i s t a n c e s <− c ()
18 neighbor_d i s t a n c e s_24 <− c ()
19 neighbor_d i s t a n c e s_s e t t <− c ()
20

21 h <− 0
22 f o r (j in 1 :num_ne ighbors) {
23 idx <− i − k_ne ighbors [j]
24 i f (idx > 0) {
25 h <− h + 1
26 ne ighbors [h] <− Y[idx]
27 neighbor_i n d i c e s [h] <− idx
28 # Calcu la te the d i s t anc e
29 xj <− X[idx]
30 x i <− X[i]
31 d i s t anc e_l i n <− abs (x i − xj)
32 d i s t anc e_24 <− pmin (d i s t anc e_l i n %% 24 , 24 − (d i s t anc e_

l i n %% 24))
33 d i s t anc e_s e t t <− pmin (d i s t anc e_l i n %% 168 , 168 − (

d i s t anc e_l i n %% 168))
34 neighbor_d i s t a n c e s <− append (ne ighbor_d i s tance s ,

d i s t anc e_l i n)

77

Code

35 neighbor_d i s t a n c e s_24 <− append (ne ighbor_d i s t a n c e s_24 ,
d i s t anc e_24)

36 neighbor_d i s t a n c e s_s e t t <− append (ne ighbor_d i s t a n c e s_
se t t , d i s t anc e_s e t t)

37 }
38

39

40 # F i l l the matr i ce s
41 NN_matrix [i − 1 , 1 : l ength (ne ighbors)] <− ne ighbors #

obse rvat i on value
42 NN_idx_matrix [i − 1 , 1 : l ength (ne ighbor_i n d i c e s)] <−

neighbor_i n d i c e s # obse rvat i on ne ighbors indexes
43 NN_d i s t_matrix [i − 1 , 1 : l ength (ne ighbor_d i s t a n c e s)] <−

neighbor_d i s t a n c e s
44 NN_d i s t_matrix_24 [i − 1 , 1 : l ength (ne ighbor_d i s t a n c e s_24)]

<− neighbor_d i s t a n c e s_24
45 NN_d i s t_matrix_s e t t [i − 1 , 1 : l ength (ne ighbor_d i s t a n c e s_

s e t t)] <− neighbor_d i s t a n c e s_s e t t
46 }
47 }
48

49

50 re turn (l i s t (NN_matrix = NN_matrix , NN_idx_matrix = NN_idx_
matrix , NN_d i s t_matrix = NN_d i s t_matrix , NN_d i s t_matrix_24 =
NN_d i s t_matrix_24 , NN_d i s t_matrix_s e t t = NN_d i s t_matrix_s e t t)
)

51 }

Listing 6.5: Compute distances matrices
1 y <− s y n t h e t i c_s e r i e s # s y n t h e t i c s e r i e s data
2 x <− 1 : l ength (y)
3

4 # s e t up which indexes are de f ined as ne ighbors
5 k_ne ighbors <− c (
6 1 , 2 , 3 , 4 , 5 , 6 ,
7 24 ∗ 1 + 1 , 24 ∗ 1 + 2 , 24 ∗ 1 + 3 ,
8 7 ∗ 24 + 1 , 7 ∗ 24 + 2 , 7 ∗ 24 + 3 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ,

14 , 15 , 16 , 17 , 18
9)

10

11 n_neigh <− 11
12

13 # Compute Dis tances
14 r e s u l t <− c r e a t e_matr i ce s (x , y , k_ne ighbors)
15

78

Code

16 # Extract the va lue s o f the s i n g l e matr i ce s
17 NN_matrix <− r e s u l t $NN_matrix [, 1 : n_neigh]
18 NN_idx_matrix <− r e s u l t $NN_idx_matrix [, 1 : n_neigh]
19 NN_d i s t_matrix <− r e s u l t $NN_d i s t_matrix [, 1 : n_neigh]
20 NN_d i s t_matrix_24 <− r e s u l t $NN_d i s t_matrix_2 4 [, 1 : n_neigh]
21 NN_d i s t_matrix_s e t t <− r e s u l t $NN_d i s t_matrix_s e t t [, 1 : n_neigh]

Listing 6.6: Neighbor’s distances
1 compute_NN_distM <− func t i on (NN_idx_matrix ,NN_d i s t_matrix , NN_

d i s t_matrix_24 , NN_d i s t_matrix_s e t t) {
2 compute_NN_distM <− func t i on (NN_idx_matrix , NN_d i s t_matrix , NN_

d i s t_matrix_24 , NN_d i s t_matrix_s e t t) {
3 n <− dim(NN_idx_matrix) [1]
4

5 num_neighbors <− length (k_ne ighbors)
6

7

8 NN_distM <− matrix (NA, nrow = n , nco l = num_neighbors ∗ (num_
neighbors − 1) / 2)

9 NN_distM_24 <− matrix (NA, nrow = n , nco l = num_ne ighbors ∗ (
num_neighbors − 1) / 2)

10 NN_distM_s e t t <− matrix (NA, nrow = n , nco l = num_neighbors ∗ (
num_neighbors − 1) / 2)

11

12 f o r (i in 1 : n) {
13 h <− 1
14 f o r (j in 2 :num_ne ighbors) {
15 x i <− NN_idx_matrix [i , j] # s e l e c t cur rent value o f the

neighbor , f o r us i = X[i]
16

17 i f (! i s . na (x i)) {
18 f o r (k in 1 : (j − 1)) {
19 xk <− NN_idx_matrix [i , k]
20

21 i f (! i s . na (xk)) {
22 d i s t anc e_l i n <− abs (x i − NN_idx_matrix [i , k]) #

ne ighbors − (x [i]− j) which i s the value o f the other ne ighbor
23 NN_distM [i , h] <− d i s t anc e_l i n
24 NN_distM_24 [i , h] <− pmin (d i s t anc e_l i n %% 24 , 24 − (

d i s t anc e_l i n %% 24))
25 NN_distM_s e t t [i , h] <− pmin (d i s t anc e_l i n %% 168 , 168

− (d i s t anc e_l i n %% 168))
26 h <− h + 1
27 } e l s e {
28 h <− h + 1

79

Code

29 }
30 }
31 }
32 }
33 }
34

35 re turn (l i s t (NN_distM = NN_distM , NN_distM_24 = NN_distM_24 , NN
_distM_s e t t = NN_distM_s e t t))

36 }

Listing 6.7: Get neighbors distances
1

2 k_ne ighbors <− k_ne ighbors [1 : n_neigh]
3

4 r e s u l t 2 <− compute_NN_distM (
5 NN_idx_matrix ,
6 NN_d i s t_matrix ,
7 NN_d i s t_matrix_24 ,
8 NN_d i s t_matrix_s e t t
9)

10 # Extract d i s t a n c e s
11 NN_distM <− r e s u l t 2 $NN_distM
12 NN_distM_24 <− r e s u l t 2 $NN_distM_24
13 NN_distM_s e t t <− r e s u l t 2 $NN_distM_s e t t

Listing 6.8: Stan model set up
1

2 N <− length (x)
3 M <− length (k_ne ighbors)
4

5 # Set up v a r i a b l e s
6 data <− l i s t (
7 N = N,
8 M = M,
9 Y = y ,

10 x_0 = rep (1 , N) ,
11 NN_ind = NN_idx_matrix ,
12 NN_d i s t = NN_d i s t_matrix ,
13 NN_distM = NN_distM ,
14 NN_d i s t_24 = NN_d i s t_matrix_24 ,
15 NN_distM_24 = NN_distM_24 ,
16 NN_d i s t_s e t t = NN_d i s t_matrix_se t t ,
17 NN_distM_s e t t = NN_distM_set t ,
18 l im_phi = 3 / N,

80

Code

19 l im_phi24 = 3 / 24 ,
20 l im_phi_s e t t = 3 / (24 ∗ 7)
21)
22

23 # Use a l l a v a i a l b l e co r e s and p a r a l l e l i z e
24 r s tan_opt ions (auto_wr i t e = TRUE)
25 opt ions (mc . co r e s = p a r a l l e l : : detectCores ())
26

27 #Set paramters that w i l l be v i s u a l i z e d
28 parameters <− c (
29 " betapar " , " tausq " , " sigmasq " , " phi " , " sigma24sq " ,
30 " phi24 " , " sigma_s e t t s q " , " phi_s e t t "
31)

Listing 6.9: Stan Model call
1

2 #Set i n i t i a l va lue s f o r the paramters i t e r a t i o n
3 my_i n i t s <− l i s t (l i s t (
4 beta = −1, tau = 1 , phi = phi , phi24 = phi24 , phi_s e t t = phi_

weekly ,
5 sigmasq = 1 , sigma24sq = 1 , sigma_s e t t s q = 1
6))
7

8 # Fit the model us ing stan
9 samples <− stan (

10 f i l e = " Model . stan " ,
11 data = data ,
12 i n i t = my_i n i t s ,
13 pars = parameters ,
14 i t e r = 2000 ,
15 cha ins = 1 ,
16 seed = 123
17)

6.1.3 Stan model implementation

Listing 6.10: Stan model, Data block
1 data {
2 int <lower=1> N;
3 int <lower=1> M;
4

5 vec to r [N] Y;

81

Code

6 vec to r [N] x_0 ;
7

8 i n t NN_ind [N − 1 , M] ;
9 matrix [N − 1 , M] NN_dist ;

10 matrix [N − 1 , (M ∗ (M − 1) / 2)] NN_distM ;
11

12

13 matrix [N − 1 , M] NN_dist_24 ;
14 matrix [N − 1 , (M ∗ (M − 1) / 2)] NN_distM_24 ;
15 matrix [N − 1 , M] NN_dist_sett ;
16 matrix [N − 1 , (M ∗ (M − 1) / 2)] NN_distM_sett ;
17

18 r e a l lim_phi ;
19 r e a l lim_phi24 ;
20 r e a l l im_phi_sett ;
21 }

Listing 6.11: Stan model, Parameters block
1 parameters {
2 r ea l <lower = 0.01> tausq ;
3

4 r e a l betapar ;
5

6 r ea l <lower=lim_phi , upper= 3>phi ;
7 r ea l <lower=lim_phi24 , upper= 3> phi24 ;
8 r ea l <lower=lim_phi_sett , upper= 3> phi_sett ;
9

10 r ea l <lower = 0> sigmasq ;
11 r ea l <lower = 0> sigma24sq ;
12 r ea l <lower = 0> sigma_settsq ;
13 }

Listing 6.12: Stan model, Functions block
1 f u n c t i o n s {
2 r e a l nngp_lpdf
3 (vec to r Y,
4 vec to r mu,
5 r e a l sigmasq ,
6 r e a l tausq ,
7 r e a l phi ,
8 r e a l phi24 ,
9 r e a l phi_sett ,

10 r e a l sigma24sq ,
11 r e a l s igma_settsq ,

82

Code

12 matrix NN_dist ,
13 matrix NN_distM ,
14 matrix NN_dist_24 ,
15 matrix NN_distM_24 ,
16 matrix NN_dist_sett ,
17 matrix NN_distM_sett ,
18 i n t [,] NN_ind ,
19 i n t N,
20 i n t M)
21

22 {
23 # v a r i a b l e s i n s t a t i a t i o n
24 vec to r [N] V;
25 vec to r [N] Y_trasl = Y − mu;
26 vec to r [N] U = Y_trasl ;
27 r e a l vargp = sigmasq + sigma24sq + sigma_settsq ;
28 r e a l w_phi = sigmasq /vargp ;
29 r e a l w_phi_sett = sigma_settsq /vargp ;
30 r e a l w_phi_24 = sigma24sq /vargp ;
31

32 r e a l kappa_p_1 = tausq /vargp +1;
33 i n t h ;
34

35 f o r (i in 2 :N) {
36 i n t dim = (i <= M) ? (i − 1) : M;
37

38 matrix [dim , dim] iNNdistM ;
39 matrix [dim , dim] iNNCholL ;
40 vec to r [dim] iNNcorr ;
41 vec to r [dim] v ;
42 row_vector [dim] v2 ;
43

44 i f (dim == 1) {iNNdistM [1 , 1] = kappa_p_1 ; }
45 e l s e {
46 h = 0 ;
47 f o r (j in 1 : (dim − 1)) {
48 f o r (k in (j + 1) : dim) {
49 h = h + 1 ;
50

51 iNNdistM [j , k] = w_phi ∗ exp(− phi ∗ NN_distM [(i −
1) , h])+

52 w_phi_24∗exp(− phi24 ∗ NN_distM_24 [(i − 1) , h])
+

53 w_phi_sett ∗ exp(− phi_sett ∗ NN_distM_sett [(i −
1) , h]) ;

83

Code

54

55 iNNdistM [k , j] = iNNdistM [j , k] ;
56 }
57 }
58

59 f o r (j in 1 : dim) {
60 iNNdistM [j , j] = kappa_p_1 ;
61 }
62 }
63

64 iNNCholL = cholesky_decompose (iNNdistM) ;
65

66 iNNcorr = to_vector (w_phi ∗ exp(− phi ∗ NN_dist [(i − 1) ,
1 : dim]) +

67 w_phi_24∗exp(− phi24 ∗ NN_dist_24 [(i − 1) , 1 : dim])
+

68 w_phi_sett ∗ exp(− phi_sett ∗ NN_dist_sett [(i − 1) ,
1 : dim])) ;

69

70

71 v = mdivide_left_tr i_low (iNNCholL , iNNcorr) ;
72

73 V[i] = kappa_p_1 − dot_se l f (v) ;
74

75 v2 = mdivide_right_tri_low (v ’ , iNNCholL) ;
76

77 U[i] = U[i] − v2 ∗ Y_trasl [NN_ind [(i − 1) , 1 : dim]] ;
78

79 }
80 V[1] = kappa_p_1 ;
81

82 re turn − 0 .5 ∗ (1 / vargp ∗ dot_product (U, (U . / V)) + sum
(log (V))+ N ∗ log (vargp)) ;

83

84 }
85

86 }

Listing 6.13: Stan model, Model block
1 model {
2 phi ~ uniform (lim_phi , 3) ;
3 phi24 ~ uniform (lim_phi24 , 3) ;
4 phi_sett ~ uniform (lim_phi_sett , 3) ;
5

6 sigmasq ~ inv_gamma (1 , 1) ;

84

Code

7 sigma24sq ~ inv_gamma (1 , 1) ;
8 s igma_settsq ~ inv_gamma (1 , 1) ;
9

10

11 tausq ~ inv_gamma (1 , 1) ;
12 betapar ~ normal (0 , 100) ;
13

14

15 Y ~ nngp (x_0 ∗ betapar , sigmasq , tausq , phi , phi24 , phi_sett ,
sigma24sq , sigma_settsq ,

16 NN_dist , NN_distM , NN_dist_24 , NN_distM_24 , NN_dist_sett ,
NN_distM_sett ,

17 NN_ind , N, M) ;
18 }

85

Bibliography

[1] R. L. Berger G. Casella. Statistical Inference. Duxbury, 2002 (cit. on
p. 1).

[2] Simplilearn. What Is Probability Density Function. url: https://www.
simplilearn.com/tutorials/statistics-tutorial/probability-
density-function (cit. on p. 7).

[3] xaktly. Uniform PDF. url: https://xaktly.com/UniformProbDistr.
html (cit. on p. 8).

[4] analyticsvidhya. What are Mean and Variance of the Normal Distri-
bution? url: https://www.analyticsvidhya.com/blog/2024/11/
mean-and-variance-of-the-normal-distribution/ (cit. on p. 9).

[5] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. Bayesian Data Analysis. 3rd. CRC Press,
2013 (cit. on p. 11).

[6] Jose M. Bernardo and Adrian F. M. Smith. Bayesian Theory. Wiley,
2000 (cit. on p. 13).

[7] Honglak Lee Chuong B. Do. «Gaussian processes». In: (2008) (cit. on
pp. 13, 18).

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006 (cit. on p. 15).

[9] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006. url: http://www.
gaussianprocess.org/gpml/ (cit. on p. 18).

[10] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012 (cit. on p. 18).

[11] Chris Chatfield. The Analysis of Time Series: An Introduction. CRC
Press, 2003 (cit. on p. 20).

86

https://www.simplilearn.com/tutorials/statistics-tutorial/probability-density-function
https://www.simplilearn.com/tutorials/statistics-tutorial/probability-density-function
https://www.simplilearn.com/tutorials/statistics-tutorial/probability-density-function
https://xaktly.com/UniformProbDistr.html
https://xaktly.com/UniformProbDistr.html
https://www.analyticsvidhya.com/blog/2024/11/mean-and-variance-of-the-normal-distribution/
https://www.analyticsvidhya.com/blog/2024/11/mean-and-variance-of-the-normal-distribution/
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/

BIBLIOGRAPHY

[12] Jan G. De Gooijer and Rob J. Hyndman. «25 Years of Time Series
Forecasting». In: International Journal of Forecasting (2006) (cit. on
p. 20).

[13] Robert H. Shumway and David S. Stoffer. Time Series Analysis and
Its Applications: With R Examples. Springer, 2017 (cit. on p. 21).

[14] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time Series Analysis: Forecasting and Control. Wiley, 2015
(cit. on p. 22).

[15] Wikipedia. Population of Ireland and Europe 1750 to 2005. url: https:
//commons.wikimedia.org/wiki/File:Population_of_Ireland_
and_Europe_1750_to_2005.svg (cit. on p. 22).

[16] Wikipedia. Correlogram. url: https://en.wikipedia.org/wiki/
Correlogram (cit. on p. 23).

[17] ooemma83. How to Interpret ACF and PACF plots for Identifying AR,
MA, ARMA, or ARIMA Models. url: https://medium.com/@ooem
ma83/how-to-interpret-acf-and-pacf-plots-for-identifying-
ar-ma-arma-or-arima-models-498717e815b6 (cit. on p. 24).

[18] Wikipedia. Rstudio. url: https://en.wikipedia.org/wiki/RStudio
(cit. on p. 24).

[19] International Energy Agency. World Energy Outlook 2021. IEA, 2021.
url: https://www.iea.org/reports/world-energy-outlook-2021
(cit. on p. 26).

[20] Tao Hong and Shu Fan. «Probabilistic electric load forecasting: A
tutorial review». In: International Journal of Forecasting 32.3 (2016),
pp. 914–938 (cit. on p. 26).

[21] Yu Wang, Ke Li, and Peng Jiang. «Generating synthetic smart meter
data for load prediction model evaluation». In: IEEE Access 7 (2019),
pp. 9841–9850 (cit. on p. 27).

[22] A. V. Vecchia. «Estimation and Model Identification for Continuous
Spatial Processes». In: (1988) (cit. on p. 45).

[23] Abhirup Datta, Sudipto Banerjee, Andrew O. Finley, and Alan E.
Gelfand. «Hierarchical Nearest-Neighbor Gaussian Process Models for
Large Geostatistical Datasets». In: (2016) (cit. on p. 45).

[24] Stan Development Team. «Stan Modeling Language: User’s Guide and
Reference Manual». In: (2017) (cit. on p. 46).

87

https://commons.wikimedia.org/wiki/File:Population_of_Ireland_and_Europe_1750_to_2005.svg
https://commons.wikimedia.org/wiki/File:Population_of_Ireland_and_Europe_1750_to_2005.svg
https://commons.wikimedia.org/wiki/File:Population_of_Ireland_and_Europe_1750_to_2005.svg
https://en.wikipedia.org/wiki/Correlogram
https://en.wikipedia.org/wiki/Correlogram
https://medium.com/@ooemma83/how-to-interpret-acf-and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6
https://medium.com/@ooemma83/how-to-interpret-acf-and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6
https://medium.com/@ooemma83/how-to-interpret-acf-and-pacf-plots-for-identifying-ar-ma-arma-or-arima-models-498717e815b6
https://en.wikipedia.org/wiki/RStudio
https://www.iea.org/reports/world-energy-outlook-2021

BIBLIOGRAPHY

[25] M. L. Stein. «Statistical Interpolation of Spatial Data: Some Theory
for Kriging». In: (1999) (cit. on p. 47).

88

	Introduction
	Probability Background
	Set Theory
	Definition of Probability
	Conditional Probability
	Random Variables
	Mean and Variance
	The Likelihood Function

	Bayesian Probability Notions
	Multivariate Normal
	Gaussian Processes

	Time Series
	The lag plot

	Rstudio and Stan

	Dataset Analysis
	Introduction
	Energy Consumption Dataset
	Finding Hidden Patterns in the Dataset

	Generative NNGP Model
	Nearest Neighbor Gaussian Processes
	Generic Stan Model Assumption
	NNGP Model
	Implementation of the Model

	Choice of the priors
	Priors for , 24, and sett
	Priors for , 24, and sett (1)
	Priors for
	Priors for (1)

	Synthetic Data Generation
	Approach
	Parameter choice
	Results and comparison with original series

	Results
	Application to Synthetic Data
	Parameter Series Comparison
	Visual Comparison

	Applying the Model on the Real Data
	Parameter Series Comparison
	Visual Comparison

	Conclusion

	Code
	Generation of synthetic data
	Stan model on the synthetic data
	Set up variables and matrices for stan model call
	Stan model implementation

	Bibliography

