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Chapter 1

Introduction

Artificial Intelligence (AI) is undergoing rapid and large-scale advancements,
becoming an integral part of modern technology and daily life. The potential
applications are expanding rapidly, impacting an increasing number of sectors.
Computer vision remains one of the most prominent fields among the various
AI-driven applications. It refers to the processes that allow machines to perceive,
interpret, and understand visual information from the world. It encompasses
methods for acquiring, processing, and analysing digital images to extract data
that contains meaningful information.

One of the most interesting and challenging environments where AI can po-
tentially be applied is Space. Space missions involve extreme and unpredictable
scenarios that require real-time information processing and decision-making. These
operations demand high autonomy, precision, and resilience against external factors.
Traditional space systems typically depend on communication with ground control,
which can introduce latency and limits in data transmission, particularly in deep
space, making timely responses hard. For this reason, there is an increasing need
for intelligent on-board systems that can operate autonomously in complex and
uncertain situations.

While AI is now commonly used in many terrestrial applications, its integration
into space systems is still early. However, the shift from traditional to AI-based
systems holds the potential to drive groundbreaking innovations and progress in
the coming years. Autonomous satellite operations, on-board data processing and
analysis, and smart predictive maintenance are just a few examples of critical space
activities that could be enhanced by deploying efficient and intelligent Machine
Learning and Deep Learning models in orbit.

This thesis focuses on the task of Feature Detection and Matching (FDM),
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Introduction

an important component of many computer vision processes that has seen re-
markable advancements in recent years. The objective of FDM is to establish
relevant and accurate pixel-level correspondences between images that capture the
same scene from different viewpoints. These correspondences are fundamental for
estimating the camera’s motion around the scene and are used in applications such
as autonomous navigation, image registration, pose estimation, and Simultaneous
Localization and Mapping (SLAM). FDM becomes particularly critical in scenarios
where only visual data is available, offering a viable alternative to active sensors
like LiDAR or infrared, especially in systems where resource constraints limit the
use of such technologies.

This project aims to analyse and compare different FDM methods, originally
designed and tested for general applications, to assess their abilities and limitations
under challenging conditions typical of space images.
The study explores the possible application to Rendezvous and Proximity Op-
erations (RPO) scenarios from a visual perspective. In this operation, a chaser
spacecraft gathers and analyses visual data from a target spacecraft. This generally
occurs when the two distinct space objects are close enough, in the order of tens of
meters. The relevant features extracted and matched between consecutive target
images could be used inside a SLAM process to track the target’s movements and
localise it within the environment, enabling precise relative navigation and control.

The thesis carried out followed four main steps:

• Literature review: The first phase of the project gives a review of research
in Feature Detection and Matching. The fundamental concepts and classical
algorithms are examined alongside advanced Deep Learning-based models. It
evaluates metrics applicable to FDM methods based on the available data
and investigates the primary concepts of the Knowledge Distillation (KD)
technique.

• Dataset analysis and preprocessing: The second phase analyzes space-
related datasets, specifically SPEED[1], SPEED+ [2] and SPEED-UE-Cube
[3], selected for their relevance in evaluating RPO conditions. In addition,
benchmark datasets, HPathes [4] and ScanNet [5] are examined.

• Comparison of classical algorithms and Deep Learning models: The
third phase benchmarks deep learning models against traditional FDM algo-
rithms. The evaluation focuses on their performance in challenging scenarios,
such as those represented in the selected datasets, to assess their robustness
and adaptability to space-related image characteristics.

• Application of Knowledge Distillation: The final phase involves training a
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Introduction

Deep Learning model through Knowledge Distillation. The primary objective
is to transfer knowledge from a Transformer-based model to a Convolutional
architecture motivated by hardware-specific constraints.

The following chapters analyse the described stages and present the experimental
results. In particular, Chapter 2 provides an overview of FDM and its space
applications pertinent to the project. Chapter 3 details the adopted datasets for
the subsequent steps. Chapter 4 discusses the various steps and methods employed
throughout the project. Chapter 5 examines the experimental results obtained.
Chapter 6 concludes the work with a comprehensive analysis and discussions.
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Chapter 2

Background and Related
Works

2.1 Introduction to Space Visual Navigation
Optical navigation (ON) has always been relevant to space missions and ad-
vancements in computer vision have greatly enhanced its capabilities [6]. It is
defined as the use of pictures taken by on-board cameras to help determine the
spacecraft’s trajectory [6]. The images can depict planets, asteroids, orbital debris,
or other spacecrafts. From these visual data, it is possible to infer information
about the state of the observing spacecraft and the properties of the observed
target. This information can aid in the navigation process.

Serving either as a complement to traditional navigation methods or as an
alternative, ON has become a key technology for satellite autonomous navigation
associated with different navigation approaches such as cruising, fly-by, terrain
relative navigation, landing, rendezvous and docking between spacecrafts (RVD)
and proximity operations (RPO) [7]. These capabilities can be used for addressing
critical missions like Active Debris Removal (ADR) [8] and On-Orbit Servicing
(OOS) [9], especially when dealing with non-cooperative targets.
ADR aims to mitigate the growing problem of space debris in Low-Earth Orbit,
avoiding future collisions and reducing the risk for operative spacecraft. OOS
includes the inspection and maintenance of orbiting active satellites and opera-
tional spacecraft, potentially extending their life. Another relevant application is
autonomous target exploration in deep space, where spacecraft must operate inde-
pendently due to limited or delayed communication with Earth. In such situations,
optical navigation enables the spacecraft to localize itself and make navigation
decisions without relying on ground-based control. These scenarios illustrate the
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importance of vision-based autonomy in modern spaceflight. As missions become
more complex and communication delays more restrictive, particularly in deep
space, the role of optical navigation continues to grow, supporting safer, more
efficient and autonomous spacecraft operations.

One of ON’s main advantages is its use of passive, low-power image sensors,
such as cameras, instead of active and energy-intensive sensors like LiDAR (Light
Detection and Ranging) and RADAR (Radio Detection and Ranging).
Cameras are typically smaller, lighter, and more cost-effective, making them ideal
for space systems where power consumption, mass, and payload volume are im-
portant constraints. Active sensors tend to generate large volumes of data that
are computationally demanding to process in real time and difficult to transmit
to Earth due to bandwidth limitations. In contrast, image data is generally more
compact and can be processed on-board with lower computational requirements,
leading to faster processing and easier transmission.

A specific use case is the relative visual navigation in RPO. It refers to
spaceflight scenarios in which two actors interact: the chaser and the target. The
chaser vehicle is a spacecraft equipped with both attitude and translational control
capabilities. It is able to acquire relative navigational information with respect
to the target and decide how to manoeuvre accordingly [10]. The target can take
various forms, such as space debris, asteroids or other spacecraft, and it can be
classified based on its behaviour and design [11] :

• Cooperative: targets can communicate with the chaser and provide state
information such as position and attitude. It can be the case of OOS operations.
However, target satellites may become inoperative or experience system failures,
rendering them unable to communicate.

• Non-cooperative: targets do not assist the chaser in any navigation phase. The
chaser has to autonomously estimate the state of the objective. It is typical of
space debris in ADR missions.

• Prepared: Designed for rendezvous operations and equipped with features such
as visual markers, docking fixtures, or navigation aids.

• Non-prepared: Lacking any of these equipments

Additionally, the target can be tumbling or non-tumbling. In the first case, the
object is in an uncontrolled rotational motion, and its spin may be unpredictable,
creating difficulties for operations. The second case describes a stable state where
the object’s orientation is controlled and predictable.
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The situation analyzed in this project is categorized as a proximity operation in-
volving a non-cooperative spacecraft, which is a generic scenario of the spacecraft’s
Guidance, Control, and Navigation (GNC) system. The chaser captures images of
the target using a monocular on-board camera and performs relative navigation.

The complete on-board navigation process is a complex, multi-stage pipeline
involving several components that are responsible for selecting the optimal rate for
image acquisition. Informative frames are identified and retained, while redundant
or low-quality images are discarded. This work does not cover the entire navigation
process. Instead, it assumes that a suitable pair of images has already been
acquired and processed. The focus is on the subsequent algorithmic stages, which
include feature points detection, feature matching and the estimation of the
geometric transformation. Various boundary conditions that affect the performance
of the feature detection and matching phases, as well as the estimation process,
are analyzed.

2.1.1 Applications
The pixel correspondences produced in the FDM process serve as input for higher-
level computer vision tasks used in visual navigation. The matched keypoints
enable the reconstruction of the geometric relationship between different views
and support advanced techniques such as Visual Odometry, Visual Simultaneous
Localization and Mapping, and Structure from Motion (SfM).

Visual Odometry (VO) is the process of estimating the pose (i.e. position and
orientation) and motion of the camera from a sequence of images captured during
the trajectory. In a traditional VO pipeline, this is achieved by using feature-based
methods, which detect interest points and track them across consecutive frames.
The correspondences found allow us to find the geometric structure, such as the
relative camera pose between pairs of images. Analyzing the whole sequence, the
information estimated is accumulated to reconstruct the full camera motion [12] [13].

Visual Simultaneous Localization and Mapping (V-SLAM) derives from
Simultaneous Localization and Mapping (SLAM). It refers to the process of local-
izing the position of a camera relative to its surroundings while simultaneously
creating a map of the environment. In the V-SLAM, cameras are the main sources
and information is extracted from monocular, stereo and RGB-D images. The
VO is involved in estimating the camera motion and reconstructing the scene [14].
Then, the trajectory is optimized to reduce the error accumulated, and the 3D map
is built by using techniques such as bundle adjustment [15].
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Structure from Motion (SfM) refers to the process of creating a 3D model
of an object from different views. This reconstruction typically requires detecting
feature points on the object and matching them in distinct pictures. Incorrect
correspondences are filtered out, while the correct ones are used to estimate the
camera’s motion around the target and accurately determine the 3D coordinates
of each point. An interesting application of SfM in space is the estimation of the
shape of unknown space debris, as illustrated in Figure 2.1.

Figure 2.1: Reconstruction of unknown space debris trough SfM techniques [16]

2.1.2 Challenges of Space domains
Space scenarios have unique characteristics that distinguish them from ground-
based and more generic visual contexts. These factors can influence the efficacy
and limit the potential application of FDM methods. Some of the most critical
characteristics that emerge in space images are:

• Illumination variability: Space images cover a high range of lighting condi-
tions, from complete darkness to intense sunlight. This causes overexposure
and underexposure in different regions of the image. The variations may occur
in consecutive frames, making the process of multiple images more difficult.
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• Lack of Texture: Frame captures in space often display large and uniform
areas that show little or no variation in texture or visual information. For
instance, objects such as spacecraft, asteroids, or debris are commonly set
against a black background, and the surface of a planet may have very few
distinctive points. Unlike generic environments, which are rich in visual details,
the lack of variation in space makes it challenging to extract relevant and
repeatable features.

• Influence of the background: Some space scenes may appear clean, while
others include stars, Earth, and various backgrounds. They can distract in
extracting meaningful features from the foreground object, which is the target
for the relative navigation process.

• Target’s motion: The motion of the spacecraft relative to the camera can
create complications. In proximity operations or rendezvous scenarios, the
relative distance and orientation can change significantly due to the high speed
and unpredictable direction and spin of the target. As a result, the apparent
size of the object in the image may vary rapidly. This leads to consecutive
frames captured from different poses, reducing visual overlap and the number
of detectable features.

• Sensor-related limitations: Space-grade cameras often face strict power
and hardware limitations, which can lead to lower-resolution images, a limited
dynamic range and increased noise. Environmental factors such as radiation
can deteriorate sensor performance over time. Other issues, such as motion
blur, lens artifacts, and image compression can also negatively affect image
quality.

• Lack of space-borne images: One significant challenge is the lack of a large
quantity of authentic space images that can be used to train and evaluate FDM
models in space scenarios. While synthetic datasets provide an alternative,
they sometimes fail to capture the complexities of real-world domains.

All these factors can make the application of computer vision techniques and
models, particularly FDM methods, difficult.

2.2 Deep Learning
Although Artificial Intelligence (AI) and Machine Learning (ML) originated in the
19th century, they have only become popular and widespread in the last decade.
This diffusion is particularly driven by the success of Deep Learning (DL), which
has emerged as the core technology behind AI and is effectively incorporated into
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numerous applications.

Deep learning is a subset of machine learning (ML) and artificial intelligence
(AI) [17]. AI encompasses a broad research domain focused on integrating human
behaviour and intelligence into machines or autonomous systems. ML is a more
specialized field that utilizes algorithms and methods designed to learn directly
from data. Deep learning is characterized by data-driven models that are based on
the concept of Artificial Neural Networks (ANNs). Within the deep learning
framework, computations and processing are carried out through Deep Neural
Networks, which consist of multiple layers that perform specific operations.

The model of Artificial Neural Networks has led to the development of a wide
range of techniques and architectures within DL. At the base is the Multilayer
Perceptron (MLP), also called the Feedforward Neural Network (FNN). Later,
Convolutional Neural Networks (CNNs) became the standard and most adopted
approach for numerous computer vision tasks. In recent years, Transformer-based
architectures have emerged as the new state-of-the-art.

2.2.1 MultiLayer Perceptron

The MultiLayer Perceptron (MLP) is an architecture within ANNs. It takes a
fixed-size input and produces a corresponding fixed-size output [18].
The MLP consists of multiple layers: The input layer, where the input variables
X = {x1, ..., xn} are introduced; the hidden layers that process and transform
the data; and the output layer, which generate the final output of the model
Y = {y1, ..., ym}. Figure 2.2 illustrates the structure of an MLP.

Figure 2.2: Topology of MLP [19]
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Each layer contains a set of units, neurons. Each neuron computes a weighted
sum of its input from the previous layers and applies a non-linear activation function.
For a single neuron j, the corresponding scalar output yj can be formulated as:

yj = σ(
Ø

i

wijxi + bj) (2.1)

where xi are the input of the neuron, wij are the internal weights and bj is the
bias (called parameters). σ represents a non-linear activation function. Commonly
used functions are ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit),
or Leaky ReLU and SiLU.

The strength of MLPs lies in their ability to introduce non-linearity into data
processing. Research has demonstrated that an Artificial Neural Network with at
least one hidden layer can approximate any continuous function with arbitrary
precision [20]. This capability allows the MLP to learn complex patterns and
effectively capture the underlying relationship between inputs and outputs.

ANNs can learn in a supervised manner, which means they need to know
the desired output, referred to as the target or ground truth, associated with each
corresponding input. The learning process involves minimizing a specific function,
known as the loss function, which measures the error between the network’s predic-
tions and the actual targets. This is accomplished through the Backpropagation
algorithm [21], which calculates the gradient of the loss function with respect to
the internal weights and biases of the network. The model’s parameters are then
updated to reduce the error. In this way, the model learns to perform the task at
its best.

2.2.2 Convolutional Neural Network
The Convolutional Neural Network (CNN) is a popular deep learning archi-
tecture that has become highly relevant due to its ability to learn directly from the
input without the need for human feature extraction [22]. CNNs are specialized
ANNs for processing data that can be represented through a grid-like topology,
such as time-series data or images, represented as grids of pixels [23]. CNNs have
become state-of-the-art approaches in many computer vision tasks, such as image
classification and segmentation, object detection and many others.

The mathematical operation of convolution is the foundation of the convolu-
tional network. This operation enables the detection of patterns, textures, and
spatial relationships within the data, focusing on local connections.
The convolution operation involves sliding a small window, known as a kernel
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or filter, across the input data. At each position, it computes the dot product
between the values in the window and the corresponding input values. The kernel’s
parameters (weights) are learned during the training process to minimize the loss
function.
For 2D input data I and a 2D filter K, the discrete convolution operation can be
expressed as:

S(i, j) =
kh−1Ø
m=0

kw−1Ø
n=0

K(m,n) · I(i+m, j + n). (2.2)

where S(i, j) is the output at position (i, j), referred to as feature map. The
dimensions kh and kw represent the height and width of the kernel, respectively [24].
This formulation is given for a single input and single output channel. Convolutional
layers, however, can operate over multiple channels.
For an input with Cin channels and a convolutional layer with D output channels,
each feature map Sd is computed by summing over all input channels, each with
its own kernel Kd:

Sd(i, j) =
kh−1Ø
m=0

kw−1Ø
n=0

Cin−1Ø
c=0

Kd(c,m, n) · I(c, i+m, j + n) (2.3)

Figure 2.3 shows an example of the application of 2D convolution operation.

CNNs may differ in their architectures and sizes. However, the typical architec-
ture, as illustrated in figure 2.4, comprises several distinct types of layers:

• Convolutional layers: They are responsible for performing the convolution
operations mentioned earlier. Each of these layers has various hyperparameters
that can be optimized according to the specific requirements of the task. The
hyperparameters include the number of filters used, the dimensions of the filter
window, the stride (which is the step size of the window), and the amount of
padding applied.

• Pooling layers: They reduce the spatial dimensions of feature maps by
performing a downsampling operation. The common pooling methods are
Max and Average pooling, which calculate the maximum or average value in a
local window.

• Fully-Connected layers: They utilize a flattened feature map, connecting
each input to all neurons in the layer. These layers aggregate features learned
from previous layers and generate predictions.
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Figure 2.3: An example of 2-D convolution operation [23]

Figure 2.4: Example of CNN architecture [25]
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2.2.3 Transformer
A Transformer model is a key deep-learning architecture that exploits the At-
tention mechanism to understand contextual relationships within sequential data.
First introduced in 2017 [26], it has been widely adopted in Natural Language
Processing, Computer Vision and speech processing.
Transformers generally work on sequence of elements, for example, tokens in NLP
or image patches in computer vision, which are first transformed into a vector
representation.

The core of the architecture is the attention module with the Query-Key-Value
(QKV) representation [27]. The matrices query Q, keys K and values V are linear
projections of the same input sequence, in the case of Self-Attention, or from
different inputs, for the Cross-Attention.
Given the matrix representation of queries Q ∈ RN×Dk , keys K ∈ RM×Dk and
values V ∈ RM×Dv , the scaled dot-product attention used by Transformer is

Attention(Q,K,V) = softmax
A

QK⊤√
Dk

B
V = AV (2.4)

where N and M represent the lengths of the queries and key inputs, respec-
tively. Dk and Dv denote the dimensions of the key (and query) and value vectors.
Meanwhile, A is referred to as the Attention matrix, which captures the attention
weights correlating the queries with the values through the key matrix.

Transformers use a Multi-Head Attention (MHA) scheme. The original input
matrices Q,K, V of dimension Dm are linearly projected into subspaces of dimen-
sions Dk, Dk, Dv with H different sets of learnable weights (WQ

i ,W
K
i ,W

V
i ). Each

head independently computes the attention function. The outputs are concate-
nated and projected back to the original embedding dimension Dm with the weight
matrix WO. Figure 2.5 illustrates the computation graphs of the MHA. This is the
mathematical expression:

MHA(Q,K,V) = Concat (head1, · · · , headH) WO

where head i = Attention
1
QWQ

i ,KWK
i ,VWV

i

2
.

(2.5)

The standard Transformer architecture consists of a series of encoder-decoder
blocks, as illustrated in figure 2.6. Each encoder block processes a sequence of input
tokens using a Self-Multi-Head Attention (Self-MHA) module and a Feed-Forward
Network. In the Self-MHA module, each token attends to all other tokens, allowing
it to learn dependencies between different positions in the sequence. In contrast,
the decoder block includes an additional Cross-Multi-Head Attention (Cross-MHA)
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Figure 2.5: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
[26]

module. This module processes the query matrix Q from the decoder’s previous
layer output, along with the key K and value V matrices derived from the encoder’s
output.

Figure 2.6: Transformer architecture [26]
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Vision Transformer

After the success of the Transformer architecture in NLP, this architecture was
transferred and adapted for computer vision tasks. One of the first and most
important attempts was the Vision Transformer (ViT), introduced in 2020 for
image classification [28]. This work marked the relevance of the Attention operation
and its use to replace CNNs.

The proposed architecture in ViT is an encoder-only Transformer, meaning it
does not include a decoder module typically used in sequence generation. Figure
2.7 is an overview of the structure.

The model is designed to extract an image representation by transforming the im-
age into a sequence of vector representations. In the process of image tokenization,
the input image is divided into square patches. Each patch is flattened and then
linearly projected into a fixed-dimensional embedding space. These embeddings are
combined with a learnable positional encoding, which helps to convey the spatial
relationships and the position of each patch within the input.
The transformer encoder processes the sequence of patch embeddings. This com-
prises multiple modules of Self-MHA and MLP. As made for token sequence, the
Attention learns how different regions are correlated and the global context of the
image. At the end, an MLP classification head predicts the image class based on
the Transformer output.
From the ViT, many variants have emerged, including hybrid models that combine
CNNs and Transformers.

Figure 2.7: Overview of the Vision Transformer [28]
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2.3 Knowledge Distillation
In recent years, deep learning neural networks have expanded in capability, size,
and computational demands. Modern models often consist of billions of parameters
and require substantial computing resources. While these large-scale models have
achieved success across a wide range of applications, their complexity and storage
requirements pose serious challenges for deployment in real-time scenarios and
resource-constrained environments.
In this context, it becomes essential to explore efficient machine learning and deep
learning techniques aimed at reducing model complexity and optimizing memory
and energy usage. Various optimization strategies can be employed, including
model compression methods such as quantization and pruning [29, 30], the adop-
tion of efficient neural network layers and computational techniques [31], and the
Knowledge Distillation (KD) technique [32].

This work specifically focuses on Knowledge Distillation, a technique that en-
ables the transfer of knowledge between DL models with different architectures and
dimensions. This approach is particularly relevant for space applications, where
onboard hardware is typically not optimized to run state-of-the-art AI frameworks,
often resulting in incompatibility or inefficiency. Furthermore, strict constraints
on power consumption, memory, and communication bandwidth in space systems
necessitate the use of smaller and more efficient models.

Knowledge distillation is a technique in which a primary deep neural network
(teacher) distils knowledge to a smaller and optimised network (student). The
student model can also present a different design and architecture in order to
substitute specific layers and operations from the original model. The central
idea is that, with the teacher’s supervision during the training, the student can
replicate the teacher’s model performance despite the differences. This method was
popularised by the paper [33].
The classical KD framework comprises the components: Knowledge, Distillation
Algorithms, and Teacher-Student architectures. The following sections review
the main aspects of this technique according to [32] [34].

2.3.1 Knowledge
Knowledge is essentially how the teacher model guides the learning of the student
model. Different forms of knowledge can be used: response-based, feature-based,
and relation-based. Figure 2.8 shows a scheme of the different categories.

In the response-based approach, the knowledge used derives from the logits,
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Figure 2.8: Scheme of the different sources of knowledge [32]

which are the output of the last layer of the teacher model. The student looks
directly at the final prediction and tries to replicate it. The objective is to minimize
the distance between the logits of the teacher and the student models.
Considered a vector of logits z as the output of the last Fully-Connected (FC) layer,
the distillation loss can be formulated as:

LResD(zt, zs) = LR(zt, zs)

where LR(.) indicates the divergence loss of teacher zt and student zs logits. The
most popular approach for classification tasks uses soft targets. Soft targets are
estimated from the logits using the softmax function, indicating the probability
that the input belongs to a specific class. Soft targets are computed as

p (zi, T ) = exp (zi/T )q
j exp (zj/T ) (2.6)

where zi is the logit for the i-th class and T is a hyperparameter to control the
importance of each of them.
Typically, the distillation loss is combined with the student loss, which is defined
as the loss between the ground truth label and the soft logits of the student model.
The Kullback-Leibler divergence loss is often utilised for the distillation loss, while
the cross-entropy loss is used for the student loss.

In the feature-based approach, the output of the intermediate layer (i.e. feature
maps) is used as the knowledge to supervise the student’s training. The distillation
loss for this case is:
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LF eaD(ft(x), fs(x)) = LF (ft(x), fs(x)) (2.7)

ft(x) and fs(x) are the feature maps of the intermediate layers of the teacher
and student, respectively, and LF (·) indicates the similarity function. Similarity
measures can be used such as l2-norm distance, l1-norm distance and cross-entropy
loss.

Figure 2.9: Generic feature-based knowledge distillation [32]

Relation-based knowledge explores the relationship between different layers or
data samples. For example, it is possible to distil knowledge from the relationship
between a pair of feature maps from the teacher, f̂t and f̃t, and from the student
model, f̂s and f̃s. The loss is indicated as

LRelD(ft, fs) = LR1(Ψt(f̂t, f̃t),Ψs(f̂s, f̃s)) (2.8)

where Ψt(·) and Ψs(·) are the similarity functions and LR1 indicates the corre-
lation function. This distillation strategy can also be based on the relationship
between data samples in the feature space. The student tries to learn the teacher’s
understanding of data similarities.

LRelD(Ft, Fs) = LR2(ψt(ti, tj), ψs(si, sj))

where (ti, tj) and si, sj) represent the data samples in the feature space, ψs(·) and
ψt(·) similarity functions and LR2 is the correlation function between the feature
representations.

2.3.2 Distillation
The distillation scheme is the training procedure for both teacher and student
models. There are three main categories:
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Figure 2.10: Generic instance relation-based KD [32]

• Offline distillation: The knowledge is transferred from a pre-trained teacher
model into a student model without modifying or updating the teacher. This
is the more relevant and established strategy.

• Online distillation: both the models are updated simultaneously. It is a
one-phase end-to-end, trainable scheme.

• Self-Distillation: The same neural networks are used as teacher and student
models. An example is [35], in which knowledge from the deeper layers is
distilled into shallow layers. This method is less popular than the others.

2.3.3 Teacher-Student architecture
In KD, it is relevant to design proper teacher and student networks to improve
the quality of the learning process. The model capacity gap can influence the
knowledge transfer and the ability of the student to mimic the teacher. As said,
this technique aims to reduce complexity, obtaining a simpler or smaller network
than the original. So, the student can be:

1. A simplified version of the teacher network with fewer layers

2. A quantized version that preserves the same structure

3. A different architecture with efficient operations or an optimized global struc-
ture.

Many methods have been proposed to control the reduction of the model
complexity and construct an adequate student network.
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2.4 Feature Detection and Matching
Local feature detection and matching seeks to detect and establish precise corre-
spondences between features in different images. A feature (or interest point)
refers to a distinctive low-level structure within an image, such as specific points,
regions, or patterns that remain identifiable across multiple perspectives.
To be useful for matching, interest points should possess specific properties: unique-
ness, the feature should be distinguishable from others within the image; repeata-
bility, since it should be detectable across different images of the same scene and
robustness, to remain stable under transformations such as rotation, scaling, affine
transformations and changes in illumination.
It is possible to classify distinct types of features:

• Edges: points that are a boundary between two image regions.

• Corners: pixels where the intensity varies rapidly in multiple directions within
a local neighbourhood.

• Blobs: areas where pixels exhibit similar characteristics (such as brightness or
colour) or patterns in relation to nearby regions.

The traditional image-matching pipeline comprises four steps [36]:

• Feature detection: Interest points are extracted from the image. These
points should have the properties mentioned above to be useful for the matching
phase.

• Feature description: Once detected, each feature is represented by a de-
scriptor, a high-dimensional vector that encodes relevant information about
the local image structure.

• Feature Matching: Descriptors enable comparisons between features in
various images by assessing similarity measures or correlations.

• Geometric transformation estimation: The matches obtained can be
used to estimate the geometric relationship between the image pair processed.
Relevant geometric information about the structure of the scene can be
retrieved.

These steps are not predefined but depend on the methods and approaches
employed. With the advent of more advanced techniques, it has become possible to
integrate multiple steps into unique frameworks. The following sections will provide
an overview of classical approaches and deep learning-based models analysed in
this work.
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2.4.1 FDM: Classical algorithms
Classical handcrafted FDM algorithms are the foundation of computer vision and
have been among the most crucial methods for analysing and extracting information
and features from images. These algorithms are explicitly designed to identify
and describe distinctive interest points based on mathematical principles, such
as filtering techniques, gradient intensity analysis and scale-space representations.
Starting with the Harris Corner Detector in 1988 [37], handcrafted approaches have
shown substantial success in FDM tasks. In this work, some of the most popular
traditional methods, including SIFT, ORB, and AKAZE, have been examined.

SIFT

Scale Invariant Feature Transform (SIFT) was proposed by David Lowe in
1999 [38] and then successively improved in 2004 [39]. It is considered the most
renowned feature detection and description algorithm.

The SIFT detector is founded on a filtering technique known as Difference-of-
Gaussians (DoG) operator, which approximates Laplacian-of-Gaussian (LoG) [40],
traditionally employed for blob detection.
Given an input image f(x, y), the DoG operator is calculated as the convolution of
the difference between two Gaussian kernels at varying scales σ.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ f(x, y)

where G is the Gaussian function defined as

G(x, y, σ) = 1
2πte

−x2+y2
2σ

The scale space is created by convolving the image with Gaussian blurs at various
factors. The resulting convolved images are organized into octaves, where each
octave corresponds to a doubling of the σ value.
After forming the image pyramid, as illustrated in figure 2.11, key points are
identified by searching for local minima or maxima in the adjacent Difference of
Gaussian (DoG) images. Each pixel is compared to its local neighbours, which
include 8 pixels at the same scale, 9 pixels at the upper scale, and 9 pixels at
the lower scale. Once potential key point locations have been identified, these
locations are refined for greater accuracy. The Taylor series expansion is used
to determine a more precise position, and a threshold is applied to eliminate
extrema with insufficient intensity. To ensure rotation invariance, each feature is
assigned one or more orientations based on the gradient magnitudes of pixels in
the local region. This technique is known as the Histogram of Gradient Orientations.
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Figure 2.11: Difference of Gaussian

The next step in the SIFT algorithm is feature description. This method extracts
information from a 16 × 16 neighbourhood around each detected feature. The
region is further segmented into 16 4× 4 sub-blocks. For each sub-block, an 8-bin
orientation histogram is created, obtaining a total of 128 values representing the
key point descriptor.
SIFT is invariant to image rotations, scaling and limited affine variations but
requires a high computational cost.

ORB

The ORB (Oriented FAST and Rotated BRIEF) [41] algorithm was intro-
duced in 2011. It derives from the FAST features detection algorithm [42] and the
BRIEF description method [43].

Due to its high speed, FAST was a prominent algorithm in real-time systems.
However, unlike SIFT, it does not produce an orientation description of the key
point and multi-scale features. So, ORB employed a scale pyramid of the image
and produced FAST features at each level in the pyramid, filtering them by the
Harris corner measure [44]. Then, through the intensity centroid measure, the
algorithm assigns an orientation to the corner extracted.

BRIEF is a binary descriptor method representing each key point with a string
of dimensions from 128 to 512 bits. However, it is not invariant to rotation, so ORB
utilises a rotation-aware BRIEF based on the orientation of the features computed
in the previous step. As SIFT, ORB features are invariant to scaling operations,
rotations and limited affine transformations.
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AKAZE

Accelerated-KAZE (AKAZE) [45] was presented in 2013 as an improved version
of the KAZE algorithm [46]. Similar to KAZE, it employs a non-linear diffusion
filter, but its non-linear scale-spaces are constructed using a computationally effi-
cient framework called Fast Explicit Diffusion (FED).

The Gaussian scale space used in SIFT or SURF has significant drawbacks, as it
does not preserve object boundaries and tends to smooth out important details and
noise equally. To address this, employing a non-linear scale-space allows for locally
adaptive blurring to the image, preserving object boundaries. Nonlinear diffusion
filtering is a technique utilised in image processing that alters the luminance of
an image as it is analysed at different scale levels. This process is governed by
non-linear partial differential equations (PDEs), which describe how brightness
evolves based on a specific flow function. The classic nonlinear diffusion equation is

∂L

∂t
= div(c(x, y, t) · ∇L)

where L is the image luminance and c is the specific conductivity function that
allows the diffusion to be adaptive to the local image structure.

The disadvantage of this approach is its intense computational demand, as there
are no analytical solutions to the nonlinear diffusion equation. AKAZE, by utilising
FED schemes, accelerates this method and outperforms SURF, SIFT, and KAZE,
demonstrating high performance in feature detection and description.

K-NN for Matching task

Traditionally, handcrafted algorithms concentrate only on the pipeline’s initial two
stages: detection and description. Matches between local features can be identified
by calculating a distance between the descriptors, which are high-dimensional
vectors, using a specific distance function d, such as the Euclidean distance.

d(p, q) =
ñ

(p− q)2

or the Hamming distance in the case of binary descriptors. The hamming
distance between two equal-length vectors of symbols is the number of positions at
which the corresponding symbols are different.

A classical approach to determining correspondences when computing distance
measures is to use the k-nearest neighbours algorithm (K-NN). This algo-
rithm identifies, for each element, the k closest elements in the set. In local feature
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matching, the K-NN algorithm finds, for each keypoint descriptor in the first image,
the K nearest descriptors in the second image. K is typically set to 2 to retrieve
the two nearest matches.

This enables the application of filtering techniques such as Lowe’s ratio test to
eliminate potential false positives. Lowe’s ratio is the ratio of the distances between
a point and its two nearest neighbours in the second image. Considering a local
feature px in image dx and an image dy, the point py in image dy that is closest to
px is selected as a candidate match. Subsequently, the distance ratio σ(px, dy) of
the closest to the second-closest neighbours of px in dy is computed as:

σ(px, dy) = d(px, NN1(px, dy))
d(px, NN2(px, dy))

where NN1 and NN2 represent the most similar and the second most similar
key points of px in image dy. Finally, the closest point is considered a correct match
if this ratio is below a given threshold c. In [39], c = 0.8 was reported as a good
threshold to eliminate a relevant number of false matches while discarding a few
correct matches.

2.5 FDM: Deep Learning models
In the era of Deep Learning, significant advancements have been made to tackle the
challenges of local feature matching, improving both accuracy and efficiency. Figure
2.12 shows some of the most influential AI-based models introduced in recent years.
This section provides an overview and classification of these approaches, following
the categorization proposed in [36].
Feature matching methods can be divided into two main categories: Detector-
based and Detector-free approaches.

Detector-based These methods identify and describe sparse key points dis-
tributed across the image before establishing correspondences between different
images. CNNs have demonstrated their capability to extract more robust key
points and highly discriminative descriptors, making them adapted for this task.
Traditional handcrafted methods, such as SIFT, ORB, and AKAZE, can be con-
sidered in this category alongside other algorithms like, for example, the Harris
corner detector [44], FAST [42], and SURF [47].
The Detector-based methods can be further classified into four classes [36]:

• Detect-then-Describe: In this paradigm, keypoints are first extracted, and
descriptors are subsequently generated by analyzing image patches centered
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Figure 2.12: Representative local feature matching methods [36]

around each detected key point.

• Joint Detection and Description: This approach integrates the detection and
description stages within a single model, optimizing both tasks simultaneously.
An example is SuperPoint [48].

• Describe-then-Detect: In contrast to the previous approaches, this method
first extracts local image descriptors, and then keypoints are detected based
on the extracted feature representations.

• Graph-based: In the conventional feature matching process, correspondences
are established through the nearest neighbor (NN) algorithm based on the
descriptor similarity. Attention-based graph neural networks (GNNs) treat
keypoints as nodes, utilizing self-attention and cross-attention layers from
Transformers. This facilitates the exchange of visual and geometric information
between nodes within the same image and across others. Examples include
SuperGlue [49], GlueStick [50] and LightGlue [51]

Detector-free These approaches eliminate the need for sparse keypoints by
exploiting the contextual information across the entire image. They generate dense
matches by extracting visual descriptors from a dense grid covering the image.
Compared to detector-based methods, they generally produce a higher number of
repeatable feature points.
Detector-free strategies also employ different methodologies that can be grouped
into:

• CNN-based: These methods extract dense feature maps from the image using
CNNs. A 4D correlation tensor is then computed, which contains the similarity
scores between all possible point pairs across two images. Matches are obtained
by analyzing this four-dimensional correlation volume.
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• Transformer-based: Models integrate the Transformer architecture to consider
both local and global information into local feature matching. An example is
LoFTR [52], where CNNs are used to extract initial feature maps, followed by
the attention layers that refine feature descriptors and generate dense matches.

• Patch-based: Instead of detecting individual key points, the images are divided
into patches and descriptors are computed for each one. The matching process
occurs at the patch level before refining correspondences at the pixel level.

Figure 2.13 summarizes the distinctions between the AI-based models analyzed.
This work focuses on SuperPoint, LightGlue, and LoFTR, which are described in
more detail in the following sections.

Figure 2.13: Categories of Local Feature Matching models [36]

2.5.1 FDM: Non-Transformer based models

SuperPoint

SuperPoint [48] is a fully convolutional neural network that jointly computes
pixel-level interest point locations and descriptors.

The main insight proposed by this study is the generation and use of a specific
self-supervised framework for training the neural network, as shown in figure 2.15.
A dataset of pseudo-ground truth interest point locations is generated with the
interest point detector itself providing supervision.
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Figure 2.14: SuperPoint architecture

The SuperPoint architecture (fig. 2.14) has a single shared encoder to process
and reduce the input image dimensionality. After the encoder, there are two decoder
heads, one for interest point detection and the other for interest point description.
The encoder consists of convolutional layers and max-pooling layers for spatial
downsampling. After the encoder processes the image I ∈ RH×W , the obtained
feature map is fed into the two decoder blocks.
The detector head produces a tensor of the same dimension as the original image.
Each pixel of the output corresponds to a probability of "point-ness" (probability of
being a relevant feature point) for that pixel in the input. Instead, the descriptor
head computed a tensor of size H ×W ×D, where D is the length of the vector
descriptors. By combining the outputs of the two heads, the model can extract
relevant key point positions with the corresponding descriptors.

Figure 2.15: SuperPoint Self-Supervised Training overview

As mentioned earlier, they presented a self-supervised solution for training. The
first step involves training a CNN detector on a synthetic dataset of simple geometric
shapes (Synthetic Shapes). The resulting trained model is called MagicPoint. It has
the same architecture as SuperPoint without the descriptor head. The MagicPoint
detector generates pseudo-ground truth annotations on unlabeled real images using
the Homographic Adaptation technique (figure 2.16).
This technique warps the input image multiple times, enabling an interest point
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detector to view the scene from various viewpoints and scales, thereby achieving
more consistent detections. The generated labels are ultimately employed to
train the SuperPoint model. The performance of SuperPoint is assessed through
Homography Estimation on the HPatches dataset. This model surpasses other
detector and descriptor methods, such as LIFT, SIFT, and ORB.

Figure 2.16: Homographic Adaptation

2.5.2 FDM: Transformer-based models
LightGlue

LightGlue [51] is an efficient and lightweight deep neural network for feature
matching, proposed in 2023. LightGlue redesigns and optimises SuperGlue [49], a
transformer-based model that matches sparse key points in image pairs.
By leveraging the power of the Transformer model and the Attention mechanism
[53], SuperGlue has surpassed earlier local feature-matching models, demonstrating
robustness across various indoor and outdoor scenarios and conditions. LightGlue
enhances this by being more accurate, faster and efficient than its predecessor.
Both models are dedicated only to the matching phase. They accept two sets of
local features and descriptors, extracted from images A and B, as input. They
operate alongside other detectors such as SuperPoint, SIFT, and DISK [54].
The architecture consists of a stack of L identical layers. Each layer comprises a
self-attention and a cross-attention unit that updates the feature representations.
These blocks rely on a message-passing mechanism using attention to aggregate
information. Given input states xI

i , the messages mI←S
i are computed, where

I, S ∈ {A,B}, and the states are updated as follows:

xI
i ← xI

i + MLP
1è

xI
i |mI←S

i

é2
The message mI←S

i is computed via attention-weighted aggregation of states from
image S:

mI←S
i =

Ø
j∈S
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1
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2
j
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where aIS
ij represents the attention score between points i and j in images I and S.

• In the Self-attention, each key point attends to all points within the same
image (mA←A and mB←B).

• In the Cross-attention, instead, each point interacts with all points of the
other image (mA←B and mB←A).

At the final layer, the updated states are used to predict correspondences through
a soft partial assignment matrix P . This matrix integrates:

• A Pairwise score matrix S ∈ RM×N , which encodes key points’ similarity

• two "matchability score" vectors σA, σB, one for each image, which estimates
the likelihood of each point having a correspondence.

Pij = σA
i σ

B
j Softmax

k∈A
(Skj)i Softmax

k∈B
(Sik)j

A pair of points (i, j) yields a correspondence when both points are predicted
to be matchable and when their similarity is higher than any other point in both
images.

Figure 2.17: The LightGlue architecture

A major insight in the design of LightGlue involves adaptive inference, which
minimizes computation and inference time depending on the complexity of the
image pair. The model achieves this by dynamically reducing the number of
layers for simpler tasks, like pairs of images with significant visual overlap and few
alterations. After each layer, a classifier evaluates if the current predictions are
confident and likely to stay consistent in later layers. If they are, the model stops
the inference.
Furthermore, point pruning is utilized during processing. Points identified as both
confident and unmatchable are eliminated, ensuring only pertinent key points
proceed to the next layers.
LightGlue experienced training in a supervised framework using a two-stage method.
Initially, it was pre-trained with synthetic homographies. In this phase, an image
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pair is created by applying a homography transformation to an image, resulting in
a warped version. This transformation facilitates the generation of ground truth
matches, which are defined as key point pairs exhibiting a low projection error
across both images. Following pre-training, the model was fine-tuned using the
MegaDepth dataset [55], which offers a variety of real-world image pairs along with
depth and pose information.
LightGlue surpasses SuperGlue in homography and relative pose estimations,
showing greater accuracy and efficiency in feature-matching tasks.

LoFTR

LoFTR [52] is a detector-free feature-matching model designed to establish dense
pixel-wise correspondences directly between images. Unlike other feature-matching
approaches —such as SIFT, ORB, and SuperPoint— which rely on feature detec-
tors to extract key points before matching, LoFTR eliminates the detection step,
addressing scenarios where sparse key points may be insufficient.

Traditionally, dense correspondences are computed using CNNs. However, CNNs
have a limited receptive field, due to the reduced kernel size. They solved this
problem by using a Transformer in the architecture. This lead to have a global
context of the input, compared to the local context of CNNs.
As shown in figure 2.18, LoFTR has four main components:

1. Local Feature CNN : A convolutional backbone that processes the input im-
ages IA, IB and extracts the coarse-level feature maps F̃A, F̃B (1/8 of image
dimension) and the fine-level feature maps F̂A, F̂B(1/2 of image dimension)

2. The coarse feature maps F̃A, F̃B are then fed into the Local Feature TRans-
former (LoFTR), which is composed of Nc modules that contains a self-
attention and a cross-attention layers

3. The matching module matches the transformed features, after the LoFTR
module, and gives the coarse-level match prediction Mc

4. For every selected coarse prediction (̃i, j̃) ∈ Mc, a local window is cropped
from the fine-level feature maps F̂A, F̂B and the match is refined within this
local window with another LoFTR module.

The core of the architecture is the LoFTR module. As for LightGlue, the module
interleaves the self and cross attention. For self-attention, the input features fi

and fj are the same (either F̃A, F̃B), while the cross-attention comes from both
images(F̃A and F̃B or F̃B and F̃A), depending on the direction of the cross-
attention.
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In addition, they reduce the computational cost derived from the Attention layer in
the Transformer module, by exploiting the Linear Attention Layer [56]. In fact, the
vanilla dot-product attention in the classical encoder layer of the transformer has a
complexity of O(N2), so it grows quadratically with the input length sequence N ,
while this efficient variant has a liner complexity O(N).
LoFTR is trained on the ScanNet dataset for the indoor model and the MegaDepth
dataset for the outdoor model. After training, the model is evaluated on the
HPatches dataset for the homography estimation task and on the ScanNet and
MegaDepth datasets for the relative pose estimation. The benchmark datasets
mentioned are presented in the next section.

Figure 2.18: Overview of the LoFTR architecture [52]

2.6 Comparison between classical algorithms and
Deep Learning models

Handcrafted algorithms and deep learning models vary greatly in how they tackle
the FDM task. Deep learning models establish a novel paradigm, transforming the
methods for feature extraction and matching, providing distinct advantages. It is
possible to identify the following distinctions between the two classes of algorithms.

Feature extraction

Traditional algorithms identify key points using fixed mathematical operations like
corner detection and intensity gradients. They focus on small and isolated regions
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of the image, making them less effective in scenarios with low-texture surfaces,
extreme lighting conditions and uniform backgrounds. This reduces their capability
to extract distinctive and repeatable key points.
In contrast, DL models learn to detect relevant features directly from data without
relying on predefined rules. They can capture both local and global context, and
they better generalize across different imaging conditions. They are also more
robust to variations in illumination, texture, and geometric transformations.

Matching accuracy

The Handcrafted methods rely on manually designed feature descriptors, which
are fixed and do not adapt to different conditions. Since these descriptors encode
information only from the local region where the feature is detected, they struggle
to capture log-range dependencies between different features in the image. and
encode information only from the local region where the features are extracted.
Matching is performed based on descriptor similarity, which can lead to incorrect
correspondences and false positive matches, especially in complex or low-texture
environments.
On the other hand, DL models can simultaneously detect key points and optimize
their corresponding descriptors based on the entire image context. In the matching
phase, they can model contextual relationships between all extracted key points,
improving the accuracy of feature correspondences. Transformer-based models
further enhance matching by learning global dependencies, making them particularly
effective in scenarios where traditional methods struggle.

Computational efficiency

Classical algorithms are typically faster in small-scale applications due to their
lower computational demands. They do not require a training phase and their
computational cost remains fixed.
AI models, by contrast, require more computational resources, particularly during
the training phase. However, their architecture and computations can be optimized
for efficient inference, leveraging techniques to improve speed and reduce memory
consumption and computation.

2.7 Metrics
Various metrics are used to evaluate the performance of FDM methods in image
matching. The choice of these metrics depends on the available information and
the specific context of the application. When ground-truth correspondences are
available or can be derived from the known geometric relationship between two
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images, direct metrics can be used to measure the accuracy of individual predicted
correspondences. These metrics precisely evaluate how well the detected keypoints
match the true positions. However, accurate ground-truth correspondences are not
always available. In such cases, indirect metrics can be employed. These metrics
assess the algorithm’s performance by evaluating higher-level tasks that rely on
the extracted and matched features to estimate the geometric transformation
between images. The Homography estimation and the Relative Camera
Pose estimation are examined.

2.7.1 Homography Estimation

Images captured from various viewpoints or equipment can exhibit significant geo-
metric and photometric differences due to factors such as environmental variations,
camera technology differences, and shooting conditions variations. The homography
estimation is a particularly relevant technique to describe the geometric projection
relationship between images [57]. This technique has been proposed for various
applications such as image registration and fusion.
A homography is a projective transformation between two planes or planar projec-
tions of an image [58]. It can encode geometric changes such as rotation, translation,
scaling and projection. Figure 2.19 is a schematic representation of the Homography
transformation model.

Figure 2.19: Representation of homography transformation [57]

This transformation is represented by the homography matrix H, which is a
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3× 3 real matrix defined as follows:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (2.9)

where h11, h12, h21, h22 represent the affine trasformation, h13, h23 the translation
trasformation and h31, h32 the perspective trasformation. The homography matrix
relates the coordinates between corresponding points as:x′y′

1

 = H ·

xy
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 ·
xy

1

 (2.10)

where (x, y,1) are the homogenous coordinates of an interest point in the first
image, and (x′, y′, 1) denotes the coordinates of the corresponding point in the
second image. Expanding the product, we get that

x′ = h11x+ h12y + h13

y′ = h21x+ h22y + h23

1 = h31x+ h32y + h33

(2.11)

To solve the homography matrix between two images, we require two sets of
matched coordinate points that can be identified through FDM methods. The
element h33 is normalized to 1, so the matrix has 8 degrees of freedom and requires
at least four pairs of points to compute the estimation. In a real case, more than
four pairs are used.

The primary objective in homography estimation is to determine the transfor-
mation matrix H that minimizes the total re-projection error across all matched
feature point pairs. This leads to an optimization problem, where the goal is
to align the re-projected points from the source image with their corresponding
observed points in the destination image.
The re-projection error for each matched pair is defined as the squared Euclidean
distance between the actual point in the destination image and the point obtained
by projecting the corresponding source image point using the estimated homography
matrix H. The overall error can be formulated as:

Ø
i

A
x′i −

h11xi + h12yi + h13

h31xi + h32yi + h33

B2

+
A
y′i −

h21xi + h22yi + h23

h31xi + h32yi + h33

B2

To obtain a robust initial estimation, methods such as RANSAC or Least-
Median-of-Squares (LMedS) can be employed. These techniques operate by ran-
domly sampling subsets of matched point pairs to compute multiple homography
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candidates and selecting the one that yields the best consensus, so the highest
number of inliers or the lowest residual error under a defined threshold.
Once a reliable initial estimate matrix is found, a non-linear refinement step is
applied using the Levenberg-Marquardt algorithm [59]. This iterative optimization
further reduces the re-projection error by minimizing the cost function defined
above, typically resulting in a more accurate transformation.

For the evaluation of homography estimation accuracy, the angular correctness
metric [36] is commonly used. This metric compares the ground truth homography
Ĥ with the estimated homography H̃ by assessing how well they align specific
reference points between the two images. Typically, the four corners of the first
image are selected and transformed using both Ĥ and H̃. The projected points are
then compared by computing the average Euclidean distance between the ground
truth and estimated positions. If this average projection error is below a predefined
threshold, commonly set between 1 and 10 pixels, the homography estimate is
considered correct. To assess the performance across varying error thresholds,
the Area Under the Curve (AUC) metric is employed. The AUC quantifies the
proportion of correct estimations by integrating the accuracy over a range of pixel
error thresholds.

2.7.2 Epipolar Geometry and Relative Camera Pose Esti-
mation

Epipolar geometry The Epipolar geometry is a geometric model to describe
the geometry in a stereo vision of the same 3D scene and is at the core of many
complex tasks like Visual Odometry, Sfm and SLAM.

The traditional setup involves two cameras observing the same 3D point P ,
which is projected in each image plane in the locations p and p′, respectively. Figure
2.20 illustrates a representation of the epipolar geometry model. In the figure, we
can observe the camera centers O1, O2 and the epipolar plane, which is the plane
defined by the camera centers and the 3D point P . The line connecting the two
camera centers is called baseline. The epipolar lines instead are the intersections
of the epipolar plane and the two image planes. [58].
The epipolar geometry creates a constraint between the projection of the same
3D point in the two images. In fact, by knowing the camera locations O1, O2 and
a point in one image p, by definition the corresponding point p′, which is P ’s
projection on the second image, must be located on the epipolar line of the second
image.

The information about the epipolar constraint can be encoded in the Funda-
mental matrix F [58]. It is a 3× 3 matrix that relates the points p and p′, in the
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Figure 2.20: Schematic representation of the epipolar geometry model [60]

presence of unknown camera intrinsics. with the equation:

(p′)TFp = 0 (2.12)

As said p and p′ are in homogeneous pixel coordinates.
The matrix F is used to compute the epipolar line associated with the point. So,
given the point p in one image, the corresponding epipolar line in the other image
is l′ = Fp and similarly, l = F Tp′.

From the Fundamental matrix, it is possible to derive the Essential matrix E
[58]. As the matrix F , also the Essential matrix represents the epipolar geometry
constraints, but under the assumption that the cameras are calibrated, so with
known camera parameters and undistorted images. The camera intrinsics parame-
ters are the focal lengths fx, fy and the principal point coordinates cx, cy. They are
typically represented with a matrix K.
The matrix E gives us the relationship between normalized camera matrices, so the
effect of the known calibration matrix has been removed for each camera. The nor-
malized image coordinates are obtained by transforming the original homogenous
pixel coordinates using the inverse of the camera calibration matrix K.

p = K−1p (2.13)

where p is in normalized image coordinates and p in homogenous image coordi-
nates. E gives us the relationship:

(p′)TEp = 0 (2.14)

where p,p′ are corresponding points in normalized image coordinates. Compar-
ing this with the equation 2.12, it follows the relationship between the Fundamental
and Essential matrices
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E = (K ′)TFK (2.15)

where K ′, K are the intrinsic calibration matrices of the two images.

Relative camera pose estimation Now, we consider a pair of normalized
camera matrices C = [I|0] and C ′ = [R, t]. The Essential matrix, previously intro-
duced, contains the information of the relative pose (i.e. position and orientation)
between the two camera viewpoints and it has the form

E = [t]xR (2.16)

where R is the rotation matrix and t is the translation vector. [t]x denote the
matrix form for the cross-product with the vector t

[t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 (2.17)

The elements R, t represent the relative pose to transform a point from the first
camera coordinate system to the second camera coordinate system.

The Relative camera pose estimation task involves retrieving the quantity
R, t. The traditional approach is based on detecting and matching two sets of
features in the images to establish point-to-point correspondences. Then the sets of
corresponding points are used to solve the equation 2.14 and estimate the Essential
matrix E, which has 5 degrees of freedom. Both the rotation matrix and the
translation vector have three degrees of freedom, but there is an overall scale
ambiguity, so the translation vector t can only be estimated up-to-scale without
additional information.
Various algorithms can be exploited to solve the problem [61], [62]. Commonly,
robust estimator algorithms like RANSAC [63] are embedded in the pipeline to
reject outliers and obtain a robust estimation. Once E is estimated, it is decomposed
to recover the relative rotation R and the relative translation t. Figure 2.21 is a
schematic representation of the camera coordinate system and viewpoints of the
scene.

In the relative camera pose estimation task, evaluation metrics serve to compare
the ground truth information R, t with the ones estimate d R̂, t̂ from the sets of
matched points. Since the vector t̂ is a normalized vector, it indicates only the
direction of the relative position without information about the magnitude. For
this reason, the angular deviations [36] are used as error metrics. The following
formulas are the angular deviations in translation θt and orientation θr
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Figure 2.21: Camera coordinate systems [64]

θt = arccos( t · t̂
||t|| · ||t̂||

) (2.18)

θr = arccos(trace(R
T · R̂)− 1
2 ) (2.19)

θt, θr are measured in degrees, and the overall pose error is usually denoted as
the maximum among them.
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Chapter 3

Space datasets and
benchmark datasets

3.1 Space datasets
3.1.1 SPEED
SPEED (Satellite Pose Estimation Dataset) [1] is the first publicly available
machine learning dataset for pose estimation of uncooperative satellites, released
in 2019.
The dataset contains monocular images of the target spacecraft. By relying only
on visual data, computer vision algorithms can estimate the target spacecraft’s
position and orientation (attitude) relative to the camera. Given the challenges
of visual-based pose estimation in space, a standardized dataset is essential for
evaluating and comparing the performance of different algorithms. SPEED was
introduced to address this need.

The target used in the dataset is the TANGO spacecraft [65] from the PRISMA
mission [66] [67]. The images are generated from two different sources:

• Synthetic: Created using a camera emulator software and preprocessed to
emulate the illumination conditions captured from the actual flight imagery.
For half of the images, the Earth background is inserted with non-fixed
configurations. The synthetic images replicate the pixel intensity distributions
and characteristics of the real images.

• Realistic-facility (real): Captured using the TRON (Testbed for Rendezvous
and Optical Navigation) facility at the Stanford Space Rendezvous Laboratory
[68]. The facility is a simulated environment with a 1:1 mockup model of the
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TANGO spacecraft and a 7 degrees of freedom robotic arm which holds the
camera and takes pictures of the mockup model from different viewpoints.

The images have ground truth pose labels consisting of the translation vector and
a unit quaternion describing the relative orientation of the Tango spacecraft with
respect to the camera frame.
The dataset contains 15000 synthetic images and 300 real images divided into a
training and test set. Samples from both real and synthetic sets are in the figures
3.2 and 3.3.
All images are grayscale with a resolution of 1920x1200 pixels. The ground truth
pose labels refer to the camera reference frame and report the information relative
to the spacecraft reference frame as shown in Fig. 3.1. The labels are encoded
with a translation vector tBC for the translation and a quaternion vector qBC for
the rotation.
The satellite’s distance in the synthetic images is between 3 and 40.5 meters, while
the distance distribution of real images ranges from 2.8 to 4.7 meters.

Figure 3.1: Definition of spacecraft body reference frame B, camera reference
frame (C), relative position (tBC ), and relative orientation (RBC). [1]
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Figure 3.2: Image from the Real domain

Figure 3.3: Examples of images from the Synthetic set of the SPEED dataset

3.1.2 SPEED+
The SPEED+ dataset [2], released in 2021, is a natural evolution of the SPEED
dataset and shares different characteristics with it. It is a dataset for spacecraft
pose estimation. In particular, this dataset emphasizes the domain gap between
synthetic and real images to improve the evaluation of the robustness of DL models.
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SPEED+ includes images of the TANGO spacecraft, consisting of different domains
collected from two sources. As in SPEED, the first is a camera emulator software
to create 59960 synthetic images. The second source is the TRON facility at SLAB
(the same used for SPEED), which is used to generate two domains with different
and realistic illumination conditions

• Lightbox : They used light boxes with diffuser plates for albedo simulation

• Sunlamp: they reproduced direct high-intensity homogeneous light from the
Sun.

All the images are in grayscale and have a resolution of 1920x1200 pixels. The
ground truth label reports information on the spacecraft’s relative pose to the
camera. Examples of pictures present in the dataset

Figure 3.4: Schema and photos of the TRON facility simulation room layout [2]

Figure 3.5: Synthetic images from SPEED+
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Figure 3.6: Example lightbox images with the wireframe model of the Tango
spacecraft [2]

Figure 3.7: Example sunlamp images with the wireframe model of the Tango
spacecraft [2]

3.1.3 SPEED-UE-Cube

The last space-related dataset considered is SPEED-UE-Cube [3]. It builds on
previously released datasets, such as SPEED and SPEED+, with some important
modifications. Like its predecessors, it is a machine-learning dataset for monocular
pose estimation of a non-cooperative target, focusing on RPOD operations.
The dataset employs a 3U CubeSat model, which differs from the Tango spacecraft
used in the other datasets. Figure 3.8 shows the CubeSat’s 3D CAD model. In
addition, all the images are synthetic and rendered using the software Unreal
Engine 5 [69].
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Figure 3.8: A 3D model of the target CubeSat

SPEED-UE-Cube consists of two distinct subsets:

• Training dataset: it is a set of 30,000 images of the target spacecraft with
varying conditions of illumination, background and pose.

• Trajectory dataset: it is made of 1,186 sequential images that simulate a
rendezvous scenario between the target and a servicer spacecraft.

The trajectory is particularly relevant because it is a sequential test set designed to
evaluate pose estimation algorithms on realistic RPOD scenarios with sequential
relative information instead of single and isolated cases. Figure 5.16 contains a
sequence of images from the datasets.
The images are RGB images with 1920x1200 pixels resolution. The associated
ground truth labels represent the relative position and rotation with respect to the
camera. In addition, SPEED-UE-Cube limits the distance between the servicer and
the target to 15 meters, while SPEED samples distances up to 50 meters. Also, the
3U CubeSat model used in SPEED-UE-Cube is smaller than the TANGO model
adopted in SPEED and SPEED+.

Figure 3.9: Sample image from the training set of the SPEED-UE-Cube

Table 3.1 gives an overview of the three datasets with the sets included in each
of them and the number of available images.
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Figure 3.10: Sequence of images SPEED-UE-Cube trajectory set. The sequence
is from left to right and from top to bottom

SPEED SPEED+ SPEED-UE-Cube
Splits Synthetic Real Synthetic Lightbox Sunlamp Synthetic Trajectory
Train 12000 5 47966 - - 24000 -
Validation - - 11994 - - 6000 -
Test 2998 300 - 6740 2791 - 1186

Table 3.1: Number of images in the SPEED, SPEED+, and SPEED-UE-Cube
datasets.

3.2 Benchmark datasets

3.2.1 HPatches
The HPatches dataset [4] has been established as a benchmark for training and
evaluating local feature extractor and descriptor algorithms. It is used in different
tasks, such as image matching, patch retrieval and verification, and homography
estimation. The last task is relevant to our scope. The dataset’s images are collected
from various sources, including other existing datasets. The images are organized in
116 sequences taken from different scenes. Each sequence comprises one reference
image and five target images related to it by ground truth homography. The
sequences are split into 2 types:
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• Viewpoint: 59 sequences with significant viewpoint change

• Illumination: 57 sequences with significant illumination change, both natural
and artificial

The camera captures target images by varying the viewpoint and illumination
conditions. Some examples of transformations are rotations of the camera, varying
the camera zoom and focus, camera positions from a front view to a different angle,
light changes varying the camera aperture, or the daily time the image was taken.
The sequences are captured so that homographies from the reference image to each
target image can approximate the geometric transformations between images. This
represents the ground truth label required for the homography estimation task.

Figure 3.11: Example of an image sequence in the HPatches dataset

3.2.2 ScanNet
ScanNet [5] is a large-scale RGB-D dataset for 3D reconstruction and semantic
scene understanding. It contains around 2.5 million frames from 1,500 indoor
environments, annotations and information about the images. In particular, it
offers ground truth information about the camera pose with respect to the scene
and camera intrinsic parameters. Thus, it is possible to evaluate FDM algorithms
for relative pose estimation on this dataset.

46



Space datasets and benchmark datasets

Figure 3.12: Example of images from the ScanNet dataset
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Methods

This chapter describes in detail the methodologies adopted for evaluating Feature
Detection and Matching methods and for training the Student model using Knowl-
edge Distillation. The objective of the work is to compare classical algorithms and
AI-based methods on images from space-related use cases, highlighting the key
differences and limitations of these approaches.

The first section focuses on the preprocessing steps applied to the previously
introduced space datasets. Due to the lack of datasets specifically designed for FDM
in space contexts, image-processing strategies are required to construct meaningful
evaluation scenarios. This is closely related to the indirect evaluation metrics
considered in this study: Homography estimation and relative camera pose
estimation. Both metrics rely on knowledge of the geometric relationship between
images, such as the homography transformation or the relative pose between camera
viewpoints. Therefore, preprocessing is essential to generate image pairs for which
this ground truth information is available and can be compared to the output
obtained from the FDM process.

The second section explores the application of KD in FDM models. This
technique allows a Student model to be trained under the guidance of a pre-trained
Teacher model, which can have a different architecture. In this context, it also
helps address the lack of appropriate datasets for direct training on FDM tasks by
leveraging the supervision provided by the Teacher model. The student model, the
distillation strategy, and the different training phases are explained.
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4.1 Data preprocessing

The FDM process requires two images taken from different viewpoints of the same
scene or object as input. However, the satellite datasets available are designed for
assessing spacecraft pose estimation from a single-camera frame. Consequently,
these datasets do not include predefined image pairs, making it necessary to gener-
ate them.
The first step is to identify strategies to construct sets of coherent image pairs
that allow for a correct evaluation. Randomly pairing images without constraints
is not an optimal strategy. For instance, some images may capture completely
different perspectives of the spacecraft, significantly reducing the shared visual
content. Without sufficient overlap or excessive transformations, it becomes hard
to identify and match consistent and repeatable interest points, thereby compromis-
ing the feature-matching process and the consequent estimation of the geometric
transformation.

In a real-world scenario, this aspect is combined with the frame rate of image
acquisition and an analysis of the motion between the camera and the target.
Balancing these factors allows consecutive frames to capture overlapping areas of
the target, which can improve the effective application of FDM methods.
To address this challenge, two distinct ways of generating meaningful image pairs
are explored:

• Homography-based: It involves picking an image from the original dataset
and applying a planar transformation to generate a second image. This ap-
proach is applied to perform the Homography estimation.

• Relative camera pose-based: This leverages the ground truth annotations
available in the datasets. Each dataset provides information about the space-
craft’s pose in the camera coordinate system. By comparing the poses of
the spacecraft in two different camera coordinate systems, we can compute
the relative camera pose transformation. This method is used in the relative
camera pose estimation.

The following sections provide a detailed explanation of both strategies, with visual
examples illustrating the different scenarios.
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4.1.1 Homography generations
The homography estimation is particularly useful because it does not require 3D
information about the scene and can be applied to any 2D image pair. Its estima-
tion is relevant in scenarios where the camera experiences pure rotational motion
around its optical centre or when objects are situated at considerable distances
from the camera. In these situations, the homography offers a valid geometric
transformation model.

The approach adopted for generating image pairs via homography involves
sampling a random homography transformation and applying it to a reference
image, creating a warped version. As a result, the two images are related by a
known homography matrix Ĥ. To ensure effective and meaningful transformations,
homographies are generated through a combination of fundamental planar trans-
formations such as translation, scaling, and rotation. The procedure follows the
steps:

1. The four corners of a square patch centred in the original image are identified,
defining the region of interest for the transformation.

2. A concatenation of elementary transformations - translation, rotation and
scaling - is applied to the corners.

3. The original and transformed coordinates of the four points are used to identify
the homography matrix Ĥ.

4. The computed homography is applied to the original image, generating a pair
consisting of the reference image and its transformed version.

Homographies are randomly sampled within predefined hyperparameter con-
straints to regulate the transformation’s complexity. These parameters control
aspects such as the patch’s size, maximum rotation angle, range of scaling factors,
allowed translation values, and the number of discrete angles sampled. Fine-tuning
these parameters ensures that the generated transformations remain sufficiently
challenging without introducing excessive distortion. The intervals chosen for the
homography generations are reported in the table 4.1. Figure 4.2 illustrates some
examples of pairs generated.
The homography estimation metric is highly dependent on the degree of transfor-
mation applied. In the presence of excessive perspective distortion, the estimation
can be inaccurate due to the difficulties in the FDM process and the numerical
estimation of the correct homography matrix. For this reason, careful selection
of hyperparameters is important to maintaining a balance between expressiveness
and image integrity.
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Hyperparamete range
Path size 600× 960
Translation factor (0, 0.3)
Rotation angle (0, 90)°
Scale factor (0.7, 1.3)

Table 4.1: Hyperparameters for the homography generation

To evaluate the homography estimation, the FDM process is applied to the gen-
erated image pairs, extracting feature correspondences between the original and
transformed images. The estimated homography matrix H̃ is then compared to the
ground truth Ĥ, providing an indirect metric to assess the accuracy of detected
correspondences.

Figure 4.1: Random Homography generation [48]
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Figure 4.2: Images from SPEED dataset with homography transformation applied.
(left) Original image. (right) Modified image
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4.1.2 Image pair generation from relative camera pose
In this approach, the objective is to generate image pairs directly from the dataset
rather than creating pairs through synthetic transformations. A key challenge
in this process is ensuring that the selected image pairs exhibit sufficient visual
overlap to extract relevant and matchable features. To address this, images are
paired based on similarity criteria that ensure a partial view overlap of the same
object, in this case, the spacecraft.
To achieve this, the ground truth pose information provided in the dataset is
employed. The label consists of a quaternion vector for the orientation and a
translation vector for the position, as detailed in section 3.1.1. The three datasets
share the same notation for label representation.
For each image, the relative camera pose with respect to another image is computed,
representing the transformation between the two camera viewpoints.
The matrix T1→2 encodes the change from the first camera coordinate system to
the second coordinate system and is computed as:

T1→2 = T2T
−1
1 (4.1)

where T1, T2 are 4× 4 transformation matrices from the respective camera to
the spacecraft coordinate system and are constructed as:

Ti =
C
Ri ti
0 1

D
(4.2)

Here, Ri is the 3 × 3 rotation matrix derived from the quaternion qi in the
ground truth annotations, and ti is the 3-dimensional translation vector.
From the relative transformation matrix T1→2, the relative rotation Rrel and the
relative translation trel are retrieved.

To quantify the difference between the two camera viewpoints, the relative
orientation angle and the relative translation magnitude are computed.
The orientation angle is derived from the trace of the relative rotation matrix Rrel

using the formula:

cos θ = tr(Rrel)− 1
2 (4.3)

And then converted to degrees

Rdist = |arccos(cos θ)| · 180
π

(4.4)

For the translation, the relative translation distance is normalised by the average
camera-object distance in the two images:
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tdist = ∥trel∥
1
2(∥t1∥+ ∥t2∥)

(4.5)

This normalisation accounts for variations in absolute scale, ensuring that the
computed distance remains independent of the overall scene scale.

Once the relative rotation angle and relative translation distance have been
computed, image pairs are selected based on values that fall within a specified
interval. These ranges are arbitrarily defined and guided by an analysis of changes
in visual perspective. To ensure a more comprehensive evaluation, the analysis
should consider values and conditions that closely reflect real use cases.
For the tests, three relative translation distance and rotation angle intervals,
each progressively increasing in range, are chosen. This approach allows for
generating image pairs with varying difficulty levels, simulating scenarios with
increasing perspective changes. Larger relative translations or rotations result
in more challenging conditions, where the spacecraft appears with significantly
different orientations or positions in the two frames. By controlling these intervals,
the dataset effectively provides image pairs that range from easy perspectives to
broader viewpoint changes. The intervals adopted are:

• Easy: tdist ∈ (0.5, 0.7) and Rdist ∈ (0,30)◦

• Medium: tdist ∈ (0.7, 0.9) and Rdist ∈ (30,50)◦

• Hard: tdist ∈ (0.9, 1.1) and Rdist ∈ (50,70)◦

In the translation, we avoid choosing values that are too close to 0. If there is
no camera movement between the two frames, the relative camera pose estimation
can be unstable and fall in a degenerate case, so we require that there is at least a
little movement of the camera between the images.
Some image pairs generated are present in the figure 4.3. In the easy scenarios,
the pose of the spacecraft relative to the cameras is very similar and the frame
captures the same face of the object. In the hard case, the camera performs a wider
movement and rotation from the first to the second frame.

This method for selecting the images does not depend on other conditions,
such as lighting variations or the surrounding scene. The presence of the Earth
background can be a relevant factor in the evaluation of the FDM process and
metric estimation. In fact, different experiments were conducted to evaluate its
impact.
Initially, image pairs are created using only images without backgrounds, ensuring
that the visual features extracted primarily derive from the spacecraft. Next, pairs
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Easy

Medium

Hard

Figure 4.3: Image pairs on SPEED datasets paired based on the relative camera
pose. In order: easy, medium and hard cases

are generated using images with an Earth background, allowing for a comparison
of how the presence of a complex, variable background affects the matching pro-
cess. This approach provides insights into the robustness of FDM methods when
dealing with background clutter and variations in scene composition, which can be
relevant considerations for real space applications. Figure 4.4 shows scenarios with
background.
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Figure 4.4: Images with background from SPEED dataset paired based on the
relative camera pose (easy case)
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4.1.3 Trajectory set
As introduced in Section 3.1.3, the SPEED-UE-Cube dataset provides a different
context by replicating a more realistic RVD operation. The trajectory test set
consists of sequential images that simulate the chaser’s approach toward the target
and its relative motion. When comparing consecutive frames, changes in the
spacecraft’s appearance are often minimal, with only slight rotations and camera
movements. Additionally, the target spacecraft typically appears at a greater
distance from the camera, occupying a smaller portion of the scene, unlike some of
the previously analyzed cases. This makes it more challenging to extract relevant
features from the target. Another aspect is the gradual variation of the background
during the trajectory.
This dataset is particularly valuable for evaluating FDM under more realistic
conditions, simulating image acquisition and processing at defined time intervals
and a specific relative motion between the chaser and the spacecraft.
The dataset’s sequential structure eliminates the need for pairing methods, as
image pairs are naturally obtained by consecutive frames. The FDM process is
thus applied directly between these sequential images.

4.2 Training model with KD
The second phase of the project focuses on Knowledge Distillation to transfer knowl-
edge from a Transformer-based model to a Convolutional-based student model.
The attempt seeks to replace the self-attention and cross-attention layers present
in LightGlue with alternative layers.
The decision to use this model as a teacher is based on the experimental results
obtained. LightGlue outperforms LoFTR in various conditions, particularly in the
task of relative pose estimation, which is relevant for this study. Additionally, its
ability to establish correspondences between sparse keypoints not only enhances
matching precision but also allows the use of interest points extracted from different
methods and models, such as SuperPoint and SIFT. Furthermore, It has a simpler
architecture than LoFTR, which can facilitate the design and distillation process
of the Student model. From a computational standpoint, LightGlue, even when
combined with SuperPoint as a feature extractor, has a shorter inference time and
smaller dimensions.

The student architecture is built on the teacher’s design. We aim to maintain
the same design but replace the Self-Attention and Cross-Attention modules. Our
model is trained under LightGlue’s supervision in order to replicate its performance
in the matching process despite the architectural differences. The KD is exploited
to compare and align the intermediate hidden descriptor representations produced
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in each layer of the student with the corresponding representations generated by
the teacher.
The training process consists of two steps that follow the same strategies already
employed for the pairs generation. This procedure was used to replicate a similar
procedure for the LightGlue’s training, as described in [51]. The first stage is to train
the student on synthetic image pairs generated via homography transformation,
as previously detailed in the section 4.1.1. Next, the model is further trained on
image paired based on the relative camera position and orientation. The pairs are
generated through the criteria described in the section 4.1.2. The source of the
images in both phases is the SPEED dataset with the synthetic domain.
LightGlue and the student only perform the feature matching phase, so they require
an external FD method. In this case, the SuperPoint model works as a feature
extractor. To simplify and speed up the training, SuperPoint is configured to
output a maximum number of key points per image equal to 128. This constraint
ensures that the model focuses on a manageable number of relevant features. In
challenging situations, the quantity of extracted features is usually limited.
To evaluate the learning performance of the student model, several metrics are
used to compare the correspondences predicted by the student with the ground
truth correspondences. The adopted evaluation metrics are:

• Match Recall (R): The proportion of ground truth matches correctly identified
by the model. It measures how well the student model retrieves relevant
correspondences.

• Precision (P): The ratio of correct predictions among the total predicted
correspondences. A higher precision indicates that the model is making fewer
false-positive matches.

• Accuracy (A): The proportion of all correct predictions, including cases where
key points are not matchable. This metric provides an overall measure of the
correctness of the model’s predictions.

• Average Precision (AP): It evaluates how well the predicted matches are
ranked based on their confidence scores. A high AP score means that the
model assigns higher confidence scores to correct matches.

In the following sections, we provide more detailed descriptions of the student
model architecture, the KD loss and the training stages.

4.2.1 Student model architecture
The student model follows LightGlue’s architectural structure, where each layer
refines feature descriptors through an iterative update process.
For an input image pair, the SuperPoint model extracts from each image:
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• A set of interest point locations pi := (x, y) ∈ [0,1]2.

• Corresponding feature descriptors di ∈ Rd with d = 256.

The extracted interest points, alongside their descriptors, serve as input for both
the teacher and student models, represented as:

PI ∈ RN×2, DI ∈ RN×d

where I ∈ {A,B} and N,M are the number of detected points from the images
A,B, respectively.
The student utilizes the interest point descriptors DA, DB by feeding them into a
stack of L modules. Each module features a custom version of the Self-Attention
and Cross-Attention layers present in the original architecture. At the end of the
modules, the student exploits the same assignment module present in LightGlue.
This predicts the pair-wise assignment matrix P from which the estimated corre-
spondences are retrieved. Figure 4.5 is an overview of the student architecture.
The next sections describe how the Custom Self-Attention and Custom Cross-
Attention layers are designed.

Figure 4.5: Overview of Student Architecture

Replacing self-attention

The Self-Attention mechanism considers as input the interest point’s descriptors
from a single image, either DA or DB.
The attention operation is replaced with a sequence of 2D convolutional layers. For
the design of the convolutional block, we take inspiration from [70], especially in
some insights like the larger kernel size of the convolutional operation.
The convolutional block contains an initial PointWise Convolutional layer that
expands the channel dimension from 1 to 32 channels. Then, three consecutive
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convolutional modules composed of DepthWise and PointWise convolutional op-
erations are performed. At the end, a PointWise layer reprojects the channel
dimension to 1. The convolutional layers adopted are present in table 4.2

Operation Kernel Size Input Channels Output Channels
Pointwise Convolution 1× 1 1 32

Convolutional Blocks (3x)
Depthwise Convolution 7× 7 32 32
Layer Normalization - - -
Pointwise Convolution 1× 1 32 128
ReLU Activation - - -
Pointwise Convolution 1× 1 128 32
Pointwise Convolution 1× 1 32 1

Table 4.2: Convolutional operations in the module to replace the Self-Attention
layer

After the convolutional module, the output descriptors D′ ∈ RN×d are combined
with the module’s original input D. The merged descriptors with a dimension
2d are integrated through a Multi-Layer Perceptron (MLP) and reprojected to a
dimension d, as made in LightGlue. The final outputs DA and DB are then passed
to the Custom Cross-Attention module

Replacing cross-attention

To replace the Cross-Attention layer, a Cross-Graph convolutional learning module
is adopted with the same approach described in [71]. This module originates from
Graph Convolutional Networks (GCNs) and is designed to learn node embeddings
from two different graphs in graph matching problems. In the context of feature
matching, an analogy is drawn between node embeddings in graph matching and
feature descriptors from different images. The model learns the correlations between
feature descriptors from two images, providing an alternative to the Cross-Attention.
Let X(k) and Y (K) denote the feature descriptors of image A and B, respectively
(rewritten from D

(k)
A and D

(k)
B for clarity).

The co-affinity matrix C(k)
xy , which encodes the correlations between them, is

computed as:

C(k)
xy (i, j) = exp


1
X(k)T

W (k)Y (k)
2

ij

δ

 ∈ Rm×n (4.6)

where W ∈ Rd×d (d is the vector descriptor dimension equal to 256) is a trainable
weight matrix. δ is a scale factor. In the same way, the co-affinity matrix C(k)

yx is
computed.
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Once the co-affinity matrices are obtained, the feature representations are updated
as:

X(k+1) =
è
C(k)

xy Y
(k)∥X(k)

é
Θ(k)

xy

Y (k+1) =
è
C(k)

yx X
(k)∥Y (k)

é
Θ(k)

yx

(4.7)

where || is the concatenation operation and parameters Θxy an Θyx are trainable
weight matrices. X(k+1) and Y (k+1) represent the update feature descriptors from
the respective images A and B.

Figure 4.6: Schematic representation of Cross-module

4.2.2 Distillation
The Knowledge Distillation loss employed a feature-based approach and is crafted to
evaluate and align the feature descriptors generated by each module of the student
model with those in the teacher. More specifically, the loss function compares
the feature descriptors following the self-attention module and the final output
from each module, which occurs after the cross-attention layers. Supervision is
applied at these intermediate levels because the student model substitutes both
the Self-Attention and Cross-Attention layers.
The KD loss is expressed as a weighted sum of two components: the loss LSA and
the loss LCA

LKD = αLSA + βLCA (4.8)
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where α, β are weight hyperparameter.The loss LSA considers the descriptor of
both images (A,B) from the teacher and student model after the Self-Attention
layer, respectively D̂SA and D̃SA. It can be defined as:

LSA = 1
L

LØ
i=1

(L(D̂SA
A,i , D̃

SA
A,i) + L(D̂SA

B,i, D̃
SA
B,i)) (4.9)

here, L is the number of layers in the architecture.
Instead, the loss LCA is computed by comparing the descriptor after the Cross-
Attention. Denoted as D̂CA for the teacher and D̃CA for the student

LCA = 1
L

LØ
i=1

(L(D̂CA
A,i , D̃

CA
A,i ) + L(D̂CA

B,i , D̃
CA
B,i )) (4.10)

The loss function L employed is the Mean Square Error (MSE) function.
The KD loss is combined with the ground truth loss derived from the final corre-
spondences predicted by the student model and the ground-truth correspondences.
As for the original training of LightGlue, we aim to minimise the log-likelihood
loss constructed as:

LGT = 1
|M|

Ø
(i,j)∈M

log ℓPij

+ 1
2|A|

Ø
i∈A

log
1
1− ℓσA

i

2

+ 1
2|B|

Ø
j∈B

log
1
1− ℓσB

j

2
(4.11)

P represents the assignment matrix predicted by the student following the L
layers. M denotes the set of true matches, whereas A andB indicate sets of points
classified as unmatchable. The loss is balanced between positive and negative
labels.
The total loss comprises both the KD loss and the ground-truth loss. Figure 4.7 is
a schematic representation of the distillation strategy.

4.2.3 Homography pre-training
In line with the methods applied in LightGlue and earlier in SuperGlue, synthetic
homography transformations are used in a supervised pre-training phase.
This training stage allows the student model to learn how to recognise fundamental
geometric transformations, including rotations, translations, and scaling. Since
these transformations do not alter the intrinsic properties of the images, such as
illumination conditions, the detection and matching of repeatable features across
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Figure 4.7: Schematic representation of the distillation strategy

image pairs may be simplified.
An important advantage of homography training is that it allows for the compu-
tation of ground-truth correspondences between interest points extracted. This
is performed by reprojecting the detected features from one image to the other
using the known homography Ĥ and assessing the reprojection distance for each
potential pair of key points. Pairs with a reprojection distance smaller than a
specified pixel threshold (3 in this case) create the set of ground truth matches M,
while other points are classified as unmatchable σA, σB. These correspondences
serve as supervision for the assignment matrix P in equation 4.11.
In figure 4.8, there is an example of an image pair in the training set. The feature
points are detected with SuperPoint with a maximum number of detected points
equal to 128. The blue lines are ground-truth correspondences estimated with the
reprojection distance.

4.2.4 Finetuning
After the homography-based pre-training phase, the student model is further trained
on image pairs that are not generated through synthetic homography transforma-
tions. Instead, the training set is constructed by pairing images from the SPEED
dataset using the strategy detailed in section 4.1.2. This phase exposes the model
to more realistic scenarios where the relative motion between two images is not

63



Methods

Figure 4.8: Reference image from the SPEED dataset (left) with its transformation
(right). The blue lines indicate ground truth matches

represented by a homography transformation, making the task more challenging
and closer to real conditions.
The common visual regions of the spacecraft between the two images may differ
significantly due to viewpoint changes and illumination variations. This increases
the complexity of feature detection and matching, requiring the model to generalize
beyond the synthetic transformations used in the pre-training. The images selected
do not contain a background since the objective is to correctly match points ex-
tracted from the object and not from the background. Figure 4.9 contains sample
images used for the training.
Unlike the homography pre-training phase, where the known homography trans-
formation allows for direct computation of ground-truth correspondences, depth
information is unavailable in this scenario, making it not possible to explicitly com-
pute ground-truth feature matches for the extracted key points from SuperPoint.
To overcome this limitation, the student model is trained using a KD loss combined
with a pseudo-ground truth loss, where the matches predicted by LightGlue are
treated as correct matches.
Using these predictions as ground truth introduces potential sources of error, as the
teacher model itself may produce incorrect matches. However, this setup enables
evaluating the student model’s ability to replicate the teacher model’s matching
behavior.
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Figure 4.9: Images in the dataset for the student model training
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Chapter 5

Experimental results

This chapter presents the experimental results and analysis conducted to evaluate
the FDM methods’ performance in space-related scenarios.

The first part compares traditional algorithms, SIFT, ORB, and AKAZE, with
AI-based models such as SuperPoint combined with LightGlue and LoFTR. The
evaluation follows the methodology introduced in the previous chapter, which
covers the image pairing strategies and the metrics used. In this section, we explore
different settings to give a broader analysis of the advantages that AI models offer
over classical methods and their limitations in specific contexts. As discussed in
Section 2.1.2, space imagery presents unique characteristics that differ significantly
from those found in more generic Earth-based environments.

The evaluation starts with the Homography Estimation task. The tests include
the benchmark dataset HPatches, followed by the space datasets SPEED and
SPEED+. In particular, on the SPEED+ dataset, we compare results obtained on
synthetic images generated via rendering software with real images captured in the
laboratory using mock-up models of spacecraft. This comparison is useful to assess
the domain gap caused by different image sources and lighting conditions.

The analysis continues with the Relative Camera Pose Estimation task. We
begin with the benchmark dataset ScanNet. Then, the results of the space-related
datasets are examined. For SPEED and SPEED+, the focus is on how changes
in camera perspective, background presence, and varying illumination conditions
influence performance. The SPEED-UE-Cube dataset is used to simulate a scenario
closer to real space operations. Table 5.1 gives an overview of the metrics, datasets
and conditions evaluated.

The second part of the chapter presents the results of the Knowledge Distillation.
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It describes the experimental setup and the metrics used during training. Then,
it presents the performance of the student model compared to the teacher model
in the task adopted. A brief comparison of the computational performance of the
different methods is provided.

Task Dataset Conditions

Homography SPEED Synthetic images
SPEED+ lightning variations

Pose
SPEED different levels of visual overlap, background
SPEED+ lightning variations
SPEED-UE-Cube trajectory

Table 5.1: Overview of tasks, datasets, and experimental conditions.

5.1 Feature Detection and Matching Results
In implementing the algorithms and models, we utilized publicly available imple-
mentations from external libraries.
Classical feature-matching methods are executed using the OpenCV [72] library.
The matching is made with the K-NN algorithm with the ratio test, as detailed
in section 2.4.1. We used the default hyperparameter configurations specified in
the library, modifying only the maximum number of features detectable. Table 5.2
illustrates the setup.

Method Max Features Extracted Type of Matching
SIFT 1024 k-nn (k=2, Ratio threshold = 0.8)
ORB 1024 k-nn (k=2, Ratio threshold = 0.8)
AKAZE 1024 k-nn (k=2, Ratio threshold = 0.8)

Table 5.2: Hyperparameters of SIFT, ORB and AKAZE

For LightGlue, we adopt the official implementation and pre-trained weights
released by the original authors, following the default configuration specified in
Table 5.3. As previously mentioned in the section 2.5.2, this model is designed
exclusively for the matching phase and, therefore, requires an external model for
feature detection. In this work, we employ SuperPoint as the supporting feature
extractor.
LoFTR is implemented with the Kornia library [73] using its default settings.
Unlike LightGlue and traditional methods that focus on sparse key points, LoFTR
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generates dense matches, resulting in a higher number of correspondences. To
ensure a fair comparison among the models, we impose a limit of 1,024 to the
number of matches that can be predicted.

Parameter Value
Extractor SuperPoint
Max Num Keypoints 1024
Detection Threshold 0.0005
Number of Layers 9
Depth Confidence 0.95
Width Confidence 0.99
Filter Threshold 0.1

Table 5.3: Configuration of the LightGlue model

5.1.1 Homography estimation
In the homography estimation task, the objective is to identify the planar trans-
formation that geometrically relates two distinct images. The correspondences
obtained through FDM are used to estimate the homography matrix H, which
encodes the transformation.

The homography is estimated with the function findHomography [74] of OpenCV
library. The robust method adopted to improve the accuracy of the estimation is
the Least-Median-of-Squares (LMEDS) algorithm.
The accuracy is evaluated by comparing the estimated homography H̃ with the
ground truth transformation Ĥ. The assessment is based on the following metrics:

• Mean reprojection error: The four image corners’ coordinates are taken.
They are transformed using Ĥ and H̃. Then the mean Euclidean distance
between the two projected sets is computed. A low reprojection error indicates
a precise estimation.

• Area Under the Curve (AUC): The AUC curve of the mean reprojection
error is used to evaluate homography estimation quality at pixel thresholds of
1, 3, and 5 pixels. The pixel threshold defines the acceptable reprojection error
for a point to be considered accurately projected. If the mean reprojection
error falls below the given threshold, the predicted homography is correct.

• precision (P): It measures the percentage of correctly matched points relative
to the ground truth matches. The target correspondences are computed from
the actual homography matrix Ĥ.
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HPatches

The HPatches dataset is a well-established benchmark designed to evaluate the
performance of feature extraction and matching methods under changing viewpoints
and illumination conditions of the same scene.
Due to differing image resolutions, all images were resized such that their smaller
dimension equal 480 pixels while preserving their original aspect ratio. The ground
truth Homography H is adapted to the resizing.

In this dataset, AI-based models outperform traditional algorithms in homogra-
phy estimation, which is supported by the results shown in table 5.4. DL models
achieve more accurate homography estimations and precision in the correspondences
predicted. SIFT has the highest accuracy among traditional algorithms, reducing
the performance gap with SuperPoint combined with LightGlue and LoFTR.

Compared to existing literature, it is interesting to note that, as reported
in [51], SuperPoint combined with LightGlue achieves a homography estimation
accuracy of 79.6% in terms of AUC@5 pixels and a precision of 88.9%. LoFTR,
on the other hand, reaches an AUC@5 pixels of 78.8% with a precision of 92.7%.
These results are obtained using the RANSAC estimator, which differs from the
estimation methods adopted in our evaluation, potentially contributing to the
observed performance differences.

Method AUC P(%) Mean error
@1px @3px @5px

SIFT 52.6 76.7 81.7 69 45.3
ORB 30.3 60.7 68.6 46 112.8
AKAZE 35.7 69.3 77.6 71 55.5
SuperPoint+LightGlue 64.3 90.7 94.3 96 11.7
LoFTR 63.5 89.1 92.4 95 8.1

Table 5.4: Results for the HPatches dataset

Table 5.5 summarizes the average number of key points extracted, the average
number of predicted matches, and the repeatability score. As expected, the LoFTR
model predicts the highest number of correspondences due to its dense matching
nature. LightGlue follows, outperforming classical methods in terms of both match
quantity and repeatability. SuperPoint produces highly repeatable and easily
matchable feature points. Although SIFT and ORB detect a high number of
interest points, only a smaller portion of these points are matched.
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Method Avg Kpts Avg Matches Rep.(%)
SIFT 939.7 263.3 29.8
ORB 1009 214.7 21.3
AKAZE 776.3 217.6 32.7
SuperPoint+LightGlue 994.6 561.1 57.1
LoFTR - 981.3 -

Table 5.5: Average number of key points extracted, average number of matches
and average Repeatability score for HPatches dataset.

Figure 5.1 shows an example image pair from the HPatches dataset, illustrating
the key points extracted and the correspondences predicted by SIFT and LightGlue.
In these images, key points that are extracted but not matched are coloured light
blue. The green lines represent pairs of key points correctly matched, while the
red lines indicate incorrect correspondences. This notation will also be used in
subsequent images.
From the image, it is clear that SIFT produces fewer reliable correspondences, and
the incorrect matches exhibit larger errors than those generated by LightGlue.

Figure 5.1: Image sequence in the HPatches dataset. The first image contains
the output of the SIFT method. The second one refers to LigthGlue combined
with SuperPoint.
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SPEED

The SPEED dataset is the first space-related dataset analyzed. Due to the limited
number of real images available, only the synthetic domain is considered.

Table 5.6 compares the different methods for the homography estimation on
SPEED images. Unlike the benchmark case, LightGlue performs comparably to
classical methods in the estimation while achieving higher precision and a lower
mean reprojection error. The observed performance drop can be due to the de-
creased number of extracted and matched key points compared to the benchmark
dataset, as present in the table 5.7.
This is expected in space environments, where most images have a black background
that lacks relevant visual information for effective feature extraction. Additionally,
noisy pixel-level details in the background can lead to false positive matches, further
complicating the task. The challenge intensifies when the spacecraft is farther from
the camera, as this reduces the available visual information.
LoFTR, however, maintains a high number of correspondences despite these condi-
tions. Its average number of matches remains similar to the benchmark case, while
other methods experience a significant drop. Homography estimation accuracy
appears to be influenced by the high number of inlier points used for estimation.
With a reduction in the number of matches, the influence of outliers increases.
Classical methods struggle under these conditions, particularly ORB and AKAZE,
which exhibit lower precision and a higher mean reprojection error. This highlights
the limitations of traditional handcrafted approaches when applied to challenging
space imagery.

Method AUC P(%) Mean error
@1px @3px @5px

SIFT 33.7 46.5 53.8 82 65.6
ORB 9.5 28 38 37 266.5
AKAZE 19.9 33.8 41.5 77 2130.4
SuperPoint+LightGlue 25.9 44.5 54 92 31.2
LoFTR 63.9 85.3 89.1 91 29.3

Table 5.6: Homography estimation results on the SPEED dataset

To illustrate the different behaviours, we provide examples of analyzed image
pairs, where extracted key points and resulting correspondences are visualized to
highlight the distinct outputs of each method, as in the figure 5.2.
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Method Avg Kpts Avg Matches Rep.(%)
SIFT 533.6 196.5 45.6
ORB 820.9 220.1 27.8
AKAZE 450.5 157.6 59.1
SuperPoint+LightGlue 652.9 276.7 44.15
LoFTR — 968.7 —

Table 5.7: Average number of features extracted and matched, average repeata-
bility value for tests on the SPEED dataset.

Original Image SIFT

ORB AKAZE

SuperPoint+LightGlue LoFTR

Figure 5.2: Image pair from the SPEED dataset with the predictions made by
each method. The blue dots are interest points extracted but not matched, the
green lines are correctly predicted correspondences, while the red lines are wrong
matches.
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SPEED+

The second space-related dataset analyzed is SPEED+. The evaluation of this
dataset follows the same methodology used for the SPEED dataset, but it introduces
several key differences that expand the analysis. Specifically, SPEED+ provides
images from three distinct domains: Synthetic, Lightbox, and Sunlamp, the last two
are not present in the SPEED dataset. The purpose of these tests is to evaluate
how the FDM methods perform when the characteristics of the images change.

Synthetic This section presents the results obtained using images from the
synthetic domain. In space use-cases, synthetic images play an important role
in training and evaluating AI models. Due to the limited availability of real
space imagery and the challenges associated with reproducing it in the laboratory,
synthetic domains remain one of the main sources for developing and testing such
systems.
The synthetic images in the SPEED+ dataset are reproduced in the same way that
the synthetic images in SPEED but present some differences.
A key difference is the simulated camera-object distance. In SPEED, the target
distance ranges from 3 to approximately 40 meters, whereas in SPEED+, the target
is positioned between 2 and 10 meters along the z-axis, aligned with the camera’s
line of sight. Consequently, the spacecraft in SPEED+ synthetic images generally
can appear larger and more visible compared to SPEED. This aspect seems to
influence the results, showing an overall increase in the accuracy of the estimation,
as presented in the table 5.8.

Method AUC P(%) Mean error
@1px @3px @5px

SIFT 44.5 64.7 75.8 81 18.9
ORB 11.7 35.4 48.8 38 49.7
AKAZE 23.8 44 55 77 79.8
SuperPoint+LightGlue 32.4 56 67.1 96 7.9
LoFTR 76.7 92.6 95.7 97 51.9

Table 5.8: Results dataset SPEED+, domain Synthetic

Lightbox and Sunlamp The second distinction between the two datasets
lies in the real domains: Lightbox and Sunlamp. These images are prepared
to simulate lighting effects representative of those encountered in Earth’s orbit.
Images exhibit extreme illumination conditions, including shadows, high contrast
due to overexposure, and regions with insufficient light. This makes it very difficult
to extract meaningful key points. Additionally, noise can impact detection and
matching accuracy.
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Figure 5.3 compares the pixel intensity histogram distributions of images from
SPEED and SPEED+. For both synthetic sets, the distributions are quite similar
and are concentrated around lower values, which suggests that the images are
generally darker. In the real sources, particularly under sunlamp lighting, the
distribution tends to shift towards slightly higher values. Notably, the sunlamp
set has a distinct peak at the extremely high end of the spectrum, indicating the
presence of very bright regions within those images.

Figure 5.3: Histogram of pixel intensity distributions

The decrease in accuracy is shown in the results presented in Table 5.9. All
methods exhibit a drop in homography estimation accuracy when moving from
synthetic to real domains. However, deep learning models still demonstrate greater
adaptability compared to classical methods, maintaining relatively strong perfor-
mance despite challenging conditions. It is important to compare the numerical
results with the qualitative image examples. From Figures 5.5 and 5.6, it can be
observed that, although DL methods produce more accurate estimations, they are
highly sensitive to noise and lighting effects. In fact, many of the extracted and
matched points do not originate from the spacecraft itself, but rather from the
surrounding background. However, in these experiments, even feature points that
are not directly relevant, meaning they do not belong to the target body, can still
contribute positively to the estimation of the geometric transformation if they are
correctly matched.
A comparison of the AUC@5 pixels values of each method across the different
domains is illustrated in the graph 5.4.
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Method AUC - Light AUC - Sun P(%) Mean Error
@1px @3px @5px @1px @3px @5px Light | Sun Light | Sun

SIFT 27.2 43.7 50.9 7.9 29.9 43.2 80 | 80 95.36 | 56.7
ORB 6.0 22.1 32.3 2.1 16.3 29.0 36 | 36 218.0 | 46.6
AKAZE 13.7 26.5 33.4 2.6 15.8 25.8 76 | 75 151.6 | 57.5
SuperPoint+LightGlue 18.4 37.7 52.5 37.1 78.7 88.0 93 | 96 32.4 | 8.43
LoFTR 44.5 73.3 80.1 39.2 77.2 86.5 84 | 95 55.6 | 18.3

Table 5.9: Homography estimation results on SPEED+ dataset for Lightbox and
Sunlamp domains.

Figure 5.4: AUC@5 pixels of mean re-projection error on SPEED+ across different
domains and methods

Table 5.10 provides further insights into the FDM performance of the evaluated
algorithms. From the synthetic domain to the Lightbox and Sunlamp settings,
traditional methods like SIFT and AKAZE exhibit a decrease in the number
of produced matches, which correlates with their drop in accuracy. Meanwhile,
LightGlue increases the number of correspondences in the Sunlamp domain, partly
due to noise, which improves the estimation of homographies.
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Method Synthetic Lightbox Sunlamp
Kpts Matches Kpts Matches Kpts Matches

SIFT 644.6 250.7 414.9 159.9 202.8 93.5
ORB 935.5 272.3 781.3 223.9 780.1 273.7
AKAZE 533.2 186.5 355.8 135.8 256.4 113.4
SuperPoint+LightGlue 655.9 332.3 478.4 230.7 763.4 377.5
LoFTR - 1000.2 - 919.1 - 989.9

Table 5.10: Average key points extracted and matched for each method across
the tree sets.

76



Experimental results

SIFT

SuperPoint + LightGlue

LoFTR

Figure 5.5: Image pairs generated from the Lightbox set. Outputs of SIFT,
SuperPoint + LightGlue, and LoFTR are shown.
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SIFT

SuperPoint + LightGlue

LoFTR

Figure 5.6: Image pairs from the Sunlamp set. From top to bottom: SIFT,
LightGlue, and LoFTR outputs.
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5.1.2 Relative Camera Pose Estimation

Relative pose estimation is the process of determining the transformation between
two different frames. By identifying correspondences between points in two distinct
image views of the same scene, it is possible to compute the transformation from
the coordinate system of the first camera to that of the second. This consists of
a rotation matrix R and a translation vector t, representing the orientation and
relative displacement between the two camera centers.

The estimation is made employing the findEssentialMat [75] function from the
OpenCV python library. It solves the essential matrix E from the key points
matched in the two images and the camera’s intrinsic properties, as explained in
the section 2.7.2.
This function admits different robust estimator algorithms. Between those, we
used the MAGSAC method, a variant of the widely used RANSAC, to effectively
filter out incorrect matches. From our tests, MAGSAC is revealed to be, in general,
more accurate and faster than the traditional RANSAC. The parameters of the
algorithm for the computation are reported in the table 5.11.

Table 5.11: Hyperparameters for the Essential matrix estimation

Hyperparameter Value
Robust estimator MAGSAC
pixel threshold 0.5
confidence 0.99999
Maximum number of iterations 5000

The pixel threshold represents the maximum distance from a point to the
corresponding epipolar line in pixels. Beyond that, the point is considered an
outlier, and so it is not used for computing the final estimation. The confidence
parameters specify the desirable level of confidence that the estimated E matrix is
correct.
Once the essential matrix is computed, the relative rotation R and translation t
are recovered using the recoverPose function [76].
The Evaluation metrics employed include the Area Under Curve (AUC) for angular
error at angle-thresholds of 5◦, 10◦, 20◦. Additionally, we report the average angular
errors for the rotation and translation.
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ScanNet

Thanks to its large volume of available data, the ScanNet dataset is widely recog-
nized as a reliable benchmark for various tasks, including relative pose estimation.
The tests are conducted on 1500 image pairs selected from the test set of the Scan-
Net dataset. The image pairs used are the same as indicated in the evaluation phase
of the model LoFTR [52] and SuperGlue [49]. Images have a resolution of 640×480.

As confirmed by our experiments, AI models improve over traditional methods.
Table 5.12 summarizes the results, clearly demonstrating that DL-based approaches
achieve higher accuracy across all angular thresholds and exhibit lower average
translation and rotation errors.
These results are consistent with those reported in the literature. In [49], the results
obtained using SIFT (NN + ratio test) are reported as 6.7%, 15.7%, and 28.67%
for the 5°, 10°, and 20° thresholds, respectively. In [52], the corresponding results
for LoFTR are 22.06%, 40.8%, and 57.6%. The same set of images was used in
both studies, and the RANSAC algorithm was employed for pose estimation.
For the remaining FDM methods evaluated, ORB, AKAZE, and LightGlue, there
are no known benchmarks on this dataset available in previous studies.

Method AUC Avg T. Error (°) Avg R. Error (°)
@5° @10° @20°

SIFT 6.10 13.77 23.46 35.11 41.64
ORB 5.67 13.44 23.42 34.17 43.23
AKAZE 4.63 10.81 19.92 35.65 40.03
SuperPoint + LightGlue 19.05 36.99 54.08 15.36 12.18
LoFTR 20.62 38.61 54.66 15.23 13.23

Table 5.12: Relative pose estimation results on the ScanNet dataset: AUC at 5°,
10°, and 20°, along with average translation and rotation errors.

Table 5.21 presents further statistics about the average number of key points
extracted and matched and the repeatability score for each method. LigthGlue and
LoFTR are more consistent in retrieving correspondences. We report the prediction
made by SIFT, LightGlue and LoFTR in a sample of the ScanNet dataset in figure
5.7.
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Method Avg Kpts Extracted Avg Matches Avg Repeatability (%)
SIFT 388.39 58.76 21.68
ORB 993.28 101.47 16.92
AKAZE 250.96 42.16 25.31
SuperPoint+LightGlue 661.96 164.80 27.77
LoFTR – 818.67 –

Table 5.13: Average key points extracted, matches, and repeatability on ScanNet.

Figure 5.7: Comparison of SIFT, SuperPoint+LightGlue and LoFTR on the same
images from ScanNet.
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SPEED

In this section, we present the results obtained from tests conducted on the SPEED
dataset.
The reported results are categorized based on the difficulty level defined in the
section 4.1.2. As explained, this categorization allows for the evaluation of the
FDM process on image pairs that either share a similar perspective (easy case) or
display the object from significantly different viewpoints (hard case).

Table 5.14 presents the AUC scores for angular errors in the easy scenario.
The combination of LightGlue with SuperPoint achieves the best performance,
significantly surpassing both classical methods and LoFTR. This result contrasts
with the homography estimation task, where LoFTR has a higher performance.

Method AUC Avg T. Error (°) Avg R. Error (°)
@5° @10° @20°

SIFT 2.74 6.01 8.96 32.4 64.9
ORB 2.43 5.83 9.04 32.4 59.5
AKAZE 2.86 6.12 9.04 32.6 60.8
SuperPoint + LightGlue 10.17 18.74 30.48 26.1 25.2
LoFTR 3.99 9.62 18.93 30.2 22.7

Table 5.14: AUC and average pose estimation errors on the easy scenario of the
SPEED dataset.

Figure 5.8 shows a qualitative comparison of predicted matches for a sample
image pair using SIFT, LightGlue, and LoFTR. This visualization reveals that
LoFTR generates the highest number of matches. However, many of these matches
stem from background noise rather than valid correspondences. SuperPoint also
captures several points from the background, but LightGlue effectively filters these
during the matching phase, focusing on accurate correspondences on the spacecraft
body. In contrast, SIFT demonstrates greater robustness against background noise,
as all extracted feature points are located on the object itself. Nevertheless, it
struggles during the matching phase, resulting in some incorrect matches.
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SIFT

SuperPoint + LightGlue

LoFTR

Figure 5.8: Outputs of the method in SPEED-synthetic images (easy case)

Table 5.15 presents the results for the medium and hard cases, respectively. As
expected, the performance of all evaluated methods declines as the difficulty of the
image pairs increases. Among the tested methods, LightGlue still remains the most
accurate. Figure 5.9 supports this by showing how the average error in estimating
relative translation and rotation increases. Additionally, the histogram in Figure
5.10 presents the AUC@20° for each method across different difficulty levels. The
results emphasize the performance gap between classical and deep learning-based
approaches.
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Method Medium Hard
AUC@5° AUC@10° AUC@20° AUC@5° AUC@10° AUC@20°

SIFT 0.55 0.98 1.46 0.29 0.51 0.75
ORB 0.52 0.97 1.50 0.00 0.21 0.51
AKAZE 0.34 0.72 1.04 0.10 0.27 0.49
SuperPoint + LightGlue 3.44 6.81 12.7 0.70 1.81 4.00
LoFTR 0.70 1.31 2.56 0.20 0.37 0.80

Table 5.15: AUC results for relative pose estimation on the medium and hard
datasets.

Figure 5.9: Average translation error (top) and average rotation error (bottom)
of each method across the different cases.
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Figure 5.10: The histogram reports the AUC@20° for angular error in the relative
pose estimation on the SPEED datasets with different levels of difficulty in the
image pairs.

Finally, Table 5.16 reports the average number of key points and correspondences
across the three difficulty levels. Compared to the homography transformations,
the number of matched key points is lower in all the cases. The number of matches
is higher in the easy scenario and decreases in the medium and hard cases, which
aligns with expectations. As visual overlap decreases, it becomes more difficult
for FDM methods to identify points that are present and matchable in the other
image.

Method Easy Medium Hard
Avg Kpts Avg Matches Avg Kpts Avg Matches Avg Kpts Avg Matches

SIFT 212.29 33.49 207.68 26.02 209.98 24.78
ORB 809.49 39.69 804.38 24.13 810.29 19.38
AKAZE 152.9 19.9 150 12.9 149.2 10.9
SuperPoint+LightGlue 229 63 226.5 44.2 230.4 28.8
LoFTR – 417.4 – 348.5 – 309.2

Table 5.16: Average key points extracted and matched for each method across
easy, medium, and hard cases.

Figure 5.11 shows an image pair from the SPEED dataset along with the outputs
of SIFT and LightGlue. These images were used to generate the visualization of
the relative camera positions shown in Figure 5.12. The visualization reconstructs
the scene’s geometry using the first camera as the reference point, with the second
camera positioned relative to it. It is important to note that the distance between
the cameras in this visualization is arbitrary. The estimated translation vector
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Figure 5.11: Sample of image pair from the SPEED dataset. The figures compare
the output of SIFT (top) and LightGlue (bottom).

only provides information about the direction between the two viewpoints, not the
actual distance. Without additional data, it is not possible to recover the absolute
scale from the images alone.
In the reconstruction of the scene, the reference camera (marked in red) associated
with the first image (on the left) is positioned at the origin of the coordinate system.
The green camera represents the ground truth position and orientation of the
second camera (on the right) in relation to the first. The dashed line indicates the
direction of the view from the first camera. The additional cameras (in orange and
blue) depict the poses estimated by LightGlue and SIFT, respectively, following
the relative pose estimation process.
In this example, LightGlue delivers a significantly more accurate estimation, with
its camera pose nearly overlapping the ground truth. Specifically, LightGlue has a
translation error of 9.64° and a rotation error of 11.1°. In contrast, SIFT exhibits
much higher errors for the same image pair, with a translation error of 89° and a
rotation error of 38.6°.
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Figure 5.12: The images are visualizations of the camera poses associated with
the image pair 5.11 from different views. The red camera is the reference (first
image), the green is the ground truth pose of the second camera, the orange and
blue pyramids represent the estimated poses obtained with LightGlue and SIFT,
respectively. 87
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Impact of Background Another crucial factor considered in these experiments
is the presence or absence of background in the images. The presence of background
typically negatively influences relative camera pose estimation since it strictly relies
on accurately matched features specific to the spacecraft. Points extracted from
the background do not represent the satellite’s relative pose, and it can significantly
increase the number of false positives, leading to inaccurate pose estimations. To
assess the impact of its presence in the images, we conducted additional tests by
creating image pairs where the background remained visible in both. These pairs
maintained the same relative translation and orientation values as in the easy case.
The results in Table 5.17 indicate that relative pose estimation is generally less
accurate in scenes with background elements. Figure 5.13 illustrates the behaviour
of SIFT, SuperPoint with LightGlue, and LoFTR in two different scenes containing
background information. As observed in these examples, the background distracts
the FDM models from focusing on the spacecraft, particularly in the cases of SP+LG
and LoFTR. This leads to correspondences that do not necessarily contribute to an
accurate estimation of the relative camera pose, potentially increasing estimation
errors.

Method AUC@5° AUC@10° AUC@20° Avg. T. Err Avg. R. Err
SIFT 0.8 2 4.2 35.4 98.7
ORB 0.85 1.8 3.5 34.7 105.5
AKAZE 0.24 0.8 2 35.7 105
SuperPoint + LightGlue 5.6 9.9 15.7 32.5 42.4
LoFTR 2 4.1 8.5 39.8 40.2

Table 5.17: AUC results for different feature detection methods on the images
with background.
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SIFT

SuperPoint + LightGlue

LoFTR

Figure 5.13: Outputs of SIFT, SuperPoint + LightGlue, and LoFTR on SPEED-
synthetic images with background.
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SPEED+

We evaluated the studied methods on the SPEED+ dataset, considering both the
synthetic domain and the real-image domains (lightbox and sunlamp). Image pairs
are generated using the same relative translation and rotation intervals as in the
SPEED dataset.
For the following tests, we focused on the easy scenario to analyze the impact of
the domain gap on performance.

Synthetic Table 5.18 presents the AUC values for the synthetic domain. In this
case, only images without background are considered. Compared to the synthetic
domain of the SPEED dataset under the same conditions, the results show a
significant improvement in the SPEED+ dataset, particularly for the LightGlue
model. This performance gain is likely attributed to the characteristics of the
SPEED+ dataset. As previously mentioned, the camera-spacecraft distance in
SPEED+ is generally smaller than in the SPEED dataset, which may positively
impact the feature detection and matching process and lead to more accurate
relative pose estimation.

Method AUC@5° AUC@10° AUC@20° Avg. T Err Avg. R Err Matches
SIFT 4.62 8.72 16.01 33.9 49.9 58.9
ORB 3.19 7.05 14.13 33.8 43 63.7
AKAZE 2.87 6.25 12.14 36.6 47 35.2
SuperPoint + LightGlue 20.12 34.57 50.47 15.0 12.1 115.7
LoFTR 8.72 16.7 28.21 25.5 19.7 429.4

Table 5.18: AUC results for different feature detection methods on the Synthetic
domain with no background (SPEED+ dataset)

Lightbox and Sunlamp FDM methods struggle with the challenging character-
istics of real-image domains, leading to lower accuracy in these conditions. The
sunlamp domain, despite its extreme lighting conditions, obtains similar results to
the lightbox domain for deep learning-based models. This suggests that although the
intense illumination variations in the sunlamp domain pose a significant challenge,
the presence of strong contrasts may still allow AI-based models to extract and
match meaningful features. Deep learning models remain significantly more robust
than traditional algorithms in these extreme cases. The results for the lightbox and
sunlamp domains are reported in Table 5.19.
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Method Lightbox Sunlamp
AUC@10° AUC@20° Matches AUC@10° AUC@20° Matches

SIFT 0.44 1.19 19.2 0.6 1.72 19.5
ORB 0.70 1.48 15.3 0.36 1.3 21.3
AKAZE 0.59 1.49 15.9 0.44 1.63 16.1
SuperPoint + LightGlue 5.75 9.94 38.3 5.47 11.19 68.0
LoFTR 2.63 6.07 219.4 2.97 6.12 212.8

Table 5.19: AUC results for different feature detection methods on Lightbox and
Sunlamp datasets.

SPEED-UE-Cube

In the final analysis, we evaluate the results for the trajectory set in the SPEED-UE-
Cube dataset. The images in this dataset pose a significant challenge for relative
camera pose estimation due to the target’s distance from the camera. As shown in
Section 4.1.3, the spacecraft appears smaller and less prominent compared to other
datasets, making keypoint detection and matching more difficult.
To improve the estimation accuracy, we cropped a patch of dimension 360× 576
from the image around the spacecraft and applied upsampling to the resolution of
600× 960, improving the visibility of spacecraft details compared to the original
resolution. To refine essential matrix estimation, we fine-tuned the MAGSAC
algorithm’s pixel threshold, obtaining an optimal value of 0.15, in contrast to the
0.5 threshold used in previous tests. The results are reported in table 5.20

Method AUC@5° AUC@10° AUC@20° Avg T Error (°) Avg R Err (°)
SIFT 1.33 2.7 5.33 72.7 38.9
ORB 0.93 2.7 6.29 67.33 29.32
AKAZE 1.49 3.78 7.67 63.2 31.2
SuperPoint + LightGlue 1.23 3.18 7.15 58.3 18,8
LoFTR 3.17 8.2 17.3 38.3 11.6

Table 5.20: Results on SPEED-UE-Cube dataset

From the tests and the figure 5.14, it emerges that the FDM methods perform
well in estimating the relative orientation, with most errors concentrated at low
angles. However, translation estimation remains challenging. The high translation
error is primarily attributed to the scene composition rather than to inaccuracy
in the FDM process. During the trajectory, the spacecraft is often far from the
camera and the relative motion between consecutive frames can appear minimal.
This results in near-degenerate baselines, where the camera motion is insufficient to
provide strong geometric information for translation. Even when correspondences
are correctly matched, such configurations make it difficult to recover an accurate
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Method Avg Kpts Extracted Avg Matches Avg Repeatability (%)
AKAZE 214.3 77.5 50.1
ORB 675.1 177.3 29.5
SIFT 203 57.9 38.3
SuperPoint+LightGlue 200.8 76.4 66.4
LoFTR – 442.5 –

Table 5.21: Average key points extracted, matches, and repeatability on SPEED-
UE-Cube.

relative translation.

Figure 5.14: Cumulative histograms of translation errors (top) and rotation errors
(bottom) on the SPEED-UE-Cube trajectory set.
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SIFT

SuperPoint + LightGlue

LoFTR

Figure 5.15: Comparison on the SPEED-UE-Cube dataset. From top to bottom:
SIFT, SuperPoint + LightGlue, and LoFTR.

In Figure 5.16, we have included a visualisation of the trajectory completed by
the camera around the object. The trajectory has been plotted by accumulating the
relative movement of the camera between each pair of subsequent frames. In Figure
(a), the ground truth trajectory is shown, starting from the labels of relative poses;
however, the relative distances have been normalised to facilitate comparison with
the estimated trajectory. Figure (b) contains the trajectory obtained by using the
relative poses estimated through the output of LoFTR. It is important to emphasise
that the estimated camera position in each frame i is obtained by multiplying the
estimated relative pose with the previous ground truth position at frame i− 1 and
not with the previously estimated position at frame i− 1. This is done to avoid
accumulating errors during the trajectory and diverging excessively from the actual
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one.

In a real application of Visual Odometry, the process of estimating the camera’s
motion is more complex and involves additional techniques to reduce the estimate
error and better refine the motion. For example, several methods are based on
the Kalman Filter algorithm [77], which has proven its efficacy in spacecraft GCN
systems [78]. The Kalman Filter is a recursive algorithm that fuses information,
like relative positions and velocities, from a measurement system over time, with
predictions of the expected system behaviour made by a dynamical model. This
approach allows us to estimate the system state more accurately than either the
measurements or dynamics alone.
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(a) (b)

(c) (d)

Figure 5.16: Trajectory visualizations from the SPEED-UE-Cube dataset. (a)
Ground truth trajectory; (b) Estimated trajectory with LoFTR; (c-d) Comparisons
of estimated and ground truth trajectories from different views
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5.2 Knowledge Distillation results
5.2.1 Training results
The training procedure for the student model, as described in the previous chapter,
consists of two sequential phases. The first phase involves training on synthetically
generated homographies. The second phase involves fine-tuning the student model
on image pairs generated based on relative pose information.
The LightGlue configuration used during training is present in Table 5.22.

Table 5.22: Configuration of the LightGlue model

Parameter Value
Extractor SuperPoint
Max Num Keypoints 128
Detection Threshold 0
Number of Layers 9
Depth Confidence -1
Width Confidence -1
Filter Threshold 0.1

Compared to the configuration used for testing, we disabled points pruning and
early exit, which are present in the original LightGlue architecture. This decision
ensures that the number of processed layers and key points remains constant,
simplifying the training process for the student model, as these dynamic strategies
are not replicated in the student architecture.
The following sections provide a detailed breakdown of the different training phases
and their results.

Homography training

During synthetic homography training, images are transformed using randomly
generated geometric transformations, controlled by hyperparameters that regulate
intensity and variability. The training process consists of two phases, each using a
different set of hyperparameters for homography generation:

• Training 1: It uses the same hyperparameters as the original LightGlue
training.

• Training 2: It modifies transformation parameters to better align with the
SPEED dataset characteristics and enhance the model’s robustness to geo-
metric distortions.
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In the second training, the adjustments include reducing the translation factor
to prevent the spacecraft from moving too far out of the camera’s field of view,
increasing the maximum rotation angle to improve adaptability to orientation
changes and introducing image scaling to simulate variations in camera distance.
The complete set of homography parameters and the number of image pairs used
for training are detailed in Table 5.23.

Parameter Training 1 Training 2
Image Resolution 600× 960 600× 960
Translation Factor (0, 1) (0, 0.3)
Max Rotation Angle 45° 90°
Scale Factor - (0.7, 1.3)
Training Samples 10800 20000
Validation Samples 1200 2000
Test Samples 1000 3000

Table 5.23: Training Configuration and Image Resolution Parameters

For the homography training, the following setup was adopted:

Hyperparameter Value
Number of epochs 10
Optimizer AdamW
Learning rate 10−4

Batch size 8 (gradient accumulation steps = 8)
Loss balancing factors α = β = 0.25, γ = 0.5
ground truth balancing factor 0.5

Table 5.24: Training Hyperparameters

The ground-truth balancing factor is a hyperparameter that balances the weight
of the positive and negative matches. At the end of this training phase, the student
model is evaluated on the test set, and the obtained metrics are summarized in
Table 5.25. The results indicate that the student model demonstrates a strong
ability to predict correct correspondences when compared to both the ground truth
and the predictions made by LightGlue. Additionally, LightGlue itself proves to be
highly effective in retrieving correct matches when evaluated against the ground
truth correspondences.
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Metric Student vs GT Student vs Teacher Teacher vs GT
Recall 0.85 0.81 0.95
Precision 0.78 0.78 0.91
Accuracy 0.89 0.88 0.97
Average Precision 0.66 0.64 0.84

Table 5.25: Metrics after the first homography training stage

In the second phase of training, we utilize the dataset with modified transforma-
tion parameters. The training setup remains unchanged, and the model undergoes
an additional 20 epochs to adapt to more complex transformations. After this,
the student model is evaluated on the test set. The results are presented in Table
5.26. As shown, the student model continues to demonstrate the ability to retrieve
correct matches.

Metric Student vs GT Student vs Teacher Teacher vs GT
Recall 0.87 0.82 0.92
Precision 0.82 0.80 0.88
Accuracy 0.91 0.89 0.96
Average Precision 0.71 0.67 0.82

Table 5.26: Metrics after the second homography training stage

Finetuning

The finetuning involves training the model on image pairs that are not obtained
through geometric transformations but instead paired based on their relative camera
poses. This approach aims to simulate more realistic conditions. The relative
distance and orientation intervals are:

• tdist = (0,1)

• Rdist = (0,70)◦

This introduces variability in viewpoint change, from simple change of perspective
to more complex scenarios. The training set is composed of 20000 pairs, while the
validation and test sets of 2000 and 3000 image pairs, respectively.
The training is made with the following setup

98



Experimental results

Hyperparameter Value
Number of epochs 50
Optimizer AdamW
Learning rate 10−4

Batch size 8 (gradient accumulation steps = 8)
Loss balancing factors α = β = 0.25, γ = 0.5
ground truth balancing factor 0.7

Table 5.27: Training Hyperparameters

In this stage, the supervision is entirely provided by the teacher model. So, we
report the metric obtained in the test set compared to the LightGlue predictions
only. In these scenarios, as we can see in table 5.28, the student model has more
difficulty copying the teacher’s output.

Metric Value
Match Recall 0.48
Match Precision 0.36
Accuracy 0.74
Average Precision 0.19

Table 5.28: Evaluation Metrics Compared to Teacher Model

5.2.2 Student vs Teacher model
After training the student model, we evaluate its performance using the same tests
conducted for both classical and deep learning-based methods. The analysis focuses
on comparing the student model with its teacher model, LightGlue, identifying
cases where their performance is similar and where there are gaps.
Both models use SuperPoint as the feature extractor, meaning they receive the
same input features and descriptor vectors. The student model is trained with
a maximum of 128 interest points to simplify and accelerate training, but it can
process a higher and variable number of key points. To ensure a fair comparison, we
report results using a maximum (but not fixed) limit of 1024 key points, consistent
with previous tests. LightGlue’s results are obtained under the same conditions.
By evaluating the student model on homography estimation and relative camera
pose estimation, we assess its performance against LightGlue at a global level.
Instead of directly analyzing pixel-level matching correspondences, we focus on
indirect metrics related to final transformation estimations, providing a more
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comprehensive performance comparison.

Homography estimation

We evaluated homography estimation performance on the SPEED and SPEED+
datasets to assess the student model’s effectiveness compared to its teacher model,
LightGlue. These evaluations provide insight into the model’s robustness across
different domains and its ability to generalize under varying conditions.
Table 5.29 presents the homography estimation results on the SPEED synthetic
dataset.

Method AUC P (%) Mean error Matches
@1px @3px @5px

Student 24.2 40.3 46.9 89 80.4 239.4
LightGlue 25.9 44.5 54.0 92 31.2 276.7

Table 5.29: Homography estimation results on the SPEED dataset.

The results for the SPEED+ dataset are shown in table 5.30 and in table 5.31
for the synthetic, lightbox and sunlamp domains, respectively.
Across all datasets, LightGlue consistently achieves higher AUC scores, better
precision, and a lower mean reprojection error. However, the student model achieves
good results, especially in the synthetic images. When evaluating performance on
real image datasets from SPEED+, such as Lightbox and Sunlamp, the effect of
domain shift becomes evident, especially in the Sunlamp scenario where the gap
between the two models is larger. In figure 5.17, there are images from the different
datasets to have a visualization of the results of the student model.

Method AUC P (%) Mean error Matches
@1px @3px @5px

Student 29.2 49.1 60.6 89 24.82 225.5
LightGlue 32.4 56.0 67.1 96 8.0 377.5

Table 5.30: Homography estimation results on the SPEED+ synthetic dataset.
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Method Lightbox Sunlamp
AUC@5px P (%) Mean error Matches AUC@5px P (%) Mean error Matches

Student 49.5 85 26.6 200.6 72.2 90 14.2 225.5
LightGlue 52.1 93 32.4 230.7 88.0 96 8.4 377.5

Table 5.31: Homography estimation results on the SPEED+ dataset (Lightbox
and Sunlamp domains).

Figure 5.17: Homography estimation results using the student model across
different datasets. In order: SPEED, SPEED+ synthetic, Sunlamp and Lightbox
domains
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Relative camera pose estimation

To evaluate the the student model on the relative camera pose estimation task, we
tested it on the same image pairs used in the previous experiments.
The first evaluation scenario focuses on the SPEED dataset, specifically on the
easy case without background elements. From results in Table 5.32, It is possible
to observe how the results of the student model align with the teacher model,
particularly in terms of the number of predicted matches and the average errors,
while there is a larger gap regarding the accuracy of the estimation.

Method AUC Avg Matches Avg T. Error (°) Avg R. Error (°)
@5° @10° @20°

Student 6.91 14.99 27.23 58.5 26.6 25.9
LightGlue 10.50 18.59 30.02 59.8 26.3 25.7

Table 5.32: Relative camera pose estimation results for the student and LightGlue
on the SPEED dataset.

The synthetic domain of the SPEED+ dataset confirms this, Table 5.33. This
set offers more favourable conditions, such as higher spacecraft visibility, and even
the student model benefits from achieving better performance, especially when
compared with the results of other methods in previous tests. In this situation,
the reduced accuracy in pose estimation is influenced by the number of matches,
which is lower than that of the teacher. Even in the real domains, Table 5.34,
there is a difference compared to LightGlue. Moreover, the Student model, having
been trained solely on synthetic images, faces greater challenges with images under
different conditions. Figure 5.18 contains sample pairs from SPEED+ with the
student model output.

Method AUC Avg Matches Avg T. Error (°) Avg R. Error (°)
@5° @10° @20°

Student 17.23 30.96 46.60 82.3 16.4 11.7
LightGlue 20.12 34.57 50.47 115.7 15.0 12.1

Table 5.33: Relative camera pose estimation results for the student and LightGlue
in the synthetic domain of the SPEED+ dataset.

The last scenario is the trajectory set, 5.35. In this case, the differences between
the two models are limited, they achieve the same performance, and both exhibit
a greater error in the estimation of the correct translation. As mentioned, this is
conditioned by the spacecraft’s position relative to the camera.
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Method Lightbox Sunlamp
@5° @10° @20° Avg Matches @5° @10° @20° Avg Matches

Student 1.58 2.88 5.67 36.5 0.98 2.85 7.71 11.6
LightGlue 2.11 4.45 8.59 59.8 2.32 5.15 11.29 65.7

Table 5.34: Relative camera pose estimation results for Lightbox and Sunlamp
domains of the SPEED+ dataset.

Method Max Kpts AUC Avg Matches Avg t. Error (°) Avg R. Error (°)
@5° @10° @20°

Student 1024 1.38 3.31 7.12 44.56 59.3 20.1
LightGlue 1024 1.23 3.18 7.15 68.2 58.2 18.8

Table 5.35: Relative camera pose estimation results for the student model in the
SPEEDcube dataset.

Figure 5.18: Examples of input image pairs from the SPEED+ dataset: synthetic
(top), lightbox (middle) and sunlamp(bottom).
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5.2.3 Performance and model size comparison
The analysis of the computational performance of AI models is important for
space applications due to the specific operational constraints of onboard systems.
Compared to ground-based systems, space-grade hardware typically has limited
processing power, memory, and energy resources. Additionally, inference times must
be evaluated to ensure that models can operate within the timing requirements of
real operations, where the process from the image acquisition to the final decision
of the system must occur within strict time intervals.
A more complete evaluation would involve testing on specific space-qualified hard-
ware. In this work, we provide a general overview and comparison of computational
performance without using specific space-grade boards.

We report the model sizes for LoFTR, SuperPoint, LightGlue, and the Student
model. For classical methods, model size is not provided, as these are algorithmic
approaches without learnable parameters.
Table 5.36 shows the number of parameters and the model size in megabytes (MB).
For both LightGlue and the Student model, the number of layers is set to L = 9,
which corresponds to LightGlue’s standard configuration. To ensure consistency,
the same number of layers was adopted for the Student model.

Model Parameters (M) Model Size (MB)
SuperPoint 1.30 4.96
LightGlue 11.85 45.21
Student 11.56 44.12
LoFTR 28.35 108.13
SuperPoint + LightGlue 13.15 50.17
SuperPoint + Student 12.86 49.08

Table 5.36: Comparison of models by parameter count and model size.

Table 5.37 presents the inference times, computed as the average number of
image pairs processed per second (pairs/sec). The results are based on inference
over 1,000 image pairs with a resolution of 600× 960. For SuperPoint combined
with LightGlue or the Student model, the reported time includes the whole pipeline
(extraction and matching). It’s important to note that AI-based models are executed
on a CUDA-enabled GPU, whereas classical algorithms are run on the CPU.
Table 5.38 shows the inference speed for classical methods, where the processing
time includes both the feature extraction and the K-NN-based feature matching
phases.
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Model Average Inference Speed (pairs/sec)
SuperPoint + LightGlue 30.43
SuperPoint + Student 7.10
LoFTR 10.23

Table 5.37: Average inference time of AI-based methods, measured in image pairs
per second.

Algorithm Average Inference Speed (pairs/sec)
SIFT 8.85
ORB 20.77
AKAZE 11.45

Table 5.38: Average inference speed of classical methods, measured in image pairs
per second.
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Chapter 6

Discussions and Conclusions

6.1 Discussions
The indirect metrics considered in this study, homography estimation and relative
camera pose estimation, serve as proxies for assessing the accuracy of FDM methods.
Due to the lack of datasets that provide direct ground truth correspondences, it
becomes necessary to rely on these metrics to evaluate models. It is important to
note, however, that these metrics can be influenced by the nature of the image
transformations and by instabilities or inaccuracies in the estimation process itself.
Despite these limitations, they offer a valuable, systematic, and quantitative way
to compare the effectiveness of different FDM approaches.

Homography Estimation

Starting with the homography estimation task, some interesting insights emerge. In
this setup, the image pairs differ only in terms of geometric transformation, while
lighting conditions and background remain constant. This simplifies the FDM
process by analysing only the geometric variation. In the SPEED dataset, LoFTR
achieves the best performance in estimating the homography, with an AUC@5 px
of 89.1%. LightGlue and the Student model, on the other hand, show slightly
lower performance, comparable to classical methods, despite their high matching
precision scores (92% and 89%, respectively).
This can be likely due to the fundamental differences in their architectures. LoFTR
directly predicts dense correspondences between the two images, leading to a
significantly higher average number of matches (e.g., 968 in SPEED). In contrast,
LightGlue and the Student model focus on sparse keypoint matching, yielding a
generally lower number of correspondences (e.g. 276.7 and 239.4, respectively),
similar to traditional methods. This directly affects the accuracy of the estimated
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homography since even non-relevant matches (e.g., from background or noise), if
correctly matched, can improve the precision of the estimated transformation.
The same observation holds for the SPEED+ dataset across its different subsets.
When transitioning from the synthetic to real images, Lightbox and Sunlamp,
traditional methods show limited robustness, as illustrated in Figure 5.4. Their
performance drops significantly under extreme lighting conditions, such as poor
illumination or overexposure caused by direct sunlight. In contrast, AI-based
models tend to extract and match a higher number of interest points. For instance,
in the Sunlamp set, LightGlue reaches an AUC@5px of 88%, compared to 43.5%
for SIFT. It also predicts a considerably higher average number of matches, 377.5
versus 93.5. The Student model follows closely with an AUC@5px of 75.5% and
an average of 225.5 matches.
This difference highlights an important trade-off. On one hand, traditional methods
may fail to find a sufficient number of correspondences in visually challenging
scenarios, leading to poor estimation accuracy. On the other, AI models might be
overly sensitive to noise or irrelevant features. Therefore, it may be necessary to
fine-tune internal hyperparameters to filter out non-relevant matches and improve
robustness between different conditions.

Relative pose estimation

The second task expands the analysis by considering other scenarios and conditions.
In these tests, it is important to note that the image pairs may differ not only
in terms of perspective due to varying viewpoints between the cameras but also
in lighting conditions and background content. Unlike the previous task, in this
case, it becomes important for the key points to be extracted and matched from
the body of the target object rather than the surrounding environment to have an
accurate geometry estimation.
In the SPEED dataset, we evaluated the methods across increasing difficulty levels,
based on the extent of viewpoint differences between the frames. As expected, the
accuracy of all methods decreases with higher difficulty and the average translation
and rotation errors increase. Overall, the most effective models remain LightGlue
and the Student. For instance, in the easy scenario, they achieve angular AUC
scores that are approximately 3–5× higher than those of traditional algorithms
and even outperform LoFTR. Although LoFTR produces a much higher number of
correspondences, these are not necessarily relevant and can even hinder an accurate
estimation.
Another key factor is the presence of background. In the previous results, the back-
ground is absent, so images with varying surrounding environments are considered
to assess its impact. While LightGlue remains the best model, its results degrade
significantly in these settings, largely because many of the correspondences come
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from the background rather than the spacecraft. For example, LightGlue has a
drop of –14.8% in AUC@20° when the background is introduced. Additionally, the
average rotation error is much higher in traditional methods, with a difference of
+56.3° between SIFT and LightGlue. This is also evident from the visualizations,
where classical methods generate many false positive matches in the background.
The Student model performs worse in this case compared to the teacher, which is
expected since it is trained only on images without background. Consequently, it
predicts a much lower average number of matches, approximately 11.2, resulting in
less reliable estimations.
In the SPEED+ dataset, we analyzed the domain gap. As anticipated, all methods
perform best in the synthetic domain, where lighting is consistent, backgrounds
are removed, and the spacecraft appears closer to the camera. In this context,
both LightGlue and the Student model show strong performance. Specifically,
LightGlue achieves an AUC@20° gain of approximately +22% over LoFTR and
+34.6% over SIFT, while the Student model improves by +14.3% and +26.5%,
respectively. In real image domains, performance drops for all methods, but DL
models maintain slightly greater robustness, with lower average errors compared to
classical algorithms. For example, the average error gap between LightGlue and
SIFT reaches +54.4° in the Lightbox domain and 67.5° in Sunlamp.
Finally, the results obtained on the trajectory test set are analyzed. Performance
across all models is generally more uniform in this scenario due to the inherent
difficulty of accurate estimation, as explained earlier. Nonetheless, LoFTR achieves
translation and rotation errors of 38.3° and 11.6°, which are significantly lower
than those of SIFT, 72.7° and 38.9°, respectively. LightGlue and the Student
model produce very similar results, with only minimal differences, 1.1° in transla-
tion error and 1.3° in rotation error, in favour of the teacher.

To summarize, DL models have significant advantages that stem from their
ability to capture global contextual information in images. Unlike the algorithmic
methods, which rely on local image regions, DL-based have a broader understanding
of the scene. This enables them to match key points not only based on descriptor
similarity but also by considering their spatial relationships and the overall image
structure. As a result, they produce more accurate correspondences and a higher
number of inliers, leading to improved geometric estimations. Both DL and classical
methods tend to perform better on synthetic images, which offer more favourable
visual characteristics. In contrast, real domains can introduce a domain gap due to
extreme lighting conditions. These factors compromise robustness, increase noise,
and often lead to the extraction of irrelevant features and incorrect matches. To
reduce this gap, DL models can be trained or fine-tuned on datasets that more
accurately reflect the appearance and variability of real space imagery.
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Knowledge Distillation

KD proved to be an effective strategy for training the Student model in these
experiments. Despite the lack of annotated data needed for supervised training,
the Student benefits from the supervision provided by the Teacher model. Despite
the use of different operations within the architecture, the results obtained are
close to those achieved by LightGlue and the differences in many tests are reduced.
The Student typically predicts fewer correspondences than the Teacher, which can
negatively affect performance. This aspect can be improved through adjustments
in the training process. For instance, our model is trained using a maximum of 128
key points to speed up the training, whereas evaluation was performed with up to
1024 detectable key points. This mismatch may influence the number of matches
and, consequently, the estimation accuracy. Also, there is room for improvement
in the distillation strategy, such as trying additional loss functions and fine-tuning
training hyperparameters.

6.2 Conclusions
In conclusion, this preliminary analysis demonstrates how state-of-the-art deep
learning models can perform better than classical algorithms in the FDM task and
how their capabilities, acquired in general contexts, transfer to space environments
characterized by challenging image conditions.
Future works can explore the integration of FDM within visual navigation space
systems and the deployment on specific space-grade hardware. Additional opti-
mization techniques can be explored to refine the model design, reduce its size, and
lower the number of operations, making it more suitable for systems with resource
constraints.
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