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Summary

Automated functional testing is necessary to guarantee the dependability of crucial
components due to the growing complexity of contemporary automotive systems.
A data-driven method for identifying brushless electric fan failures in automotive
applications is presented in this thesis. The objective is to use anomaly detection
and machine learning approaches to optimize failure detection methodologies. Each
of the two stages of the study uses a different failure categorization strategy based
on DIAG_M1 diagnostic data.

A mixed DIAG_M1 dataset was examined in Phase 1, where failure identifica-
tion necessitated assessing a number of factors, including motor current, voltage,
temperature, and RPM behavior, rather than relying just on DIAG_M1 values.
To differentiate between various operating modes (such as resting and starting),
sophisticated feature engineering approaches were used. For unsupervised anomaly
identification, Principal Component Analysis (PCA) and DBSCAN clustering
were used to find intricate failure patterns that went beyond common diagnostic
indicators.

Failure was clearly defined in Phase 2 using a binary classification technique,
with DIAG_M1 = 0 denoting no failure and DIAG_M1 = 4 denoting failure. This
approach reduced the complexity observed in Phase 1 by enabling a simple failure
categorization. The most influential parameters were found using Random Forest
classification, while outliers and anomalies in the fan performance data were found
using K-Nearest Neighbors (KNN) and DBSCAN.

The results show that each strategy has distinct benefits, with Phase 2 delivering
a quicker, rule-based categorization and Phase 1 offering a more thorough failure
analysis. This research opens the door for predictive maintenance solutions in car
cooling systems by improving the capacity to identify abnormalities early through
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the integration of machine learning techniques. By enhancing brushless electric
fans' dependability and efficiency, these techniques guarantee peak performance in
a range of operating scenarios.

The project was carried out by Johnson Electric in Italy, a top supplier of
motion solutions for the automotive sector worldwide. With a focus on high-
performance motors, actuators, and electromechanical systems for use
in consumer, commercial, industrial, and automotive applications, it is a world
leader in motion solutions. The business offers specialized motion solutions that
improve sustainability, dependability, and efficiency with a strong emphasis
on innovation and precision engineering. Its plant in Italy is a major player
in the production of automotive components, combining AI-driven diagnostics,
predictive maintenance, and Industry 4.0 technologies to guarantee excellent
product performance and quality requirements.

To improve failure identification and predictive maintenance, the study used
machine learning techniques such as PCA, DBSCAN, and KNN anomaly detection.
Vehicle cooling systems are now more reliable and efficient because to the system’s
capacity to detect anomalies and failures beyond the conventional DIAG M1
classification by evaluating real-world sensor data. The findings confirm that
functional testing may be greatly enhanced by AI-driven diagnostics, guaranteeing
better performance and less downtime for automotive components.

iii



Acknowledgements

I would like to express my sincere gratitude to my supervisor Daniele APILETTI
for their invaluable guidance, support, and insights throughout this research.

Also, I would like to thank Johnson Electric, Italy, and Sergio CANTA
for his invaluable support and for supplying the materials, technological know-
how, and research facilities required for this project’s successful completion. The
creation of this study has been significantly aided by their dedication to excellence
and innovation in motion solutions. In order to improve the functional testing
techniques and guarantee the efficacy of the machine learning-based failure
detection system, Johnson Electric’s engineering and research teams provided
invaluable support and direction.

iv





Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 9
2.1 Traditional Approaches to Functional Testing in Automotive Systems 9
2.2 Machine Learning for Anomaly Detection in Industrial Systems . . 14

2.2.1 Introduction to Machine Learning in Industrial Fault Detection 14
2.2.2 Supervised Learning for Fault Classification . . . . . . . . . 14

2.3 Industry 4.0 and Smart Diagnostics in Automotive Systems . . . . . 22

3 Methodology 27
3.1 Data Collection and Preprocessing . . . . . . . . . . . . . . . . . . 29
3.2 Mixed DIAG_M1 Data Analysis . . . . . . . . . . . . . . . . . . . 30
3.3 Binary DIAG_M1 Data Analysis . . . . . . . . . . . . . . . . . . . 40
3.4 Performance Evaluation and Model Validation . . . . . . . . . . . . 42

vi



4 Implementation and System Design 44
4.1 System Architecture and Design . . . . . . . . . . . . . . . . . . . . 44
4.2 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 System Validation and Testing . . . . . . . . . . . . . . . . . . . . . 48

5 Results and Discussion 49
5.1 Feature Importance Analysis (Random Forest Results) . . . . . . . 49
5.2 Principal Component Analysis (PCA) for Dimensionality Reduction 49
5.3 Binary DIAG_M1 Data Analysis . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 54

7 Further Enhancements 55

Bibliography 57

vii



List of Tables

2.1 Comparison of Different Testing Methods . . . . . . . . . . . . . . . 13

viii



List of Figures

2.1 Importance of Anomaly Detection [26] . . . . . . . . . . . . . . . . 20
2.2 DBSCAN Clustering & Anomaly Detection . . . . . . . . . . . . . . 22
2.3 Evolution of Automotive Systems [33] . . . . . . . . . . . . . . . . . 24

3.1 Overall Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Importance of Features using Random Forest [40] . . . . . . . . . . 33

4.1 Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Feature Importance Analysis . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Scree Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 kNN Elbow Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix





Chapter 1

Introduction

1.1 Background and Motivation

For contemporary cars to have the best engine performance, temperature control,
and overall safety, cooling systems must be dependable. Brushless electric fans
are essential for controlling the temperature of the engine, radiator, and battery
systems, among other parts of a car. Any issue with these fans might result in
serious mechanical failures, overheating, or decreased efficiency [1].

Efficiency, consistency, and adaptation to contemporary automobile requirements
are frequently lacking in traditional manual and semi-automated testing techniques
for these fans. The move to automated functional testing has become more
significant with the introduction of Industry 4.0, allowing for predictive maintenance,
real-time failure detection, and enhanced product quality. This thesis aims to
provide an automated testing framework that uses data-driven methods and machine
learning to precisely detect abnormalities and faults in brushless electric fans used
in automotive applications.

1.2 Problem Statement

Static failure thresholds and predetermined circumstances are frequently used in
current diagnostic approaches for automotive cooling systems, which may not
always be able to identify intricate failure patterns. DIAG_M1 is one of the most
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Introduction

often utilized diagnostic parameters; it functions as an error indication but does
not always offer a clear-cut and definitive failure categorization.

Two major issues in fan failure detection are addressed in this project:
Phase 1 (Mixed DIAG_M1 Data): DIAG_M1 values range from 0 to

>0, hence this number alone cannot be used to identify problems. Rather, a
multi-parameter strategy is needed, in which the behavior of the motor's current,
voltage, temperature, and RPM is examined all at once.
Phase 2 (Binary DIAG_M1 Data): A simpler binary classification is utilized
in this phase, where failure is denoted by DIAG_M1 = 4 and no failure is denoted
by DIAG_M1 = 0. By doing so, uncertainty is removed and a rule-based failure
detection system is made possible.

Using machine learning techniques like Principal Component Analysis (PCA),
Random Forest classification, DBSCAN clustering, and K-Nearest Neighbors
(KNN), [2] this study attempts to create a reliable, automated testing methodol-
ogy for predictive maintenance and real-time failure detection of electric fans in
automobiles.

1.3 Objectives

Creating an automated functional testing framework for brushless electric fans used
in automotive applications is the main goal of this project. Accurate and effective
failure detection techniques are becoming essential due to the growing complexity
of contemporary automobile systems. Conventional failure detection techniques
depend on preset failure thresholds, which might not always be able to identify
intricate failure patterns in practical situations. This thesis suggests a data-driven
strategy that makes use of machine learning techniques to more accurately and
automatically evaluate, detect, and categorize errors.

In order to do this, the research is split into two experimental stages, each of
which focuses on a distinct facet of failure detection. Phase 1 focuses on a mixed
DIAG_M1 dataset, meaning that DIAG_M1 values alone cannot be used to identify
errors. Rather, a variety of diagnostic characteristics, such as motor current, voltage,
temperature, and RPM behavior, are analyzed in order to classify failures. To find
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abnormalities, sophisticated feature engineering and unsupervised learning methods
like Principal Component Analysis (PCA) and DBSCAN clustering are used. The
goal of this phase is to provide a multi-parameter framework for failure detection
that goes beyond conventional threshold-based techniques to detect complicated
problems.

However, Phase 2 presents a more straightforward binary classification method
in which DIAG_M1 = 0 denotes no failure and DIAG_M1 = 4 denotes a failure.
This method removes uncertainty and offers a clear mechanism for classifying
failures. However, Random Forest classification is used to determine the most
important variables that affect failure detection because DIAG_M1 alone might not
fully capture the image. Furthermore, the dataset's failure patterns and anomalies
are categorized using DBSCAN clustering and K-Nearest Neighbors (KNN). In
contrast to Phase 1's multi-parameter approach, this phase seeks to assess the
efficacy of a rule-based categorization system.

This study aims to improve the effectiveness, precision, and dependability of
functional testing in car cooling systems by integrating feature selection, anomaly
detection, and classification methodologies. Additionally, by advancing predictive
maintenance techniques, the study hopes to lower maintenance expenses, downtime,
and unanticipated breakdowns in the automobile sector. The study's conclusions
may be applied to other electromechanical parts, enhancing the overall dependability
and performance of automotive systems.

1.4 Scope of the Study

The automated functional testing of brushless electric fans used in automobile ap-
plications is the main emphasis of this work, especially when it comes to short-term
functional testing (24–48 hours). The goal is to provide a data-driven framework for
failure detection that can use machine learning techniques to categorize failures and
find abnormalities. By utilizing clustering approaches, feature selection methods,
and sophisticated data analytics, the study seeks to improve the dependability and
efficiency of car cooling systems.

Brushless electric fans are put through precise start-stop sequences determined
by electrical and electronic product requirements and actual failure patterns that
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arise during vehicle operation as part of the functional testing procedure in this
study, which is carried out in a controlled laboratory setting. Failure detection
is not exclusively reliant on DIAG_M1 readings, however the major diagnostic
parameter (DIAG_M1) functions as a first failure signal. To more precisely identify
faults, a variety of operating characteristics are examined, including motor current,
voltage, temperature, and RPM behavior.

Each of the two stages that make up this research has a unique method for
classifying failures:

Phase 1 (Mixed DIAG_M1 Data Analysis): A dataset with DIAG_M1 values
ranging from 0 to >0 is analyzed in this phase, which complicates failure detection.
Failure categorization in this case is complex and necessitates multi-parameter
study. To ascertain which diagnostic characteristics are most important for failure
detection, advanced feature engineering is carried out. Principal Component
Analysis (PCA) and DBSCAN clustering are examples of unsupervised learning
techniques that are used to identify probable failures and abnormalities that may
not be seen using conventional diagnostic methods[3]

Phase 2 (Binary DIAG_M1 Data Analysis): By clearly specifying failure
and non-failure conditions—DIAG_M1 = 4 denotes failure, and DIAG_M1 = 0
denotes no failure in this phase. Streamlines failure categorization. In real-time
applications where prompt decision-making is necessary, this method works well.
To identify the most crucial diagnostic parameters causing failures, Random Forest
classification is used because depending only on DIAG_M1 may overlook crucial
failure patterns. Additionally, abnormalities and odd behaviors in fan performance
are detected using DBSCAN clustering and K-Nearest Neighbors (KNN) [4].

This study's focus is restricted to controlled functional testing; long-term dura-
bility evaluations are not included. An MCPS (Monitoring & Control Processing
System) is used to capture data in real-time while the tests are carried out in
an automated laboratory setting. This research may be used to real-time failure
detection and predictive maintenance since the approach is developed to identify
operational problems rather than mechanical degradation over time [5].
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1.5 Methodology Overview

Two main experimental stages serve as the framework for this thesis:
Phase 1: Analysis of Mixed DIAG_M1 Data

• Information Preprocessing: Key diagnostic parameters were retrieved and
sensor data was cleaned.

• Engineering Features: established failure criteria according to temperature,
RPM, voltage, and current.

• Unsupervised Learning for Anomaly Detection: Outliers were found
using PCA and DBSCAN clustering.

• Failure Classification: Assessed how various criteria affected the identifica-
tion of failures.

Phase 2: Rule-Based Failure Classification

• Rule-Based Failure Classification: DIAG_M1 = 4 indicates failure,
whereas DIAG_M1 = 0 indicates proper functioning.

• Feature Importance Analysis: The most important criteria for failure
detection were determined using Random Forest classification.

• Anomaly Detection: To categorize anomalous activity, KNN and DBSCAN
clustering were used.

• Comparing Phase 1: Assessed the trade-offs between straightforward rule-
based categorization and intricate multi-parameter failure detection.

1.6 Significance of the Study

This study's importance stems from its potential to improve brushless electric fan
failure detection techniques in automotive applications by using an automated and
data-driven testing methodology. Advanced diagnostic techniques are required
due to the increasing complexity of automobile cooling systems and the need for
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dependable, high-performance parts. Accurately detecting actual abnormalities
is difficult with traditional threshold-based failure detection approaches as they
frequently produce missed failures and false positives. By using machine learning
approaches to provide a reliable, scalable, and automated failure detection system,
this study tackles these issues.

1. Improving Vehicle Cooling System Performance and Reliability

In order to ensure ideal engine performance and thermal management, brushless
electric fans must be dependable. Engine overheating, decreased fuel economy, and
in severe situations, catastrophic failures, might result from a faulty fan. This
study offers a solid foundation for early failure detection, preventive maintenance,
and decreased vehicle downtime [6]. This study suggests an intelligent system
that can constantly monitor fan performance and identify abnormalities in real-
time by combining supervised classification techniques like Random Forest with
unsupervised learning approaches like PCA and DBSCAN clustering.

By using the study's findings to optimize car diagnostic systems, manufacturers
may raise the performance and dependability of their products. Accurately identify-
ing malfunctions lowers warranty claims and maintenance expenses for automakers
while simultaneously increasing the safety and effectiveness of cooling systems[7].

2. Enhancing Predictive Maintenance while Cutting Expenses

The study's potential use in predictive maintenance is one of its significant
contributions. Conventional reactive maintenance methods simply replace or
repair parts after they fail, which results in unplanned malfunctions and increased
maintenance expenses [8] By facilitating the early discovery of abnormalities, this
research opens the door for predictive maintenance solutions. Maintenance teams
may plan repairs before severe failures occur by spotting patterns of deviation in
operating parameters. This improves operational efficiency, extends equipment
lifespan, and lowers maintenance costs [9].

The study also lessens the need for rule-based diagnostics and human inspections,
which are frequently laborious and prone to mistakes. Machine learning-based
automated testing guarantees quicker, more precise diagnostics, cutting down
on the amount of time needed for maintenance and troubleshooting processes in
automotive applications.
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3. Utilization in Smart Manufacturing and Industry 4.0

Industry 4.0, where automation, AI, and real-time data analytics are essential to
manufacturing and quality control, is rapidly taking over the automotive sector [10].
By presenting an intelligent diagnostic system that can be included into automated
manufacturing lines, our work is in line with these developments.

Manufacturers can use machine learning-based failure detection to make sure
that defective parts are found before they are assembled to improve quality control.
By aggressively detecting flaws during the testing stage, product recalls can be
decreased. Integrate machine learning algorithms with on-board car diagnostics to
facilitate real-time decision-making.

4. Advancements in Machine Learning for Failure Detection

The subject of machine learning in industrial applications is expanding, and this
work adds to it. A hybrid method to failure detection and anomaly classification
is offered by the integration of Principal Component Analysis (PCA), DBSCAN
clustering, and Random Forest classification. In contrast to traditional threshold-
based diagnostic systems, this method continually adjusts to new failure patterns
by learning from past data [11]

Additionally, this work shows how unsupervised learning may be utilized to
uncover hidden failure patterns, which makes it useful for sectors with a lack of
labeled failure data. Other industrial areas can benefit from the knowledge gained
from this study, such as:

• Aerospace (detection of engine component failures).

• Renewable energy (keeping an eye out for issues with solar panel cooling
systems and wind turbines).

• Manufacturing (automatic systems and industrial machines with predictive
maintenance).

5. Contribution to Academic Research and Future Studies

By offering an organized framework for functional testing and failure detection
utilizing data-driven methodologies, this thesis advances the academic research
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community. By providing a useful case study for automotive applications, it
expands on previous research in anomaly detection, predictive maintenance, and
machine learning applications in industrial systems [12].

This work can be expanded upon in future research by:

• Using deep learning methods for even more precise failure predictions, such as
recurrent neural networks (RNNs) and autoencoders.

• For a more thorough study, the dataset should be expanded to include on-road
sensor data and actual driving circumstances.

• Investigating cloud-based monitoring platforms to facilitate fleet management
failure detection and remote diagnoses.
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Chapter 2

Literature Review

To place this study in the larger framework of automated functional testing, machine
learning for failure detection, and predictive maintenance in industrial applications,
a thorough literature analysis is necessary. This chapter examines current brushless
electric fan diagnostic techniques, conventional failure detection strategies, and
developments in data-driven anomaly detection. Predictive maintenance techniques,
Industry 4.0 trends, threshold-based diagnostics, and machine learning applications
in defect identification are important areas of study.

2.1 Traditional Approaches to Functional Testing
in Automotive Systems

In automobile engineering, functional testing is a crucial procedure that makes that
electromechanical parts, such as brushless electric fans, function within predeter-
mined performance bounds. Fixed thresholds, predetermined circumstances, and
human or semi-automated inspection procedures are used in traditional automotive
diagnostics and testing approaches to identify defects and failures. Despite their
widespread use, these techniques are not always effective in accurately detecting
anomalies, especially in complicated failure circumstances when a number of factors
affect system performance[13].

To test cooling system components, automakers have traditionally used a number
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of traditional methods, including human inspections, threshold-based diagnostics,
on-board diagnostics (OBD), and semi-automated testing frameworks. However,
these conventional methods are unable to keep up with the demands of contempo-
rary diagnostics as vehicle systems grow increasingly complicated due to increased
electrical and software integration [14].

2.1.1 Threshold-Based Failure Detection

Threshold-based failure detection is among the oldest and most used techniques
for functional testing in automotive systems. This method entails establishing
specified upper and lower bounds for crucial parameters like:

• Motor current (Current_M1)

• Voltage supply (V_Conn_M1)

• Rotational speed (RPM) of the fan (CF1_RPM_Avg_ST3_M1)

• Temperature (Tamb_)

A fault code is activated, signaling a possible failure, when a sensor reading
beyond certain predetermined limit [15].

Limitations of Threshold-Based Diagnostics:

• Inability to identify complicated failures: A lot of brushless electric fan failures
are caused by interactions between several factors rather than by going above
predetermined limitations.

• High false positive rate: Minor variations in sensor readings, such as brief volt-
age decreases, might result in needless failure alerts and unneeded maintenance
expenses

• Inability to adapt: Over time, the approach becomes less successful since
fixed criteria do not take into consideration environmental influences like
temperature changes or component aging.

Machine learning-based anomaly detection models must be used since, despite
their ease of implementation, threshold-based approaches are not flexible or adapt-
able enough for contemporary automotive applications.
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2.1.2 Manual and Semi-Automated Testing in Automotive Systems

To assess performance deviations, functional testing in car cooling systems has
traditionally depended on human skill and manual inspection . The brushless
electric fans would be physically inspected by testing engineers.

• Behavior of operations under various voltage loads

• Thermal efficiency at different outside temperatures

• Reaction to start-stop patterns for a long time

Although hand examinations yield insightful qualitative information, they are:

• labor-intensive and time-consuming

• prone to discrepancies and human mistake

• High-volume vehicle production is challenging to scale.

Semi-automated functional testing methods, which combine sensor-based data
gathering with human interpretation of results, were created to increase efficiency .
These systems, however, continued to rely mostly on pre-established test cases and
were unable to identify intricate, concealed failure patterns that call for anomaly
detection and real-time data analysis.

2.1.3 On-Board Diagnostics (OBD) and Electronic Control Unit (ECU)
Testing

On-Board Diagnostics (OBD) became the standard technique for real-time problem
detection as car electronics improved-12-. Engine, cooling, and electrical compo-
nents are continually monitored by Electronic Control Units (ECUs), which are
the foundation of OBD systems.

The Operation of OBD-Based Diagnostics are:

• Data collection: Operating parameters (such as fan speed, temperature,
and voltage) are continually monitored by sensors positioned throughout the
vehicle.
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• Fault Code Generation (DTCs): The ECU produces a Diagnostic Trouble
Code (DTC) whenever a sensor reading above certain thresholds.

• Service Indicator Alerts: When a malfunction happens, the driver is
informed via the car's onboard display.

• Mechanic Intervention: An OBD-II scanner is used to get the trouble code,
which mechanics then utilize to manually diagnose the problem

OBD has several disadvantages even if it offers a standardized method for
problem detection:

• Failures cannot be predicted in advance: OBD-based diagnostics identify
issues after they arise, as opposed to anticipating possible failures.

• Restrictions on OBD systems to manufacturer-defined DTCs may result
in the failure to discover hidden irregularities that do not correspond to preset
error codes

• Unsuitable for detecting anomalies in real time: OBD does not adjust
to new failure situations over time, in contrast to contemporary machine
learning models

2.1.4 Need for a Data-Driven Approach

Data-driven procedures are becoming more and more popular in the market due to
the shortcomings of traditional testing methods. Rather of depending on preset
rules and thresholds, contemporary machine learning models examine both past
and current sensor data to:

• Find intricate failure patterns that conventional techniques could miss.

• Preventive maintenance is made possible by anticipating faults before they
occur.

• Continue to learn and adjust, increasing the accuracy of failure detection over
time.
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This study presents a system for automated functional testing that combines
Random Forest, DBSCAN, and PCA models to:

• Boost the accuracy of failure classification in comparison to threshold-based
and conventional OBD techniques.

• Use unsupervised clustering techniques to facilitate the early discovery of
anomalies.

• Instead of depending just on single-threshold exceedances, analyze multi-
parameter interactions to reduce false positives.

This study advances automotive testing procedures by using a data-driven
strategy, which guarantees increased vehicle performance, reduced maintenance
costs, and increased dependability.

2.1.5 Comparative Analysis of Traditional Testing Methods

Method Advantages Disadvantages
Threshold-Based Test-
ing

Basic, popular, and sim-
ple to use

High false positives, poor
accuracy, and inability to
identify complex failures

Manual Testing Permits human knowl-
edge and thorough assess-
ment

Not scalable, time-
consuming, and prone to
human error

Semi-Automated Test-
ing

Delivers organized data
and lessens human labor.

Still uses manual inter-
pretation and has little
flexibility.

On-Board Diagnostics
(OBD)

Standardized and avail-
able in the majority of
cars

Lacks flexibility, is lim-
ited to preset codes, and
cannot anticipate errors

Table 2.1: Comparison of Different Testing Methods

Although these techniques have been successful in the past in spotting significant
failures, they are unable to foresee problems before they happen. By using machine
learning-based failure detection models, which are more accurate, adaptable, and

13



Literature Review

able to identify anomalies in real time, this study seeks to get around these
restrictions.

2.2 Machine Learning for Anomaly Detection in
Industrial Systems

2.2.1 Introduction to Machine Learning in Industrial Fault
Detection

Traditional fault detection techniques that rely on preset failure criteria are not
being able to discover hidden abnormalities and early failure patterns due to the
growing complexity of industrial systems. The application of machine learning
(ML) in industrial diagnostics has transformed real-time failure detection and
predictive maintenance by allowing systems to learn from past data and identify
subtle patterns suggestive of failures [16]

Large volumes of sensor data are produced by industrial systems, which record
operating characteristics including temperature, rotational speed, voltage, and
current. It is challenging to manually assess this data for failure situations since it
is frequently noisy and high-dimensional. Machine learning approaches, namely
supervised and unsupervised learning, provide sophisticated capabilities for fault
classification based on historical patterns, anomaly prediction, and failure detection
[17]

2.2.2 Supervised Learning for Fault Classification

A popular method for failure detection is supervised learning, in which models are
trained on labeled datasets. that is, each data point has a predetermined failure or
non-failure condition. The model categorizes incoming data points into failure or
non-failure groups by applying the lessons it has learned from past failures.

When a well-defined dataset with enough failure examples is available, supervised
learning can be helpful in industrial systems. Typical algorithms consist of:
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• A potent method that determines the most significant characteristics influenc-
ing failure categorization is Random Forest categorization.

• Support Vector Machines (SVMs): Used in failure diagnostics to identify
patterns, especially to differentiate between various failure types [18]

• In deep learning-based diagnostics, artificial neural networks (ANNs) are used,
particularly in complicated failure scenarios [19]

However, there are drawbacks to supervised learning in business settings because:

• Because industrial systems are built to have as few faults as possible, failure
data is frequently limited.

• Failure data labeling requires professional involvement and is costly and
time-consuming.

The model might not be able to identify new failure types unless it is retrained
[20]

Because they don't require predetermined failure labels, unsupervised learning
approaches are becoming more and more popular for anomaly detection in industrial
diagnostics as a result of these difficulties [21]

2.2.3 Unsupervised Learning for Anomaly Detection

The majority of sensor data in real-world industrial systems depicts typical operat-
ing circumstances, with faults happening seldom. Unsupervised learning is a more
efficient method for identifying unknown and emergent abnormalities since it is
difficult to categorize every potential failure event.
Without predetermined failure labels, unsupervised learning algorithms find pat-
terns and deviations in data. These models function by:

In many industrial applications, such as fraud detection, network security,
predictive maintenance, and manufacturing quality control, anomaly detection is
essential. Conventional rule-based approaches depend on set thresholds, which
frequently miss intricate failure patterns and result in false positives and anomalies
that go unnoticed. Because of this restriction, machine learning-based anomaly
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detection approaches—especially unsupervised learning techniques, which may
detect abnormalities without the need for labeled failure data—have become widely
used.

Sensor data is regularly generated in industrial systems, and because failure
occurrences are rare, it is frequently impossible to classify every instance as normal
or defective. By finding patterns in the data and spotting outliers that deviate
from expected behavior, unsupervised learning techniques get around this problem.
These techniques are more flexible than conventional threshold-based diagnostics
and are particularly helpful in situations when failures are unknown, changing, or
context-dependent.

• Use previous data to learn the system's typical behavior.

• Locating data points that substantially depart from this typical trend.

• Identifying those variations as possible abnormalities or early warning signs of
failure [22]

1. Anomaly detection based on clustering (DBSCAN, K-Means) Similar
data points are grouped together using clustering algorithms, while anomalies are
identified as outliers that either form tiny, isolated clusters or do not belong to any
cluster. A popular technique for identifying irregularities in high-dimensional, noisy
data is DBSCAN (Density-Based Spatial Clustering of Applications with Noise). It
works well for detecting unknown failures because, in contrast to K-Means, it does
not require a set number of clusters. Data points are grouped into K clusters using
K-Means Clustering according to their similarity. Points that are far from the
cluster centroids are identified as anomalies. However, irregularly shaped anomalies
are difficult for K-Means to handle, therefore DBSCAN is a more adaptable option.
[2]

2. Anomaly Detection by Dimensionality Reduction (PCA, Autoen-
coders) Correlated and redundant features are frequently seen in high-dimensional
industrial sensor data. Techniques for reducing dimensionality aid in identifying
the most important patterns for failure detection.

High-dimensional data can be reduced to a smaller number of primary com-
ponents using primary Component Analysis (PCA), which preserves the most
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significant variation. Points that show unusual behavior in sensor readings and con-
siderably depart from principal component projections are identified as anomalies.
The normal data distribution is compressed and learned by autoencoders (Neural
Networks for Anomaly Detection). A new data point is probably an anomaly if the
autoencoder is unable to correctly reconstruct it. Deep learning-based anomaly
detection makes extensive use of this technology.

3. Density-Based and Distance-Based Anomaly Detection (KNN,
Isolation Forest) Distance-based methods use the distance between a point and
its closest neighbors in the feature space to identify anomalies.

Using K-Nearest Neighbors (KNN) to Identify Anomalies: An anomaly score is
calculated using the distance to the K-th nearest neighbor. Anomalous points are
those that are farther away from their neighbors. An ensemble technique called
Isolation Forest divides the data at random to isolate abnormalities. This method
is very effective for large-scale anomaly identification because it requires fewer
partitions to isolate anomalies.

Unsupervised Learning’s Use in Industrial Systems Unsupervised learning-
based anomaly detection is frequently used in industrial settings in:

Finding early indicators of mechanical failure in electric motors, cooling fans,
and spinning machinery before a breakdown happens is known as predictive main-
tenance.

Quality control is the process of employing sensor data and machine learning to
identify faulty parts in the automotive manufacturing industry.

Detecting illegal activity and network irregularities in smart factories is the focus
of cybersecurity in industrial IoT. Monitoring energy efficiency involves spotting
unusual trends in energy use that could point to problems with the power supply.

In order to find hidden failures beyond the conventional DIAG_M1 clas-
sification, DBSCAN and KNN anomaly detection algorithms were used
in this study’s brushless electric fan functional testing. The findings showed that
problems that would have gone undetected with conventional diagnostic
techniques were successfully detected using unsupervised learning.

Unsupervised Anomaly Detection: Obstacles and Prospects Unsuper-
vised learning for anomaly detection has drawbacks despite its benefits:

High False Positive Rates: Unsupervised approaches may mistakenly identify
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typical fluctuations as abnormalities, resulting in needless maintenance procedures,
because they do not rely on predetermined failure labels.

Parameter Sensitivity: To get the best results, algorithms like DBSCAN need
to carefully adjust hyperparameters.

Managing Concept Drift: Anomaly detection models must constantly adjust to
new typical operating conditions as industrial systems undergo continuous change.

computing Complexity: The real-time deployment of certain unsupervised
techniques is limited by their high computing resource requirements, particularly
for deep learning-based autoencoders.

The efficiency of machine learning-driven predictive maintenance will be fur-
ther increased by upcoming developments in adaptive anomaly detection, hybrid
supervised-unsupervised techniques, and real-time deep learning models.

Unsupervised learning is a powerful tool for anomaly detection in industrial
applications, particularly when labeled failure data is scarce or unavailable. Tech-
niques such as DBSCAN, KNN, PCA, and autoencoders enable the detection of
hidden failure patterns, improving predictive maintenance and fault classification.
In this study, unsupervised learning successfully identified failures in brushless
electric fans beyond traditional DIAG_M1 labeling, proving its effectiveness in
real-time diagnostics and vehicle component testing. As machine learning and
AI-driven diagnostics continue to evolve, integrating adaptive anomaly detection
techniques into Industry 4.0 environments will be critical for enhancing system
reliability, reducing downtime, and optimizing maintenance strategies.

2.2.4 Why Unsupervised Learning for Our Study?

Because of the characteristics of the dataset and the absence of pre-labeled failure
events, this work uses unsupervised learning approaches in both experimental
phases.

Phase 1: Unsupervised Learning and the Significance of Features

• A dataset with mixed DIAG_M1 values (0 and >0) was examined in the first
phase, where failure criteria weren't always obvious.
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• To find the most important parameters for failure detection, Random Forest
feature importance analysis was used [23].

• Key data properties were preserved while dimensionality was decreased through
the use of Principal Component Analysis (PCA).

• A basic threshold-based failure classification was unable to catch anomalies,
thus DBSCAN clustering was employed to find them [24].

Phase 2: Using DBSCAN and KNN for Unsupervised Learning

• For anomaly detection and failure classification validation, we continued to
use unsupervised learning approaches in the second phase, where DIAG_M1
= 4 was categorized as failure and DIAG_M1 = 0 as non-failure.

• Clustering parameters were determined by calculating ideal distance metrics
using K-Nearest Neighbors (KNN).

• To categorize data points into regular operating circumstances and aberrant
behaviors, DBSCAN clustering was used [25].

• Beyond a straightforward DIAG_M1 threshold rule, these techniques offered
a strong mechanism to guarantee failure categorization was accurate.

2.2.5 Anomaly Detection in Industrial Systems

A key component of predictive maintenance is anomaly detection, which enables
industrial systems to spot early indications of malfunction before they become
complete failures.

Industrial system anomalies fall into one of the following categories:

• Single data points that deviate noticeably from the usual distribution are
known as point anomalies (e.g., rapid voltage spikes).

• Anomalies that are simply unusual in a certain environment are known as
contextual anomalies (for example, a high current at startup could be typical
but aberrant during steady operation).
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• Groups of data values that collectively point to a failure (such as a trend
of rising temperature and falling RPM over time) are known as collective
anomalies.

Models that can handle complicated, high-dimensional sensor data and dif-
ferentiate between real failures and normal changes are needed to detect these
abnormalities. In order to do this, DBSCAN clustering is essential.

Figure 2.1: Importance of Anomaly Detection [26]

2.2.6 DBSCAN for Anomaly Detection

A potent unsupervised machine learning technique that is frequently used for
anomaly detection in industrial systems is Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). DBSCAN is density-based, which means it
groups data points that are densely packed together while detecting outliers as
noise points, in contrast to conventional clustering techniques like K-Means, which
involve defining the number of clusters in advance. Because of this, DBSCAN
is especially well-suited for industrial datasets, where failure patterns might not
adhere to a predetermined structure and sensor values might contain unanticipated
variations. Two crucial parameters are defined by the algorithm: min_samples,
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the smallest number of points needed to create a dense cluster, and epsilon, which
establishes the radius surrounding each data point within which additional points
are regarded as neighbors. Because data points that are not part of any cluster are
categorized as anomalies, DBSCAN is very good at identifying infrequent failure
occurrences in complex systems.

In order to identify irregularities in the performance of brushless electric fans,
DBSCAN was performed to the dataset in both phases of this investigation. Failure
detection in Phase 1, where DIAG_M1 values were mixed (0 and >0), necessitated
the analysis of several parameters. To uncover hidden failure patterns, DBSCAN
was employed in conjunction with PCA (Principal Component Analysis). DBSCAN
assisted in validating the classification findings and identifying anomalies that did
not fall into the conventional failure categories in Phase 2, where failure was
categorized using DIAG_M1 = 4 and non-failure using DIAG_M1 = 0. The
ideal epsilon value was found using a K-Nearest Neighbors (KNN) method, which
made sure that the clustering process accurately distinguished between normal and
pathological behavior. By identifying outliers as noise spots, DBSCAN made it
possible to identify possible early-stage failures, enhancing it.

Compared to conventional threshold-based approaches, DBSCAN is more adapt-
able to real-world sensor changes due to its ability to manage noisy data and
irregularly formed clusters, which is one of its main benefits in anomaly identifi-
cation. Sensor readings for temperature, voltage, current, and RPM behavior in
brushless electric fans might change as a result of operating irregularities, temporary
malfunctions, or environmental factors. While DBSCAN can distinguish between
real abnormalities and natural changes, threshold-based approaches may mistakenly
label these variations as failures. Furthermore, DBSCAN can discover anomalies
in real time in functional testing settings due to its processing efficiency for huge
industrial datasets. This work created a reliable failure detection system that sur-
passes conventional diagnostic techniques and improves performance by combining
DBSCAN with feature significance analysis (Random Forest) and dimensionality
reduction (PCA).
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Figure 2.2: DBSCAN Clustering & Anomaly Detection

2.3 Industry 4.0 and Smart Diagnostics in Auto-
motive Systems

2.3.1 Introduction to Industry 4.0 in Automotive Systems

Industry 4.0, which combines automation, real-time data analytics, artificial intelli-
gence (AI), machine learning (ML), and the Internet of Things (IoT) to improve
production and diagnostics, is causing a radical change in the automobile sector.
Smart automation and data-driven decision-making are key components of Industry
4.0, [27] which enables automakers to improve manufacturing lines, predictive main-
tenance, and car diagnostics. Manual inspections and threshold-based diagnostic
devices were key components of traditional automotive testing and maintenance
procedures. These methods, however, frequently result in more downtime, expensive
repairs, and delayed failure discovery. Automakers may lower maintenance costs
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and unexpected breakdowns while increasing overall vehicle performance, economy,
and dependability by putting smart diagnostics into practice [28].

In order to continually monitor car components, smart diagnostics in automotive
applications make use of sensor networks, cloud computing, and AI-driven problem
detection systems. Among the parts that benefit from these developments are
brushless electric fans, which are essential for cooling car systems. Industry
4.0 makes it possible to employ predictive analytics to identify early-stage defects
before they worsen, whereas traditional cooling system diagnostics were restricted to
predetermined threshold criteria. Functional testing is more precise, proactive, and
condition-adaptive when real-time data analytics and machine learning algorithms
are integrated [29].

2.3.2 Evolution of Smart Diagnostics in Automotive Systems

The growth of linked car technologies and improvements in AI-based problem
detection systems have propelled the creation of smart diagnostics. Hundreds
of sensors are found in modern cars, gathering information on things like motor
current, cooling fan speed, battery voltage, engine temperature, and diagnostic
fault codes. These sensors function within specified safety bounds in conventional
diagnostics, and malfunctions are identified when readings above a certain threshold
[30]. This reactive strategy, however, is inadequate as it ignores the slow system
degradation that might eventually result in breakdowns.

Automobile manufacturers are already using real-time monitoring systems that
enable continuous data collection and predictive maintenance through the inte-
gration of Industry 4.0 principles. To find failure trends and forecast component
deterioration, intelligent diagnostic algorithms use both history and current sensor
data. By identifying hidden trends in big datasets, machine learning approaches,
such as anomaly detection algorithms like PCA and DBSCAN, improve the accu-
racy of failure classification [31]. Automated functional testing of brushless electric
fans has benefited greatly from these methods, which enable manufacturers to
identify problems brought on by unforeseen voltage changes, temperature swings,
and motor inefficiencies.

Because it allows for remote vehicle health monitoring, cloud computing is
essential to modern car diagnostics. These days, automakers gather and examine
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sensor data from cars running in various environments using cloud-based systems.
Real-time failure notifications are generated by processing this data using AI-driven
fault detection algorithms. For example, when a car's electric fan shows abnormal
current consumption patterns, a predictive maintenance system can identify the
problem before it leads to a total failure, saving money on repairs and averting car
breakdowns [32].

Figure 2.3: Evolution of Automotive Systems [33]

2.3.3 The Role of IoT and AI in Smart Automotive Diagnostics

By allowing linked cars to exchange real-time data with centralized monitoring
systems, the Internet of Things (IoT) has had a big impact on smart automotive
diagnostics. Wireless sensors in IoT-enabled cars provide operational data to
cloud servers continually, where AI-based algorithms examine patterns and identify
irregularities. Thanks to these developments, manufacturers may now use remote
diagnostics, which enables professionals to evaluate a vehicle's condition without a
physical examination [34].

IoT-based monitoring systems provide light on how motor efficiency, voltage
variations, and environmental factors affect cooling performance in brushless electric
fan testing. Smart diagnostic systems employ AI-driven failure categorization
models to identify early indicators of motor inefficiency and overheating rather than
depending only on on-board diagnostics (OBD) fault codes. Automotive engineers
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can detect irregularities in sensor data before they result in serious malfunctions
by using unsupervised learning methods like DBSCAN and PCA [35].

The usage of edge computing, which processes data at the vehicle level instead of
depending just on cloud computing, is another significant advancement in Industry
4.0 automotive diagnostics. By enabling real-time decision-making, edge-based
AI models lower the delay in identifying abnormalities in sensors and system
malfunctions. For instance, an edge-based AI system may promptly initiate a
preventive maintenance warning in the event that an electric fan displays unusual
current variations, guaranteeing prompt remedial measures [36]

AI-powered diagnostics will develop further as automotive systems become more
software-driven, improving predictive maintenance and functional testing. The shift
from reactive problem detection to predictive analytics guarantees that automakers
can provide more cost-effective maintenance plans, enhanced safety, and increased
dependability.

2.3.4 Challenges and Future Prospects of Smart Diagnostics

There are still a number of obstacles in the way of the broad use of AI-driven car
diagnostics, even with the developments in Industry 4.0 and smart diagnostics. Data
complexity is one of the main issues since contemporary cars produce enormous
volumes of sensor data that need to be processed, stored, and analyzed in real time.
Another crucial issue is ensuring cybersecurity and data privacy, particularly as
more cars are linked to cloud-based platforms.

Adapting AI models for various vehicle kinds is another difficulty. High-quality
training data is necessary for machine learning-based diagnostics to function well,
and changes in engine configurations, vehicle models, and environmental factors
can affect how accurate predictive maintenance models are. Automobile makers
need to invest in highly adaptable AI systems that can generalize problem detection
across various vehicle types and operating situations in order to overcome these
obstacles.

Looking ahead, completely autonomous failure detection systems that can fore-
cast defects with almost perfect accuracy represent the future of smart automobile
diagnostics. AI, IoT, cloud computing, and real-time monitoring will come together
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to form a self-learning automotive diagnostic ecosystem that can dynamically adjust
to novel failure scenarios. The automotive industry will get closer to zero-defect
production and real-time predictive maintenance as AI-powered functional testing
is more integrated with the manufacturing process. This will guarantee that vehicle
cooling systems, including brushless electric fans, run as efficiently and reliably as
possible.
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Chapter 3

Methodology

The process for creating an automated functional testing framework for brushless
electric fans in automotive applications is described in this chapter. To categorize
failures and identify abnormalities in real-time sensor data, the method is split into
two stages, each of which uses a distinct machine learning and anomaly detection
algorithm.

A mixed DIAG_M1 dataset was examined in Phase 1, where multi-parameter
analysis and anomaly identification using unsupervised learning methods were
necessary for failure categorization. This stage used DBSCAN for anomaly detection,
Random Forest for feature importance analysis, and Principal Component Analysis
(PCA) for dimensionality reduction.

Phase 2 involved the explicit labeling of failures using a binary DIAG_M1
classification technique. In order to verify the accuracy of failure detection, this
phase included feature selection approaches, DBSCAN for clustering anomalies,
and K-Nearest Neighbors (KNN) for distance metric optimization.

Both stages used sensor data gathered from actual brushless electric fan functioning
testing to analyze variables such motor current, voltage, temperature, and RPM
behavior. In order to make sure that the suggested failure detection system is
reliable and flexible enough for real-time applications, the approach focuses on
data preparation, feature selection, machine learning model implementation, and
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performance assessment.

Figure 3.1: Overall Workflow

28



Methodology

3.1 Data Collection and Preprocessing

Data Collection: The functional testing trials carried out in a controlled labo-
ratory setting provided the dataset used in this investigation. Brushless electric
fans' real-time sensor data were captured throughout each test, providing crucial
information for failure diagnosis. Among the dataset were:

• Time-Stamped Sensor Readings: A thorough trend analysis was made
possible by the high frequency of data recording.

• Data on voltage and current are important markers of electrical irregularities
and inefficient motors.

• Temperature and rotational speed (RPM) measurements are used to
evaluate the fan system's mechanical and thermal performance.

• As a major failure signal, DIAG_M1 Failure Codes needed further multi-
parameter validation.

Data Preprocessing:
The raw dataset was processed to guarantee data accuracy, consistency, and

relevance prior to the use of machine learning models. The actions listed below
were taken:

1. Managing Inaccurate and Missing Values

• To make sure that only legitimate sensor readings were included, error rows
were eliminated.

• To preserve the integrity of the data, any erroneous timestamps or corrupt
records were removed.

2. Feature engineering and standardization

• Conversion of timestamp: To enhance trend analysis, the raw time-stamp for-
mat was broken down into hour, minute, second, and millisecond components.

• Labeling the operational phase:
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– Resting Phase: When the motor current was almost nil, the resting
phase was identified.

– Startup Phase: characterized by a high required RPM yet a low motor
current.

– Complex Failure Phase: Indicates cases when operational irregularities
were found but DIAG_M1 > 0.

3. Normalization and Scaling of Features

• To guarantee that machine learning models analyzed continuous variables
uniformly, such as current, voltage, and RPM, they were standardized.

The technique improved the accuracy of failure categorization by preprocessing
and organizing the dataset to guarantee that the machine learning models ran on
clear and relevant data.

3.2 Mixed DIAG_M1 Data Analysis

3.2.1 Feature Selection Using Random Forest

Importance of Feature Selection in Failure Detection:
A crucial stage in machine learning-based failure detection is feature selection,

especially in industrial settings where sensor data includes several variables of
differing importance. Sensor readings for brushless electric fan functional testing
include, among other things, motor current, voltage, rotational speed (RPM),
and temperature. Some of these characteristics may add noise, redundancy, or
needless complexity to the model, and not all of them contribute equally to failure
classification [37]

A crucial stage in machine learning-based failure detection is feature selection,
especially in industrial settings where sensor data includes several variables of
differing importance. Sensor readings for brushless electric fan functional testing
include, among other things, motor current, voltage, rotational speed (RPM),
and temperature. Some of these characteristics may add noise, redundancy, or
needless complexity to the model, and not all of them contribute equally to failure
classification [2]
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Why Random Forest for Feature Selection?
In order to improve accuracy and decrease overfitting, the Random Forest

ensemble learning method builds many decision trees and averages their predictions.
Its capacity to gauge feature significance using two main measures is one of its
main advantages:

• The Mean Decrease in Impurity (MDI), sometimes referred to as Gini
Importance, quantifies the degree to which a characteristic lowers classification
uncertainty. More pertinent traits are indicated by higher values.

• Mean Decrease in Accuracy (MDA) ranks features according to their
contribution to classification accuracy, assessing the impact of feature removal
on model performance [38]

For feature selection, Random Forest was used due to:

• It doesn't need feature scaling to handle high-dimensional industrial datasets.

• It increases the resilience of failure classification models by being impervious
to noise and irrelevant information.

• In order to help engineers concentrate on key performance indicators (KPIs)
that impact brushless electric fan failures, it offers an interpretable ranking of
sensor parameters [39]

Application of Random Forest in This Study
Determining which characteristics were most important in differentiating between

normal and failed fan operations was crucial in Phase 1 of this investigation, when
failure classification was complicated due to mixed DIAG_M1 values (0 and >0).
The preprocessed dataset was subjected to the Random Forest method, which
calculated the relevance score for each feature.

Step 1: Feature Importance Training for the Random Forest Model

• Training and validation sets of the sensor dataset were separated.

• To predict failure outcomes, a Random Forest classifier was trained with all
accessible features.
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• To determine which factors contributed most to classification accuracy, feature
significance scores were taken from the training model

Step 2: Determining the Crucial Elements Influencing Failures
Following the Random Forest feature selection procedure, the following five

features were determined to be the most crucial:

• The most important factor affecting failure detection is the voltage con-
nection (V_Conn_M1), as unusual voltage levels suggest possible electrical
problems.

• Motor Current (Current_M1): A crucial indicator of motor inefficiencies,
aberrant current consumption must be detected.

• The voltage average, or CF1_VoltAvg_ST3_M1, aids in identifying
power supply fluctuations that lead to fan failures.

• Tamb_ (temperature): High temperatures raise the likelihood of failure
by exerting thermal stress on fan components.

• RPM Average (CF1_RPM_Avg_ST3_M1): Variations in rotational
speed signify deterioration in fan performance, which results in inefficient
cooling.

Then, in order to discover anomalies, these characteristics were chosen as input
variables for further analysis using PCA and DBSCAN clustering.

Performance Impact of Feature Selection
The failure classification model showed better generalization, quicker training

periods, and increased accuracy once the less significant elements were eliminated.
Using Random Forest-based feature selection had the following advantages:

• Decreased Model Complexity: Removing superfluous features reduced
overfitting and increased failure detection effectiveness.

• Improved Interpretability: Rather than depending just on the raw DIAG_M1
readings, engineers may concentrate on certain sensor properties.
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• Enhanced Classification Accuracy: The machine learning models per-
formed better in terms of anomaly detection and failure classification by
utilizing just the most pertinent features

Figure 3.2: Importance of Features using Random Forest [40]

3.2.2 Principal Component Analysis (PCA) for Dimensionality Reduction

Datasets from real-world industrial systems, particularly those that use sensor-
based diagnostics, can include a large number of associated characteristics, which
can complicate and add redundancy to machine learning models. Although the
comprehensiveness of failure detection is enhanced by having several sensor pa-
rameters, there are drawbacks as well, including longer computation times, model
overfitting, and interpretability issues.

By converting a high-dimensional dataset into a lower-dimensional space while main-
taining as much important information (variance) as feasible, Principal Component
Analysis (PCA), a linear dimensionality reduction approach, aids in overcoming
these difficulties. In order to make it simpler to employ clustering methods like
DBSCAN for anomaly identification, PCA was utilized in this work to simplify
sensor data while maintaining important failure-related patterns.

33



Methodology

Why PCA for Dimensionality Reduction?
Several sensor data, such as voltage, current, RPM, and temperature measure-

ments, are tracked over time during functional testing of brushless electric fans.
Due to the strong correlations between some of these factors, failure categorization
models become superfluous and redundant. In this investigation, PCA was selected
for dimensionality reduction because to:

• It lowers computational complexity: Machine learning models can analyze
lower-dimensional data more quickly and easily

• It eliminates unnecessary correlations: PCA increases model effectiveness
by converting correlated sensor values into uncorrelated principle components.

• It keeps important information: Failure patterns are kept distinct by
capturing the majority of the dataset's volatility in the first five principal
components.

• The dataset was converted into a set of principle components by using PCA,
which enabled clustering methods like DBSCAN to identify failure-related

Application of PCA in This Study

1. Standardizing the Data: Before applying PCA, all sensor features were
standardized using Z-score normalization to ensure that they had equal
influence in the transformation process. This step was necessary because
PCA is sensitive to different scales, and features like voltage (which has
a higher range) could dominate the results over smaller-scale features like
temperature.

2. Computing Principal Components: In order to determine which directions
the data fluctuates the most, PCA calculates the eigenvectors and eigenvalues
of the dataset's covariance matrix. The following procedures are used to carry
out the transformation:

• To determine the associations between characteristics, calculate the covariance
matrix.
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• Determine the covariance matrix's eigenvectors and eigenvalues.

• Choose the top k primary components, or eigenvectors, that best represent
the data's variance.

• In this new lower-dimensional subspace, transform the original dataset.

3. Selecting the Optimal Number of Principal Components

Finding the number of primary components that should be kept while maintain-
ing the majority of the data was the next step after using PCA. The Explained
variation Ratio, which gauges how much variation each principle component cap-
tures, was used for this.
To illustrate each primary component's contribution, a scree plot of the explained
variance ratio was created. The plot demonstrated that:

• Over 90% of the overall variance was retained by the top three principal
components, which means that while the dataset complexity decreased, the
majority of the important failure information was kept.
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4. Transforming the Dataset: The original dataset was converted into a lower-
dimensional representation using the chosen main components, which improved
its suitability for unsupervised clustering techniques such as DBSCAN. By
eliminating unnecessary noise and preserving failure-related patterns, this
transformation enables anomaly detection algorithms to concentrate on signif-
icant failure signals.

Impact of PCA on Failure Detection

Several significant advantages resulted from the use of PCA into the failure
categorization workflow:

• Reduction in Feature Complexity: Failure trends were easier to examine
once the dataset was compressed from its initial high-dimensional form into a
lower-dimensional representation.

• Enhanced DBSCAN Anomaly Detection: Due to DBSCAN's sensi-
tivity to noise and feature scaling, using PCA prior to clustering increased
anomaly detection accuracy, guaranteeing that failures were detected based
on significant deviations rather than random noise.

• Faster Computational Processing: Real-time failure detection became
more practical when the training time for anomaly detection models was
greatly reduced by lowering the amount of input characteristics.

3.2.3 Anomaly Detection Using DBSCAN Clustering

Introduction to Anomaly Detection in Functional Testing
In industrial systems, anomaly detection is essential for both predictive mainte-

nance and failure categorization. Because traditional threshold-based diagnostic
techniques rely on preset limitations for sensor data like voltage, current, and
RPM, they frequently fall short of identifying intricate failure patterns. DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) is an unsupervised
learning approach that is more successful since real-world failures are frequently
contextual and impacted by several interacting factors.
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Data points are grouped into clusters by the density-based clustering method
DBSCAN according to their geographical density. DBSCAN can automatically
detect clusters of different forms and mark data points that do not belong to
any cluster as anomalies, in contrast to K-Means clustering, which necessitates
a predetermined number of clusters. For industrial diagnostics, where errors
frequently manifest as single outliers rather than distinct clusters, this makes it
very helpful.

Why DBSCAN for Anomaly Detection?
Failure situations may not always be clearly identified during functional testing

of brushless electric fans, and some failures manifest as anomalous patterns in
sensor readings as opposed to distinct threshold exceedances.

The following are some advantages of this study's anomaly detection utilizing
DBSCAN:

• Capability to identify anomalies without predetermined labels: DB-
SCAN was utilized to identify hidden failure patterns based on differences in
sensor performance because failure criteria were not specifically specified in
Phase 1.

• Finding irregularities in multi-dimensional data: Electric fan failures
might manifest as a collection of variables, such as temperature rise and motor
current fluctuation, rather than a single parameter, such as voltage decrease.
High-dimensional data may be effectively clustered using DBSCAN, which
also identifies anomalous points that don't fit into typical operating patterns.

• True anomaly detection is not hampered by random sensor fluctuations thanks
to DBSCAN's noise-resistant clustering, which is superior to other cluster-
ing methods like K-Means.

Implementation of DBSCAN in This Study
From feature selection and data preprocessing to cluster analysis and appropriate

parameter selection, the DBSCAN anomaly detection procedure comprised many
crucial phases.

Step 1: Feature selection and preprocessing
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In order to minimize dimensionality while maintaining failure-related sensor informa-
tion, the dataset was preprocessed and modified using PCA (Principal Component
Analysis) prior to using DBSCAN.

The following were the primary sensor settings used for anomaly detection:

• Connection of Voltage (V_Conn_M1)

• Current_M1 (motor current)

• Tamb_, or temperature

• RPM, or rotational speed

Prior to implementing DBSCAN clustering, these parameters were normalized
using Z-score normalization to guarantee that all features were equally weighted.

Step 2: Choosing the Best DBSCAN Settings
DBSCAN functions according to two essential criteria:

• The maximum neighborhood radius surrounding each point is defined by the
value of epsilon. Another point is regarded as belonging to the same cluster if
it is located within this radius.

• The minimal number of surrounding points needed to create a dense cluster is
determined by MinPts (minimal Points).

• A K-Nearest Neighbors (KNN) distance plot was utilized to find the ideal
epsilon value. The elbow approach was used, which finds the ideal epsilon
value at the location where the distance plot has the most bend.

Using the standard heuristic formula, the MinPts value was determined based
on the dataset's dimensionality:

Since the PCA-transformed dataset had three principal components, MinPts
was set to 6.
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Step 3: Applying DBSCAN and Identifying Anomalies
The dataset was subjected to DBSCAN clustering after the ideal parameters

had been established. The outcomes were:

• Dense clusters developed under typical operational circumstances.

• In order to identify possible fan failures, sparse data points that did not fit
into any cluster were categorized as anomalies.

• Engineers were able to visually examine failure patterns by utilizing the first
two main components to see anomalies (outliers) in a 2D projection.

• The DBSCAN scatter plot's dark spots, which indicate possible dataset failures,
are noise or outliers.

Performance Evaluation of DBSCAN for Anomaly Detection
Several important performance measures were used to assess DBSCAN's efficacy

for failure detection:

• Cluster Purity: Evaluates how successfully DBSCAN distinguished between
the dataset's failure and normal instances.

• Precision and Recall: Measured how accurately DBSCAN identified true
failures while minimizing false positives.

• Comparing with Conventional Failure Detection Based on Thresh-
olds: demonstrated that DBSCAN was able to identify early-stage abnormal-
ities that were overlooked by conventional threshold methods.

The findings demonstrated that DBSCAN greatly increased the accuracy of
anomaly identification, especially in Phase 1, when the dataset lacked specific labels
for failures.

Integration of DBSCAN with Predictive Maintenance
DBSCAN made predictive maintenance techniques possible by identifying mal-

functions before they were serious, enabling engineers to:

• Before genuine problems arise, schedule preventative maintenance for brushless
electric fans.
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• Find underperforming fans that use too much electricity to maximize energy
efficiency.

• Address possible faults early to minimize downtime and warranty claims.

A scalable, flexible, and reliable failure detection system was produced by com-
bining DBSCAN with PCA and feature selection methods, proving its usefulness
in actual industrial testing settings.

3.3 Binary DIAG_M1 Data Analysis

3.3.1 Simplified Failure Classification

In Phase 2 of this study used DIAG_M1 measurements to detect failures using
a binary classification technique. In contrast to Phase 1, which employed multi-
parameter analysis to identify problems, Phase 2 employed clear failure definitions:

• DIAG_M1 = 4 indicated failure.

• DIAG_M1 = 0 indicated no failure (normal operation).

By eliminating ambiguity, our categorization system ensured dependability
in predictive maintenance plans and made automated failure detection easier to
implement.
Sensor measurements like current, voltage, and temperature are compared to
predetermined limits in threshold-based diagnostics, which is the conventional
method for detecting failures in car cooling systems. However, because of unrecorded
fluctuations in operating circumstances, this strategy frequently results in false
positives or unreported failures. This work sought to validate and improve binary
failure categorization by using machine learning approaches.

Data Preparation for Binary Classification
The dataset for Phase 2 was structured around two distinct classes:

• Class 1: Failures (DIAG_M1 = 4)

• Class 0: No Failures (DIAG_M1 = 0)
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The following data pretreatment procedures were carried out prior to the use of
classification models:
To guarantee a rigorous binary classification setup, intermediate DIAG_M1 values
(values other than 0 and 4) are removed.

• To avoid prejudice against the majority class, the dataset should be balanced.
Oversampling methods such as SMOTE (Synthetic Minority Over-sampling
Technique) were taken into consideration since the number of failed instances
was much lower than that of normal cases.

• Z-score normalization is used in feature scaling to equalize results across
various sensor readings.

The final dataset included feature vectors created from normalized sensor values,
which were subsequently subjected to anomaly detection methods based on machine
learning.

3.3.2 Anomaly Detection Using KNN and DBSCAN

Even while the binary categorization method (DIAG_M1 = 0 or 4) made failure
identification easier, DIAG_M1 by itself was unable to fully explain some failures.
Even when DIAG_M1 did not specifically identify a malfunction, sensor data
occasionally showed anomalous behavior. In order to overcome this constraint,
failure detection was improved and validated using unsupervised anomaly detection
techniques.

A strong framework for identifying hidden abnormalities in functional test data
was produced by combining DBSCAN for density-based clustering with K-Nearest
Neighbors (KNN) for distance metric optimization.

Step 1: KNN for Distance-Based Anomaly Detection
Finding the distance between a data point and its k-nearest neighbors in the

feature space is how K-Nearest Neighbors (KNN) anomaly detection operates. The
notion is that:

• When data points are near to one another, dense clusters are created under
typical operating conditions.
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• The distances between anomalies and their neighbors are much greater, and
they are found farther from dense clusters

This study's KNN-based anomaly detection procedure comprised:

• use cross-validation to choose the ideal K value (number of neighbors).
calculating each data point's average distance to its K-nearest neighbors.
identifying possible failures or outliers in data points with unusually long
distances.

• An elbow point in the K-distance plot was used to estimate the ideal epsilon
threshold for DBSCAN clustering.

Step 2: DBSCAN Clustering for Anomaly Detection
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was

used to categorize regular operations and abnormalities following the optimization
of KNN distance metrics.
Clusters of typical fan activity were found using DBSCAN, and data points that
did not fit into any of the clusters were labeled anomalies (possible failures). The
steps involved in implementation were:

• Using DBSCAN with improved MinPts (minimum number of points per
cluster) and epsilon.

• separating sparse data points (failures) from high-density clusters (normal
circumstances).

• Analyzing anomalies in the sensor feature space by seeing the results of
DBSCAN clustering.

3.4 Performance Evaluation and Model Valida-
tion

The anomaly detection framework's precision and dependability were assessed
using:
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• Precision-Recall Analysis: Assessed how well DBSCAN predicted failures.

• Cluster Purity: Determined if the anomalies that were found indeed belonged
to the failure class.

• Comparison with Conventional Failure Detection: Verified DBSCAN's
efficacy in failure prediction by demonstrating that anomalies it discovered
matched known failure cases.

Impact of Anomaly Detection on Binary Failure Classification
The failure classification in DIAG_M1 binary data analysis was much enhanced

by the combination of KNN-based anomaly detection and DBSCAN clustering:

• Detected failures in their early stages before they hit the DIAG_M1 = 4
cutoff.

• Removed false negatives, in which anomalies pointed to underlying system
problems even when DIAG_M1 stayed at 0.

• Improved predictive maintenance techniques that let engineers fix issues before
they affect system performance.

This study created a reliable, real-time failure detection system that outper-
formed conventional threshold-based techniques by fusing binary classification with
anomaly detection.
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Chapter 4

Implementation and System
Design

The automated functional testing framework for brushless electric fans in automo-
tive applications is implemented in detail in this chapter. It explains the hardware
and software configuration, data flow, and system architecture that enable anomaly
categorization and real-time failure detection.

In order to facilitate automated data collecting, preprocessing, feature selection,
anomaly detection, and failure categorization, the system incorporates machine
learning models into a functional testing environment. For predictive maintenance
applications, the system design prioritizes efficiency, scalability, and adaptability
to provide a strong and dependable failure detection procedure.

4.1 System Architecture and Design

The system architecture is made up of a number of interrelated parts that cooperate
to guarantee automated diagnostics and real-time functional testing. The primary
elements consist of:
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Figure 4.1: Processing Pipeline

4.1.1 Module for Data Acquisition

The brushless electric fan being tested provides real-time sensor information to the
data gathering module. Among the primary data sources are:

• Voltage Sensor: Determines the fan's operating voltage.

• Current Sensor: Recorded variations in motor current.

• Temperature sensor: Keeps track of heat loss and possible overheating.

• RPM Sensor: Captures changes in rotational speed (RPM).

These sensors provide real-time data to a central data recorder, where it is
momentarily kept pending preprocessing.

4.1.2 Data Processing Pipeline

After being gathered, sensor data is run via a pipeline of preprocessing steps:
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• Data Purification: eliminates outliers and missing readings brought on by
sensor faults. makes certain that all sensor readings have the same timestamp.

• Scaling and Feature Engineering: calculates other derived characteristics
like acceleration rates and voltage variations. uses Z-score standardization to
normalize data so that ML models scale consistently.

• Selection of Features (based on Random Forest): Determines which
features are most important for detecting failures. eliminates superfluous
characteristics, therefore reducing computing complexity.

4.1.3 Machine Learning Model Integration

The integration of machine learning models for anomaly categorization and failure
detection forms the basis of the system. Among the models used are:

• Phase 1: Analysis of Mixed DIAG_M1:

– The top features influencing failure categorization are found using Random
Forest for Feature Selection.

– Principal Component Analysis (PCA): Preserves significant failure signals
while reducing the dimensionality of the data.

– Beyond DIAG_M1 labeling, DBSCAN Clustering can identify abnormali-
ties and failure patterns.

• Phase 2: Analysis of Binary DIAG_M1:

– The best neighborhood distance for anomaly detection is determined by
K-Nearest Neighbors (KNN).

– DBSCAN: Separates unknown failure cases and groups normal vs failure
circumstances.

– Because each model is trained on failure data from the past, it can
automatically identify failures in fresh data by identifying trends.
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4.1.4 System Workflow

The following phases make up the overall system workflow:

• Gathering Sensor Data: Data about temperature, RPM, voltage, and
current are obtained in real time.

• Feature selection and preprocessing: PCA is used to clean, standardize,
and decrease data.

• Failure Identification and Classification of Anomalies: Failures are
explicitly identified via Binary Classification (DIAG_M1 = 0 or 4). Anomalies
not specifically indicated by DIAG_M1 are detected using DBSCAN.

• System of Decision and Alerting: An alert is created for additional
examination if a failure is found. For further examination, the results are kept
in a failure database.

4.2 Software Implementation

The system was implemented using Python, with the following libraries:

• NumPy & Pandas – Data manipulation and preprocessing.

• Scikit-Learn – Machine learning models for feature selection and classifica-
tion.

• Matplotlib & Seaborn – Visualization of failure patterns.

• DBSCAN from Scikit-Learn – Anomaly detection model.

• K-Nearest Neighbors (KNN) – Distance metric optimization.

To ensure real-time functioning, the hardware configuration comprised micro-
controllers, data gathering boards, and a testing environment.
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4.3 System Validation and Testing

Real-world test situations were created in order to assess system performance:

• Test for Normal Operating Conditions: Verified that while the fan ran
properly, no false failures were detected.

• Induced Failure Test: To see if the system correctly identified problems,
manual motor overloads, voltage dips, and overheating were introduced.

• Artificially altered sensor values are used in the Anomaly Injection Test to see
if DBSCAN can identify unidentified failure scenarios.

• The findings demonstrated the excellent precision, recall, and anomaly de-
tection accuracy with which machine learning models were able to identify
faults.
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Results and Discussion

5.1 Feature Importance Analysis (Random For-
est Results)

A Random Forest feature selection technique was used to identify the sensor
characteristics that had the greatest impact on failure categorization. The findings
revealed that:

• The two most crucial characteristics for identifying fan failures were motor
current (Current_M1) and voltage connection (V_Conn_M1).

• RPM Average (CF1_RPM_Avg_ST3_M1) and Temperature (Tamb_)
were other important factors in failure detection.

The failure categorization was only little influenced by other sensor values.

5.2 Principal Component Analysis (PCA) for Di-
mensionality Reduction

Following the identification of the most crucial sensor parameters, PCA was used
to lower the dimensionality of the dataset while maintaining the most significant
variance. The main findings were:
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Figure 5.1: Feature Importance Analysis

• Over 90% of the variation was kept by the first three principal components
(PC1, PC2, and PC3), guaranteeing that failure-related data was not lost.

• The efficacy of clustering in DBSCAN-based anomaly detection was enhanced
by the reduction of noise and redundant correlations between features.

• According to the scree plot, which was previously created, PC1 accounted for
the majority of the variation, followed by PC2 and PC3.

5.3 Binary DIAG_M1 Data Analysis

5.3.1 Simplified Failure Classification

In Phase 2, a binary classification method was used to simplify the failure classifi-
cation problem:
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Figure 5.2: Scree Plot

• Failure was indicated by DIAG_M1 = 4.

• No failure was indicated by DIAG_M1 = 0.

Important Results:

• Classification was made simpler by using this binary technique because failures
were well-defined.

• Predictive maintenance might be further enhanced, though, as certain sensor
abnormalities occurred prior to DIAG_M1 = 4 failures, necessitating anomaly
identification.

5.3.2 Anomaly Detection Using KNN and DBSCAN

DBSCAN clustering and KNN-based anomaly detection were used since certain
failures did not show up in DIAG_M1 right away.

Results of KNN-Based Anomaly Detection
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• In order to accurately distinguish between regular and anomalous activities,
KNN was utilized to determine the ideal distance criteria.

• The optimal epsilon for DBSCAN was chosen with the use of the elbow
approach (K-distance plot).

Results of DBSCAN Clustering for Binary DIAG_M1 Data

• Even while DIAG_M1 was still zero, anomalies were found, demonstrating
that failures might be anticipated before they materialized.

• The efficacy of the anomaly detection framework was validated by the failure
clusters matching the predicted DIAG_M1 = 4 situations.

• With its high recall and precision, the final classification model decreased false
negatives in failure prediction.

Figure 5.3: kNN Elbow Plot
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The outcomes of the study's two stages confirm that machine learning methods
are useful for automatically assessing the functionality of brushless electric fans.
The main conclusions are:

• Random Forest feature selection improved classification accuracy by identifying
important failure parameters.

• By reducing dimensionality while maintaining important failure information,
PCA improved the efficacy of clustering algorithms.

• Prior to DIAG_M1 reaching failure states, predictive maintenance was made
possible by the effective anomaly detection of DBSCAN and KNN.

• The suggested solution provided a more precise and proactive method of failure
detection, outperforming conventional threshold-based diagnostics.

• The study's conclusions offer a solid basis for applying predictive maintenance
techniques to automotive cooling systems, enhancing the dependability and
efficiency of automobiles.
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Conclusion

Through the integration of machine learning approaches for failure detection and
anomaly classification, this study effectively created an automated functional test-
ing framework for brushless electric fans in automotive applications. The suggested
method outperformed conventional threshold-based diagnostics by utilizing feature
selection (Random Forest), dimensionality reduction (PCA), and unsupervised
learning (DBSCAN and KNN). Critical sensor parameters controlling fan perfor-
mance were discovered by feature selection, and the Phase 1 analysis showed that
DIAG_M1 alone was insufficient for failure classification. Although DBSCAN
anomaly detection added an extra layer of predictive maintenance by identifying
possible failures before they reached critical stages, the Phase 2 study further
demonstrated that binary classification enhanced failure detection.

The experimental findings confirmed that functional testing reliability in auto-
mobile cooling systems is much increased by machine learning-based diagnostics.
The created framework increases the effectiveness of predictive maintenance, lowers
false positives, and permits real-time anomaly identification. The integration of
AI-driven diagnostics into Industry 4.0 car manufacturing is made possible by
these results, which guarantee increased system dependability, lower maintenance
costs, and better overall vehicle performance. Future research will concentrate
on implementing this framework for real-time monitoring in embedded systems,
expanding its use to additional automotive parts, and investigating deep learning
methods for even more accurate anomaly identification.
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Further Enhancements

Although the efficacy of machine learning-based functional testing for brushless elec-
tric fans was shown in this work, a number of improvements might be investigated
to increase the precision of predictive maintenance and real-time failure diagnosis.
Implementing this paradigm into embedded systems for real-time monitoring in
automotive applications is a crucial topic of future research. The taught machine
learning models may be integrated into microcontroller-based diagnostic devices or
Edge AI platforms to continually evaluate real-time cooling fan data and identify
issues as they happen. Because offline batch processing would no longer be required,
the system would be appropriate for predictive maintenance warnings and in-vehicle
diagnostics. Moreover, remote diagnostics, in which automobiles transmit real-time
sensor data to centralized monitoring servers for preemptive problem identification,
may be made possible by setting up the system in a cloud-based setting.

The extension of machine learning models to include deep learning methods, such
Recurrent Neural Networks (RNNs) or Long Short-Term Memory (LSTM) networks,
which are very successful at evaluating time-series sensor data, is another exciting
avenue. Although the present study's anomaly detection methods, PCA and
DBSCAN, successfully revealed underlying failure patterns, deep learning models
might improve accuracy even more by gradually identifying temporal correlations
in sensor behavior. This would give manufacturers insight into long-term failure
patterns by enabling the system to not only detect problems but also anticipate
possible trends in system degradation. Furthermore, the problem of few labeled
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failure examples may be solved by including Generative Adversarial Networks
(GANs) for the creation of synthetic failure data, allowing for more reliable model
training for uncommon fault scenarios.

Lastly, expanding the technology to additional car parts beyond brushless electric
fans should be the main goal of future research. Other electromechanical components
in automotive applications, such as fuel injectors, electric power steering systems,
and battery management systems, can benefit from the technique described in
this work, which includes feature selection, PCA-based dimensionality reduction,
and DBSCAN-based anomaly detection. Manufacturers may improve overall
vehicle safety and dependability by developing a universal predictive maintenance
framework that can be applied to various vehicle subsystems. This will guarantee
that key problems are identified before they result in significant system faults. The
system's efficacy under actual driving circumstances would be validated by more
partnerships with automakers and testing facilities, ultimately advancing AI-driven
car diagnostics.
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