
POLITECNICO DI TORINO
MASTER’s Degree in DATA SCIENCE AND

ENGINEERING

MASTER’s Degree Thesis

Model-Free Multi-Agent Reinforcement
Learning Approach in NeurIPS LuxAI S3

Competition

Supervisors

Prof. Daniele APILETTI

Dr. Simone MONACO

Dr. Daniele REGE CAMBRIN

Candidate

Paolo RIZZO

Academic Year 2024-2025

Abstract

This thesis investigates the application of Multi-Agent Reinforcement Learning
(MARL) to the development of a robust and adaptive agent able to interact with
a partially observable and continuously evolving environment, while competing
against other agents in order to achieve winning conditions.
With the widespread adoption of deep learning, Reinforcement Learning (RL)
has gained lots of popularity in the last decade, scaling to previously intractable
problems, such as playing complicated games from pixel observations, sustaining
conversations with humans and autonomous driving. However, there is still a wide
range of domains inaccessible to RL due to the high computational cost of training
or unfeasibility of agent convergence for complex problems. Therefore, the NeurIPS
(Conference on Neural Information Processing Systems) LuxAI competition has
become a significant event within the scientific community, serving as a platform
for advancing research at the intersection of artificial intelligence, robotics, and
human-robot interaction.
The season 3 competition revolves around testing the limits of agents when it
comes to adapting to a game with changing dynamics. In particular, the player
agent competes against an opponent agent in several matches, controlling multiple
sub-agents and performing a continuous trade-off between exploration of a random
environment with partial observability and exploitation of the current information
to maximize the target objective.
The thesis first provides an overview of the main challenges of MARL paradigm,
like non-stationarity, equilibrium selection, credit assignment and the scaling to
many agents. Then, it follows the comparison of state-of-the-art algorithms and
explanation of the architecture used. In addition, it’s underlined that the model is
developed as agnostic and trained with self-play, meaning that no previous knowl-
edge is instilled and strategies are learnt indipendently, in contrast to traditional
rule-based models which leverage on human heuristics to reason and take action.
Finally, the thesis evaluates the performances of the model and shows the position
reached in the competition ranking.

ii

Acknowledgements

to...

iii

Table of Contents

List of Figures vi

List of algorithms viii

1 Introduction 1

2 Background 3
2.1 Machine Learning . 3

2.1.1 Supervised Learning . 4
2.2 Reinforcement Learning . 6

2.2.1 Nomenclature and Elements of RL 6
2.2.2 Markov Decision Process . 8
2.2.3 Bellman Equations and Policy Optimization 9
2.2.4 Dynamic Programming . 11
2.2.5 Temporal-Difference learning 13

2.3 Deep Learning . 15
2.3.1 Feed-Forward Neural Network 16
2.3.2 Convolutional Neural Network 18
2.3.3 Optimization . 19

2.4 Deep Reinforcement Learning . 22
2.4.1 Deep Q-Learning . 23
2.4.2 Policy Gradient . 23
2.4.3 Popular algorithms . 24

2.5 Multi-Agent Reinforcement Learning 28
2.5.1 Nomenclature in Multi-Agent systems 28
2.5.2 Open challenges . 30
2.5.3 Training and execution mode 32
2.5.4 Possible solutions . 34

2.6 Related Works . 37

iv

3 Materials and Methods 39
3.1 LuxAI . 39

3.1.1 Rules . 40
3.1.2 Environment . 40

3.2 Frameworks . 43
3.3 Methods . 44

3.3.1 Observations, Actions, Rewards 44
3.3.2 Algorithm selection . 47
3.3.3 Training and Learning . 51

4 Results 54
4.1 Early setup . 54
4.2 Global reward . 57
4.3 Single reward . 59
4.4 Mixed reward . 64
4.5 Final ranking . 66

5 Conclusions 68

Bibliography 70

v

List of Figures

2.1 Generic example of Supervised Learning workflow. The model is
trained on training set and evaluated on validation set; following
the results of validation, the selection of best hyperparameters is
conducted, also called hyperparameter tuning. Once the model has
reached its best performances or simply converges, it’s tested on the
test set. 5

2.2 Agent-Environment interaction. When agent makes action at at
state st, the environment is updated and returns a new state st+1
and a reward rt+1. 8

2.3 (Non-exhaustive) Taxonomy of algorithms in modern RL. 11
2.4 Representation of general Feed-Forward Neural Network. The input

data enters from input layer i, then is manipulated by a series of
hidden layers h1, . . . , hn and finally the network outputs the result
from output layer o. 16

2.5 Mathematical representation of a neuron information aggregation.
Each neuron of layer l1 is the result of the multiplication between
weight matrix and neurons from previous layer l0, increased by a
bias and transformed by activation function σ. 18

2.6 Representation of general Convolutional Neural Network for image
classification. Convolutional layers extract features, depending on
the number of kernels used. Pooling layers decrease width of tensors.
Finally, Fully-Connected layers perform classification task, after all
convolutional processing. 20

2.7 Performance comparison of different optimizers on training cost. . . 22
2.8 Agents-Environment interaction. When the joint action of all agents

modifies the environment, it returns different observations and re-
wards to agents, directly influenced by the single agent’s action. . . 29

2.9 Classification of MARL systems, based on the environments con-
straints and agents’ dynamics. 30

3.1 Example of LuxAI S3 environment. 42

vi

3.2 Comparison of player 0’s vision (left), global state observation (cen-
ter) and player 1’s vision (right). 46

3.3 DQN architecture. Both behavior and target policy networks share
the same structure. 52

3.4 A2C architecture. Critic’s policy network (left), Actor’s policy
network (right). 53

4.1 Epsilon decay influence on ϵ-greedy action selection along the training
steps. 56

4.2 Loss convergence comparison when using global reward. 58
4.3 Rewards and Points gained when using a global reward. 59
4.4 Misleading behaviors due to strict single reward. 60
4.5 Gradient norm curve of Value-based Policies. 61
4.6 Policy losses when using single reward. 62
4.7 Reward when using single reward. 62
4.8 Points collected when using single reward. 63
4.9 Greedy behaviors due to single reward. 63
4.10 Policy losses when using mixed reward. 64
4.11 Reward when using mixed reward. 65
4.12 Reward when using mixed reward. 65
4.13 Comparison of greedy and cooperative behaviors of HDQN when

using mixed reward. 66
4.14 Games from top tier players. 67

vii

List of Algorithms

1 Policy Iteration for estimating π ≈ π∗ 12
2 SARSA (On-Policy TD control) for estimating Q ≈ Q∗ 14
3 Q-Learning (Off-Policy TD control) for estimating π ≈ π∗ 15
4 Deep Q-Network (DQN) . 25
5 Advantage Actor Critic (A2C) . 26
6 Proximal Policy Optimization (PPO) 27
7 Independent Deep Q-Network (IDQN) 34
8 Multi-Agent Deep Deterministic Policy Gradient (MADDPG) . . . 36
9 Homogeneous Deep Q-Network (HDQN) 49
10 Homogeneous Advantage Actor-Critic (HA2C) 50

viii

Chapter 1

Introduction

In the last decade, reinforcement learning (RL) has established itself as a powerful
technique for solving complex decision-making problems in dynamic environments.
Traditionally, RL focuses on the learning process of a single agent interacting with
an environment. However, many real-world problems involve multiple agents inter-
acting with each other and with the environment simultaneously. These settings,
known as Multi-Agent Reinforcement Learning (MARL), present unique challenges
and opportunities, offering a more complex yet highly relevant framework for
addressing problems that occur in multi-agent systems.
A multi-agent system (MAS) consists of multiple autonomous entities, or agents,
that operate in a shared environment, often with conflicting goals, cooperation
requirements, or competition. These agents must make decisions based on local
observations while considering the actions and strategies of other agents, which
makes the problem of learning in such systems inherently more complex. MARL
is the extension of traditional RL that specifically deals with scenarios where
multiple agents learn concurrently and potentially interact with one another. The
agents may pursue individual goals or work together to achieve a shared objective,
depending on the problem domain.

The application of MARL to real-world problems is particularly valuable in
domains where the behavior of multiple agents impacts the outcome of the sys-
tem. For example, in autonomous vehicle systems, multiple vehicles must navigate
through roads, interacting with each other to ensure safety and efficient traffic flow.
Similarly, in robotics, multi-robot systems often need to collaborate to accomplish
tasks such as search-and-rescue missions, warehouse management, or manufacturing
automation. Other applications span healthcare, communication networks, energy
grids, and supply chains, all of which benefit from the coordinated decision-making
of multiple agents working together or in competition.

1

Introduction

Despite of the great potential for solving these complex, real-world challenges,
it also presents significant hurdles. The primary challenge is the non-stationarity
of multi-agent environments. In traditional RL, the environment is typically static
from the perspective of the agent, but in MARL, the actions of other agents
dynamically change the environment, creating a constantly evolving state space.
Furthermore, MARL requires high computational power for the optimization of
each agent, more than single RL paradigm, questioning directly the trade-off per-
formance/scalability.

To foster research progress and development of innovative solutions when ad-
dressing MARL challenges, NeurIPS (Conference on Neural Information Processing
Systems) promotes a series of competitions, under the name of LuxAI, whose
pillars are real-time decision making in dynamic environments, resource man-
agement and interaction of agents through collaboration and competition. In
particular, the third season, LuxAI S3, has been taken in exam for the sake of
the thesis and it poses the attention on the adaptability of two teams in com-
plex dynamic multi-agent environment. The competition is structured by 1vs1
games, where one player’s agent controls 16 sub-agents and competes autonomously
against another player’s agent in a environment with changing dynamics, while
balancing cooperative strategies and greedy behaviors to pursue a victory condition.

Putting aside the ludic purpose, the thesis focus is to address the main challenges
of MARL paradigm and developing a stable architecture which faces adaptively
the continuous evolution of environment dynamics. More specifically, the aim is to
propose a solution which can overcome rule-based solutions, i.e. solutions which
implement human-crafted heuristics, while maintaining an agnostic fashion, using
only Self-Play knowledge without additional external knowledge. Furthermore, the
architecture is developed implementing two popular algorithms, DQN and A2C,
upon the concept of Homogeneity of Agents, which relaxes the MARL problem
complexity and make the learning process computationally faster and scalable to
many agents. Since the proposed solution is labeled as Model-Free, meaning that it
doesn’t require the transition probability information of an environment to be imple-
mented, it can be shifted to other domains which respect the homogeneity condition.

The thesis consists of other four chapters. Chapter 2 dives into a technical
digression of RL and MARL, presenting their strength points and current limita-
tions, showing as well the state-of-the-art algorithms in cooperative/competitive
environments. Chapter 3 explains the details of LuxAI S3 competition, frameworks
and methodology adopted during solution development. Chapter 4 shows the
results obtained and the competition ranking. Chapter 5 is the conclusion, with a
brief recap and discussion over possible improvements to conclude the dissertation.

2

Chapter 2

Background

This chapter covers the state-of-the-art and the theory beneath the methodologies
described in the next chapter. The discussion gives a brief introduction of Machine
Learning and its main branches. It follows a deep dissertation of Reinforcement
Learning and, for extension, Multi-Agent Reinforcement Learning, underlining on
the one side the strenghts with respect to traditional Machine Learning and Deep
Learning techniques and, on the other side, the weaknesses and open problems.
Finally, an overlook of main neural network architectures is proposed to better
comprehend policy approximation.

2.1 Machine Learning
"How can computers learn to solve problems without being explicitly programmed?".
"Machine learning" was the answer Arthur Samuel in 1959, the IBM engineer who
firstly coined the term[1].
This simple answer embodies the capacity of artificial intelligence to perform tasks
without explicit instructions by human-programmer.

At its core, machine learning is the study and development of statistical algo-
rithms that can learn from data and generalize to unseen data, taking automated
decisions and making judgments. In particular, the goal of algorithm modeling can
normally assume two types of nature: 1) accurately predict some future quantity of
interest, given some observed data and 2) to discover unusual or interesting pattern
in the data. To achieve these goals, the model must rely on three important pillars
of the mathematical sciences[2].
Function approximation. Since data is the cornerstone of machine learning,
the first step is to understand which relationships there are between variables
and the most natural way is through a map or a function. This function is not

3

Background

known in most of the cases but it can be approximated if given enough data and
computational power.
Optimization. Given a class of mathematical methods, the aim is to find the
most suited model in that class. This step tailors the best fitting function to the
observed data, leveraging on optimization algorithms and efficient programming.
Probability. The observed data is interpreted as random variables which are
ingested by the model to output a response; this realization, under probability law,
identifies the accuracy of the model itself and prospects how reactive the model
will be in formulating new prediction in the future.

Despite the multitudes and countless forms of machine learning, it’s possible to
exemplify the taxonomy in three main branches: Supervised Learning, Unsuper-
vised Learning and Reinforcement Learning.

2.1.1 Supervised Learning
Given an input or feature vector x, a supervised model will generate an output or
response variable y. The ability of the model to output correct prediction depends
on a process called training, where the algorithm searches for a function f able to
encompass all the relationships between feature and response.

In detail, the main actors of the learning process are[3]:

• Feature vector X = (x0, ..., xn) ∈ Rn belonging to a domain set D

• Label set Y = {y0, ..., yn}

• Training data S = ((x0, y0), ..., (xn, yn))

• Prediction rule or hypothesis f : X → Y

• Loss function L(y, ŷ) which compares the expected output y and the prediction
ŷ

Depending on the cardinality of the label set Y , the problem addressed by a
supervised model can be Classification or Regression. Both approaches require
labeled data for training but differ in their objectives: classification aims to find
decision boundaries that separate discrete classes, whereas regression focuses on
finding the best-fitting line to predict numerical outcomes in a continuous support.
It’s obvious that the variety of problems covered by this branch of learning is
practically unlimited. Detecting if an email is spam and evaluating if a picture
represents a cat or dog are basic examples of classification. Predicting weather
temperature and forecasting stock prices are, instead, all examples of regression
tasks.

4

Background

As in Figure 2.1, training data serves as an instructor by giving the algorithm
instances to work with. In general, we suppose that all samples from training
set are identically and independently distributed (i.i.d. assumption), according
to the distribution of domain set D; this assumption shall hold since training
set aims to represent as closely as possible the domain set and it shall reflect
its nature without introducing additional biases. Once training set is built, the
algorithm runs iteratively, comparing prediction and expected labels, and adjusts
the internal parameters of hypothesis function f to minimize the error of loss
function L. The algorithm is then evaluated on a validation set to verify if the
model is effectively able to generalize on unseen data or, instead, has reached the
condition of overfitting, meaning that it cannot adequately capture the underlying
structure of data different from training set. Here, a hyperparameter optimization,
or hyperparameter tuning, determines the set of hyperparameters that yields an
optimal response of model and minimize the loss function. The final step is to test
the model on the test set which is completely independent of the training set.

Depending on the complexity and nature of the task, countless typologies of
algorithms may serve the scope. Tree-based models (Decision Tree, Random Forest),
Halfspace predictors (SVM), Linear Regressors, Deep Neural Networks are small
indicators of the vast magnitude of solutions for supervised learning problems.

Figure 2.1: Generic example of Supervised Learning workflow. The model
is trained on training set and evaluated on validation set; following the results
of validation, the selection of best hyperparameters is conducted, also called
hyperparameter tuning. Once the model has reached its best performances or
simply converges, it’s tested on the test set. Source:[3]

5

Background

2.2 Reinforcement Learning
Compared to supervised and unsupervised learning, Reinforcement Learning repre-
sents a unique shape of machine learning, due to a completely different approach
in modeling and handling problems. The main actor in this case is an agent which
learns to make decisions by interacting with an environment, aiming to maximize
cumulative reward over time. The learning process regarding which action suits
the most is dynamic and, foremost, takes into account not only the immediate
impact of the action but also the long term affect on the environment. Thus,
trial-and-error and delayed reward are the two main peculiar characteristics of
reinforcement learning. In the last decades, various fields has benefited from it,
such as robotics, autonomous driving, finance, game theory and many others are
currently experimenting, like natural language processing with the new Reasoning
Language Models (RLM), a more powerful version of LLMs.
The following sections will give a deep understanding of the fundamentals of
reinforcement learning and they take lots of inspiration from [4] for descriptive
paragraphs, since it’s arguably the most authoritative source for this topic.

2.2.1 Nomenclature and Elements of RL
The purpose of Reinforcement Learning is to make the agent learn how to act and
behave beneficially, with the focus on getting the highest possible reward from the
environment. Every problem of this kind can be shaped through these following
components[4]:

• Environment: the world which the problem takes place.

• State st: the representation of environment at certain time or step t.

• Agent: the entity which interacts with the environment. In complex environ-
ments, there may be several agents or a combination of one agent and multiple
sub-agents.

• Action at: interaction of the agent with the environment. It’s chosen from a
set which can be discrete or continuous, depending on the cardinality.

• Observation ot: snapshot of environment seen by the agent at certain
time or step t. Not all information of the environment are passed to the
agent and that’s the main difference between state and observation. If state
and observation overlap, it’s called complete observation, otherwise partial
observation.

6

Background

• Reward rt: scalar value sent to the agent after every update of the environ-
ment. It’s customized by the environment or by the programmer and embodies
the goodness of an action. The metaphor "carrot and stick" gives a clear idea
of the reward functioning: good behaviors receives treats (positive reward),
bad behaviors receives punishments (negative rewards).

• Trajectory τ : the path of the agent through the state space up until the
horizon H. It’s a sequence over continuous time steps, from t to t + h, and
it’s expressed as concatenation of state-action-reward.

τt = st, at, rt, ..., st+h, at+h, rt+h (2.1)

• Return gt: cumulative reward according to the trajectory. The agent’s
purpose is to maximize the long term reward feedback thus it shall take into
account not a small immediate effect but rather a greater benefit later: such
long term benefit is calculated as the discounted sum rewards during time.
The discounted factor γ underlines how valuable future rewards are take into
account in the immediate present: the higher the factor, the greater the
impact.

gt = rt+1 + γrt+2 + · · · =
∞Ø

k=0
γkrt+k+1, γ ∈ [0,1) (2.2)

• Policy π: learning agent’s way of behaving at a given time. It’s the core
element in RL and a mapping function that dictates which action at is
performed given an input state st. It may be deterministic or stochastic. In
the latter case, the objective of RL problem will be to find the optimal policy
π∗ that returns the greater cumulative reward in future timestamps;

at = πdeterministic(st) (2.3)

πstochastic(at | st) = P[at | st] (2.4)

• State Value function V π(s): it estimates the goodness of a state s according
to the policy π. The value of a state is the total amount of reward an agent
can expect to accumulate over the future, starting from that state.

V π(st) = Eτ∼π [gt | s = st] (2.5)

• Action Value function Qπ(s, a): it estimates the goodness of an action a
taken in state s according to the policy π. The value of an action is the total
amount of reward an agent can expect to accumulate over the future, starting
from that state after taking that action.

Qπ(st, at) = Eτ∼π [gt | s = st, a = at] (2.6)

7

Background

• Model: it mimics the behavior of the environment and allows inferences to be
made about how the environment will behave. Generally, it’s represented by
a transition probability matrix where transition probabilities are previously
given as prior knowledge. If it occurs, the solution developed will be under
the category of Model-Based algorithms, otherwise Model-Free algorithms.

Figure 2.2: Agent-Environment interaction. When agent makes action at at state
st, the environment is updated and returns a new state st+1 and a reward rt+1.
Source: [4].

2.2.2 Markov Decision Process
Markov Decision Process (MDP), also called a stochastic dynamic program or
stochastic control problem, is a model for sequential decision making when outcomes
are uncertain[5]. Even though it was introduced for Operational Research in first
instance, it has some properties which frame perfectly every Reinforcement Learning
problem. On the one side, the objective of MDP is to find a good function π that
allows the decision-maker to take an action a in state s, in the same way as formula
(2.3). On the other side, every state st+1 gets all information from the previous
state st and doesn’t recall the history of past states, since the previous one already
embeds it. Thus, it holds

P[st+1 | s1, ..., st] = P[st+1 | st] (2.7)

A MDP and, for extension, Reinforcement Learning paradigm can be modeled as a
tuple < S,A,P ,R, γ > where:

• S is the set of all states or state space; it may be discrete or continuous.

• A is the set of actions or action space; it may be discrete or continuous.

8

Background

• P is the transition probability from state s to state s′ after action a

Pa(s, s′) = P(st+1 ∈ S ′ | st = s, at = a) =
Ú

S′
Pa (s, s′) ds′ (2.8)

• R is the expected reward function

Ra(s, s′) = E[r′ | st = s, at = a] (2.9)

• γ is the discounted reward factor γ ∈ [0,1)

As clarification, even though the S may be continuous, it’s assumed that MDP
moves states at discrete time, as a countable-infinite sequence, and, for the sake of
the thesis, there will always be a termination state which will end the MDP.

2.2.3 Bellman Equations and Policy Optimization
Once the mathematical framework is set, the focus is shifted on the pursuit of
goodness of actions ai and policy π. Since the objective is to maximize the goodness
of the policy, which directly influences action selection, Bellman Equations may
be leveraged to reach optimality. In fact, an optimal policy has the property
that whatever the initial state and decision are, future actions must constitute an
optimal policy with regard to the state resulting from the first decision[6]. Thus,
both (2.5) and (2.6) may be re-written as:

V π(s) = Eπ [gt | s = st]
= Eπ [rt+1 + γrt+2 + ... | s = st]
= Eπ [rt+1 + γgt+1 | s = st]
=
Ø
a∈A

π(a | s)(R(s, a) +
Ø
s′∈S
P(s′ | s, a)[γE[gt+1 | st+1 = s′]])

=
Ø
a∈A

π(a | s)(R(s, a) +
Ø
s′∈S
P(s′ | s, a)[γV π(s′)])

(2.10)

Qπ(s, a) = Eπ [gt | s = st, a = at]
= Eπ [rt+1 + γgt+1 | s = st, a = at]
= R(s, a) +

Ø
s′∈S
P(s′ | s, a)

Ø
a′∈A

π(a′ | s)[γE[gt+1 | st+1 = s′, at+1 = a′]]

= R(s, a) +
Ø
s′∈S
P(s′ | s, a)

Ø
a′∈A

π(a′ | s)[γQπ(s′, a′)]

(2.11)

9

Background

In order to reach optimality for policy π∗, one step more gives Bellman Optimal
Equations:

V ∗(s) = max
π

V π(s)

= max
a

(R(s, a) + γ
Ø
s′∈S
P(s′ | s, a)V π(s′))

Q∗(s, a) = max
π

Qπ(s, a)

= R(s, a) + max
s′

(γ
Ø
s′∈S
P(s′ | s, a)

Ø
a′∈A

π(a′ | s)Qπ(s′, a′))

(2.12)

And thus it’s possible to rewrite Q∗ in relation to V ∗ as:

Q∗(s, a) = R(s, a) + V ∗(s′) (2.13)

Explicitly solving Bellman Optimal Equations is one way to find the optimal
policy. However, it’s a method rarely adopted since the expected terms in both
equations would imply, on the one side, an extremely long search in time per-
spective among all possible states and, on the other side, a huge cost in terms of
computational power. Considering enough states |S| = m such that mm transitions
exponentially explode, the transition probability matrix alone would represent
a non-negligible constraint for both memory allocation and matrix calculation.
Alternatively, settling policy approximation may relax the problem complexity and
achieve approximated optimal results comparable with the real optimal ones. As
already explained in 2.1, function approximation makes possible to generalize RL
problems, allowing to mimic the real behavior of policy function but introducing
some drawbacks like non-stationarity, bootstrapping and delayed targets which
normally don’t appear in Supervised Learning[4].

Despite of the solution used, it’s worthy to underline some distinction when
approaching RL paradigm.
As already introduced in the Nomenclature section 2.2.1, a model of the environment
may be provided and, more specifically, a transition probability matrix. This prior
knowledge about the environment assumes a finite cardinality of states |S| and the
existence of deterministic optimal policy a = π(s). Algorithms using the transition
probability matrix to find such policy are called Model-Based algorithms. Otherwise,
they are called Model-Free algorithms. Since, this kind of prior knowledge is rarely
given in real-world applications, Model-Based solution are difficult to implement.
The second discriminant factor is the objective function. Policy π may be seen as a
mapping function which assigns probabilities to actions and the agent follows this
probability distribution to behave in the best way. If the focus of the algorithm
is to optimize directly the policy function, the solution is labeled as Policy-based.
In contrast, if the target is instead the State Value Function V π, the policy is

10

Background

optimized only indirectly and the solution is labeled as Value-based.
The last parameter is when the learning process is carried out. The MDP framework
defines a continuous chain between state-action exchange and the optimization of
objective function takes it into account. If the learning process considers only the
current sample or batch of state-action tuples, the algorithm is called On-Policy;
otherwise, if it takes into account previous samples or batches analyzed by other
policies, then it’s labeled as Off-Policy.

Figure 2.3: (Non-exhaustive) Taxonomy of algorithms in modern RL. Source: (.)

2.2.4 Dynamic Programming
Dynamic Programming (DP) is a method for solving problems by breaking them
down into simpler sub-problems and solving each sub-problem only once, storing its
solution for future use. This technique helps to avoid the redundant computation
of overlapping sub-problems, leading to significant time and space efficiency. The
intuition behind DP is that if sub-problems can be nested recursively inside larger
problems, a relationship may be found between the values of the sub-problems
themselves and the value of the larger problem; thus, if it’s possible to obtain
optimal solutions for sub-problems, consequently creating an optimal sub-structure,
there is an optimal solution for the larger problem as well [6]. DP is largely
implemented in Model-based situations, thanks to the effectiveness of computation
but, as expected from more complex problems, it’s rarely used when generalization
and function approximation is needed.

In dynamic programming, several algorithms are leveraged. For instance, Policy
Iteration is made of two steps. The first step is called Policy Evaluation or Policy

11

https://link.springer.com/chapter/10.1007/978-981-15-4095-0_3

Background

Prediction since the objective is to build the deterministic policy as at 2.3. The
policy is initialized with some arbitral values and is updated through an iterative
process until the accuracy is high enough and the error is below an arbitral
parameter θ.
The second step is called Policy Improvement since initial policy may not be the
optimal one and thus it’s worth changing it. In order to discover if the current
policy is the best fit, an action a is selected in state s such that a /= π(s). If
Qπ′(s, a) generated by the new policy π′ is greater than Qπ(s, a) according to old
policy π, it’s reasonable to assume that the new policy π′ achieves betters results.
In fact:

If Qπ(s, π′(s)) ≥ V π(s) Then V π′(s) ≥ V π(s) (2.14)

Combining these two steps, a continuous cycle of evaluation and improvement
is created and when the policy converges, a stable approximated policy and value
function are obtained. A snippet of the algorithm is shown in Algorithm 1.

Algorithm 1 Policy Iteration for estimating π ≈ π∗

1. Initialization
Input policy π and set parameter θ > 0 for accuracy threshold
Initialize V (s) for ∀s ∈ S, except V (terminal) = 0

2. Policy Evaluation
while ∆ < θ do:

∆← 0
for each s ∈ S do:

v ← V (s)
V (s)← q

a∈A π(a | s)(R(s, a) +q
s′∈S P(s′ | s, a)[γV π(s′)])

∆← max(∆, |v − V (s)|)
end for

end while
TD learning is a combination of Monte Carlo ideas and dynamic programming
(DP) ideas.

3. Policy Improvement
policyStable← true
for each s ∈ S do:

oldAction← π(s)
π(s)← arg max

a
(R(s, a) +q

s′∈S P(s′ | s, a)[γV π(s′)])
If oldAction /= π(s), then policyStable← false

end for
If policyStable, then stop and return V ≈ V ∗, π ≈ π∗; else, go to 2

12

Background

Other dynamic programming methods may be used. For example, Value Iteration
is focused on the improvement of value function V rather than policy π itself. It
still preserves the cycle of evaluation and improvement of Policy Iteration fashion
but the former phase updates the state value function, influencing indirectly the
optimal policy.

Furthermore, the term Generalized Policy Iteration (GPI) refers to the general
idea of allowing policy evaluation and policy improvement processes interact, inde-
pendent of the granularity and other details of the two processes. Both processes
stabilize only when a policy has been found that is greedy with respect to its
own evaluation function[4]. This implies that the Bellman optimality equations
2.12 hold and consequently policy and value function are optimal. Almost all RL
algorithms are classified as GPI.

2.2.5 Temporal-Difference learning
Temporal Difference (TD) learning is a class of Model-Free algorithms used to learn
value functions directly from experience. It is a hybrid approach that combines
elements from both Monte Carlo methods and Dynamic Programming (DP), offering
the benefits of both while avoiding some of their limitations. In particular, these
methods sample randomly from the environment, like Monte Carlo methods, and
perform updates based on current estimates, like dynamic programming methods.
One the one side, it doesn’t require model of the environment, overcoming the
main limitation of dynamic programming and generalizing over high state space;
one the other side, it’s well suited for continuous tasks and doesn’t depend on a
terminal state to update the policy, addressing more effectively MC lack of control
over long episode series. In short, TD uses data collected from the environment
and bootstraps to learn action value functions.

The general update rule for nonstationary environment is formalized as:

V (st)← V (st) + α[gt − V (st)]
V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

(2.15)

To clarify, gt is the expected return at time t and α is a constant step-size
parameter. In MC methods, which in this case are called constant-α MC, normally
wait the terminal state before updating V (st) and getting gt. TD, instead, focuses
on optimizing rt+1 + γV (st+1) and the error derived from the difference with V (st).
Thus, a new objective function is introduced with TD error δt as target:

δt = rt+1 + γV (st+1)− V (st) (2.16)

13

Background

Two main algorithms are representative of TD learning: SARSA and Q-Learning.

State-Action-Reward-State-Action (SARSA) is a On-Policy TD algorithm which
continually estimates Qπ for the policy π and at the same time change π toward
greediness with respect to Qπ. If the previous transitions were made from state
to state with the attempt of learning State-Value function, SARSA considers
instead transitions from state-action to state-action with the attempt of learning
Action-Value function, focusing on the error generated adjusted by the learning
rate α.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.17)

Algorithm 2 SARSA (On-Policy TD control) for estimating Q ≈ Q∗

Input α ∈ [0,1], small ϵ > 0
Initialize Q(s, a) for ∀s ∈ S, ∀a ∈ A except Q(terminal, ·) = 0
for each episode do:

Initialize st

Choose at from st using policy π derived from Qπ (e.g., ϵ-greedy)
for each step episode do:

Take action at, observe rt+1 and st+1
Choose at+1 from st+1 using policy π derived from Qπ (e.g., ϵ-greedy)
Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
st ← st+1
at ← at+1
If st is terminal, break the for-loop

end for
end for

The ϵ-greedy policy is a simple method to balance exploration and exploitation
of actions with a random parameter ϵ. Exploration allows to improve knowledge for
long-term benefit, since it discovers new trajectories and brings different returns;
exploitation uses current knowledge for short-term benefit, choosing the best action
given a state, with the aim of obtaining the best possible return. An example of
ϵ-greedy function is:

at =

arg max
a

Qπ(st, at) with probability (1− ϵ)
random(at) with probability (ϵ)

(2.18)

Q-learning[7] is a Off-Policy TD algorithm and it represents one of the early
breakouts of RL world. This algorithm has influenced many following algorithms
and still have a huge impact on Deep Learning RL, becoming a pillar for baseline

14

Background

solution development. It can also be viewed as a method of asynchronous dynamic
programming. Similarly to SARSA, Q-learning updates an estimate of the optimal
state-action value function Qπ based on a ϵ-greedy function. However, while SARSA
updates the Q-values following the ϵ-greedy policy directly while Q-Learning updates
the Q-values following a greedy policy which maximize action selection as in 2.18.

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, at+1)−Q(st, at)] (2.19)

Algorithm 3 Q-Learning (Off-Policy TD control) for estimating π ≈ π∗

Input α ∈ [0,1], small ϵ > 0
Initialize Q(s, a) for ∀s ∈ S, ∀a ∈ A except Q(terminal, ·) = 0
for each episode do:

Initialize st

Choose at from st using policy π derived from Qπ (e.g., ϵ-greedy)
for each step episode do:

Take action at, observe rt+1 and st+1
Choose at+1 from st+1 using policy π derived from Qπ (e.g., ϵ-greedy)
Q(st, at)← Q(st, at) + α[rt+1 + γ max

a
Q(st+1, at+1)−Q(st, at)]

st ← st+1
at ← at+1
If st is terminal, break the for-loop

end for
end for

2.3 Deep Learning
Traditional Reinforcement Learning solutions seen in (2.2.4, 2.2.5) have become
obsolete in the last decades due to lack of generalization when handling more
complex problem, especially when addressing challenges from real world. When
facing these new challenges and the relative approximation burden, it’s taken for
granted that the computational machinery necessary to express complex behaviors
requires highly varying mathematical functions, i.e., mathematical functions that
are highly non-linear in terms of raw sensory inputs, and display a very large
number of variations across the domain of interest[8]. As matter of fact, the raw
input of complex learning system is a high dimensional entity, composed by many
observed variables, which are related by unknown intricate statistical relationships.
In this regard, Artificial Neural Networks (ANN) have reached a huge consensus
in scientific community as the best performing architecture for approximating an

15

Background

unknown function, or policy in RL, being able to capture those obscure variable
relationships. Formally, Universal Approximation Theorem[9] states that:

Theorem 1 (Universal Approximation Theorem)
Given a family of neural networks, for each function f from a certain function
space, there exists a sequence of neural networks ϕ1, ϕ2, . . . , ϕn from the family,
such that ϕ1...n → f according to some criterion.

This section will give a brief idea of Deep Learning, a class of Machine Learning
algorithms which leverage neural network architectures, organized as hierarchy of
layers, to transform input data into a progressively more abstract and composite
representation. This digression is forced in order to better understand the evolution
of Reinforcement Learning, i.e. Deep Reinforcement Learning.

2.3.1 Feed-Forward Neural Network

Figure 2.4: Representation of general Feed-Forward Neural Network. The input
data enters from input layer i, then is manipulated by a series of hidden layers
h1, . . . , hn and finally the network outputs the result from output layer o. Source:
(.)

The first relevant contribution regarding neural network architecture shall be

16

https://onlinelibrary.wiley.com/doi/10.1155/2021/7572818

Background

conducted to Frank Rosenblatt when he proposed the idea of Multi-Layer Percep-
tron[10]. Taking inspiration from brain structure, the network is a Direct Acyclic
Graph (DAG) where layers of nodes or neurons are connected to each other with
edges or weights and input data, after passing through this series of layers, is trans-
formed into a shaped output. Obviously, the original idea has been outdated but the
main concept still influence newer structures and a generalization may be seen in 2.4.

The main elements of Feed-Forward NN are:

• Input Layer: it takes the input data. The input data is normally shaped as
a tensor, a multi-dimensional vector which embeds feature information, since
it can concatenate multiple elements of the dataset.

• Neuron: it represents the NN-feature. Neurons receive and send information
through continuous layers.

• Weights and Biases: they transform the information passed by the neurons.
For instance, a neuron xj of layer ln will receive information equal to xj =q

wixi + bj, where wi is the weight associated to neuron xi of layer ln−1 and
bj is the bias.

• Activation Function: it gives the non-linear property to each layer. Layer
output is transformed as f = σ(w, x), where σ is the non-linear function.
ReLU, Tanh, Sigmoid are all examples of activation functions.

• Hidden Layers: they stack neurons. Wide architectures contain layers with
high number of neurons, while deep architectures contain high number of
layers. Information aggregation of hidden layer neurons is explained in 2.5.

• Output Layer: it gives the final output of the network.

Designing neural network becomes fundamental to approximate efficiently the
unknown function. When modeling Fully Connected Layers, i.e. layers where each
neuron gives contribution to all neurons of next layer, the central question is to
decide whether build a wide or deep network[11].
One the one side, deeper networks can capture a off-course range of patterns, aiding
the displaying of complicated connections in data, and are inclined to create knowl-
edge hierarchical likenesses when getting in input abstract features; however, they
suffer vanishing or exploding gradient descent during the optimization process, since
it’s iterated through many layers, and are susceptible to overfitting if not designed
properly, memorizing training set structure instead of finding a generalization rule.
On the other side, wider networks can process multiple features in parallel, accel-
erating training and inference times, and are usually more robust to outliers or
input perturbations, thanks to the great number of neurons; despite of this, the

17

Background

Figure 2.5: Mathematical representation of a neuron information aggregation.
Each neuron of layer l1 is the result of the multiplication between weight matrix and
neurons from previous layer l0, increased by a bias and transformed by activation
function σ. Source: (.)

core drawback is the curse of dimensionality, with high memory and computing
power consumption, and non-proportional benefit returns as the number of neurons
increases.

2.3.2 Convolutional Neural Network
In 1989, Yann LeCun and its team proposed an interesting architecture designed
to recognize handwritten zip code[12], LeNet. The perk of this innovative neural
network was the sequential combination of convolutional layers which were able
to extract different levels of feature from input data, thank to kernels or filters
analysis. Moreover, the input data was passed as tensor in 2+ dimensions, scaling
more easily the input memorization, instead of a huge 1-dimensional array, and
thus facilitating feature extraction. Since this approach could directly make use of
the spatial relationships, it outperformed MLP-based NN in tasks where spatial
hierarchy and the local structure of data were important, such as image processing.
In the following years, it gained popularity and countless updates of its structure,
becoming the baseline algorithm in many fields, especially Computer Vision and
Natural Language Processing.

A CNN presents additional elements than Feed-Forward NN:

• Convolutional Layer: the core building block of a CNN. It applies a set of

18

https://www.researchgate.net/figure/Schematic-representation-of-a-neuron-activation_fig3_381956882

Background

filters, or kernels, slides across the input image, performing a mathematical
operation called convolution. This operation detects local patterns such as
edges, textures, or more complex shapes. Each filter is designed to detect a
specific feature. As the filter moves over the image, it generates a feature map
that highlights areas where the feature is present; doing so, the same neuron
can recognize learned features even if they appear in different locations of
the image. In particular, the kernels are applied across the width and height
of the input data and compute dot products between the values in the filter
and the ones in the input at any position; after the convolution, activation
function is applied. It’s common practice to use ReLU function to introduce
non-linearity. By setting all negative values to zero, it helps the model learn
complex patterns and not just linear relationships.
Given input data tensor of channels C0, width W0, height H0 and convolutional
parameters of stride S, padding P , kernel size K, dilation D, new channels
C1, the output tensor will have new dimensions as:

Channelsout = C1

Widthout = ⌊W0 + 2× P −D(K − 1)− 1
S

+ 1⌋

Heightout = ⌊H0 + 2× P −D(K − 1)− 1
S

+ 1⌋

(2.20)

• Pooling Layer: it decreases the spatial dimensionality of input tensor. It helps
to reduce the spatial dimensions of the feature maps and thus computational
load, contributing to control overfitting. The pooling operation typically works
by selecting the aggregated value from a region of the feature map, making the
output more abstract and less sensitive to small changes in the input image.
According to the aggregation performed, the layer may be MaxPooling for
max function or AvgPooling for averaging function.

• Residual Block: it’s an optional element and it was introduced the first
time in ResNet[13]. It creates a "residual connection" or "skip connection" in a
sub-network with a certain number of stacked layers, allowing the model to
skip one or more layers and enabling the flow of gradients directly through the
network during training. This architecture stabilizes the training of extremely
deep networks, i.e. hundreds of layers, without suffering from degradation in
performance, as it facilitates convergence of optimization process.

2.3.3 Optimization
When input data has passed through all layers of neural network, an output is given.
According to a Loss Function L(y, ŷ), it’s possible to evaluate the goodness of the

19

Background

Figure 2.6: Representation of general Convolutional Neural Network for image
classification. Convolutional layers extract features, depending on the number of
kernels used. Pooling layers decrease width of tensors. Finally, Fully-Connected
layers perform classification task, after all convolutional processing. Source: (.)

output ŷ = f(x) and the accuracy of the approximated function f . In supervised
learning, L will be an indicator of how far the predicted value ŷ is from the expected
label y. In reinforcement learning, there won’t be a proper label to be evaluated
but rather a comparison between predicted and expected V (s) and Q(s, a).
Countless loss functions exist in scientific literature but, for the sake of the thesis,
only three are listed: Mean Absolute Error (MAE) or L1 Loss, Mean Squared Error
(MSE) or Squared L2 norm, Huber Loss.

MAE =
qn

i=1 |yi − f(xi)|
n

(2.21)

MSE =
qn

i=1(yi − f(xi))2

n
(2.22)

HuberLoss =


1
2(yi − f(xi))2 if |yi − f(xi)| < δ

δ(|yi − f(xi)| − 1
2δ) otherwise

(2.23)

As clarification, the loss formulation may be applied over all training set or progres-
sively on batches of dataset; due to proportional increase of computational power
and memory requirements, the latter choice is preferred.

Once the loss is obtained the network shall put in practice some kind of op-
timization, in order to minimize further errors. The parameters θ of a neural
network, also called weights of the network, are the cornerstone of target function
and their variations change the function behavior. It’s now implicit that the better
the configuration of such parameters, the better the accuracy and the lower the
loss.

20

https://www.researchgate.net/figure/A-typical-Convolutional-Neural-Network-architecture-in-aircraft-structural-health_fig1_337233389

Background

The most appreciated way of optimizing a neural network is through Gradient
Descent[14]. The core idea of this technique is to compute the gradient of the loss
function in relation to the model parameters and then change network parameters
in the opposite direction of the gradient. Namely, the gradient, or slope, is a vector
made up of the partial derivatives of the loss function with respect to each pa-
rameter. Given an objective function J(θ) parameterized by a model’s parameters
θ ∈ R, the gradient is obtained as:

∇θJ(θ) = (∂J(θ)
∂θ1

, . . . ,
∂J(θ)
∂θn

)T (2.24)

When applying gradient descent on huge training sets, a trade-off between the
accuracy of the parameter update and the time it takes to perform an update,
depending on how much data we use to compute the gradient of the objective
function. In case all dataset is taking into account it will be called Batch Gradient
Descent (BGD), otherwise, if the update is performed on each training sample
(xi, yi), it will be called Stochastic Gradient Descent (SGD).

θ =

θ − η · ∇θJ(θ) if BGD

θ − η · ∇θJ(θ; xi; yi) if SGD
(2.25)

Another common baseline for optimization of NN is Adam[15]. It’s an algorithm
for first-order gradient-based optimization of stochastic objective functions, based
on adaptive estimates of lower-order moments. It leverages on the momentum m
for accelerating the gradient descent process by incorporating an exponentially
weighted moving average of past gradients. This helps smoothing out the trajectory
of the optimization, reducing convergence oscillations.

mt = β1mt−1 + (1− β1)
∂J(θ)

∂θt

(2.26)

Moreover, it adds an exponentially weighted moving average of squared gradients,
which helps overcome the problem of diminishing learning rates.

θt+1 = θt −
αt√

vt + ϵ

∂J(θ)
∂θt

(2.27)

It’s generally preferred to previous gradient descent methods since: with dynamic
learning rates, it avoids oscillations and gets past local minima efficiently; it helps
preventing early-stage instability thanks to bias correction; it has more efficient
performances with hyperparameter tuning than the static one of SGD.

21

Background

Figure 2.7: Performance comparison of different optimizers on training cost.
Source: [15]

2.4 Deep Reinforcement Learning
Deep Reinforcement Learning is the direct evolution of RL, which is bolstered
by the expressive capabilities of deep neural networks. As already explained in
previous sections, traditional RL algorithms lack generalization and deployability
when facing complex challenges or real-world scenarios, addressing several issues
like rapidly-changing dynamics, intractable and computationally expensive state
and action spaces, and noisy reward signals[16]. These traditional methods are
also called "tabular methods" because state-value and action-value functions are
represented with large tables, where each entry corresponded to the value of a
particular state or state-action couple. When the joint state-action space becomes
too high to be stored in feasible memory, the implementation of neural networks as
approximation functions gives an alternative approach to the solution development.
Considering a V π(s) and Qπ(s, a) as functions to be approximated and θ as the
vector of neural network parameters, the focus of DRL becomes to find the proper
optimal approximation such as:

V (s; θ) ≈ V π(s)
Q(s, a; θ) ≈ Qπ(s, a)

(2.28)

Practically, all DRL algorithms are under the Model-Free label, since the focus is

22

Background

generalization, and, following the taxonomy at 2.3, two main branches characterize
the plethora of possible solutions: Value-based one which is translated in Deep
Q-Learning and Policy-based one which is generally extended into Policy Gradient.

2.4.1 Deep Q-Learning
Recalling Algorithm 3, the aim of Q-Learning is seeking for the most-suited Q-
function Qπ(s, a) and store the action-values into a Q-table. Deep Q-Learning
keeps the same objective with a Q-function Q(s, a; θ) and maintains Off-policy
property, meaning that policy π∗ is optimized taking into account not only the
current samples of training set but also previous batches from different policies.
Since there isn’t anymore a Q-Table to store all state-action values, an experience
replay buffer D is introduced; thus, when training the network, random samples
from the replay memory are used instead of the most recent trajectory. Moreover,
the trade-off between exploration and exploitation is similarly handled by ϵ-greedy
policy.
The most promising algorithm of this category is Deep Q-Network (DQN).

2.4.2 Policy Gradient
Value-based algorithms learn a parameterized value-function and the agent follows
a policy that is directly derived from this value-function. However, it can be
desirable to directly learn a policy as a separate parameterized function, eventually
represented by any function approximation technique. If the approximation is
performed leveraging on gradient updates, the algorithm is labeled as Policy
Gradient. More specifically, if given a policy πθ with parameters θ and J(πθ) is
the expected finite-horizon discounted return of the policy, the gradient J(πθ)
computed will be:

∇θJ(πθ) = E
C

NØ
t=0
∇θ log πθ(st, at; θ)Qπ(s, a; θ)

D
(2.29)

And, if the direction of the gradient improves the expected return, the weight param-
eters are updated through Gradient Ascent and not Gradient Descent, differently
from deep learning optimization techniques which consider loss backpropagation
instead:

θt+1 ← θt + α∇θJ(θt) (2.30)

Directly representing the policy of an RL agent has two key advantages[4].
First, in environments with discrete actions, a parameterized policy can represent
any probabilistic policy, which leads to significantly more flexibility in its action

23

Background

selection compared to value-based RL algorithms. A value-based RL agent following
an ϵ-greedy policy is more restricted in its policy representation depending on
the current value of ϵ and its greedy action. Second, by representing a policy
as a separate learnable function, we can represent policies for continuous action
spaces. In environments with continuous actions, an agent selects a single or several
continuous values (typically within a certain interval) as its actions.
Among Policy Gradient solutions, it’s worth to underline Actor-Critic methods.
It’s a family of policy gradient algorithms that train a parameterized policy, called
the Actor, and a value function, called the Critic, alongside each other. The actor
makes choices by selecting actions according to the current policy. Its role is to
explore the action space in order to maximize the expected cumulative rewards.
By continuously refining the policy, the actor adjusts to the changing environment.
The critic assesses the actions performed by the actor. It estimates the value or
quality of these actions by offering feedback on their effectiveness. The critic plays a
crucial role in steering the actor towards actions that yield higher expected returns,
thus enhancing the overall learning process.

2.4.3 Popular algorithms
DQN[17] was presented in 2013 as an algorithm able to play several Atari 2600
games from the Arcade Learning Environment. It successfully learned to control
policies from high-dimensional sensory input, taking raw pixels from the games and
outputting the value-function to estimate future rewards, and it has even surpassed
human expert in three of those games.
The main innovation is the implementation of two similar neural networks, Behavior
network Q(s, a; θ) and Target network Q∗(s, a; θ̄). When computing the loss L(θ),
the expected next Q-value for st+1 follows the target network while the predicted
next Q-value is according the current behavior network. In this way, there will be
convergence as soon as the two networks will output the same Q-values. Since it’s
Off-Policy method, the behavior network uses random samples from the buffer D.
The update of parameters is done as:

θk+1 ← θk + α(rt+1 + γ max
a

Q∗(st+1, at+1; θ̄k+1)−Q(st, at; θk))∇θk
J(θk) (2.31)

In order to prevent oscillation in learning process, only the behavior network is
updated continuously while the target network is updated every C episodes or
softly according to small values of τ .

A2C[18] stands for Advantage Actor Critic and it’s a On-policy, synchronous,
deterministic actor-critic algorithm that updates the policy and value function
simultaneously. On the one side, the neural network function of the actor outputs a
deterministic policy, π(s, a; ϕ), which maps states to actions. On the other side, the

24

Background

Algorithm 4 Deep Q-Network (DQN)
Initialize behavior network Q with random parameters θ
Initialize target network Q∗ with parameters θ̄ = θ
Initialize an empty replay buffer D to capacity N

for each episode do:
Initialize sequence with state s1
for each step episode do:

With probability ϵ, choose random action at

otherwise, with probability (1− ϵ), at = max
a

Q∗(st, a; θ̄)
Apply action at; observe reward rt+1 and new state st+1
Store transition (st, at, rt+1, st+1) into buffer D
Sample random mini-batch of B transitions (sk, ak, rk+1, sk+1) from D

Set yk =

rk+1 if terminal sk+1

rk+1 + γ max
a

Q∗(st+1, at+1; θ̄) if non terminal sk+1

Compute L(θ) = yk −Q(st, a; θ)
Update parameters θ by minimizing the loss L(θ)

end for
Every C episodes, update target network parameters θ̄
Alternatively, every episode, softly τ -update target network parameters θ̄

end for

25

Background

neural network of the critic approximates the value function, V (s; θ) and estimates
the prediction of expected cumulative reward from a given state. As the name
suggests, given the Q-value Q(s, a; ϕ) of an action chosen by the actor and the
state-value V (s; θ) estimated by the critic, the Advantage is obtained as:

Adv(s, a; ϕ; θ) = Q(s, a; ϕ)− V (s; θ) (2.32)

The advantage can therefore be understood as quantifying how much higher the
expected returns are when applying the specific action a compared to following the
actor policy π in state s. The advantage will be positive or negative if, respectively,
it has been reached a higher or lower return in comparison to the expected return
of the state-value. The innovation of A2C regards, in fact, the optimization of
actor policy which is not performed considering actor network alone but combining
the critic network as well, unified by the advantage function.

Algorithm 5 Advantage Actor Critic (A2C)
Initialize actor network function π with random parameters ϕ
Initialize critic network V with parameters θ

for each episode do:
Initialize sequence with state s1
for each step episode do:

Sample action at ∼ π(·|st; ϕ)
Apply action at; observe reward rt+1 and new state st+1
if st+1 is terminal then:

Advantage Adv(st, at)← rt+1 − V (st; θ)
Critic target yt ← rt+1

else:
Advantage Adv(st, at)← rt+1 + γV (st+1; θ)− V (st; θ)
Critic target yt ← rt+1 + γV (st+1; θ)

end if
Compute actor loss L(ϕ) = −Adv(st, at) log π(at|st; ϕ)
Compute critic loss L(θ) = yt − V (st; θ)
Update parameters ϕ by minimizing the actor loss L(ϕ)
Update parameters θ by minimizing the critic loss L(θ)

end for
end for

PPO[19] is a On-Policy algorithm, built upon the concept of Trust Policy
Region[20], but with key innovations that make it more computationally efficient.

26

Background

Policy updates are normally computed using gradient directly and, depending on
the learning rate, it might lead to significant changes of the policy and could reduce
the expected performance of the policy. The risk of large changes in the policy
resulting from a single gradient optimization step can be minimized by using trust
regions. Essentially, trust regions define a boundary in the policy parameter space
where changes to the policy are limited, ensuring that the resulting policy will not
cause a significant drop in performance. This allows to "trust" that the policy, with
such parameter adjustments, will maintain its effectiveness.
Moreover, PPO introduces the importance sampling weight ρ(st, at) and the clipping
technique, in order to restrict how much the policy can change during each update,
ensuring that the policy does not diverge too far from the previous policy.

Algorithm 6 Proximal Policy Optimization (PPO)
Initialize actor network function π with random parameters ϕ
Initialize critic network V with parameters θ

for each episode do:
Initialize sequence with state s1
for each step episode do:

Sample action at ∼ π(·|st; ϕ)
Apply action at; observe reward rt+1 and new state st+1
πβ(at|st)← π(at|st; ϕ)
for epoch e = 1, . . . , Ne do:

ρ(st, at)← π(at|st;ϕ)
πβ(at|st)

if st+1 is terminal then:
Advantage Adv(st, at)← rt+1 − V (st; θ)
Critic target yt ← rt+1

else:
Advantage Adv(st, at)← rt+1 + γV (st+1; θ)− V (st; θ)
Critic target yt ← rt+1 + γV (st+1; θ)

end if
Actor loss L(ϕ) = −min

A
ρ(st, at)Adv(st, at)

clip(ρ(st, at), 1− ϵ, 1 + ϵ)Adv(st, at)

B
Critic loss L(θ) = yt − V (st; θ)
Update parameters ϕ by minimizing the actor loss L(ϕ)
Update parameters θ by minimizing the critic loss L(θ)

end for
end for

end for

27

Background

2.5 Multi-Agent Reinforcement Learning
This final section describes the main topic of the thesis: Multi-Agent Reinforcement
Learning. Intuitively, it represents the sub-field of RL that studies the interaction
of multiple agents in the same environment. It addresses far more issues than a
single-agent situation, facing complex dynamics due to agent behaviors. In fact,
agents may share the same goal, for instance like autonomous robots cooperating
to map disaster sites and locate survivors, or conflict goals, such as agents trading
goods in a virtual market in which each agent seeks to maximize its own gains.
This view opens many new challenges regarding the optimization of the policy
because the dichotomy between egoistic rewards and cooperative rewards leads to
new formulations of the solutions.
Many of the following sub-sections take inspiration from [21] for descriptive para-
graphs, since it’s one of the lately updated sources on the topic.

2.5.1 Nomenclature in Multi-Agent systems
Multi-Agent Reinforcement Learning (MARL) algorithms focus on learning optimal
policies for a set of agents in a multi-agent system and, as in the single-agent
counterpart, the policies are learned through a continuous exchange of trial-and-
error to maximize the agents’ cumulative rewards. However, despite of the proven
modeling through MDPs in single-agent stochastic environments, MARL environ-
ments require a different representation: in fact, state dynamics and expected
reward changes violate the core stationarity assumption of an MDP. Recalling the
definition of Stationarity[22]:

Theorem 2 (Stationarity Theorem)
Formally, let {Xt} be a stochastic process and let FX(xt1+τ , . . . , xtn+τ) represent
the cumulative distribution function of the unconditional joint distribution of {Xt}
at times t1 + τ, . . . , tn + τ . Then, {Xt} is said to be strictly stationary, strongly
stationary or strict-sense stationary if:

FX(xt1+τ , . . . , xtn+τ) = FX(xt1 , . . . , xtn) for all τ, t1, . . . , tn ∈ R (2.33)
Since τ does not affect FX(·) , FX(·) is independent of time.

In this sense, the cumulative reward and behavior of the agents should have mean
and variance constant in time but, since they are not independent to each other,
the stationarity assumption doesn’t hold; in addition, in real-world scenarios, the
environment noise can’t be assumed as a random variable with fixed mean-variance,
contributing to the rejection of stationarity hypothesis.

28

Background

Returning to MARL specifics, the combination of agents’ actions {ai} at time t
in state st is called Joint Action and it modifies the state according to environment
dynamics. Consequently, the environment is updated and new observations and
rewards are given to each agent; both observation and reward are shaped depending
on the single agent’s action. Figure 2.8 gives an idea of this interaction. Keeping

Figure 2.8: Agents-Environment interaction. When the joint action of all agents
modifies the environment, it returns different observations and rewards to agents,
directly influenced by the single agent’s action. Source: [21]

the tuple-based structure of MDP, a MARL system with N agents can be expressed
as:

< N ,S, {Ai}N ,P , {Ri}N , γ > (2.34)

where the new terms are is the joint action space {Ai}N and the set of reward
functions for each agent {Ri}N .

According to agents’ dynamics, Multi-Agent systems may labeled in three
categories.

• Cooperative: if agents learn to collaborate in order to achieve a shared goal
while maximizing a collective reward. Each agent’s actions contribute to the
overall success of the group, with the reward structure designed to encourage
teamwork.

• Competitive: if agents participate in adversarial or competitive-cooperative
scenarios where they aim to maximize their own rewards while minimizing
those of their opponents, typical of zero-sum games.

29

Background

• Mixed-Interest: if agents navigate cooperative-competitive dynamics, where
they have both aligned and conflicting goals.

Finally, the last criteria to distinguish Multi-Agent systems is Observability.
Taking for granted that observation /= state, the agents can either know other
agents’ actions/rewards or not. In case they don’t have this knowledge, they can
have some form communication to share information. A summary of all these
possibilities is shown in Figure 2.9.

Figure 2.9: Classification of MARL systems, based on the environments con-
straints and agents’ dynamics. Source: (.)

2.5.2 Open challenges
MARL comes with numerous challenges and addressing them properly is a pre-
requisite for the development of effective learning approaches. Despite promising
results in the literature, computational complexity, non-stationarity, partial observ-
ability and credit assignment remain largely unsolved[23]. What makes even more
struggling is that these obstacles do not occur in isolation but, in contrast, the
solution development usually deals with one or more at the same time. In fact, the
optimal policy convergence or simply general policy convergence is not guaranteed
for every combination of algorithm-environment.

30

https://www.researchgate.net/figure/Diagram-of-problem-representations-and-their-main-challenges-multiagent-problem_fig1_364382892

Background

Computational Complexity is a term referring to computation power, time
and memory requirements required to collect enough sampling data, learn a param-
eterized policy function and optimize it to approximate the optimal target function.
The data collection is the first tackling point of RL paradigm because there isn’t a
pre-built dataset of inputs and labels, like in Supervised Learning. The exploration-
exploitation framework is instead the shared rule of RL and the only way to collect
as much state-action-state transitions as possible, limiting the sample efficiency.
Then, policy formulation requires long training epochs to converge, due to pa-
rameters optimization and sample generation. Once the policy is updated and
probability distribution changed, new samples have to be generated by the updated
policy. Therefore, the optimization faces a non-static context, where achieving
the best objective value on the current samples is not the goal, and exploration is
necessary to find better samples[24]. On complex or continuous-space problems,
slow learning may become, in the worst-case, even unfeasible to master; the worst
case is also more likely to happen if multiple agents interact in the same system.

Non-Stationarity refers to the environment evolution whose statistical proper-
ties are changing through time. This property may have different causes, such as
stationary distribution of environment specifics that the agents cannot influence
nor cannot observe, non-stationary settings that are influenced directly by the
agent’s behavior or a combination of both[25].
TD error δt in 2.16 set a good starting point in policy formulation, considering non-
stationarity as a moving target problem, where state-values depend on subsequent
actions which can change as the policy π changes over time and the error propagates
in continuous time steps[21]. However, in MARL, multiple agents learn from the
interaction to each other, resulting in a continual co-adaptation and re-formulation
of policy function, leading to cyclic dynamics where a learning agent tailors his
behavior regarding other agents’ conducts which, in turn, will do the same with
respect to the learning agent itself. Thus, it’s implicit that statistical properties of
the system, like mean and variance of different policies, are not constant in time
since they are influenced by both exogenous and endogenous factors.

Partial Observability means that agents must take actions based on local
observations, since they are not able to access the global state, creating a system
where agents have incomplete and asymmetric information. Similarly, a learning
agent may not see other agents’ actions and rewards, making more complicated to
understand how much its own action has effectively influenced the environment or,
in contrast, it was mainly due to external changes.
Communication is a well promising mechanism to coordinate the dynamics of
several agents, broadening their views of the environment, and supporting their
collaborations[26]. The type of message sent can assume various forms, propagated

31

Background

to all agents or only to sub-groups. However, there is no unique solution to solve
partial observability and, in many cases, it should be tailored specifically for the
environment.

Credit Assignment is probably the most challenging problem of the whole
RL world. On the one side, there is the Temporal Credit Assignment, based on the
long term consequences of single agent’s actions, evaluating if distant and more
beneficial dynamics are more important than greedy immediate behaviors; on the
other side, there is the Multi-Agent Credit Assignment, questioning which agent is
impacting the most to the shared welfare and how to proportionally reward the
remaining agents.
The former credit assignment is not standard but tailored to the environment
and agents which is applied to. Taking into account the action-value function as
the measure of qualitative influence of the policy improvement is surely one of
the main drivers of credit formulation[27]. Low quality evaluations can lead the
policy to diverge from the optimal one, slowing down the progress[4]; while, high
quality evaluations supply robust, precise and trustworthy signals that speed up
convergence. Giving a-priori formulation is nonetheless misleading, especially in
real world scenarios where a complex blend of several hierarchical tasks assign
different priorities and different measures of optimality.
The latter credit assignment needs a proper evaluation of the Joint Action space
{Ai}N ; in particular, the reward can be shaped on the direct or indirect assessment
of agents’ contributions. Explicit methods provide techniques to assign agent con-
tributions that are at least provably locally optima[28]. Implicit methods, instead,
do not intentionally attribute the individual actions against a certain baseline,
and prefer learning a value decomposition from the shared reward signal into the
individual component value functions[28].

2.5.3 Training and execution mode
One last point needs to be clarified: whether the agents are conscious of the
other allies/opponents or not and, as well, whether this knowledge is shared or
not. During training phase, agents may be restricted to leverage on its own local
information only, in case of decentralized approach, or might access the global
information like a continuous exchange of collection and delivery of respective data.
The execution aspect contributes to define the type of MARL algorithm since the
joint action space may be interpreted as a joint set made of multiple sub-action
spaces, in case of decentralized approach, or as a big action space composed by
every possible combination of agents’ actions, in case of centralized approach.

32

Background

Centralized Training and Centralized Execution (CTCE) is the first set-up
for solution development and arguably the easiest to implement. Having a central
structure, both in learning process and execution of actions, can be interpreted as
main "super-agent" which controls all the aspects of multiple sub-agents. Centrally
shared information may include the agents’ local observation histories, learned
world and agent models, value functions, or even the agents’ policies themselves[21].
In this way, it’s possible to reduce a MARL game to a RL problem by using
the joint-observation history to train a single central policy over the joint-action
space. This is highly beneficial in games with partial observability, creating a
more complete observation of the state by combining the joint-observations and
reducing the vector of actions as a single action formed by the combination of
agents’ actions. Intuitively, this approach cannot be applied if action space is
continuous or, in discrete case, grows exponentially with the number of agents; for
example, having n = 5 agents with action space |A| = 10, the number of possible
combination reaches |{An}| = 105, making it unfeasible even for the most powerful
neural networks. Moreover, the "super-agent" shall shape a unique reward function
for all agents and, if the number grows quickly, it becomes unfeasible to assign
merit to a specific agent’s behavior.

Decentralized Training and Decentralized Execution (DTDE) is the
complete opposite of CTCE. The main idea, from the single agent perspective, is to
consider other agents as a non-stationary part of the environment dynamics, so that
the single agent behaves independently and trains its own policy in a completely
local way, like in normal RL game[21]. The main benefit is the scalability of this
solution, since the number of agents doesn’t affect the local computation and local
optimization. However, due to the lack of shared global knowledge, training can be
heavily afflicted by non-stationarity caused by the concurrent training of all agents.
Furthermore, it’s unlikely that agents can distinguish stochastic changes in the
environment as a consequence of other agents’ actions and the natural evolution of
environment transitions. Thereby, the global training will suffer of instable learning
and poor convergence of each policy.

Central Training and Decentralized Execution (CTDE) is the middle
ground of previous approaches and it tries to combine the benefits of both solutions,
bypassing the respective critical drawbacks. It’s the preferred solution in MARL
problems since it enables conditioning approximate value functions on privileged
information in a computationally tractable manner[21]. A popular application is
within the Actor-Critic paradigm, where a multiple independent actors provide
joint-observations to the single central critic which leverages on them to learn the
advantage function.

33

Background

2.5.4 Possible solutions

Independent Deep Q-Network (IDQN)[29] is a DTDE solution where agents
train their own Q-value function and use their own memory buffer without sharing
knowledge. It keeps the same structure of the classical DQN but the buffer
storage should be handled with more attention, weighting older experience with
less importance; in fact, it might be useful to apply importance sampling to address
the changing policies of other agents and, thereby, correct the non-stationarity of
the data distribution [30].
A snippet of the algorithm can be seen at 7.

Algorithm 7 Independent Deep Q-Network (IDQN)
Initialize n behavior network Q with random parameters θ1, . . . , θn

Initialize n target network Q∗ with parameters θ̄1...n = θ1...n

Initialize an empty replay buffer for each agent D1, . . . ,Dn to capacity M

for each episode do:
Initialize sequence with state s1
for each step episode do:

for agent i = 1, . . . , N do:
With probability ϵ, choose random action ai

t

otherwise, with probability (1− ϵ), ai
t = max

ai
Q∗

i (st, ai; θ̄i)
end for
Apply actions ai

t; observe reward ri
t+1 and new state si

t+1
Store transition (st, ai

t, ri
t+1, st+1) into buffer D1, . . . ,DN

for agent i = 1, . . . , N do:
Sample random batches of transitions (sk, ai

k, ri
k+1, sk+1) from Di

Set yi
k =

ri
k+1 if terminal sk+1

ri
k+1 + γ max

ai
Q∗

i (st+1, ai
t+1; θ̄i) if non terminal sk+1

Compute L(θi) = yi
k −Qi(st, ai; θi)

Update parameters θi by minimizing the loss L(θi)
end for

end for
for agent i = 1, . . . , N do:

Every C episodes, update target network parameters θ̄i

Alternatively, softly τ -update target network parameters θ̄i

end for
end for

34

Background

Multi-Agent Deep Deterministic Policy Gradient (MADDPG)[31] is a
CTDE solution and extends the idea of Actor-Critic paradigm to MARL systems.
The upgrade consists in training one centralized critic over n decentralized agents.
Each agent has its own continuous deterministic policy, accessing to local informa-
tion only, while the critic learns the advantage function leveraging on a common
memory buffer which stores state-action transitions from all actors experiences.
In the original paper, MADDPG is evaluated on cooperative communication sce-
nario and the contribution of centralized critic towards the actors has achieved a
good convergence rate balanced with convergence speed. However, in competitive
settings, non-stationarity still represents a tackling issue and actors normally overfit
the other actors’ behaviors. In order to overcome this problem, the paper has pro-
posed training a collection of K sub-policies for each actor. At the beginning of each
episode, the actors choose from the pool of sub-policies and send state-action tran-
sitions to the memory replay buffer associated to the sub-policy previously selected.

Homogeneous Agents Solutions[21] is the last approach to be described
and it’s not a specific algorithm but more a "relaxation" of MARL problem. Since
the number of agents directly affects the scalability of the algorithm, the sample
efficiency and the training speed, the nature of the agents should be questioned
if this makes a point. Homogeneous agents can be thought as identical or nearly
identical copies of each other, and they interact with the environment in similar
ways. Consequently, if they share similar characteristics, it would be allowed to
interchange freely their own policies or, in the best case, share one single policy
valid for all of them.

Theorem 3 (Weakly homogeneous agents)
A multi-agent environment has weakly homogeneous agents if for any joint policy
π = (π1, . . . , πn) and permutation between agents σ : I → I, the following holds:

Ui(π) = Uσ(i)(< πσ(1), . . . , πσ(n) >), ∀i ∈ I (2.37)

Theorem 4 (Strongly homogeneous agents)
A multi-agent environment has strongly homogeneous agents if the optimal joint
policy consists of identical individual policies, formally:

• The environment has weakly homogeneous agents.

• The optimal joint policy π∗ = (π1, . . . , πn) consists of identical policies π1 =
· · · = πn.

In case of environments with strongly homogeneous agents, the optimal joint policy
can be represented as a joint policy consisting of identical policies for all agents[21].
Any trajectory performed by those agents, in the form of state-action transitions, is

35

Background

Algorithm 8 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
Initialize n actor networks π with random parameters θ1, . . . , θn

Initialize critic network V with parameters θ̄
Initialize an empty replay buffer D to capacity M

for each episode do:
Initialize sequence with state s1
for each step episode do:

For each agent i, ai = πθi
(st) w.r.t. the current policy and exploration

Apply actions a = {a1, . . . , an}; observe reward ri
t+1 and state st+1

Store transition (st, ai
t, ri

t+1, st+1) into buffer D
st ← st+1
for agent i = 1, . . . , n do:

Sample random batches of transitions (sk, ai
k, ri

k+1, sk+1) from Di

Set yt ← ri
t+1 + γV (st+1; θ̄)

Update critic minimizing loss L(θ̄) = yt − V (st; θ̄)
Update actor using policy gradient

∇θi
J(θi) ≈

1
S

Ø
t

∇θi
πθi

(st)∇ai
Qπ

i (st, a1
t , . . . , an

t) (2.35)

end for
Softly τ -update target network parameters for each agent i:

θi
t+1 ← τθi

t + (1− τ)θi
t+1 (2.36)

end for
end for

36

Background

then used to update shared parameters in parallel. One the one side, the first benefit
is that the number of parameters remains constant, regardless the number of agents.
One the other side, the shared parameters are updated using the transitions from
the same memory buffer, resulting in a more diverse and larger set of experience
samples for training.

2.6 Related Works
A great inspiration for this thesis has come from the past LuxAI competitions.
The first season[32] has highlighted how a collective intelligence leads to better
results than fully decentralized learning process, encouraging agents to self-organize
and acting emergent behaviors to accomplish the tasks. According to the authors,
LuxAI environment with cooperative-competitive dynamics emphasizes the de-
velopment of strategies which are based on multi-agent co-evolution, rather than
hand-crafted collaboration mechanisms.
Despite of this optimistic premise, the winners of previous competitions had been
agent leveraging on rule-based solutions and not RL-based ones. As huge drawback,
this solutions cannot be replicated or adapted to LuxAI S3 because they were
tailored for specific tasks, completely different from the current ones. Moreover,
past seasons’ environments were designed with perfect information about the game
state, meaning each agent had the complete information of global map and knowl-
edge of opponent’s behavior [32] [33]. In LuxAI S3 [34], instead, the environment
is shaped as Partially Observable Stochastic Game (POSG), meaning that agents
have limited vision of the state observation and asymmetric knowledge of the game
dynamics, and, in addition, the map is not static but changes the set-up after every
game. Hence the need of questioning which development is more suited in this
competition between rule-based or RL-based.

The dilemma of the superiority between rule-based algorithms, developed ac-
cording to tailored heuristics, and RL-based algorithms has been clarified when
RL-based chess engine AlphaZero [35] overcame the best rule-based chess engine
Stockfish of that time. In the following years, many other RL-based engines has
become the state-of-the-art for more complex games [36] [37], including video-games
[38] [39], establishing the superiority of AI over human-crafted heuristics. Applying
this vision to multi-agent environments as well, many scenarios have used MARL
algorithms to overcome the challenges of cooperative and competitive games. Inde-
pendent DQN [29] was firstly introduced to train two agents for playing double
ping-pong games, finding the optimal strategy to keep the ball in the game as long
as possible; then, it rapidly became a state-of-the-art algorithm in many benchmark

37

Background

libraries but it fails to learn to cooperate with allies and compete with enemies
in more complex environments [40]. Actor-Critic based solutions are effective in
decentralized approaches too, like Independent A2C [41] applied to traffic flow,
which demonstrated robustness and sample efficiency through the collaboration of
local agent with the close neighbors; however, this collaboration doesn’t consider
the totality of the agents and thus inapplicable in environment where the full
cooperation is required. CTDE seems to be the optimal way to tackle this issue
and Actor-Critic algorithms are again well-performing. MADDPG [31] has well
addressed non-stationarity using centralized critic and decentralized actors, without
suffering the scalability as the number of agents was growing. Similarly, Multi-Agent
PPO [42] has reached optimal performances in competitive-cooperative boardgames
and videogames, without any domain-specific algorithmic modifications.

Even though most of these algorithms have been trained using Self-play, i.e.
exploiting only experience generated brand new during training process, other
RL agents has reached interesting performances with Imitation Learning (IL), a
process where expected behaviors are learned by imitating an expert’s behaviors,
provided through demonstrations [43]. This branch of learning is nevertheless under
the assumption that imitated dynamics are following an optimal policy and, for
complex multi-agents environment, this is not always guaranteed. Since LuxAI S3
is a brand new competition, no benchmark exists and the experts’ performances
cannot be exploited to boost the training.

Regarding credit assignment in cooperative scenarios, the need of shaping re-
ward based on both local and global perspective is intuitively the best way to
accomplish a global task: in [44] [45], a huge network of traffic lights builds a
communication system to share information and avoids traffic jams, combining
information from single intersection with close neighbors knowledge. Similarly, in
competitive scenarios like MOBA (Multiplayer Online Battle Arena) games [46],
crafting team-based rewards for each agent foster cooperative dynamics to achieve
victory against opponent’s agents. However, sparse reward functions are the main
cause of misleading behaviors, creating situations where the a few agents effectively
contributes to the objective while the majority benefits from their work, acting as
"lazy agents" [47] and damaging learning process.

Finally, non-stationarity remains the elephant in the room and no MARL
algorithm is able to generalize for all environments or guarantee convergence.
Nevertheless, if the condition of homogeneity are satisfied, the problem can be
relaxed and facilitating the solution development. In [48], shared policy network
for all agents has achieved effective results, leveraging on continuous knowledge
acquisition from shared state-action-state transitions.

38

Chapter 3

Materials and Methods

This chapter outlines the specifics of the competition and the solutions adopted
to address the challenge. A panoramic of LuxAI is firstly given, examining both
characteristics and boundaries. Then, an overview of MARL constraints translated
to the competition points out the theoretical limitations and gives the basis for the
solution development. Finally, the methodology shows how the solution has been
built in practice.

3.1 LuxAI
The LuxAI Competition is an annual event focused on artificial intelligence (AI) and
robotics, aimed at pushing the boundaries of autonomous systems in a competitive
setting. Typically held as part of academic and industry conferences or tech events,
the competition brings together researchers, engineers, and developers to showcase
innovative solutions in the fields of robotics, AI, and machine learning. While
it has evolved over time, the competition consistently challenges participants to
create robots that can perform complex tasks autonomously, using cutting-edge AI
techniques.
At the heart of the LuxAI Competition is the notion of autonomous intelligence, i.e.
how machines can learn, adapt, and interact with their environment in real-time.
Participants usually work with state-of-the-art robot platforms, which are equipped
with various sensors, actuators, and onboard computational resources. These robots
are tasked with completing specific challenges that involve tasks like navigation,
object manipulation, and decision-making based on dynamic and unpredictable
environments.
LuxAI S3[34] is the third season and poses the attention on the adaptability
of two teams in complex dynamic multi-agent environment. In particular, each

39

Materials and Methods

agent competes in 1vs1 games where the environment presents a fixed set of game
mechanics and hyper-parameters for each mechanic.
The incipit of the competition states1:

With the help 600+ space organizations, Mars has been terraformed
successfully. Colonies have been established successfully by multiple
space organizations thanks to the rapidly growing lichen fields on the
planet. The introduction of an atmosphere has enabled colonists to
start thinking about the future, beyond Mars. Mysteriously, new deep-
space telescopes launched from Mars revealed some ancient architectures
floating beyond the solar system, hidden in a midst of asteroids and
nebula gas. Perhaps they were relics of a previous sentient species?
Seeking to learn more about the secrets of the universe, new expeditions of
ships were set out into deep space to explore these ancient relics and study
them. What will they discover, which expedition will be remembered for
the rest of history for unlocking the secrets of the relics?

3.1.1 Rules
Every 1vs1 game consists of 5 matches where 2 teams face each other and the
winner is the agent that wins more matches by collecting more points; matches
terminate with either a victory or a loss. One match counts 101 steps, for a total
of 505 steps per game.
There are no constraints regarding the nature of the agents, allowing both rule-
based agents built with heuristics and AI agents.
The ranking system is TrueSkill[49]. The players’ score is defined by the player’s
value µ and confidence score σ. After each match, the Trueskill algorithm updates
each players µ, σ values according to the match result.
The competition starts on 9th December 2024 and it’s possible to submit agent’s
architecture until 10th March 2025. After this date, two weeks are used to run
further evaluations and on 24th march 2025 the final leaderboard is published.

3.1.2 Environment
The map is a 2D grid of size (24× 24) generated randomly; the environment will
be different in different games but it will be the same in all 5 matches of the single
game. Many elements define the environment:

1https://www.kaggle.com/competitions/lux-ai-season-3/overview

40

https://www.kaggle.com/competitions/lux-ai-season-3/overview

Materials and Methods

• Units: blue and red ships for, respectively, player 0 and player 1. A new unit
spawns every n seconds, according to a hyper-parameter, and they spawn in
top-left corner for player 0, bottom-right corner for player 1.
They can move in 4 directions (up, down, left, right) or staying still. Units
can overlap with other friendly units and have initial energy = 100, which
can change in range energy ∈ [0,400].
They can also perform the "sap action" which points a tile on the map and,
if there is an opponent’s unit, the opponent’s units looses energy according
to an hyper-parameter. Each of the 6 actions have a cost in terms of energy
and, if the energy drops to 0, the unit is eliminated from the game and will
respawn in the respective corner.
Single unit has a vision range which enables it to see the immediate square
around it, with radius equal to a hyper-parameter. For example, if the
radius = 2, the vision range will be a 5× 5-square with the unit at the center.

• Relic nodes: yellow tiles that enables units to go near it and collect points.
The unit gains points only if it stays on a relic tile with yellow border while
the yellow relic tile doesn’t give any point. If multiple units are stacked onto
the relic tile, they still get only 1 points per step. Relic positions are fixed
during all the game but they may not be revealed totally since the beginning;
this means that in the first match only one relic sites is disclosed per half-map,
in the second match at most two relic sites per half-map and so on up to a
maximum of three relic sites per half-map.

• Asteroids: impassable black tiles which stop anything from moving spawning
onto them. They can be moved by the environment,

• Nebulas: passable purple tiles which block vision of units. The "visual
reduction" hyper-parameter is different for every game, randomized between
[0,3]. The unit’s vision is decreased by this factor, limiting what the unit can
see, and it’s even possible to reduce it to 0, making it unable to see itself but
still being able to move. Moreover, nebula tiles can reduce unit’s energy.

• Empty tile: tiles without anything. Units and nodes can be placed/move
onto these tiles.

The environment is built symmetrically along the anti-diagonal, meaning that
some elements, like asteroids, relics and nebulas, will have symmetric positions. In
addition, nebulas and asteroids move symmetrically along the anti-diagonal while
relics remain still.
When two or more units from opposing teams find in close quarters, there is an
energy collision: the units with the highest energy wins the clash and remain while
the losing units loose all energy and are eliminated from the game, waiting to

41

Materials and Methods

respwan.

Some hyper-parameters are randomly generated at the beginning of a game
and determines the dynamics of the environment and units’ interactions. Here are
listed the main ones:

1 env_params_ranges = d i c t (
2 unit_move_cost=l i s t (range (1 , 6)) ,
3 unit_sensor_range =[1 , 2 , 3 , 4] ,
4 nebu la_t i l e_v i s ion_reduct ion=l i s t (range (0 , 8)) ,
5 nebula_ti le_energy_reduct ion =[0 , 1 , 2 , 3 , 5 , 2 5] ,
6 unit_sap_cost=l i s t (range (30 , 51)) ,
7 unit_sap_range=l i s t (range (3 , 8)) ,
8 unit_sap_dropof f_factor =[0 .25 , 0 . 5 , 1] ,
9 # map randomizat ions

10 nebu la_t i l e_dr i f t_speed =[−0.05 , −0.025 , 0 . 025 , 0 . 0 5] ,
11)

Figure 3.1: Example of LuxAI S3 environment.

42

Materials and Methods

3.2 Frameworks

LuxAI S32 is the source code of the competition.
src folder contains the environment and runner files to simulate games. kits folder
holds two starter kits for building the agent, written respectively in Python and
Javascript; the solution of this thesis has been developed extending the Python
version. In order to to facilitate the vision of games’ dynamics, a visualizer is
available at Visualizer3, while the ranking is accessible at Ranking4.

OpenAI Gym5 is a toolkit for RL research and one of the most authoritative
frameworks for benchmarking, offering several single-agent and multi-agent envi-
ronments and implementing state-of-the-art algorithms.In 2024, Gym has been
"upgraded" to Gymnasium6 and this version is the one used in the code.
LuxAI leverages on Gymnasium’s wrapper classes, making easier the interaction
agent-environment and facilitating the coding through interface functions that are
common for every RL-based environment.

PyTorch7 is a machine learning library and a pillar in neural network design.
Written in Python, PyTorch performs tensor (i.e. n-dimensional arrays) manipula-
tion and supports over 200 different mathematical operations. Among the feature,
dynamic graph computation allows to change network behavior on the fly, rather
than waiting for all the code to be executed, and automatic differentiation enables
creation, training and optimization of deep neural networks. It works both on CPU
and GPU. The architecture pipeline is built on this framework.

W&B8 (Weights and Biases) is a machine learning development platform that
allows programmers keep an eye on coding workflow and visualize the results
through plots. The main benefit of this tool is that the tracking of training process
is in real-time, acted through a logging system which connects the local machine
and remote W&B server. Moreover, it provides plots and graphics, automating the
visualization of hyper-parameters and outputs evolution in time.

2https://github.com/Lux-AI-Challenge/Lux-Design-S3
3https://s3vis.lux-ai.org/
4https://www.kaggle.com/competitions/lux-ai-season-3/leaderboard
5https://www.gymlibrary.dev/index.html
6https://gymnasium.farama.org/index.html
7https://pytorch.org/
8https://wandb.ai/site/

43

https://s3vis.lux-ai.org/
https://www.kaggle.com/competitions/lux-ai-season-3/leaderboard
https://github.com/Lux-AI-Challenge/Lux-Design-S3
https://s3vis.lux-ai.org/
https://www.kaggle.com/competitions/lux-ai-season-3/leaderboard
https://www.gymlibrary.dev/index.html
https://gymnasium.farama.org/index.html
https://pytorch.org/
https://wandb.ai/site/

Materials and Methods

3.3 Methods
After the introduction of theoretical background notions and the current solutions
in scientific literature made in Chapter 2, this section gives a deeper view on the
contributions of the thesis work, outlining the problem formalization and defining
the solution development. The overall goal has been to create autonomous agents
able to play LuxAI S3 competition standalone, without any information distilled
from human knowledge, and make them compete against other agent with aim of
reaching the best ranking position.
Putting aside the ludic purpose, the thesis focus has been to attempt overcoming
the main challenges of MARL paradigm and developing a stable architecture which
could face adaptively the continuous evolution of environment dynamics. Here, the
structured list of the objectives of this thesis:

• Building a scalable agent’s architecture, able to control several sub-agents
without the need of outstanding computational power and trained in feasible
computational time.

• Addressing non-stationarity and make the agent aware of environment dynam-
ics.

• Developing the policy as agnostic, i.e. without human-based directives or
external heuristics.

• Fostering collaborative behaviors to reach the winning condition, tailoring
with precision the credit assignment.

• Evaluate performances and behaviors of the algorithms, compared to other
agents’ results in competition ranking.

3.3.1 Observations, Actions, Rewards
LuxAI S3 competition falls into the category of multi-agent competitive games, as
two opponent teams need to face in order to pursuit a winning condition. According
to environment specifics, the state st and the observation ot are not overlapping and
thus the general framework to model the problem is Partially Observable Stochastic
Game (POSG). Specifically, each agent possess different information about the state
and decision-making system is acted upon this assumption; the actions performed
by N sub-agents are combined into a Joint Action space {Ai}N . Consequently, the
credit assignment system is tailored on the contribution of the joint action space

44

Materials and Methods

and it uses different reward functions {Ri}N to evaluate those interactions, which
are properly discounted by a factor γ when calculating the expected return of state
t. Since no transition probability matrix is given, the policy function is stochastic,
leveraging on approximation techniques to estimate the optimal policy.
To sum up, each agent can formalize step t of the game as the tuple:

< N ,O, {Ai}N ,P , {Ri}N , γ > (3.1)

Observation O is the knowledge of environment state that is shared to the agent.
As seen in 3.2, incomplete vision of the environment is available and this depends on
how the units are distributed over the map. In particular, the environment provides
a dict containing: position and energy of units, both player’s and opponents; a
units mask to identify which units are active; a sensor mask to show which map
tiles are visible by the player’s units; a map of tiles feature, showing if the tiles are
empty, nebulas or asteroids; a relics mask for relic site visibility, even though only
the yellow relic tile is shown and not the yellow-border tiles that give points; some
statistics like points, counter of match/game steps.

1 obs = d i c t (
2 " un i t s " : { " p o s i t i o n " : Array (T, N, 2) , " energy " : Array (T, N, 1) } ,
3 " units_mask " : Array (T, N) ,
4 " sensor_mask " : Array (W, H) ,
5 " map_feature " : { " energy " : Array (W, H) , " t i l e_type " : Array (W, H) } ,
6 " relic_nodes_mask " : Array (R) ,
7 " r e l i c_nodes " : Array (R, 2) ,
8 " team_points " : Array (T) ,
9 " team_wins " : Array (T) ,

10 " s t ep s " : int ,
11 " match_steps " : i n t
12)

In particular, T = 2 is the number of teams, N = 16 is the number of units for
each player’s agent, width W = 24 and height H = 24 are the dimensions of the
map, R = [1,3] is the number of relics.

In order to compact all this knowledge and give it to the deep neural network,
it has been embedded into a custom PyTorch tensor which represents the input
knowledge of the agent. More specifically, a 6@24× 24 tensor depicts the 24× 24
map using 6 custom channels, meaning that every map tile is identified by 6 features
which can be either a positive number if the feature is present or 0 otherwise.

1. Exploration channel: 1 if the tile has already been explored, 0 otherwise.

45

Materials and Methods

2. Relic channel: 1 if the tile is a yellow tile relic, 0 otherwise.

3. Nebula channel: 1 if the tile is a nebula, 0 otherwise.

4. Asteroid channel: 1 if the tile is a asteroid, 0 otherwise.

5. Player’s unit channel: n/16 if the tile is occupied by n player’s unit, 0
otherwise.

6. Opponent’s unit channel: n/16 if the tile is occupied by n opponent’s unit, 0
otherwise.

The idea is to create a kind of one-hot-encoding tensor, making the values bounded
between [0,1], limiting the variance. As last, one more channel is introduced to
discriminate which unit is considered; since this tensor is the input for the neural
network and the output is an action, there shall be an indicator of which sub-agent
is actually taken into account. That’s why the additional channel is unit’s energy
which is very unlikely to be equal to another unit’s energy.

7. Unit’s energy channel: e/400 if the tile is occupied the unit considered, 0
otherwise.

Figure 3.2: Comparison of player 0’s vision (left), global state observation (center)
and player 1’s vision (right).

Joint Action space {Ai}N is the combination of the discrete actions that units
can do. The possible actions are: 0. staying still, move 1. up, 2. right, 3. down, 4.
left, 5. sap. For this last action, a position is also required, identified by row R
and column C. The action is so coded as Array(1,3) where the first value is the
action type and the other two ones are either positions for sap action or 0,0.

Reward function {Ri}N is the most important element in Reinforcement
Learning since it’s the driving factor of agent’s learning, guiding it to a better

46

Materials and Methods

directions if the agent is behaving wrongly or encouraging it if it discovers the right
trajectory of actions. In [27], the authors propose a formulation which centralizes
the role of time in credit assignment; in fact, temporal contiguity may viewed as a
proxy for causal influence, since the likelihood of action is directly proportional to
how many future steps are effectively impacting the expected return.
In this sense, a global reward can be formulated, taking into account the match-
steps. On the one side, the final objective is obviously to collect as many points as
possible but, on the other side, at the beginning of a match, the most important
task is know where the relic sites are and so the exploration has the priority.

Rglobal = (1−Wt)Et + Wt
1
16

δ∆P

δt
(3.2)

where Wt is the ratio stept

101 , Et is the exploration ratio visible tiles
242 tiles

, 1
16

δ∆P

δt
is the

difference of points between the player and opponent, only for the step t and
regularized over the 16 units.
In [47], the introduction of scaled sparse reward has brought to misleading behaviors,
making agents lazy. In fact, due to a shared reward that is assigned equally to all
agents, it’s very likely that only a few agents actively contribute to the target goal
while the majority acts without interest and benefits of others’ effort. In this sense,
hand-crafted dense rewards may encourage the adoption of proactive behaviors,
evaluating with scalar values the single actions.

Rsingle = Baction · r+ + (1−Baction) · r− (3.3)
where the Baction = {0,1} is a crafted boolean evaluation variable of the action;
if the action is evaluated as good, Baction = 1 and the scalar value r+ is positive,
otherwise the scalar value is negative r− and Baction = 0. Examples of bad behaviors
can be: trying to go outside map boundaries, entering into nebula tiles, bumping
into asteroids or perform sap action to empty tiles. Examples of proactive behaviors
can be: discover new tiles through exploration and collecting points.
In [44], the authors give a solution to avoid traffic flow jams and combine the local
reward of the single traffic intersection with the global reward of the whole city
traffic flow. The underneath idea is that credit assignment is more complex in multi-
agent environments where explicit cooperation is needed, so a joint combination of
reward functions may help the learning process. Inspired by this, a third option
can be formulated mixing the rewards of single agents with the global perspective
reward.

Rmix = Rglobal +Rsingle (3.4)

3.3.2 Algorithm selection
In chapter 2, several single-RL and MARL algorithms are proposed, offering a wide
perspective on the different techniques used in current literature. In order to select

47

Materials and Methods

the most suited one, it’s worth recalling the main obstacles in LuxAI S3.
The number of units is an issue to the scalability of the algorithm. Algorithms
like IDQN[29] and MADDPG[31] have achieved notable results in multi-agent
environment but they requires the training of different neural networks for each
one of the agents. In this way, 16 parallel network optimizations are needed per
player, without considering that some algorithms like Actor-Critic based ones have
more than one policy to be optimized, plus a global-level optimization for CTDE
which have centralized training. It’s evident that, even with a HPC cluster, the
computational time would be too long to perform dozens of experiments. Moreover,
the units are not always present in the game, due to elimination or simply for not
spawning in the beginning, fostering the fluctuation of policy convergence.
According to Theorems 3 and 4, since there can be a permutation of individual
policies as the agents are identical to each others, the optimal joint policy can be
represented as a joint policy consisting of identical policies for all agents. Hence,
the LuxAI can be relaxed to Homogeneous MARL.

In [50], a performance benchmark between DQN, A2C and PPO is proposed.
For the sake of the thesis, a comparison between Off-Policy algorithms, like DQN,
and On-Policy algorithms, like A2C and PPO, is proposed as well. On the one side,
the authors show how DQN achieves high rewards in shorter durations, suiting best
for quick adaptation and time-efficient learning. On the other side, PPO and A2C
experienced more pronounced fluctuations in their learning trajectories, needing
more training time to converge; despite the overall better performances of PPO
over A2C, the paper shows that the computational time of PPO training is way
higher than A2C and that’s why A2C is chosen to represent On-Policy algorithms.

Having taken in consideration this premises, the algorithms implemented are
a novel combination of homogeneous agents paradigm, DQN and A2C: Homoge-
neous Deep Q-Network (HDQN) and Homogeneous Advantage Actor-Critic (HA2C).
These two algorithms are both CTDE-based, meaning that training and optimiza-
tion are carried on by a central super-agent, while the execution of the actions is
performed locally by the single sub-agents/units, in a decentralized fashion. One the
one side, this approach avoids the computational complexity of CTCE’s execution,
which would have created a huge single action space, built as the combination
of all actions of all agents and thus |{Ai}N | = 6unit1 · 6unit2 · [. . .] · 6unit16 = 616

exponentially exploding. One the other side, it overcomes the limitation of DTDE
training, which optimize every agent independently, making grow the computational
cost for each policy and lengthening the overall training phase time.

The snapshot of HDQN can see in Algorithm 9.
The behavior network is the mapping function which takes in input a state st,

48

Materials and Methods

predicts the Q(st, at) values for each action a and has a set of parameters θ; the
target network is the mapping function which represents the expected Q∗(st+1, at+1)
values of the next state st+1 and has set of parameters θ̄.
When computing the loss L(θ), the predicted Q(st, at) value is compared with the
sum of the reward rt+1 and expected next Q∗(st+1, at+1) value. In this way, there
will be convergence as soon as the two networks will output the same Q-values.
Since it’s Off-Policy method, the behavior network uses random samples from the
buffer D. The behavior network optimization is performed as:

θk+1 ← θk + α(rt+1 + γ max
a

Q∗(st+1, at+1; θ̄k+1)−Q(st, at; θk))∇θk
J(θk) (3.5)

The target network is updated every C episodes or, in order to prevent oscillations
in learning process, softly according to small values of τ after every episode:

θ̄ ← θ or θ̄ ← (1− τ)θ̄ + τθ (3.6)

Algorithm 9 Homogeneous Deep Q-Network (HDQN)
Initialize behavior network Q with random parameters θ
Initialize target network Q∗ with parameters θ̄
Initialize an empty replay buffer D to capacity M

for each episode do:
for each step episode do:

for agent i = 1, . . . , N do:
With probability ϵ, choose random action ai

t

otherwise, with probability (1− ϵ), ai
t = max

ai
Q∗(st, ai; θ̄)

end for
Apply actions {ai

t}; observe reward {ri
t+1} and new state si

t+1
Store transition (st, ai

t, ri
t+1, st+1) into buffer D

Set yi
k =

ri
k+1 if terminal sk+1

ri
k+1 + γ max

ai
Q∗(st+1, ai

t+1; θ̄) if non terminal sk+1

Compute L(θ) = yi
k −Q(st, ai; θ)

Update parameters θ by minimizing the loss L(θ)
end for
Every C episodes, update target network parameters θ̄
Alternatively, softly τ -update target network parameters θ̄

end for

49

Materials and Methods

Similarly, HA2C implementation is shown in Algorithm 10.
The actor network is the mapping function which takes in input a state st, predicts
the Q(st, at) values for each action a and has a set of parameters ϕ; the critic
network evaluates the expected goodness of a state st assigning a V (st) value.
The advantage function Adv(st, at) is used to quantify how much higher the expected
return is when applying the specific action at, compared to following the actor
policy π in state st. The advantage is positive or negative if, respectively, it reaches
a higher or lower return in comparison to the expected return of the state-value. In
this way the actor formulates the policy to choose the best actions, while the critic
gives a feedback if the prediction is better or worse than what the critic function
expects. Since it’s On-Policy method, the optimization is carried on considering
only the sample batches from the current policy and not leveraging batches from
other policies, and it follows:

ϕk+1 ← ϕk + αAdv(s, a; ϕ; θ)∇θk;ϕtJ(ϕk; θk) θk+1 ← θk + α∇θk
J(θk) (3.7)

Algorithm 10 Homogeneous Advantage Actor-Critic (HA2C)
Initialize actor network function π with random parameters ϕ
Initialize critic network V with parameters θ

for each episode do:
for each step episode do:

for agent i = 1, . . . , N do:
Sample action ai

t ∼ π(·|st; ϕ)
end for
Apply action {ai

t}; observe reward {ri
t+1} and new state st+1

if st+1 is terminal then:
Advantage Adv(st, at)← rt+1 − V (st; θ)
Critic target yt ← rt+1

else:
Advantage Adv(st, at)← rt+1 + γV (st+1; θ)− V (st; θ)
Critic target yt ← rt+1 + γV (st+1; θ)

end if
Compute actor loss L(ϕ) = −Adv(st, at) log π(at|st; ϕ)
Compute critic loss L(θ) = yt − V (st; θ)
Update parameters ϕ by minimizing the actor loss L(ϕ)
Update parameters θ by minimizing the critic loss L(θ)

end for
end for

50

Materials and Methods

3.3.3 Training and Learning
The design of policy has taken in consideration [11] to evaluate the depth and
width of neural network architecture.
On the one hand, deeper networks can capture a broad range of patterns, helping
to reveal complex relationships in data. They tend to build hierarchical repre-
sentations of knowledge when processing abstract input features. However, they
face challenges such as vanishing or exploding gradients during the optimization
process due to multiple layers, and they are prone to overfitting if not properly
designed, potentially memorizing the training data structure rather than learning
generalizable rules.
On the other hand, wider networks can process more features simultaneously,
which speeds up both training and inference times. They are typically more ro-
bust to outliers or input variations due to the large number of neurons. However,
their main drawback is the "curse of dimensionality," leading to high memory and
computational costs, with diminishing returns in performance as the number of
neurons increases. Due to the higher computational time in training process, the
architectures has followed a deeper design, limiting the number of neurons per layer
to 128.
Due to the necessity of identifying spatial relationships across map environment,
Conv layers have been used to recognize features from the input tensor 7@24× 24.
In order to avoid potential instability during learning or overfitting, there are some
BatchNorm layers between convolutional blocks too. At end, a series of Linear
layers are used to map the output into 6 Q(s, a) action-values, for HDQN policy
and HA2C Actor’s policy, or 1 V (s) state-value, for HA2C Critic’s policy. An
overview of the respective architectures can be seen in Figures 3.3 3.4.

The training process for HDQN and HA2C followed similar pipelines. Each
transition st, at, rt+1, st+1 is stored into the respective buffers and then used for the
optimization phase. However, due to the On-Policy nature of HA2C, its buffer
storage is limited to 8080 because it’s the maximum number of total transitions
in one game, considering 505 steps and 16 transitions for each unit in one match step.

Finally, the games have been generated using only "Self-play", meaning the agent
is trained by playing against itself, widely used by [18] [35] [36]. The agent learns
from its own experience by improving through interactions with itself, progressively
improving over time. Alternatively, Imitation Learning could have been used but
there was no guarantee that the games used were from "real experts of LuxAI S3",
since no benchmark has ever been published. Moreover, it would have biased the
idea of a completely agnostic agent if any information was stilled from external
knowledge.

51

Materials and Methods

Figure 3.3: DQN architecture. Both behavior and target policy networks share
the same structure.

52

Materials and Methods

Figure 3.4: A2C architecture. Critic’s policy network (left), Actor’s policy network
(right).

53

Chapter 4

Results

This chapter presents the experimental results of the two models previously de-
scribed: HDQN (Homogeneous Deep Q-Network) and HA2C (Homogeneous Ad-
vantage Actor-Critic). The experiments are presented following the evolution of the
reward formulation, as it represents the driving factor of a Reinforcement Learning
process. The balance between optimality and computational complexity has been
the main challenge, bringing many difficulties when designing the tests’ workflow,
since the hyper-parameter tuning wasn’t straightforward for both the solutions.
In particular, the chapter will give a panoramic of how the architectures have
performed in terms of reward and points gained during the games, underlining
which cooperative or greedy behaviors have been manifested by the agents. Finally,
the competition rank is shown, as well the comparison with the top tier’s agents
of the competition, leaving room for reasoning on which techniques have reached
better results.

4.1 Early setup
Before stepping into the explanation of the results, it’s worth to specify how the
tests have been carried out. Since Reinforcement Learning, and for extension
MARL, doesn’t have a predefined dataset as in Supervised Learning, it shall build
its own one and iterate over a huge number of training steps. The number of
steps required is not a formal statement that can be decided a-priori but more a
"rule-of-thumb" based on the complexity of the task. However, many frameworks
provide benchmarks where they show various algorithms performances, giving an
idea of the cardinality of such number.
RLlib[51][52] is an open source library and one of the most authoritative frame-
works in this field, which has build many scalable environment and implemented

54

Results

several state-of-the-art algorithms, both single and multi-agent RL. In their GitHub
repository1, DQN and A2C algorithms have been trained with roughly ∼ 107 steps
in various environments.
LuxAI S3 environment is obviously brand new and no framework has never pub-
lished any benchmark on it. However, considering that every game is made of 505
steps and the transition state-action-state is stored for each of the 16 units, the
greatest number of transitions is ∼ 8 ∗ 103 for each player per game. Due to the
high complexity and variance of the dynamic environment, the number of games
played has been fixed to 6000, leading to ∼ 4.8 ∗ 107 transitions/steps.
In Table 4.2 a summary of the hyper-parameters and fixed training parameters,
already discussed in the Methodology chapter. Other parameters will be clarified
more specifically within experiment results’ sections.

Algorithms HDQN HA2C
Type of learning Off-Policy On-Policy

of trained networks 1 2
Buffer size 50000 8080

of training games 6000 6000
of validation games 10 10

Batch size 1024 1024
Loss Huber Huber

Optimizer Adam Adam
ϵ [0.01, 1.0] [0.01, 1.0]

ϵ decay 0.995 0.995
γ 0.9 0.9

Time of training ∼ 11 hours ∼ 20 hours

Table 4.1: Hyper-parameters set

The γ parameter represents how much the future rewards are impacting on
the expected return of a given state, as in equation 2.2. Low values implies that
agents only care about short coming benefits, while greater values mean a long
term strategy which takes in consideration longer trajectories of actions. Generally,
setting γ = 0.99 or γ = 0.999 is useful to extend the temporal horizon till the
terminal state or state far enough from the present.
Despite of this, since the environment map is relatively small (24× 24) and every
match has only 101 steps, the weight of the last 101th action on the expected
return of state s101 → st will be respectively at least ws101→0|γ=0.99 = γ101 ≈ 0.36

1https://github.com/ray-project/rl-experiments

55

https://github.com/ray-project/rl-experiments

Results

and ws101→0|γ=0.999 = γ101 ≈ 0.9. These values are the lowest possible weights, as
the horizon of 101 steps is the highest; in case the horizon is lower, for example
s101 → s50, the weight will be higher ws101→50 = γ51 > ws101→0 = γ101.
Since the longest path to reach a relic tile, and thus collecting points, is when the
unit and relic are on the opposite corners of the map, a unit does take at most
48 actions to complete this path. Now, every other action over the 48th would be
overabundant to reach the target tile and the weighted reward should not impact
too much on the expected return. That’s why γ = 0.9 was more appropriate and
ws101→0|γ=0.9 = γ101 ≈ 2 ∗ 10−5 small enough to the neglect the effect of too long
trajectories of actions.

Finally, ϵ parameter refers to the randomness of the policy’s action selection. If
the value is closer to 1, the action selected is very likely to be chosen randomly,
while, if the value is closer to 0, the action is selected according to the current
policy. The trade-off exploration-exploitation is essential to learn new dynamics,
following random trajectories and then updating the policy on new discoveries.
However, exploration phase shall not take the majority of training steps and, due
to limited computational power and long trainings (especially for HA2C), ϵ-decay
has been set to 0.995, in order to limit the exploration till ∼ 1000th game. It’s
worthy to underline that the minimum value of the parameter is ϵ = 0.01, meaning
that in 1% of the cases there will still be a random action choice.

Figure 4.1: Epsilon decay influence on ϵ-greedy action selection along the training
steps.

The training has been performed using a workstation with the following specifics:

56

Results

Component Detail
CPU AMD RyzenTM 9 7900X

CPU’s Cores 12 Core 4.5GHz
GPU NVIDIA GeForce RTX 4080 16GB

CUDA 11.5
RAM DDR5 2x32GB

OS Ubuntu 22.04.5 LTS
Python 3.10
PyTorch 2.5.1

Gymnasium 1.0.0

Table 4.2: Hardware specifics.

and the GitHub repository with the code can be viewed at 2.

4.2 Global reward
The first set of experiments regards the application of a global reward, with aim
of observing which behaviors are stimulated. The reward adopted is made of two
components which are time-dependent, meaning that their weights are influenced
by the match step.

Rglobal = (1−Wt)Et + Wt
1
16

δ∆P

δt
(4.1)

where Wt is the ratio stept

101 , Et is the exploration ratio visible tiles
242 tiles

, 1
16

δ∆P

δt
is the

difference of points between the player and opponent, only for the step t and
regularized over the 16 units. In this way, Rglobal gives more importance to map
exploration at the beginning of the match, in order to find as soon as possible the
relic sites, and considering point collection more relevant in the late steps, since
the victory condition depends on them.

In Fig. 4.2, the losses of training phase shows that both architectures have
converged. On the one side, it’s interesting to notice how HDQN has a smooth
learning curve, reaching the stability almost after the "exploration" phase; this
happens because the behavior policy accesses batches with more variance, coming
from a buffer memory which stores 5 ∗ 104 transitions, and, thus, is able to better
generalize over different configurations of the environment.
On the other side, HA2C Actor’s policy has access only to one environment
configuration per optimization step, since the buffer memory stores transitions

2https://github.com/polrizzo/marl_luxai_s3

57

https://github.com/polrizzo/marl_luxai_s3

Results

from one game only. Moreover, the HA2C Loss is calculated on the Advantage
Function [5] and so the curve is continuously oscillating between positive and
negative values, depending on the similarity between the Actor’s prediction and
the Critic’s expected value.

(a) HDQN’s Policy Loss. (b) HA2C Actor’s Policy Loss.

Figure 4.2: Loss convergence comparison when using global reward.

However, despite the convergence of both architectures, the number of points
collected has been very low since there was no direct incentive to move closer to
relic sites. In fact, considering δ∆P

δt
is not an effective indicator to boost the gain of

more points, since no specific strategy is evaluated by it, and exploration reward
gives instead the major contribution, assigning positive bonus to the exploration
strategy only.
In part A. of Figure 4.3, the global reward is generally low, since the contribution of
exploration reward is decreased by temporal factor (1−Wt)Et and the contribution
of points difference δ∆P

δt
is practically irrelevant.

In part B. of Figure 4.3, the visualization of points collected during the games is
shown. In particular, the x-axis refers to the matches played, hence 6000 games
× 5 matches per game, resulting in a total of 30000 matches. Clearly, during the
exploration phase, random actions have brought to better results, so global reward
system is not able to beat an agent which plays and directs actions randomly.
Due to the poor performances of a sparse reward, hence the need of a more tailored
dense reward.

58

Results

(a) Global Reward trend. (b) Points gained at end of each match.

Figure 4.3: Rewards and Points gained when using a global reward.

4.3 Single reward
Since the previous credit assignment doesn’t stimulate a proper evaluation of the
environment dynamics, it has been crafted a reward based on the action performed
locally by the unit and on the unit’s position in the map. In contrast to previous
system which uses continuous values, the single reward outputs only scalar values,
bound to the set {−1, 0, +1}.

Rsingle =



−1 if unit moves outside the map

−1 if unit bumps into nebula tile

−1 if unit bumps into asteroid tile

−1 if sap action on empty tile

+1 if in relic site range

+1 if unit discovers new tiles

0 otherwise

(4.2)

The reward is structured as If-Elif-Else cycle where, starting from the first
condition, the agent checks if the statements are either satisfied, i.e. outputting
the value, or not, i.e. keeping on until the last condition.
Despite of this straightforward strategy, the main drawback was the unit’s spawn
in the corner. Since the starting position is always upper-left corner or bottom-
right corner, two out four movements lead always outside the map, implying an

59

Results

immediate negative reward. This has conditioned the learning process, making the
unit refuse some specifics actions and propagating this vision in long-term horizon.
The same has happened for the sap action: since in the exploration phase it is
unlikely to find many opponent’s units, the sap action always targets empty tiles,
implying again an immediate negative reward.
In part A. of Figure 4.4, it can be seen how the player 0’s policy only suggests to
stay still in order to not receive negative rewards. Similarly, the player 1’s policy
suggest to either move left or staying still if the unit goes outside the map or bumps
into obstacles. The frequency of action 0, i.e. staying still, has been summed
up in part B, of Figure 4.4, considering as benchmark the 10 validation games.
Following the experimental results, the single reward has been reshaped to a reward

(a) Snapshot of match. Both players’ are stuck
in the same position.

(b) Frequency% of action 0 during the 10
validation games.

Figure 4.4: Misleading behaviors due to strict single reward.

less static, combining both scaler values for local actions and continuous values
according to unit’s position. Applying too drastic negative rewards was clearly
misleading for the agent, as well as avoiding to consider the relative position of unit
with respect to relic sites. More specifically, Rrelic is calculated depending on the
relics discovered: if no relics is discovered so far null value is assigned, otherwise
either 1 if in relic range or a continuous value calculated as the distance from the
relic. The new reward becomes a combination of multiple sub-rewards:

60

Results

Rmove =



−0.25 if outside map

−0.25 if bumps nebula

−0.25 if bumps asteroid

−0.25 if staying still

0 otherwise

Rrelic =


+1 if in relic

1− d(u, rel) if outside relic

0 otherwise

(4.3)

Reffect =


+0.25 if new tile/relic discovered

−0.25 if sap on empty tile

0 otherwise

Rsingle = Rmove+Rrelic+Reffect

(4.4)
Before stepping into the results, it’s worth underlining that the new reward was

more complex than the previous ones, bringing more instability to the learning
process. In fact, when applying the gradient descent during backpropagation, the
gradient norm appeared to be very high and, in order to prevent future oscillation,
some optimization tricks as been adopted. The first one has been the clipping
technique, which limited the gradient norm to ||grad|| ≤ uclip. The second one
regards HA2C Critic’s policy and HDQN target policy: the updates has not been
done every C steps as:

θk+1 ← θk + α∇θk
J(θk) (4.5)

but rather τ -softly, being updated after every game with a continuous slow opti-
mization:

θk+1 ← (1− τ)θk + τ∇θk
J(θk) (4.6)

(a) Before optimization tricks. (b) After optimization tricks.

Figure 4.5: Gradient norm curve of Value-based Policies.

61

Results

The clipping upper bound uclip has been searched within the set {1,3,5,10}, while
the τ hyper-parameter within {10−3, 5 · 10−4, 10−4, 5 · 10−5}. The best configuration
has been uclip = 1 and τ = 5 · 10−4.

(a) HDQN’s Policy Loss. (b) HA2C Actor’s Policy Loss.

Figure 4.6: Policy losses when using single reward.

(a) HDQN Reward. (b) HA2C Reward.

Figure 4.7: Reward when using single reward.

Both architectures have converged and scored way more points with respect to
the previous configuration, increasing both the inferior bound of minimum points
and the upper bound of maximum points gained.
In Figure 4.9, it can be noticed how the units of both players are all positioned

62

Results

(a) HDQN Points. (b) HA2C Points.

Figure 4.8: Points collected when using single reward.

around the relics sites. This is a greedy behavior developed by the single reward
Rsingle, which encourages the closeness to the first relic discovered: however, in
games where more than two relics sites can be present, this behavior may be
limiting, as only one source of points gathering will be considered, i.e. the closest
to spawn corner.

(a) (b)

Figure 4.9: Greedy behaviors due to single reward.

63

Results

4.4 Mixed reward
Despite of the higher results of single reward contribution, the units still acts very
greedy. As matter of fact, once a relic site is discovered, the only purpose becomes
to approach it, stopping any further exploration and any eventual discovery of new
relic sites. In order to contain this selfish behavior and stimulate the exploration,
the contribution of Rglobal has been added to Rsingle to verify if the units can be
reactive and organize themselves in more cooperative strategies.

Rmixed = Rsingle +Rglobal (4.7)

The credit assignment is now more complete and aims to stimulate a cooperation
between agents, building a hierarchy of the tasks: the most important one still
remains to collect points staying closer to relics but, in second grade, a spread
distribution of units on the map is evaluated more in the beginning of a match,
contributing to an earlier exploration before pursuing the greedy task.
However, due to the complexity, lesser density and higher variance of the reward,
HA2C has not converged as in Figure 4.10, even after ∼ 22 hours of training. The
effects can be observed as well in Figure 4.12, as the the variance of points is way
more higher than the ones achieved in Figure 4.8 and maximum number of points
achieved didn’t improve too.
Recalling the comparative analysis of [50], it doesn’t surprise. In fact, On-Policy
algorithms need extended periods to converge on highly rewarding strategies and
the different trends in Figures 4.2 4.6 4.10 demonstrate how more unstable they
are with respect to Off-Policy DQN when the computational time is limited.

(a) HDQN Policy Loss. (b) HA2C Actor’s Policy Loss.

Figure 4.10: Policy losses when using mixed reward.

64

Results

(a) HDQN Reward. (b) HA2C Reward.

Figure 4.11: Reward when using mixed reward.

(a) HDQN Points. (b) HA2C Points.

Figure 4.12: Reward when using mixed reward.

In contrast, HDQN has introduced a slight exploring technique while maintaining
the purpose of collecting points. However, this has not been a systematic behavior,
since the policy was not able to generalize enough in all environment set-ups. In
part A. of Figure 4.13, some units are close to the relic site while other units try to
explore the environment; in part B. of Figure 4.13, instead, the units focus only on
gathering points from the first relic discovered, i.e. bottom left corner, and totally
missed the other two relic sites in the opposite corner because they didn’t explore
enough.

65

Results

(a) Greedy and exploration behaviors
combined.

(b) Greedy behavior only.

Figure 4.13: Comparison of greedy and cooperative behaviors of HDQN when
using mixed reward.

4.5 Final ranking
The Table 4.3 sums up the results obtained in the previous sections, considering
the 10 games of validation phase. The points have been rounded to upper integer,
since the score cannot be a floating point. The best results for each algorithm has
been highlighted.

Algorithm Reward Avg Points Highest ranking score
HDQN Global 8± 5 N.S.
HA2C Global 9± 5 N.S.
HDQN Single 84± 27 381th/704
HA2C Single 76± 29 460th/704
HDQN Mixed 90± 33 341th/704
HA2C Mixed 66± 41 544th/704

Table 4.3: Results overview.

N.S. stands for "Not Submitted".

LuxAI S3 and LuxAI past seasons had never had any kind of restriction regarding
the implementation of the agent. After the ending of each competition, the top 10

66

Results

players are suggested to publish their solution, in order to encourage new way of
developing solution for future seasons of the competition. For instance, looking at
the leaderboard of LuxAI S23, the top 10 players used mostly a rule-based approach,
using tailored crafted heuristics to optimize the agent workflow. In particular, only
one player used A2C-based algorithm (4th) and only one player used Imitation
Learning (7th).
Since the solution are not available yet for LuxAI S3, it’s not possible to know
if the winning solutions are rule-based or RL-based. However, looking at some
snapshots of the top tier players’ games in Figure 4.14, it can be noticed how the
units know exactly where yellow border relic tiles are and occupy them for the
majority of the time, as they have some heuristics which evaluate the map more
precisely. Moreover, after the occupation of the relic tiles, the remaining units not
only explore the map but also engage multiple "combats" with opponent’ units
through the sap action, as they are battling for the territory control. This behavior
has never been seen in the thesis experiments and it would have been very difficult
to implement such strategy with RL-based algorithms, as in Self-play training
the contact happens rarely since the primary tasks are collection of points and
exploration of territory.

(a) Game from 1st player. (b) Game from 2nd player..

Figure 4.14: Games from top tier players.

3https://www.kaggle.com/competitions/lux-ai-season-2/leaderboard

67

https://www.kaggle.com/competitions/lux-ai-season-2/leaderboard

Chapter 5

Conclusions

In this thesis, we explored the LuxAI S3 competition, organized in conjunction with
NeurIPS conference, as a platform for advancing the development of Multi-Agent
Reinforcement Learning (MARL) in real-world problem-solving scenarios. The
competition, through its focus on multi-agent systems, provided a structured and
dynamic environment where real-time decision making system and development
of collaborative strategies were the main pillars. The core aim of this work was
to highlight the immense potential of MARL in addressing complex competitive
games, giving a solid alternative to traditional solutions based on human-crafted
heuristics.

The major challenges of MARL, specifically the non-stationarity of the envi-
ronment and the credit assignment problem, are the reasons for which MARL
algorithms require a huge number of samples for effective training and, at the same
time, don’t guarantee convergence in every scenarios; hence the need of a precise
formalization of the problem and tailored solution in order to foster effectively the
scalability and the computational efficiency during the learning.
Through the combination of Homogeneity property and state-of-the-art algorithm
DQN and A2C, the proposed architecture has been able to train an autonomous
agent aware of environment evolution and agents’ dynamics, developing a strategy
balanced between cooperative behaviors and greedy conducts to pursue the winning
conditions. Moreover, the model has reached stability even though it was trained
as agnostic and with Self-Play, thus without distilling from experts’ knowledge
and learning only from trial-and-error simulations. Despite not achieving top tier
positions of final ranking, HDQN has still reached convergence in learning phase
and positioned in the first half of the ranking.

As multi-agent systems become more prevalent in various sectors, such as
transportation, logistics, finance, and healthcare, the ability of agents to learn,

68

Conclusions

collaborate, and make decisions autonomously will become increasingly valuable.
Furthermore, the continued exploration of multi-agent systems in decentralized
settings, including edge computing and distributed networks, is poised to revolu-
tionize industries where communication and coordination are essential. Since the
proposed architecture is Model-Free, it can be shifted to other domains or future
LuxAI competitions, with the amendments thereto. Future works may include the
combination of Homogeneity concept with other MARL algorithms, in order to
create a more comprehensive and wider benchmark of its potentialities.

69

Bibliography

[1] A. L. Samuel. «Some Studies in Machine Learning Using the Game of Check-
ers». In: IBM Journal of Research and Development 3.3 (1959), pp. 210–229.
doi: 10.1147/rd.33.0210 (cit. on p. 3).

[2] D.P. Kroese, Z.I. Botev, T. Taimre, and R. Vaisman. Data Science and
Machine Learning: Mathematical and Statistical Methods. Chapman & Hal-
l/CRC machine learning & pattern recognition. Boca Raton: CRC Press,
2019, pp. 19–20, 67–120. isbn: 9781138492530. url: https://people.smp.
uq.edu.au/DirkKroese/DSML/ (cit. on p. 3).

[3] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning
- From Theory to Algorithms. Cambridge University Press, 2014, pp. 33–34.
isbn: 978-1-10-705713-5 (cit. on pp. 4, 5).

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html (cit. on pp. 6, 8, 10, 13, 23, 32).

[5] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014 (cit. on p. 8).

[6] Richard Bellman. Dynamic Programming. Dover Publications, 1957. isbn:
9780486428093 (cit. on pp. 9, 11).

[7] Christopher Watkins and Peter Dayan. «Q-learning». In: Machine Learning
8.3 (1992), pp. 279–292. issn: 1573-0565. doi: 10.1007/BF00992698 (cit. on
p. 14).

[8] Yoshua Bengio. «Learning Deep Architectures for AI.» In: Foundations and
Trends in Machine Learning 2.1 (2009), pp. 1–127. url: http://dblp.uni-
trier.de/db/journals/ftml/ftml2.html#Bengio09 (cit. on p. 15).

[9] K. Hornik, M. Stinchcombe, and H. White. «Multilayer feedforward networks
are universal approximators». In: Neural Netw. 2.5 (July 1989), pp. 359–366.
issn: 0893-6080 (cit. on p. 16).

[10] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, 1959 (cit. on
p. 17).

70

https://doi.org/10.1147/rd.33.0210
https://people.smp.uq.edu.au/DirkKroese/DSML/
https://people.smp.uq.edu.au/DirkKroese/DSML/
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1007/BF00992698
http://dblp.uni-trier.de/db/journals/ftml/ftml2.html#Bengio09
http://dblp.uni-trier.de/db/journals/ftml/ftml2.html#Bengio09

BIBLIOGRAPHY

[11] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do Wide and Deep
Networks Learn the Same Things? Uncovering How Neural Network Repre-
sentations Vary with Width and Depth. 2021. arXiv: 2010.15327 [cs.LG].
url: https://arxiv.org/abs/2010.15327 (cit. on pp. 17, 51).

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. «Backpropagation Applied to Handwritten Zip Code
Recognition». In: Neural Computation 1 (1989), pp. 541–551 (cit. on p. 18).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]. url:
https://arxiv.org/abs/1512.03385 (cit. on p. 19).

[14] Sebastian Ruder. An overview of gradient descent optimization algorithms.
2017. arXiv: 1609.04747 [cs.LG]. url: https://arxiv.org/abs/1609.
04747 (cit. on p. 21).

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/
1412.6980 (cit. on pp. 21, 22).

[16] Aditya Mohan, Amy Zhang, and Marius Lindauer. «Structure in Deep Rein-
forcement Learning: A Survey and Open Problems». In: Journal of Artificial
Intelligence Research 79 (Apr. 2024), pp. 1167–1236. issn: 1076-9757. doi:
10.1613/jair.1.15703. url: http://dx.doi.org/10.1613/jair.1.15703
(cit. on p. 22).

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. 2013. arXiv: 1312 . 5602 [cs.LG]. url: https :
//arxiv.org/abs/1312.5602 (cit. on p. 24).

[18] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. 2016. arXiv: 1602.
01783 [cs.LG]. url: https://arxiv.org/abs/1602.01783 (cit. on pp. 24,
51).

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347
[cs.LG]. url: https://arxiv.org/abs/1707.06347 (cit. on p. 26).

[20] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust Region Policy Optimization. 2017. arXiv: 1502.05477 [cs.LG].
url: https://arxiv.org/abs/1502.05477 (cit. on p. 26).

71

https://arxiv.org/abs/2010.15327
https://arxiv.org/abs/2010.15327
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1613/jair.1.15703
http://dx.doi.org/10.1613/jair.1.15703
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

BIBLIOGRAPHY

[21] Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent
Reinforcement Learning: Foundations and Modern Approaches. MIT Press,
2024. url: https://www.marl-book.com (cit. on pp. 28, 29, 31, 33, 35).

[22] Kun Il Park. Fundamentals of Probability and Stochastic Processes with Appli-
cations to Communications. 1st. Springer Publishing Company, Incorporated,
2017. isbn: 3319680749 (cit. on p. 28).

[23] Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. «Deep
multiagent reinforcement learning: challenges and directions». en. In: Artif.
Intell. Rev. (Oct. 2022) (cit. on p. 30).

[24] Yang Yu. «Towards Sample Efficient Reinforcement Learning». In: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18. International Joint Conferences on Artificial Intelligence
Organization, July 2018, pp. 5739–5743. doi: 10.24963/ijcai.2018/820.
url: https://doi.org/10.24963/ijcai.2018/820 (cit. on p. 31).

[25] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards
Continual Reinforcement Learning: A Review and Perspectives. 2022. arXiv:
2012.13490 [cs.LG]. url: https://arxiv.org/abs/2012.13490 (cit. on
p. 31).

[26] Changxi Zhu, Mehdi Dastani, and Shihan Wang. A Survey of Multi-Agent
Deep Reinforcement Learning with Communication. 2024. arXiv: 2203.08975
[cs.MA]. url: https://arxiv.org/abs/2203.08975 (cit. on p. 31).

[27] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van
Hasselt, Olivier Pietquin, and Laura Toni. A Survey of Temporal Credit As-
signment in Deep Reinforcement Learning. 2024. arXiv: 2312.01072 [cs.LG].
url: https://arxiv.org/abs/2312.01072 (cit. on pp. 32, 47).

[28] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learn-
ing Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement
Learning. 2020. arXiv: 2007.02529 [cs.LG]. url: https://arxiv.org/abs/
2007.02529 (cit. on p. 32).

[29] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan
Korjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent Cooperation and
Competition with Deep Reinforcement Learning. 2015. arXiv: 1511.08779
[cs.AI]. url: https://arxiv.org/abs/1511.08779 (cit. on pp. 34, 37,
48).

[30] Gregory Palmer, Rahul Savani, and Karl Tuyls. Negative Update Intervals in
Deep Multi-Agent Reinforcement Learning. 2019. arXiv: 1809.05096 [cs.MA].
url: https://arxiv.org/abs/1809.05096 (cit. on p. 34).

72

https://www.marl-book.com
https://doi.org/10.24963/ijcai.2018/820
https://doi.org/10.24963/ijcai.2018/820
https://arxiv.org/abs/2012.13490
https://arxiv.org/abs/2012.13490
https://arxiv.org/abs/2203.08975
https://arxiv.org/abs/2203.08975
https://arxiv.org/abs/2203.08975
https://arxiv.org/abs/2312.01072
https://arxiv.org/abs/2312.01072
https://arxiv.org/abs/2007.02529
https://arxiv.org/abs/2007.02529
https://arxiv.org/abs/2007.02529
https://arxiv.org/abs/1511.08779
https://arxiv.org/abs/1511.08779
https://arxiv.org/abs/1511.08779
https://arxiv.org/abs/1809.05096
https://arxiv.org/abs/1809.05096

BIBLIOGRAPHY

[31] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
2020. arXiv: 1706.02275 [cs.LG]. url: https://arxiv.org/abs/1706.
02275 (cit. on pp. 35, 38, 48).

[32] Hanmo Chen, Stone Tao, Jiaxin Chen, Weihan Shen, Xihui Li, Chenghui
Yu, Sikai Cheng, Xiaolong Zhu, and Xiu Li. Emergent collective intelligence
from massive-agent cooperation and competition. 2023. arXiv: 2301.01609
[cs.AI]. url: https://arxiv.org/abs/2301.01609 (cit. on p. 37).

[33] Roger Creus Castanyer. Centralized control for multi-agent RL in a complex
Real-Time-Strategy game. 2023. arXiv: 2304.13004 [cs.AI]. url: https:
//arxiv.org/abs/2304.13004 (cit. on p. 37).

[34] Stone Tao, Akarsh Kumar, Bovard Doerschuk-Tiberi, Isabelle Pan, Addison
Howard, and Hao Su. «Lux AI Season 3: Multi-Agent Meta Learning at Scale».
In: NeurIPS 2024 Competition Track. 2024. url: https://openreview.net/
forum?id=7t8kWYbOcj (cit. on pp. 37, 39).

[35] David Silver et al. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815 [cs.AI]. url:
https://arxiv.org/abs/1712.01815 (cit. on pp. 37, 51).

[36] Julian Schrittwieser et al. «Mastering Atari, Go, chess and shogi by planning
with a learned model». In: Nature 588.7839 (Dec. 2020), pp. 604–609. issn:
1476-4687. doi: 10.1038/s41586-020-03051-4. url: http://dx.doi.org/
10.1038/s41586-020-03051-4 (cit. on pp. 37, 51).

[37] Ti-Rong Wu, Hung Guei, Pei-Chiun Peng, Po-Wei Huang, Ting Han Wei,
Chung-Chin Shih, and Yun-Jui Tsai. MiniZero: Comparative Analysis of
AlphaZero and MuZero on Go, Othello, and Atari Games. 2024. arXiv: 2310.
11305 [cs.AI]. url: https://arxiv.org/abs/2310.11305 (cit. on p. 37).

[38] OpenAI et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.
arXiv: 1912.06680 [cs.LG]. url: https://arxiv.org/abs/1912.06680
(cit. on p. 37).

[39] Michaël Mathieu et al. AlphaStar Unplugged: Large-Scale Offline Reinforce-
ment Learning. 2023. arXiv: 2308.03526 [cs.LG]. url: https://arxiv.
org/abs/2308.03526 (cit. on p. 37).

[40] Christopher Amato. An Introduction to Centralized Training for Decentralized
Execution in Cooperative Multi-Agent Reinforcement Learning. 2024. arXiv:
2409.03052 [cs.LG]. url: https://arxiv.org/abs/2409.03052 (cit. on
p. 38).

73

https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/2301.01609
https://arxiv.org/abs/2301.01609
https://arxiv.org/abs/2301.01609
https://arxiv.org/abs/2304.13004
https://arxiv.org/abs/2304.13004
https://arxiv.org/abs/2304.13004
https://openreview.net/forum?id=7t8kWYbOcj
https://openreview.net/forum?id=7t8kWYbOcj
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/2310.11305
https://arxiv.org/abs/2310.11305
https://arxiv.org/abs/2310.11305
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2308.03526
https://arxiv.org/abs/2308.03526
https://arxiv.org/abs/2308.03526
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052

BIBLIOGRAPHY

[41] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-Agent Deep
Reinforcement Learning for Large-scale Traffic Signal Control. 2019. arXiv:
1903.04527 [cs.LG]. url: https://arxiv.org/abs/1903.04527 (cit. on
p. 38).

[42] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre
Bayen, and Yi Wu. The Surprising Effectiveness of PPO in Cooperative, Multi-
Agent Games. 2022. arXiv: 2103.01955 [cs.LG]. url: https://arxiv.org/
abs/2103.01955 (cit. on p. 38).

[43] Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A
Survey of Imitation Learning: Algorithms, Recent Developments, and Chal-
lenges. 2023. arXiv: 2309.02473 [cs.LG]. url: https://arxiv.org/abs/
2309.02473 (cit. on p. 38).

[44] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao
Xiong, Kai Xu, and Zhenhui Li. «Toward A Thousand Lights: Decentralized
Deep Reinforcement Learning for Large-Scale Traffic Signal Control». In:
Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr.
2020), pp. 3414–3421. doi: 10 . 1609 / aaai . v34i04 . 5744. url: https :
//ojs.aaai.org/index.php/AAAI/article/view/5744 (cit. on pp. 38, 47).

[45] Hua Wei et al. «CoLight: Learning Network-level Cooperation for Traffic
Signal Control». In: Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. CIKM ’19. ACM, Nov. 2019,
pp. 1913–1922. doi: 10.1145/3357384.3357902. url: http://dx.doi.org/
10.1145/3357384.3357902 (cit. on p. 38).

[46] Deheng Ye et al. Towards Playing Full MOBA Games with Deep Reinforcement
Learning. 2020. arXiv: 2011.12692 [cs.AI]. url: https://arxiv.org/abs/
2011.12692 (cit. on p. 38).

[47] Boyin Liu, Zhiqiang Pu, Yi Pan, Jianqiang Yi, Yanyan Liang, and D. Zhang.
«Lazy Agents: A New Perspective on Solving Sparse Reward Problem in Multi-
agent Reinforcement Learning». In: Proceedings of the 40th International
Conference on Machine Learning. Ed. by Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett.
Vol. 202. Proceedings of Machine Learning Research. PMLR, 23–29 Jul 2023,
pp. 21937–21950. url: https://proceedings.mlr.press/v202/liu23ac.
html (cit. on pp. 38, 47).

[48] Zijian Gao, Kele Xu, Bo Ding, Huaimin Wang, Yiying Li, and Hongda Jia.
KnowSR: Knowledge Sharing among Homogeneous Agents in Multi-agent
Reinforcement Learning. 2021. arXiv: 2105.11611 [cs.AI]. url: https:
//arxiv.org/abs/2105.11611 (cit. on p. 38).

74

https://arxiv.org/abs/1903.04527
https://arxiv.org/abs/1903.04527
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473
https://doi.org/10.1609/aaai.v34i04.5744
https://ojs.aaai.org/index.php/AAAI/article/view/5744
https://ojs.aaai.org/index.php/AAAI/article/view/5744
https://doi.org/10.1145/3357384.3357902
http://dx.doi.org/10.1145/3357384.3357902
http://dx.doi.org/10.1145/3357384.3357902
https://arxiv.org/abs/2011.12692
https://arxiv.org/abs/2011.12692
https://arxiv.org/abs/2011.12692
https://proceedings.mlr.press/v202/liu23ac.html
https://proceedings.mlr.press/v202/liu23ac.html
https://arxiv.org/abs/2105.11611
https://arxiv.org/abs/2105.11611
https://arxiv.org/abs/2105.11611

BIBLIOGRAPHY

[49] Ralf Herbrich, Tom Minka, and Thore Graepel. «TrueSkill™: A Bayesian
Skill Rating System». In: Advances in Neural Information Processing Systems.
Ed. by B. Schölkopf, J. Platt, and T. Hoffman. Vol. 19. MIT Press, 2006.
url: https://proceedings.neurips.cc/paper_files/paper/2006/file/
f44ee263952e65b3610b8ba51229d1f9-Paper.pdf (cit. on p. 40).

[50] Neil De La Fuente and Daniel A. Vidal Guerra. A Comparative Study of
Deep Reinforcement Learning Models: DQN vs PPO vs A2C. 2024. arXiv:
2407.14151 [cs.LG]. url: https://arxiv.org/abs/2407.14151 (cit. on
pp. 48, 64).

[51] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. «RLlib:
Abstractions for Distributed Reinforcement Learning». In: International Con-
ference on Machine Learning (ICML). 2018. url: https://arxiv.org/pdf/
1712.09381 (cit. on p. 54).

[52] Zhanghao Wu, Eric Liang, Michael Luo, Sven Mika, Joseph E. Gonza-
lez, and Ion Stoica. «RLlib Flow: Distributed Reinforcement Learning is a
Dataflow Problem». In: Conference on Neural Information Processing Systems
(NeurIPS). 2021. url: https://proceedings.neurips.cc/paper/2021/
file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf (cit. on p. 54).

75

https://proceedings.neurips.cc/paper_files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf
https://arxiv.org/abs/2407.14151
https://arxiv.org/abs/2407.14151
https://arxiv.org/pdf/1712.09381
https://arxiv.org/pdf/1712.09381
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf

	List of Figures
	List of algorithms
	Introduction
	Background
	Machine Learning
	Supervised Learning

	Reinforcement Learning
	Nomenclature and Elements of RL
	Markov Decision Process
	Bellman Equations and Policy Optimization
	Dynamic Programming
	Temporal-Difference learning

	Deep Learning
	Feed-Forward Neural Network
	Convolutional Neural Network
	Optimization

	Deep Reinforcement Learning
	Deep Q-Learning
	Policy Gradient
	Popular algorithms

	Multi-Agent Reinforcement Learning
	Nomenclature in Multi-Agent systems
	Open challenges
	Training and execution mode
	Possible solutions

	Related Works

	Materials and Methods
	LuxAI
	Rules
	Environment

	Frameworks
	Methods
	Observations, Actions, Rewards
	Algorithm selection
	Training and Learning

	Results
	Early setup
	Global reward
	Single reward
	Mixed reward
	Final ranking

	Conclusions
	Bibliography

