

POLITECNICO DI TORINO

MASTER OF SCIENCE THESIS

Design, reliability evaluation, and hardening of vision-

oriented hardware accelerators

Supervisor: Author:

Prof. SONZA REORDA MATTEO Oguz Sensoz

Co-supervisors:

Dr. GUERRERO BALAGUERA JUAN DAVID

Dr. RODRIGUEZ CONDIA JOSIE ESTEBAN

Master of Science degree in

Electronics Engineering

Department of Electronics and Telecommunications

February 2025

iii

ABSTRACT
An increase in the complexity of electronic systems leads to less tolerance of such systems for

performance degradation and safety hazards. Therefore, guaranteeing the reliability of

electronic systems is crucial for safety-critical applications. It is needed to identify any kinds

of errors and the possible origin of the error as early as possible and find solutions not to

sacrifice for performance.

An error occurrence can depend on different reasons including manufacturing defects,

aging, environmental interruption, and so on. Some of these errors can be detected and corrected

after production however some of them may also arise after use. This may cause a failure if the

designer is not aware of such cases while designing the product. There might be such cases

where even engineers can not intervene to fix the error for instance space applications. Hence,

the electronic systems should be capable of rectifying the errors or be resistant to the errors.

Modeling faults and analyzing their effects are significant for performance. A fault can

be defined as a representation of a defect that is unexpected behavior between a planned design

and an implemented design. There are different fault models to test the designs. The thesis

focuses on stuck-at and transient fault models to test hardware.

The thesis studies the reliability assessment of hardware faults affecting a stereo core

based on census transform. The accelerator calculates the depth information from two images

of the same scene but at different angles. The evaluations were conducted in a set of images

obtained from Middlebury Stereo Datasets. Four scenes are used: Tsukuba, Cones, Venus, and

Teddy. The accelerator creates a disparity map showing the depth of the objects. The

Middlebury Stereo Datasets also provide ground-truth images for the scenes and they are used

to calculate accuracy, peak-signal-to-noise ratio (PSNR), and signal-to-noise ratio

(SNR). These are also the metrics used to evaluate the impact of faults on the output images

generated by the accelerator.

The accelerator is based on census transform which has different configurations. Kernel

size (5x5, 7x7, and 9x9) and the number of neighborhoods (9 configurations) are features for

the census transform [1]. The provided hardware was implemented with a 7x7 kernel and

uniformly distributed neighborhoods. To gain a comprehensive view, all combinations of the

features are implemented since the resilience to a fault for one configuration may not be the

same for another. In other words, faults that do not arise in one configuration may appear.

iv

However, the quality of the dispart map can also be different. Therefore, all configurations of

the census transform are implemented and adapted in the accelerator. The metrics were

calculated for four scenes with Matlab. This forms the initial part of the thesis. The metrics for

fault-free simulations are present at this stage.

After that work, an analysis for fault-injected hardware starts. Since there are a lot of

configurations, an automated framework is needed to expedite the injection process. The

framework needs a fault list that stores locations where the fault will be injected. Stuck-at faults

are implemented via the Questa simulator.

The framework takes the selected hardware and then compiles it. A script reads the fault

list line by line and for each fault, it simulates the selected hardware. The output of the

accelerator, a disparity map, will be compared with the ground-truth image with the help of a

Python script which calculates the metrics and writes them down in a CSV file.

The creation of the fault list is completed after several trials. The first list targets

locations that are intuitively selected. It requires an understanding of the hardware. The most

significant bits of signed additions and subtractions are mostly targeted. There are also

comparators in the hardware and some bits are also targeted. Since there are millions of bits, it

is impossible to simulate all of them within a certain period. That is the reason for fault list

creation. Nevertheless, the time is still limited to simulate all designs. At this point, a second

list emerged. This list targets the most significant bits of outputs of all modules in the design.

The aim is to identify the effect of sign bits in the circuit. Finally, simulations were conducted

as time permitted. Metrics are calculated for 7x7 windows for all neighborhood configurations.

As a result, sign bits make a difference for stuck-at-0 fault for all designs. The second stage of

the thesis is concluded with these simulations.

Finally, the thesis seeks to solution to accelerate the simulations. The solution is to

migrate the framework into the FPGA environment. As it is apparent, FPGA can enable the

simulations to run almost in real-time. Hyper FPGA, Trenz SOM TE0803-03-4BE11-A, is used

for the purpose. However, it is provided to us by the Multidisciplinary LABoratory (MLAB)

from The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy). The

framework was introduced by them. The connection to hyper FPGA is provided to us via

Jupyter Notebook.

The framework aims to connect any custom design into FPGA via the communication

block IP core (core ComBlock) which provides interfaces such as registers and FIFOs to the

v

programmer of the programmable logic (PL). It helps to bypass the complexity of the bus

provided by the processing system (PS).

This stage plans to set hardware for: (i) input image selection, (ii) location of the fault

injection/s, and (iii) collection of statistics automatically. These require modifications on

hardware and additional controller hardware for the status of the hardware.

The hardware needs to be inserted with saboteurs which are the small hardware to select

fault types (stuck-at-0, stuck-at-1, and transient fault specifically single-event-upset (SEU)).

Besides the saboteurs, a shift register has to be inserted to store and enable signals. These are

inserted into comparator modules of the accelerator for trial since it is a small hardware. The

injection process is also done automatically with a Python script. After successful compilation,

the controller module is designed.

The controller is a hardware component that lets the programmer know about the status

of the hardware. It establishes a kind of handshake protocol between the programmer and the

FI infrastructure inside the target hardware. For instance, if the hardware received the input

image and is ready to start the simulation or it concludes the simulation. This type of message

is important to obtain reliable results. Then the accelerator with the controller is implemented

and interfaces are also handled. This was the last stage of the thesis.

In conclusion, the FPGA framework needs to be tested for functionality which is a future

work. However, the effort put into this thesis is important to test any hardware via FPGA

automatically and contribute to running simulations faster. The proposed framework can

contribute to the designer to test their design faster and build fault correction algorithms

accordingly.

vi

vii

Content
1. Introduction .. 1

2. Background ... 5

2.1. Stereo Vision .. 5

2.1.1. The Census Transform [1] ... 8

2.1.2. The Sparse Census Transform ... 9

2.1.3. Strategies for Reliability Evaluation [10] .. 12

2.2. Levels of Fault Models ... 14

2.3. Stuck-at Fault ... 14

2.4. Transient Fault [13] .. 15

2.5. Evaluation Metrics ... 16

2.6. The Field Programmable Gate Array (FPGA) ... 19

2.6.1. The Hyper FPGA ... 19

2.6.2. The ComBlock [17] ... 20

3. Stereo Matching Accelerator [1] ... 24

3.1. Census Transform Module ... 24

3.2. Sum of Hamming Distance (SHD) Module ... 26

3.2.1. Hamming Distance (HD): Number_of_ones module 27

3.2.2. Sum of Hamming Distance (SHD): Window_Sum module 28

3.2.3. Comparator: Disp_Cmp module .. 29

3.3. Left-Right Consistency Check (LRCC) Module 30

4. Simulation Environment for Reliability Assessment....................................... 33

4.2. Fault-Free Simulations ... 34

4.3. Faulty Simulations .. 35

4.3.1. Fault List: Where to Inject the Fault .. 36

5. Emulation-Based Strategy ... 39

5.1. Methodology .. 39

viii

5.2. Block Diagram ... 40

5.3. Hardware Modifications ... 41

5.3.1. Yosys [19] .. 41

5.3.2. Sabotuers and Injection ... 41

5.3.3. The FI Controller ... 45

6. Evaluation Results .. 52

6.1. Fault-Free Simulation Results .. 52

6.1.1. Fault-free Results: 5x5 Window Size .. 52

6.1.2. Fault-free Results: 7x7 Window Size .. 56

6.1.3. Fault-free Results: 9x9 Window Size .. 59

6.2. Faulty Simulation Results .. 62

7. Conclusion and Future Work .. 82

7.1. Future Work .. 83

Bibliography ... 85

ix

x

List of Figures
Figure 1 Top: Images recorded by two cameras with significant differences in extrinsic

parameters and also differences in intrinsic parameters. Bottom: Two geometrically rectified

images taken at different viewing locations by two cameras installed in a crash-test hall [6]... 6

Figure 2 Stereo matching among two images of the same scene [7] 7

Figure 3 Disparity versus Distance [8] ... 7

Figure 4 Census transform example ... 8

Figure 5 Census Transform kernel configuration for 5x5 window 10

Figure 6 Census Transform kernel configuration for 7x7 window 11

Figure 7 Census Transform kernel configuration for 9x9 window 11

Figure 8 An example of a single stuck-at-fault. ... 15

Figure 9 The histograms of the Tsukuba image for 7x7 window size implementation

(threshold is 70, the red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point.

f) 8-Point. g) 4-Point. h) 2-Point. i) 1-Point. .. 17

Figure 10 The histograms of the image of the cone for 7x7 window size implementation

(threshold is 33, the red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point.

f) 8-Point. g) 4-Point. h) 2-Point. i) 1-Point. .. 17

Figure 11 The histograms of the venus image for 7x7 window size implementation

(threshold is 30, the red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point.

f) 8-Point. g) 4-Point. h) 2-Point. i) 1-Point. .. 18

Figure 12 TE0803-01 MPSoC module ... 19

Figure 13 ComBlock .. 21

Figure 14 ComBlock with ports ... 22

Figure 15 Ports of Census Transform Module ... 24

Figure 16 Window buffer for 7x7 census window and 13x13 correlation window 25

Figure 17 SHD Module with inputs/outputs .. 26

Figure 18 Stereo core architecture .. 27

Figure 19 Calculation of hamming distance ... 27

Figure 20 Computing Column Sum [1] .. 28

Figure 21 Computing Window Sums [1] .. 28

Figure 22 The architecture of the SHD module [1] .. 29

Figure 23 Comparator Module. n is several bits as the output of the census transform.

Wh is the size of the correlation window ... 30

xi

Figure 24 LRCC module .. 31

Figure 25 Middlebury Stereo Vision dataset: left images, right images, and ground-truth

 .. 34

Figure 26 Testbench environment for fault-free simulations 34

Figure 27 Testbench environment for faulty simulation... 36

Figure 28 Example index for fault list .. 36

Figure 29 Proposed Framework ... 39

Figure 30 Block Design .. 40

Figure 31 Sabotuer injection with super saboteurs [20] ... 42

Figure 32 New ports ... 44

Figure 33 Saboteur for input signal .. 44

Figure 34 Logic for SEU .. 45

Figure 35 Controller signals ... 46

Figure 36 Status Register .. 48

Figure 37 The internal architecture of the controller .. 49

Figure 38 Timing diagram for stuck-at-fault .. 49

Figure 39 Timing diagram for transient fault ... 50

Figure 40 Tsukuba results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-

Point. (e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 53

Figure 41 Cones results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 54

Figure 42 Venus results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 55

Figure 43 Tsukuba results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-

Point. (e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 56

Figure 44 Cones results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 57

Figure 45 Venus results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 58

Figure 46 Tsukuba results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-

Point. (e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 59

Figure 47 Cones results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 60

xii

Figure 48 Venus results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point.

(e) 12-Point. (f) 16-Point. (g) Non-redundant. (h) Uniform. (i) Full. 61

Figure 49 The stuck-at-0 accuracy results of Tsukuba for uniform and 7x7 window size

 .. 63

Figure 50 The stuck-at-0 PSNR results of Tsukuba for uniform and 7x7 window size63

Figure 51 The stuck-at-0 SNR results of Tsukuba for uniform and 7x7 window size . 64

Figure 52 The stuck-at-1 accuracy results of Tsukuba for uniform and 7x7 window size

 .. 64

Figure 53 The stuck-at-1 PSNR results of Tsukuba for uniform and 7x7 window size65

Figure 54 The stuck-at-1 SNR results of Tsukuba for uniform and 7x7 window size . 65

Figure 55 Faulty Tsukuba for component 33. Stuck-at-1 fault is injected at: a) Bit-11, b)

Bit-15, c) Bit-16, d) Bit-17. .. 66

Figure 56 Faulty Tsukuba for component 63. Stuck-at-1 fault is injected at: a) Bit-11, b)

Bit-15, c) Bit-16, d) Bit-17. .. 67

Figure 57 The stuck-at-0 accuracy results of Cones for uniform and 7x7 window size

 .. 68

Figure 58 The stuck-at-0 PSNR results of Cones for uniform and 7x7 window size .. 68

Figure 59 The stuck-at-0 SNR results of Cones for uniform and 7x7 window size 69

Figure 60 The stuck-at-1 accuracy results of Cones for uniform and 7x7 window size

 .. 69

Figure 61 The stuck-at-1 PSNR results of Cones for uniform and 7x7 window size .. 70

Figure 62 The stuck-at-1 SNR results of Cones for uniform and 7x7 window size 70

Figure 63 Faulty cones for component 33. Stuck-at-0 fault is injected at: a) Bit-10, b)

Bit-11, c) Bit-12, d) Bit-16, e) Bit-17, and f) Bit-18. ... 71

Figure 64 Faulty cones for component 63. Stuck-at-0 fault is injected at: a) Bit-10, b)

Bit-11, c) Bit-12, d) Bit-16, e) Bit-17, and f) Bit-18. ... 72

Figure 65 Cones images: a) sa0 fault at the 0th-bit position for component 30. b) Fault-

free image ... 72

Figure 66 The stuck-at-0 accuracy results of Venus for uniform and 7x7 window size

 .. 73

Figure 67 The stuck-at-0 PSNR results of Venus for uniform and 7x7 window size ... 74

Figure 68 The stuck-at-0 SNR results of Venus for uniform and 7x7 window size 74

Figure 69 The stuck-at-1 accuracy results of Venus for uniform and 7x7 window size

 .. 75

xiii

Figure 70 The stuck-at-1 PSNR results of Venus for uniform and 7x7 window size ... 75

Figure 71 The stuck-at-1 SNR results of Venus for uniform and 7x7 window size 76

Figure 72 Faulty venus for component 33. Stuck-at-0 fault is injected at: a) Bit-11, b)

Bit-16, and c) Bit-17. .. 76

Figure 73 a) Golden disparity map of Venus (97.03% accuracy). b) When a fault is

injected at component 10, bit position 1 for sa0 (95.42% accuracy). 76

Figure 74 Accuracies for Cones, Tsukuba, and Venus images based on the number of

comparators for SA1. ... 77

Figure 75 PSNRs for Cones, Tsukuba, and Venus images based on the number of

comparators for SA1. ... 78

Figure 76 SNRs for Cones, Tsukuba, and Venus images based on the number of

comparators for SA1. ... 78

Figure 77 Accuracies for Cones, Tsukuba, and Venus images based on the number of

comparators for SA0. ... 79

Figure 78 PSNRs for Cones, Tsukuba, and Venus images based on the number of

comparators for SA0. ... 79

Figure 79 SNRs for Cones, Tsukuba, and Venus images based on the number of

comparators for SA0. ... 80

Figure 80 Example connection of the controller with the ComBlock 83

xiv

List of Tables
Table 1 Thresholds for the images .. 16

Table 2 Accuracy, PSNR, and SNR values for Tsukuba images, 5x5 window size 52

Table 3 Accuracy, PSNR, and SNR values for Cones images, 5x5 window size......... 53

Table 4 Accuracy, PSNR, and SNR values for Venus images, 5x5 window size 54

Table 5 Accuracy, PSNR, and SNR values for Tsukuba images, 7x7 window size 55

Table 6 Accuracy, PSNR, and SNR values for Cones images, 7x7 window size......... 56

Table 7 Accuracy, PSNR, and SNR values for Venus images, 7x7 window size 57

Table 8 Accuracy, PSNR, and SNR values for Tsukuba images, 9x9 window size 58

Table 9 Accuracy, PSNR, and SNR values for Cones images, 9x9 window size......... 59

Table 10 Accuracy, PSNR, and SNR values for Venus images, 9x9 window size 60

Table 11 The metrics for component 63, sa0, sa1, and bit positions 11, 15, 16, and 17

 .. 67

1

Chapter 1

1. Introduction

The rapid advancement in embedded systems has typically transformed modern technology,

enabling innovative solutions across various industries. Among these advancements, vision

accelerators have gained considerable interest in extracting meaningful information. Besides

that, many machine vision techniques have been developed through the decades for that

purpose. The vision accelerators are specialized hardware that implement efficient artificial

vision algorithms. The aim is to reduce power consumption and computational load. They

inherently enable parallel computing.

One type of vision accelerator is a stereo-vision accelerator which estimates depth

information through disparity calculations. Stereo vision systems rely on two or more images

of the same scene. The images are captured by cameras placed a fixed distance apart. The stereo

vision technique is not only used for extracting depth information but also 3D mapping,

machine vision and autonomous navigation such as drones. However, it requires lots of data to

be processed and this creates challenges related to computational complexity, memory

bandwidth, and latency [2]. To deal with these challenges, stereo vision accelerators incorporate

optimized architectures along with dedicated boards such as NVIDIA Jetson Nano, Google

Coral Dev Board, and Avnet Ultra96-V2.

The NVIDIA Jetson Nano, for instance, is a small artificial intelligence (AI) computer

delivering compute performance to run modern AI algorithms at unique size, power and cost.

The 128-core Maxwell GPU provides substantial parallel processing capabilities. Image signal

processor (ISP) and JPEG Processing Block are, for example, specialized hardware to support

computational workload [3].

Drones are an example applications of autonomous systems to apply the stereo vision

technique. Detecting and avoiding obstacles, autonomous navigation is required to accurately

perceive depth and construct 3D map of surroundings in real-time. There are powerful hardware

as mentioned above and cost-effective algorithms to make drones work. However, there is

another crucial factor that needs to be considered. It is the reliability.

Since autonomous systems are expected to work without human intervention, any

failure in the system can cause a disaster in terms of safety, mission, and so on. In autonomous

2

cars, for example, a failure in reliability may lead to jeopardy for safety of the passengers. In

case of drones, it causes mission abortion and loss of equipment. Therefore, ensuring reliability

in such systems is not only requirement but also critical factor for public trust.

Reliability is a continuity of correct service [4]. Reliability ensures to maintenance of

the functionality and the performance of the system even in the presence of faults or failures. It

is also highly related to other attributes of secure computing such as availability, safety, and

security. As systems advance and become more complex, ensuring reliability becomes more

significant. Therefore, achieving reliable systems is a fundamental goal of the designers for the

trustworthiness and success of the technology. Fault forecasting can be conducted for an

evaluation of the system behavior in the presence of the fault.

Assessing the reliability of hardware accelerators is crucial, for identifying critical

hardware structures and consequently devising fault tolerance mechanisms to mitigate such

fault effects. The occurrence of the error can depend on different reasons including

manufacturing defects, aging, environmental interruption, and so on. Some of these errors can

be detected and corrected after production however some of them may also arise during the in-

field operation of the system. This may cause a failure if the designer is not aware of such cases

while designing the product. There might be such cases where even engineers can not intervene

to fix the error for instance space applications. Hence, the electronic systems should be capable

of rectifying the errors or be resistant to the errors.

When a product is delivered to the user, it may still produce the wrong output due to

some problems mentioned before. To reduce the effect of such errors, fault analysis is needed.

The designer deliberately introduces a fault in the design and examines the behavior of the

hardware. With the help of some techniques, side effects can be minimized and eventually

disappear. The goal of the thesis is to develop an automated framework for fault injection for

any hardware design. Furthermore, understanding and evaluating the effects of such faults are

also aimed.

This thesis focused on evaluating the reliability assessment of faults affecting a stereo

vision accelerator for safety-critical applications. The experimental evaluations were first

conducted at the RTL level by systematically injecting faults on specific locations of a selection

of internal components of the accelerator after performing an architectural analysis. In addition,

different versions of census transform were implemented to study the impact of such

transformations on the reliability of the accelerator. To quantify the impact of fault on the stereo

3

vision accelerator. This thesis adopted three different evaluation metrics (Accuracy, PSNR, and

SNR). The metrics are calculated on the obtained images for each injected fault.

All the experiments were conducted in an FI framework that allows the injection of

faults in the internal structures of the target accelerator. In this thesis, the first approach of the

FI framework was developed using Questasim simulator to simulate permanent faults.

Unfortunately, the simulation time required by this FI tool resulted in excessive simulation time,

requiring between 15 to 30 minutes per fault, which limited the number of faults and the

scenario under evaluation in a reasonable amount of time.

To tackle this problem, a new alternative strategy was devised by adopting emulation

strategies. Emulation FI inserts additional circuits, called saboteurs, inside the RTL or gate-

level descriptions of the target hardware that later can be implemented on FPGA devices. This

FI method allows the activation of a given fault during the runtime of the accelerator making

the evaluations faster. In this thesis, the first version of the emulation infrastructure is presented

demonstrating that the simulation time is 27 times faster than the simulation approaches.

Finally, simulations are run with and without a fault injection. A reference metrics are

calculated with the fault-free simulations by comparing output disparity maps with their

ground-truth images. Then, the faults are injected, and the metrics with related images are

presented. In addition, the accelerator is adapted to the emulation-based simulation framework

to benefit from the simulation times. That part relies on hardware modifications with a sabotuer

injection.

4

5

Chapter 2

2. Background

To analyze any hardware for potential faults that may arise before and after production,

engineers model the fault. Modeling is a method that describes how hardware behaves under

the fault and it helps in developing the architecture for fault-free usage. To understand the

impact of the fault, fault injection framework is developed.

There are different models however some of them are common fault models like stuck-

at, transient, and single-event upset. These methods served as a fault detection on the thesis to

meet reliability and performance standards.

2.1. Stereo Vision

It is not possible to estimate the depth of an object in an image with one camera. Stereo

vision technique is used capture such information. There are at least two camera taking picture

of the same scene from different angle. The human visual system is a proof. The difficulty for

this technique is to determine corresponding points in one image in the other.

The system consists of four main steps: calibration, rectification, stereo-matching, and

triangulation [5].

• Calibration: It is related to calculating intrinsic and extrinsic parameters of the

camera. Intrıinsic parameters’ calculations occur simultaneously with the

estimation of extrinsic parameters (the pose of the camera concerning a known

calibration target. Intrinsic parameters of the camera estimate parameters such as

focal length, optical center, and lens distortion. On the other hand, extrinsic

parameters depend on the relative position between cameras.

• Rectification [6]: Matching the corresponding points in pairs of the input images

is the complexity of stereo vision. To reduce the complexity, the rectification

process involves warping the input image pairs such that they are recorded in

canonical stereo geometry. Figure 1 shows an example of the process.

• Stereo matching [7]: As the name indicates, the aim is to find the same points in

two images. Assume that in Figure 2, left image (B) and right image (L) are the

6

match images. The pixel p with its neighborhood defined by a square window in

the left image is compared with the pixel q with its neighborhoods on the epipolar

line. A matching operation is performed on the same row due to canonical stereo

geometry. How to know if pixels match is based on algorithms like the sum of

absolute differences (SAD), census transform with hamming distance, and

normalized cross-correlation.

• Triangulation: It is a technique used to determine the depth of the object in the

scene. By using image pairs and disparity of the same points, the coordinates of

the point in reality are calculated.

Figure 1 Top: Images recorded by two cameras with significant differences in extrinsic parameters and

also differences in intrinsic parameters. Bottom: Two geometrically rectified images taken at different viewing

locations by two cameras installed in a crash-test hall [6]

7

Figure 2 Stereo matching among two images of the same scene [7]

The depth is inversely proportional to disparity as shown in Equation 1 where f is the

focal length of the camera, d is the physical size of a pixel in the camera sensor CMOS/CCD,

T is the baseline distance between the center of the left and right cameras, and D is a disparity

[8]. Figure 3 illustrates the relationship between the disparity and the distance of the object.

When an object is close to the camera, the disparity gets higher.

𝑍 =
𝑓

𝑑
×

𝑇

𝐷

Equation 1 Distance between point P and camera center

Figure 3 Disparity versus Distance [8]

8

Another observation from Equation 1 is that the distance between cameras T is

proportional to the disparity. The disparity is small when the cameras are close to each other for

the same point P.

Overall, these two parameters are closely related to depth estimation for stereo vision

before applying stereo match algorithms. However, the thesis uses the Middlebury dataset [9]

which provides image pairs with their ground-truth images. So, camera calibration and

rectification steps are not the concern of the thesis. The following two chapters discuss the

stereo-matching algorithm based on census transform. It is also the algorithm implemented in

the stereo vision accelerator.

2.1.1. The Census Transform [1]

Census transform is a kernel-based nonlinear transform used for feature extraction in

image processing applications. It is used to extract pixel intensity for depth information of an

image. The transform compares pixel intensities with a reference pixel value and generates a

binary number for each pixel in the image according to the size of the kernel. Figure 4 gives an

example of a 3 by 3 kernel where each value around P1 is compared with P1 and if they are less

than or equal to the P1, the output value is set to 1, otherwise 0. This is how the census vector

is generated.

Figure 4 Census transform example

The disadvantage of the census transform is the large size of the census vector in terms

of the number of bits. It means that a number of pixel comparisons is performed by the

transform and this affects the amount of the hardware resources. Assuming a 9 by 9 kernel size,

there are 80 pixels to be compared with the central pixel. The length of the census vector also

affects the amount of hardware resources for calculating the hamming distance. Therefore, the

requirement for the hardware resources is proportional to the size of the census vector.

9

The size of the census vector also determines the length of the hamming distance value

as a representation number of bits which is proportional to ⌈𝑙𝑜𝑔2(𝑛 + 1)⌉ -bits for n-bit census

vector. Furthermore, the summing of the distances requires adders whose sizes are also

proportional to ⌈𝑙𝑜𝑔2(𝑛 + 1)⌉.

Overall, a motivation behind the sparse census transformation emerges. It reduces the

census vector size without sacrificing the accuracy of correlation. In the thesis, the stereo vision

accelerator is based on the sparse census transform.

2.1.2. The Sparse Census Transform

According to [1], there is redundancy in the computation of the census vector. Assuming

that the census transform is computed around pixel p with comparisons of nearby pixels p’.

When the census transform is computed for the pixel p’ later, the transform still includes the

comparison between pixels p and p’. The double computation contributes to being weighted

twice the pixels. This is correct for the pixels not located on the edge of the correlation window.

The pixels on the edge of the correlation window become less weighted, therefore the effects

of the pixels on the edge weaken.

The census transform can be optimized to reduce the amount of required hardware

during their implementation with minimal impact on the final obtained output from the

accelerator. As a result, it is possible to use nine different kernel configurations configurations

for the census transforms. The dark color pixels are compared to the pixel in the center of the

matrix. These kernel types will be applied to the different window sizes. Authors in [1]

demonstrated that these optimized kernel sizes have a limited impact on the accuracy of the

accelerator. These optimizations can dramatically affect the number of resources in the design

and also can play a crucial role in terms of fault tolerance features.

The literature also reports three different windows or kernel sizes for census transform:

5𝑥5, 7𝑥7, and 9𝑥9. It is worth noting that the same patterns can be applied to other kernel sizes.

Accuracy value may not vary over window size for the same configuration of the kernel (see

10

Chapter 6.1). These trade-offs can affect the choice of the census transform module. The reader

will also see the results under stuck-at-0 and stuck-at-1 fault simulations.

Nine kernel configurations are full (normal census transform), uniform, non-redundant,

16-point, 12-point, 8-point, 4-point, 2-point, and 1-point. Applying the configuration on the

different window sizes, there are 29 kernels. These are shown in Figure 5, Figure 6, and Figure

7.

Figure 5 Census Transform kernel configuration for 5x5 window

11

Figure 6 Census Transform kernel configuration for 7x7 window

Figure 7 Census Transform kernel configuration for 9x9 window

12

2.1.3. Strategies for Reliability Evaluation [10]

 The stereo vision accelerator is implemented with different census transform methods.

The comparisons between the methods are made and the result is presented. However, it is

crucial to know how the hardware behaves under a fault and how reliable the hardware is.

In this section, we present different strategies to evaluate the reliability of the systems.

The reliability evaluation is usually carried out experimentally by adopting fault injection (FI)

campaigns. There are four different FI strategies, i) simulation-based, ii) hardware-based, iii)

software-based, and iv) emulation-based.

i) Simulation-based strategies:

Hardware description of the tested circuit is simulated with fault injected on specified

locations. The fault can be injected in two methods. The tools can insert necessary

components for fault injection into the tested circuit or the fault can also be inserted by

simulator commands. The second method enables to modification of the signals and

variables of the tested circuit.

The disadvantage of simulation-based strategies is that they are very slow. An actual

circuit operation is multiple orders of magnitude faster than a simulation of the hardware

description of a circuit. For instance, simulating the stereo vision accelerator with a 7x7

window size and uniform configuration for just one fault takes about 7 minutes for an

image size of 384x288 in the Questa simulator. The simulation is run with simulator

commands. A selected signal is targeted to stuck-at fault. When image sizes increase, as

expected, the simulation requires more time.

ii) Hardware-based strategies:

With a cause of heavy ion radiation, electromagnetic interferences or other physical and

environmental effects, the hardware can be disrupted for fault injection. To apply this

method, it is necessary to have the final device. Therefore, the fault injection is directly

applied to the final device, this is the main advantage. On the other hand, controlling the

effect of physical injection is difficult. It is hard to perform the same experiment.

Instead, to achieve repeatability, disruptions are emulated at the pin level rather than

injecting a physical fault.

13

When the final device is exposed to the radiation, there is a possibility to observe

transient faults. The radiation may cause one or more bit-flips at random locations which

cannot be done with pin-level injection.

Finally, the tools for handling this type of injection are hardware-dependent and the

setup of the tools is complicated.

iii) Software-based strategies:

Software-implemented fault injection (SWIFI) tools are used to implement the fault at

the software level. The aim is to create the faults at the hardware level by using software.

This is not needed to modify the hardware. SWIFI enables testing the whole system

including the operating system. There are several tools to use SWIFI techniques such as

CEU, EFS, and XCEPTION. The fault models can be bit-flip, data modification, stuck-

at faults, and code insertion. Skipping one or more instructions or modifications of the

instructions are common methods to apply such faults.

The cost is speed, memory consumption and so on. Since the fault injection campaign

requires to modify the program, it causes execution overhead. For instance, EFS tools

need context switches between real system processes and fault injection processes. The

primary drawback of SWIFI is that the tools create faults beyond the other techniques.

Assuming a 32-bit system and 232 possible instruction values, a number of existing wires

might fall that value. The generated faults may not cause failures or the error cannot

appear during execution of the program. Therefore, generating a more useful set of faults

is the challenge which also includes optimization phases during simulation.

iv) Emulation-based strategies

This technique offers an alternative solution to simulation-based strategies to reduce

simulation time. Field Programmable Gate Arrays (FPGA) based logic emulation

systems are used for hardware prototyping.

A real behavior of the design can be observed under the fault injection with real-time

interactions. The designer has to provide the complete synthesizable VHDL description.

In addition, the synthesizable VHDL description requires additional mechanisms to

inject faults at specific times and locations. This may lead to overhead in the circuit if

the number of fault-injectable locations increases.

14

2.2. Levels of Fault Models

Modeling of faults is closely related to the modeling of the circuit. In the design hierarchy, the

level refers to the degree of abstraction. Manufacturing defects may not be correlated with fault

models for the behavioral level which has fewer details of implementation. High-level fault

models play a terrific role in simulation-based design verification than testing. However,

semiconductor memories have exceptions due to simpler functionality, and an exhaustive

functional test is possible.

Stuck-at faults are quite useful and popular fault models at the register-transfer level

(RTL) or logic level in digital testing. Other fault models at this level are delay faults and

bridging faults.

At the component levels including transistors and other lower levels, stuck-open types

of faults can be used. These faults are also technology-dependent faults. Component-level faults

are mostly introduced in analog circuit testing. Lastly, other models do not correspond to any

level of design hierarchies. The quiescent current defect is a typical example.

2.3. Stuck-at Fault

To model stuck-at-fault, a design with its interconnections (netlist) of Boolean gates is provided.

The intention is to insert the fault between interconnections. There are two types of faults: stuck-

at-0 and stuck-at-1 (s-a-0 and s-a-1 respectively). It means that a line with an s-a-1 fault, for

instance, has always a logic 1 regardless of the correct logic driving it.

It is possible to have multiple stuck-at faults in the circuit simultaneously. A circuit with

n interconnections can have 3n-1 possible targets for the faults. It is assumed that each

connection has three states: s-a-1, s-a-0, or fault-free. The case when all interconnections are

fault-free is not counted. When n is getting large, the number of stuck-at faults explodes.

Therefore, modeling only a single stuck-at fault is a common practice that reduces the number

of faults to 2n at most. Furthermore, the number can be reduced by a technique known as fault-

collapsing [11]. On the other hand, some faults can not propagate to the output with any input

combinations. It is called an untestable fault. The presence of such faults may or may not change

the input-output behavior of the circuit [12]. Some redundant logic might be introduced to the

circuit and these may lead to present untestable faults.

15

In conclusion, the stuck-at model is very useful since it is simple, numerable, and well-

supported by CAD tools. It is widely used and able to model several physical defects. However,

it can not model the totality of the physical defects like open fault, delay fault, and so on. For

instance, stuck-at-fault does not consider timing-related problems where the transition is correct

but it violates the timing requirement like in the case of the delay fault model. Another example

is that if a wire or transistor is not connected, it may lead to unpredictable floating values which

cannot be modeled with the stuck-at model. One should also consider that several faults that

cannot be modeled as stuck-at faults can be detected by test patterns generated to cover stuck-

at faults.

Figure 8 An example of a single stuck-at fault.

2.4. Transient Fault [13]

Faults can be permanent or non-permanent. The stuck-at fault model is a permanent type of

fault which means that an inteconnection’s value is fixed to some value and it can not be

changed ever. On the other hand, non-permanent faults are present only part of the time and

occur randomly. These faults especially appear in memory integrated circuits however, a

solution to this problem is information redundancy or redundant error-correction codes.

Transient faults are a type of non-permanent fault caused by environmental conditions

like cosmic rays, air pollution, humidity, temperature, power supply fluctuation, and so on.

Fault models for transient faults are getting more and more important due to an increasing

number of fault-tolerant applications. There are two significant fault models for transient fault:

single event upset (SEU) and single event transient (SET) fault model.

16

SEU models a bit flip in any memory element at any clock cycle. Engineers can measure

the sensitivity of the circuit or system for given input data. In a simulation environment, a bit

flip can be injected and maintain this state within a specific time interval. A drawback is that

the number of faults may grow rapidly. Let's assume there is an accumulator with 16-bit wide

and there are two inputs with 8 bits each. Also, assume that multiplication takes 256 clock

cycles. Finally, the number of possible SEUs equals to (8 + 8 + 16) × 256 = 8192.

In conclusion, SEU is a model that implements faults for safety-critical applications

such as space applications, avionics, and autonomous systems. There are techniques to

eliminate the effect of such faults for instance error correction code (ECC) and triple modular

redundancy (TMR).

2.5. Evaluation Metrics

Accuracy, PSNR, and SNR are the metrics for the comparison of the results. The measurements

are calculated by comparing the ground truth of the image with the output disparity map of the

accelerator.

Accuracy comes from the [14]. It is based on the percentage of bad-matching pixels.

This is an average of the absolute difference between a disparity map and a ground-truth image

in comparison to a threshold. And accuracy value is calculated by subtracting the B value from

100. 𝛿𝑑 value is selected according to the histogram of the image.

𝐵 =
1

𝑁
∑ (|𝑑𝐶(𝑥, 𝑦) − 𝑑𝑇(𝑥, 𝑦)| > 𝛿𝑑)

(𝑥,𝑦)

Equation 2 Where dC is the disparity map, dT is the ground truth and δd is the disparity error tolerance.

Then, the accuracy value is calculated by subtracting the B value from 100. 𝛿𝑑 value is

selected according to the histogram of the images. Its value for four images is given in Table 1.

Images Tsukuba Cones Venus

𝜹𝒅 70 33 30

Table 1 Thresholds for the images

The histograms show pixel counts versus absolute difference matrixes which are

calculated by subtracting from the output disparity map of the accelerator to its ground-truth

image and then taking absolute values of each value. It shows how the output image is different

17

from the ground-truth image. It is expected that the difference will be small. Figure 9, Figure

10, and Figure 11 illustrate the histograms of the images Tsukuba, Cones, and Venus

respectively along with different kernel configurations shown in Figure 6.

Figure 9 The histograms of the Tsukuba image for 7x7 window size implementation (threshold is 70, the

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point.

Figure 10 The histograms of the cones image for 7x7 window size implementation (threshold is 33, the

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point.

18

Figure 11 The histograms of the venus image for 7x7 window size implementation (threshold is 30, the

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point.

Peak Signal-to-Noise Ratio (PSNR) is the second metric for the evaluation. It measures

the relationship between the noise (or error) in an image and the original image's signal. A high

PSNR indicates that the difference between the original image and the target (or predicted)

image is small, meaning the image quality is better. It is calculated by comparing the maximum

pixel value with the mean square error (MSE) of the image as given in Equation 3.

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑝𝑒𝑎𝑘_𝑣𝑎𝑙𝑢𝑒2

𝑀𝑆𝐸
)

Equation 3 PSNR calculation

The third metric is the signal-to-noise ratio (SNR) which evaluates the quality of a signal

in the presence of noise. Higher SNR values typically indicate better image quality. Equation 4

shows the calculation.

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

Equation 4 SNR calculation

19

2.6. The Field Programmable Gate Array (FPGA)

The FPGA is an integrated circuit that can be repeatedly reprogrammed. It has been extensively

utilized for ASIC prototyping, emulation, and high-performance computing [15]. To apply the

fault injection with an emulation-based strategy, a hyper FPGA is used.

 A framework is provided to connect FPGA online. To interface with FPGA and make it

more general to use it, ComBlock is introduced. The entire interface management is carried out

through this block. Therefore, custom designs are connected to ComBlock and data is sent by

CPU.

2.6.1. The Hyper FPGA

The FPGA used for the project is Trenz SOM TE0803-03-4BE11-A which features from the

AMD/Xilinx Zynq™ UltraScale+™ XCZU4EG-1SFVC784E. The board support package is

available [16]. It is used in the creation of the Vivado project.

The term "Hyper FPGA" typically refers to an advanced FPGA platform or technology

that provides high performance, versatility, and scalability beyond conventional FPGA designs.

The specifications are :

Figure 12 TE0803-01 MPSoC module

20

• Xilinx ZYNQ UltraScale+ MPSoC, U1

• 2-Input AND Gate, U39

• Red LED (DONE), D1

• 256Mx16 DDR4-2400 SDRAM, U12

• 256Mx16 DDR4-2400 SDRAM, U9

• 256Mx16 DDR4-2400 SDRAM, U2

• 256Mx16 DDR4-2400 SDRAM, U3

• 12A PowerSoC DC-DC converter, U4

• 1.5A LDO DC-DC converter, U10

• 1.5A LDO DC-DC converter, U8

• Voltage monitor circuit, U41

• 0.35A LDO DC-DC converter, U26

• 0.35A LDO DC-DC converter, U27

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J3

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J1

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J4

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J2

• 4-channel programmable PLL clock generator, U5

• Low-power programmable oscillator @ 25.000000 MHz, U5

• Low-power programmable oscillator @ 33.333333 MHz (PS_CLK), U32

• 256 Mbit serial NOR Flash memory, U7

• 256 Mbit serial NOR Flash memory, U17

2.6.2. The ComBlock [17]

The Communication Block IP Core (Core ComBlock) is the result of a collaboration between

the Multidisciplinary LABoratory (MLAB) from The Abdus Salam International Centre for

Theoretical Physics (ICTP, Italy) and the FPGA division of Micro and Nanotechnology from

the National Institute of Industrial Technology (INTI, Argentina). It is licensed under the BSD

3-clause.

MLAB projects are characterized by solving high-speed acquisitions and processing in

the FPGA and sending the resulting data to a PC. The Processor included in devices such as

Zynq is mainly considered a provider of data storage (DDR memory) and Ethernet connections.

The ComBlock was created to provide known interfaces (registers, RAM, and FIFOs) to a user

21

of the Programmable Logic (PL), avoiding the complexity of the bus provided by the Processor

System (PS), which is AXI in the case of the Zynq-7000.

Figure 13 ComBlock

The block provides:

• Up to 16 input and/or output registers (configurable from 1 to 32 bits).

• A True Dual-Port RAM offers a straightforward RAM interface for user interaction. It

allows customization of parameters such as data width, address width, and memory

depth based on specific requirements.

• Two asynchronous FIFOs, one from PL to PS and another from PS to PL, with

indications of empty/full, almost empty/full, and underflow/overflow conditions. Their

inclusion, the data width and the memory depth can be configured.

As it is illustrated in Figure 14, there are 5 interfaces for the user on the FPGA side:

• IN_REGS: input registers.

• OUT_REGS: output registers.

• IO_DRAM: input/output True Dual Port RAM.

• IN_FIFO: input FIFO.

22

• OUT_FIFO: output FIFO.

Figure 14 ComBlock with ports

In the case of the Vivado version, it provides 2 interfaces for control on the Processor side:

• AXIL: AXI4 Lite with the registers and FIFOs.

• AXIF: AXI4 Full with the RAM.

23

24

Chapter 3

3. Stereo Matching Accelerator [1]

The target stereo-core accelerator evaluated in this thesis is based on census transform and the

sum of hamming distance. It measures the depth of the object in the image and creates a

disparity map accordingly. Understanding the architecture of the hardware is needed for

intuitive testing and also for analyzing the most sensitive part of the circuit.

The hardware consists of three main sub-modules and each one will be explained in the

following chapters.

3.1. Census Transform Module

The census transform can be thought of as two steps. The generation of the census

transform vector is the first step followed by the calculation of the hamming distances between

the vectors. The census transform module handles the first step. The kernel configurations of

the transform can be implemented with configurations as given in 2.1.2.

The census module’s ports are shown in Figure 15. The i_data is the 8-bit pixel value

of the image and i_dval is its validation signal. The census vectors are generated by first

buffering the pixels and then transforming them. Notice that there are two output vectors

(o_data_L and o_data_R) due to that design choice. In Figure 16, the upper and lower windows

can be seen. The validation signal for both outputs is the o_dval signal. Lastly, there are two

images of the same scene for disparity map generation and stereo image processing. Therefore,

two census transform modules are implemented.

Figure 15 Ports of Census Transform Module

25

The census module employs a computational approach called stream processing, which

implements a row buffer architecture used for storing only the necessary image rows to compute

the kernel size of the census transform. This requires 𝑊𝑐𝑥𝑀 storage elements where M is the

length of the image and Wc is the kernel size. After the census transformation, the next step

consists of the implementation of the Hamming distance calculation over a correlation window

Wh. To avoid implementing a second-row buffer, and in turn, saving memory resources, this

stage is implemented by increasing the size of the census row buffer to match the correlation

window of the sum of hamming' distances. Therefore we need to store an extra Wc line of the

image. Finally, the size will be (𝑊ℎ + 𝑊𝑐) × 𝑀. This is illustrated in Figure 16.

Figure 16 Window buffer for 7x7 census window and 13x13 correlation window

Output o_data_L comes from the upper census window and o_data_H comes from the

below census window. Window buffer acts like shift registers which forwards it to the register

next to itself. When it reaches the end of the current line, the last pixel is forwarded to the first

register of the next line.

26

Finally, the o_dval signal will be given when the center pixel value of the upper Census

Window arrives and then the comparison can start. In the case of 7𝑥7 census window with 𝑀 =

384, for instance, the time required is 384 × 3 + 4 = 1156 clock cycle.

3.2. Sum of Hamming Distance (SHD) Module

The SHD module is the most complex module in the accelerator and consists of three different

types of modules. The first is called the Num_of_Ones module which calculates the hamming

distance for outputs of census transforms. This is represented as an HD module in Figure 17.

The other two modules reside inside the SHD module in the same figure. Names of the these

modules are Window_Sum and Disp_Cmp. Window_Sum calculates correlation values between

pixels in left and right images. Then, the Disp_Cmp module selects the best disparity level by

checking correlation values coming from the Window_sum module.

Figure 17 SHD Module with inputs/outputs

Number of the modules depends on the designer’s choice which is based on the

experiments. Our design is based on the disparity level of 64. Therefore, we will present the

whole design based on that number. Figure 8 can be seen as a disparity level of 1. However,

there will be no need for a comparator for that case. The reader has to also know that the stereo

core used a left-to-right consistency check (LRCC). This also affects a number of comparator

modules. After this brief introduction, we give details of each module. Finally, the whole core

architecture is given in Figure 18.

27

Figure 18 Stereo core architecture

3.2.1. Hamming Distance (HD): Number_of_ones module

This module takes the output of the census to transform for left and right images and then

calculates the hamming distance. XOR operation results in finding the difference and then the

rest of the circuit counts the number of 1s. For instance, if the left input is “1001” and the right

input is “1111”. After XOR operation output will be “0110”. Then the circuit will calculate “10”

which is 2 as integer values.

Figure 19 Calculation of hamming distance

28

3.2.2. Sum of Hamming Distance (SHD): Window_Sum module

As mentioned previously, this module is optimized to reuse some computation for each

similarity measure evaluation [1]. For example, considering the similarity measure for a pixel

in the left image at xl and in the right image at xr, both on the same pixel row, calculation is

done as follows: if we want to compute similarity for xl +1 and xr+1 for window size Wh, 𝑊ℎ −

1 similarity computation will be exactly the same as for previously calculated similarity

measure computation. Then, there is only one new computation is needed. Therefore, the new

column reused 𝑊ℎ − 1 pixels from the same column of the previous row. The computation is

illustrated in Figure 20.

Figure 20 Computing Column Sum [1]

This is valid for the row computation. The new row reuses the previous 𝑊ℎ − 1 pixels

in the same row. Figure 21 shows how the window summing optimization work. A row buffer

with length of image and a column buffer with Wh length are required to obtain the trailing

column sum.

Figure 21 Computing Window Sums [1]

29

Discussion about such optimization is out of topic. The only thing we consider here is

the architecture targeted by fault injection. After introducing the buffers, the general

architecture of this module is shown in Figure 22. The output of the module goes to the

comparator for the selection of disparity level. The reader has to be aware of the addition and

substruction circuits since the sign bits involve the operation and stuck-at faults can

dramatically affect the outcome of this module. This will be presented later. Finally, the number

of modules is 64 as shown in Figure 18. Designers may select different disparity levels and the

number of that module depends on that number.

Figure 22 The architecture of the SHD module [1]

3.2.3. Comparator: Disp_Cmp module

The comparator module consists of a 2-2𝑥1 multiplexer and allows to ranking of the disparity

correlation among two different disparity levels and then selecting the one with the lowest rank.

It takes o_data from the Window_Sum module which is the correlation value. There are two

comparators for each Window_Sum module except for the first one. One output is for the

disparity value and the other is for the selected correlation value. According to o_data, it selects

the disparity level and that value propagates through the end.

 To better understand, we analyze Figure 18 using Comparator L1. The inputs in Figure

23 are the following: C1 and C2 come from Window_Sum module. C1 comes from the first

similarity module-0 and C2 comes from similarity module-1.

30

Figure 23 Comparator Module. n is a number of bits as the output of the census transform. Wh is the size of the

correlation window

D1 and D2 represent disparity levels. D2 depends on the level and it is 0 for Comparator

L1. For instance, it is 34 for Comparator L34. On the other hand, D1 is the previous output from

a comparator. Its first value is 0.

Assume C2 is 17 and C1 is 10. This means that at the current level, the correlation is less

than the previous one. It means that a pixel on the left image (x,y) has less correlation than a

shifted pixel on the right image (x,y+z). Therefore, the output will be C1. When the correlation

is less than the previous one, disparity value D1 will be selected.

In summary, the best match from one pixel in the left image with D pixels in the right

image is the one that has the lower correlation value. The module selects the lowest correlation

value and disparity value related to that correlation value. As we said, there are two of them for

the same level. The second one is used for left-to-right consistency checks to be sure that the

selection is correct. It is used to double-check.

3.3. Left-Right Consistency Check (LRCC) Module

The left-right consistency check is one of the most common port-processing steps used in the

literature. This technique is very successful in eliminating false matches. To find the best match

in the left image, a pixel in the left image is compared to the d (disparity) previous pixels in the

31

right image. Likewise, for the best match in the right image, the comparison is done in the left

image. As it turns out, there is no need for a reference image for the implementation. Thanks to

the LRCC module, similarity measures are computed for both images. In Figure 18, inputs of

the LRCC module are L2R and R2L which correspond to “match for left reference image” and

“match for right reference image” respectively. This structure is a linear search structure.

The module consists of two multiplexers, substruction, absolute, and less-than

operators. Larger multiplexer is 64𝑥1 type and inputs come from R2L input. These are shifted

through the bottom. After taking the absolute difference between pixel disparity values, that

value is compared with a threshold. The threshold value can be selected arbitrarily during the

operation of the accelerator. A small threshold value will perform strict LRCC while a larger

threshold make this refinement more relaxed.. If the absolute difference is less than the

threshold, we can say that this L2R input is a correct output disparity. Figure 24 shows the

internal architecture of the LRCC module.

Figure 24 LRCC module

32

33

Chapter 4

4. Simulation Environment for Reliability

Assessment

Simulations are executed in two ways. The first one is fault-free and the other is with fault

injection. The fault-free simulations are normal simulations that require a testbench with input

images then results in the creation of a disparity map for that input. The faulty simulations

require a fault list that specifies where to inject stuck-at-fault. The output of such simulations

is reported with statistics including accuracy, PSNR, and SNR. The following chapters will

describe the simulations in detail.

4.1. Stereo Image Dataset

A stereo image pair is used for a stereo correspondence algorithm as an input to generate a

disparity map. In computer vision, estimating a disparity map is a challenging task. This map

can be converted into a map of distance. As a result, the words range map and depth map are

used in the literature in addition to the disparity map.

Our design applies such a stereo correspondence algorithm and uses Middlebury’s stereo

benchmark dataset. Since this dataset is widely used and known, we decided to use them as

input to our design. There are four different image pairs: Tsukuba, Venus, Teddy, and Cones.

Dimensions of the images are different. The ground-truth images are also provided in the

dataset.

These images are generated using different methods according to [18]. The Tsukuba

image pair has a disparity range of 16 pixels, and its ground-truth image excludes a border of

18 pixels. Excluding the border of 18 pixels is applied to other disparity maps while calculating

some metrics. The Venus image has a disparity range of 20 pixels. Lastly, The Cones image has

a disparity of 60 pixels. These are shown in Figure 25. A structured light technique was used to

generate their disparity ground-truth data. These methods involve projecting specific light

patterns onto a scene to directly capture a range map of the scene.

34

It can be observed from the disparity maps that objects closer to the observer have higher

gray level values (brighter regions). The depth information can be extracted from the disparity

map in that way.

Figure 25 Middlebury Stereo Vision dataset: left images, right images, and ground-truth

4.2. Fault-Free Simulations

The testbench of the fault-free simulation is shown in Figure 26. As usual, left and right

images are provided as input. These are converted to txt files and the testbench sends each pixel

value with validation bits to the stereo core. Then, output disparity values with validation bits

are saved in output txt files. With the help of Python script, a disparity map is generated.

Figure 26 Testbench environment for fault-free simulations

35

The Python scripts enable the whole process with a single command. The script reads

the input images with specified names, disparity level, kernel window size Wc, correlation

window size Wh, and number of bits to represent a pixel, then compiles the design. After

successful compilation, the simulation is started. As indicated before, output text files are

converted to disparity maps. The elapsed time for one simulation depends on the input image

size. However it does not take more than 10 minutes for our images. Window sizes also affect

the elapsed time. For instance, with lower Wc, the simulation will take less time than higher Wc.

Finally, disparity maps are generated by the script with normalization of the pixels

between 0 to 255. Minimum and maximum values are detected from the output and each pixel

value are normalized with the following formula.

𝑃𝑖𝑥𝑒𝑙 − 𝑃𝑖𝑥𝑒𝑙𝑚𝑖𝑛

𝑃𝑖𝑥𝑒𝑙𝑚𝑎𝑥 − 𝑃𝑖𝑥𝑒𝑙𝑚𝑖𝑛
× 255

Equation 5 Image normalization

4.3. Faulty Simulations

The testbench of the faulty simulation environment is shown in Figure 27. The faulty simulation

depends on the fault list which indicates locations where the fault will be injected in the stereo

core. The fault type is a stuck-at fault. The output disparity map is compared to the ground truth

of the input image then a script calculates statistics with the metrics. All statistics are written in

a CSV file. The simulation continues until all faults are injected separately. When a simulation

with a fault injected ends, the environment resets the fault and then continues with another fault

in the list.

36

Figure 27 Testbench environment for faulty simulation

The format of the fault list follows the structure of “sa testability fault_site”. “sa” is a

type of stuck-at fault which is either “sa0” or “sa1”. “testability” is always “NC” and

“fault_site” shows where the location of the fault Figure 28 is an example. The “fault_site” is a

path of the bit defined by the simulator which is QuestaSim in our case. The fault list consists

of the bit location with sa0 and sa1 in the list to compare the effect of different faults on the

same bit. Output CSV file is in the format of “fault_site,sa,(accuracy, PSNR, SNR)”. This is

generated for all images for 7𝑥7 window configurations.

Figure 28 Example index for fault list

In conclusion, the environment reads the fault list line by line. Before starting the

simulation, it freezes the specified bit in the architecture and start the simulation. When output

is generated, it calculates the statistics and resets itself for another fault injection. This is a

automitised environement. When a user runs the script, the simulations run till the end of the

fault list.

4.3.1. Fault List: Where to Inject the Fault

The question is where to inject the fault. There are millions of bit positions and it is not possible

to target all bits with simulation-based techniques due to a timing issue. So, the selection of the

bit locations depends on a knowledge of the internal architecture of the stereo vision accelerator.

37

Let’s consider the census transform module that only compares two values. An input

pixel is stored in the first register in the slide window and it is shifted to the end while new

input pixels arrive. Any fault in the slide window will be propagated toward the last register in

the slide window. It means that all pixels will be exposed to the same fault. Since the

comparisons involve the unsigned values, the effect of the fault may not be significant. After

census vectors are generated, the number of 1’s is counted by the num_of_ones module in Figure

19. An assumption is that having a one-count difference will not also make a significant impact.

The faults in these modules cannot make a significant impact. On the other hand, the

calculation of the hamming distance involves addition and subtraction. Since the outcome of

the subtraction may be negative, any corruption in the sign bit can cause an obvious error. Even

if each bit of subtraction, assuming the input port of the subtraction module, is corrupted, the

error can be observable in the output image because it may lead to a wrong disparity selection.

Likewise, any error in the disparity selection, by Disp_Cmp, may also lead to observable

incorrectness. This is the case also for the LRCC module where a comparison exists.

A final comment on this is that the upper bits, above half, of a signal are the most critical

bits if a comparison, addition, or subtraction operation is being performed. The Disp_Cmp

module is targeted to the fault injection. The outputs of this module are injected with the stuck-

at faults. The fault list is created for a uniform design with a 7x7 window size. There are 63

Disp_Cmp modules and each has outputs o_data_C with 12 bits and o_data_D with 7 bits.

Considering stuck-at-0 and stuck-at-1 fault types, there are a total of 2394-bit locations.

38

39

Chapter 5

5. Emulation-Based Strategy

Simulation is the easiest way to know if our circuit works. It does not need any hardware and

only software tools can be handled. Aims is to verify the functionality before embedding it into

hardware. It helps to improve and make modifications before manufacturing and reduce costs

if verification is done properly. One throwback of the simulation environment is time

consumption. Simulations take days and it can be time-consuming. This is the case for the

simulations of the stereo core. This chapter presents an emulation-based strategy instead of a

simulation-based strategy.

The stereo core is a huge hardware which makes it impossible to target all bits for the

fault model. Some sophisticated tools like TetraMax are good but the cost of such tools is very

high. Another approach to applying the fault model to our circuit is to embed it into FPGA. This

requires some modifications in our circuit. However, the modification can be handled easily

and these do not require much hardware resources. Migration from the simulation environment

to the FPGA world with a fully automized framework helps us to fasten fault injection

operations.

5.1. Methodology

The framework is organized to fully automate fault injection campaigns. The aim is to select

fault target and fault type from the software side and control the whole operation. All

simulations run on the FPGA fabric and enable us to save time. The proposed framework is

demonstrated in Figure 29.

Figure 29 Proposed Framework

40

The diagram outlines a step-by-step process for testing the fault tolerance of a hardware

design using FPGA-based fault injection techniques. The process begins with the Hardware,

which serves as the foundation for the system under analysis. In the next step, Gate Level

Conversion is performed to translate the design into a low-level gate representation suitable for

fault modeling and testing. Subsequently, a Saboteur Injection step is introduced, where fault

models (referred to as saboteurs) are incorporated into the system to simulate potential hardware

errors. The design is then implemented on an FPGA in the FPGA Prototyping phase, where the

prototype is used for real-time testing. Finally, in the Fault Injection (FI) Campaign, systematic

fault injection tests are conducted to evaluate the design's robustness and reliability. This

workflow is commonly applied in electronics engineering to ensure the fault resilience of

critical hardware systems.

5.2. Block Diagram

The idea is to integrate an accelerator in FPGA with proper modifications. As it is seen in Figure

30, the accelerator is inserted with saboteurs and shift register. Shift register store enables bits

for each SS and enable bits for individual bits inside the SS. Super sabotuer (SS) is explained

following sections. In our design, comparator module is targeted however, sabotuer injection

can be applied any component inside the accelerator. Comparator is targeted because it is easy

to test and apply the idea.

Figure 30 Block Design

The diagram illustrates a system architecture designed for fault injection and data

processing. At the core of the system is the CPU, which acts as the primary control unit,

41

managing the overall operations and communication with other components. The FI Controller

facilitates fault injection by coordinating the necessary signals and data between the CPU and

the Accelerator. A Stream Data Interface enables seamless data transfer between the CPU and

the Accelerator, ensuring efficient communication. Image data will be sent through this. Within

the Accelerator, a Shift Register plays a key role in distributing enable signals to the SS

components. The Component block, which consists of several sub-modules labeled as SS, is a

target for fault injection. There might be several components which is why the component has

to shift data inside the shift register.

5.3. Hardware Modifications

This chapter describes modifications done to the hardware. The steps cover gate-level

conversion and saboteurs injection. Then the controller in Figure 30 Block Design will be

introduced.

5.3.1. Yosys [19]

Yosys is a framework for RTL synthesis and more. It currently has extensive Verilog-2005

support and provides a basic set of synthesis algorithms for various application domains.

This framework is used to translate the VHD files into gate-level Verilog files. We need

a gate-level description to insert saboteurs between desired or all signals in the design. When

the gate level design is ready, with the help of a script saboteurs will be injected automatically

between each signal. Shift register will be also injected. With this modification, gate-level

conversion is handled in Figure 29.

5.3.2. Sabotuers and Injection

When the gate-level netlist is ready, a script reads the netlist and inserts saboteurs and shift

register. Before giving details of the hardware component, the script is introduced because it

has 2 options. With this section saboteur injection part will be completed in Figure 29.

5.3.2.1. Python Script

This script aims to inject saboteurs for the stuck-at and transient fault model or to inject some

logic to perform single-event upset (SEU) phenomena. To implement these, a target hardware

needs some modifications. In both cases, a shift register has to be inserted in the target hardware

for activation of the fault model for the corresponding signal. There are also control signals

42

which have to be added to port description to control shift register operation and fault models.

Other modifications will be presented later.

The script takes filename and type of the operation (SABOTUER or SEU) and

automatically updates the design for the operation. In addition to that, it creates a detailed report

related to modification. Organization of the report will be described later.

To use the script, a Verilog description of the design has to be supported. If the

programmer has a VHDL version of its design, the conversion from VHDL to Verilog is dealt

with by Yosys. After that conversion verilog file contains the gate-level netlist of the design.

On the other hand, if the Verilog file is already present, it has to represent a gate-level

description. Since the gate-level description contains nets and connections, the script reads

wires or registers and inserts saboteurs or some logic for each of them. The designer can run

the script as follows:

python .\script_injection.py TYPE=SEU FILE=num_of_ones_7.v

After that, the script creates new .v file with modifications and a detailed report for that

design. The report has following header: “SR Pos,Signal Name,Signal Type,Source Line

Number,Source File Name,File Path”. The report is in csv format.

• SR Pos: The position of the enable bit for the corresponding signal.

• Signal Name: The name of the target signal.

• Signal Type: Type of the signal. It can be defined as either “wire” or “reg”.

• Source Line Number: The line number where the modified signal originates from.

• Source File Name: Gate-level netlist of the target design in Verilog format.

• File Path: It is the location where the report is located.

The designer can also know the length of the shift register from the report. In addition, the script

also print some messages about the extracted signals with their number of bits.

5.3.2.2. Sabotuer Injection

The first case is saboteur injection. The script reads the Verilog design and finds every signal

defined as wire with its number of bits except for inputs. Then it defines new temporary wires

for each of them. The new name is created by adding "temp_" to the beginning of the original

name. The aim is to insert a saboteur between these two signals. This is depicted in Figure 31.

In the figure N bit signal is shown and it requires a super saboteur. In the case of a 1-bit signal,

43

a basic saboteur is enough to be inserted. In this case, the new wire name is “temp_signal” and

the original wire name is “signal”.

Figure 31 Sabotuer injection with super sabotuer [20]

There is another point that has to be modified by the script. This is an “assign” statement.

Every signal assigned as an “assign” statement has to be replaced by its new definition. For

instance, if signal is defined like “assign _07_ = _05_ | _06_;”, it will be transformed to “assign

temp__07_ = _05_ | _06_;”. With this modification, saboteurs are inserted between every

signal inside the design and can be targeted by fault injection. Lastly, the shift register has to be

defined in the target design to enable signals in Figure 31.

Finally, some control signals are added to the port of the design. These signals are

combined in 1 signal called “i_FI_CONTROL_PORT[3:0]”. It consists of i_CLK_x, i_RST_x,

i_TFEn, and i_EN_SR signals in order from MSB to LSB. i_CLK_x and i_RST_x are global

signals coming from the system. i_TFEn is enabled bit for fault injection and i_EN_SR is

enabled bit for shift register. There is one more port with a 1-bit input called i_SI. It enables bits

in Figure 31. Lastly one port is added for output signal called o_SI. The design will push i_SI

bits to another module if exist.

The user can target any number of blocks in the top design. The block targeted for fault

injection has to be modified as described above. Figure 32 gives an example connections with

ports. Another question might be where the control signals coming from. The answer is a

controller which will be described in another chapter.

44

Figure 32 New ports

The reader may also ask why the script does not consider input signals. When Yosys

generates a netlist it also defines wires for inputs. There might be two problems. The first one

is defining a saboteur for such a signal. Figure 33 shows the case. The input signal can not be

assigned in reality. This would not be a problem if the script is modified. However, the second

problem may arise afterward. In the netlist, the input signal can be used in different places in

the design and then all its usage has to be replaced by a new temporary signal. This can still

handled by the script with proper modification however makes it much more complex.

Therefore further modification is left for a newer version if it is needed.

Figure 33 Saboteur for input signal

5.3.2.3. Single Event Upset (SEU)

The second case is for the SEU model. The script finds all signals for flip flops (defined as reg)

and then for each signal and their enables, some logic is inserted. This is depicted in Figure 34.

The logic for input D of flip flop contains enabled signal TFEn for fault injection framework

with enabled signal SR[x] for target_signal. Then target_signal and the logic is XORed. The

other logic for the EN signal includes also the same signal with the “OR” operation. The reason

is to control the flip-flop even if EN is logic low. Finally, port modifications are the same as in

45

the first case. A difference from the first case is that i_clk and i_rst signals are not used in the

second case.

Figure 34 Logic for SEU

5.3.3. The FI Controller

The controller is hardware which sends the control signals to the target design for fault injection

operation like stuck-at and transient faults. It receives corresponding signals from CPU and

according to instructions by CPU, the controller prepares the target hardware. Basically, the

controller is a bridge between CPU and the target block.

The controller has four internal registers: DATA, STATUS, COUNTER and

COMPARATOR. CPU interacts with the controller by writing these register. Furthermore, CPU

can also know the status of the controller by reading STATUS register. This is a register that

both CPU and the controller modify and therefore they can communicate. In addition to these,

controller takes clock and reset signals from the system.

Shift registers and saboteurs are inserted in a target design. The controller first sends the

enable bits of the saboteurs to the shift register. This is the setup phase. When the CPU is sure

about if the setup phase is completed, it sends the start command for the operation phase. The

operation phase has two versions. The first version is for stuck-at faults. In that phase, saboteurs

are enabled until the target hardware completes its operation. In the second version, the

controller operates for transient faults. CPU sets corresponding registers for when to inject

transient fault. When injection time is reached, the controller enables saboteurs only one clock

cycle. Then it waits for other commands from the CPU. The controller modifies the STATUS

register to let the CPU know that the operation is in progress for both cases.

46

By saying waiting, the controller has no idea when the operation of the target harware

finishes. This information is known only by CPU. CPU has to send proper inputs on time to the

controller. So, communication between CPU and the controller proceeds through STATUS

register.

Figure 35 Controller signals

As indicated in Figure 35, there are four input signals controlled by the CPU. These

signals are used to read and write to the registers. The only signal that can be read by the CPU

is o_RDATA to know the phase of the controller. The rest of the outputs are connected to target

hardware consisting of the shift register and saboteur.

• o_SERIAL_OUT: Enable signals for saboteurs to be sent bit by bit.

• o_EN_SR: Enable signal for the shift register. It is high while sending data via

o_SERIAL_OUT.

• o_TFEn: Set enable signals for saboteurs. When low, the fault injection framework is

out of use.

• o_RST: Used to reset the content of the shift register. It means disabling all the

saboteurs. When the reset signal is sent by the CPU, it is forwarded to the target

hardware.

To better understand the controller, the purpose of the register should be known. These

registers are 32-bit registers and can be written or read with the help of two enable signals:

WREn and RDEn. However, read and write operations cannot be executed simultaneously. CPU

should wait for one of the operations to be done.

47

• DATA: It is a register that stores enable signals of the saboteurs. The content of the

register is forwarded to the shift register inside the target hardware. If the length of the

shift register is longer than 32, the CPU should refill the data register. For instance, if

the length of the shift register is 45, the CPU should write corresponding 32 enable bits

in the DATA register, and then it can write 13 enable bits. This register can only be

modified by the CPU. The controller sends its content with the o_SERIAL_OUT output

signal bit by bit.

• STATUS: This register can be modifed by both CPU and the controller. It stores

information about type of fault [1:0] and legth of the shift register [19:4]. In addition,

there are setup, start and busy bits. The controller can only modify busy bit to let CPU

knows if it can write or read. Figure 36 describes this register.

o Busy: This bit can be modified only by the controller. CPU can only read and

decide the next operation. While the controller is in setup or operation state in

FSM, this bit is set to 1. Then CPU can know not to modify any register inside

the controller.

o Op: Operation bit represents whether the simulation continues. After setup and

start bit are set by CPU, the target hardware starts its simulation with or without

fault. CPU can understand that the operation is in progress and does not try to

write any register inside of the controller. If the CPU wants to start a new

operation. It needs to reset the controller.

o Shift Register Length: This lets the controller know how many bits are needed

by saboteurs. The length determines the clock cycles elapsed during the setup

phase. One should note that, the length does not include control bits which have

to be sent to the shift register. Therefore, the actual clock cycle elapsed during

the setup phase is the sum of shift register length plus 2.

o Start: When the setup phase is completed, the CPU sets this bit to enable fault

injection according to fault type or operation without fault.

o Setup: CPU set this bit to start the setup phase. In this phase, the controller starts

sending enable and control signals to the shift register inside the target block.

o Control: Defines the type of faults. It is 2 bits.

▪ 00: Stuck-at-0

▪ 01: Stuck-at-1

▪ 1x: Transient

48

The rest of the bits are not used. These bits can be used for the development of the

controller.

Figure 36 Status Register

• COUNTER: This stores a value of the normal counter and is used only for transient

faults. It has to be reset by the CPU before transient fault injection starts. When the

counter reaches a value which is transient fault injection time, the o_TFEn signal goes

high in one clock cycle.

• COMPARATOR: This is set by the CPU to tell when to inject transient fault to the target

hardware. When the value is matched with the counter value, the o_TFEn signal goes

high in one clock cycle.

The internal architecture is described in Figure 37. When each register is written, the

corresponding flag bit gets high. These flags are used in FSM. There are also internal counters

for sending enable signals to the shift register. for instance CNT_SR counts till reaching length

of the shift register. CNT_BIT counts up to 32 which is needed to consider if shift register

length’s is less than or equal to 32. On the other hand, CNT_CTRL counts up to 2 to send 2-bit

control signals.

FSM controls setup, start, and progress operations. CPU has to first write in DATA and

STATUS registers to initiate the setup phase. FSM executes S1 and S3 states respectively. End

of this phase, the controller waits for the start bit in the STATUS register. Then output signals

are given in the OPER state. The TF state is only for transient faults. When COUNTER and

COMPARATOR values match, TFEn goes high 1 clock cycle. Otherwise, TFEn stays high at

the end of the whole simulation for stuck-at faults.

49

Figure 37 The internal architecture of the controller

Now, it would be better to give an example for the controller. Assuming that sa-1 fault

will be injected and DATA register is set by 0xB and the length of the shift register is 91.

Therefore, STATUS register content will be 0x5B5. Figure 38 represents the behavior for that

configuration.

Figure 38 Timing diagram for stuck-at-fault

There are 91 enable signals and 2-bit control bits are also appended. There are a total of

93 bits and can be sent in 3 phases. The reason is that registers can hold 32 bits. CPU has to

write zeros in the DATA register for the following phases. Then to start the operation, the CPU

has to modify the STATUS register’s bit-3 with high value. Finally, the o_TFEn signal goes

high and fault injection will start. As mentioned “op” bit of the STATUS register will be 1 and

modified by the controller to let the CPU know that the operation is in progress.

The previous timing diagram is the same for the sa-0 fault except for the control bits. In

case of transient fault, counters are involved in the process. CPU puts a value on the

COMPARATOR register. This is 16 in the following case. CPU has to write STATUS register

for start before counting. This is illustrated in Figure 39.

50

Figure 39 Timing diagram for transient fault

The values of the COUNTER and COMPARATOR register can be set at any time before

deciding to start the operation. As it is seen, when the COUNTER value reaches to

COMPARATOR value, o_TFEn goes high for one clock cycle. The programmer has to be

careful about reseting the COUNTER register for another operation.

51

52

Chapter 6

6. Evaluation Results

This chapter presents the results of the simulations with accuracy, PSNR, and SNR values. Four

images are used as a dataset as mentioned in Figure 25. There are 27 types of accelarator based

on census transform. As mentioned, there are three window sizes and each have 9 kernels of

census transform: 1-point, 2-point, 4-point, 8-point, 12-point, 16-point, non-redundant, full and

uniform. As can be expected, area for each type of the accelarator is different and simulation

times vary. By using Synopsys Design Compiler, area of the circuits are determined for

conceptual insight.

Firstly, fault-free simulations are carried out and results are evaluated for the metrics.

Disparty maps from the accelarators are compared with ground-truth images by Matlab.

Creation of disparity maps are approximately 7 minutes at that stage. Then faults are injected.

Simulations are repeated for faulty simulations. Fault lists are created intiutively and

systematically. Questa simulator is used for all simulations.

Following chapters will present results as grouping results according to window sizes

(5x5, 7x7 and 9x9). Then results will be given according to kernel types of the census transform

under each window sizes.

6.1. Fault-Free Simulation Results

The simulations are run on Questa simulator. Three images are used: tsukuba, cones and

venus. The output images and results of the evaluation metrics are given in following

subsections.

6.1.1. Fault-free Results: 5x5 Window Size

As can be seen, non-redundant, uniform, and full kernel configurations provide similar

accuracy results for all images. As the number of neighboring values decreases, the accuracy

value drops. This is most evident in the Venus image. The accuracy drops 40% for 1-Point, 2-

Point, and 4-Point versions concerning the Full configuration. Tsukuba and cones images

exhibit better performance in terms of accuracy drop. The differences, on the other hand, are

not pronounced enough to be visible from the images in Figure 40, Figure 41, and Figure 42.

53

• Tsukuba

The accelerator performs the best performance for an 8-point design according to the

accuracy as seen in Table 2. Non-redundant and full designs follow it. As the name indicates,

the 8-Point design uses fewer neighborhoods concerning non-redundant and full designs. The

worst accuracies are calculated for 1-Point and 2-Point designs and the difference can be

observed in Figure 40. On the other hand, non-redundant and full designs are almost same

PSNR and SNR values where full design uses all neighbourhoods inside the kernel window.

Figure 40 Tsukuba results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 86.68 86.99 91.60 93.19 91.58 92.08 93.10 92.27 93.10

PSNR 15.31 15.38 16.00 16.47 16.01 16.12 16.89 16.14 16.90

SNR 8.52 8.59 9.21 9.69 9.22 9.33 10.10 9.35 10.11

Table 2 Accuracy, PSNR, and SNR values for Tsukuba images, 5x5 window size

54

• Cones

There are slight changes for the Cones image across all metrics. The accelerator

produces almost the same disparity maps as seen in Figure 41. The exceptions are 1-point and

2-point images where some flickering is present in the images.

Figure 41 Cones results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 85.50 86.30 88.46 88.37 88.59 88.67 88.58 88.55 88.59

PSNR 13.75 14.04 14.69 14.73 14.78 14.79 14.78 14.73 14.79

SNR 8.42 8.72 9.36 9.41 9.45 9.47 9.45 9.41 9.46

Table 3 Accuracy, PSNR, and SNR values for Cones images, 5x5 window size

55

• Venus

Despite full design having the best metrics, 8-point design performs almost the same

with fewer neighborhoods. As noticed, this is the case also in the Tsukuba image. 1-point, 2-

point, 4-point, and 12-point designs generate the worst disparity maps as seen in Figure 42.

There are also differences between non-redundant and uniform designs that have the same

number of neighborhoods. It can be said that a selection of the neighborhoods also affects the

results for the same number of neighborhoods.

Figure 42 Venus results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 57.56 57.72 57.80 97.29 58.21 78.08 95.57 84.57 97.65

PSNR 16.46 16.74 16.92 25.71 17.32 21.10 24.07 21.82 25.76

SNR 5.95 6.22 6.41 15.20 6.80 10.58 13.56 11.31 15.25

Table 4 Accuracy, PSNR, and SNR values for Venus images, 5x5 window size

56

6.1.2. Fault-free Results: 7x7 Window Size

• Tsukuba

The accelerator act as same except for 1-point and 2-point designs. This is similar to

5x5 design for tsukuba image. Non-redundant design provides the best numbers and 1-point

has poor results.

Figure 43 Tsukuba results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 87.12 87.44 93.15 93.19 93.12 93.15 93.20 93.16 93.10

PSNR 15.58 15.70 16.32 16.47 16.86 16.49 16.54 16.51 17.52

SNR 8.79 8.91 9.53 9.69 10.07 9.70 9.75 9.72 10.74

Table 5 Accuracy, PSNR, and SNR values for Tsukuba images, 7x7 window size

57

• Cones

As for the 5x5 window size, the results are similar to each other. 4-point has the highest

accuracy values, on the other hand, the 16-point design has the best values for PSNR and SNR.

Here, a 2% accuracy drop is ambiguous for cones. Generally speaking, there are no substantial

differences.

Figure 44 Cones results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 86.08 86.51 88.57 88.37 88.53 88.56 88.42 88.44 88.41

PSNR 14.01 14.17 14.72 14.73 14.77 14.78 14.75 14.76 14.76

SNR 8.69 8.84 9.39 9.41 9.44 9.46 9.43 9.43 9.43

Table 6 Accuracy, PSNR, and SNR values for Cones images, 7x7 window size

58

• Venus

Significant changes occur when the number of neighborhoods is less than 8 points.

Above 8 points, the accelerator almost behaves the same. The 16-point design has the best

accuracy and is non-redundant, and the full design has the highest PSNR and SNR values.

Figure 45 Venus results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 57.40 58.59 62.00 97.29 97.69 97.13 97.65 97.03 97.65

PSNR 16.82 17.52 19.14 25.71 25.78 25.66 25.85 25.59 25.85

SNR 6.30 7.00 8.63 15.20 15.27 15.15 15.34 15.08 15.33

Table 7 Accuracy, PSNR, and SNR values for Venus images, 7x7 window size

59

6.1.3. Fault-free Results: 9x9 Window Size

• Tsukuba

When the number of neighborhoods is higher than 2 points, the disparity maps are nearly

the same. In terms of SNR, there are at most 1.89 drops between 1-point and 12-point designs.

The 12-point design has the highest PSNR value.

Figure 46 Tsukuba results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 88.51 88.81 93.04 93.15 93.06 93.15 93.14 93.11 93.13

PSNR 15.71 15.77 16.52 16.57 17.60 16.78 17.56 17.53 17.53

SNR 8.92 8.98 9.73 9.78 10.81 9.99 10.77 10.74 10.74

Table 8 Accuracy, PSNR, and SNR values for Tsukuba images, 9x9 window size

60

• Cones

The accuracy values fall in the range of 88 except for 1-point and 2-point designs. In

terms of PSNR, rising trend, from 1-point to full, drops remarkable for non-redundant design.

This is also the case for 5x5 and 7x7 designs, however, the drop is not significant. Lastly,

uniform and full design have the strongest SNR value.

Figure 47 Cones results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 85.72 86.14 88.24 88.00 88.05 88.60 88.82 88.73 88.67

PSNR 13.91 14.03 14.70 14.61 14.67 15.10 14.79 15.13 15.12

SNR 8.58 8.71 9.38 9.29 9.34 9.78 9.47 9.80 9.80

Table 9 Accuracy, PSNR, and SNR values for Cones images, 9x9 window size

61

• Venus

There is no remarkable difference between designs with same number of

neighbourhoods which is slightly better than full design. The variations for the images are

observable for 1-point, 2-point, and 4-point designs.

Figure 48 Venus results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full.

 1-Point 2-Point 4-Point 8-Point 12-

Point

16-

Point

Non-

Redun

dant

Unifor

m

Full

Accuracy 58.26 59.73 74.23 96.54 96.51 97.01 97.61 97.61 97.60

PSNR 17.44 18.37 20.93 22.92 22.86 25.61 25.84 25.83 25.83

SNR 6.92 7.86 10.42 12.41 12.34 15.10 15.33 15.32 15.32

Table 10 Accuracy, PSNR, and SNR values for Venus images, 9x9 window size

62

6.2. Faulty Simulation Results

The stuck-at faults are injected in the outputs of the Disp_Comps in Figure 23. There are 63

comparator modules. The experiments are carried out for the uniform design with a 7x7 window

size.

Graphs are organized according to averaging accuracy, PSNR, or SNR values

concerning the bit positions. Since the output o_data_C is 12 bits and o_data_D is 7, a total

of 19 bits start from 0. For instance, the accuracy values of 63 components at the bit-0 position

are computed and then plotted. This is the same for other metrics. In addition, the golden metrics

are indicated as a dotted line. Furthermore, stuck-at-0 and stuck-at-1 results are presented

separately.

• Tsukuba

The accuracies are depicted in Figure 49 and Figure 52 for stuck-at-0 and stucck-at-1

respectively. All disparity maps from the stereo vision accelerator suffer from the accuracy

reduction. The best accuracy under the stuck-at faults is obtained at bit position 15 with 88.84%

for both fault types. Remember from Table 5, the accuracy for fault-free disparity map is

93.16%. The sharpest fall is observed for bit-17 that is 6th bit of the output o_data_D. The

accuracy is 85.28% for both fault types. A slight drop regarding to a trend of accuracy line

occurred at bit-11, the most significant bit of the output o_data_C with 88.18% for both cases.

A similar trend is followed by PSNR and SNR metrics. As noticed, the accuracy when

the fault is injected in bit position 16, is better than bit position 17. However, bit-16 seems the

most corrupted according to these metrics. This outcome can be seen in Figure 55. The disparity

map is most corrupted when the fault is injected at bit position 16.

The behavior of the accelerator under the fault is the same for all components except for

the last component, 63. The same bit positions behave differently when the fault (sa0 or sa1) is

injected as seen in Figure 56. This case can be confirmed by Table 11.

63

Figure 49 The stuck-at-0 accuracy results of Tsukuba for uniform and 7x7 window size

Figure 50 The stuck-at-0 PSNR results of Tsukuba for uniform and 7x7 window size

84,00

85,00

86,00

87,00

88,00

89,00

90,00

91,00

92,00

93,00

94,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ac
cu

ra
cy

Bit positions

Average accuracies of 63 components Accuracy without the fault

12,00

12,50

13,00

13,50

14,00

14,50

15,00

15,50

16,00

16,50

17,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR without the fault

64

Figure 51 The stuck-at-0 SNR results of Tsukuba for uniform and 7x7 window size

Figure 52 The stuck-at-1 accuracy results of Tsukuba for uniform and 7x7 window size

5,00

5,50

6,00

6,50

7,00

7,50

8,00

8,50

9,00

9,50

10,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

84

85

86

87

88

89

90

91

92

93

94

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ac
cu

ra
cy

Bit positions

Average acccuracies of 63 components Accuracy without the fault

65

Figure 53 The stuck-at-1 PSNR results of Tsukuba for uniform and 7x7 window size

Figure 54 The stuck-at-1 SNR results of Tsukuba for uniform and 7x7 window size

12

12,5

13

13,5

14

14,5

15

15,5

16

16,5

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR withoyt the fault

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

66

Figure 55 Faulty Tsukuba for component 33. Stuck-at-1 fault is injected at: a) Bit-11, b) Bit-15, c) Bit-16, d) Bit-

17.

67

Figure 56 Faulty Tsukuba for component 63. Stuck-at-1 fault is injected at: a) Bit-11, b) Bit-15, c) Bit-16, d) Bit-

17.

BIT ACCURACY PSNR SNR

11 87,48 14,39 7,6

15 88,6 14,17 7,38

16 88,6 14,17 7,38

17 88,6 14,17 7,38

Table 11 The metrics for component 63, sa0, sa1, and bit positions 11, 15, 16, and 17

• Cones

As seen in Figure 57 and Figure 60, for sa0 and sa1 respectively, the accuracies drop

dramatically at bit locations 11, 17, and 18 which correspond to the most significant bit of

output o_data_C and the last two bits of output o_data_D respectively. The accuracies are

76.86, 62.39, and 73.54 percent respectively. In addition, the bit locations 10, 12, and 16 have

a slight decrease with accuracies of 76.86, 87.99, and 77.73 percent. The accuracy without any

fault is 88.44% from Table 6.

68

As noticed, these locations match with the upper half of the signals for all 63

components. Other metrics also follow the same trend at the bit locations. Figure 63 and Figure

64 show the images for the bit positions mentioned above for components 33 and 63. The fault

effect appears on the images as an example. Finally, the comments are valid for both sa0 and

sa1 fault types. On the other hand, the metrics are better than fault-free results on some bit

positions. Figure 65 shows the comparison.

Figure 57 The stuck-at-0 accuracy results of Cones for uniform and 7x7 window size

Figure 58 The stuck-at-0 PSNR results of Cones for uniform and 7x7 window size

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
cc

u
ra

cy

Bit positions

Average accuracies of 63 components Accuracy without the fault

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR without the fault

69

Figure 59 The stuck-at-0 SNR results of Cones for uniform and 7x7 window size

Figure 60 The stuck-at-1 accuracy results of Cones for uniform and 7x7 window size

5,00

6,00

7,00

8,00

9,00

10,00

11,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ac
cu

ra
cy

Bit positions

Average accuracies of 63 components Accuracy without the fault

70

Figure 61 The stuck-at-1 PSNR results of Cones for uniform and 7x7 window size

Figure 62 The stuck-at-1 SNR results of Cones for uniform and 7x7 window size

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR without the fault

5,00

6,00

7,00

8,00

9,00

10,00

11,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

71

Figure 63 Faulty cones for component 33. Stuck-at-0 fault is injected at: a) Bit-10, b) Bit-11, c) Bit-12, d) Bit-16,

e) Bit-17, and f) Bit-18.

72

Figure 64 Faulty cones for component 63. Stuck-at-0 fault is injected at: a) Bit-10, b) Bit-11, c) Bit-12, d) Bit-16,

e) Bit-17, and f) Bit-18.

Figure 65 Cones images: a) sa0 fault at the 0th-bit position for component 30. b) Fault-free image

73

• Venus

The behavior of the stereo vision accelerator under the fault injection is also maintained

for the Venus image. As seen in Figure 66 and Figure 69, there are significant drops in bit

locations 16 and 17 with accuracies of 81.89 and 45.56 percent respectively. The golden

accuracy is 97.03 percent as given Table 7. The phenomenon is followed by also PSNR with

19.03 and 16.10 percents and SNR with 8.52 and 5.59 percents. The effect of both fault types

is same on the output disparity maps. The golden values for PSNR and SNR is 25.59 and 15.08

percent respectively for sa0 and sa1. Lastly, as expected, there is a small degradation at bit

position 11. Figure 72 shows the images for the mentioned bit positions. The degradation can

be seen accordingly.

In terms of accuracy, the accelerator performs almost a good performance except the

bits mentioned above. However, the PSNR and SNR metrics indicate that the difference is

slightly larger. Figure 73 reveals that the difference, 1.61%, is observable.

Figure 66 The stuck-at-0 accuracy results of Venus for uniform and 7x7 window size

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ac
cu

ra
cy

Bit positions

Average accuracies of 63 components Accuracy without the fault

74

Figure 67 The stuck-at-0 PSNR results of Venus for uniform and 7x7 window size

Figure 68 The stuck-at-0 SNR results of Venus for uniform and 7x7 window size

15,00

17,00

19,00

21,00

23,00

25,00

27,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR without the fault

4,00

6,00

8,00

10,00

12,00

14,00

16,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

75

Figure 69 The stuck-at-1 accuracy results of Venus for uniform and 7x7 window size

Figure 70 The stuck-at-1 PSNR results of Venus for uniform and 7x7 window size

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ac
cu

ra
cy

Bit positions

Average accuracies of 63 components Accuracy without the fault

15,00

17,00

19,00

21,00

23,00

25,00

27,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PS
N

R

Bit positions

Average PSNRs of 63 components PSNR without the fault

76

Figure 71 The stuck-at-1 SNR results of Venus for uniform and 7x7 window size

Figure 72 Faulty venus for component 33. Stuck-at-0 fault is injected at: a) Bit-11, b) Bit-16, and c) Bit-17.

Figure 73 a) Golden disparity map of Venus (97.03% accuracy). b) When a fault is injected at component 10, bit

position 1 for sa0 (95.42% accuracy).

4,00

6,00

8,00

10,00

12,00

14,00

16,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SN
R

Bit positions

Average SNRs of 63 components SNR without the fault

77

Until now, bits in the fault list, 19 bits, are focused in terms of the fault effect for each

image. This provides which bit position affects the disparity map the most. The following

analysis illustrates an average effect of the fault over components. As mentioned, there are 63

comparator modules cascading each other to determine the disparity level. To observe which

comparator modules are the most critical in terms of fault propagation or compensation,

comparisons across all images and comparators are aimed to be illustrated. The comparisons

are made by separating sa0 and sa1 fault types. The metrics can be observed for each fault type.

From Figure 74 to Figure 79, it can be observed from all metrics that there are noticeable

and expected decreases for all images. The fluctuations over the metrics are similar for the

images at the same components. For instance, ripples can be observed for components number

8, 19, 30, and 41. When the final peak is reached among these components, there are no

significant changes or fluctuations observed in the metrics. As can be noticed, the stereo vision

accelerator can, generally speaking, mitigate the effects of the fault for the components

mentioned above.

Figure 74 Accuracies for Cones, Tsukuba, and Venus images based on the number of comparators for SA1.

80

82

84

86

88

90

92

94

96

98

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

A
cc

u
ra

cy

Component Number

Cones Tsukuba Venus

78

Figure 75 PSNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA1.

Figure 76 SNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA1.

12

14

16

18

20

22

24

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

P
SN

R

Component Number

Cones Tsukuba Venus

6

7

8

9

10

11

12

13

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

SN
R

Component Number

Cones Tsukuba Venus

79

Figure 77 Accuracies for Cones, Tsukuba, and Venus images based on the number of comparators for SA0.

Figure 78 PSNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA0.

80

82

84

86

88

90

92

94

96

98

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

A
cc

u
ra

cy

Component Number

Cones Tsukuba Venus

12

14

16

18

20

22

24

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

P
SN

R

Component Number

Cones Tsukuba Venus

80

Figure 79 SNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA0.

6

7

8

9

10

11

12

13

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

SN
R

Component Number

Cones Tsukuba Venus

81

82

Chapter 7

7. Conclusion and Future Work

Stereo vision accelerators have computationally heavy arithmetic units that can include

sign operations. These accelerators can also be used in safety critical applications like

autonomous cars. Therefore, their reliability is an important issue under abnormal conditions.

The abnormalities may be caused by environmental effects or simply faults on physical

electronics. The thesis investigates the effect of such errors and evaluate the reliability of the

stereo vision accelerator based on census transform.

Simulation-based methods and analysis are implemented with Tsukuba, Cones, and

Venus images. In chapter 6.1, fault-free simulation results are provided. The simulations show

that the metrics vary according to images, window sizes, and neighborhood configurations. The

accelerator, generally speaking, performs better with 7𝑥7 and 9𝑥9 window size, but there is not

much difference between them. The results also indicate that more neighborhoods in the

configurations can perform better in terms of the metrics. The variations, on the other hand,

depend on the images.

The stuck-at faults are, then, injected for the reliability evaluation. The outcomes are

presented in chapter 6.2. The average accuracy drop considering all images is 4.05%. A drop

for PSNR and SNR is 1,91%. However, that amount of drop can be observed in the images in

Figure 43. The observation is that when the fault appears in the upper half of the output signal,

it is more likely to affect the accuracy, PSNR, and SNR values. If the signal is a part of a

comparison unit, it is understandable. Because the magnitude comparison is influenced by the

most significant bit position. Another result is that the accelerator can mitigate the adverse effect

depending on the depth of the cascade architecture. For instance, the accelerator can partially

recover the accuracy after every 11 consecutive connections of the comparator in Figure 74.

The architecture also includes an LRCC module which enable double-check of the disparity

levels. Despite the presence of the LRCC module, the effect of the fault can be seen in some

cases.

The issue with the simulation-based method is the excess of time required. It also

depends on the image size and the number of neighbors in the configuration. Considering that

the processing time for the Tsukuba image for uniform design with a 7𝑥7 window size is 7

83

minutes in Questa, it becomes evident that implementing a faster method for fault injection

would be more appropriate. The emulation-based method is the second option in the thesis. The

controller module is developed and tested for an integration of the stereo vision accelerator in

the FPGA.

7.1. Future Work

The future work covers an integration of the accelerator with the FPGA environment. However,

the development of the controller facilitated progress in the subsequent phases. The future

works include the integration of the accelerator with the stream data interface as in Figure 30.

The aim is to establish a setup that runs all simulations and stores the results with just one

command.

User needs to select fault type, location that fault is injected and then all statistics and

images will be generated. By that way designers can analyze their designs under fault and adjust

their designs as needed to ensure more secure operation.

Figure 80 Example connection of the controller with the ComBlock

As shown in Figure 80, the controller has already been connected to the ComBlock.

Here, ComBlock has 5 inputs and 4 output registers, each 32 bits. Four output pins are

connected to the inputs of the Controller and outputs of the Controller are connected to the

inputs of the ComBlock. Clock and reset signals are globally connected for both IPs. The next

phase is to integrate the accelerator with the controller and then the stream interface.

In conclusion, this thesis focused on the reliability evaluation of the stereo vision

accelerator. Stuck-at faults were injected and the statistics were gathered. The resilience of the

84

uniform design with a 7x7 window size was analyzed for the fault injection process. Besides

the simulation-based method, the contribution to the emulation-based method is provided.

85

Bibliography

[1] W. S. Fife, "Improved Stereo Vision Methods for FPGA-Based

Computing," Brigham Young University - Provo, 2011.

[2] R. Szeliski, Computer vision: Algorithms and applications, Springer

Science & Business Media, 2010.

[3] "NVIDIA Jetson Nano System-on-Module," NVIDIA Corporation, 2014.

[4] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic concepts

and taxonomy of dependable and secure computing," IEEE Transactions on

Dependable and Secure Computing, vol. 1, no. 1, p. 13, 2004.

[5] B. Dipert, "How to build a custom embedded stereo system for depth

perception," 10 August 2022. [Online]. Available: https://www.edge-ai-

vision.com/2022/08/how-to-build-a-custom-embedded-stereo-system-for-depth-

perception/.

[6] R. Klette, "Rectification of Stereo Image Pairs," in Concise computer

vision: An introduction into theory and algorithms, Springer Science & Business

Media, 2014, pp. 235-236.

[7] R. Klette, "Matching, Data Cost, and Confidence," in Concise computer

vision: An introduction into theory and algorithms, Springer Science & Business

Media, 2014, pp. 287-289.

[8] A. Garg, "Medium," 22 February 2022. [Online]. Available:

https://medium.com/analytics-vidhya/distance-estimation-cf2f2fd709d8.

[9] D. Scharstein, P. Ugbabe and R. Szeliski, "2001 Stereo datasets with

ground truth," 2011. [Online]. Available:

https://vision.middlebury.edu/stereo/data/scenes2001/.

86

[10] S. K. Bukasa, L. Claudepierre, R. Lashermes and J.-L. Lanet, "When fault

injection collides with hardware complexity," Lecture Notes in Computer Science,

pp. 243-256, 2019.

[11] M. S. Reorda, "The stuck-at fault model," Politecnico di Torino, 2022.

[12] M. L. Bushnell and V. D. Agrawal, "A Glossary of Fault Models," in

Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits,

Springer Science & Business Media, 2006, p. 66.

[13] M. L. Bushnell and V. D. Agrawal, "Faults," in ESSENTIALS OF

ELECTRONIC TESTING FOR DIGITAL, MEMORY AND MIXED-SIGNALVLSI

CIRCUITS, 2006, pp. 259-260.

[14] D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms," Proceedings IEEE Workshop on Stereo

and Multi-Baseline Vision (SMBV 2001), pp. 131-140.

[15] T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, D. DiSabello and M.

C. Herbordt, "Achieving high performance with FPGA-based computing,"

Computer, vol. 40, no. 3, pp. 50-57, 2007.

[16] "GitLab," 2024. [Online]. Available: https://gitlab.com/ictp-

mlab/hyperfpga-bsp.

[17] "GitLab," 2024. [Online]. Available: https://gitlab.com/ictp-mlab/core-

comblock.

[18] S. Merrouche, M. Andric, B. Bondžulic and D. Bujakovic, "Objective

image quality measures for disparity maps evaluation," Electronics, pp. 1-3, 2020.

[19] "GitHub," [Online]. Available: https://github.com/YosysHQ/yosys.

[20] L. A. Mesa, J. Guerrero-Balaguera, E. D. Castañeda, M. Sanchez and W.

Pérez-Holguín, "An integrated environment for the reliability assessment of CNNs

accelerators implemented in FPGAs," 2024 IEEE 25th Latin American Test

Symposium (LATS), 2024.

87

