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ABSTRACT 
An increase in the complexity of electronic systems leads to less tolerance of such systems for 

performance degradation and safety hazards. Therefore, guaranteeing the reliability of 

electronic systems is crucial for safety-critical applications. It is needed to identify any kinds 

of errors and the possible origin of the error as early as possible and find solutions not to 

sacrifice for performance.   

An error occurrence can depend on different reasons including manufacturing defects, 

aging, environmental interruption, and so on. Some of these errors can be detected and corrected 

after production however some of them may also arise after use. This may cause a failure if the 

designer is not aware of such cases while designing the product. There might be such cases 

where even engineers can not intervene to fix the error for instance space applications. Hence, 

the electronic systems should be capable of rectifying the errors or be resistant to the errors.  

Modeling faults and analyzing their effects are significant for performance. A fault can 

be defined as a representation of a defect that is unexpected behavior between a planned design 

and an implemented design. There are different fault models to test the designs. The thesis 

focuses on stuck-at and transient fault models to test hardware.  

The thesis studies the reliability assessment of hardware faults affecting a stereo core 

based on census transform. The accelerator calculates the depth information from two images 

of the same scene but at different angles. The evaluations were conducted in a set of images 

obtained from Middlebury Stereo Datasets. Four scenes are used: Tsukuba, Cones, Venus, and 

Teddy. The accelerator creates a disparity map showing the depth of the objects. The 

Middlebury Stereo Datasets also provide ground-truth images for the scenes and they are used 

to calculate accuracy, peak-signal-to-noise ratio (PSNR), and signal-to-noise ratio 

(SNR).  These are also the metrics used to evaluate the impact of faults on the output images 

generated by the accelerator.  

The accelerator is based on census transform which has different configurations. Kernel 

size (5x5, 7x7, and 9x9) and the number of neighborhoods (9 configurations) are features for 

the census transform [1]. The provided hardware was implemented with a 7x7 kernel and 

uniformly distributed neighborhoods. To gain a comprehensive view, all combinations of the 

features are implemented since the resilience to a fault for one configuration may not be the 

same for another. In other words, faults that do not arise in one configuration may appear. 
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However, the quality of the dispart map can also be different. Therefore, all configurations of 

the census transform are implemented and adapted in the accelerator. The metrics were 

calculated for four scenes with Matlab. This forms the initial part of the thesis. The metrics for 

fault-free simulations are present at this stage.  

After that work, an analysis for fault-injected hardware starts. Since there are a lot of 

configurations, an automated framework is needed to expedite the injection process. The 

framework needs a fault list that stores locations where the fault will be injected. Stuck-at faults 

are implemented via the Questa simulator.  

The framework takes the selected hardware and then compiles it. A script reads the fault 

list line by line and for each fault, it simulates the selected hardware. The output of the 

accelerator, a disparity map, will be compared with the ground-truth image with the help of a 

Python script which calculates the metrics and writes them down in a CSV file.   

The creation of the fault list is completed after several trials. The first list targets 

locations that are intuitively selected. It requires an understanding of the hardware. The most 

significant bits of signed additions and subtractions are mostly targeted. There are also 

comparators in the hardware and some bits are also targeted. Since there are millions of bits, it 

is impossible to simulate all of them within a certain period. That is the reason for fault list 

creation. Nevertheless, the time is still limited to simulate all designs. At this point, a second 

list emerged. This list targets the most significant bits of outputs of all modules in the design. 

The aim is to identify the effect of sign bits in the circuit. Finally, simulations were conducted 

as time permitted. Metrics are calculated for 7x7 windows for all neighborhood configurations. 

As a result, sign bits make a difference for stuck-at-0 fault for all designs. The second stage of 

the thesis is concluded with these simulations.  

Finally, the thesis seeks to solution to accelerate the simulations. The solution is to 

migrate the framework into the FPGA environment. As it is apparent, FPGA can enable the 

simulations to run almost in real-time. Hyper FPGA, Trenz SOM TE0803-03-4BE11-A, is used 

for the purpose. However, it is provided to us by the Multidisciplinary LABoratory (MLAB) 

from The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy). The 

framework was introduced by them. The connection to hyper FPGA is provided to us via 

Jupyter Notebook.  

The framework aims to connect any custom design into FPGA via the communication 

block IP core (core ComBlock) which provides interfaces such as registers and FIFOs to the 
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programmer of the programmable logic (PL). It helps to bypass the complexity of the bus 

provided by the processing system (PS).  

This stage plans to set hardware for: (i) input image selection, (ii) location of the fault 

injection/s, and (iii) collection of statistics automatically. These require modifications on 

hardware and additional controller hardware for the status of the hardware.  

The hardware needs to be inserted with saboteurs which are the small hardware to select 

fault types (stuck-at-0, stuck-at-1, and transient fault specifically single-event-upset (SEU)). 

Besides the saboteurs, a shift register has to be inserted to store and enable signals. These are 

inserted into comparator modules of the accelerator for trial since it is a small hardware. The 

injection process is also done automatically with a Python script. After successful compilation, 

the controller module is designed.  

The controller is a hardware component that lets the programmer know about the status 

of the hardware. It establishes a kind of handshake protocol between the programmer and the 

FI infrastructure inside the target hardware. For instance, if the hardware received the input 

image and is ready to start the simulation or it concludes the simulation. This type of message 

is important to obtain reliable results. Then the accelerator with the controller is implemented 

and interfaces are also handled. This was the last stage of the thesis.  

In conclusion, the FPGA framework needs to be tested for functionality which is a future 

work. However, the effort put into this thesis is important to test any hardware via FPGA 

automatically and contribute to running simulations faster. The proposed framework can 

contribute to the designer to test their design faster and build fault correction algorithms 

accordingly.   
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Chapter 1 

1. Introduction  

The rapid advancement in embedded systems has typically transformed modern technology, 

enabling innovative solutions across various industries. Among these advancements, vision 

accelerators have gained considerable interest in extracting meaningful information. Besides 

that, many machine vision techniques have been developed through the decades for that 

purpose. The vision accelerators are specialized hardware that implement efficient artificial 

vision algorithms. The aim is to reduce power consumption and computational load. They 

inherently enable parallel computing. 

One type of vision accelerator is a stereo-vision accelerator which estimates depth 

information through disparity calculations. Stereo vision systems rely on two or more images 

of the same scene. The images are captured by cameras placed a fixed distance apart. The stereo 

vision technique is not only used for extracting depth information but also 3D mapping, 

machine vision and autonomous navigation such as drones. However, it requires lots of data to 

be processed and this creates challenges related to computational complexity, memory 

bandwidth, and latency [2]. To deal with these challenges, stereo vision accelerators incorporate 

optimized architectures along with dedicated boards such as NVIDIA Jetson Nano, Google 

Coral Dev Board, and Avnet Ultra96-V2. 

The NVIDIA Jetson Nano, for instance, is a small artificial intelligence (AI) computer 

delivering compute performance to run modern AI algorithms at unique size, power and cost. 

The 128-core Maxwell GPU provides substantial parallel processing capabilities. Image signal 

processor (ISP) and JPEG Processing Block are, for example, specialized hardware to support 

computational workload [3].  

Drones are an example applications of autonomous systems to apply the stereo vision 

technique. Detecting and avoiding obstacles, autonomous navigation is required to accurately 

perceive depth and construct 3D map of surroundings in real-time. There are powerful hardware 

as mentioned above and cost-effective algorithms to make drones work. However, there is 

another crucial factor that needs to be considered. It is the reliability.  

Since autonomous systems are expected to work without human intervention, any 

failure in the system can cause a disaster in terms of safety, mission, and so on. In autonomous 
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cars, for example, a failure in reliability may lead to jeopardy for safety of the passengers. In 

case of drones, it causes mission abortion and loss of equipment. Therefore, ensuring reliability 

in such systems is not only requirement but also critical factor for public trust.  

Reliability is a continuity of correct service [4]. Reliability ensures to maintenance of 

the functionality and the performance of the system even in the presence of faults or failures. It 

is also highly related to other attributes of secure computing such as availability, safety, and 

security. As systems advance and become more complex, ensuring reliability becomes more 

significant. Therefore, achieving reliable systems is a fundamental goal of the designers for the 

trustworthiness and success of the technology. Fault forecasting can be conducted for an 

evaluation of the system behavior in the presence of the fault. 

Assessing the reliability of hardware accelerators is crucial, for identifying critical 

hardware structures and consequently devising fault tolerance mechanisms to mitigate such 

fault effects. The occurrence of the error can depend on different reasons including 

manufacturing defects, aging, environmental interruption, and so on. Some of these errors can 

be detected and corrected after production however some of them may also arise during the in-

field operation of the system. This may cause a failure if the designer is not aware of such cases 

while designing the product. There might be such cases where even engineers can not intervene 

to fix the error for instance space applications. Hence, the electronic systems should be capable 

of rectifying the errors or be resistant to the errors. 

When a product is delivered to the user, it may still produce the wrong output due to 

some problems mentioned before. To reduce the effect of such errors, fault analysis is needed. 

The designer deliberately introduces a fault in the design and examines the behavior of the 

hardware. With the help of some techniques, side effects can be minimized and eventually 

disappear. The goal of the thesis is to develop an automated framework for fault injection for 

any hardware design. Furthermore, understanding and evaluating the effects of such faults are 

also aimed.   

This thesis focused on evaluating the reliability assessment of faults affecting a stereo 

vision accelerator for safety-critical applications. The experimental evaluations were first 

conducted at the RTL level by systematically injecting faults on specific locations of a selection 

of internal components of the accelerator after performing an architectural analysis. In addition, 

different versions of census transform were implemented to study the impact of such 

transformations on the reliability of the accelerator. To quantify the impact of fault on the stereo 
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vision accelerator. This thesis adopted three different evaluation metrics (Accuracy, PSNR, and 

SNR). The metrics are calculated on the obtained images for each injected fault.   

All the experiments were conducted in an FI framework that allows the injection of 

faults in the internal structures of the target accelerator. In this thesis, the first approach of the 

FI framework was developed using Questasim simulator to simulate permanent faults. 

Unfortunately, the simulation time required by this FI tool resulted in excessive simulation time, 

requiring between 15 to 30 minutes per fault, which limited the number of faults and the 

scenario under evaluation in a reasonable amount of time. 

To tackle this problem, a new alternative strategy was devised by adopting emulation 

strategies. Emulation FI inserts additional circuits, called saboteurs, inside the RTL or gate-

level descriptions of the target hardware that later can be implemented on FPGA devices.  This 

FI method allows the activation of a given fault during the runtime of the accelerator making 

the evaluations faster. In this thesis, the first version of the emulation infrastructure is presented 

demonstrating that the simulation time is 27 times faster than the simulation approaches.  

Finally, simulations are run with and without a fault injection. A reference metrics are 

calculated with the fault-free simulations by comparing output disparity maps with their 

ground-truth images. Then, the faults are injected, and the metrics with related images are 

presented. In addition, the accelerator is adapted to the emulation-based simulation framework 

to benefit from the simulation times. That part relies on hardware modifications with a sabotuer 

injection.  
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Chapter 2 

2.  Background 

To analyze any hardware for potential faults that may arise before and after production, 

engineers model the fault. Modeling is a method that describes how hardware behaves under 

the fault and it helps in developing the architecture for fault-free usage. To understand the 

impact of the fault, fault injection framework is developed. 

There are different models however some of them are common fault models like stuck-

at, transient, and single-event upset. These methods served as a fault detection on the thesis to 

meet reliability and performance standards. 

2.1. Stereo Vision 

It is not possible to estimate the depth of an object in an image with one camera. Stereo 

vision technique is used capture such information. There are at least two camera taking picture 

of the same scene from different angle. The human visual system is a proof. The difficulty for 

this technique is to determine corresponding points in one image in the other.   

The system consists of four main steps: calibration, rectification, stereo-matching, and 

triangulation [5].  

• Calibration: It is related to calculating intrinsic and extrinsic parameters of the 

camera. Intrıinsic parameters’ calculations occur simultaneously with the 

estimation of extrinsic parameters (the pose of the camera concerning a known 

calibration target. Intrinsic parameters of the camera estimate parameters such as 

focal length, optical center, and lens distortion. On the other hand, extrinsic 

parameters depend on the relative position between cameras.   

• Rectification [6]: Matching the corresponding points in pairs of the input images 

is the complexity of stereo vision. To reduce the complexity, the rectification 

process involves warping the input image pairs such that they are recorded in 

canonical stereo geometry. Figure 1 shows an example of the process. 

• Stereo matching [7]: As the name indicates, the aim is to find the same points in 

two images. Assume that in Figure 2, left image (B) and right image (L) are the 
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match images. The pixel p with its neighborhood defined by a square window in 

the left image is compared with the pixel q with its neighborhoods on the epipolar 

line. A matching operation is performed on the same row due to canonical stereo 

geometry. How to know if pixels match is based on algorithms like the sum of 

absolute differences (SAD), census transform with hamming distance, and 

normalized cross-correlation. 

• Triangulation: It is a technique used to determine the depth of the object in the 

scene. By using image pairs and disparity of the same points, the coordinates of 

the point in reality are calculated.  

 

Figure 1 Top: Images recorded by two cameras with significant differences in extrinsic parameters and 

also differences in intrinsic parameters. Bottom: Two geometrically rectified images taken at different viewing 

locations by two cameras installed in a crash-test hall [6] 
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Figure 2 Stereo matching among two images of the same scene [7] 

The depth is inversely proportional to disparity as shown in Equation 1 where f is the 

focal length of the camera, d is the physical size of a pixel in the camera sensor CMOS/CCD, 

T is the baseline distance between the center of the left and right cameras, and D is a disparity 

[8]. Figure 3 illustrates the relationship between the disparity and the distance of the object. 

When an object is close to the camera, the disparity gets higher. 

𝑍 =
𝑓

𝑑
×

𝑇

𝐷
 

Equation 1 Distance between point P and camera center 

 

Figure 3 Disparity versus Distance [8] 
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Another observation from Equation 1 is that the distance between cameras T is 

proportional to the disparity. The disparity is small when the cameras are close to each other for 

the same point P. 

Overall, these two parameters are closely related to depth estimation for stereo vision 

before applying stereo match algorithms. However, the thesis uses the Middlebury dataset [9] 

which provides image pairs with their ground-truth images. So, camera calibration and 

rectification steps are not the concern of the thesis. The following two chapters discuss the 

stereo-matching algorithm based on census transform. It is also the algorithm implemented in 

the stereo vision accelerator. 

2.1.1. The Census Transform [1] 

Census transform is a kernel-based nonlinear transform used for feature extraction in 

image processing applications. It is used to extract pixel intensity for depth information of an 

image. The transform compares pixel intensities with a reference pixel value and generates a 

binary number for each pixel in the image according to the size of the kernel. Figure 4 gives an 

example of a 3 by 3 kernel where each value around P1 is compared with P1 and if they are less 

than or equal to the P1, the output value is set to 1, otherwise 0. This is how the census vector 

is generated.  

 

Figure 4 Census transform example 

The disadvantage of the census transform is the large size of the census vector in terms 

of the number of bits. It means that a number of pixel comparisons is performed by the 

transform and this affects the amount of the hardware resources. Assuming a 9 by 9 kernel size, 

there are 80 pixels to be compared with the central pixel. The length of the census vector also 

affects the amount of hardware resources for calculating the hamming distance. Therefore, the 

requirement for the hardware resources is proportional to the size of the census vector. 
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The size of the census vector also determines the length of the hamming distance value 

as a representation number of bits which is proportional to ⌈𝑙𝑜𝑔2(𝑛 + 1)⌉ -bits for n-bit census 

vector. Furthermore, the summing of the distances requires adders whose sizes are also 

proportional to  ⌈𝑙𝑜𝑔2(𝑛 + 1)⌉.  

Overall, a motivation behind the sparse census transformation emerges. It reduces the 

census vector size without sacrificing the accuracy of correlation. In the thesis, the stereo vision 

accelerator is based on the sparse census transform. 

2.1.2. The Sparse Census Transform 

According to [1], there is redundancy in the computation of the census vector. Assuming 

that the census transform is computed around pixel p with comparisons of nearby pixels p’. 

When the census transform is computed for the pixel p’ later, the transform still includes the 

comparison between pixels p and p’. The double computation contributes to being weighted 

twice the pixels. This is correct for the pixels not located on the edge of the correlation window. 

The pixels on the edge of the correlation window become less weighted, therefore the effects 

of the pixels on the edge weaken. 

The census transform can be optimized to reduce the amount of required hardware 

during their implementation with minimal impact on the final obtained output from the 

accelerator.  As a result, it is possible to use nine different kernel configurations configurations 

for the census transforms. The dark color pixels are compared to the pixel in the center of the 

matrix. These kernel types will be applied to the different window sizes. Authors in [1] 

demonstrated that these optimized kernel sizes have a limited impact on the accuracy of the 

accelerator. These optimizations can dramatically affect the number of resources in the design 

and also can play a crucial role in terms of fault tolerance features. 

The literature also reports three different windows or kernel sizes for census transform: 

5𝑥5, 7𝑥7, and 9𝑥9. It is worth noting that the same patterns can be applied to other kernel sizes. 

Accuracy value may not vary over window size for the same configuration of the kernel (see 
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Chapter 6.1).  These trade-offs can affect the choice of the census transform module. The reader 

will also see the results under stuck-at-0 and stuck-at-1 fault simulations. 

Nine kernel configurations are full (normal census transform), uniform, non-redundant, 

16-point, 12-point, 8-point, 4-point, 2-point, and 1-point. Applying the configuration on the 

different window sizes, there are 29 kernels. These are shown in Figure 5, Figure 6, and Figure 

7.  

 

Figure 5 Census Transform kernel configuration for 5x5 window 
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Figure 6 Census Transform kernel configuration for 7x7 window 

 

Figure 7 Census Transform kernel configuration for 9x9 window 
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2.1.3. Strategies for Reliability Evaluation [10] 

 The stereo vision accelerator is implemented with different census transform methods. 

The comparisons between the methods are made and the result is presented. However, it is 

crucial to know how the hardware behaves under a fault and how reliable the hardware is.  

In this section, we present different strategies to evaluate the reliability of the systems. 

The reliability evaluation is usually carried out experimentally by adopting fault injection (FI) 

campaigns. There are four different FI strategies, i) simulation-based, ii) hardware-based,  iii) 

software-based, and iv) emulation-based. 

i) Simulation-based strategies: 

Hardware description of the tested circuit is simulated with fault injected on specified 

locations. The fault can be injected in two methods. The tools can insert necessary 

components for fault injection into the tested circuit or the fault can also be inserted by 

simulator commands. The second method enables to modification of the signals and 

variables of the tested circuit. 

The disadvantage of simulation-based strategies is that they are very slow. An actual 

circuit operation is multiple orders of magnitude faster than a simulation of the hardware 

description of a circuit. For instance, simulating the stereo vision accelerator with a 7x7 

window size and uniform configuration for just one fault takes about 7 minutes for an 

image size of 384x288 in the Questa simulator. The simulation is run with simulator 

commands. A selected signal is targeted to stuck-at fault. When image sizes increase, as 

expected, the simulation requires more time. 

ii) Hardware-based strategies: 

With a cause of heavy ion radiation, electromagnetic interferences or other physical and 

environmental effects, the hardware can be disrupted for fault injection. To apply this 

method, it is necessary to have the final device. Therefore, the fault injection is directly 

applied to the final device, this is the main advantage. On the other hand, controlling the 

effect of physical injection is difficult. It is hard to perform the same experiment. 

Instead, to achieve repeatability, disruptions are emulated at the pin level rather than 

injecting a physical fault. 
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When the final device is exposed to the radiation, there is a possibility to observe 

transient faults. The radiation may cause one or more bit-flips at random locations which 

cannot be done with pin-level injection. 

Finally, the tools for handling this type of injection are hardware-dependent and the 

setup of the tools is complicated. 

iii) Software-based strategies: 

Software-implemented fault injection (SWIFI) tools are used to implement the fault at 

the software level. The aim is to create the faults at the hardware level by using software. 

This is not needed to modify the hardware. SWIFI enables testing the whole system 

including the operating system. There are several tools to use SWIFI techniques such as 

CEU, EFS, and XCEPTION. The fault models can be bit-flip, data modification, stuck-

at faults, and code insertion. Skipping one or more instructions or modifications of the 

instructions are common methods to apply such faults. 

The cost is speed, memory consumption and so on. Since the fault injection campaign 

requires to modify the program, it causes execution overhead. For instance, EFS tools 

need context switches between real system processes and fault injection processes. The 

primary drawback of SWIFI is that the tools create faults beyond the other techniques. 

Assuming a 32-bit system and 232 possible instruction values, a number of existing wires 

might fall that value. The generated faults may not cause failures or the error cannot 

appear during execution of the program. Therefore, generating a more useful set of faults 

is the challenge which also includes optimization phases during simulation. 

iv) Emulation-based strategies 

This technique offers an alternative solution to simulation-based strategies to reduce 

simulation time. Field Programmable Gate Arrays (FPGA) based logic emulation 

systems are used for hardware prototyping. 

A real behavior of the design can be observed under the fault injection with real-time 

interactions. The designer has to provide the complete synthesizable VHDL description. 

In addition, the synthesizable VHDL description requires additional mechanisms to 

inject faults at specific times and locations. This may lead to overhead in the circuit if 

the number of fault-injectable locations increases. 
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2.2. Levels of Fault Models 

Modeling of faults is closely related to the modeling of the circuit. In the design hierarchy, the 

level refers to the degree of abstraction. Manufacturing defects may not be correlated with fault 

models for the behavioral level which has fewer details of implementation. High-level fault 

models play a terrific role in simulation-based design verification than testing. However, 

semiconductor memories have exceptions due to simpler functionality, and an exhaustive 

functional test is possible.  

Stuck-at faults are quite useful and popular fault models at the register-transfer level 

(RTL) or logic level in digital testing. Other fault models at this level are delay faults and 

bridging faults. 

At the component levels including transistors and other lower levels, stuck-open types 

of faults can be used. These faults are also technology-dependent faults. Component-level faults 

are mostly introduced in analog circuit testing. Lastly, other models do not correspond to any 

level of design hierarchies. The quiescent current defect is a typical example. 

2.3. Stuck-at Fault 

To model stuck-at-fault, a design with its interconnections (netlist) of Boolean gates is provided. 

The intention is to insert the fault between interconnections. There are two types of faults: stuck-

at-0 and stuck-at-1 (s-a-0 and s-a-1 respectively).  It means that a line with an s-a-1 fault, for 

instance, has always a logic 1 regardless of the correct logic driving it. 

It is possible to have multiple stuck-at faults in the circuit simultaneously. A circuit with 

n interconnections can have 3n-1 possible targets for the faults. It is assumed that each 

connection has three states: s-a-1, s-a-0, or fault-free. The case when all interconnections are 

fault-free is not counted. When n is getting large, the number of stuck-at faults explodes. 

Therefore, modeling only a single stuck-at fault is a common practice that reduces the number 

of faults to 2n at most. Furthermore, the number can be reduced by a technique known as fault-

collapsing [11]. On the other hand, some faults can not propagate to the output with any input 

combinations. It is called an untestable fault. The presence of such faults may or may not change 

the input-output behavior of the circuit [12]. Some redundant logic might be introduced to the 

circuit and these may lead to present untestable faults.  
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In conclusion, the stuck-at model is very useful since it is simple, numerable, and well-

supported by CAD tools. It is widely used and able to model several physical defects. However, 

it can not model the totality of the physical defects like open fault, delay fault, and so on. For 

instance, stuck-at-fault does not consider timing-related problems where the transition is correct 

but it violates the timing requirement like in the case of the delay fault model. Another example 

is that if a wire or transistor is not connected, it may lead to unpredictable floating values which 

cannot be modeled with the stuck-at model. One should also consider that several faults that 

cannot be modeled as stuck-at faults can be detected by test patterns generated to cover stuck-

at faults. 

 

Figure 8 An example of a single stuck-at fault. 

2.4. Transient Fault [13] 

Faults can be permanent or non-permanent. The stuck-at fault model is a permanent type of 

fault which means that an inteconnection’s value is fixed to some value and it can not be 

changed ever. On the other hand, non-permanent faults are present only part of the time and 

occur randomly. These faults especially appear in memory integrated circuits however, a 

solution to this problem is information redundancy or redundant error-correction codes.  

Transient faults are a type of non-permanent fault caused by environmental conditions 

like cosmic rays, air pollution, humidity, temperature, power supply fluctuation, and so on. 

Fault models for transient faults are getting more and more important due to an increasing 

number of fault-tolerant applications. There are two significant fault models for transient fault: 

single event upset (SEU) and single event transient (SET) fault model. 
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SEU models a bit flip in any memory element at any clock cycle. Engineers can measure 

the sensitivity of the circuit or system for given input data. In a simulation environment, a bit 

flip can be injected and maintain this state within a specific time interval. A drawback is that 

the number of faults may grow rapidly.  Let's assume there is an accumulator with 16-bit wide 

and there are two inputs with 8 bits each. Also, assume that multiplication takes 256 clock 

cycles. Finally, the number of possible SEUs equals to (8 + 8 + 16) × 256 = 8192. 

In conclusion, SEU is a model that implements faults for safety-critical applications 

such as space applications, avionics, and autonomous systems. There are techniques to 

eliminate the effect of such faults for instance error correction code (ECC) and triple modular 

redundancy (TMR). 

2.5. Evaluation Metrics 

Accuracy, PSNR, and SNR are the metrics for the comparison of the results. The measurements 

are calculated by comparing the ground truth of the image with the output disparity map of the 

accelerator. 

Accuracy comes from the [14]. It is based on the percentage of bad-matching pixels. 

This is an average of the absolute difference between a disparity map and a ground-truth image 

in comparison to a threshold. And accuracy value is calculated by subtracting the B value from 

100.  𝛿𝑑 value is selected according to the histogram of the image. 

𝐵 =
1

𝑁
∑ (|𝑑𝐶(𝑥, 𝑦) − 𝑑𝑇(𝑥, 𝑦)| > 𝛿𝑑)

(𝑥,𝑦)

 

Equation 2 Where dC is the disparity map, dT is the ground truth and δd is the disparity error tolerance. 

Then, the accuracy value is calculated by subtracting the B value from 100.  𝛿𝑑 value is 

selected according to the histogram of the images. Its value for four images is given in Table 1. 

Images Tsukuba Cones Venus 

𝜹𝒅 70 33 30 

Table 1 Thresholds for the images 

The histograms show pixel counts versus absolute difference matrixes which are 

calculated by subtracting from the output disparity map of the accelerator to its ground-truth 

image and then taking absolute values of each value. It shows how the output image is different 
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from the ground-truth image. It is expected that the difference will be small.  Figure 9, Figure 

10, and Figure 11 illustrate the histograms of the images Tsukuba, Cones, and Venus 

respectively along with different kernel configurations shown in Figure 6. 

 

Figure 9 The histograms of the Tsukuba image for 7x7 window size implementation (threshold is 70, the 

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point. 

 

Figure 10 The histograms of the cones image for 7x7 window size implementation (threshold is 33, the 

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point. 
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Figure 11 The histograms of the venus image for 7x7 window size implementation (threshold is 30, the 

red line): a) Uniform. b) Non-redundant. c) Full. d) 16-Point. e) 12-Point. f) 8-Point. g) 4-Point. h) 2-Point. i) 1-

Point. 

Peak Signal-to-Noise Ratio (PSNR) is the second metric for the evaluation. It measures 

the relationship between the noise (or error) in an image and the original image's signal. A high 

PSNR indicates that the difference between the original image and the target (or predicted) 

image is small, meaning the image quality is better. It is calculated by comparing the maximum 

pixel value with the mean square error (MSE) of the image as given in Equation 3.  

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑝𝑒𝑎𝑘_𝑣𝑎𝑙𝑢𝑒2

𝑀𝑆𝐸
) 

Equation 3 PSNR calculation 

The third metric is the signal-to-noise ratio (SNR) which evaluates the quality of a signal 

in the presence of noise. Higher SNR values typically indicate better image quality. Equation 4 

shows the calculation. 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 

Equation 4 SNR calculation 



19 
 

2.6. The Field Programmable Gate Array (FPGA) 

The FPGA is an integrated circuit that can be repeatedly reprogrammed. It has been extensively 

utilized for ASIC prototyping, emulation, and high-performance computing [15]. To apply the 

fault injection with an emulation-based strategy, a hyper FPGA is used. 

 A framework is provided to connect FPGA online. To interface with FPGA and make it 

more general to use it, ComBlock is introduced. The entire interface management is carried out 

through this block. Therefore, custom designs are connected to ComBlock and data is sent by 

CPU. 

2.6.1. The Hyper FPGA 

The FPGA used for the project is Trenz SOM TE0803-03-4BE11-A which features from the 

AMD/Xilinx Zynq™ UltraScale+™ XCZU4EG-1SFVC784E. The board support package is 

available [16]. It is used in the creation of the Vivado project. 

The term "Hyper FPGA" typically refers to an advanced FPGA platform or technology 

that provides high performance, versatility, and scalability beyond conventional FPGA designs. 

The specifications are : 

 

Figure 12 TE0803-01 MPSoC module 
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• Xilinx ZYNQ UltraScale+ MPSoC, U1 

• 2-Input AND Gate, U39 

• Red LED (DONE), D1 

• 256Mx16 DDR4-2400 SDRAM, U12 

• 256Mx16 DDR4-2400 SDRAM, U9 

• 256Mx16 DDR4-2400 SDRAM, U2 

• 256Mx16 DDR4-2400 SDRAM, U3 

• 12A PowerSoC DC-DC converter, U4 

• 1.5A LDO DC-DC converter, U10 

• 1.5A LDO DC-DC converter, U8 

• Voltage monitor circuit, U41 

• 0.35A LDO DC-DC converter, U26 

• 0.35A LDO DC-DC converter, U27 

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J3 

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J1 

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J4 

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J2 

• 4-channel programmable PLL clock generator, U5 

• Low-power programmable oscillator @ 25.000000 MHz, U5 

• Low-power programmable oscillator @ 33.333333 MHz (PS_CLK), U32 

• 256 Mbit serial NOR Flash memory, U7 

• 256 Mbit serial NOR Flash memory, U17 

2.6.2. The ComBlock [17] 

The Communication Block IP Core (Core ComBlock) is the result of a collaboration between 

the Multidisciplinary LABoratory (MLAB) from The Abdus Salam International Centre for 

Theoretical Physics (ICTP, Italy) and the FPGA division of Micro and Nanotechnology from 

the National Institute of Industrial Technology (INTI, Argentina). It is licensed under the BSD 

3-clause. 

MLAB projects are characterized by solving high-speed acquisitions and processing in 

the FPGA and sending the resulting data to a PC. The Processor included in devices such as 

Zynq is mainly considered a provider of data storage (DDR memory) and Ethernet connections. 

The ComBlock was created to provide known interfaces (registers, RAM, and FIFOs) to a user 
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of the Programmable Logic (PL), avoiding the complexity of the bus provided by the Processor 

System (PS), which is AXI in the case of the Zynq-7000. 

 

Figure 13 ComBlock 

The block provides: 

• Up to 16 input and/or output registers (configurable from 1 to 32 bits). 

• A True Dual-Port RAM offers a straightforward RAM interface for user interaction. It 

allows customization of parameters such as data width, address width, and memory 

depth based on specific requirements. 

• Two asynchronous FIFOs, one from PL to PS and another from PS to PL, with 

indications of empty/full, almost empty/full, and underflow/overflow conditions. Their 

inclusion, the data width and the memory depth can be configured. 

As it is illustrated in Figure 14, there are 5 interfaces for the user on the FPGA side: 

• IN_REGS: input registers. 

• OUT_REGS: output registers. 

• IO_DRAM: input/output True Dual Port RAM. 

• IN_FIFO: input FIFO. 
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• OUT_FIFO: output FIFO. 

 

Figure 14 ComBlock with ports 

In the case of the Vivado version, it provides 2 interfaces for control on the Processor side: 

• AXIL: AXI4 Lite with the registers and FIFOs. 

• AXIF: AXI4 Full with the RAM. 
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Chapter 3 

3. Stereo Matching Accelerator [1] 

The target stereo-core accelerator evaluated in this thesis is based on census transform and the 

sum of hamming distance. It measures the depth of the object in the image and creates a 

disparity map accordingly. Understanding the architecture of the hardware is needed for 

intuitive testing and also for analyzing the most sensitive part of the circuit. 

The hardware consists of three main sub-modules and each one will be explained in the 

following chapters. 

3.1. Census Transform Module 

The census transform can be thought of as two steps. The generation of the census 

transform vector is the first step followed by the calculation of the hamming distances between 

the vectors. The census transform module handles the first step. The kernel configurations of 

the transform can be implemented with configurations as given in 2.1.2. 

The census module’s ports are shown in Figure 15. The i_data is the 8-bit pixel value 

of the image and i_dval is its validation signal. The census vectors are generated by first 

buffering the pixels and then transforming them. Notice that there are two output vectors 

(o_data_L and o_data_R) due to that design choice. In Figure 16, the upper and lower windows 

can be seen. The validation signal for both outputs is the o_dval signal. Lastly, there are two 

images of the same scene for disparity map generation and stereo image processing. Therefore, 

two census transform modules are implemented. 

 

Figure 15 Ports of Census Transform Module 
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The census module employs a computational approach called stream processing, which 

implements a row buffer architecture used for storing only the necessary image rows to compute 

the kernel size of the census transform. This requires 𝑊𝑐𝑥𝑀 storage elements where M is the 

length of the image and Wc is the kernel size. After the census transformation, the next step 

consists of the implementation of the Hamming distance calculation over a correlation window 

Wh. To avoid implementing a second-row buffer, and in turn, saving memory resources, this 

stage is implemented by increasing the size of the census row buffer to match the correlation 

window of the sum of hamming' distances. Therefore we need to store an extra Wc line of the 

image. Finally, the size will be  (𝑊ℎ + 𝑊𝑐) × 𝑀. This is illustrated in Figure 16.  

 

Figure 16 Window buffer for 7x7 census window and 13x13 correlation window 

Output o_data_L comes from the upper census window and o_data_H comes from the 

below census window. Window buffer acts like shift registers which forwards it to the register 

next to itself. When it reaches the end of the current line, the last pixel is forwarded to the first 

register of the next line. 
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Finally, the o_dval signal will be given when the center pixel value of the upper Census 

Window arrives and then the comparison can start. In the case of 7𝑥7 census window with 𝑀 =

384, for instance, the time required is 384 × 3 + 4 = 1156 clock cycle. 

3.2. Sum of Hamming Distance (SHD) Module 

The SHD module is the most complex module in the accelerator and consists of three different 

types of modules. The first is called the Num_of_Ones module which calculates the hamming 

distance for outputs of census transforms. This is represented as an HD module in Figure 17. 

The other two modules reside inside the SHD  module in the same figure. Names of the these 

modules are Window_Sum and Disp_Cmp. Window_Sum calculates correlation values between 

pixels in left and right images. Then, the Disp_Cmp module selects the best disparity level by 

checking correlation values coming from the Window_sum module. 

 

Figure 17 SHD Module with inputs/outputs 

 

Number of the modules depends on the designer’s choice which is based on the 

experiments. Our design is based on the disparity level of 64. Therefore, we will present the 

whole design based on that number. Figure 8 can be seen as a disparity level of 1. However, 

there will be no need for a comparator for that case. The reader has to also know that the stereo 

core used a left-to-right consistency check (LRCC). This also affects a number of comparator 

modules. After this brief introduction, we give details of each module. Finally, the whole core 

architecture is given in Figure 18. 
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Figure 18 Stereo core architecture 

3.2.1. Hamming Distance (HD): Number_of_ones module 

This module takes the output of the census to transform for left and right images and then 

calculates the hamming distance. XOR operation results in finding the difference and then the 

rest of the circuit counts the number of 1s. For instance, if the left input is “1001” and the right 

input is “1111”. After XOR operation output will be “0110”. Then the circuit will calculate “10” 

which is 2 as integer values. 

 

Figure 19 Calculation of hamming distance 
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3.2.2. Sum of Hamming Distance (SHD): Window_Sum module 

As mentioned previously, this module is optimized to reuse some computation for each 

similarity measure evaluation [1]. For example, considering the similarity measure for a pixel 

in the left image at xl and in the right image at xr, both on the same pixel row, calculation is 

done as follows: if we want to compute similarity for xl +1 and xr+1 for window size Wh, 𝑊ℎ −

1 similarity computation will be exactly the same as for previously calculated similarity 

measure computation. Then, there is only one new computation is needed. Therefore, the new 

column reused 𝑊ℎ − 1 pixels from the same column of the previous row. The computation is 

illustrated in Figure 20. 

 

Figure 20 Computing Column Sum [1] 

This is valid for the row computation. The new row reuses the previous 𝑊ℎ − 1 pixels 

in the same row. Figure 21 shows how the window summing optimization work. A row buffer 

with length of image and a column buffer with Wh length are required to obtain the trailing 

column sum. 

 

Figure 21 Computing Window Sums [1] 
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Discussion about such optimization is out of topic. The only thing we consider here is 

the architecture targeted by fault injection. After introducing the buffers, the general 

architecture of this module is shown in Figure 22. The output of the module goes to the 

comparator for the selection of disparity level. The reader has to be aware of the addition and 

substruction circuits since the sign bits involve the operation and stuck-at faults can 

dramatically affect the outcome of this module. This will be presented later. Finally, the number 

of modules is 64 as shown in Figure 18. Designers may select different disparity levels and the 

number of that module depends on that number. 

 

Figure 22 The architecture of the SHD module [1] 

3.2.3. Comparator: Disp_Cmp module 

The comparator module consists of a 2-2𝑥1 multiplexer and allows to ranking of the disparity 

correlation among two different disparity levels and then selecting the one with the lowest rank. 

It takes o_data from the Window_Sum module which is the correlation value. There are two 

comparators for each Window_Sum module except for the first one. One output is for the 

disparity value and the other is for the selected correlation value. According to o_data, it selects 

the disparity level and that value propagates through the end. 

 To better understand, we analyze Figure 18 using Comparator L1. The inputs in Figure 

23 are the following: C1 and C2 come from Window_Sum module. C1 comes from the first 

similarity module-0 and C2 comes from similarity module-1.  
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Figure 23 Comparator Module. n is a number of bits as the output of the census transform. Wh is the size of the 

correlation window 

D1 and D2 represent disparity levels. D2 depends on the level and it is 0 for Comparator 

L1. For instance,  it is 34 for Comparator L34. On the other hand, D1 is the previous output from 

a comparator. Its first value is 0.  

Assume C2 is 17 and C1 is 10. This means that at the current level, the correlation is less 

than the previous one. It means that a pixel on the left image (x,y) has less correlation than a 

shifted pixel on the right image (x,y+z). Therefore, the output will be C1. When the correlation 

is less than the previous one, disparity value D1 will be selected. 

In summary, the best match from one pixel in the left image with D pixels in the right 

image is the one that has the lower correlation value. The module selects the lowest correlation 

value and disparity value related to that correlation value. As we said, there are two of them for 

the same level. The second one is used for left-to-right consistency checks to be sure that the 

selection is correct. It is used to double-check. 

3.3. Left-Right Consistency Check (LRCC) Module 

The left-right consistency check is one of the most common port-processing steps used in the 

literature. This technique is very successful in eliminating false matches. To find the best match 

in the left image, a pixel in the left image is compared to the d (disparity) previous pixels in the 



31 
 

right image. Likewise, for the best match in the right image, the comparison is done in the left 

image. As it turns out, there is no need for a reference image for the implementation. Thanks to 

the LRCC module, similarity measures are computed for both images. In Figure 18, inputs of 

the LRCC module are L2R and R2L which correspond to “match for left reference image” and 

“match for right reference image” respectively. This structure is a linear search structure. 

The module consists of two multiplexers, substruction, absolute, and less-than 

operators. Larger multiplexer is 64𝑥1 type and inputs come from R2L input. These are shifted 

through the bottom. After taking the absolute difference between pixel disparity values, that 

value is compared with a threshold. The threshold value can be selected arbitrarily during the 

operation of the accelerator. A small threshold value will perform strict LRCC while a larger 

threshold make this refinement more relaxed.. If the absolute difference is less than the 

threshold, we can say that this L2R input is a correct output disparity. Figure 24 shows the 

internal architecture of the LRCC module. 

 

Figure 24 LRCC module 
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Chapter 4 

4. Simulation Environment for Reliability 

Assessment 

Simulations are executed in two ways. The first one is fault-free and the other is with fault 

injection. The fault-free simulations are normal simulations that require a testbench with input 

images then results in the creation of a disparity map for that input. The faulty simulations 

require a fault list that specifies where to inject stuck-at-fault. The output of such simulations 

is reported with statistics including accuracy, PSNR, and SNR. The following chapters will 

describe the simulations in detail. 

4.1. Stereo Image Dataset 

A stereo image pair is used for a stereo correspondence algorithm as an input to generate a 

disparity map. In computer vision, estimating a disparity map is a challenging task. This map 

can be converted into a map of distance.  As a result, the words range map and depth map are 

used in the literature in addition to the disparity map. 

Our design applies such a stereo correspondence algorithm and uses Middlebury’s stereo 

benchmark dataset. Since this dataset is widely used and known, we decided to use them as 

input to our design. There are four different image pairs: Tsukuba, Venus, Teddy, and Cones. 

Dimensions of the images are different. The ground-truth images are also provided in the 

dataset. 

These images are generated using different methods according to [18]. The Tsukuba 

image pair has a disparity range of 16 pixels, and its ground-truth image excludes a border of 

18 pixels. Excluding the border of 18 pixels is applied to other disparity maps while calculating 

some metrics. The Venus image has a disparity range of 20 pixels. Lastly, The Cones image has 

a disparity of 60 pixels. These are shown in Figure 25. A structured light technique was used to 

generate their disparity ground-truth data. These methods involve projecting specific light 

patterns onto a scene to directly capture a range map of the scene. 
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It can be observed from the disparity maps that objects closer to the observer have higher 

gray level values (brighter regions). The depth information can be extracted from the disparity 

map in that way. 

 

Figure 25 Middlebury Stereo Vision dataset: left images, right images, and ground-truth 

4.2. Fault-Free Simulations 

The testbench of the fault-free simulation is shown in Figure 26. As usual, left and right 

images are provided as input. These are converted to txt files and the testbench sends each pixel 

value with validation bits to the stereo core. Then, output disparity values with validation bits 

are saved in output txt files. With the help of Python script, a disparity map is generated. 

 

Figure 26 Testbench environment for fault-free simulations 
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The Python scripts enable the whole process with a single command. The script reads 

the input images with specified names, disparity level, kernel window size Wc, correlation 

window size Wh, and number of bits to represent a pixel, then compiles the design. After 

successful compilation, the simulation is started. As indicated before, output text files are 

converted to disparity maps. The elapsed time for one simulation depends on the input image 

size. However it does not take more than 10 minutes for our images. Window sizes also affect 

the elapsed time. For instance, with lower Wc, the simulation will take less time than higher Wc.  

Finally, disparity maps are generated by the script with normalization of the pixels 

between 0 to 255. Minimum and maximum values are detected from the output and each pixel 

value are normalized with the following formula. 

𝑃𝑖𝑥𝑒𝑙 − 𝑃𝑖𝑥𝑒𝑙𝑚𝑖𝑛 

𝑃𝑖𝑥𝑒𝑙𝑚𝑎𝑥 − 𝑃𝑖𝑥𝑒𝑙𝑚𝑖𝑛
× 255 

Equation 5 Image normalization 

4.3. Faulty Simulations 

The testbench of the faulty simulation environment is shown in Figure 27. The faulty simulation 

depends on the fault list which indicates locations where the fault will be injected in the stereo 

core. The fault type is a stuck-at fault. The output disparity map is compared to the ground truth 

of the input image then a script calculates statistics with the metrics. All statistics are written in 

a CSV file. The simulation continues until all faults are injected separately. When a simulation 

with a fault injected ends, the environment resets the fault and then continues with another fault 

in the list. 
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Figure 27 Testbench environment for faulty simulation 

The format of the fault list follows the structure of “sa  testability  fault_site”. “sa” is a 

type of stuck-at fault which is either “sa0” or “sa1”. “testability” is always “NC” and 

“fault_site” shows where the location of the fault Figure 28 is an example. The “fault_site” is a 

path of the bit defined by the simulator which is QuestaSim in our case. The fault list consists 

of the bit location with sa0 and sa1 in the list to compare the effect of different faults on the 

same bit. Output CSV file is in the format of “fault_site,sa,(accuracy, PSNR, SNR)”.  This is 

generated for all images for 7𝑥7 window configurations.  

 

Figure 28 Example index for fault list 

In conclusion, the environment reads the fault list line by line. Before starting the 

simulation, it freezes the specified bit in the architecture and start the simulation. When output 

is generated, it calculates the statistics and resets itself for another fault injection. This is a 

automitised environement. When a user runs the script, the simulations run till the end of the 

fault list. 

4.3.1. Fault List: Where to Inject the Fault 

The question is where to inject the fault. There are millions of bit positions and it is not possible 

to target all bits with simulation-based techniques due to a timing issue. So, the selection of the 

bit locations depends on a knowledge of the internal architecture of the stereo vision accelerator.  
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Let’s consider the census transform module that only compares two values. An input 

pixel is stored in the first register in the slide window and it is shifted to the end while new 

input pixels arrive. Any fault in the slide window will be propagated toward the last register in 

the slide window. It means that all pixels will be exposed to the same fault. Since the 

comparisons involve the unsigned values, the effect of the fault may not be significant. After 

census vectors are generated, the number of 1’s is counted by the num_of_ones module in Figure 

19. An assumption is that having a one-count difference will not also make a significant impact. 

The faults in these modules cannot make a significant impact. On the other hand, the 

calculation of the hamming distance involves addition and subtraction. Since the outcome of 

the subtraction may be negative, any corruption in the sign bit can cause an obvious error. Even 

if each bit of subtraction, assuming the input port of the subtraction module, is corrupted, the 

error can be observable in the output image because it may lead to a wrong disparity selection. 

Likewise, any error in the disparity selection, by Disp_Cmp, may also lead to observable 

incorrectness. This is the case also for the LRCC module where a comparison exists. 

A final comment on this is that the upper bits, above half, of a signal are the most critical 

bits if a comparison, addition, or subtraction operation is being performed. The Disp_Cmp 

module is targeted to the fault injection. The outputs of this module are injected with the stuck-

at faults. The fault list is created for a uniform design with a 7x7 window size. There are 63 

Disp_Cmp modules and each has outputs o_data_C with 12 bits and o_data_D with 7 bits. 

Considering stuck-at-0 and stuck-at-1 fault types, there are a total of 2394-bit locations. 
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Chapter 5 

5. Emulation-Based Strategy 

Simulation is the easiest way to know if our circuit works. It does not need any hardware and 

only software tools can be handled. Aims is to verify the functionality before embedding it into 

hardware. It helps to improve and make modifications before manufacturing and reduce costs 

if verification is done properly. One throwback of the simulation environment is time 

consumption. Simulations take days and it can be time-consuming. This is the case for the 

simulations of the stereo core. This chapter presents an emulation-based strategy instead of a 

simulation-based strategy. 

The stereo core is a huge hardware which makes it impossible to target all bits for the 

fault model. Some sophisticated tools like TetraMax are good but the cost of such tools is very 

high. Another approach to applying the fault model to our circuit is to embed it into FPGA. This 

requires some modifications in our circuit. However, the modification can be handled easily 

and these do not require much hardware resources. Migration from the simulation environment 

to the FPGA world with a fully automized framework helps us to fasten fault injection 

operations. 

5.1. Methodology 

The framework is organized to fully automate fault injection campaigns. The aim is to select 

fault target and fault type from the software side and control the whole operation. All 

simulations run on the FPGA fabric and enable us to save time. The proposed framework is 

demonstrated in Figure 29. 

 

Figure 29 Proposed Framework 
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The diagram outlines a step-by-step process for testing the fault tolerance of a hardware 

design using FPGA-based fault injection techniques. The process begins with the Hardware, 

which serves as the foundation for the system under analysis. In the next step, Gate Level 

Conversion is performed to translate the design into a low-level gate representation suitable for 

fault modeling and testing. Subsequently, a Saboteur Injection step is introduced, where fault 

models (referred to as saboteurs) are incorporated into the system to simulate potential hardware 

errors. The design is then implemented on an FPGA in the FPGA Prototyping phase, where the 

prototype is used for real-time testing. Finally, in the Fault Injection (FI) Campaign, systematic 

fault injection tests are conducted to evaluate the design's robustness and reliability. This 

workflow is commonly applied in electronics engineering to ensure the fault resilience of 

critical hardware systems. 

5.2. Block Diagram 

The idea is to integrate an accelerator in FPGA with proper modifications. As it is seen in Figure 

30, the accelerator is inserted with saboteurs and shift register. Shift register store enables bits 

for each SS and enable bits for individual bits inside the SS. Super sabotuer (SS) is explained 

following sections. In our design, comparator module is targeted however, sabotuer injection 

can be applied any component inside the accelerator. Comparator is targeted because it is easy 

to test and apply the idea. 

 

Figure 30 Block Design  

The diagram illustrates a system architecture designed for fault injection and data 

processing. At the core of the system is the CPU, which acts as the primary control unit, 
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managing the overall operations and communication with other components. The FI Controller 

facilitates fault injection by coordinating the necessary signals and data between the CPU and 

the Accelerator. A Stream Data Interface enables seamless data transfer between the CPU and 

the Accelerator, ensuring efficient communication. Image data will be sent through this. Within 

the Accelerator, a Shift Register plays a key role in distributing enable signals to the SS 

components. The Component block, which consists of several sub-modules labeled as SS, is a 

target for fault injection. There might be several components which is why the component has 

to shift data inside the shift register. 

5.3. Hardware Modifications 

This chapter describes modifications done to the hardware. The steps cover gate-level 

conversion and saboteurs injection. Then the controller in Figure 30 Block Design will be 

introduced. 

5.3.1. Yosys [19] 

Yosys is a framework for RTL synthesis and more. It currently has extensive Verilog-2005 

support and provides a basic set of synthesis algorithms for various application domains. 

This framework is used to translate the VHD files into gate-level Verilog files. We need 

a gate-level description to insert saboteurs between desired or all signals in the design. When 

the gate level design is ready, with the help of a script saboteurs will be injected automatically 

between each signal. Shift register will be also injected. With this modification, gate-level 

conversion is handled in Figure 29. 

5.3.2. Sabotuers and Injection 

When the gate-level netlist is ready, a script reads the netlist and inserts saboteurs and shift 

register. Before giving details of the hardware component, the script is introduced because it 

has 2 options. With this section saboteur injection part will be completed in Figure 29. 

5.3.2.1. Python Script 

This script aims to inject saboteurs for the stuck-at and transient fault model or to inject some 

logic to perform single-event upset (SEU) phenomena. To implement these, a target hardware 

needs some modifications. In both cases, a shift register has to be inserted in the target hardware 

for activation of the fault model for the corresponding signal. There are also control signals 
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which have to be added to port description to control shift register operation and fault models.  

Other modifications will be presented later. 

The script takes filename and type of the operation (SABOTUER or SEU) and 

automatically updates the design for the operation. In addition to that, it creates a detailed report 

related to modification. Organization of the report will be described later.  

To use the script, a Verilog description of the design has to be supported. If the 

programmer has a VHDL version of its design, the conversion from VHDL to Verilog is dealt 

with by Yosys. After that conversion verilog file contains the gate-level netlist of the design. 

On the other hand, if the Verilog file is already present, it has to represent a gate-level 

description. Since the gate-level description contains nets and connections, the script reads 

wires or registers and inserts saboteurs or some logic for each of them. The designer can run 

the script as follows: 

python .\script_injection.py TYPE=SEU FILE=num_of_ones_7.v 

After that, the script creates new .v file with modifications and a detailed report for that 

design. The report has following header: “SR Pos,Signal Name,Signal Type,Source Line 

Number,Source File Name,File Path”.  The report is in csv format. 

• SR Pos: The position of the enable bit for the corresponding signal. 

• Signal Name: The name of the target signal. 

• Signal Type: Type of the signal. It can be defined as either “wire” or “reg”. 

• Source Line Number: The line number where the modified signal originates from. 

• Source File Name: Gate-level netlist of the target design in Verilog format. 

• File Path: It is the location where the report is located. 

The designer can also know the length of the shift register from the report. In addition, the script 

also print some messages about the extracted signals with their number of bits. 

5.3.2.2. Sabotuer Injection 

The first case is saboteur injection. The script reads the Verilog design and finds every signal 

defined as wire with its number of bits except for inputs. Then it defines new temporary wires 

for each of them. The new name is created by adding "temp_" to the beginning of the original 

name. The aim is to insert a saboteur between these two signals. This is depicted in Figure 31. 

In the figure N bit signal is shown and it requires a super saboteur. In the case of a 1-bit signal, 
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a basic saboteur is enough to be inserted. In this case, the new wire name is “temp_signal” and 

the original wire name is “signal”. 

 
Figure 31 Sabotuer injection with super sabotuer [20] 

There is another point that has to be modified by the script. This is an “assign” statement. 

Every signal assigned as an “assign” statement has to be replaced by its new definition. For 

instance, if signal is defined like “assign _07_ = _05_ | _06_;”, it will be transformed to “assign 

temp__07_ = _05_ | _06_;”.  With this modification, saboteurs are inserted between every 

signal inside the design and can be targeted by fault injection. Lastly, the shift register has to be 

defined in the target design to enable signals in Figure 31. 

Finally, some control signals are added to the port of the design. These signals are 

combined in 1 signal called “i_FI_CONTROL_PORT[3:0]”. It consists of i_CLK_x, i_RST_x, 

i_TFEn, and i_EN_SR signals in order from MSB to LSB. i_CLK_x and i_RST_x are global 

signals coming from the system. i_TFEn is enabled bit for fault injection and i_EN_SR is 

enabled bit for shift register. There is one more port with a 1-bit input called i_SI. It enables bits 

in Figure 31. Lastly one port is added for output signal called o_SI. The design will push i_SI 

bits to another module if exist. 

The user can target any number of blocks in the top design. The block targeted for fault 

injection has to be modified as described above. Figure 32 gives an example connections with 

ports. Another question might be where the control signals coming from. The answer is a 

controller which will be described in another chapter.    
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Figure 32 New ports 

The reader may also ask why the script does not consider input signals. When Yosys 

generates a netlist it also defines wires for inputs. There might be two problems. The first one 

is defining a saboteur for such a signal. Figure 33 shows the case. The input signal can not be 

assigned in reality. This would not be a problem if the script is modified. However, the second 

problem may arise afterward. In the netlist, the input signal can be used in different places in 

the design and then all its usage has to be replaced by a new temporary signal. This can still 

handled by the script with proper modification however makes it much more complex. 

Therefore further modification is left for a newer version if it is needed. 

 

Figure 33 Saboteur for input signal 

5.3.2.3. Single Event Upset (SEU) 

The second case is for the SEU model. The script finds all signals for flip flops (defined as reg) 

and then for each signal and their enables, some logic is inserted. This is depicted in Figure 34. 

The logic for input D of flip flop contains enabled signal TFEn for fault injection framework 

with enabled signal SR[x] for target_signal. Then target_signal and the logic is XORed. The 

other logic for the EN signal includes also the same signal with the “OR” operation. The reason 

is to control the flip-flop even if EN is logic low. Finally, port modifications are the same as in 
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the first case. A difference from the first case is that i_clk and i_rst signals are not used in the 

second case. 

 

Figure 34 Logic for SEU 

5.3.3. The FI Controller 

The controller is hardware which sends the control signals to the target design for fault injection 

operation like stuck-at and transient faults. It receives corresponding signals from CPU and 

according to instructions by CPU, the controller prepares the target hardware. Basically, the 

controller is a bridge between CPU and the target block.  

The controller has four internal registers: DATA, STATUS, COUNTER and 

COMPARATOR. CPU interacts with the controller by writing these register. Furthermore, CPU 

can also know the status of the controller by reading STATUS register. This is a register that 

both CPU and the controller modify and therefore they can communicate. In addition to these, 

controller takes clock and reset signals from the system. 

Shift registers and saboteurs are inserted in a target design. The controller first sends the 

enable bits of the saboteurs to the shift register. This is the setup phase. When the CPU is sure 

about if the setup phase is completed, it sends the start command for the operation phase. The 

operation phase has two versions. The first version is for stuck-at faults. In that phase, saboteurs 

are enabled until the target hardware completes its operation. In the second version, the 

controller operates for transient faults. CPU sets corresponding registers for when to inject 

transient fault. When injection time is reached, the controller enables saboteurs only one clock 

cycle. Then it waits for other commands from the CPU. The controller modifies the STATUS 

register to let the CPU know that the operation is in progress for both cases. 
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By saying waiting, the controller has no idea when the operation of the target harware 

finishes. This information is known only by CPU. CPU has to send proper inputs on time to the 

controller. So, communication between CPU and the controller proceeds through STATUS 

register. 

 

Figure 35 Controller signals 

As indicated in Figure 35, there are four input signals controlled by the CPU. These 

signals are used to read and write to the registers. The only signal that can be read by the CPU 

is o_RDATA to know the phase of the controller. The rest of the outputs are connected to target 

hardware consisting of the shift register and saboteur.  

• o_SERIAL_OUT: Enable signals for saboteurs to be sent bit by bit. 

• o_EN_SR: Enable signal for the shift register. It is high while sending data via 

o_SERIAL_OUT. 

• o_TFEn: Set enable signals for saboteurs. When low, the fault injection framework is 

out of use.  

• o_RST: Used to reset the content of the shift register. It means disabling all the 

saboteurs. When the reset signal is sent by the CPU, it is forwarded to the target 

hardware.  

To better understand the controller, the purpose of the register should be known. These 

registers are 32-bit registers and can be written or read with the help of two enable signals: 

WREn and RDEn. However, read and write operations cannot be executed simultaneously. CPU 

should wait for one of the operations to be done. 
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• DATA: It is a register that stores enable signals of the saboteurs. The content of the 

register is forwarded to the shift register inside the target hardware. If the length of the 

shift register is longer than 32, the CPU should refill the data register. For instance, if 

the length of the shift register is 45, the CPU should write corresponding 32 enable bits 

in the DATA register, and then it can write 13 enable bits. This register can only be 

modified by the CPU. The controller sends its content with the o_SERIAL_OUT output 

signal bit by bit. 

• STATUS: This register can be modifed by both CPU and the controller. It stores 

information about type of fault [1:0] and legth of the shift register [19:4]. In addition, 

there are setup, start and busy bits. The controller can only modify busy bit to let CPU 

knows if it can write or read. Figure 36 describes this register. 

o Busy: This bit can be modified only by the controller. CPU can only read and 

decide the next operation. While the controller is in setup or operation state in 

FSM, this bit is set to 1. Then CPU can know not to modify any register inside 

the controller. 

o Op: Operation bit represents whether the simulation continues. After setup and 

start bit are set by CPU, the target hardware starts its simulation with or without 

fault. CPU can understand that the operation is in progress and does not try to 

write any register inside of the controller. If the CPU wants to start a new 

operation. It needs to reset the controller. 

o Shift Register Length: This lets the controller know how many bits are needed 

by saboteurs. The length determines the clock cycles elapsed during the setup 

phase. One should note that, the length does not include control bits which have 

to be sent to the shift register. Therefore, the actual clock cycle elapsed during 

the setup phase is the sum of shift register length plus 2.  

o Start: When the setup phase is completed, the CPU sets this bit to enable fault 

injection according to fault type or operation without fault. 

o Setup: CPU set this bit to start the setup phase. In this phase, the controller starts 

sending enable and control signals to the shift register inside the target block. 

o Control: Defines the type of faults. It is 2 bits. 

▪ 00: Stuck-at-0 

▪ 01: Stuck-at-1 

▪ 1x: Transient 
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The rest of the bits are not used. These bits can be used for the development of the 

controller. 

 

Figure 36 Status Register 

• COUNTER: This stores a value of the normal counter and is used only for transient 

faults.    It has to be reset by the CPU before transient fault injection starts. When the 

counter reaches a value which is transient fault injection time, the o_TFEn signal goes 

high in one clock cycle. 

• COMPARATOR: This is set by the CPU to tell when to inject transient fault to the target 

hardware. When the value is matched with the counter value, the o_TFEn signal goes 

high in one clock cycle. 

The internal architecture is described in Figure 37. When each register is written, the 

corresponding flag bit gets high. These flags are used in FSM. There are also internal counters 

for sending enable signals to the shift register. for instance CNT_SR counts till reaching length 

of the shift register. CNT_BIT counts up to 32 which is needed to consider if shift register 

length’s is less than or equal to 32. On the other hand, CNT_CTRL counts up to 2 to send 2-bit 

control signals. 

FSM controls setup, start, and progress operations. CPU has to first write in DATA and 

STATUS registers to initiate the setup phase. FSM executes S1 and S3 states respectively. End 

of this phase, the controller waits for the start bit in the STATUS register. Then output signals 

are given in the OPER state. The TF state is only for transient faults. When COUNTER and 

COMPARATOR values match, TFEn goes high 1 clock cycle. Otherwise, TFEn stays high at 

the end of the whole simulation for stuck-at faults. 
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Figure 37 The internal architecture of the controller 

Now, it would be better to give an example for the controller. Assuming that sa-1 fault 

will be injected and DATA register is set by 0xB and the length of the shift register is 91. 

Therefore, STATUS register content will be 0x5B5. Figure 38 represents the behavior for that 

configuration. 

 

Figure 38 Timing diagram for stuck-at-fault 

There are 91 enable signals and 2-bit control bits are also appended. There are a total of 

93 bits and can be sent in 3 phases. The reason is that registers can hold 32 bits. CPU has to 

write zeros in the DATA register for the following phases. Then to start the operation, the CPU 

has to modify the STATUS register’s bit-3 with high value. Finally, the o_TFEn signal goes 

high and fault injection will start. As mentioned “op” bit of the STATUS register will be 1 and 

modified by the controller to let the CPU know that the operation is in progress. 

The previous timing diagram is the same for the sa-0 fault except for the control bits. In 

case of transient fault, counters are involved in the process. CPU puts a value on the 

COMPARATOR register. This is 16 in the following case. CPU has to write STATUS register 

for start before counting. This is illustrated in Figure 39. 
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Figure 39 Timing diagram for transient fault 

The values of the COUNTER and COMPARATOR register can be set at any time before 

deciding to start the operation. As it is seen, when the COUNTER value reaches to 

COMPARATOR value, o_TFEn goes high for one clock cycle. The programmer has to be 

careful about reseting the COUNTER register for another operation.  
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Chapter 6 

6. Evaluation Results 

This chapter presents the results of the simulations with accuracy, PSNR, and SNR values. Four 

images are used as a dataset as mentioned in Figure 25. There are 27 types of accelarator based 

on census transform. As mentioned, there are three window sizes and each have 9 kernels of 

census transform: 1-point, 2-point, 4-point, 8-point, 12-point, 16-point, non-redundant, full and 

uniform. As can be expected, area for each type of the accelarator is different and simulation 

times vary. By using Synopsys Design Compiler, area of the circuits are determined for 

conceptual insight. 

Firstly, fault-free simulations are carried out and results are evaluated for the metrics. 

Disparty maps from the accelarators are compared with ground-truth images by Matlab. 

Creation of disparity maps are approximately 7 minutes at that stage. Then faults are injected. 

Simulations are repeated for faulty simulations. Fault lists are created intiutively and 

systematically. Questa simulator is used for all simulations. 

Following chapters will present results as grouping results according to window sizes 

(5x5, 7x7 and 9x9). Then results will be given according to kernel types of the census transform 

under each window sizes.  

6.1. Fault-Free Simulation Results 

The simulations are run on Questa simulator. Three images are used: tsukuba, cones and 

venus. The output images and results of the evaluation metrics are given in following 

subsections. 

6.1.1. Fault-free Results: 5x5 Window Size 

As can be seen, non-redundant, uniform, and full kernel configurations provide similar 

accuracy results for all images. As the number of neighboring values decreases, the accuracy 

value drops. This is most evident in the Venus image. The accuracy drops 40% for 1-Point, 2-

Point, and 4-Point versions concerning the Full configuration. Tsukuba and cones images 

exhibit better performance in terms of accuracy drop. The differences, on the other hand, are 

not pronounced enough to be visible from the images in Figure 40, Figure 41, and Figure 42. 
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• Tsukuba 

The accelerator performs the best performance for an 8-point design according to the 

accuracy as seen in Table 2. Non-redundant and full designs follow it. As the name indicates, 

the 8-Point design uses fewer neighborhoods concerning non-redundant and full designs. The 

worst accuracies are calculated for 1-Point and 2-Point designs and the difference can be 

observed in Figure 40. On the other hand, non-redundant and full designs are almost same 

PSNR and SNR values where full design uses all neighbourhoods inside the kernel window. 

 

Figure 40 Tsukuba results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 86.68 86.99 91.60 93.19 91.58 92.08 93.10 92.27 93.10 

PSNR 15.31 15.38 16.00 16.47 16.01 16.12 16.89 16.14 16.90 

SNR 8.52 8.59 9.21 9.69 9.22 9.33 10.10 9.35 10.11 

Table 2 Accuracy, PSNR, and SNR values for Tsukuba images, 5x5 window size 



54 
 

• Cones 

There are slight changes for the Cones image across all metrics. The accelerator 

produces almost the same disparity maps as seen in Figure 41. The exceptions are 1-point and 

2-point images where some flickering is present in the images.  

 

Figure 41 Cones results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 85.50 86.30 88.46 88.37 88.59 88.67 88.58 88.55 88.59 

PSNR 13.75 14.04 14.69 14.73 14.78 14.79 14.78 14.73 14.79 

SNR 8.42 8.72 9.36 9.41 9.45 9.47 9.45 9.41 9.46 

Table 3 Accuracy, PSNR, and SNR values for Cones images, 5x5 window size 
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• Venus  

Despite full design having the best metrics, 8-point design performs almost the same 

with fewer neighborhoods. As noticed, this is the case also in the Tsukuba image. 1-point, 2-

point, 4-point, and 12-point designs generate the worst disparity maps as seen in Figure 42. 

There are also differences between non-redundant and uniform designs that have the same 

number of neighborhoods. It can be said that a selection of the neighborhoods also affects the 

results for the same number of neighborhoods.  

 

Figure 42 Venus results for 5x5 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 57.56 57.72 57.80 97.29 58.21 78.08 95.57 84.57 97.65 

PSNR 16.46 16.74 16.92 25.71 17.32 21.10 24.07 21.82 25.76 

SNR 5.95 6.22 6.41 15.20 6.80 10.58 13.56 11.31 15.25 

Table 4 Accuracy, PSNR, and SNR values for Venus images, 5x5 window size 
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6.1.2. Fault-free Results: 7x7 Window Size 

• Tsukuba 

The accelerator act as same except for 1-point and 2-point designs. This is similar to 

5x5 design for tsukuba image. Non-redundant design provides the best numbers and 1-point 

has poor results.  

 

Figure 43 Tsukuba results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 87.12 87.44 93.15 93.19 93.12 93.15 93.20 93.16 93.10 

PSNR 15.58 15.70 16.32 16.47 16.86 16.49 16.54 16.51 17.52 

SNR 8.79 8.91 9.53 9.69 10.07 9.70 9.75 9.72 10.74 

Table 5 Accuracy, PSNR, and SNR values for Tsukuba images, 7x7 window size 
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• Cones  

As for the 5x5 window size, the results are similar to each other. 4-point has the highest 

accuracy values, on the other hand, the 16-point design has the best values for PSNR and SNR. 

Here, a 2% accuracy drop is ambiguous for cones. Generally speaking, there are no substantial 

differences. 

 

Figure 44 Cones results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 86.08 86.51 88.57 88.37 88.53 88.56 88.42 88.44 88.41 

PSNR 14.01 14.17 14.72 14.73 14.77 14.78 14.75 14.76 14.76 

SNR 8.69 8.84 9.39 9.41 9.44 9.46 9.43 9.43 9.43 

Table 6 Accuracy, PSNR, and SNR values for Cones images, 7x7 window size 
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• Venus 

Significant changes occur when the number of neighborhoods is less than 8 points. 

Above 8 points, the accelerator almost behaves the same. The 16-point design has the best 

accuracy and is non-redundant, and the full design has the highest PSNR and SNR values.    

 

Figure 45 Venus results for 7x7 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 57.40 58.59 62.00 97.29 97.69 97.13 97.65 97.03 97.65 

PSNR 16.82 17.52 19.14 25.71 25.78 25.66 25.85 25.59 25.85 

SNR 6.30 7.00 8.63 15.20 15.27 15.15 15.34 15.08 15.33 

Table 7 Accuracy, PSNR, and SNR values for Venus images, 7x7 window size 
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6.1.3. Fault-free Results: 9x9 Window Size 

• Tsukuba  

When the number of neighborhoods is higher than 2 points, the disparity maps are nearly 

the same. In terms of SNR, there are at most 1.89 drops between 1-point and 12-point designs. 

The 12-point design has the highest PSNR value. 

 

Figure 46 Tsukuba results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 88.51 88.81 93.04 93.15 93.06 93.15 93.14 93.11 93.13 

PSNR 15.71 15.77 16.52 16.57 17.60 16.78 17.56 17.53 17.53 

SNR 8.92 8.98 9.73 9.78 10.81 9.99 10.77 10.74 10.74 

Table 8 Accuracy, PSNR, and SNR values for Tsukuba images, 9x9 window size 
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• Cones 

The accuracy values fall in the range of 88 except for 1-point and 2-point designs. In 

terms of PSNR, rising trend, from 1-point to full, drops remarkable for non-redundant design. 

This is also the case for 5x5 and 7x7 designs, however, the drop is not significant. Lastly, 

uniform and full design have the strongest SNR value. 

 

Figure 47 Cones results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 85.72 86.14 88.24 88.00 88.05 88.60 88.82 88.73 88.67 

PSNR 13.91 14.03 14.70 14.61 14.67 15.10 14.79 15.13 15.12 

SNR 8.58 8.71 9.38 9.29 9.34 9.78 9.47 9.80 9.80 

Table 9 Accuracy, PSNR, and SNR values for Cones images, 9x9 window size 
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• Venus 

There is no remarkable difference between designs with same number of 

neighbourhoods which is slightly better than full design. The variations for the images are 

observable for 1-point, 2-point, and 4-point designs.  

 

Figure 48 Venus results for 9x9 window. (a) 1-Point. (b) 2-Point. (c) 4-Point. (d) 8-Point. (e) 12-Point. (f) 16-

Point. (g) Non-redundant. (h) Uniform. (i) Full. 

 1-Point 2-Point 4-Point 8-Point 12-

Point 

16-

Point 

Non-

Redun

dant 

Unifor

m 

Full 

Accuracy 58.26 59.73 74.23 96.54 96.51 97.01 97.61 97.61 97.60 

PSNR 17.44 18.37 20.93 22.92 22.86 25.61 25.84 25.83 25.83 

SNR 6.92 7.86 10.42 12.41 12.34 15.10 15.33 15.32 15.32 

Table 10 Accuracy, PSNR, and SNR values for Venus images, 9x9 window size 
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6.2. Faulty Simulation Results 

The stuck-at faults are injected in the outputs of the Disp_Comps in Figure 23. There are 63 

comparator modules. The experiments are carried out for the uniform design with a 7x7 window 

size. 

Graphs are organized according to averaging accuracy, PSNR, or SNR values 

concerning the bit positions. Since the output o_data_C is 12 bits and  o_data_D  is 7, a total 

of 19 bits start from 0. For instance, the accuracy values of 63 components at the bit-0 position 

are computed and then plotted. This is the same for other metrics. In addition, the golden metrics 

are indicated as a dotted line. Furthermore, stuck-at-0 and stuck-at-1 results are presented 

separately. 

• Tsukuba 

The accuracies are depicted in Figure 49 and Figure 52 for stuck-at-0 and stucck-at-1 

respectively. All disparity maps from the stereo vision accelerator suffer from the accuracy 

reduction. The best accuracy under the stuck-at faults is obtained at bit position 15 with 88.84% 

for both fault types. Remember from Table 5, the accuracy for fault-free disparity map is 

93.16%. The sharpest fall is observed for bit-17 that is 6th bit of the output o_data_D. The 

accuracy is 85.28% for both fault types. A slight drop regarding to a trend of accuracy line 

occurred at bit-11, the most significant bit of the output o_data_C with 88.18% for both cases. 

A similar trend is followed by PSNR and SNR metrics. As noticed, the accuracy when 

the fault is injected in bit position 16, is better than bit position 17. However, bit-16 seems the 

most corrupted according to these metrics. This outcome can be seen in Figure 55. The disparity 

map is most corrupted when the fault is injected at bit position 16. 

The behavior of the accelerator under the fault is the same for all components except for 

the last component, 63. The same bit positions behave differently when the fault (sa0 or sa1) is 

injected as seen in Figure 56. This case can be confirmed by Table 11. 
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Figure 49 The stuck-at-0 accuracy results of Tsukuba for uniform and 7x7 window size 

 

Figure 50 The stuck-at-0 PSNR results of Tsukuba for uniform and 7x7 window size 
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Figure 51 The stuck-at-0 SNR results of Tsukuba for uniform and 7x7 window size 

 

Figure 52 The stuck-at-1 accuracy results of Tsukuba for uniform and 7x7 window size 
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Figure 53 The stuck-at-1 PSNR results of Tsukuba for uniform and 7x7 window size 

 

Figure 54 The stuck-at-1 SNR results of Tsukuba for uniform and 7x7 window size 
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Figure 55 Faulty Tsukuba for component 33. Stuck-at-1 fault is injected at: a) Bit-11, b) Bit-15, c) Bit-16, d) Bit-

17. 
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Figure 56 Faulty Tsukuba for component 63. Stuck-at-1 fault is injected at: a) Bit-11, b) Bit-15, c) Bit-16, d) Bit-

17. 

BIT ACCURACY PSNR SNR 

11 87,48 14,39 7,6 

15 88,6 14,17 7,38 

16 88,6 14,17 7,38 

17 88,6 14,17 7,38 

Table 11 The metrics for component 63, sa0, sa1, and bit positions 11, 15, 16, and 17 

• Cones  

As seen in Figure 57 and Figure 60, for sa0 and sa1 respectively, the accuracies drop 

dramatically at bit locations 11, 17, and 18 which correspond to the most significant bit of 

output o_data_C and the last two bits of output o_data_D respectively. The accuracies are 

76.86, 62.39, and 73.54 percent respectively. In addition, the bit locations 10, 12, and 16 have 

a slight decrease with accuracies of 76.86, 87.99, and 77.73 percent. The accuracy without any 

fault is 88.44% from Table 6. 
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As noticed, these locations match with the upper half of the signals for all 63 

components. Other metrics also follow the same trend at the bit locations. Figure 63 and Figure 

64 show the images for the bit positions mentioned above for components 33 and 63. The fault 

effect appears on the images as an example. Finally, the comments are valid for both sa0 and 

sa1 fault types. On the other hand, the metrics are better than fault-free results on some bit 

positions. Figure 65 shows the comparison. 

 

Figure 57 The stuck-at-0 accuracy results of Cones for uniform and 7x7 window size 

 

Figure 58 The stuck-at-0 PSNR results of Cones for uniform and 7x7 window size 
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Figure 59 The stuck-at-0 SNR results of Cones for uniform and 7x7 window size 

 

Figure 60 The stuck-at-1 accuracy results of Cones for uniform and 7x7 window size 
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Figure 61 The stuck-at-1 PSNR results of Cones for uniform and 7x7 window size 

 

Figure 62 The stuck-at-1 SNR results of Cones for uniform and 7x7 window size 
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Figure 63 Faulty cones for component 33. Stuck-at-0 fault is injected at: a) Bit-10, b) Bit-11, c) Bit-12, d) Bit-16, 

e) Bit-17, and f) Bit-18. 
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Figure 64 Faulty cones for component 63. Stuck-at-0 fault is injected at: a) Bit-10, b) Bit-11, c) Bit-12, d) Bit-16, 

e) Bit-17, and f) Bit-18. 

 

Figure 65 Cones images: a) sa0 fault at the 0th-bit position for component 30. b) Fault-free image 
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• Venus 

The behavior of the stereo vision accelerator under the fault injection is also maintained 

for the Venus image. As seen in Figure 66 and Figure 69, there are significant drops in bit 

locations 16 and 17 with accuracies of 81.89 and 45.56 percent respectively. The golden 

accuracy is 97.03 percent as given Table 7. The phenomenon is followed by also PSNR with 

19.03 and 16.10 percents and SNR with 8.52 and 5.59 percents. The effect of both fault types 

is same on the output disparity maps. The golden values for PSNR and SNR is 25.59 and 15.08 

percent respectively for sa0 and sa1. Lastly, as expected, there is a small degradation at bit 

position 11. Figure 72 shows the images for the mentioned bit positions. The degradation can 

be seen accordingly.  

In terms of accuracy, the accelerator performs almost a good performance except the 

bits mentioned above. However, the PSNR and SNR metrics indicate that the difference is 

slightly larger. Figure 73 reveals that the difference, 1.61%, is observable. 

 

 

Figure 66 The stuck-at-0 accuracy results of Venus for uniform and 7x7 window size 
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Figure 67 The stuck-at-0 PSNR results of Venus for uniform and 7x7 window size 

 

Figure 68 The stuck-at-0 SNR results of Venus for uniform and 7x7 window size 
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Figure 69 The stuck-at-1 accuracy results of Venus for uniform and 7x7 window size 

 

Figure 70 The stuck-at-1 PSNR results of Venus for uniform and 7x7 window size 
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Figure 71 The stuck-at-1 SNR results of Venus for uniform and 7x7 window size 

 

Figure 72 Faulty venus for component 33. Stuck-at-0 fault is injected at: a) Bit-11, b) Bit-16, and c) Bit-17. 

 

Figure 73 a) Golden disparity map of Venus (97.03% accuracy). b) When a fault is injected at component 10, bit 

position 1 for sa0 (95.42% accuracy). 
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Until now, bits in the fault list, 19 bits, are focused in terms of the fault effect for each 

image. This provides which bit position affects the disparity map the most. The following 

analysis illustrates an average effect of the fault over components. As mentioned, there are 63 

comparator modules cascading each other to determine the disparity level. To observe which 

comparator modules are the most critical in terms of fault propagation or compensation, 

comparisons across all images and comparators are aimed to be illustrated. The comparisons 

are made by separating sa0 and sa1 fault types. The metrics can be observed for each fault type. 

From Figure 74 to Figure 79, it can be observed from all metrics that there are noticeable 

and expected decreases for all images. The fluctuations over the metrics are similar for the 

images at the same components. For instance, ripples can be observed for components number 

8, 19, 30, and 41. When the final peak is reached among these components, there are no 

significant changes or fluctuations observed in the metrics. As can be noticed, the stereo vision 

accelerator can, generally speaking, mitigate the effects of the fault for the components 

mentioned above.  

 

Figure 74 Accuracies for Cones, Tsukuba, and Venus images based on the number of comparators for SA1. 
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Figure 75 PSNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA1. 

 

Figure 76 SNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA1. 
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Figure 77 Accuracies for Cones, Tsukuba, and Venus images based on the number of comparators for SA0. 

 

Figure 78 PSNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA0. 
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Figure 79 SNRs for Cones, Tsukuba, and Venus images based on the number of comparators for SA0. 
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Chapter 7 

7. Conclusion and Future Work 

Stereo vision accelerators have computationally heavy arithmetic units that can include 

sign operations. These accelerators can also be used in safety critical applications like 

autonomous cars. Therefore, their reliability is an important issue under abnormal conditions. 

The abnormalities may be caused by environmental effects or simply faults on physical 

electronics. The thesis investigates the effect of such errors and evaluate the reliability of the 

stereo vision accelerator based on census transform. 

Simulation-based methods and analysis are implemented with Tsukuba, Cones, and 

Venus images. In chapter 6.1, fault-free simulation results are provided. The simulations show 

that the metrics vary according to images, window sizes, and neighborhood configurations. The 

accelerator, generally speaking, performs better with 7𝑥7 and 9𝑥9 window size, but there is not 

much difference between them. The results also indicate that more neighborhoods in the 

configurations can perform better in terms of the metrics. The variations, on the other hand, 

depend on the images. 

The stuck-at faults are, then, injected for the reliability evaluation. The outcomes are 

presented in chapter 6.2. The average accuracy drop considering all images is 4.05%. A drop 

for PSNR and SNR is 1,91%. However, that amount of drop can be observed in the images in 

Figure 43. The observation is that when the fault appears in the upper half of the output signal, 

it is more likely to affect the accuracy, PSNR, and SNR values. If the signal is a part of a 

comparison unit, it is understandable. Because the magnitude comparison is influenced by the 

most significant bit position. Another result is that the accelerator can mitigate the adverse effect 

depending on the depth of the cascade architecture. For instance, the accelerator can partially 

recover the accuracy after every 11 consecutive connections of the comparator in Figure 74. 

The architecture also includes an LRCC module which enable double-check of the disparity 

levels. Despite the presence of the LRCC module, the effect of the fault can be seen in some 

cases. 

The issue with the simulation-based method is the excess of time required. It also 

depends on the image size and the number of neighbors in the configuration. Considering that 

the processing time for the Tsukuba image for uniform design with a 7𝑥7 window size is 7 
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minutes in Questa, it becomes evident that implementing a faster method for fault injection 

would be more appropriate. The emulation-based method is the second option in the thesis. The 

controller module is developed and tested for an integration of the stereo vision accelerator in 

the FPGA. 

7.1. Future Work 

The future work covers an integration of the accelerator with the FPGA environment. However, 

the development of the controller facilitated progress in the subsequent phases. The future 

works include the integration of the accelerator with the stream data interface as in Figure 30. 

The aim is to establish a setup that runs all simulations and stores the results with just one 

command.  

User needs to select fault type, location that fault is injected and then all statistics and 

images will be generated. By that way designers can analyze their designs under fault and adjust 

their designs as needed to ensure more secure operation. 

 

Figure 80 Example connection of the controller with the ComBlock 

As shown in Figure 80, the controller has already been connected to the ComBlock. 

Here, ComBlock has 5 inputs and 4 output registers, each 32 bits. Four output pins are 

connected to the inputs of the Controller and outputs of the Controller are connected to the 

inputs of the ComBlock. Clock and reset signals are globally connected for both IPs. The next 

phase is to integrate the accelerator with the controller and then the stream interface. 

In conclusion, this thesis focused on the reliability evaluation of the stereo vision 

accelerator. Stuck-at faults were injected and the statistics were gathered. The resilience of the 
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uniform design with a 7x7 window size was analyzed for the fault injection process. Besides 

the simulation-based method, the contribution to the emulation-based method is provided.  
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