i _afs 'i* Politecnico
F5 %y di Torino

Politecnico di Torino

Master’s Degree in Computer Engineering

Design of an Infrastructure for
Collecting, Storing and Using

Data in the Context of Renewable
Energy

Candidate: Giuseppe DISTEFANO

Supervisors: Prof. Paolo GARZA
Dr. Andrea ROMANELLO

April 2025

Abstract

Data has historically played a fundamental role in shaping business decisions and
social development. From ancient trading records to modern digital transactions,
the ability to collect, store, and analyze information has been crucial to human
progress and organizational success.

In today’s digital era, the exponential growth of data generation has made effi-
cient data management more critical than ever. Organizations face the challenge of
handling large amounts of structured and unstructured data from diverse sources,
making it essential to implement robust systems and practices for data collection,
storage, processing, and analysis.

While large corporations often have substantial resources to invest in sophis-
ticated data management solutions, small and medium-sized enterprises)
face unique challenges in this domain. These organizations must balance limited
resources with the need to maintain competitive advantage through effective data
utilization. This makes the implementation of efficient data management systems
particularly crucial for smaller enterprises, as they need to maximize the value ex-
tracted from their data while operating within practical constraints.

This Thesis aims to provide a comprehensive overview of the current state of the
art in data management, combining theoretical foundations with practical consid-
erations. It explores key concepts, methodologies, and best practices for designing
and implementing efficient data management systems, with particular attention to
the needs and constraints of smaller organizations, not forgetting about computa-
tional efficiency and optimization of energy resources. The work includes an analysis
of various architectural approaches, technology stacks, and implementation strate-
gies, providing guidance to organizations seeking to improve their data management
capabilities.

As a case study, the Thesis considers the specific requirements of Trigenia S.r.l.,
a small renewable energy company seeking to improve its data management infras-
tructure. By analyzing the needs and constraints of Trigenia, the Thesis aims to
develop a tailored data management solution that addresses the company’s unique
challenges and opportunities. The proposed system will take advantage of mod-
ern data management technologies and methodologies to improve data collection,
storage, processing, and analysis, enabling Trigenia to make informed decisions and
drive business growth. Being Trigenia an Energy Service Company, and not an
enterprise with software production as its main focus, particular attention will be
given to the implementation of a system that can be easily used by non{[T| personnel
and that can be easily maintained and updated.

Contents

(1 _Introduction|

(1.1 Data Warehousing|
(1.2 Big Data Analytics|
(1.3 History of Data Platforms|
(L4 Iraditional Databases 000

[1.6.2 Design of a Data Lake,
[1.6.3 Modeling Metadata in Data Lakes|.
(1.7 The Need for a New Data Platform|

[1.7.2 Combining Data Warehouses and Data Lakes
[1.7.3 'The Impact on Business Intelligencel.

2 The Data Lakehousel

(2.3 Technical Requirements|
2.4 Analytical Workloads|
2.5 General Architecturelo oo

[3

Trigenia S.r.l.|

[3.1.1 Digitall
[3.1.2 Emergyl.
I;illl;i I l‘IlziIlg:g:l ------------------------------

Analysis of the Problem|

[4.1 Analysis of the Needs of Trigenia]
|1.2 I glfifii t)lg: ES()lllti()Il:i t() tlllg: I Ig)tzlg:llll
(4.3 Analysis of Existing Products| 0.
[4.3.1 Sending Information Over the Networkl
4.3.2 Relational Databasel

[5.2 Sending Messages| oL
[>.3 Collecting Messages From Multiple Sources|.
b4 Relational Databasel 0.

32
32
33
34
37
38

40
40
40
42
44

45
45
45
46
46
50
52

[6 Building the Infrastructure| 63

[6.1 Building the Components| 63
[6.1.1 Resembling IoT Devices| 63

[6.1.2 Importing Historical Data From Files| 66

0.1.3 The Data Collector 69

0.1.4 The Relational Databasel 75

6.1.5 The Data Lakehousel 79

[6.2 Connecting All Components| 86
(6.3 Maintaining Helpful Metadata 96
[6.4 Testing Collection Performance| 100

[7 Usage of Collected Datal 103
[7.1 Analyses Over Collected Datal 103
(7.2 Machine Learning Applications| 115
(7.3 Accessing Data Via Web| 116

B Results 122
(8.1 Collecting Performance With Heavy Workloads| 122
[8.2 Retrieving Datal 124
(8.3 Querying Data] 126
9__Conclusions 129
134

List of Figures

(1 Architecture of a data warehousel 15
[2 Example of a data lake system|. 18
[3 Building blocks of a data lake] 19
[4 Data flow in a pond architecture|. 20
b Zaloni’s zone architecturel 21
(6 Relations and inter-dependencies between data management and meta- |
| data management| 23
[7 Data management activities|, 23
(8 Example of the Lambda architecture 27
[9 Example of the Kappa architecture] 28
(10 Integration patterns for combining data warehouses and data lakes|. . 29
(1T Layer architecture for a data lakehouse] 39
(12 Schematic representation of the infrastructure designed for Irigenia] . 56
[13 Schematic representation of the infrastructure designed for Trigenia] . 63
(14 Pseudo-code for an IoT devicel 64
(15 Settings for an IoT device| 65
(16 Cyclic behavior of the Iol device| 66
(17 Pseudo-code for an importer of CSV files| 67
(18 How CSV importation and message passing work| 68
19 Pseudo-code for the data Collector classl 70
20 Main operations for the Collector| 72
21 Managing tables in the data lakehouse, 73
22 Managing collected data] 0. 74

[24 Pseudo-code for the class managing the relational databasel 76
[25 Pseudo-code for adding one single record to the relational database| . 77
26 Pseudo-code tor adding multiple records to a table in the relational |
[databasel 78
[27 Pseudo-code for removing a record from a table in the relational |
[databasel 79
28 Pseudo-code for the data lakehousel 80
29 Pseudo-code for inserting data into the data lakehouse| 82
[30 Optimizing tables in the data lakehouse|. 83
[31 Reading information trom the data lakehouse| 84
[32 Defining some metadata tables in the data lakehouse| 85
[33 Running queries on the data lakehouse| 86
[34 Overview of Docker containers in the system| 87
[35 Configuration of the container running Apache Katka] 88
[36 Configurations for Docker containers running TimescaleDB and MinlO| 90
[37 Running multiple mstances of lo' devices and CSV mmporters| 92
[38 Configuring the data collector| 94
[39 Updating metadata tables within the data lakehouse| 95
[40 Running some analytics to test the performance of the infrastructure| 96
[41 Pseudo-code for metadata management in the data lakehousef. 97
{42 Device aggregates per hour|. 98

[43 Device ageregates per day| 98
[44 Device aggregates per monthl. 99
[45 Device aggregates per year| 99
[46 Device overall aggregates|o 100
[47 Data collection performance] 101
48 Number of records in databases 102
[49 Pseudo-code for a class with data analytics| 104
[0 Code for Query 1| 105
(b1 Results for Query 1| 106
b2 Code for Query 2| 107
b3 Results for Query 2[. 107
b4 Codetor Query 3| 108
b5 Results for Query 3|o 109
b6 Code for Query 4| 110
[>7 Results for Query 4] 111
p8 Codetor Query d| 112
b9 Results for Query b 112
[60 Code for Query 6| 113
61 Results for Query 6 114
62 Code for Query 7| 115
[63 Results for Query 7| 115
[64 Reading all elements of a table|. 117
65 Querying the Clients tablel 117
66 Querying the Measures table|. 118
67 Querying the Sites table 118
68 Querying the Dewvices table|. 118
[69 Reading a filtered version of the measurements tablel 119
70 Querying the History table|. 120
[71 Querying the History table and applying some custom filters| 120
(72 Running queries via Web| 0L 121
[73 Running a custom query| 121
(74 Reading data from Apache Katka topics| 123
75 Storing data in data plattorms| 124
76 Comparing retrieval times| 125
(77 Execution times for all test queries| 127
[78 Execution times for all test queries on the data lakehouse| 128

List of Tables

(1 Comparison of data warehouses, data lakes, and data lakehouses| . . . 34
[2 Example of storage usage|. 102

1 Introduction

Data warehousing is the set of practices that aim to collect data to be stored in a
managed context where information is integrated, time-variant, and non-volatile to
support decision-making for society, governments, and enterprises [1].

In the first part of this Thesis, we present the main features of the most widely
adopted data platforms in the sector of data analytics. In the literature, it is pos-
sible to find a definition of one of such platforms, the data warehouse, which can
be used as a general definition of infrastructures that are used to make correct data
management one of the core activities of companies and teams involved in decision
making: this definition states that a data warehouse is a subject-oriented, integrated,
time-variant, non-volatile collection of data used in support of decision making pro-
cesses [1]. ”Subject-oriented” means that a data platform focuses on the high-level
entities of the business, without diving into technical aspects, and the data are
organized according to them. ”Integrated” means that the data are stored in a
predefined and schematized manner: formats, representations of variables, naming
conventions, encoding structures, or domain constraints, and a vast set of other
aspects are considered before the data platform is implemented, so that the real
world can be represented correctly, without inconsistencies. ” Time-variant” means
that data platforms provide access to a greater volume of more detailed information
over a longer period, with time being an important resource. Designing and imple-
menting an efficient data platform and an appropriate representation of the world
is crucial for companies and societies that have to deal with the infinite amount of
information that is produced globally every second.

1.1 Data Warehousing

Having established the fundamental definition of data warehousing, it is essential
to examine how the landscape of data management is evolving, driven by three
primary factors [2]: big data, cloud computing, and the increasing sophistication
of artificial intelligence and machine learning technologies. Big data refers to the
petabytes or exabytes of data that are produced every second all over the world and
that can be useful for an even more infinite range of activities and studies. Such
an amount of information, of course, requires resources to store and access data
efficiently and quickly: cloud computing, that is using resources placed anywhere
else in the world to store or use data, helps the democratization of data processing,
allowing researchers and analysts to use quite cheap machines to produce valuable
results. The third factor influencing the speed of evolution of data management,
artificial intelligence and machine learning technologies, will strongly impact the life
of companies, too: these technologies are here to dramatically speed up analytical
and production processes, so using them is crucial to maintain competitiveness in
the market.

There are two approaches to data warehousing: on-premises and cloud-based
platforms. On-premises data warehousing generally provides better protection and
privacy by allowing enterprises to tailor the data platform to their needs and con-
straints, which makes it desirable for sectors with strict regulatory requirements [3|;
however, on-premises plants need higher expenses and skills to manage and main-
tain the infrastructure. Conversely, modern cloud-based data warehousing abstracts

most of the management of the underlying infrastructure to providers, allowing or-
ganizations to focus on data analysis. Additionally, while on-premises platforms
usually call for large upfront infrastructure investments in resources that may result
underutilized during non-peak times, cloud-based solutions allow organizations to
pay only for resources they actually use, with a flexible allocation for dealing with
peak usages and idle periods.

As studied in [2], artificial intelligence and machine learning technologies are
determining new needs and capabilities for data platforms, enabling predictive ana-
lytics to forecast future trends, prescriptive analytics to improve business processes
and decision-making, and anomaly detection to identify strange patterns or outliers
in data. Another context in which artificial intelligence and machine learning tools
might also be used in data warehousing is the introduction of automatic strategies
for data integration and cleansing (which take 80% of the time of data scientists),
or to optimize query performance and data retrieval.

In modern times, data are said to be the new gold for business, therefore it
became necessary to introduce regulations over data storing and management, es-
pecially for sensitive information about people. (General Data Protection
Regulation) and (California Consumer Privacy Act) are the most impor-
tant laws to be introduced with this goal. Compliance with them is mandatory
for organizations, so they have to update their data platforms to implement ro-
bust mechanisms for activities, which may include access control, data anonymiza-
tion, and data retention and deletion policies, but also cyber-security measures like
encryption, multi-factor authentication , continuous monitoring and threat
detection, and penetration testing.

1.2 Big Data Analytics

Data warehousing provides a structure for organizational decision making. These
systems today must accommodate the scale and complexity encapsulated by big
data. We refer to big data [|4] as the inability of traditional systems to efficiently
handle datasets that contain billions or trillions of records. Big data and analytics
should be thought of as a unique element: ”big data” describes the rapid expansion
of different types of data from disparate sources, while with ”analytics” we mean
studying such information to derive relevant trends and patterns. ”Big data pro-
cessing”, instead, aims at tasks like data mining, pattern recognition, and machine
learning. [5] The important characteristics of big data (known as the seven Vs of
big data) are as follows:

1. Volume, that is the amount of available data
2. Velocity, or the speed at which data is generated and processed

3. Variety, indicating different types of data, from structured database entries to
unstructured social media posts or sensor readings and multimedia content

4. Volatility, or the variability of data, that is how quickly data becomes obsolete
or requires updating

5. Veracity, or the reliability and accuracy of data. This is particularly important
in some applications, such as healthcare and finance

6. Visualization, that is depicting insights generated from data through visual
representation

7. Value, or the benefits organizations derive from data.

The big data paradigm [4] involves the distribution of data systems across
horizontally-coupled, independent resources in order to achieve the scalability needed
for processing huge data sets. With data distribution, analytical functions can be
executed against the entire data set, or even in real-time on a continuous stream of
data, possibly coming from different organizations located all over the world.

Typically, big data processing can fall into one of three categories [6]: batch pro-
cessing, stream processing, and hybrid processing. The former involves executing
computations on data stored in non-volatile memory, while in stream processing,
the collected data is processed without relying on non-volatile media, but requir-
ing proper network bandwidth and enabling real-time processing; finally, hybrid
processing combines both approaches to achieve high accuracy and low processing
time.

Big data engineering is often referred to as "mouving the processing to the data,
not the data to the processing” [4]. Huge amounts of records, one of the most
peculiar characteristics of big data, are too expensive to be queried and transmitted
to another resource for analytic tasks, so computations are distributed to the nodes
hosting data, with only the results being aggregated on a different machine.

Cloud computing seems to be a perfect companion for hosting workloads we just
described. However, cloud computing technologies are based on concepts such as
consolidation and resource pooling [4], while big data systems usually follow the
”shared-nothing” principle, where each node is independent and self-sufficient. The
integration of big data and cloud computing technologies is therefore one of the core
challenges of modern times. Before moving one or more stages of the data life cycle
to the cloud, the authors of [4] identify some factors that need consideration:

e Availability guarantees - Each cloud provider should offer a certain amount
of availability guarantees, so that data analysis relies on can be accessed to
perform computations

e Reliability of cloud services - Before offloading data management to the cloud,
enterprises have to ensure that the cloud provides the required level of reliabil-
ity for the data services. This involves, for example, the context in which an
instance of a component of an application is not available: if multiple instances
of the same component are created, an alternative instance can be used if an-
other one is temporarily unavailable, guaranteeing the overall reliability of the
application to both developers and end-users

e Security - Data protected by strict privacy regulations will require users to be
authenticated and authorized to be routed to their secure database server

e Maintainability - The administration of a data platform involves deciding how
data should be organized. Maintenance operations have to be carefully evalu-
ated before they performed over cloud data.

10

As mentioned earlier in this document, cloud computing offers flexible pricing
models, low administration efforts, and scalability with respect to the use of re-
sources [4]. It is evident that this paradigm is the best approach to follow for large
projects, such as those related to big data and business intelligence. Despite all
the mentioned advantages of integrating cloud computing and big data, there are
some challenges and risks that the authors of [4] think should be considered while
deploying big data in a cloud environment, mainly related to security because of
platform heterogeneity: new platforms in the cloud are required more and more,
while the existing security tools and practices of the cloud are not able to work
for such platforms, therefore new security tools need to be developed tailored to
the needs of big data cloud-hosted platforms. Tools like authentication, access con-
trol, encryption, intrusion detection, and event logging and monitoring are some
examples that are not yet fully ready to work with most recent platforms. Another
challenge mentioned in [4] is the optimization of the topology of the data environ-
ment, including the size of the cloud storage disks, clusters and nodes to optimize
the balance between performance and costs.

1.3 History of Data Platforms

To fully contextualize contemporary approaches to data management, it is important
to understand the historical evolution of data platforms.

Relational databases were proposed in 1970s as platforms to present information
to the user in tabular formats, with rows and columns and relations linking data
between tables. [RDBMS| (Relational Database Management Systems) added the
possibility to perform operations over data and tables, including modifications to
collections and the retrieval of useful information leveraging connections between
data stored in the tables. Relational databases impose respecting a rigid schema
for data representation; to achieve better flexibility, non-relational databases were
introduced.

Despite being still used by almost all companies, large versions of traditional
databases are not a viable solution for complex business intelligence applications
that have to access frequently the operational database.

The concept of data warehouse was introduced in the late 1980s with the
aim of delivering an architectural model capable of dealing with vast amounts of
information without losing performance in accessing the information stored within
it, useful for decision support environments [5].

Over time, data warehouses have evolved together with needs. Today, data
warehouses typically employ well-defined, multi-dimensional data schematics that
have to be respected throughout all operations; data warehouses have to guarantee
properties, and they usually provide the support to time-travel and zero-copy
cloning, too. Due to their static data models, designed only for specific use cases,
data warehouses are primarily suitable for answering analysis questions that are
known in advance [7] and for which a deep design phase of the overall infrastructure
was performed.

By the beginning of the 2000s, new types of diverse data were gaining importance.

11

This variety, together with the huge amount of information produced in a short
time interval, introduced the necessity for better solutions for storing and analyzing
data with a barely defined, or undefined, structure to gain relevant information and
valuable insights. Traditional schema-on-write techniques such as [ETL] required in
data warehouses to ensure compliance with rigid schematics, are not efficient for
modern requirements in data management: this gave rise to another data platform,
known as data lake .

Data lakes are centralized storage repositories that enable users to store raw,
unprocessed data in their original format, including unstructured, semi-structured,
or structured data, at scale. This makes data lakes suitable not only for the man-
agement of preprocessed and aggregated data, like data warehouses do, but also for
storing data in its raw format, as it is provided by sources of information: we can
then gradually process data according to needs that may vary over time, without
having to redesign or reimplement the data platform or the collection infrastructure.

1.4 Traditional Databases

A relational model organizes data into tables, made of rows (records) and columns
(attributes), with a unique key identifying each record within the database [§]. Rows
in a table can be linked to one or more records belonging to other tables according
to foreign keys.

Using a relational model means introducing a layer that separates the physical
and the logical structure for both storage and operations. To ensure accessibility
and reliability of information stored in the collection, relational databases provide
some rigid integrity rules. In particular, four properties define relational database
transactions [§]:

1. Atomicity - If all operations in a transaction are completed successfully, their
effects are applied to the database, otherwise all operations of the transaction
are cancelled

2. Consistency - Collections must transition from one valid state to another
valid state after each transaction is committed, maintaining the overall in-
tegrity of the database and respecting business rules

3. Isolation - The effects of a transaction are invisible to other users until the
transaction is committed. Each transaction is therefore independent of other
transactions

4. Durability - Once the transaction is committed, data changes will be perma-
nent.

The software used to store, manage and query data in a relational database is
called (Relational Database Management System). This software provides
to users and applications an interface to the logical abstraction of the collection, as
well as administrative functions for storage and performance management.

We expect multiple users or applications trying to access or modify records of
a database at the same time. Techniques to manage locking and concurrency are
required in to reduce the amount of potential conflicts, while guaranteeing
the integrity of the information |9]. Some systems protect an entire table when some

12

of its records are updated, while other systems are able to isolate single elements
involved in a transaction, so that the table can be accessed concurrently by other
users attempting to read or write some other records of the same table.

Relational databases impose a rigid schema for representing data. This implies
an important lack of flexibility that may make it difficult to transpose the real
world to a reliable digital model. Non-relational databases [10], also called NoSQL
databases, enhance the overall flexibility of the system by representing information
and relationships between data in a way that depends on the type of database. Some
of the most common types of non-relational databases include:

e Key-value store - Collections are organized in a dictionary of key-value pairs,
that is with each attribute of an object having a key and a value. The key
may be intelligible or a random unique string, while the value is an array of
key-value pairs itself. This type of database is usually adopted for caching
some information, but it is not the best alternative when multiple records at
a time have to be collected

e Document store - Data are stored as documents (typically JSON or XML),
keeping information together when used in an application, but introducing
complexity when it comes to perform transactional operations. Databases
relying on this model are a good choice for content management systems and
user profiles

o Column-oriented Database - This is a way of representing data that we will
describer deeper in following sections of this Thesis. Data are organized into
columns, rather than rows. With this technique, developers can improve query
performance, as only columns they consider relevant are fetched from the
database, possibly with a dramatic reduction in the amount of data that have
to be read from the disk on which the database is running

e (Graph store - This type of database is commonly used to house information
from a knowledge graph. Elements are stored as nodes of a graph, with edges
representing relationships between two objects.

The dynamic schema and the horizontal scalability that non-relational databases
provide enable companies to handle high workloads efficiently, independently of the
type of data that they have to manage. Cost effectiveness has to be considered, too,
since a lot of non-relational databases are available as open-source software that can
be self-hosted by companies, reducing the costs of licensing and maintenance [10].

1.5 Data Warehouses

In [11] authors identify some elements that need attention when designing a data
warehouse that can deal with modern requirements:

e Architecture - Unlike the rigid architecture that is typical of traditional data
warehouses, scalable data warehouses must be designed to be flexible and
adapt to variable volumes of data. This flexibility is achieved through cloud-
based solutions, with cloud providers allowing to scale resources up or down

13

based on demand. The major complexity with this approach is related to
data security and compliance with regulations regarding the collection and
processing of information

e Data modeling - This involves thinking the structure of the data warehouse
so that data retrieval and analysis can be accomplished efficiently. The choice
between dimensional and normalized modeling has a deep impact on the scala-
bility of the system: the former is often favored for its simplicity and ease of use
in business intelligence applications, but it is not the best performing model
with large volumes of complex data. Normalized modeling, instead, breaks
data into smaller, related tables, providing better performance and scalability
in certain scenarios

e [E'TL|process - A data warehouse requires a robust (Extract, Transform,
Load) process: data are extracted from sources, transformed into a manageable
format, and then loaded into the data warehouse. With increasing volumes
of data, processes have to be adapted accordingly to ensure efficiency
and scalability of the infrastructure without compromising data quality or
processing speed.

Several methodologies have been proposed [12] for designing a data warehouse.
All of them fall into one of three macro categories: bottom-up, top-down, and hybrid
approaches, which take the best features of the former two classes.

The aim of a bottom-up strategy is to provide business value as soon as possible
by establishing dimensional data marts. These data marts include all the data, both
atomic and summary, with a bus architecture connecting data marts together. A
major advantage of bottom-up methods is that they rely on star schema models
to create flexible and simple data structures. However, the bottom-up strategy
requires companies to impose the adoption of complex activities and considerations
to guarantee integration and provide a single version of the truth.

In the top-down approach, a data warehouse contains nuclear data collected
from systems with a single or multiple sources, and then merged into a standard-
ized corporate data model. The information is then aggregated, dimensioned, and
transmitted to one or more dependent data marts. Since users retrieve data from
a central place, these data marts are considered dependent. With this approach to
the design of the infrastructure, the data warehouse serves as a central server for
all data marts, ensuring consistency, uniformity and a single version of the truth.
The major disadvantage of adopting a top-down designed data warehouse is that it
might increase time and cost for implementation.

Finally, the hybrid approach to the design of a data warehouse attempts to
combine the best aspects of both top-down and bottom-up techniques. It takes speed
and user-orientation form the bottom-up approach, while sacrificing the integration
typical of the top-down approach.

1.5.1 Data Warehouse Architecture

The architecture of a data warehouse is represented in Figure [1, which is inspired
by [5]. It consists of a central repository, surrounded by the key components of this
data platform:

14

e Data warehouse database - The central database of the architecture is imple-
mented with (Relational Database Management System) technology.
Traditional RDBMSY] systems are optimized for transactional database pro-
cessing, and not for data warehousing: for this reason it is suggested using
multiple relational databases in parallel (enabling shared memory on various
multi-processor configurations), adopting of indexes to avoid table scanning
and improve the speed, or integrating of multi-dimensional databases (MD-
DBs) to circumvent the limitations of traditional relational data warehouse
models

e [ETT] tools - All operations to transform data into a predefined format in the
warehouse are performed by [ETL] tools. With this process, business intelli-
gence and performance of the infrastructure can be improved

e Metadata - Metadata is the data about the data that define the data warehouse.
It reflects some high-level concepts and helps in building, maintaining, and
managing the data platform. Metadata plays a key role in associating some
knowledge to the numbers stored within the warehouse

e Query tools - They allow users to interact with the system and collect infor-
mation. Thanks to these tools it becomes possible querying and reporting,
application development, data mining, and [OLAP] over data.

Cleansing,

Transaction Querytools
Data mart —
Reporting —> Interactive reports
Operationaldata —
Analysi
Data alysis
ETLtools —— Warehouse —— Data mart — —> Ad-hoc reports
OLAP
Database
Externaldata —— Data mining
tools ——> Staticreports
: Data mart —

Figure 1: Architecture of a data warehouse

An updated version of the architecture of a data warehouse is summarized in
[13]: it conmsists of five layers, four of which are designed as horizontal and one
vertical. The bottom horizontal layer indicates the data sources; before storing
information in the warehouse, the data passes through the second layer, in which
cleansing and transforming to the required schema are performed. When the data
are ready, they are stored in the data warehouse database. From here, according to
the model [13], data can be provided to end-users, or they can be moved and stored
in a data mart (a smaller and simpler data warehouse specialized for a specific
department of an enterprise or for a certain subject). A data warehouse can have
multiple data marts, given that there is a well-designed and well-structured way of
storing the data. The risk here is that data becomes isolated because data marts are

15

standalone entities. The last layer, placed on top of the stack of horizontal layers, is
dedicated to providing data within the warehouse to end-users. Finally, the vertical
layer of the model depicted in [13], the metadata management layer, helps the data
platform to efficiently incorporate data governance practices.

Another version of the architecture of a data warehouse is covered in [13]. The
platform is split in three tiers: the bottom, the middle, and the top tier.

Similarly to the previous model, the bottom tier starts with a layer dedicated to
data retrieval from different sources and storing to the warehouse via[ETT] processes.
When data enters the data warehouse, it is stored in a central data store. Then, a
metadata and summary database are created to store information about the data.
From here, the data warehouse is split into a number of data marts.

All the steps indicated above refer to the bottom layer of the architecture. The
middle tier is where online analytical processing is carried out. Finally, in
the top tier all tools are plugged in to access data for special purposes, e.g., data
mining, analysis, or reporting.

1.5.2 Design of a Data Warehouse

In the previous section of this document we talked about three possible architec-
tures for a data warehouse that can handle a subset of modern requirements. In
[5], authors identify some of the key criteria to keep in mind when choosing the
architecture of a data warehouse:

e Users need an appropriate data model - Modeling data so that they can ap-
propriately represent dynamics and characteristics of the real world is a key
aspect when designing data warehouses

e Adopting a standard architecture and methodology - When designing an in-
frastructure leveraging this data platform, reproducing a recognized modeling
standard can augment the efficiency and reduce possible errors that may occur

e Cloud or on-premise storage - As described in a previous section of this docu-
ment, the former category offers the maximum flexibility in terms of storage,
while the second category, despite providing full control over the system, re-
quires setting up servers for m processes, storage, and other aspects of the
physical environment that has to be reproduced

e Data tool ecosystem and data modeling - Adopting automation tools improves
efficiency in the usage of [I'T] resources and provides faster implementation of
the system

design - Authors of [5] highlight that when businesses use expensive
on-premises analytics systems, much preliminary work can be conducted, as
in the [ETT] scheme. When the system is meant to have a cloud-based data
warehouse, it would be better opting for m (Extract, Transform, Load)
operations. Once data are co-located, we can leverage the power of a single
cloud engine to perform integrations and transformations efficiently.

16

1.6 Data Lakes

A data lake is defined in [14] as "a scalable storage and analysis system for data
of any type, retained in their native form”. Some of the key properties [15] of this
platform include: (1) a metadata catalog to impose data quality, (2) data governance
policies and tools, (3) availability to different categories of users, (4) integration of
any kind of data, (5) a logical and physical organization, and (6) scalability in terms
of storage and processing.

The data lake uses a flat architecture, with each element owning a unique iden-
tifier and a set of metadata tags. With this approach we can no longer need a rigid
schema or manipulating data before storing them. A data lake can thus be seen as a
large pool to bring in both historical and new data in near real-time into one single
place.

Another important characteristic of data lakes [15] is the use of metadata to
store, manage, and analyze data stored in the lake. The role of metadata is the
same we introduced in a previous section of this document: describing the data,
such as its source, format and schema. In addition, data lakes offer data exploration
and discovery, through which data analysts can manipulate data without requiring
explicit schematics or structures to be defined before performing analysis. Finally,
another key feature of data lakes is the possibility to be hosted on low-cost storage,
allowing organizations to store petabytes of data without incurring in significant
expenses.

The rise of big data has led enterprises to face increasing data volume and di-
versity. Data lakes have emerged as an alternative data storage and management
architecture centered around raw data [16], offering the user a unified storage and
access mechanism.

The lack of a rigid schema for the data lake might turn the platform into a data
swamp in absence of an efficient metadata system. Metadata fall into one of three
categories [14], with respect to the way they are gathered:

e Business metadata, defined as the descriptions that make data easier to un-
derstand and closer to the business world

e Operational metadata, automatically generated by the system or third-party
processes during data processing, are meant to provide additional information
such as location, file size, and process information

e Technical metadata express how data are represented, including format, struc-
ture or schema.

In other words, technical metadata refers to information that indicates how to
operate the data platform and serve all analytical workloads, including data struc-
ture. Conversely, operational and business metadata provide a high-level or business
perspective on the stored data.

1.6.1 Data Lake Architecture

Figure [2| represents a typical data lake architecture. Data ingestion involves in-
tegrating various formats from different systems using both batch and streaming
processes. Data cleaning and versioning ensure data quality by applying some ad

17

hoc transformations and filters, while managing different versions to support trace-
ability.

. . . . s

Ingestion and

Extraction .
Unified Data Model

Versioning
and
Cleaning
W N W N

JSON, CSV, Parquet files > Data and Metadata Indices

e = = = —

Figure 2: Example of a data lake system

Another representation of the architecture of a data lake is provided by [5] and
shown in Figure [3| which splits the architecture into a set of layers:

e Raw data layer - The main goal of this first layer is to ingest raw data as
quickly and efficiently as possible. There is no chance for transformations or
data cleaning at this stage

e Standardized data layer - This is an optional stage aimed at boosting the
performance of the data transfer from the raw layer to the cleansed layer

e (Cleansed or curated layer - Here transformations can be operated before stor-
ing data in files or tables. Usually, end-users are granted access only to this
layer

e Application layer - This layer is meant to implement business logic using data
from the cleansed layer

e Sandbox data layer - This is another optional layer used by analysts and
scientists to make experiments.

18

W

— I

Figure 3: Building blocks of a data lake

Starting from the definition and architecture of a data lake, two approaches to the
design have been proposed; the pond architecture and the zone architecture. In both
of them, data are preprocessed to make analyses quick and easy. The distinction
between pond and zone architectures reflects a key difference in the way data is
organized and managed: ponds allow to balance domain-specific optimization, while
zones allow a universal preprocessing workflow.

Inmon designed a data lake as a set of data ponds , represented in Figure ,
which can be thought of as a subdivision of a data lake dealing with data of a specific
type. Each pond is associated with a specialized storage system, some specific data
processing and conditioning, and a relevant analysis service. Five data ponds were
designed by Inmon:

1. The raw data pond deals with newly ingested, raw data

2. Data stored in the analog data pond are characterized by a very high frequency
of measurements

3. Data stored in the application data pond come from applications, and are thus
generally structured data

4. The textual data pond manages unstructured, textual data

5. The archival data pond is designed to save the data that are not actively used
right now, but that can be needed in the future.

19

Raw Data Pond

RN

Analog Application Textual
Data Pond Data Pond Data Pond
Archive
Data Pond

Figure 4: Data flow in a pond architecture

Zone architectures [14] assign data to a zone according to their degree of refine-
ment. This subdivision allows to run standardized preprocessing pipelines, organize
the resulting information, and make it available to subsequent processing steps,
like reporting and Online Analytical Processing [17]. An example of zone
architecture is Zaloni’s data lake [14], represented in Figure

1. The transient loading zone deals with data during ingestion. Here, basic data
quality checks are performed

2. The raw data zone handles data from the transient zone

3. The trusted zone is where data are transferred after standardization and clean-
ing

4. The discovery sandbox is where data can be accessed by users and developers

5. The consumption zone allows business users to run ”what if” scenarios through
dashboard tools

6. The governance zone allows managing, monitoring, and governing metadata
and security during all data management steps.

20

Figure 5: Zaloni’s zone architecture

As mentioned when introducing the data lake platform, data lakes store data
in their raw format over a flat architecture. Each data entity owns a unique iden-
tifier and a set of metadata. Consumers can use ad hoc schematics to retrieve
relevant data at query time, rather than before storing information . Another
key difference between data lakes and data warehouses is the possibility of storing
heterogeneous complex data. All data can be stored in a data lake in their origi-
nal format, removing the need for complex pre-processing and transformations, and
consequently the upfront costs for data ingestion are reduced.

1.6.2 Design of a Data Lake

As discussed in , ingestion technologies help to physically transfer data from
sources into a data lake. Some tools may include softwares that collect data through
pre-designed jobs, possibly applying some aggregations, conversions and cleansing.
A second category of ingestion technologies is made of common protocols and tools,
whose main pro is being readily available, widely understood and supported. In a
similar way, some are provided for data retrieval and transfer from the Web
into the data lake.

21

Paper [5] provides some key considerations to keep in mind when designing an
enterprise data lake:

e Focus on business objectives, rather than technology - By fixing the business
objectives, a data lake can prioritize efforts and outcomes accordingly

e Scalability and durability - The former enables operating independently to the
size of data while importing them in real-time. Being the data lake the main,
centralized source of information for the enterprise, availability and reliability
deriving from the property of scalability are two key features of this data
platform. Durability property, instead, deals with providing consistent up
time while ensuring no loss or corruption of data

e Capability to store data, independently of its structure - This helps organiza-
tion to transfer anything. A knowledge catalog is also important to provide a
meaning to data that are stored in the data lake

e Security - The three domains of security are encryption, network-level secu-
rity, and access control [5]. Security should be part of data lake design from
the beginning, also in order to comply with modern regulations like [CCPA|

(California’s Consumer Privacy Act) and (General Data Protection
Regulation)

e Metadata storage functionality - This helps users to search and learn about
the data sets within the data lake.

1.6.3 Modeling Metadata in Data Lakes

We saw in previous sections that the data lake is a platform for data management,
designed to handle data at scale for analytical purposes. We also discovered that
to prevent overloading of the data lake and turning into a data swamp, some man-
agement for metadata is also needed: a generic metadata model [18] is required to
manage any potential metadata management use case. A metadata model provides
a description of the relations between data and metadata elements and what meta-
data is collected; for the purpose of creating such a metadata model, it is necessary
to know roughly what metadata will be acquired so that the model can reflect these.

Metadata management is data management for metadata [1§]. Based on this
definition, there are different variants of data management depending on the type
of data, as illustrated in Figure [6]

22

types of

Transactional

Metadata Master Data
Management Management R Management
& & Management g
T | I |
depend on

Figure 6: Relations and inter-dependencies between data management and metadata
management

However, the basic set of tasks for data management remains the same for all
types of data, including metadata. These are depicted in Figure [7] inspired by
[18], and involve three main blocks: data governance, life cycle management and
foundational activities.

DATA MANAGEMENT
GOVERNANCE LIFECYCLE
Design Store Usage
Create & Maintain & Archive &
Plan Obtain Enhance Dispose
Monitor &
Enforce FOUNDATIONAL
Security & Privacy & Compliance
Quality

Figure 7: Data management activities

[18] performs an analysis of some existing models for managing metadata. From
this analysis, researchers state that two general approaches can be used to design
models: the first approach relies on categorizing metadata, while the second ap-
proach defines a list of metadata management features that must be supported.
The former approach differentiates types of metadata, making it less generic than

23

what we would need to build a multi-purpose model. The feature-based approach
involves building the model to support a predefined list of features, which are de-
rived from metadata management use cases: since we are looking for a way to build a
generic metadata management model, this approach is not the one we would adopt,
because it is impossible to cover all use-cases.

In conclusion, according to the authors of [18], neither the categorization-based
nor the feature-based approaches are an adequate foundation to build a generic
metadata model. So, authors proposed a different approach to define a new set of
requirements for building a generic model that can be used for a broader number of
use cases across various domains. The requirements of this new model are:

1. Modeling the metadata as flexible as possible - We can achieve a high level of
flexibility through the following six conditions:

(a) Metadata can be stored in the form of metadata objects, properties and
relationships

The amount of metadata objects per use case is unlimited

Each metadata object can have an arbitrary number of properties

Metadata objects can be interconnected

)

()

(d) Metadata objects can exist with or without a corresponding data element

)

) Data elements can be interconnected.

2. Multiple granular levels - The model must collect metadata on multiple gran-
ular levels, resulting flexible with regard to the level of detail and allocation of
metadata. Inheritance machanisms for metadata can be supported: for exam-
ple, technical metadata added on a schema level can also be applied to more
granular data elements such as tables, columns, rows and fields

3. Support to the concept of data lake zones - Metadata should be distinguished
across zones

4. Categorizations in the form of labels - Categorizations should be performed
via labels, so that it can be quickly possible to identify the context of the data.

1.7 The Need for a New Data Platform

Previous sections of the document presented data warehouses as centralized reposi-
tories which maintain structured data in a form optimized for querying and analysis.
They are based on a ”schema on write” strategy, meaning the data are initially struc-
tured and then stored [15]. The strategy of forcing a fixed schema before storing
information aims at optimizing the queries and ensure data consistency, making this
data platform more suitable for tasks that are known in advance such as analysis
and reporting.

Data lakes were presented, instead, as storage repositories that hold data in
their native format, without pre-processing or modeling, according to a strategy
known as ”"schema on read”. This approach to collecting, storing and managing
data provides flexibility to the system, since the schema is applied only during read

24

time, allowing the data to be stored without any predefined structure and enabling
the easy incorporation of new data types and techniques to represent information.

Regarding the data processing strategies [15], we already discussed how data
warehouses employ a process named (Extract, Transform, Load), wherein data
are extracted from the source systems, transformed to a structure suitable for analy-
sis, and then loaded into the storage. Conversely, data lakes employ a process named
ELT| (Extract, Load, Transform), wherein data are ingested into the system in their
raw format and then moved to any format when required for analysis: this strategy
provides organizations more freedom to apply different data processing techniques
and analytic tools to the data stored in the lake as needed.

The main problem reported by enterprise data users today is usually data quality
and reliability [19]. Designing and implementing correct data pipelines is difficult in
itself, but things get harder when we consider today’s approaches based on two-tier
data architectures, with a separate lake and warehouse.

A second motivation leading Armbrust et al. [19] to think it is time to intro-
duce a new data platform is the increasing requirement for up-to-date data, but
architectures proposed today, made of a staging area for incoming data and periodic
ETL operations to load them, present an increase of data staleness. Having
more streaming pipelines could mitigate the problem, but these are still harder to
operate than batch jobs.

An additional motivation to propose a new data platform is the widespread
adoption of machine learning and data science applications, which cannot perform
their best leveraging data warehouses and data lakes. The authors of [19] believe
that giving applications direct access to data in an open format will be the most
effective way to support them.

1.7.1 Pros and Cons of Data Warehouses and Data Lakes

In [13], authors identify some of the strengths and weaknesses of data warehouses
and data lakes.

Leveraging the rigid schema of data warehouses allows to conveniently mine and
analyze data. Business intelligence is therefore favored, and so are decision-making
processes.

One of the key technical strengths of a data warehouse is its support to [ACID]
(Atomicity, Consistency, Isolation, and Durability) transactions. Their implemen-
tation contributes to the guarantee of having reliable, consistent and integral data.
Furthermore, metadata management offered by data warehouses allows accessing
additional information about what is stored in the platform and improves efficiency
in accessing it; furthermore, versioning and time-travel can be supported and im-
plemented using metadata.

The rigid schema of data warehouses, implemented via the ”"schema on write”
principle, makes this data platform incapable of storing semi-structured and un-
structured data, which are really common in records that are collected nowadays.
With the rise of big data it became even more evident that it is hardly possible to
develop generic [ETT] processes able to fit any data format.

We already discussed how traditionally data warehouses are implemented on-
premises, giving the company more control over how and where data is stored. With

25

a solution like that there is no reliance on high-speed Internet and connectivity to
ensure low latency, implementation costs are usually high and there is need to have
on-site |['T] staff, location for machines, and operational costs.

In previous sections we stressed that one of the key strengths of data lakes is
the capability of heterogeneous data. The rapidly increasing amount of data and
variety of their formats are perfectly supported by data lakes. The flat architec-
ture according to which information is organized provides the support to advanced
analytics and data science techniques like real-time analytics and batch processing.

[19] remarks that data lakes are also a cost-effective storage solution, which is
even more important given the exponential growth in volume of data. A data lake is
always designed to be hosted in the cloud, and therefore there are no upfront imple-
mentation costs. Another strength of data lakes identified in [19] is the facilitation
of access to the data, since everything is stored in a single central repository that
can be accessed in parallel.

In data lakes metadata play a very important role. For building a general data
lake, however, it is very hard to define a generic metadata management model that
can cover all use-cases and perform well over raw data, despite several attempts
were made. Another weakness of data lakes is identified in 13|, and it involves a
high degree of difficulty in applying appropriate security controls on data stored in
the platform, again because of the varying data formats. As we discussed earlier
in this document, the lack of management of metadata, together with low-security
assurance in data lakes, leads to a high risk of turning into a data swamp. Since
any type of data can be loaded onto the data lake without controlling what is being
stored within it, we may fall in the possibility of collecting corrupt data or something
that is never going to be used.

When dealing with data lakes it is also important to notice that the performance
level for all the different workloads is inconsistent. Although flexibility is a strong
point of the data lake, giving support for all this variety of data, together with the
lack of multi-dimensional organization, influences negatively the performance for all
the different workloads.

1.7.2 Combining Data Warehouses and Data Lakes

Operational differences of data warehouses and data lakes lead enterprises to adopt
both platforms to serve all kinds of analytical workloads. Resulting architectures
[7):

e Tend to become complex, expensive, and maintenance-intensive

e Encourage the data redundancy on data platforms, preventing the presence of
a single source of truth for the whole system

e Require the implementation of possibly error-prone and slow data pipelines for
synchronizing the data lake and the data warehouse, with the risk of causing
staleness, inconsistencies and less trustworthy analysis results.

There are in the literature [14] two main approaches to combine a data lake and
a data warehouse in a global data management system. We might use a data lake
as the source of information for a data warehouse, or alternatively we can consider

26

data warehouses as components of data lakes. In the former case, there is a clear
functional separation between data platforms, as data warehouses and data lakes
are specialized in different categories of analyses; however, this comes with a data
siloing issue. Data siloing can be reduced by adopting the second approach, as all
data are managed and processed in a unique global, platform: data can be combined
through cross-reference analyses, which would be impossible if data were managed
separately.

The Lambda architecture is presented in |16] as a data processing framework de-
signed to handle data by dividing it into two paths, real-time and batch, which are
processed independently by two distinct engines; the results are stored in separate
storage systems and finally combined to support subsequent ad hoc query require-
ments. As represented in Figure [§, the Lambda architecture consists of three main
layers:

1. Batch computation engines - For processing offline data in the batch layer,
which manages large volumes of historical data to produce comprehensive
results

2. Streaming computation engines - They handle real-time data, supporting quick
decision-making and real-time analytics by processing information as it gets
to the platform

3. Serving layer - It integrates output from both real-time and batch processing
layers, enabling access to both historical insights and real-time data analytics.

| ! |

Data source ! Computation engine | ! Data integration
| ! |
| ! |

Batch computation

Offlinedata ~—————— 4
engine

—+——+—— Offlinedata
! |
1 |
: I Offline data
|
| 1
1

Stream computation

N —— —L—— Real-timedata
engine

Figure 8: Example of the Lambda architecture

As authors highlight in [16], maintaining data consistency between the real-
time and batch layers is challenging, with the batch layer that often has to apply
corrections or integrations to maintain overall consistency. Also, the dual processing
nature of this architecture implies higher complexity of the overall system, due to
the need to synchronize information between the two systems.

A non-negligible issue of the Lambda architecture [7] is its need for two layers to
separate batch and speed independent processing. This problem is usually overcome
using different processing engines, storage systems and some logic to be performed
twice. This applies not only to the actual processing logic, but also the logic required

27

for [ETL/|JELT| and deletion of duplicates, as well as for writing results to the target
storage systems. Thus, two different codebases that represent almost the same logic
have to be maintained.

The Kappa architecture is presented in [16] as a model that simplifies the data
processing landscape by treating all data as streaming data, with a unified streaming
computing engine. This approach reduces complexity, but demands that all data,
thus real-time and offline, must be handled in real-time. An example of Kappa
architecture is shown in Figure [9]

| 1
Kafka cluster Stream layer ! i Serving layer
| 1

Job N —_—tT Table N

queries

! 1

! |
New data ! 1 | | APP

! 1

| 1

Figure 9: Example of the Kappa architecture

From the analysis of this model in [16] it emerges how it reduces overall complex-
ity and makes data management and maintenance more straightforward. However,
compared to the Lambda architecture, Kappa may face challenges in handling his-
torical data and data replay, because there is no knowledge of offline information.
Furthermore, there are tasks that are challenging or impossible to be implemented
with stream processing [7] such training machine learning models or joins of tables
for large data sets.

Figure [10]is retrieved from [20], in which Schneider et al. identify some patterns
to integrate data warehouses and data lakes.

In the first architecture of Figure [10] data warehouse and data lake are inde-
pendent. This pattern assumes that the data from each data source is of interest
for either reporting and [OLAP] or advanced analytics, but not for both. Being sent
towards only one of the platforms, each record is ingested into either the data lake
or the data warehouse. This approach to the combination of the two data plat-
forms is really simple, but also strictly limited to scenarios where the source data
can be appropriately split into separate subsets for both workloads, which is a rare
condition. Furthermore, it is inflexible because criteria for splitting the source data
require upfront assumptions regarding the analysis questions.

Similarly, parallel architecture in Figure also employs an independent data
warehouse and data lake, but here data is ingested into both data platforms. In this
way, relevant data can be used for workloads that are typical of both data lakes and
data warehouses, while other data can reside on only one of the platforms. This
approach improves flexibility, but it also requires the replication of data to both
platforms, preventing the formation of a single source of truth, with consequent

28

higher storage costs and inconsistencies between both copies.

The 2-tier architecture represented in Figure [10| seems to be the most common
integration pattern. All data are first ingested from the source into the data lake
and then prepared for analytics. Another pipeline copies or moves data from the
data lake to the data warehouse, where it can be used for reporting and [OLAP]
A third optional pipeline can offload data that is no longer referenced by the data
warehouse back to the data lake, to optimize query performance and storage costs.
According to Armbrust [19], this pattern presents some drawbacks: the additional
data pipelines, for example, increase the overall complexity of the architecture and
the required data conversions make them error-prone.

Finally, the integrated architecture in Figure [10| realizes a single data platform
that may combine the best characteristics and features of both data lake and data
warehouse worlds that we have been presented so far. In this configuration, no data
replication or additional pipelines for data transfer between platforms are needed.
The technical viability of an integrated architecture depends on innovations in sev-
eral domains, like columnar file formats to support both analytical and transactional
workloads, metadata management systems and query engines that can handle both
structured and unstructured records, etc.

Dedicated Architecture Parallel Architecture
Data Analysts Data Scientists Data Analysts Data Scientists
> V - V
Data Warehouse Data Lake

|
|
|
|
|
|
Data Warehouse Data Lake |
|
|
|
|
|
|

88 &8

2-Tier Architecture Integrated Architecture
Data A_nalysts Data Sc_ientists
Data Warehouse <------- Data Analysts

T)

Data Lake - CEEE Data Scientists

I

Figure 10: Integration patterns for combining data warehouses and data lakes

~ iv3

|
|
|
|
|
|
Integrated Platform |
|
|
|
|
|
|

Schneider et al. compared in [7] a system leveraging a separate data warehouse
and a data lake with another system implemented with a data lakehouse, a new

29

data platform that will be the subject of the next section of this Thesis. The result
of this comparison is that the former system is significantly more complex to build
and maintain and more expensive in terms of development and operational costs.
With the second implementation, data are not replicated between different systems,
offering a single data access point to data and contributing to the formation of a
single source of truth. The system implementation adopting the lakehouse, however,
since all data is stored on a single type of storage system regardless of its type, is
no longer able to be stored and managed on systems that are optimized towards a
specific type of data, such as document stores or time-series databases.

While the integrated architecture in Figure [10| conceptually resolves many lim-
itations of dual-platform approaches, its practical implementation requires recon-
sidering some fundamental aspects about data management. The data lakehouse
architecture that will be presented in the next chapter of this Thesis represents
not merely a combination of existing technologies, but rather a novel architectural
paradigm built on principles derived from data warehouses and data lakes, while
introducing innovations in metadata management, transaction support and compu-
tational models.

1.7.3 The Impact on Business Intelligence

[21] presents Business Intelligence as a contemporary approach that combines
methodologies, processes, architectures, and technologies to transform raw data into
meaningful information for decision making. With business intelligence it is easier
to improve the performance of a company by identifying new opportunities and
trends that are highlighted by proper data analysis. The cited paper investigates
the role of data platforms on business intelligence, focusing in particular on data
lakes, possibly as sources for data warehouses:

e Most of the domain experts interviewed in |21 highlighted the importance of
utilizing data lakes as staging areas (temporary locations between data source
and data warehouses) or sources for data warehouses. The data lake should
temporarily keep a copy of the source data as an intermediate point on the
way to the data warehouse, but it can also store results from calculations and
transformations. Using data lakes as a staging area for the data warehouse,
rather than traditional relational databases or other systems, is strategic for
the possibility of storing any formats of data on a cheap storage, as we found
out previously in this document

e Data lakes can be seen as components of a data warehouse architecture. Data
lakes can be used for storing histories or archiving, but also for offloading
archived data from data warehouses

e Data scientists and business analysts are the " power users” of data lakes, which
can be used for exploration and advanced analytics. According to a subset of
people interviewed in [21], users can do analytics directly in the data lake, and
then, when they have found some good data or an extremely good algorithm
or model, then users can move the results of the analytics or algorithm into
the data warehouse for reporting.

30

In a data lakehouse, which combines the best features of data warehouses and
data lakes, the concepts expressed above must be taken into consideration, so that
the new data platform can provide a simpler and more efficient way to satisfy the
needs of Business Intelligence.

31

2 The Data Lakehouse

2.1 Defining the Lakehouse

A straightforward combination of data warehouses and data lakes into a general
data platform preserving all desirable properties is impossible to implement: we
have to give up, or at least relax, some of the key features of these platforms to
create a robust and performing platform [7]. However, combining data lakes and
data warehouses into what we are going to call data lakehouse may also lead
to new powerful features that we are going to present in this section of the Thesis,
such as the possibility to have a single source of truth for analytical and operational
workloads in a single data platform.

In [7], Schneider et al. observe some of the existing definitions for lakehouses.
Some of them adopt a bottom-up approach, where they first specify the desired
characteristics and then a definition is derived from them. However, definitions
resulting from this approach usually do not provide a quantitative nor qualitative
indication of the importance of each feature, so we are not able to understand which
of them are mandatory and what are desirable. In order to address this issue,
Schneider et al. provided a definition for the lakehouse using a top-down approach.

The main idea behind the introduction of the data lakehouse as an alternative to
the data platforms we presented previously responds to one of the key problems with
data warehouses and data lakes, taken singularly or together: with data lakehouses
we intend to simplify data management architectures. With this goal in mind,
especially new companies, startups ans can benefit from lakehouses, because
development and maintenance costs are drastically reduced. Three implications
derive from this simplification:

1. The new data platform must show low heterogeneity in terms of technologies
and techniques to represent information, because it is well known that the more
complex is the system, the more likely it will present bugs and inefficiencies
that are hard to solve without compromising other components

2. The data platform has to move data between different storage systems and for-
mats as little as possible, since these operations require complex development
and maintenance and may become prone to errors

3. Lakehouses should constitute a single source of truth, so that developers, end-
users and scientists can access data via uniform interfaces. This contrasts
with what we saw for architectures trying to combine data warehouses and
data lakes without altering their definitions, like the Lambda architecture and
the Kappa architecture. Moreover, having a single source of truth increases
trust in the stored information and in the analysis results.

Based on these considerations, Schneider et al. define the lakehouse as an inte-
grated data platform that leverages the same storage type and data format for report-
ing and [OLADB, data mining and machine learning, as well as streaming workloads
[7].

With its additional constraints, this definition ensures that lakehouses use the
same type of storage and the same data format to serve all the listed workloads.

32

This way it will be possible to avoid applying transformations and replications of
information to different types of storage systems and formats.

[19] is the first article introducing the data lakehouse system. In this docu-
ment, Armbrust et al. define a data lakehouse as ”a data management system
based on low-cost and directly-accessible storage that also provides traditional ana-
lytical DBMS management and performance features, such as[ACID transactions,
data versioning, auditing, indexing, caching, and query optimization”. From this
statement it becomes evident how lakehouses are an especially good fit for systems
leveraging cloud for separating computation and storing activities: different com-
puting applications can run on-demand on completely separate computing nodes
while directly accessing the same storage data. It remains possible, if wanted, to
implement a system leveraging an on-premises data lakehouse.

2.2 Features

Although several definitions of data lakehouse have been proposed, two of which
have been presented in paragraphs above, some features should be implemented in
a data lakehouse independently of definitions:

e Data storage systems should have high scalability, availability, accessibility,
hierarchical distribution, and comprehensive data administration

e Data ingestion should support all types of data including batch, real-time, and
streaming data

e Transformation and loading of data are essential after the extraction of meta-
data. Data transformation is required to enable data normalization, cleaning,
aggregation, loading with validation, and data capturing

e Metadata management is required to offer semantic annotation for creating
data descriptions, enabling data linking, and supporting data heterogeneity,
versioning, and indexing

e Data access includes both online analytical processing (OLAP)) and online
transactional processing (OLTP|) queries, reporting, and getting business in-
sights.

The authors of [22] summarized in Table (1| some differences between data ware-
houses, data lakes, and data lakehouses.

33

Criteria

Data Warehouse

Data Lake

Data Lakehouse

Key focus Data analytics, Busi- Big data analytics, Structured data an-
ness intelligence Single source of truth alytics, Transaction
for different types of management
data
Data type Structured Structured, Semi- Structured, Semi-
structured, Unstruc- structured, Unstruc-
tured tured
Cost Expensive, Time- Inexpensive, Quick, Inexpensive, Quick,
consuming Adaptable Adaptable
Structure Unconfigurable Customizable Customizable
Schema Schema-on-Write Schema-on-Read Schema-on-Read
Schema enforce- Strict Flexible Flexible
ment
Usability Fasy access and re- Complex analysis of Combines simplicity
port data vast amounts of raw of DW with broader
data without tools cases of DL
ACID| confor- ACID-compliant Non-ACID compliant ~ ACID-compliant
mity
Quality High Risk of data swamps High
Data gover- Built-in features for Requires additional Hybrid approach
nance data quality and in- tools
tegrity
Scaling Vertical scaling Horizontal scaling Horizontal scaling

Table 1: Comparison of data warehouses, data lakes, and data lakehouses

2.3 Technical Requirements

Schneider et al. [7] provided a definition of data lakehouse, starting from which they
performed a deep analysis of the architecture of the data platform and identified
some technical requirements:

1. Same storage type and data format - All data and all technical metadata
must be solely stored on a single type of highly scalable storage, using the same
data format. With ”technical metadata” we mean information that indicates
how to operate the data platform and to serve all analytical workloads, such
as the structure of the data. Operational or business metadata, instead, pro-
vide a business perspective of what is stored within the data platform. This
requirement restricts replicating data or technical metadata to different stor-
age types or transforming data to different formats. However, this technical
requirement does not prevent the possibility of having at the same time mul-
tiple storage systems of the same type, like object storage systems provided

34

by different cloud companies. Furthermore, data can still be replicated and
stored in different versions, levels of granularity and schematics on the same
type of storage

2. [CRUD| for all types of data - A data lakehouse must be able to store,
manage and provision data, such that it can be collected and accessed for
analytical purposes. It may also be necessary to update or delete existing data,
for example if certain entries have to be obscured or removed to comply with
regulations like [EDPR] and [CCPA] [CRUD]| operations have to be supported
by a data lakehouse on the record-level. Furthermore, since new types of
workloads like data mining, machine learning and streaming are not limited
to structured data, [CRUD] must be supported for all kinds of data

3. Relational data collections - Modern processing models have to deal with
contexts where large datasets are broken down to multiple files that are then
stored in certain file formats on the underlying storage system: partitioning
strategies are needed to allow more efficient query processing. This dataset
splitting, however, has to be complemented by abstraction techniques in or-
der to make end-users see the dataset as a unique, big collection. Processing
engines typically already offer such abstractions and hide the underlying com-
plexity and storage strategies; similarly, this technical requirement requires
lakehouses to provide strategies that allow to compose data to single relational
data collections on the logical level, while on the physical side the dataset is
still fragmented in multiple, separated files.

4. Query language - To support reporting and [OLAP] tasks, a lakehouse must
at least offer a declarative, structured data query language (DQL) to query the
available data collections, because queries in the scope of [DLAP] often need
to be created and updated quickly and frequently to allow scientists a user-
friendly interaction with the system. Further languages, like data management
language (DML) are desirable as well, but not mandatory because problems
leveraging them can be solved in other ways, such as via

5. Consistency guarantees - When accessing and using data in the lakehouse,
we can’t implicitly assume that the data actually presents the structure we
expect, or that all attributes are present in all individual records. As a conse-
quence, a lot of code is needed to validate data to prevent processing errors and
possibly incorrect results. In this context, lacking consistency guarantees is
especially problematic for reporting and [OLAP] as many query languages are
not able to handle erroneous or inconsistent data. Consistency guarantees can
also help scientists and developers in other taks, like data mining and machine
learning, since less validation code is required to be written by developers and
the general robustness of the analyses is increased. Not all collections need
the presence of rigid consistency: for example, anomaly detection tasks rely
on the presence of both correct and incorrect records, which may be discarded
if some policies are implemented: accepting all records for a collection without
applying a rigid schema enables tracking and reconstructing which data was
provided by the data sources at which point in time, while consistency checks
can be performed later to other pre-processing or processing tasks. Based on
these aspects, with this technical requirement authors state that a lakehouse

35

must provide the means for checking and enforcing the consistency of data
across collections with respect to the structure and content of data records,
but it is up to the implementation of the respective lakehouse to decide where
and when consistency should be enforced

6. Isolation and atomicity - A data lakehouse is supposed to serve different
types of workloads in parallel, so a high degree of concurrency can be expected
for operations that are performed on data collections. Without additional pre-
cautions, it may be possible to fall into traditional anomalies and inconsisten-
cies that are typical of concurrent jobs. To avoid such issues still supporting
the proper operation of the analytical workloads and increase the overall ro-
bustness, with current technical requirement we mean that a data lakehouse
must ensure isolation and atomicity for all concurrent operations that modify
or access collections. Developers can fulfill this requirement, for example, by
applying locking mechanisms or multi-version concurrency control

7. Direct read access - Data mining and machine learning tasks typically re-
quire direct access to the data on the storage layer, because logical models
cannot be efficiently generated from large volumes of data. At the same time,
other tasks may want to access information independently of the storage sys-
tem, so a logical layer is needed to hide actual implementation and provide a
uniform interface that end-users can access by plugging in their preferred tools
and libraries, without needing to export the data first. Using technical meta-
data providing information about the structure of stored data is important as
well for tools and researchers working on the platform, so direct access to tech-
nical metadata must also be granted, too. With current requirement authors
demand that lakehouses must provide unmediated access to both stored data
and technical metadata, leveraging open, standardized file formats, so that no
further exportations are needed

8. Unified batch and stream processing - A data lakehouse provides not only
a new way of storing information, but also a new approach to data processing,
which can be schematized as a set of activities: (a) the reading of source data,
which can be already stored in the platform or provided directly from data
sources like the Web or sensors, (b) the transformation of data according to
specific requirements and constraints by a processing engine and (c) either the
provisioning or storing of the processing results. When introducing data pro-
cessing activities at the beginning of this document, we saw that computations
can be performed either in batches or as a stream, with different approaches to
data representation and usage of physical resources like network bandwidth,
throughput, CPU and RAM. Although the two paradigms differ strongly in
their semantics, modern processing engines try to unify them by providing
similar [APIk. This last technical requirement demands that a lakehouse must
support both batch and streaming processing, allowing to combine tasks re-
lated to one or both approaches while ensuring at the same time data integrity,
in accordance with isolation and atomicity properties we discussed in another
technical requirement.

The design activity of lakehouse systems is challenging [23]. First, they inherit

36

from data lakes the possibility to run over low-cost storage systems, which in turn
present relatively high latency for modern standards and offer weak transactional
guarantees. Second, being designed as a multi-purpose data platform, a data lake-
house aims to support a huge set of workload scales and objectives. A third challenge
identified by researchers [23| is the tendency of lakehouse systems to be accessible
from different compute engines by exposing open interfaces, contrasting with tra-
ditional data warehouses, which are designed to work with one associated compute
engine. The protocols that these engines use to access information need to be de-
signed so that they can work with other engines and to support transactions,
scale, and high performance, keeping in mind that, as mentioned, lakehouse systems
run over storage systems with a relatively high latency.

Challenges above lead to several design tradeoffs. Some of the key questions that
platforms designers ask themselves to face such challenges include:

e How to coordinate transactions - Some systems do all their coordination
through the object store when possible, in order to reduce the number of
services using the platform. Other systems, instead, rely on an external ser-
vice to coordinate transactions operating on the data lakehouse: this solution
brings lower latency than an object store, but introduces limits to scalability
and increments the number of dependencies

e Where to store metadata - All of the systems analyzed in |23] aim to store
table zone maps (min-max statistics per file) and other metadata in a data
structure to optimize query planning. This can be implemented using different
strategies, including placing the data in the object store as a separate table,
or in the transaction log, or using a separate ad-hoc service

e How to query metadata - Metadata are generally queried via a separated
parallel job, speeding up query planning when dealing with tables containing
millions or billions of records, but potentially adding latency for smaller tables.
Other systems adopt another strategy and do metadata processing on a single
node in their client libraries

e How to efficiently handle updates - Lakehouse systems experience a high vol-
ume of data loading queries, just like what happens with other data plat-
forms. A lakehouse is meant to support both fast random updates and fast
read queries, but, as we can suppose, supporting all these operations on object
stores with high latency is a great challenge. Here stands one of the main dif-
ference between lakehouse systems that are available on the market, with some
of them supporting ” copy on write” strategy, other supporting only the "merge
on read” one, and other systems that can support both strategies jointly or
separately, according to configuration parameters.

2.4 Analytical Workloads

In [7], authors present some of the possible analytical workloads that can be per-
formed on a system based on the data lakehouse platform.

Reporting refers to the production, delivery and management of reports. These
documents can be generated automatically using predefined queries that are run

37

over stored data when needed or periodically. Execution of queries can be just a
part of the activities to produce reports, with (Online Analytical Processing)
tasks that can be performed to enable interactive analyses on multi-dimensional
data models. [OLAP] and reporting tasks both typically are executed on prepro-
cessed and pre-aggregated collections, rather than on raw data, and are not well
suited for streams of data, since some of the typical aggregations of [OLAP] tasks
are too complex for rapid evaluation. Multiple analysts may conduct [OLAP]in par-
allel to each other, together with automatic processes, so keeping problems related
to concurrency in mind is crucial, especially if we consider that datasets can be
frequently updated.

Data mining is defined as “the process of discovering patterns and other forms of
knowledge in large datasets” [7]. Classification, clustering and regression are some
of the most common tasks that belong to the data mining branch.

The goal of machine learning is developing and applying learning algorithms
that can build models from the data, so that in a second moment in time the system
can be used to forecast new observations or perform tasks that fall close to those
belonging to data mining [7].

Most data mining and machine learning algorithms can’t be expressed through
traditional queries because of their complexity and the amount of information that
has to be processed. To execute these algorithms, ad-hoc tools have been proposed
and implemented by data scientists, most of them requiring direct read access to the
data storage, thus without intermediate services transforming information. Most al-
gorithms also prefer batch processing to stream processing, in order to manipulate
knowledge and perform complex analytics and because stream processing does not
allow random access to information, forcing algorithms to present a strong incre-
mental nature.

In the context of analytical workloads, streaming encompasses all analysis tech-
niques for near real-time reporting and stream analysis |7]. The goals are similar to
those we saw for batch reporting, but here dynamic dashboards replace reports as
output of computations. These computations often require time and resources, mak-
ing impractical repeating computations over the same data techniques: the solution
is using incremental approaches, with results that are updated by stream processing
engines as new information arrives.

2.5 General Architecture

Several architectures have been proposed over the years to implement a data lake-
house.

In [24], Cherradi and El Haddadi designed a data lakehouse made of five distinct
layers, represented in Figure |11} The system begins with a collection layer support-
ing heterogeneous data from various sources, without worrying about the presence
of a structure for the record. Then, the data ingestion layer facilitates processing of
data through stream, batch, and real-time algorithms, ensuring the continuous flow
of information. The third layer focuses on storing information, providing spaces for
both metadata and raw data: the structured storage approach implemented in this

38

architecture is meant to improve accessibility and retrieval efficiency. Moving for-
ward, the fourth layer employs sophisticated |All techniques that introduce advanced
semantics for interpretation and analysis of the information. Finally, the fifth layer
is placed to facilitate data navigation and exploration for the final users, promoting
a user-friendly experience while adhering to stringent governance standards.

Data Sources Data Ingestion | Data Storage Data Semantic Data Consumption

Structured data
Semi-structured data
Unstructured data

Raw data storage Business Intelligence (BI)
Artificial Intelligence (Al)

Reporting

Recurrent Nural Networks (RNN)

Real-time Metadata storage Deep Learning

1

1 |

1 |

! st !

ream

1 Batch !

1 |

1 |
|

I |

|
|
|
| Natural Language Processing (NLP)
|
|
|

Figure 11: Layer architecture for a data lakehouse

39

3 'Trigenia S.r.l.

Trigenig.

Trigenia S.r.l. [25] is a Small-Medium Enterprise located in Turin, Italy.
Born in 2007, today it is one of the most dynamic and active Italian Energy Service
Companies on the national and international market.

Trigenia helps companies in the energy and digital transition. With a multi-
disciplinary approach, thanks to personnel qualified in a wide range of sectors and
skills, Trigenia develops customized solutions, putting into practice highly innovative
and financially sustainable actions.

Trigenia poses as its main objective to increase the competitiveness of companies
in terms of energy efficiency and environmental sustainability, offering projects that
maintain over time the highest standards of quality and efficiency. All products and
services offered by Trigenia are based on the synergy of energy, digital and financial
skills, with the aim of sharing with customers the economic benefits related to energy
efficiency.

3.1 Services

3.1.1 Digital

Trigenia proposes to companies a catalog of digital solutions to reduce energy costs
and to perform actions toward Energy Management and environmental sustainabil-

ity .

. C l
OPTIMAL CHP MANAGER BY TRIGENIA

1Clab is a software developed by Trigenia to optimize the management of energy
production systems and to verify in real-time operating conditions. Through data
collection, iClab is designed to maximize economic return of investments by orches-
trating how energy flows through the plant. Within the system, Trigenia embedded
Artificial Intelligence models, too, making it possible to forecast future requirements
of company and to identify optimal operating patterns.

40

I50Cloven®

Clever

In 2015 Trigenia created Cloven, an exclusive monitoring and control SCADA
system that allows to control energy consumption and reducing costs in bills.

The SCADA system allows to capture and analyze energy consumption and
production data, by identifying the most significant energy uses to reduce costs of
energy utility bills and emissions of COs. The suite of system’s integrated commu-
nication enables to collect and analyze data from any instrument without requiring
additional hardware.

Cloven is designed to expand in terms of functionality and measurement point,
thanks to a modular structure and different levels of consultation. Every single
detail can be customized based on interests of the customer company; in addition,
it is possible to combine on a single platform data from different plants and provide
a benchmark between sites.

A positive impact on the environment and creating value for the company and its
stakeholders are no longer options. Cloven is the software able to support companies
to achieve these goals. Trigenia helps companies throughout energy and digital
transition step by step, from the design of the system architecture, through support
for installation and configuration of measurement range, to development and release
of platform.

Cloven is made of several components, among which:

e [50Cloven - It automatizes as much as possible data analysis, to support com-
panies during energy management system certification

e Solar Cloven - This component is specialized in monitoring performance of
photovoltaic plants over time. Data retrieved form the plant are then analyzed
to provide insights for production of electricity, based on both weather data
and plant performance, preventing any inefficiencies. This tool also embeds
some optimization of performance algorithms, in order to make actual energy
production as close as possible to what predictive systems produced

41

e Green Cloven - Trigenia produces dedicated dashboards that client companies
can use as tool to help plant and energy management, with a sustainability
roadmap, collecting and processing information helpful to monitor environ-
mental KPIs for construction of sustainability targets.

3.1.2 Energy

Trigenia offers customizable energy efficiency solutions, that can be easily tailored
to the individual needs of the client company, considering every aspect, from the
feasibility study to the design and commissioning of the system, to the request
for subsidies to finance the path undertaken [26], thanks to a team of employees
specialized in a variety of sectors.

Through the feasibility study, Trigenia is able to present to clients in an intuitive
way the expected benefits, estimate the plant and operating costs of a modification
in a plant, and identify and evaluate the risks deriving from the installation of the
project. The procedure followed by Trigenia to identify the most suitable solutions
is schematic [26], in order to consider all aspects that may determine the choice of a
solution over another one: engineers proceed with the analysis of the main operat-
ing parameters of the process subject to intervention; the verification of availability
of the most effective, reliable and suitable systems for installation is then started.
Finally, Trigenia, on the basis of the design analysis carried out, proceeds with the
technical-economic elaboration and the respective preliminary design of the inter-
vention, trying to determine the best solution for the client, based on a meticulous
evaluation of the project.

Based on the feasibility analysis previously carried out, Trigenia offers three
options:

1. Sale - Trigenia designs and builds the plant defined by the feasibility study,
dealing with the entire process. This solution allows companies to communi-
cate with a single interlocutor (Trigenia) who is responsible for following all
the design, construction and maintenance phases of the project

2. Operational rental - Trigenia offers the client company the possibility, through
collaboration with a leasing partner company, to make an operational rental
of the plant. This allows companies to pay a fixed monthly fee to acquire
the plant for a specific period of time, at the end of which the companies can
redeem it. This option enables the customer to have a customized solution able
to perfectly match the needs, without the need to pay advances and immobilize
financial resources

3. Energy performance contract - This is a contractual agreement between the
beneficiary and the supplier. An (Energy Service Company) like Tri-
genia manages and controls the plants, optimizing energy consumption and
guaranteeing the customer significant savings compared to its historical en-
ergy consumption. The characterizing element of this contract is the sharing
with the customer of the need to save and offer solutions for improving the
energy efficiency of the systems, since this is a concern of both Trigenia and
the customer.

42

Trigenia has made environmental sustainability one of the founding elements
of its core business. Since 2007, Trigenia has been supporting companies in the
sustainability sector, through the definition of true roadmaps for energy efficiency
and the release of energy and environmental certifications. Through services and
projects that Trigenia offers, client companies receive valuable help in managing the
challenges of sustainability and reducing environmental impacts, offering integrated
solutions and services for energy efficiency and CO, reduction.

Talking about some of the activities strictly related to energy, Trigenia’s advisors
verify the quantification of greenhouse gas emissions (GHG), through the analysis of
business activities, the production of the main energy carriers and the assessment of
emissions related to the entire value chain of the company. Calculating the business
carbon footprint (CCF) is often the starting point when it comes to taking climate
action. Since it gives an overview of the company’s greenhouse gas emissions, where
carbon hot spots are located, and what goals the business can set to reduce climate
impact. With its qualified personnel, Trigenia studies and understands how to take
more ambitious climate measures, for obtain the CCF certification, measurable and
with technical bases to achieve and communicate specific emission reduction targets.

Trigenia also offers services to compute the Life Cycle Assessment (LCA) study, a
thorough examination of the product system, in order to assess all the environmental
impacts during the life cycle of the company. Life cycle analysis requires the use of
software and specific skills that are mastered by engineers in Trigenia’s energy team,
who can help the company through the phases of gap analysis and critical review
content with the study, ensuring compliance with regulations and a high quality of
work.

The Energy Audit is the main tool through which a company is able to know
and analyze its energy details, based on the energy systems present in the areas
of the production process, comparing existing technologies with the best available
on the market, and choosing possible interventions in order to increase the energy
performance of such systems, certifying the savings achieved and reducing the envi-
ronmental impact [26].

Energy Management is defined by Trigenia as the art of managing energy [27].
This definition include all the activities for optimizing business processes with the
objective to improve the responsible use of the energy and the reduction of the ener-
getic expense of a company. Energy management operations are usually performed
in a company by a high-profile professional, the Energy Manager. Trigenia can sup-
port this figure in the definition of the project or, if the company is unaware, can
outsource this figure.

Trigenia aims to define and measure the best management practices for energy
saving, identifying waste, inefficiencies, and improvement margins. Trigenia is also
able to support companies in the management of all administrative practices related
to the implementation of energy efficiency, accompanying the Energy Manager in
a path of constant growth, with a definition of the sustainability roadmap through
the monitoring of energy savings and the use of its intelligent energy monitoring
software.

The process of White Certificates (TWC) is the main incentive mechanism for
energy efficiency in the energy industrial sector. These are some measures that

43

certify the achievement of energy savings in the end use of energy, through the
implementation of interventions to increase energy efficiency.

Trigenia is responsible for the recognition of White Certificates. The company
provides its customers a full service for presenting efficiency projects to the GSE,
until obtaining White Certificates and the monetization. Trigenia supports compa-
nies in the design and implementation of the activities headed to receiving TWC
with a complete support, which can attest to the achievement of energy savings in
final energy uses.

3.1.3 Finance

The National Recovery and Resilience Plan (PNRR) is a great opportunity of the
Next Generation EU to make Italy a more equitable, green and inclusive Coun-
try, with a more competitive, dynamic and innovative economy, aiming to address
environmental challenges, of our time and future.

Trigenia acts as an expert interlocutor that provides an information, technical
and administrative service to support both companies and public bodies for the
management of PNRR projects. More in detail, Trigenia is able to guide customers’
business towards the missions of digitalization and innovation, ecological transition
and green revolution [26].

Optimizing energy consumption is usually not enough to make a company invest
money on modifications to the plant; having a more productive and efficient plant,
instead, is usually an aspect that company managers tend to consider. Thanks
to its team of highly qualified engineers, Trigenia is able to support companies
in the implementation of innovative projects capable of increasing efficiency and
productivity. In parallel with the design activity, Trigenia consultants undertake
the task of providing the appropriate certifications, guaranteeing the possibility of
benefiting from all the incentives proposed by the Industry 4.0 plan. It is also able
to provide enabling technologies, such as Cloven, a SCADA system that allows all
the data coming from different devices to be accommodated in a single system and
to exchange information both in writing and in reading with each machine, capable
of satisfying the Industry 4.0 interconnection requirement.

44

4 Analysis of the Problem

4.1 Analysis of the Needs of Trigenia

As a practical use case for this Thesis we are going to design and implement an
infrastructure tailored to the needs of Trigenia. In the next sections we will cover all
elements of the infrastructure, starting from data collection, storage, and subsequent
retrieval for data analysis or other applications.

Trigenia works mainly with industrial plants, where data are produced by
devices or machines. These data have to be sent to a system where they can be
collected and stored for several uses, like monitoring or forecasting of performance
using Machine Learning algorithms. The collection site is usually placed outside the
plant, so it is important to find a proper and secure way to send information through
the network. Together with near real-time data, Trigenia considers it important to
be able to collect historical information, which might be stored in files or other
databases. In order to be independent of the entity importing historical data, these
collections will be sent through the network, too.

Once data are imported or produced, we need a system that collects all this
information into a single space and then stores it in a database. Since data come
concurrently from several devices or importers, it is important to manage concur-
rency properly, starting from this collection phase and then leveraging database
implementations for transactions.

Until now, Trigenia has been using traditional databases and services provided by
third parties with expensive pricing plans and without transparent communication
about what platforms are used. The managers of the company decided that it is
now time to change this trend by implementing an own storage system leveraging
as many open-source platforms as possible. Such an approach will enable Trigenia
to reduce costs and be sure of the reliability of the system.

Another major concern of Trigenia is the possibility to integrate the new data
platform with existing services that the company provides to customers. Being
Trigenia an Energy Service Company, and not an enterprise focused on software,
personnel has a limited expertise in Computer Science. Therefore, it is important
to provide a system that can be plugged into existing services with a small effort for
employees and developers within the company.

4.2 Possible Solutions to the Problem

In 28] authors focus on small and medium-sized enterprises), which represent
90% of all enterprises and employ more than 50% of all employees worldwide. To
maintain competitiveness, have to be able to integrate all data that can be
helpful for business intelligence, regardless of the source of information and the
structure of incoming data. In fact, data mining and processing play a key role in
modern society and represent an important tool for business, especially for [SMEE,
which are more exposed to financial factors than larger companies.

Over the decades, enterprises have relied on data warehouses and data lakes to
store and retrieve useful information and insights from data. Data lakehouses were
introduced in the early 2020s as a winning platform offering a combination of the
best features of data warehouses and data lakes, enabling enterprises to process large

45

amounts of structured and unstructured data, to predict the behavior of a system,
and to use machine learning and artificial intelligence to support business decisions.
Despite being a new technology, one of the key elements of data lakehouses is their
affordable price: this represents a fantastic opportunity for SMEE, that can use the
newest data management platform offering the state of the art of performance with-
out the need for investing too much time and money. Also, a company adopting a
data lakehouse, and promoting this choice, gains better consideration in the mar-
ket, showing competitors how the company board cares about new technologies and
about staying competitive.

Previous sections of this Thesis and paragraphs above lead us to believe that a
data lakehouse meets almost all needs of Trigenia, so it can easily replace the data
platform that the company has been using so far, with a drastic reduction of costs
for services and with a significant improvement in the number of operations that can
be performed on data. As we will cover in one of the last parts of this document,
times for accessing data will also be reduced exponentially compared to the systems
that Trigenia has adopted until now.

As mentioned, pricing plans for hosting the data lakehouse on the cloud depend
on the platforms hosting the service, but all of them implement a pay-as-you-go
strategy. To keep costs low, considering that Trigenia does not plan to access all
data in the data lakehouses so often, we can design the collecting system to store data
in the lakehouse at regular and infrequent time intervals, possibly few times a day or
week: this will reduce the number of writes to the platform, and therefore the overall
costs. To access real-time data, for example for plant monitoring systems, Trigenia
plans to use a traditional database, which can be updated more frequently and
contain most recent information. Therefore, the system we are going to implement in
this Thesis will comprise two databases: a traditional relational database, containing
newest data and updated almost in real-time, and a data lakehouse storing all data,
to be updated periodically considering pricing plans of platforms hosting the storage
system.

4.3 Analysis of Existing Products

4.3.1 Sending Information Over the Network

Event streaming is the practice of capturing data in real-time in the form of streams
of events, storing these event streams durably, processing and reacting to streams in
real-time or retrospectively, and routing streams to different destination technologies
as needed. All this functionality is provided in a distributed, highly scalable, elastic,
fault-tolerant and secure manner.

§g kafka

46

Apache Kafka [29] is an open-source distributed event streaming platform that
has become a standard for companies interested in high-performance data pipelines,
analytics, and data integration into applications.

Apache Kafka is a high-performance distributed system consisting of servers and
clients that communicate via TCP network protocol. This system can be hosted on
bare-metal hardware, virtual machines, containers, and on-premises as well as cloud
environments [30].

Kafka ecosystem consists of a cluster of one or more servers placed anywhere in
the world. Some of these servers, the brokers, form the storage layer, while other
servers run Kafka Connect to continuously import and export data and integrate
Kafka with third-party systems and other Kafka clusters.

With Apache Kafka clients, developers can develop distributed applications and
micro-services that can in parallel read, write and process events at scale. Apache
Kafka is also able to guarantee fault tolerance in presence of network or machine
failures. These and other amazing features are the main reason why this platform
has become the standard for applications involving data or message transmission
over the network.

When introducing Kafka we mentioned events: these record the fact that some-
thing happened [30]. When one reads or writes data using Kafka, this is done
by creating events. We can think a Kafka event as an object made of key, value,
timestamp, and optional metadata headers. An event object is usually a fairly small
(generally less than a megabyte) and is normally represented in some structured for-
mat, such as JSON or a serialized object. Producers are clients that publish (write)
events to Kafka, while consumers are clients that ”subscribe” to (read and process)
these events. Apache Kafka fully decouples Producers and Consumers, making them
independent to guarantee high scalability.

Events are organized and durably stored in topics, similarly to how files are
organized in a file system. Topics in Apache Kafka are always multi-producer and
multi-subscriber, meaning that a topic can have any number (zero included) of
producers that write events and any number (again, zero included) of consumers
that subscribe to these events. Systems that work similarly to Apache Kaftka are
message queues, like RabbitMQ), that delete messages as soon as they are consumed
by subscribers; Apache Kafka, instead, retains events in topics for a given time
(specified while configuring the application), during which events will be available
to be read multiple times until their lifetime expires.

Topics are partitioned, meaning a topic is spread over a number of ”buckets”
located on different Kafka brokers. The distributed placement of data is very im-
portant for scalability, because it enables client applications to both read and write
data from/to many brokers at the same time. Events having the same key are writ-
ten to the same partition. Apache Kafka keeps track of the arriving order of events
in a topic, so that a subscriber can read events exactly in the same order information
was written.

We saw how fault tolerance and high availability properties help to make Apache
Kafka the most common choice for developers when creating a distributed applica-
tion. To respect these properties, Kafka allows topic replication, that is having
multiple synchronized copies of the topic stored in different geographical regions or

47

data centers: by doing so, if one of the machines containing the topic is not available,
data can be retrieved from another machine. A common setting for the replication
factor is 3, meaning that three machines will have the same synchronized copy of

g s

Modern applications are moving towards an architecture based on micro-services,
possibly implemented using different programming languages or frameworks and
running on multiple machines and operating systems. All these sub-components
work independently, but they may have to communicate with each other. We can’t
rely on request /response-based systems [31], since a micro-service may have to wait
for a long period of time before receiving a response, wasting resources and, con-
sequently, money. Asynchronous communication, implemented via message brokers
as intermediary, is the solution to this problem.

RabbitMQ is an open-source message broker that simplifies communication
between services by ensuring that messages are effectively queued, delivered, and
processed, without altering the code or infrastructure of an existing system. The
basic building block of this product is AMQP (Advanced Message Queuing Proto-
col), which provides reliability and scalability to message passing. Other protocols,
including MQTT, are supported, too, making this product a valid option for de-
velopers that have to build applications involving passing information between two
nodes in a network, or even applications based on micro-services, independently on
the programming language they decide to adopt. RabbitMQ also provides dura-
bility to the channel containing message queues, so that high availability and fault
tolerance can be guaranteed.

Message durability in RabbitMQ consists in making the queue of messages avail-
able even after a server crash: this is achieved by storing messages metadata on disk
and restoring persistent messages when the server gets back online. It is also possi-
ble to define an auto-deleting queue: in this case the content of the queue is deleted
after connection is either closed or discontinued. This might be the case of tem-
porary operations, or processes where queue permanence is not required, allowing
developers to save resources for the system.

In RabbitMQ@), dispatching messages to exchanges is essential in the delivery
process . Messages don’t go directly to the queue, but are sent to an exchange
that routes them to the correct queue according to a routing key and an header that
are part of the message themselves. There are four main categories of exchanges

provided by RabbitMQ):

e Direct exchanges - They require that the routing key of a message is exactly

48

the same with a binding routing key for the message to be forwarded to its
intended queue

e Topic exchanges - Pattern matching is used over the routing key of a message
to determine the correct queues for route messages

e Fanout exchanges - All queues receive incoming messages without discrimina-
tion

e Header exchanges - They use the message header attribute to choose the right
queue for the message.

Once the message is queued, the next step is consuming it. Consumers are enti-
ties that are linked to a specific message queue, with the task of reading all messages
in the queue and processing them singularly, so that no work is performed twice on
the same message. RabbitM(Q provides multiple strategies to ensure no message
loss during transmission and queuing. For example, a Consumer acknowledges the
broker every time a message is received, and this confirmation is then forwarded to
message publishers; a broker can also acknowledge to the message publisher that
it received a message and that is going to be sent to the right queue, so that the
publisher can delete the message from its own queue.

The messaging platform provided by RabbitMQ offers developers several tools
to customize the way messages are distributed, so that they can tailor the message
passing system to their needs. For example, it is possible to define a priority for each
message, so that messages with higher priority are processed before other messages
presenting lower priority, giving less importance to the order in which messages were
added to the queue. Another possibility for developers is setting a TTL (Time-To-
Live) for each message: this determines how long a message can live in the queue
without being processed. When the time runs out, the message is removed from the
queue.

Messages can be replicated to multiple nodes in a cluster, in order to improve
fault tolerance, that is the ability of the system to send information even if some
node fails during transmission. Quorum queues [33] within a cluster of nodes identify
one leader and multiple followers distributed across the network to guarantee high
availability for the service. The leader node will maintain the main replica of the
queue, while follower nodes will maintain a secondary replica, which may become
the primary one if the leader fails. With such a system RabbitM(Q is ready to face
any kind of failure, guaranteeing uninterrupted service to end-users.

49

4.3.2 Relational Database

PostgreSQL

PostgreSQL [34] is an open-source relational database system that extends tradi-
tional SQL language to provide additional features to both simple and complicated
data workloads. The community behind it makes PostgreSQL one of the most main-
tained and extensible RDBMSE, with powerful extensions that extend the original
set of functionalities, helping PostgreSQL to conquer the trust of a large number of
companies [35].

Concurrency [36] is managed by PostgreSQL through MVCC (Multi Version
Concurrency Control), which provides each transaction a snapshot of the database,
so that concurrent transactions don’t interfere with each other. With this approach
the number of locks can be drastically reduced, while still supporting [ACID] princi-
ples.

Replication [36] in PostgreSQL is based on shipping changes to tables to replica
nodes asynchronously, with the possibility of running read-only queries against nodes
and consequently splitting read traffic among multiple nodes hosting the same
database. Synchronous replication is supported, as well, to ensure that, for each
write transaction, the master node waits until at least one replica node has included
modifications to its transaction log.

A key strength of PostgreSQL is scalability, thanks to the implementation of
complex techniques that ensure efficient data storage and retrieval [37], like the
aforementioned replication and partitioning.

When designing a database, developers have to declare names and types for
attributes of the tables. PostgreSQL provides support for several data types, plus
the possibility to create user-defined ones [37]. In addition, the domain data type is
provided with a customizable set of constraints, so that data entered into a column
having this data type will have to respect some particular constraints.

Some security techniques are also implemented within PostgreSQL [38], in order
to protect information stored in the database. In particular, the authorization secu-
rity property is implemented on a role basis: permissions can be granted or revoked
on any object, allowing or preventing the access or creation of objects at system,
schema, table, or row level. Authentication is also supported, including extensions
and implementations by third parties, such as Kerberos and RADIUS. Encryption
for data at rest and in transit is provided, as well, to protect data from being inter-
cepted or stolen. Finally, logging and auditing by PostgreSQL help developers and
system administrators to monitor and track activities on data.

20

@ Timescale

TimescaleDB [39] is an open-source database built on top of PostgreSQL, so most
of the considerations made in the paragraph above also hold for TimescaleDB. The
key difference between this new database and PostgreSQL is the particular focus
on time-series, that is data collections where time information plays a key role.
This is, for example, the case of data that Trigenia has to handle, with devices
sending multiple records during the day. Together with time-series specialization,
TimescaleDB also improves scalability, data ingestion and execution of complex
queries compared to PostgreSQL.

The horizontal scalability provided by TimescaleDB is achieved by making stor-
age and computation tasks independent [40]: this enables users to do more tasks
while using fewer resources. Since database performances decrease when increasing
the number of rows in a table, TimescaleDB introduced a multi-tiered architecture
to enable infinite, low-cost scalability: older and infrequently accessed data can be
stored in a low-cost storage tier, while still being accessible when needed, with-
out sacrificing performance for data accessed more frequently, which is stored on
a high-performance storage tier. Of course, prices for low-performance storage are
lower than costs for using high-performance tiers. Therefore, this tiered architec-
ture allows developers to be more free when considering trade-offs between costs and
performance.

The engine running TimescaleDB uses columnar compression of data to save
space on disk [41]. With columnar representation, multiple records (rows of a table)
are collected in chunks and then each column is isolated from the others and stored
separately on disk. Considering that all elements of the same column share the same
data format, the engine can apply some optimization techniques specialized for each
data type, so that the same amount amount of data can have less impact on disk
usage. When new data is added to the database, it is in the form of uncompressed
rows; it is a built-in job scheduler to convert data to compressed columns.

TimescaleDB can be self-hosted, or run in the cloud with pay-as-you-go pricing
plans, providing customers the possibility to pay according to the size of disk they
need: thanks to columnar format, TimescaleDB becomes one of the best relational
databases in terms of power-to-price ratio, including in the power definition the
flexibility and performance features that we presented above.

Availability is a database property indicating whether a DBA (Database Admin-
istrator) is able to perform normal operations on the database without end-users
being affected by any issues. The term "high availability” [42] is used to describe
a system in which we expect minimal downtime for the database. Timescale runs
in AWS (Amazon Web Services): Amazon handles the management and reliabil-
ity of the underlying hardware, allowing developers to forget about the physical

51

maintenance and protection of the infrastructure.

Another consequence of the cloud-native approach of TimescaleDB is that com-
pute and storage processes are not tied together, differently from what happens using
a traditional server, improving convenience and cost-efficiency for both companies
and end-users. When storage and computing are coupled, even in case of a compute
failure it will be necessary to recover the system from an existing backup, implying
a significant downtime to end-users. Decoupling storage and computation, instead,
the damage caused by the failure of a computation node can be easily mitigated by
creating a new computation node, which can then be attached to the undamaged
storage unit: the recovery from such a failure requires only a few seconds, guar-
anteeing almost zero downtime to end-users. If a failure damages a storage node,
instead, replication provided by Timescale helps to retrieve information from other
storage nodes, so that information is never lost; in this case system recovery will
require higher time, but replica nodes can be used as sources of information for
computation nodes, so that the system replying on the database can run without
major problems.

4.3.3 Data Lakehouse

DELTA LAKE

Delta Lake is an open-source storage layer built on top of Apache Spark that adds
properties to data stored in cloud object stores. Delta Lake logs activities
in a compact folder in the object storage, with the list of activities being stored
in Apache Parquet format to ensure data consistency and reliability, but reducing
the size of the log files to a fraction of the disk that would have been used if other
formats were adopted, making it an excellent choice for most applications .

The Delta Lake architecture consists of table metadata, data files, a partitioning
scheme, a transaction log, checkpoints, and tombstones. The transaction log records
all changes to the table, including new data insertions, schema updates, and table
modifications. Checkpoints summarize the current state of the transaction log and
improve metadata operations performance.

52

ICEBERG{})

Apache Iceberg, created by Netflix, is an open-source table format system that
is specifically designed to streamline the creation of a lakehouse architecture [22].

Apache Iceberg is a cloud-based table format system that can store extremely
large tables. This architecture is based on the concept of snapshot metadata files,
manifest files, and data files. All metadata about the table is stored in JSON
format, and snapshots represent the current state of the table at a specific point in
time. Manifest files provide a detailed description of a group of data files within the
table, while data files store the actual table data in Apache Parquet format. Iceberg
maintains a transaction log to track changes made to the tables metadata, and by
using a snapshot, it ensures that the reading and writing of data are isolated.

Rpache

(A hioi

Apache Hudi is a distributed data management framework for large-scale data
storage in distributed file systems . Hudi leverages a directory-based structure for
organizing tables: each table is stored in a directory with one or more subdirectories
representing partitions. These partitions are in turn divided into a base file and
log files. Hudi keeps track of each commit via metadata, so that features like time-
travel, incremental data processing, and rollback support are provided to developers
adopting this framework.

Dremio is a lakehouse platform that provides a unified platform to simplify and
accelerate data analytics . It bridges the gap between data lakes and data
warehouses and allows users to query data across different sources without the need
for data movement.

23

Dremio uses a distributed SQL engine to process queries across a cluster of nodes,
enabling parallel processing and scalability for handling large datasets. Within
Dremio there is a virtualization layer that supports various data formats and sources,
including relational databases, data lakes, and cloud storage.

N g~
N\

<snowflal

Snowflake is a fully managed, cloud-based data platform that offers ease of use,
fast, cost-effective performance, global connectivity, and fine-grained governance
[22].

Snowflake separates storage from computing, making it cost-effective and flexible.
It efficiently handles multiple queries, providing high concurrency support while
maintaining cost-effectiveness. One of the key benefits of Snowflake is its unified
approach, which allows data ingestion into a managed repository while enabling
read-and-write operations directly on cloud object storage.

Delta Lake, Apache Hudi, and Apache Iceberg all implement transactions using
multi-version concurrency control [23]. Using metadata, it is possible to associate
a file to a specific version of each table, so that this information can then be used
to analyze an older version of the system or restoring the overall system in case of
an accident. When a transaction begins, metadata is read to obtain a snapshot of
the table, from which data are read. Transaction commits atomically update the
metadata structure, in order to maintain the correctness of information stored in
the data lakehouse. Apache Delta Lake relies on the underlying storage service to
provide atomicity of transactions, while Apache Hudi and Iceberg go even further,
using table-level locks [23].

To provide isolation between transactions, all platforms studied in [23] use op-
timistic concurrency control. Transactions are validated before commit, so that
conflicts with concurrent transactions can be prevented. The level of isolation de-
pends on the platform: by default, Hudi and Iceberg verify that a transaction does
not write to any files also written to by committed transactions that were not in
the transaction snapshot; Delta Lake by default (and Iceberg optionally) also veri-
fies no transaction read conditions could be matched by rows in files committed by
transactions not in the snapshot.

Thanks to isolation of transactions it is possible to implement serializability: the
result of a sequence of transactions is equivalent to that of some serial order of those
transactions, even if it is different from what is reported in the transaction log [23].

Distributed processing engines, running on a cluster of machines, need to access
metadata in the data lakehouse to plan efficient queries. Efficient data management,
therefore, plays a crucial role in the success of a lakehouse architecture [23]. All
three most important products (Delta Lake, Apache Hudi and Apache Iceberg) store
metadata in files alongside the actual data files. Accessing the list of files containing

o4

metadata and reading information from these files improves query planning times,
especially with respect to reading files containing actual data from the object store.
Two metadata organization formats are used: tabular and hierarchical. The tabular
format is used by Delta Lake and Apache Hudi, and it consists of having a special
table containing metadata inside the data lakehouse. Transactions do not write to
table directly, but instead they write log records that are periodically transposed to
the table. In the hierarchical format, which is used by Apache Iceberg, metadata is
stored in a hierarchy of manifest files.

Another difference between the lakehouse systems studied in [23] is the way
distributed queries are planned. Delta Lake and Apache Hudi work in a distributed
fashion, while in Apache Iceberg, a single node uses the hierarchy of manifest files to
minimize the number of read operations. This latter approach improves performance
for small queries where planning overhead is high compared to the duration of the
querying time, but this advantage does not scale when dimensions of tables start
increasing.

Two strategies can be applied by lakehouses to update data within their tables:
”copy-on-write” and "merge-on-read”. The ”copy-on-write” strategy identi-
fies which files have to be updated and rewrites them to new updated files, presenting
high write amplification and no read amplification. Conversely, the ”merge-on-read”
strategy does not rewrite files, but it uses additional files to keep track of
which changes at record-level have to be applied; periodically, new updated versions
of the files are written, thus producing lower write amplification and higher read
amplification [23].

All systems studied in [23] support the strategy, because most lakehouse
workloads favor high read performance. Apache Iceberg and Hudi currently support
the strategy, too, while Delta is planning to support it in future versions.

95

5 Design of the Infrastructure

The previous section presented the tools we considered helpful for implementing
infrastructure that will satisfy the needs of Trigenia. In this section we discuss, for
each element of the infrastructure that we want to implement, represented in the
schematics in Figure [I2] which products we are going to use and why we consider
them the best solution.

Relational

loT devi
oT device \ Database

. Data
loT d I
of device Collector

CSV Files / 2EL

Lakehouse

Figure 12: Schematic representation of the infrastructure designed for Trigenia

5.1 Data Sources

devices and sensors in plants are the main source of data for the system. They
periodically generate some measurements and send them through an Apache Kafka
topic. Measurements can be sent either as a continuous stream of events or in
periodic batches. In stream mode, devices send individual measurements or events
as they occur, providing real-time visibility into the system’s state: this approach is
particularly useful for time-sensitive applications where immediate data processing
is required. On the other hand, batch transmission involves collecting multiple
measurements over a certain time interval before sending them as a single package:
this is more efficient in terms of network usage and power consumption.

Historical and offline data can be imported into the system through file loading
mechanisms. CSV and JSON files are the most common formats used for this
purpose. When dealing with this kind of data loading, the best approach is to use
a batch processing mechanism that can handle large volumes of data efficiently.

5.2 Sending Messages

As we will describe in the next paragraphs, the overall infrastructure will have two
separate databases: a relational database for newest data, so that costs can be
reduced and existing services by Trigenia can be modified as less as possible, and
a data lakehouse for collecting historical data and perform complex analytics and

56

further tasks on a bigger data set. Data collector, which receives data from
devices and file loaders, will work separately and in parallel for the two databases.
Data sources will be read twice, so message queues are not a viable solution for such
a kind of system, since messages are removed from the queue once the collector has

§g kafka

Together with Trigenia, we decided to use Apache Kafka as the message broker
for the system. We can benefit from the built-in storage system to read a topic
more frequently to feed the relational database, so that it can be updated almost in
real-time, while a second periodic read is performed hourly, or something similar, to
feed the data lakehouse. Since the latter system is hosted on the cloud, pricing plans
are usually based on the number of writes to the storage, so feeding the lakehouse
with a lower frequency will help Trigenia to reduce costs, while still being able to
provide real-time services thanks to the relational database.

While other systems are available on the market, we chose Apache Kafka by
looking at its market share and the number of companies using it. Furthermore,
being Apache Kafka an open-source system, we meet one of the requirements of
Trigenia, that is to use as many open-source platforms as possible.

5.3 Collecting Messages From Multiple Sources

We need an entity that centralizes data incoming from file importers, devices
and other possible data sources. This entity will collect some data and then feed
the two databases that compose the infrastructure we are designing for Trigenia.

One first approach to data collection is to use one message at a time from an
Apache Kafka topic and immediately send it to the databases. With this approach
databases are fed in real-time, but they would be overwhelmed by the number of
writes; furthermore, since each write consists in a transaction, database would have
to handle hundreds or thousands of transactions per second. This is not applicable
to our needs, since we are going to use a relational database, which is not designed
to handle such a high number of transactions. We also want to keep costs low, so
we have to limit the number of writes to the data lakehouse.

An alternative approach is reading multiple messages from the same Apache
Kafka topic and collect measurements in a Python list or something similar. Once
the collection saturates, according to a setting that can be customized to reach the
best trade-off between data freshness and costs, the list is sent to the databases.
Since we expect to receive hundreds of messages every time we read a topic, a
proper setting for the maximum size of a collection can enable us to achieve a well
performing system. The number of transactions to be handled by the database is
dramatically reduced, so the workload for the two systems will be acceptable.

o7

A third alternative, which is the one we are going to adopt in the project, consists
in having two parallel and independent threads within the Collector entity, one for
feeding the relational database and another one for feeding the data lakehouse.

The thread related to the relational databases reads frequently from the topics,
collecting a few hundreds of records every time data are retrieved. Once the reading
activity is completed, data are inserted into the database. This behavior is periodic,
of course, so we should pay attention to the time interval between two readings and,
consequently, two insert transactions. The best way to control this is forcing the
thread to sleep for an acceptable time, so that Kafka topics can be written with
more data and the database can handle the insertion transaction without having to
schedule multiple transactions in a short time.

The thread related to the lakehouse presents a similar behavior: data are pe-
riodically read from an Apache Kafka topic, collected into a collection, and then
a method to insert the whole collection to the lakehouse is invoked. The time in-
terval between two readings is much longer than the one used by the other thread,
and consequently the number of records to be written to the data lakehouse is much
higher. This approach allows Trigenia to limit the number of writes to the lakehouse
to a few operations per day (or month, if needed), so that costs are kept low, since
pricing plans for lakehouses are generally based on a pay-as-you-go strategy and the
number of writes to the storage.

During the design phase of the project, this third solution turned out to be the
best one to implement, since it allows to reach a good trade-off between costs and
data freshness: the newest data are frequently written to the relational database,
justifying its presence and allowing existing services by Trigenia to remain unchanged
and always up-to-date. The lakehouse is used by Trigenia as a long-term archive, on
which they can sometimes run complex queries, or train machine learning models,
so it is not necessary to have real-time data in this database.

Furthermore, by adopting this third approach we use a key feature of systems
like Apache Kafka, that is the possibility to read a topic multiple times. This
would not be possible with message queues like RabbitMQ), since in these products
measurements are deleted once they are read for the first time by a consumer.

5.4 Relational Database

@ Timescale

When introducing relational databases, we presented TimescaleDB as a valid op-
tion, extending and improving functionalities offered by other relational database
management systems, in particular PostgreSQL, plus a particular optimization for
time-series, which represent the main category of data that Trigenia has to handle.

o8

The code for the class representing what a customer or Trigenia developers can
do with the database is presented later in this Thesis, but we can say here that user-
friendly Python are provided to perform insertions, reads, and queries on the
database, with internal implementations hiding complexity related to concurrency
and transactions.

This database is similar to what Trigenia has been relying on until now, so
the design process of tables will be quite straightforward, because we can use older
collections as inspiration, with at most some small improvements and optimizations.
We will need:

e A CLIENTS table to keep track of some information about Trigenia cus-
tomers. With this table, developers can easily retrieve, for example, the name
of the client company, so that a unique identifier can be used in the rest of the
database to refer to the company.

e A MEASURES table, which allows developers to use a unique identifier in
the rest of the database to refer to a measure. In this table we can keep
information like the actual name of the measure, or the unit related to it

e A SITES table, containing mainly geographical information about a plant.
Another important information that can be stored in this table is a link to the
customer company owning the plant

e A DEVICES table to store additional information about a device, like an
intelligible name

e A HISTORY to collect all measurements that devices produced, or that were
imported from files. One of the columns of this table, indicating at which time
instant a measurement was read, is the main reason why we are preferring
TimescaleDB to other relational databases.

5.5 Data Lakehouse

One possible approach to the implementation of a data lakehouse system is provided
by researchers that introduced the data platform [19]. The system will store data
in a low-cost object store (such as Amazon S3 or MinlO, but other providers like
Microsoft and Google offer similar platforms) using a standard open file format (e.g.,
Apache Parquet and Avro); a metadata layer is then implemented and hosted on
top of the object store, in order to indicate which objects (files) are part of a table
version. With this configuration, it will be possible to implement the support to
[ACID| transactions or versioning within the metadata layer, while keeping the bulk
of the data in the low-cost object store. Clients will be able to directly access objects
from this store using a standard file

Storage systems such as S3 or HDFS only provide a low-level object store or
file system interface where even simple operations, such as updating a table that
spans multiple files, are not atomic [19]. New systems have been presented over
recent years to add capabilities to object stores, bringing performance similar or
better than raw data lakes, while adding highly useful management features such as
transactions and time travel to retrieve past versions of a table. As discussed while
presenting data lakes, in the introduction of this document, metadata layers are a

29

natural place to implement data quality enforcement features, but also governance
features such as access control and audit logging.

In a previous section of this document we compared some of the data lakehouses
that are on the market. From this activity, it turned out that Apache Hudi is
currently the most flexible platform. However, this flexibility comes at the cost of
non-trivial operations to be performed to set up and integrate Apache Hudi with
the other parts of the infrastructure.

DELTA LAKE

Since Trigenia does not need all features provided by Apache Hudi, the choice
of the data lakehouse to adopt was guided by the trade-off between the number and
entity of features and the cost to integrate the data lakehouse with the rest of the
system. From this analysis, it turned out that Delta Lake is the data lakehouse
system that better meets the needs of Trigenia. In fact, this product is open-source,
easy to integrate, and provides good enough performance. Moreover, it is natively
supported by the engine that we are going to use to query the system and to write
to it, Polars.

In the data lakehouse, information will be stored in tables, similarly to what
happens in TimescaleDB. In fact, all information in the relational database of our
practical use case will be replicated on the data lakehouse, with the same IDs iden-
tifying the same entities: this way, it will be possible to interoperate between the
two databases, without complex transformations to be performed to access the same
information. Polars can work with a Non-SQL approach, but we decided to keep
using a relational representation of information to maintain the infrastructure con-
sistent and understandable, especially for Trigenia personnel that is not expert in
Computer Science or Data Science. In particular, the data lakehouse will have tables
to represent clients, measures, sites, devices and measurements.

Several techniques can be implemented to achieve SQL performance in a data
lakehouse. Caching objects to faster disks on the processing nodes is a first viable
technique to improve performance. This does not violate the technical requirements
and constraints for the data lakehouse, which include avoiding duplication of in-
formation across the infrastructure, because data are temporarily loaded in another
place, without compromising records in the data lakehouse object store. Data layout,
like record ordering, is another aspect that plays a large role in access performance.

60

In practical terms, in the project made for Trigenia we will build some tables
containing useful information computed by aggregating data, like performances of a
device per hour, per day, or per month. These tables will be re-computed periodically
on data stored on the lakehouse, using some code that we will present later in this
document. These tables will be stored on the lakehouse, as well, so that useful
historical information can be retrieved without executing complex code or analyzing
the whole data set every time an end-user wants to have some global information
about some specific device.

In addition to data and indices tables, in the data lakehouse Trigenia will store
the results of other activities, such as Machine Learning projects.

In order to satisfy all needs of Trigenia in an efficient and convenient way, we
will need to define a Python class that manages all workload, from data collection to
retrieval and analysis. We will then expose to developers a set of[API that will allow
users to access information without compromising the security of the infrastructure.

5.6 Manipulating the Data

Once data are collected, they have to be manipulated and stored in the database
and in the lakehouse. Once they are stored, some processes to access and analyze
information must be provided.

When dealing with the relational database, TimescaleDB in the practical case of
Trigenia, SQL is the go-to language to use. A Python class can provide some [APTk
to transform a generic request into an SQL script to run on the database.

Switching our focus to the data lakehouse, instead, further considerations have
to be made. We saw previously in this document that two engines were considered
to move information from or to the data lakehouse: Apache Spark and Polars. The
former is one of the most used engines when dealing with big data and distributed
computing, as it is aware of the topology of the storage and can optimize queries to
execute jobs with as less resources as possible. Polars, instead, is a new engine that
works better for local computations, with performance that is dramatically faster
than Apache Spark.

!ill |||.II. po I 3

By analyzing the needs of Trigenia, it turned out that most computations are
planned to be performed locally, so Polars is going to be adopted, in order to benefit
of the major advantage of this library over Apache Spark. We will see that plugging
Polars in the infrastructure is tremendously easy, even easier than Spark, and that
Apache Delta (our lakehouse) is natively supported by this library.

61

Polars can work both with SQL scripts and with manipulations to DataFrames.
Tests we conducted on the platform, which are presented later in this document,
provide some interesting results for both the approaches, which become even more
noticeable when we run the same query over the data lakehouse and the relational
database.

62

6 Building the Infrastructure

The previous section of this document presented in detail all components that will be
part of the infrastructure we are designing to satisfy the needs of Trigenia, explaining
for each of them why we are choosing some products over others. In this section
we will delve deeply into the implementation of each component, with some code
snippets and further architectural details.

The project is following the schematic in Figure [13]

Relational

loT device
Vi \ Database

. Data
loT d _—
of device Collector

CSV Files / Data

Lakehouse

Figure 13: Schematic representation of the infrastructure designed for Trigenia

6.1 Building the Components

6.1.1 Resembling IoT Devices

The main source of information for Trigenia is a set of devices that are installed
in the plant of the customer. These devices periodically read some measurements
and send them through the network.

In our project, we define a Python class that behaves in a similar way: some
records are periodically generated and sent to an Apache Kafka topic. Figure
shows the main skeleton of the class, whose parts are going to be presented in the
next paragraphs.

63

class IotDevice:
def __init__ (self,
site_id: int,
device_name: str

W ~NoOUhWNE

def setup_kafka() -> Producer:
config = { ... }
return Producer(config)

self.site_id: int = site_id
self.device_name: str = device_name
self.producer: Producer = setup_kafka()

self.collection: list[tuple[...]] = []

def loop (self):

if __name__ == '__main__":
site_id, device_name = int(sys.argv[l]), sys.argv[2]
device = IotDevice(site_id, device_name)
device. loop()

Figure 14: Pseudo-code for an IoT device

In real world [fToT]devices are not able to directly send readings to Apache Kafka,
but they use the MQTT [43] messaging protocol to send messages to a broker. In
our prototype we are going to ignore this part, since the main goal of the class
represented in Figure is to resemble the behavior of an device, without
providing an actual implementation of these devices.

When instancing a new [[oT] device, two parameters are needed: a numerical 1D
of the plant, and a name to identify the device in an intelligible manner. These
two parameters are stored in the instance and will be used to declare the system
Collector which device is sending a record.

The constructor method is also where the Apache Kafka producer is defined and
configured so that the [[oT] device can communicate with the message broker. The
config variable in Figure [14] is obscured for security reasons; however, this variable
represents a dictionary with some configuration parameters, the most important of
which is the set of addresses and ports of the Kafka brokers that have to be contacted
to send a message.

The last instruction of the constructor of the [oT] device class defines the collec-
tion of measurements produced by the device and that have to be sent to Apache
Kafka. Data types in the collection depend on the needs of the customer and on what
is measured by the device, so the pseudo-code omits the actual implementation.

Figure [15] shows some general settings that can be applied to an device to
customize its behavior:

e The streaming constant indicates whether the device has to send one measure-
ment at a time, or a batch of records. In the first case the collection defined

64

in the constructor will always have one single element, while it will contain a
predefined number of records if the constant is set to False

e The setting named maz dim collection provides the maximum number of
records that can be stored in the collection before it is sent to Apache Kafka.
It is convenient to keep this number low, so that device memory is not over-
whelmed by the collection

e The collection time constant indicates the time interval between the generation
of two batches of readings. Using the configuration in Figure [15] for example,
each [[oT] device will produce 100 records every 2 seconds. If the streaming
constant is set to True, the device will generate and send one record every
0.02 seconds, while a collection of 100 records will be sent every 2 seconds if
the constant is set to Fulse.

® ® Settings

1 streaming: bool = True
2 max_dim_collection: int = 100
3 collection_time: int =

Figure 15: Settings for an IoT device

The class resembling an device is defined similarly to how programs are writ-
ten on Arduino, that is with a method to be run at the beginning of the execution,
and a loop that is executed continuously. A pseudo-code for this latter method is
presented in Figure |16, The method begins by choosing a random floating number,
which acts as the basis for the measurements produced by the device: all values
are generated by the generate record method by adding something to this value, for
example by following a sinusoidal behavior depending on reading time.

Once a record is generated, it is appended to the collection of record defined
in the instance constructor. If the device is set to behave in streaming mode, the
send to collector method is immediately invoked. If the device is set to batch mode,
instead, the sending method is invoked only if the collection is saturated, that is
when the size of the collection reaches the maximum number of records in a batch
initialized in the settings at the beginning of the file (Figure .

The send to collector method sends all elements of the collection maintained by
the device, one at a time, using the Kafka producer configured in the constructor,
then the collection of measurements is emptied.

65

® Cyclic behavior

def loop (self):
mean_value: float = random.uniform(0.0, 200.0)

def main_behavior ():
while True:
record = generate_record()
self.collection.append(record)

if streaming:
send_to_collector()
else:
if len(self.collection) > max_dim_collection:
send_to_collector()

time.sleep(collection_time / max_dim_collection)
send_to_collector()

generate_record () -> tuple[...]:
vl = mean_value + time.time()
v2 = mean_value + time.time()

return vi, v2,

send_to_collector ():
def encode_record (
record: tuple[...]
) -> bytes:
return json.dumps({
'site_id': self.site_id,
'device_name': self.device_name,
'vl': record[@],
'v2': record[1],

}).encode('utf-8")

for curr in self.collection:
self.producer.produce(
'sensors’,
key=self.device_name.encode('utf-8'),
value=encode_record(curr)

)

self.collection = []

main_behavior ()

Figure 16: Cyclic behavior of the IoT device

6.1.2 Importing Historical Data From Files

Real-time information is important for Trigenia, but they may also need to collect
some historical data, for example when starting to manage a plant that was previ-
ously managed by another company, or when some synthetic information is needed

66

to test the behavior of a system. In this case, a CSV file containing records is one
of the most useful ways to write and read data. In our project, therefore, it may be
useful to be able to import information from CSV files into the system. To do this,
we introduce a new Python class, CSV Importer, whose pseudo-code is presented in

Figure [17]

® Importer from CSV

max_dim_collection: int = 10**4

class CsvImporter:
def __init__ (self,
site_id: int,
path: str

W0~ ghkwNRE

def setup_kafka () -> Producer:
config = { ... }
return Producer(config)

self.site_id: int = site_id
self.input_path: str = path
self.producer: Producer = setup_kafka()

self.collection: list[tuple[...]] = []

def import_data (self):

if __name__ == '__main__"':
site_id, file_path = int(sys.argv[1l]), sys.argv[2]
importer = CsvImporter(site_id, file_path)
importer.import_data()

Figure 17: Pseudo-code for an importer of CSV files

Only one setting can be customized in this class: the maximum number of records
to collect before sending to the message broker, represented by the max dim collec-
tion constant at the beginning of the file. It is inconvenient, in fact, to read and
send one record at a time, so what we do in this class is similar to what an
device does when set to work in batch mode.

Coherently to what we did for the [[oT] device, we follow the Arduino-like ap-
proach and define only two methods: the constructor for setting up a new instance
of the class, and a method to be run subsequently to read a file and send its content
to the system Collector via the message broker.

67

We can see that the set of instructions in the constructor is similar to what we
saw for the IoT Device class: received information is saved, the Kafka producer is
configured and instanced, and a collection of records is initialized as empty. Again,
the structure of records depends on the project and on what is stored in the input
file, so in the pseudo-code in Figure|l17|we omit it. The major difference between the
CSV Importer class and the IoT Device class is what they receive from the caller:
they both need a numerical ID of the plant, but the CSV Importer receives the path
of the file to read, rather than the name of the device. In fact, we can suppose
that the CSV file will contain measurements produced by multiple devices in the
same plant.

® Reading batches of records

def import_data (self):
def main_behavior ():
with open(self.input_path, 'r') as file:

reader = csv.reader(file, delimiter="',")

for line in reader:
self.collection.append(isolate_fields(line))
if len(self.collection) > max_dim_collection:

send_to_collector()

send_to_collector()

def isolate_fields (
line: list[str]

) -> tuple[...]:
vl, v2, ... = line
return vi, v2,

def send_to_collector():
def encode_record(
record: tuple[...]
) -> bytes:
return json.dumps({
'site_id': self.site_id,
'vi': record[Q],
'v2': record[1],

}).encode('utf-8")

for curr in self.collection:
self.producer.produce(
'csv',
key=input_filename.encode('utf-8"),
value=encode_record(curr)

)

self.collection = []

main_behavior ()

Figure 18: How CSV importation and message passing work

68

As mentioned above, the approach we follow to import data is similar to what
an [[0T] in batch mode does: we read a number of measurements and then we send
them to the system Collector via Apache Kafka. If when we get to the end of the file
the collection is not empty, we send the remaining records to the message broker.

The method named isolate fields in Figure [18]is meant to understand the struc-
ture of a line of the input file and optionally to perform some transformations on
the fields, like translations or conversions, in order to have an uniform data repre-
sentation within the databases.

The send to collector method is analogous to the one defined for the [[oT] devices:
data are converted to a format that Apache Kafka can handle, then they are sent
to the message broker, and the collection is emptied.

6.1.3 The Data Collector

The Collector class is the core element of the infrastructure we are building. Here
we collect information coming from devices and from file importers via Apache
Kafka, and then we send records to the relational database and the lakehouse that
we are going to implement in the next sections of this Thesis.

Incoming information needs to be transformed before being loaded into the
databases, so a modification and management process is defined within this class.

Figure shows the main structure of the Python class that represents the
Collector. It is easy to recognize that also in this case we follow the Arduino-like
approach, with a constructor method to set up the instance and a method to be run
continuously to collect data and send them to the relational database and to the
data lakehouse.

69

[] @® Data Collector

1 database_feeding_interval = 2
2 lakehouse_feeding_interval = 120
3 lakehouse_fetch_time = 10
4 topic_names = ['csv', 'sensors']
5
6 class Collector:
def __init__ (self):
def create_or_use_topics ():
admin_client = KafkaAdminClient(conf={...})
topic_list = [
NewTopic(
topic=tname,
num_partitions=1,
replication_factor=1
) for tname in topic_names

]
admin_client.create_topics(new_topics=topic_list, validate_only=False)

setup_kafka() -> tuple[Consumer, Consumer]:
create_or_use_topics()

hot_config = {...}

cold_config = {...}

hot_consumer = Consumer (hot_config)
hot_consumer.subscribe(topic_names)
cold_consumer = Consumer(cold_config)
cold_consumer.subscribe(topic_names)

return hot_consumer, cold_consumer
load_metadata() -> tuple[

list[tuple[..
list[tuple[..

11,
11,

cp = {...}
self.db_hot: dbh.DBHot = dbh.DBHot()
self.db_cold: dbc.DBCold = dbc.DBCold(connection_params=cp)

consumers: tuple[Consumer, Consumer] = setup_kafka()
self.hot_consumer, self.cold_consumer = consumers[0:2]

., ... = load_metadata()

self.hot_collection: list[tuple[...]] = []
self.cold_collection: list[tuple[...]] = []

def loop(self):

if __name__ == '__main__"':
collector = Collector()
collector. loop()

Figure 19: Pseudo-code for the data Collector class

The class begins with a small number of settings that can be customized at the
beginning of the execution of this project. Specifically:

e The database feeding interval constant indicates the time that the system has
to wait before committing an insertion transaction to the relational database
and the next reading procedure from the Apache Kafka topic. This setting is

70

useful to avoid overwhelming the database with a high number of transactions
in a short time

e Analogously, the lakehouse feeding interval setting indicates the time that has
to pass between the end of an insertion transaction to the data lakehouse and
the beginning of the next reading procedure from the Apache Kafka topic.
The value of this setting is generally high, so that we can limit the number of
writes to the data lakehouse, which is the main source of costs for the data
lakehouse hosted on the cloud

e Lakehouse fetch time indicates for how long the thread dedicated to the data
lakehouse can read the Apache Kafka topic. We will see later why this setting
has been introduced in the codebase

e Finally, the topic names list contains the names of the Apache Kafka topics
containing data that have to be read. In Figure [19 we see that the Collector
will read from a topic names csv and another one named sensors. The former
is dedicated to historical data read from CSV files, while the latter is used to
collect real-time information produced by devices and sensors.

The constructor method of the Collector class begins by setting up the con-
nections to the relational database and to the data lakehouse, by creating a new
instance of the DB Hot class, which is a wrapper for the TimescaleDB instance, and
a new instance of the DB Cold class, which is a wrapper for the Apache Delta Lake
instance. The two instances are stored in two variables that are going to be used
multiple times in the class.

The second step of the constructor method is to set up the connection to the
Apache Kafka topics that have to be read to collect data from both [[oT] devices and
file importers. We use the topic names setting to define the topics to subscribe to;
the constructor maintains two distinct consumers with similar configurations, one
for the relational database and one for the data lakehouse.

The constructor then calls the load metadata method, whose pseudo-code is
omitted in Figure for the sake of generalization. Anyway, this method reads
metadata tables from the data lakehouse, if present, since this data platform is
supposed to be the long-term archive of the system. The results are stored as lists
of tuples, which can be empty if data lakehouse contains no information in metadata
tables.

Finally, the collector defines two collections, initially empty, to store data read
from the Apache Kafka topics: one collection (hot collection) is dedicated to the
relational database, while cold collection is dedicated to data to be sent to the data
lakehouse.

71

[) @® Collecting and sending data

def loop(self):
def relational_behavior():
retrieved: list[Message] = []
while True:
msgs = self.hot_consumer.consume(10**4, 1.0)
retrieved.extend(msgs)

for msg in retrieved:
if msg:
vl, v2, ... = decode_message(msg.value())
vl _id = retrieve_vi1_id(v1_name)

self.hot_collection.append((site_id, device_id, measure_id, instant, value))

threading.Thread(target=send_to_hot, args=(self.hot_collection.copy(),)).start()
self.hot_collection = []

retrieved = []

self.hot_consumer.commit()

time.sleep(database_feeding_interval)

def lakehouse_behavior():
while True:
start_time = time.time()
retrieved: list[Message] = []

while (time.time()-start_time) < lakehouse_fetch_time:
msgs = self.cold_consumer.consume(10**6, 2.0)
retrieved.extend(msgs)

for msg in retrieved:
if msg is not None:
vl, v2, ... = decode_message(msg.value())
vl _id = retrieve_vi1_id(v2_name)

self.cold_collection.append((site_id, device_id, measure_id, instant, value))

threading.Thread(target=send_to_cold, args=(self.cold_collection.copy(),)).start()
self.cold_collection = []

retrieved = []

self.cold_consumer.commit()

time.sleep(lakehouse_feeding_interval)

def main_behavior():
threading.Thread(target=relational_behavior).start()
threading.Thread(target=1lakehouse_behavior).start()

def optimize_tables_periodically():
upload_metadata()

threading.Thread(target=main_behavior).start()
threading.Thread(target=optimize_tables_periodically).start()

Figure 20: Main operations for the Collector

Figure [20| shows the main structure of the loop method, that is the core of the
Collector class behavior.

First, the method invokes the upload metadata method (we will describe it in a
second, but pseudo-code is represented in Figure to synchronize the content of
all metadata collections with both the relational database and the data lakehouse.

After metadata synchronization, two threads are started: one invokes the main
behavior method to read from Apache Kafka and to write to the relational database
and the data lakehouse, while the other thread invokes the optimize tables periodi-
cally method to compact tables in the data lakehouse every N minutes.

The main behavior method starts two threads: one running relational behavior
and one running lakehouse behavior, whose pseudo-code is reported in Figure

The relational behavior method runs a potentially infinite iterative block of in-
structions: data are read from the Apache Kafka topics defined in the constructor,
then each message is transformed according to some business rules and appended to

72

a collection. Once all collected messages are processed, a thread is started to send
a copy of the collection to the relational database. Sending a copy of the collection,
rather than the actual collection, allows us to empty the collection and read again
from the Apache Kafka topic while the transaction is being executed. At the end
of each iteration, the method is put to sleep for a given time (the database feeding
interval setting) to avoid overwhelming the database with a high number of trans-
actions in a short time. Data reading from Apache Kafka topics is performed via the
consume method in Figure which receives as parameters the maximum number
of records to read (set to 10.000) and the timeout within which to collect these data
(in this case, set to one second).

Simlarly, the lakehouse behavior method reads from the Apache Kafka topic,
applies transformations to each message, stores records in a collection, and then
sends the collection to the data lakehouse to be stored. The key difference between
this method and the one we just described is that data reading from the Apache
Kafka topics is performed less times than in relational behavior. Since during this
reading we want to catch up with the most recent data, the method will have to read
more records and for a longer time than the one dedicated to the relational database.
This is why we introduced the lakehouse fetch time setting in the constructor of the
Collector class: one single set of reads is not enough to collect all data, so we have
to attempt to read multiple times a high number of messages. By the end of the
lakehouse fetch time, we will have in cold collection enough records to be temporarily
synchronized with the relational database: all these records will be sent to the data
lakehouse to be stored in only one transaction.

® Tables management

def upload_metadata(
collection: str = 'all'

match collection:
case ...
records = ...
self.db_hot.insert_records(..., records)
self.db_cold.insert_records(..., metadata_collection)
case 'all':
upload_metadata('..
upload_metadata('..

)
)

upload_metadata('..."')

def optimize_tables_periodically():
while True:
self.db_cold.optimize_tables()
time.sleep(...)

Figure 21: Managing tables in the data lakehouse

The upload metadata method is presented in Figure [21] The method accepts
one single parameter, that is the name of the metadata table to update with the
local collection that is maintained by the Collector. If no name is provided by the

73

caller, all metadata tables are updated on both the relational database and the data
lakehouse.

To reduce complexity, the method is able to identify which records are already
in the database and which ones have to be added: for the relational database, only
newer ones will be added to the table, while for the data lakehouse all records will
be added, replacing existing records.

The upload metadata method is invoked in two particular situations:

e At the beginning of the execution of the Collector, in order to synchronize
the local collection of metadata and metadata tables in both the relational
database and the data lakehouse

e When a new element has to be added to one of the collections. During trans-
formations of messages read from the Apache Kafka topics, we usually read
device names or measure names, which have to be translated into numerical
IDs to be stored into the tables: here is where the Python code of the class
comes to help, with retrieve id and add element methods presented in Fig-
ure 22| The former searches the ID for an element that already exists in the
database, given its name, while the latter adds a new element to the local
collection if no element with current name is found in the local collection. If
a new element is added to a metadata collection, the system will invoke the
upload metadata method on the single metadata table to update it in both the
relational database and the data lakehouse.

@ ® Transforming data

def decode_message(msg) -> tuple[...]:
decoded = json.loads(msg.decode('utf-8"))
vl = ...
vZ = ...

return site_id, device_name, measure_name, instant, value

retrieve_vi1_id(vl_name: str) -> int:
names = [i[...] for i in metadata_collection]

def add_element():
id = ...
self.devices.append((...))
upload_metadata(table_name)
return device_id

if vi_name in names:

vl id = ...
else:

vl_id = add_element()
return vi1_id

Figure 22: Managing collected data

74

The last two sub-methods defined in the loop method of the Collector class that
we are going to introduce are represented in Figure send to hot an send to
cold. These two methods are invoked by relational behavior and lakehouse behavior

methods, respectively, to send a collection of records to the relational database or
to the data lakehouse.

The only operation they have to perform is invoking the insertion methods pro-
vided by the classes representing the relational database and the data lakehouse,
which are going to be presented in the next paragraphs of this document.

(] ® Sending to data platforms

1 def send_to_hot(collection: list[tuple[...]]):
2 self.db_hot.insert_records(..., collection)

3
4 def send_to_cold(collection: list[tuple[...]]):
5 self.db_cold.insert_records(..., collection)

Figure 23: How the Collector sends data to the relational database and to the data
lakehouse

6.1.4 The Relational Database

The DB Hot class represents an interface to operate on the relational database of
the infrastructure we are building.

We recall that this relational database is included in the infrastructure to provide
real-time information to Trigenia, so that existing services can access up-to-date
information without having to be strongly modified. Another motivation behind the
introduction of a traditional relational database is to keep costs low, since pricing
plans for these systems are generally based on the amount of data stored, while
pricing plans for data lakehouses, or, better, for the storage systems on which they
are based, are based on the number of writes to the storage.

75

® Relational database

class DBHot:
def __init__ (self,
new_run: bool = True
)
def create_tables ()
conn = self.connect()
if conn:
cursor = conn.cursor()

0O~ U WNRE

if new_run:

query =
cursor.execute(query)
conn.commit()

query =
cursor.execute(query)
conn.commit()

create_tables()

connect (self):

retries = 0

while retries < 5:
conn = psycopg2.connect(...)
return conn

return None

insert_record (self,
table_name: str,
data

insert_records (self,
table_name: str,
data

remove_record (self,
table_name: str,
id: int

Figure 24: Pseudo-code for the class managing the relational database

Figure [24] shows a high-level structure of the class.

We have a connect method that attempts to establish a connection to the
database, which is hosted on a cloud platform or a Docker container. If connec-
tion fails, the method will retry for a limited number of times, then the system will
raise an exception to inform the developer and the end-user that something went

76

wrong.

The constructor method for the class expects an optional boolean parameter,
indicating whether a new instance of the relational database has to be created, or
if the caller is trying to connect to an existing database. The constructor, then,
consists in calling a single function that optionally drops existing tables from a
database and then creates new tables with a predefined structure, that we omitted
in Figure [24] because it strongly depends on the needs of the project. One important
thing to notice in the create tables method is that each table deletion or creation is
performed in a transaction, so the database is always in a consistent state.

o ® Insert one record

def insert_record (self,
table_name: str,
data

conn = self.connect()
if conn:
cursor = conn.cursor()
gquery = ""
match table_name:
case '...':

vli, v2, ... = data

query — fHHH
INSERT INTO table_name (..,
VALUES ({v1}, {v2}, ...);

case '...':

vi, v2, ... = data

query — fHHH
INSERT INTO table_name (..,
VALUES ({v1}, {v2}, ...);

case _
pass

if query 1= "":
cursor.execute(query)
conn.commit()

cursor.close()
conn.close()

Figure 25: Pseudo-code for adding one single record to the relational database

SQL language is the main way to interact with a relational database, and this
is, of course, the case of the TimescaleDB instance we are adopting in our project.

77

Methods within the DBHot class, therefore, mainly consist in providing a way to
build SQL scripts using data provided by the caller.

Figure and Figure show the pseudo-code for inserting one or multiple
records into a table of the database. They both receive from the caller the name of
the table to insert data into, and a data parameter, which may contain one tuple or
a list or tuples, respectively, containing data to be inserted.

Information is extracted from the data parameter according to the name of the
table, then the SQL script is built using strings manipulations in Python. Once con-
nected to the TimescaleDB instance via the connect method, the script is executed
and the transaction is committed. In case of a failure in insertion, the developer
and the end-users are informed by an exception raised by the system and the trans-
action is rolled back, keeping the database in a consistent state independently on
the success or failure of the operation.

[] @® Insert multiple records

def insert_records (self,
table_name: str,
data

if len(data)>0:
conn = self.connect()
if conn:
cursor = conn.cursor()
match table_name:
case ' :
query = "INSERT INTO table_name (..., ..., ...) VALUES "
case ' b
query = "INSERT INTO table_name (..., ..., ...) VALUES "
case _
return

curr in data:
match table_name:
case '

vi, v2, ... = curr
query += f"\n({v1}, {v2}, ...'{client_name}', '{contract_type}),"
case ' '

vi, v2, ... = curr
query += f"\n({v1}, {v2}, ...'{client_name}', '{contract_type}),"
case _
continue
query = query[:-1] + ';

cursor.execute(query)
conn.commit()

cursor.close()
conn.close()

Figure 26: Pseudo-code for adding multiple records to a table in the relational
database

One additional action that can be performed on the relational database is record
deletion. In the DBHot class we provide a method to do so by asking the caller
to specify only the name of the table and the identifier of the record within the
table. The pseudo-code for this method is presented in Figure 27 where we can see
schematically how the name of the table is validated, in order to avoid SQL injection
attacks, and how the SQL script is built to delete the record.

78

® Remove a record

def remove_record (self,
table_name: str,
id: int

conn = self.connect()
if conn:
cursor = conn.cursor()
query = ""
match table_name:
case '...':
query = f"DELETE FROM table_name WHERE id={id}"
case '...':
query = f"DELETE FROM table_name WHERE id={id}"
case _
return
cursor.execute(query)
conn.commit()

cursor.close()
conn.close()

Figure 27: Pseudo-code for removing a record from a table in the relational database

6.1.5 The Data Lakehouse

With the DBCold Python class we define an interface between the system data
lakehouse and other system components, but also between the data lakehouse and
developers and end-users. An overview of the class is presented in Figure 28] with
some pseudo-code for the constructor method and a brief description for each method
of the class.

We can also see at the top of Figure 28| that the class has only one setting, which
is the default connection parameters to use to connect to the data lakehouse if the
caller does not provide any.

The constructor method in Figure [28 mainly consists in connecting to MinlO,
which is the data storage we chose for Trigenia, and in setting up the connection to
the Delta Lake instance that actually manages tables of the data lakehouse.

79

®

@® Data Lakehouse

default_cp: dict = {...

class DBCold:
def __init__ (self,
connection_params: dict = default_cp,
new_run: bool = True

O~ Uk WNRE

def setup_minio ():
client = Minio(...)
if new_run:
found = client.bucket_exists(bucket_name)
if found:

else:
return client
setup_delta_lake ():
storage_options = {...}
return storage_options
self.cp = connection_params
self.client = setup_minio()

self.dl_sopt = setup_delta_lake()

insert_records (self, table_name: str, collection):

optimize_tables (self):

read_table (self, table_name: str) -> pl.DataFrame:

update_device_performance_table (self, table_name: str):

run_sql_query(self, query: str) -> pl.DataFrame:

Figure 28: Pseudo-code for the data lakehouse

The insert records method allows to add a collection of records to a table in the
data lakehouse. The caller has to provide the name of the target table and the col-
lection of records. It will be on the implementation of the method to understand the
structure of the records according to the name of the table and to set up operations
to perform insertions.

The first thing to do is to transform the collection into a columnar format. We
suppose that the collection is a traditional list of elements, analogous to rows in a
database: the columnar format collects records one column at a time, in order to
apply some optimizations based on the fact that all elements of a column share the
same data type.

80

The to columnar method performs this conversion by defining new collections,
one for each attribute of the records, and by iterating over the input collection to
fill the new ones. These new collections are then used as values of a dictionary,
where keys are the name of the attributes of the records. We then define the schema
of the DataFrame, that is determining the data type of each column. Finally, a
DataFrame is created using the dictionary and the schema that we computed using
inputs provided by the caller.

The output of to columnar is used as input to the write to minio method. Start-
ing from the name of the table, we define the path to the Delta Table on MinIO
and the instructions to integrate records to add to the other records already stored
in the table. Finally, the method writes a new version of the Delta Table, merging
existing records and new records according to the options.

We can see in Figure that we distinguish two ways of adding records to
Delta tables. In fact, records to be added to table history are appended to the
table, without caring of the presence of duplicates within the table; for other tables,
instead, we update existing records and insert new ones.

81

@® Insert records in the Data Lakehouse

def insert_records (self,
table_name: str,
collection

def to_columnar () -> pl.DataFrame:
match table_name:
case '...':
vi, v2, ... =[], [1,
for curr in collection:
vl.append(curr[0])
v2.append(curr[1])

data = {
'vi': vi,
'v2': v2,

}

schema = {
'vi': pl.Inté64,
'v2': pl.utfs,

}

case _
return pl.DataFrame()

return pl.DataFrame(data=data, schema=schema)

def write to minio (df: pl.DataFrame):
match table_name:

1 [

delta_path = f's3://{bucket_name}/..."

case

merge_options = {
'predicate': 's.id = t.id',
'source_alias': 's',
'target_alias': 't'
}
case

return None

match table_name:
case '...':
df .write_delta(
target = delta_path,
mode = 'merge',
storage_options = self.dl_sopt,
delta_merge_options=merge_options,
)\
.when_matched_update_all() \
.when_not_matched_insert_all() \
.execute()
case 'history':
df.write_delta(
target = delta_path,
mode = 'append',
storage_options = self.dl_sopt
)
case _
return None

return delta_path

df = to_columnar()
write_to_minio(df)

Figure 29: Pseudo-code for inserting data into the data lakehouse

When performing a write operation to the data lakehouse, Delta Lake creates a

82

new version of the table, ensuring that the previous version is not modified. This
allows to be always able to recover from errors, but it also implies a higher consump-
tion for the storage, since all versions of the table have to be stored. In the optimize
tables method, whose code is displayed in Figure [30] we find a way to delete older
versions of a table that are no longer referenced by Delta Lake: this way, we can
still recover from errors, but we can save space on disk.

The method repeats the same operation for each table in the data lakehouse: ta-
ble is compacted, older versions of the table are deleted, and metadata are removed,
too.

The vacuum method of a table is the one that actually performs deletion of older

versions of the table. In the case in Figure versions that are older than 1 hour,
and that are not referenced, are deleted.

@® Optimize tables in the Data Lakehouse

def optimize_tables (self):
paths = [
f's3://{bucket_name}/..."',
f's3://{bucket_name}/..."',

]
for delta_path in paths:

dt = DeltaTable(delta_path, storage_options=self.dl_sopt)
dt.optimize.compact()
dt.vacuum(

retention_hours = 1,

enforce_retention_duration=False

)

dt.cleanup_metadata()

Figure 30: Optimizing tables in the data lakehouse

Tables, of course, have to be read, as well. The read table method in Figure
provides a single interface to read one of the tables in the data lakehouse, given its
name. According to the name, in fact, the method retrieves the path to the Delta
Table on MinlO and defines the names of the columns of the table. Finally, the read
delta method provided by Polars is invoked to read the table and return it to the
caller as a DataFrame.

83

@® Reading from the Data Lakehouse

def read_table (self, table_name: str) -> pl.DataFrame:
match table name:
case '...':
delta_path = f's3://{bucket_name}/...'
columns = ['v1', 'v2', ...]
case '...':
delta_path = f's3://{bucket_name}/..."

columns = ['v1l', 'v2', ...]
case _
return pl.DataFrame()

return pl.read_delta(
source = DeltaTable(delta_path, storage_options=self.dl_sopt),
columns = columns,
storage_options = self.dl_sopt

Figure 31: Reading information from the data lakehouse

There might be some strategical information that a user may want to retrieve
from the data lakehouse without needing to scan the whole data set. For this pur-
pose, we can introduce some additional tables that contain aggregated information,
like the average value measured by a device per hour, day, month, or year.

The update device performance table method, whose pseudo-code is presented
in Figure [32] is invoked when we want to update one of these tables. The method
receives the name of the table to update and, according to that, it performs analytics
over the whole data set. The resulting DataFrame is then written to the data
lakehouse, updating existing records and adding new ones, similarly to what we do
in the insert records method in Figure

84

® @® Defining indices for the Data Lakehouse

def update_device_performance_table (self, table_name: str):
match table_name:
case '...':

df = self.read_table('...') \
.select([
pl.col('v1l"),
pl.col('v2'),

1)

delta_path = f's3://{bucket_name}/...'

merge_options = {
'predicate': 's.id=t.id',
'source_alias': 's',
'target_alias': 't'

}

case _
return

df .write_delta(
target = delta_path,
mode = 'merge',
storage_options = self.dl_sopt,
delta_merge_options = merge_options
)\
.when_matched_update_all() \
.when_not_matched_insert_all() \
.execute()

Figure 32: Defining some metadata tables in the data lakehouse

Together with running predefined queries, it might be desirable to perform some
user-defined queries. To provide this possibility, the run sql query method receives
an SQL query as input and performs it over the data lakehouse. The resulting
DataFrame is then returned to the caller.

What enables us to express queries in SQL language, despite the data lakehouse
is not a proper relational database, is the fact that Delta Lake is natively supported
by Polars, which is a library that can handle SQL queries over DataFrames.

85

@® Query the Data Lakehouse

def run_sql_query (self, query: str) -> pl.DataFrame:
table_ 1 = self.read _table('...') if (('table_1' in query) else pl.DataFrame()
table_2 = self.read_table('...') if (('table_2' in query) else pl.DataFrame()

res = pl \
.SQLContext (
table_1 table_1,
table_2 table_2,

)\
.execute(query, eager=True)

return res

Figure 33: Running queries on the data lakehouse

6.2 Connecting All Components

While designing the project, we concluded that the best way to test the system
and interconnect the system components is hosting each component in a Docker
container, thus making each component independent on the others, and then using
Docker networks and volumes to share information among these containers.

Figure |34 shows an overview of the ecosystem that we implemented, with some
containers built on top of existing images (for example, the first three containers)
and other containers that simply run the code defined in one of the Python classes
we presented in the previous section of this Thesis.

An alternative approach to Docker containers would have been producing a global
binary element, with a class working as coordinator of all elements of the infrastruc-
ture. However, this solution forces a strict dependency among system components,
which is something that we wanted to avoid to provide to the system some sort of
modularity and capability to be extended with further instances of existing compo-
nents, or with new or alternative components. This approach allow us, for example,
to use PostgreSQL as relational database, rather than TimescaleDB, if needed, or
we can plug in a new container that trains a Machine Learning model over the data
stored in the data lakehouse.

In the next paragraphs of this section we will go deeper into each of these contain-
ers, in order to understand how system components are independent and interleaved
at the same time. In all figures in this paragraph, some configuration variables will
be obscured to preserve security of Trigenia. However, these blocks of code can be
used as template to build the actual configuration of the infrastructure, tailoring
the whole system to specific needs.

86

® Overview of Docker containers
services:

broker:
image: apache/kafka:latest

timescaledb:
image: timescale/timescaledb:latest-pgl6-0ss

minio:
image: minio/minio

csv_loader:

collector:

analytics:

metadata:

networks:
timescale_network:
driver: bridge
minionetwork:
driver: bridge

volumes:
timescale_data:
parquet_data:
minio_data:
driver: local

Figure 34: Overview of Docker containers in the system

The first container we are going to analyze is named broker. This container
runs an instance of Apache Kafka, allowing [[oT]|devices and CSV importers to write
information into a message broker, which is read asynchronously by the system
Collector.

The configuration in Figure [35}

87

e States which Docker image to run, in this case the latest Kafka image released
by Apache foundation. When the system is built and run, Docker engine will
pull this image from its repositories and the container will be started

e Defines an intelligible name for the container, so that system administrators
and developers can easily and quickly understand what the container is doing
and perform analysis over it

e Defines which network ports are exposed to writers and readers: they will send
to or read from these interfaces to pass messages.

e Defines some environment variables that are used to configure Kafka Producers
and Consumers to establish a connection, or to define whether information
has to be transmitted in plaintext or protected by cryptography, but also
the number of replicas of Kafka nodes, to provide high availability, disaster
recovery and workload balancing over the cluster.

This container has no dependencies within the system, but it provides some
crucial information to loT Device, Csv Importer and Collector Python classes we
presented above(Figure Figure and Figure [19] respectively), so that their

instances can communicate using reliable protocols.

@® Apache Kafka as message broker

broker:

image: apache/kafka:latest

hostname: broker

container_name: broker

ports:
- "9092:9092"
- "19092:19092"

environment:
KAFKA_NODE_ID: 1
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: "CONTROLLER:..., PLAINTEXT:..., PLAINTEXT_HOST:..."
KAFKA_ADVERTISED_LISTENERS: "PLAINTEXT_HOST://localhost:9092, PLAINTEXT://broker:19092"
KAFKA_PROCESS ROLES: "broker,controller"
KAFKA_CONTROLLER_QUORUM_VOTERS: "1@broker:29093"
KAFKA_LISTENERS: "CONTROLLER://:29093, PLAINTEXT_HOST://:9092, PLAINTEXT://:19092"
KAFKA_INTER_BROKER_LISTENER_NAME: "PLAINTEXT"
KAFKA_CONTROLLER_LISTENER_NAMES: "CONTROLLER"
CLUSTER_ID: "..."
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
KAFKA_AUTO_CREATE_TOPICS_ENABLE: "true"
KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
KAFKA_LOG _DIRS: "/tmp/kraft-combined-logs"

networks:
- timescale_network
- minionetwork

Figure 35: Configuration of the container running Apache Kafka

In Figure [36| we report the configurations of TimescaleDB and MinlIO contain-
ers, which host systems to run the relational database and the lakehouse in our
infrastructure.

For both containers we specify which images to run (like for Apache Kafka,
we choose the last version officially released by the producer) and which network
ports have to be exposed to allow communication with other containers and with
the rest of the network. We also configure some authentication and authorization

88

parameters, which are going to be used by the two systems to determine who can
access data stored in the databases.

For both containers we also defined a health check, a set of instructions that
have to be executed when starting the container to check if the system is properly
configured and if it is going to work correctly. Together with test instructions, we
define a maximum number of retries if a customizable timeout expires, and the time
interval between two retries.

Timescale DB and MinlO are accessed by several of the Python classes we defined
in the previous section of this document. Furthermore, they can be accessed by
third-party tools.

For example, we can use analytics software like DBeaver to connect to the rela-
tional database and execute queries and analytics without having to define further
classes and methods. Other projects and websites, if authenticated and authorized,
of course, can access and perform operations on the relational database, too.

An interesting application to access MinlO data storage is the web application
that can be accessed by visiting via browser the IP address of the machine running
the container and specifying the desire to connect to port 9001. After authentication
is performed, an end-user or a developer can see what is stored on MinIO and how
the file system is organized.

We will see in detail some of these ways of interacting with TimescaleDB and
MinlO later in this document.

89

(] @® Storages for databases

1 timescaledb:
2 image: timescale/timescaledh:latest-pgl6-oss

3 container_name: timescaledb

4 environment:

5 POSTGRES_DB:

6 POSTGRES_USER:

7 POSTGRES_PASSWORD:

8 ports:

9 "5432:5432"

10 networks:

11 - timescale_network

12 volumes:

13 - timescale_data:/var/lib/postgresqgl/data

14 healthcheck:

15 test: ["CMD-SHELL", "pg_isready -U root -d timescaledb"]
16 interval: 2s

17 timeout: 2s

18 retries: 3

19

20 minio:

21 image: minio/minio

22 container_name: minio

23 ports:

24 - "9000:9000"

25 - "9001:9001"

26 networks:

27 - minionetwork

28 environment:

29 - MINIO_ROOT_USER=...

30 - MINIO_ROOT_PASSWORD=...

31 command: server /data --console-address ":9001"
32 healthcheck:

33 test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/1live"]
34 interval: 5s

35 timeout: 5s

36 retries: 2

Figure 36: Configurations for Docker containers running TimescaleDB and MinIO

In Figure 37| we report the basic configuration for two instances of the loT Device
Python class, and one for the CSV Importer Python class, that can be run on ad
hoc Docker containers.

We can see that no image has been specified in these cases: this is because these
systems do not rely on third-party applications, but on local binaries. Therefore, to
run them we will have to specify a CLI command with the name of the binary file
and the required input parameters.

Together with some environment variables and the networks to connect to, in
these configurations two new instructions are introduced:

e The depends on instruction indicates that the container can be run if all con-
tainers in this section are up and running. [[oT|devices and CSV importers, for
example, depend on the container running the Apache Kafka message broker
(Figure 7 since they have to send messages to the data collector

e The volumes set of configurations allows us to map some local folders with a
subsection of the file system of the container. We use this capability to save
some log files and perform offline analytics.

90

With configuration in Figure we can run at the same time two or more
distinct instances of the IoT Device class, but we can also have multiple instances of
the CSV Importer Python class. This allows us to have independent instances that
work the same way, simulating, for example, how a plant with several sensors can
send information to the system while, at the same time, other processes can import
historical data and feed databases with them. Concurrency and correct message
passing are guaranteed by Apache Kafka.

91

[) @® IoT devices and CSV importer

1iot_1:

2 build:

3 context:

4 container_name: iot_1

5 command: ["python", "iot.py", "site_id", "device_name"]
6 environment:

7 - INSTANCE_ID=1

8 - KAFKA_BOOTSTRAP_SERVERS=broker:19092
9 depends_on:

10 - broker

11 volumes:

12 - ../output/iot_1:/app/data/iot

13 networks:

14 - timescale_network

15 - minionetwork

16

17

18 iot_2:

19 build:

20 context:

21 container_name: iot_2

22 command: ["python", "iot.py", "site_id", "device_name"]
23 environment:

24 - INSTANCE_ID=2

25 - KAFKA_BOOTSTRAP_SERVERS=broker:19092
26 volumes:

27 - ../output/iot_2:/app/data/iot

28 depends_on:

29 - broker

30 networks:

31 - timescale_network

32 - minionetwork

33

34 csv_loader:

35 build:

36 context:

37 container_name: csv_loader

38 command: ["python csv_loader.py site_id filename.csv"]
39 environment:

40 - INSTANCE_ID=0

41 - KAFKA_BOOTSTRAP_SERVERS=broker:19092
42 - INPUT_DIR=/app/input

43 depends_on:

44 - broker

45 networks:

46 - timescale_network

47 - minionetwork

48 volumes:

49 - ../input-data:/app/input

50 - ../output/csv_loader:/app/data/csv_importer

Figure 37: Running multiple instances of IoT devices and CSV importers

The next Docker container we analyze runs an instance of the Collector class we
presented before (see Figure [19] to recall the overall structure and methods of the
class).

Again, no Docker image is indicated in the configuration, since we are running a
local binary file, so a CLI command will be enough to have a running data collector.

Environment variables included in the configuration of the data collector are

92

meant to connect and operate with both the relational database and the data lake-
house. These environment variables will include the addresses and ports to access the
data platform, together with security information to authenticate to TimescaleDB
and MinlO.

In the volumes section of container configuration we specify the mapping between
container folders and local folders of the machine running the container, so that
analytics over data and performance can be executed easily.

The collector container has several dependencies, all linked to having up and
running services: in particular, before starting to collect data from Apache Kafka
topics and sending them to the relational database and the data lakehouse, we want
to be sure that all of the containers running the three services are available to
communicate and operate with the collector.

93

® Data Collector

collector:
build:
context:
container_name: collector
command: ["python", "collector.py"]
environment:
KAFKA_BOOTSTRAP_SERVERS=broker:19092
TIMESCALEDB_HOST=...
TIMESCALEDB_PORT=...
TIMESCALEDB_DB=...
TIMESCALEDB_USER=. ..
TIMESCALEDB_PASSWORD=. ..
MINIO_ENDPOINT=minio:9000
MINIO_ACCESS_KEY=...
MINIO_SECRET_KEY=...
MINIO_SECURE=...
volumes:
- parquet_data:/app/data
- ../output/collector:/app/data/collector
- ../output/db_hot:/app/data/db_hot
- ../output/db_cold:/app/data/db_cold
- ../input-data:/app/input
depends_on:
timescaledb:
condition: service_healthy
minio:
condition: service_healthy
broker:
condition: service_started
networks:
- timescale_network
- minionetwork

Figure 38: Configuring the data collector

The container named metadata (Figure allows us to run a local Python script
that invokes methods provided by the data lakehouse to update the content of some
indices tables, which we are going to present more in detail in another section of this
Thesis. However, these tables are used to access some information and aggregations
over data in the data lakehouse without having to scan multiple times the whole

94

data set. This latter operation, in fact, will be executed only when this container is
running.

The metadata container is configured so that, once tables have been updated and
stored in the data lakehouse, it automatically deactivates. The system administrator
will run the container again when needed. This configuration choice derives by the
need to keep the resources consumption as low as possible, but we can add anytime
some instructions to update these tables periodically.

o ® Update lakehouse metadata tables

1 metadata:

2 build:

3 context:

4 container_name: metadata

5 command: ["python", "lh_metadata.py"]
6 environment:

7 - TIMESCALEDB_HOST=...

8 - TIMESCALEDB_PORT=...

9 - TIMESCALEDB_DB=...

10 - TIMESCALEDB_ USER—.

11 TIMESCALEDB_ PASSWORD—

12 MINIO_ENDPOINT—mlnlO.9@@0
13 MINIO_ACCESS_KEY=...

14 - MINIO_SECRET_KEY=...

15 - MINIO_SECURE=...

16 volumes:

17 - ../output/metadata:/app/data/metadata
18 depends_on:

19 timescaledb:

20 condition: service_healthy
21 minlio:

22 condition: service_healthy
23 networks:

24 - timescale_network

25 - minionetwork

Figure 39: Updating metadata tables within the data lakehouse

One last Docker container in our configuration, named analytics (Figure ,
behaves similarly to the metadata Docker container: it executes analytical queries
on both the relational database and the data lakehouse and, once all computations
are completed and their results are stored, the container is deactivated and it will

95

be run again when the system administrator decides that it is time to query again
the two databases.

The specific queries run by this container will be presented later in this Thesis,
but we can anticipate here that all of them are meant to stress the databases to test
the performance of the infrastructure.

o ® Performing some queries

1 analytics:

2 build:

3 context:

4 container_name: analytics

5 command: ["python", "analytics.
6 environment:

7 - TIMESCALEDB_HOST=...

8 - TIMESCALEDB_PORT=...

9 TIMESCALEDB_DB=. ..

10 TIMESCALEDB_USER=. ..

11 TIMESCALEDB_PASSWORD=. ..
12 MINIO_ENDPOINT=minio:9000
13 MINIO_ACCESS_KEY=...

14 MINIO_SECRET_KEY=...

15 MINIO_SECURE=...

16 volumes:

17 - ../output/analytics:/app/data/analytics
18 depends_on:

19 timescaledb:

20 condition: service_healthy
21 minio:

22 condition: service_healthy
23 networks:

24 - timescale_network

25 - minionetwork

Figure 40: Running some analytics to test the performance of the infrastructure

6.3 Maintaining Helpful Metadata

Some aggregate information about data stored in the data lakehouse can be stored
in some additional tables in the data platform, so that these information can be
retrieved quickly, without having to scan the whole data collection.

What we planned to do is occasionally run analytics over the whole data set and
update the content of these aggregate tables, so that information is often up-to-date

96

and quick to access. Code in Figure [41| defines two methods: one is meant to update
the content of a table (or all aggregate tables) in the data lakehouse by invoking the
update method of the Python class managing the data lakehouse, while query table
allows us to read aggregate tables, for example to print to a file or to the console
the content of these tables.

To run these analytics, we defined a Docker container, that runs the Python file
in Figure and that is activated and deactivated by the system administrator.
Another option would be to run this script periodically, but this would require more
resources and would be less flexible.

® ® Metadata

def update_table(
lh: dbc.DBCold,
table_name: str = 'all'

match table_name:

case '...' | '"...":
lh.update_device_performance_table(table_name)

case 'all':
lh.update_device_performance_table('overall..."')
lh.update_device_performance_table('hourly..."')
lh.update_device_performance_table('daily...")
lh.update_device_performance_table('monthly...")
lh.update_device_performance_table('yearly..."')

case _
return

def query_table(
1h: dbc.DBCold,
table_name: str
) -> pl.DataFrame:
match table_name:
case '...'" | "...":
return lh.read_table(table_name)
case _
return pl.DataFrame()

cp = {...}
1lh = dbc.DBCold(connection_params=cp, new_run=False)
tables = |
'overall...', 'hourly...', 'daily...',
'monthly..."', 'vyearly...'

]
for table in tables:

update_table(lh, table)

Figure 41: Pseudo-code for metadata management in the data lakehouse
The first table we present in Figure maintains some information about the

behavior of each device every hour. For each device, measure and hour, we keep
track of the total number of records produced by the device and some aggregate

97

information about the measurements, namely the minimum value, the maximum
value and the average value. This way, we can monitor how the device globally
behaved within that hour.

[JON J
hourly_device_performance (0.09 seconds)

shape: (70_751, 8)

device_id measure_1id hour min_value

max_value avg_value num_records

i 164 i datetime[us] i f64 64 ! fe4

T
1|
T
2024-07-04 15:00: 461064.37525 | 461880 461462.0
i 2024-07-04 17:00: | 462786.8125 | 463384 i 463086.71875
| 2024-07-05 01:00: | 463993.40625 | 463993 | 463993.40625
2024-07-05 06:00: 463994.59375 | 464015.0 464002.640625
i

258338.09375 | 258021.63151
260019.5 259609.294271
261797.40625 | 261401.294271
264186.5 264186.5
187.64418 i 187.576437

i 2024-06-07 10:00: i 257721.10937

| 2024-06-07 12:00: i 259206.70312
2024-06-07 14:00: 260997.70312
2024-06-08 01:00: 264186.5

i 2025-03-12 10:00: i 187.509062

Figure 42: Device aggregates per hour

We can reduce granularity and group measurements produced by each device by
day, as shown in Figure 3] to have an idea of the performance of a device on a
certain day.

[JON
daily_device_performance (0.05 seconds)

shape: (753, 8)

T
site_id | device_id | measure_id min_value max_value avg_value num_records

164 i str 64 64 64 132

:
i
Pl 2020-01-01 ; 15.632 18.723 17.064865 24
i1 2020-01-02 ; 16.175833 19.146667 17.501396 24
| 2020-01-03 ; 16.084167 19.065833 17.570519 24
i

2025-03-12 ; 188.201348 | 188.367023 | 188.283981
2025-03-12 ; 26.617116 26.777554 26.697531
2025-03-12 ; 187.489297 | 187.64418 187.566693
2025-03-12 ; 155.864184 | 156.018927 ! 155.941535

Figure 43: Device aggregates per day

We now further reduce granularity and group devices measurements by month, as
presented in Figure 44 This information may be useful to a company, for example,
to understand how a plant behaves on average during a certain period of time, for
example according to seasons.

98

monthly_device_performance (0.08 seconds)

shape: (124, 8)
T

site_1id device_1id measure_1id min_value max_value avg_value num_records

str f64 64 64 132

I

T

i 2024-07 | 438090.5937 | 602595.375 520004.815233
! 2024-07 | 244331.2031 | 268160.1875 | 256113.044091
! 2024-07 121841.6015 134116.2031 | 127922.769642
| 2024-07 1218.416016 1341.161987 | 1279.229143

i 2025-03 | 60.866873 62.003085 61.415564

i 2025-03 187.230845 188.367023 187.779415

! 2025-03 | 25.646588 26.777554 26.193034

|

2025-03 186.518802 187.64418 187.062132
2025-03 154.893675 156.018927 155.436804

Figure 44: Device aggregates per month

The last table having time as a crucial dimension groups devices measurements
by year, as shown in Figure [d5] This table can be useful to a company, for example,
to compare the performance of a plant over the years, and then apply some predictive
analytics to forecast future behavior.

[JON)
yearly_device_performance (0.07 seconds)

shape: (64, 8)

site_id device_id measure_1id min_value max_value avg_value num_records

164 64 f64 f64 132

19 14.718333 24.4 20.039131
19 16.844167 23.498333 20.755739

1 245346.20312 | 602595.375 421998.4706
3 0.0 0.0 0.0

=L 60.866873 62.003085 61.415564
=il 187.230845 188.367023 187.779415
=il 25.646588 26.777554 26.193034
=il 186.518802 187.64418 187.062132
=il 154.893675 156.018927 155.436804

Figure 45: Device aggregates per year

Finally, the least granular aggregation we perform over data does not use time
as a dimension, but we just collect the overall performance of each device. Again,
we track for each device and measure the total number of records generated by the
device, together with the minimum, maximum and average value.

99

overall_device_performance (0.05 seconds)

shape: (63

7

)

site_id

device_id
H

measure_id

min_value
|

1 f64

|
max_value
|

1 f64

i avg_value

1 f64

num_records
H

1 132

>
T
1
1
i
1
1
i
'
|
T
i
i
'
1
i
'
1
i
1

| 14.718333
245346.203125 |
1 0.0
| 217954.890625 |
1 0.0

0.0

| 228.264999

214237.59375
60.866873

1 187.230845
1 25.646588
| 186.518802

i 24.4

602595.375

268160.1875

1 0.0

| 559.177979
| 544647.4375
| 62.003085

| 188.367023
| 26.777554

| 187.64418

| 20.341348
1 421998.470631

0.0

| 242426.451117 |
1 0.0

| 392.546881

378197.831745
61.415564

| 187.779415
| 26.193034
| 187.062132

| 8209

15309

| 154.893675 | 156.018927 | 155.436804

Figure 46: Device overall aggregates

Other tables can be computed and maintained in the data lakehouse: for ex-
ample, we might want to collect information not by device, but by plant, so that
Trigenia or a customer company owning multiple plants can have an idea of the
performance of each plant.

Readers might have noticed that in these tables we used identifiers for plants,
devices and measures, rather than their names. This is because tables we have
presented are not meant to be used by end-users, but in combination with other
tables to provide quick access to information.

6.4 Testing Collection Performance

When defining Docker containers for the infrastructure, we mapped (in the volumes
set of instructions) some local folders with elements in the file system of each con-
tainer. This allows us to have on our computer a real-time information of what
is going on in the infrastructure for test purposes. In particular, we collect the
following information:

e [[0T] devices, before sending a record or a batch of records to the centralized
data collector, append to a CSV file the values of a measurement. This helps
developers to see what values are sent by a device and count the number of
measurements that were produced by that device

e Coherently, a CSV importer writes a CSV file with the historical data that
were read. If data importation works correctly, the output file will be an exact
copy of the input file. Some modifications can be applied to input data before
transmitting it to the centralized data collector: in this case, we will see in the
output file the results of transformations, so that developers can ensure that
everything worked properly

100

e The centralized data collector maintains two CSV files, on which it appends
all records that are sent to the relational database and to the data lakehouse,
respectively. This way, developers can check in real-time if collection is work-
ing, if transformations on records produce correct results, and what and how
many data are sent to each data platform

e Both the relational database and the data lakehouse generate some CSV files
containing the same records that are stored on their disks. Again, developers
can check in real-time if information is written properly on tables.

Writing to files makes containers run slower, and saving output files to our ma-
chine definitely increases the amount of resources we need to perform tests, so these
actions have to be performed only during the development process, leaving to other
tools or approaches the role of allowing developers and system maintainers to per-
form analytics on performance of the final infrastructure.

However, performing these tests while developing the system allowed us to test
how each container was working and how system resources were needed and used.
This information, together with the ones provided by MinlO, help us to get some
quantitative hints on the advantage of using a data lakehouse over traditional sys-
tems.

One first test that we can run using log files is monitoring the speed of data
collection and sending to the databases. In particular, we can run a simple script
that periodically measures the number of rows of the two files produced by the
centralized data collector (Figure 47)).

1e6 Collected records
—— Relational DB P
Data Lakehouse ,d_.f~--*""-)
3 - -
1%
2
5 /
w
i /
4 /
/./
>4
O P
T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Figure 47: Data collection performance

Another script may count the number of lines of files produced by the classes
representing the relational database and the data lakehouse (Figure . We could

101

query each database, of course, and obtain the same results, but maintaining CSV
files also for these databases will be useful for further analysis on data usage and

performance, for example.

leb

Stored records

—— Relational DB
Data Lakehouse

Records

T T
2000 4000

T T
6000 8000
Time (s)

T
10000

T T
12000 14000

Figure 48: Number of records in databases

An interesting analysis that can be performed using CSV files produced by the
components of the infrastructure is about storage usage. In fact, we can use these
CSV files as a benchmark of how much space data would require if stored in a
different format; we integrate these data with a backup of Delta Lake, which can be
downloaded from MinlO any moment. Results are reported in Table

Category Num. Records CSv Data Lakehouse
Clients 1 25 B 6.6 kB

Measures 6 98 B 44.3 kB

Sites 3 64 B 7.4 kB

Devices 32 572 B 261.7 kB
Measurements 2.472.955 128.3 MB 32.7 MB

Table 2: Example of storage usage

102

7 Usage of Collected Data

7.1 Analyses Over Collected Data

When presenting how we built elements of the infrastructure, we mentioned a Docker
container named analytics that runs some queries over data stored in both the
relational database and the data lakehouse. The goal of such queries is to understand
the capabilities of the system and which tools are better suited to perform data
analytics over huge amounts of information with particular attention to efficiency.

In this section we are going to discuss these queries and why we chose them to
test the performance of the system. We begin by presenting an overview of the code
that is going to be run, and then we analyze the content and the result of each
query we have implemented. For each query we report, together with the result of
the analytical procedure, the time needed to perform the analysis.

All queries accessing the data lakehouse accept some optional arguments, that
are some Polars DataFrames representing the contents of tables that were read before
invoking the method that runs the query. If a collection is not provided by the caller,
the corresponding table will be read from the data lakehouse.

In Figure [49 we present the pseudo-code for the class that is run by the metadata
Docker container. The constructor creates a new instance of the classes representing
the relational database and the data lakehouse of our system, respectively. Some
configuration parameters are defined in order to perform authentication on the two
databases.

The read table method in Figure 49| accepts two parameters: the name of the
table and the name of the data platform from which the table has to be read; this
second parameter is optional, with the data lakehouse that is considered the default
choice. Within the block of code of the method we attempt to read the table whose
name is passed by the caller: if everything is correct, data are returned as a Polars
DataFrame. If something wrong occurs, for example if there is no table with this
name, or if connection to database fails, the user is informed via a Python Exception
and an empty Polars DataFrame is returned. It will be on the caller to choose what
to do if an empty DataFrame is returned.

The most important method of the Python class we are presenting in Figure
is run queries. Within the code of this method we can choose which queries
have to be run and a new thread is created for each of the selected queries. Before
running queries, an instruction reads tables from the data lakehouse and stores
all corresponding Polars DataFrames into variables that are passed to queries, so
that the data lakehouse can be read only once. However, this instruction can be
ignored: in this case, as we will describe later, every query will read tables in the
data lakehouse.

103

[) @® Toy Queries

class DLHOps:
def __init_ (self)
cp = {...}
self.db_cold = DBCold()
self.db_hot = DBHot()

read_table(self,
table_name: str,
database: str = 'cold'

) -> pl.DataFrame:
try:
match database:
case 'hot':
match table_name:

query = f'SELECT * FROM {table_name}'

case

case

return pl.DataFrame()

conn = self.db_hot.connect()
return pl.read_database(query=query, connection=conn)
case 'cold':
match table_name:
case '...':
return self.db_cold.read_table(table_name)
case _
return pl.DataFrame()
case _
return pl.DataFrame()
except Exception:
return pl.DataFrame()

def run_queries(self):
def select_queries():
try:
clients, measures, sites, devices, measurements =

with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(query_1, devices, measures, measurements, sites, clients),

]

for future in concurrent.futures.as_completed(futures):
try:
res = future.result()
del res
except Exception as e:
print(f'Error while running a query: {e}')
finally:
del clients, measures, sites, devices, measurements
gc.collect()

def query_x(...):

select_queries()

if __name__ == '__main__':
dlh_ops = DLHOps()
dlh_ops.run_queries()

Figure 49: Pseudo-code for a class with data analytics

The first query we are going to present simply collects all measurements stored
in the data lakehouse.

Internally, data are stored similarly to the way relational databases represent
information, with a unique identifier for each row in the table. To provide an
intelligible representation of the information, and to stress the platform merging
some tables with millions of records, we tranform numerical identifiers with the
names of the elements.

The script in Figure manipulates Polars DataFrames, with a syntax that is

104

really close to Apache Spark and a way of representing information that looks like
Pandas DataFrames. The choice of Polars over Pandas derives from the possibility
of using a single library for both querying and representing information, while pre-
ferring Polars over Apache Spark is the result of some operational considerations
with managers of Trigenia. In fact, queries operated by Polars are optimized for
being run on a single machine, which is the case of Trigenia, while Apache Spark
should be preferred when a computations has to be run over a cluster of nodes.

A small fraction of the result of the query is presented in Figure 51} Before
displaying the content of the resulting DataFrame, we provide a brief description of
the computation and its execution time. This last information will be recalled in
the final section of this document as an indication of the performance of the system.

® Query 1

def query_1(
devices_df: pl.DataFrame | None = None,
measures_df: pl.DataFrame | None = None,
measurements_df: pl.DataFrame | None = None,
sites_df: pl.DataFrame | None = None,
clients_df: pl.DataFrame | None = None

start_time = time.time()

if x_df is None:
x_df = self.read_table('...")

all_measurements = measurements_df \
.join(devices_df, on='device_id') \
.join(measures_df, on="measure_id') \
.join(sites_df, on='site_id') \
.join(clients_df, on='client_id') \
.select([
.col('client_name')
.col('device_name')
.col('measure_name'
.col('instant'),
.col('value'),
.col('unit")

’
’
)i

1)

execution_time = time.time() - start_time
explication = '...'
print_result('Query_1', all_measurements, execution_time, explication)

Figure 50: Code for Query 1

105

Query_1 (5.04 seconds)
Select (client_name, device_name, measure_name, instant, value, unit) for all measurements

shape: (9_047_989, 6)

client_name device_name measure_name instant value unit

str str str datetime[ps] f64 str

default device_1 default 2025-03-14 14:39:57.000296 109.386612 default
default device_2 default 2025-03-14 14:39:57.000301 ; 176.977079 | default
default device_4 default 2025-03-14 14:39:57.000307 197.006542 default

|
I

default | device_5 default 2025-03-14 14:39:57.000315 1.402414 default
i

device_1 default 2025-03-14 13:57:27.000742 ; 108.255892 | default
device_5 default 2025-03-14 13:57:27.000748 0.271672 default
device_3 default 2025-03-14 13:57:27.000752 | 179.985145 | default
device_2 default 2025-03-14 13:57:27.000753 | 175.846348 | default

default
default
default
default

Figure 51: Results for Query 1

The second analytical query we perform to test the system is more complex than
the previous one. Again, the method receives some optional DataFrames (Figure
: the ones that are not provided by the caller will be filled with the content read
from the data lakehouse. This query computes, for each device, measure and date,
the minimum, the maximum and the average measurement. Some joins over the
DataFrames are performed to provide an intelligible result (represented in Figure
and increase the complexity of the query.

106

[] ® Query 2

def query_2(

1

2 devices_df: pl.DataFrame | None = None,

3 measures_df: pl.DataFrame | None = None,

4 measurements_df: pl.DataFrame | None = None,
5 sites_df: pl.DataFrame | None = None,

6 clients_df: pl.DataFrame | None = None

7):

8
9

start_time = time.time()

10 if x_df is None:
11 x_df = self.read_table('...")
12
13 avg_measurements = measurements_df \
14 .select([
15 .col('site_id"),
16 .col('device_id"),
17 .col('measure_id"),
18 .col('instant').dt.date().alias('date'),
19 .col('value'),
20
21 by (
22 ['site_id', 'device_id', 'measure_id', 'date']
23)\
24 .agg([
25 (pl.col('value').min().alias('min_measurement')),
26 (pl.col('value').max().alias("max_measurement')),
27 (pl.col('value').mean().alias('avg_measurement')),
28 1)\
29 .sort('avg_measurement', descending=True) \
30 .join(devices_df, on='device_id') \
31 .join(measures_df, on="measure_id') \
32 .join(sites_df, on='site_id') \
33 .join(clients_df, on='client_id') \
34 .select([
35 .col('client_name')
36 .col('device_name')
37 .col('measure_name'
38 .col('date'"),
39 .col('min_measurement'),
40 .col('max_measurement'),
41 .col('avg_measurement'),
42 .col('unit")
43 1D
44
45 execution_time = time.time() - start_time
explication = '...'
47 print_result('Query_2', avg_measurements, execution_time, explication)

7

),

Figure 52: Code for Query 2

Query_2 (3.64 seconds)
Compute the daily min, max, and avg measurements for each device and measure

shape: (6_973, 8)

client_name | device_name measure_name : date i avg

str str str date 64

default FV_terra_b energia 2024-10-01 ; 989709.8125 ; 989709.8125 | 989709.8125
default FV_terra_b energia 2024-09-30 ; 984324.125 989709.8125 | 986722.0282
default FV_terra_b energia 2024-09-29 ; 979197.3125 | 984324.125 981553.3891
default FV_terra_b energia 2024-09-28 | 973120.5625 ; 979197.3125 | 975835.0935

default Inverter5b_8 2024-06-12
default Inverterd_1 2024-06-12
default Inverter5b_11 2024-06-12
default Inverter5a_3 2024-06-12

Figure 53: Results for Query 2

107

The third query we analyze has low logical meaning, but it allows us to perform
some quite complex computations (Figure . The method first computes the
average daily measurement for each device: the resulting DataFrame is stored in a
variable and is subsequently used twice: the first time we store in a variable the
mean of the averages, and then the DataFrame is filtered so that a record is kept
only if the daily average for the device is higher than the overall mean. Finally, some
table joins are performed to provide an intelligible result (a small part of which is
presented in Figure |55)).

® Query 3

def query_3(
devices_df: pl.DataFrame | None = None,
measures_df: pl.DataFrame | None = None
measurements_df: pl.DataFrame | None = None,
sites_df: pl.DataFrame | None = None
clients_df: pl.DataFrame | None = None

start_time = time.time()

if x_df is None:
x_df = self.read_table('...")

avg_measurements = measurements_df \
.select([
.col('site_id"),
.col('device_id'),
.col('measure_id"),
.col('instant').dt.date().alias('date'),
.col('value'),
nA
.group_by(
['site_id', 'device_id', 'measure_id', ‘'date']
)\
-agg([
(pl.col('value').mean().alias('avg_measurement'))
1)

avg = avg_measurements \
.get_column('avg_measurement') \
.mean()

if avg is not None:
filtered_measurements = avg_measurements \

.filter(pl.col('avg_measurement') > avg) \

.join(devices_df, on='device_id') \

.join(measures_df, on='measure_id') \

.join(sites_df, on='site_id') \

.join(clients_df, on='client_id') \

.select([
.col('client_name'),
.col('device_name'),
.col('measure_name'),
.col('date'),
.col('avg_measurement'),
.col('unit")

1

execution_time = time.time() - start_time
explication = '...'
print_result('Query_3', filtered_measurements, execution_time, explication)

Figure 54: Code for Query 3

108

[XONX

Query_3 (3.68 seconds)

Track the days a certain device and measure have an avg_measurement greater than the overall
avg_measurement

shape: (2_124, 6)

client_name device_name measure_name date avg_measurement

str str str date f64

default FV_tetto energia 2024-06-03 220627.054742
default Inverter5a_5 energia 2024-09-19 | 84645.83846

default Inverter5b_8 energia 2024-08-07 64973.219699
default FV_tetto energia 2024-06-01 218499.038955

default Inverter5b_6 energia 2024-09-16 85578.476101
default Inverter5a_7 energia 2024-08-01 60209.545315
default FV_tetto energia 2024-08-03 279473.771159
default Inverter5hb_2 energia 2024-08-12 68123.332194

Figure 55: Results for Query 3

Query 4 (Figure is the most complex query within the set of analytics we
performed during these tests. Again, the method can receive DataFrames by the
caller, or it can read information stored in the data lakehouse.

We specify a number of groups: a device is assigned to one of these groups
according to the average value it measured. Once this phase is over, table joins are
performed to retrieve some intelligible information and results are finally partitioned
by the name of the measure (for example, energy or power measured by devices)
and by the group a device is assigned to.

Each partition resulting from previous computations is a DataFrame, which is
then written to a text file. We might also use some graphical libraries, like Seaborn
and Matplotlib to provide a graphical representation of the behavior of devices. In
this case, we will have three figures for each measure, each one representing a group.
This partitioning by group may help, for example, when we have a huge number of
devices and we want an easier representation of what is going on in our system.

Unfortunately, for security reasons, we are not able to provide graphical repre-
sentations of the results of this query, but Figure 57| gives an idea of how groups are
represented in a textual format.

109

[] ® Query 4

def query_4(
devices_df: pl.DataFrame | None = None,
measures_df: pl.DataFrame | None = None
measurements_df: pl.DataFrame | None = None
sites_df: pl.DataFrame | None = None
clients_df: pl.DataFrame | None = None

start_time = time.time()

if x_df is None:
x_df = self.read_table('...")

n_groups = 3
device_groups = measurements_df \
.group_by([
pl.col('site_id"'), pl.col('device_id'), pl.col('measure_id')
DA
.agg([pl.col('value').mean().alias('avg_value')]) \
.select([
pl.col('site_id"),
pl.col('device_id'),
pl.col('measure_id"'),
pl.col('avg_value')
nA
.group_by('measure_id") \
.map_groups(
lambda g: g.with_columns(
((pl.col('avg_value').rank()-1) * n_groups / pl.col('avg_value').count())
.floor().cast(pl.UInt8).alias('group')
)
)\
.select(['site_id', 'device_id', 'measure_id', ‘'group'])

result = measurements_df \

.join(device_groups, on=['site_id', 'device_id', 'measure_id']) \
.join(devices_df, on='device_id') \
.join(measures_df, on='measure_id') \
.join(sites_df, on='site_id') \
.join(clients_df, on='client_id') \
.select([

pl.col('device_name'),

pl.col('measure_name'),

pl.col('instant'),

pl.col('value'),

pl.col('unit'),

pl.col('group')
DA
.sort('instant') \
.partition_by(['measure_name', 'group'])

curr in result:
measure_name = curr['measure_name'][0]
group = curr['group'][0]

filename = os.path.join(output_folder, f'q4_{measure_name}_{group}.txt')
with open(filename, 'w') as file:

file.write(str(curr))

file.write('\n")

execution_time = time.time() - start_time
explication = '
print_result('Query_4', result, execution_time, explication)

Figure 56: Code for Query 4

110

Query_4 (5.38 seconds)
For each measure, plot measurements of each device

shape: (8_209, 6)

device_name measure_name instant value unit

str str datetime[pus] f64 str

T

|

I

device_2 i imported_measure 2020-01-01 00:00: 16.356667 default

device_2 i imported_measure | 2020-01-01 01:00: 16.115833 | default

device_2 i imported_measure | 2020-01-01 02:00: 15.877 default

device_2 i imported_measure 2020-01-01 03:00: 15.781818 default
I

imported_measure | 2021-05-25 05:00: 22.101667 | default
imported_measure | 2021-05-25 06:00: 22.155 default
imported_measure : 2021-05-25 07:00: 22.265 default
imported_measure 2021-05-25 08:00: 22.41375 default

device_2
device_2
device_2
device_2

shape: (253_824, 6)

device_name measure_name instant

str str datetime[pus]

FV_terra_b potenza 2024-06-01 00:
FV_tetto potenza 2024-06-01 00:
Inverter5a_6 potenza 2024-06-01 00:
Inverterba_7 potenza 2024-06-01 00:

FV_terra_b potenza 2024-06-12 02:
FV_tetto potenza 2024-06-12 02:
Inverter5a_6 potenza 2024-06-12 02:
Inverterba_7 potenza 2024-06-12 02:

shape: (253_826, 6)

device_name measure_name instant

str str datetime[pus]

Inverter4d_1 2024-06-01 00:
Inverter4d_2 2024-06-01 00:
Inverter5a_3 2024-06-01 00:
Inverter5b_10 2024-06-01 00:

Inverter5b_8 2024-06-12 02:
Inverter4d_1 2024-06-12 02:
Inverter4_2 2024-06-12 02:
Inverter5a_3 2024-06-12 02:

Figure 57: Results for Query 4

The fifth query in our set (Figure is the only one that queries the relational
database. Since this database and its performance are well known, we decided to
not perform multiple tests on it. However, this query is added to our analytics in
order to compare data retrieval abilities of the relational database with the ones of
the data lakehouse. In fact, this query performs the same computations of Query 1

111

(Figure and Query 7 (Figure . Results of this comparison will be discussed
in the last section of this Thesis.

We recall here that Query 1, just like Query 5, retrieves all measurements and
performs some table joins to provide to the end-user an intelligible result. The
key difference of Query 5 with the other queries is that the former operates on the
relational database, while the other ones are applied to the data lakehouse. Some
rows of the result of this query are reported in Figure 59,

[] @® Query 5

def query_5():
start_time = time.time()

query = """
SELECT client_name, device_name, measure_name, instant, value,
FROM history
INNER JOIN devices ON history.device_id=devices.device_id
INNER JOIN measures ON history.measure_id=measures.measure_id
INNER JOIN sites ON history.site_id=sites.site_id
INNER JOIN clients ON sites.client_id=clients.client_id
WHERE devices.site_id=history.site_id

conn = self.db_hot.connect()
if conn:
df = pl.read_database(
query = query,
connection = conn
)

conn.close()

execution_time = time.time() - start_time
explication = '...'
print_result('Query_5', df, execution_time, explication)v

Figure 58: Code for Query 5

Query_5 (40.80 seconds)
Select (device_name, measure_name, instant, value, unit) for all measurements

shape: (7_704_423, 6)

client_name device_name measure_name instant value unit

str str str datetime[ps] f64 str

T
|
default i device_3 default 2025-03-14 180.701343 default
H 11:03:29.990347
default i device_2 default 2025-03-14 176.562546 default
i 11:03:29.989613
default i device_1 default 2025-03-14 108.972083 default
i 11:03:29.989790
i device_5 default 2025-03-14 0.987868 default
|

11:03:29.990016

default

Inverter5a_2 energia 2024-09-26 13:55:00 87594 .898438
Inverter5a_3 en_dc 2024-09-26 13:55:00 862.484009
Inverter5a_3 energia 2024-09-26 13:55:00 86246.898438
Inverter5a_4 en_dc 2024-09-26 13:55:00 871.492981

default
default
default
default

Figure 59: Results for Query 5

112

With Query 6, we want to test how Polars handles SQL queries (Figure . In
fact, just like Apache Spark does with SparkSQL, Polars is able to understand the
content of an SQL query and internally transform instructions to query the data
lakehouse. We have to provide Polars an SQL context, so that mapping between a
DataFrame and an SQL table can be performed flawlessly.

The query simply computes the average value measured by a device, with some
table joins to output an intelligible result (Figure .

[] ® Query 6

def query_6(
devices_df: pl.DataFrame | None = None,
measures_df: pl.DataFrame | None = None,
measurements_df: pl.DataFrame | None = None,
sites_df: pl.DataFrame | None = None,
clients_df: pl.DataFrame | None = None

start_time = time.time()

if x_df is None:
x_df = self.read_table('...")

query = mmon

SELECT client_name, devices.device_name, measures.measure_name,
AVG(measurements.value) as avg_value, measures.unit

FROM measurements

INNER JOIN devices ON measurements.device_id = devices.device_id

INNER JOIN measures ON measurements.measure_id = measures.measure_id

INNER JOIN sites ON history.site id=sites.site_id

INNER JOIN clients ON sites.client_id=clients.client_id

WHERE devices.site_id=history.site_id

GROUP BY clients.client_name, devices.device_name,
measures.measure_name, measures.unit

ORDER BY avg_value DESC

result = pl \

.SQLContext(
measures = measures_df,
devices = devices_df,
measurements = measurements_df,
sites = sites_df,
clients = clients_df

)\

.execute(query, eager=True)

execution_time = time.time() - start_time
explication = '...'
print_result('Query_6"', result, execution_time, explication)

Figure 60: Code for Query 6

113

Query_6 (2.93 seconds)
Get average values by device and measure

shape: (103, 5

client_name device name measure_name avg_value

str str str f64

default
default
default

FV_terra_a energia 582888.835802
FV_tetto energia 275187.134847
Inverter4_1 energia 137649.076205

Inverter4 1 p_dc 23.13505

Inverter4_1 potenza 22.510306
Inverter4_2 p_dc 21.312749
Inverter4_2 potenza 20.918069

default
default
default
default

)
T
|
|
default I FV_terra_b energia 645901.088741
I

Figure 61: Results for Query 6

The last query run by the analytics Docker container is Query 7 (Figure [62),
which performs the same actions of Query 1 (Figure and Query 5 (Figure ,
but with an SQL query to be run by Polars.

The results (which we report in Figure are going to be commented in the last
section of this Thesis, but we can say here that performance is dramatically better
than querying the relational database and better than manually manipulating Polars
DataFrames, especially when the number of records in the table is high.

114

® Query 7

def query_7(
devices_df: pl.DataFrame | None = None,
measures_df: pl.DataFrame | None = None,
measurements_df: pl.DataFrame | None = None,
sites_df: pl.DataFrame | None = None,
clients_df: pl.DataFrame | None = None

start_time = time.time()

if x_df is None:
x_df = self.read_table('...")

query = """
SELECT client_name, device_name, measure_name, instant, value, unit
FROM measurements
INNER JOIN devices ON measurements.device_id=devices.device_id
INNER JOIN measures ON measurements.measure_id=measures.measure_id
INNER JOIN sites ON history.site_id=sites.site_id
INNER JOIN clients ON sites.client_id=clients.client_id
WHERE devices.site_id=history.site_id

result = pl \

.SQLContext(
measures = measures_df,
devices = devices_df,
measurements = measurements_df,
sites = sites_df,
clients = clients_df

)\

.execute(query, eager=True)

execution_time = time.time() - start_time
explication = '...'
print_result('Query_7', result, execution_time, explication)

Figure 62: Code for Query 7

Query_7 (3.37 seconds)
Select (device name, measure_name, instant, value, unit) for all measurements

shape: (9_039_780, 6)

client_name device_name measure_name instant value unit

str str str datetime[pus] f64 str

T
|
T
default | device_1 default 2025-03-14 14:39:57.000296 109.386612 default
default | device_2 default 2025-03-14 14:39:57.000301 176.977079 default
default i device_4 default 2025-03-14 14:39:57.000307 | 197.006542 | default
default ! device_5 default 2025-03-14 14:39:57.000315 | 1.402414 default

i

default
default
default
default

device_1 default 2025-03-14 13:57:27.000742 108.255892 default
device_5 default 2025-03-14 13:57:27.000748 0.271672 default
device_3 default 2025-03-14 13:57:27.000752 179.985145 default
device_2 default 2025-03-14 13:57:27.000753 175.846348 default

Figure 63: Results for Query 7

7.2 Machine Learning Applications

Another application in which the infrastructure will improve the quality of work of
Trigenia are Machine Learning applications. We will not cover this aspect in detail,

115

but what we want to highlight here is that the data lakehouse can drastically reduce
the time needed to read data that are used to train Machine Learning models that
are developed by Trigenia; at the same time, output of the models can be stored
directy in the data lakehouse platform, providing higher flexibility than working
with relational databases or data warehouses with a rigid, pre-fixed schema.

Trigenia develops some Machine Learning models to detect anomalies in behavior
of a device, or to predict some events. Until now, data to train these models have
been retrieved by the relational database that used to store information. With
the new platform we have implemented in this Thesis, the relational database has
been replaced with two data platforms: another for newer data, and a data
lakehouse to store and access historical information. Since we designed the relational
database to store a subset of what is stored in the data lakehouse, the choice of
which data platform to use to retrieve as much data as possible is straightforward.
Furthermore, by analyzing results of analytical queries in the section above in this
document, we can see that data retrieval from the data lakehouse, especially by
using the Polars equivalent of SparkSQL, is significantly faster and more efficient
than relying on TimescaleDB.

So, we updated the code of training algorithms of Machine Learning models by
Trigenia so that they can read data form Delta tables in the data lakehouse, together
with some additional configuration tables that are stored on MinlO, too. We also
updated the code to save results of simulations of the model on other tables stored
only in the data lakehouse.

Of course, numerical results using the same input data are the same that we
recorded when running models relying on relational database, but we saw a signif-
icant improvement in the time needed to perform model training and evaluation
with the introduction of the data lakehouse. We performed these tests with a small
amount of input data (around 10.000 records), but we expect to see even better
performance when the size of input data increases: this statement derives from the
analysis of query performance with increasing number of records. In fact, as we will
discover at the end of this document, the difference in speed and disk usage between
a traditional system and the data lakehouse increases nearly exponentially with the
number of records stored in the data platform.

7.3 Accessing Data Via Web

Apache Delta does not provide any [APIk for the JavaScript programming language,
so we need to find an alternative way to access information from the web, in order
to provide additional services to developers and customers of Trigenia.

A viable solution is to host a simple server that works as backend: when it
receives a request via an URL, the server reads the data lakehouse and returns the
resulting DataFrame as a collection of JSON objects. We implemented this solution
via Flask, which allows to easily setup a web server using Python and HTML.

It is now possible to read a whole table (Figure , or to run some predefined
queries (a code example is represented in Figure . Another task that can be
easily accomplished via Flask is allowing users to add some filters over tables. For
example, in Figure 69| we show that a user can read the whole table of measurements

116

in the data lakehouse, with the additional possibility to filter records by the date
of reading, or to limit the number of results, so that the page can load faster and
require less resources.

® Web APIs (1)

app = Flask(__name__)
1lh = DBCold()

@app.route('/")
def main_route():
return json.dumps({})

O~ WNRE

@app.route('/tables/...")
def table_x_route():
try:
return lh.read_table('clients').rows(named=True)
except Exception:
return json.dumps({})

@app.route('/tables/history"')
def table_history_route():

@app.route('/query/<query>")
def query_route(query: str):

Figure 64: Reading all elements of a table

Figure 65| and Figure [66| are screenshots of Postman, a tool that allows to send
HTTP requests to a server and to receive the response. In these two figures we
request the content of the Clients and Measures tables, respectively, to the server
running the Flask application. The response from the server is a JSON collection
containing one object for each record in the table.

GET v 127.0.0.1:5000/tables/clients

Params Authorization Headers (7) Body Scripts Settings Cookies
Key Value Description w0 Bulk Edit

Body Cookies Headers (5) Test Results D) 200 OK 3.26s 259B @ Save Response oo

{} JSON v > Preview {9 Visualize v S 0o Q &

2

3 "client_id": -1,

4 "client_name": "default",
5 "contract_type": "default"
6

7

Figure 65: Querying the Clients table

117

GET v 127.0.0.1:5000/tables/measures ‘

Params Authorization Headers (7) Body Scripts Settings Cookies
Key Value Description eec Bulk Edit
Key Value Description
Body Cookies Headers (5) Test Results 0] 200 OK 61 ms 252B @ Save Response ooe
{} JSON v D Preview {Q Visualize v S 0o Q &
1 1
2 i
3 "measure_id": -1,
4 "measure_name": "default",
5 "unit": "default"
6 ¥
7 1]

Figure 66: Querying the Measures table

Figure [67] and Figure [68] show the content of the Sites and Devices tables stored
in the data lakehouse, respectively, using the same technique of previous queries.
The main difference between these two figures and the previous ones is that we here
use a built-in tool of Postman that automatically translates a JSON collection into
a table, so that we can easily see the content of the response by the server.

‘ GET v 127.0.0.1:5000/tables/sites ‘

Params Authorization Headers (7) Body Scripts Settings Cookies
Key Value Description oo Bulk Edit
Key Value Description
Body Cookies Headers (5) Test Results D) 200 OK 72ms - 511B @ Save Response eco
{} JsoN D> Preview {9 Visualize ~ @
client_id latitude longitude site_id timezone
0 -1 0 0 -1 uTC
1 -1 0 0 -2 uTC
2 - 0 0 -3 uTC

Figure 67: Querying the Sites table

GET v 127.0.0.1:5000/tables/devices ‘

Params Authorization Headers (7) Body Scripts Settings Cookies
Key Value Description ee= Bulk Edit
Key Value Description
Body Cookies Headers (5) Test Results D) 200 OK 94ms - 637B @ Save Response oco
{} JsoN D> Preview {9 Visualize v @
device_id device_name site_id
o 4 device_4 -2
1 2 device_5 -2
2 1 device_1 -2
3 3 device_2 -2
4 -1 default -1

Figure 68: Querying the Devices table

118

We now attempt to read the table of measurements in the data lakehouse via
a HTTP request. As we can see in Figure [69, we can provide some filters to the
server, so that only a subset of records can be retrieved.

Figure [70[shows the response to a request presenting no filters, similarly to what
we did with the other tables. Figure[71] instead, adds three filters to the request, in
order to limit the number of records to retrieve only measurements produced within
a range of dates.

[] @® Web APIs (2)

1 @app.route('/tables/history")

2 def table_history_route():
now = datetime.now()
user_from = request.args.get('from')
user_to = request.args.get('to')
user_limit = request.args.get('limit")

from_date = pl.datetime(int(now.year), int(now.month), int(now.day))
if user_from:
inserted = user_from.split('-")
year, month, day = inserted[0:3]
from_date = pl.datetime(year=int(year), month=int(month), day=int(day))

to_date = pl.datetime(

int(now.year), int(now.month), int(now.day),

r
int(now.hour), int(now.minute), int(now.second), int(now.microsecond)

)

if user_to:
inserted = user_to.split('-")
year, month, day = inserted[0:3]
to_date = pl.datetime(int(year), int(month), int(day), ©, 0, 0, 0)

records_limit = 100
if user_limit:
try:
inserted = int(user_1limit)
records_limit = inserted
except Exception as e:
print(f'Error while parsing filters: {e}')
return json.dumps({})

try:
return lh.read_table('history') \
.filter(pl.col('instant') >= from_date) \
.filter(pl.col('instant') <= to_date) \
.limit(records_limit) \
.with_columns(pl.col('value').cast(pl.Float64)) \
.rows(named=True)
except Exception as e:
return json.dumps({})

Figure 69: Reading a filtered version of the measurements table

119

GET v 127.0.0.1:5000/tables/history

Params Authorization Headers (7) Body Scripts Settings Cookies
Key Value Description «ec Bulk Edit

Body Cookies Headers (5) Test Results D) 200 OK 114 ms 14.77 KB @ Save Response oo

{} JSoON D> Preview {9 Visualize v 2

device_id instant measure_id site_id value

0 0 Wed, 12 Mar 2025 08:45:08 GMT -1 -2 194.52900164616355

1 1 Wed, 12 Mar 2025 08:45:08 GMT -1 -2 21.592271436223434

2 2 Wed, 12 Mar 2025 08:45:08 GMT -1 -2 192.37924971949124

3 1 Wed, 12 Mar 2025 08:45:08 GMT -1 -2 21.592351456941113

4 0 Wed. 12 Mar 2025 08:45:08 GMT -1 -2 194.52902815134158

Figure 70: Querying the History table

GET v 127.0.0.1:5000/tables/history?limit=70&from=2025-01-01&t0=2025-03-07

Params e Authorization Headers (7) Body Scripts Settings Cookies
limit 70
from 2025-01-01
to 2025-03-07
Body Cookies Headers (5) Test Results D] 200 OK 145 ms 10.37 KB @ Save Response oo
{} JSON [> Preview {9 Visualize + P
device_id instant measure_id site_id value
0 4 Thu, 06 Mar 2025 08:57:59 GMT -1 -2 51.97383435676766
1 4 Thu, 06 Mar 2025 08:57:59 GMT -1 -2 51.973839049246344
2 4 Thu, 06 Mar 2025 08:57:59 GMT -1 -2 51.97384319970656

Figure 71: Querying the History table and applying some custom filters

In addition to running predefined queries, Figure [72shows the ability to run cus-
tom queries, possibly with multiple table joins and filters. The query is forwarded
to the run sql query method provided by the Python class managing the data lake-
house, so that computations can be run, and then the result is used as response to
the HT'TP request. A subset of the records in the response is shown in Figure

120

[] ® Web APIs (3)

1 @app.route('/query/<query>"')
2 def query_route(query: str):
query — mmmn
SELECT client_name, device_name, measure_name, instant, value, unit
FROM history
INNER JOIN devices ON history.device_id=devices.device_id
INNER JOIN measures ON history.measure_id=measures.measure_id
INNER JOIN sites ON history.site_id=sites.site_id
INNER JOIN clients ON sites.client_id=clients.client_id
WHERE devices.site_id=history.site_id
LIMIT 150

return lh.run_sql_query(query).rows(named=True)

Figure 72: Running queries via Web

GET v 127.0.0.1:5000/query/measurements

Params Authorization Headers (7) Body Scripts Settings Cookies

Query Params

Key Value Description = Bulk Edit

Body Cookies Headers (5) Test Results D) 200 OK 469 ms - 29.95KB @ Save Response oo

{} JsON > Preview {9 Visualize ~ <@

client_name device_name instant measure_name unit value

0 default device_4 Thu, 06 Mar 2025 08:57:59 GMT default default 51.97383435676766

1 default device_4 Thu, 06 Mar 2025 08:57:59 GMT default default 51.973839049246344

2 default device_4 Thu, 06 Mar 2025 08:57:59 GMT default default 51.97384319970656

3 default device_4 Thu, 06 Mar 2025 08:57:59 GMT default default 51.973847707386795

4 default device_4 Wed, 12 Mar 2025 08:45:34 GMT default default 43.4540803809028

Figure 73: Running a custom query

121

8 Results

8.1 Collecting Performance With Heavy Workloads

When testing the system, we provided a graphical interpretation of how the data
collector reads data from Apache Kafka topics it is subscribed to and collects it into
a list of tuples that is then passed to the database. Here we go deeper into the
description of the lineplot in Figure

Collector performs two readings of the Kafka topics: the first operation collects
information that is destined to the relational database of the infrastructure we built,
while the second operation refers to the data lakehouse. The two readings are
executed at regular time intervals. This implementation is meant to lower as much
as possible the costs for the usage of the two platforms on the cloud, while still being
able to handle real-time information.

The blue line in Figure represents the number of records that have been
collected to be sent to the relational database, while the orange line represents the
behavior related to the data lakehouse. The regular slope of the blue line indicates
that the number of records that are read from the Apache Kafka topic every time
we consume the content of the two channels is almost constant. The second reading
operation, represented in orange, is performed less times than what happens for
the relational database; in order to keep the two data platforms as up-to-date as
possible, a higher number of records are read from the Apache Kafka topics, resulting
in almost the same amount of data in both the relational database and the data
lakehouse at the end of each reading.

We see in Figure [74] that, at a certain point in time, the slope of the two lines
decreases: this happens because the jobs that import historical data from CSV files
stop to send information when they get to the end of file: from that moment on, only
devices will send information to the Collector, resulting in a smaller number of
records to be read every time the content of the Apache Kafka topics is consumed.

122

1e6 Collected records

—— Relational DB P
Data Lakehouse e

Records

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Figure 74: Reading data from Apache Kafka topics

Being able to handle a high number of records per unit of time and storing them
into memory of the machine running the Collector is a good achievement, but what
is the performance of the second part of the infrastructure, that is storing these
results in the databases? Figure 75| shows the number of records that are stored in
both the relational database (the blue line) and the data lakehouse (represented by
the orange line).

Data are loaded into both platforms as batches of different sizes. More in detail,
every time the Collector reads data destined to the relational database, the collection
of records is immediately sent to TimescaleDB so that all records are added to the
database in a single transaction: this explains why the blue lines in Figure [74] and
Figure [75] are equivalent.

The orange lines in Figure [74] and Figure [75] differ slightly: the collection graph
shows a gradual slope as records are read one at a time (or in small batches) over
a brief time interval from Apache Kafka. The orange line in Figure instead,
presents vertical lines, because all records sent by the Collector are added to the
Delta Table within a single, fast transaction.

123

166 Stored records

—— Relational DB R
Data Lakehouse R

Records
-3

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Figure 75: Storing data in data platforms

Considering both Figure [74]and Figure representing data collection and data
storage, respectively, we can see that curves can be superimposed, with a small
difference that we explained above. This means that the data collector of the system
and both the data platforms collaborate seamlessly, no matter what the workload
is. This result is noticeable, because it means that information coming from data
sources is immediately available to developers and end-users, with performance that
scales with the incoming workload.

The test from which Figure [74) and Figure [75] are taken sends, during its highest
transmission rate time, about 3.000 records per second. The system is able to further
increase the throughput, but we were satisfied with this configuration, since Trigenia
expects to work with a much smaller throughput (1.5 million records per day), so
we decided to preserve system resources.

8.2 Retrieving Data

In this section of the document we want to analyze the speed of retrieval of all
measurements from the relational database and the data lakehouse of our system.
In addition, to add complexity and stress the two platforms, some table joins are
performed before providing the result.

To build the plot in Figure we invoke three of the queries that we defined
previously in the document, and then we collected the time needed to execute the
query and receive the result. Specifically:

e The blue rectangle refers to Query 5 (code is provided in Figure , which
queries the relational database, TimescaleDB in our practical case. Please
note that no materialized views nor indices are used in the database, in order
to produce a fair comparison with the data lakehouse: these tools significantly
improve performance of the database, but they are not always applicable to

124

all use cases. We here want to test the performance of the database without
any optimization

e The red rectangle represents the execution time of Query 1 (code in Figure
, which queries the data lakehouse and manipulates Polars DataFrames to
get to the result

e The pink histogram depicts the execution time of Query 7 (code in Figure
62)), which queries the data lakehouse with the same SQL query of Query 5,
leveraging the possibility of Polars to run SQL queries over Delta tables.

The x-axis of the lineplot in Figure[70]represents the increasing number of records
that are stored in a data platform, while the y-axis represents the time needed to
retrieve all records and perform table joins, as mentioned.

Retrieval times

N Dataframes

40 1 s Timescale DB
= Polars SQL
35
304
254
204
159
104

454635 1109805 1153096 7736116 9047989 9077938 9108424
Records

Time (s)

w

Figure 76: Comparing retrieval times

As the number of records increases in both the relational database and the data
lakehouse, the query response time for the former increases proportionally, while
Polars’ query execution time for the data lakehouse presents a more favorable be-
havior, still maintaining retrieval times below 6 seconds when dealing with almost
10 millions of measurements. This result has important consequences on the role of
the data lakehouse over the relational database in our system: in practical cases, it
will be convenient to access TimescaleDB only for newest records, while Delta will
be accessed every time older data are needed.

Another interesting aspect we can extract from Figure [70] is that using SQL
queries on Polars, and relying on the ability of the Python library to optimize
computations, results in comparable or better execution time. Therefore, it may be
suggested to express queries in SQL language and then use Polars, unless complex op-
erations have to be applied to collections requiring the manipulation of DataFrames.

125

The training of the Machine Learning model developed by Trigenia used to pick
data from a relational database. Using the data lakehouse as the source of informa-
tion drastically reduced the time needed to train the model, especially when using
huge amounts of records for the training and evaluation sets. Furthermore, by using
the [APIs provided by the Python classes described when building the system to
manage the data lakehouse, the code base for the Machine Learning project can
remain almost the same, requiring only a small effort from developers.

8.3 Querying Data

Figure [77| show the times to process queries leveraging the data lakehouse or the re-
lational database for an increasing number of records. We refer to queries presented
earlier in this document; some of them have been just discussed, but we recall here
the content of all queries that are displayed in this section:

e Query 1 retrieves all records stored in the data lakehouse and performs some
table joins to provide an intelligible result and to make computations more
complex to test the performance of the data platform

e Query 2 computes some aggregated data using the data in the lakehouse.
In particular, for each device, measure and date, this query computes the
minimum, maximum and average values. In order to provide an intelligible
result, the query also performs some table joins

e Query 3 performs some computations on all data in the lakehouse, and then
filters all records of the collection according to results of computations

e Query 4 groups devices according to the average value of the records they
produced, and then outputs all values for each group. This is the most complex
query in this set, both in terms of execution time and number of computations

e Query 5 performs the same computations of Query 1, that is collecting all
measurements in the database and performing some table joins to provide an
intelligible result. This time, rather than working on the data lakehouse, we
test the performance of the relational database

e Query 6 computes for each device the average measurement it produced

e Query 7 tests how Polars manages SQL queries on the data lakehouse by
repeating the same analytics of Query 1 and Query 5.

126

Execution times for queries

= Query 1
| ™=m Query 2

Query 3
= Query 4
N Query 5
35 WEE Query 6
= Query 7

254

Time (s)

204

154

10 4

454635 1109805 1153096 7736116 9047989 9077938 9108424
Records

Figure 77: Execution times for all test queries

One thing that is interesting to note in these results is that querying the data
lakehouse is always more convenient than operating on the relational database.
While this has been covered earlier for the case in which we run the same query, this
fact becomes non-trivial when we compare performance with more complex queries.
From a practical perspective, this confirms that performing most operations on the
data lakehouse, and relying on the relational database only for real-time data, is the
most convenient way to interact with the system.

To better appreciate the performance of the queries involving the data lakehouse,
Figure [78 shows the execution times of all queries described above, ignoring Query
5, which is run on the relational database.

127

Time (s)

Querying the data lakehouse

Query 1
Query 2
Query 3

Query 4
Query 6
Query 7

454635 1109805 1153096 7736116 9047989 9077938 9108424
Records

Figure 78: Execution times for all test queries on the data lakehouse

128

9 Conclusions

In the era of Big Data, Artificial Intelligence, and Machine Learning, an efficient
system that can handle information is essential for any enterprise seeking to remain
competitive. In this Thesis we analyzed which elements are crucial to build such a
system, and then we implemented a possible system that is able to scale and manage
several workloads, while still being cost-effective and easy to maintain.

We began the document by analyzing the most important data platforms that
revolutionized the way data are managed and put at disposal of developers, end-
users, and companies managers to make decisions. From these platforms we tried
to find out which features can still be valid for modern needs, and which cons can
be overcome by using a different approach.

We then presented the architecture of one of the most modern data platforms,
the data lakehouse, which combines the best elements of data warehouses and data
lakes to provide a system that is able to handle huge amounts of data, both in real-
time and in batch mode, while still giving developers the possibility to manipulate
information according to the needs and the varying requirements of the company.

Once studied the theoretical aspects of the data lakehouse, we provided a possible
implementation of a system relying on this data platform and other open source
technologies, so as to have a cheap, yet reliable, infrastructure that can be easily
replicated and adapted to specific needs. We showed how to build the system, how to
manage data, how to access information via web, and how to perform some analytics
and Machine Learning tasks over the data stored in the data lakehouse.

We finally put the system to the test, in order to discover whether the choice of
introducing a data lakehouse within the business of a company can bring benefits
in terms of performance and costs.

The practical use case for the implementation of the system discussed in this
Thesis is tailored to the needs of Trigenia, an Italian Energy Service Company
that puts efficiency and the research of the best trade-off between performance and
environmental sustainability at the center of its business, both for its customers and
for its internal activities.

We designed and implemented a system that is able to operate with other services
and systems managed by the company, with a combination of the data lakehouse
with a traditional relational database that can be used for dealing with real-time
applications, leaving the data lakehouse to serve as the main archive of information
and source for more complex activities.

Tests we performed on the system show that the data lakehouse is able to handle
all the workloads we put on it, with a performance that is always better than the
one of the relational database they used to adopt for their services. This is a huge
upgrade for Trigenia, which can now rely on one of the most modern and powerful
technologies for data storage and management and, at the same time, can save
money and resources, since the system we implemented is able to scale with the
incoming workload, and can be easily replicated and adapted to the needs of the
company, which may vary over time without requiring a complete redesign of the
infrastructure.

129

These considerations can also be applied to other companies. The way we pre-
sented the design and implementation paths of the system we built in this Thesis
can be used as a guideline for other companies that want to improve their data
management system, and that want to be ready to face the challenges of the future,
where data are going to be more and more important for the success of a business.

130

References

V. S. Gupta, “A review of data warehousing and business intelligence in different
perspective”, in | (2014).

2S. Gangarapu and V. V. R. Chilukoori, “The future of data warchousing: trends,

technologies, and challenges in the era of big data, cloud computing, and artificial
intelligence”, International Journal of Scientific Research in Computer Science,
Engineering and Information Technology (2024).

3S. Mahashabde and S. Banerjee, “Data warehousing in the cloud: unveiling the
advantages and challenges for modern organizations”, International Journal of
Science and Research (LJSR) (2023).

4S. A. El-Seoud, H. F. El-Sofany, M. Abdelfattah, and R. Mohamed, “Big data
and cloud computing: trends and challenges.”, International Journal of Interactive
Mobile Technologies 11 (2017).

°A. Nambiar and D. Mundra, “An overview of data warehouse and data lake in
modern enterprise data management”, Big Data and Cognitive Computing 6, |10.
3390/bdcc6040132 (2022).

SN. Miloslavskaya and A. Tolstoy, “Big data, fast data and data lake concepts”,
Procedia Computer Science 88, 7th Annual International Conference on Biologi-
cally Inspired Cognitive Architectures, BICA 2016, held July 16 to July 19, 2016
in New York City, NY, USA, 300-305 (2016).

7J. Schneider-Barnes, C. Groger, A. Lutsch, H. Schwarz, and B. Mitschang, “The
lakehouse: state of the art on concepts and technologies”, SN Comput. Sci. 5, 449
(2024).

8 Relational database, https : / /www . ibm . com / think / topics / relational -
databasesl

YWhat is a relational database?, https://www.oracle.com/database/what-is-
a-relational-database/.

19 Non-relational databases and their types, https://www.geeksforgeeks.org/non-
relational-databases-and-their-types/.

118 R. Cheruku, S. Jain, and A. Aggarwal, “Building scalable data warchouses: best
practices and case studies”, Darpan International Research Analysis (2024).

12M. Paliwal and P. Saraswat, “Approaches of data warehousing and their applica-

tions: a review”, International Journal of Innovative Research in Computer Science
& Technology (2022).

I3N. Janssen, T. Ilayperuma, J. Jayasinghe, F. A. Bukhsh, and M. Daneva, “The
evolution of data storage architectures: examining the secure value of the data
lakehouse”, |Journal of Data, Information and Management (2024).

1P, N. Sawadogo and J. Darmont, “On data lake architectures and metadata man-
agement”, Journal of Intelligent Information Systems 56, 97-120 (2020).

15G. Azzabi, Z. Alfughi, and A. Ouda, “Data lakes: a survey of concepts and archi-
tectures”, Comput. 13, 183 (2024).

131

https://api.semanticscholar.org/CorpusID:15320936
https://api.semanticscholar.org/CorpusID:273303811
https://api.semanticscholar.org/CorpusID:273303811
https://api.semanticscholar.org/CorpusID:264952106
https://api.semanticscholar.org/CorpusID:264952106
https://doi.org/10.3390/bdcc6040132
https://doi.org/10.3390/bdcc6040132
https://doi.org/10.3390/bdcc6040132
https://doi.org/10.3390/bdcc6040132
https://doi.org/https://doi.org/10.1016/j.procs.2016.07.439
https://doi.org/https://doi.org/10.1016/j.procs.2016.07.439
https://doi.org/https://doi.org/10.1016/j.procs.2016.07.439
https://api.semanticscholar.org/CorpusID:269251565
https://api.semanticscholar.org/CorpusID:269251565
https://www.ibm.com/think/topics/relational-databases
https://www.ibm.com/think/topics/relational-databases
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.geeksforgeeks.org/non-relational-databases-and-their-types/
https://www.geeksforgeeks.org/non-relational-databases-and-their-types/
https://api.semanticscholar.org/CorpusID:272321067
https://api.semanticscholar.org/CorpusID:248081010
https://api.semanticscholar.org/CorpusID:248081010
https://api.semanticscholar.org/CorpusID:272010318
https://api.semanticscholar.org/CorpusID:220064078
https://api.semanticscholar.org/CorpusID:271385497

167, Qu and J. Wang, “Real-time data warchousing in the big data environment: a
comprehensive review of implementation in the internet industry”, |Applied and
Computational Engineering (2024).

I7P. Wieder and H. Nolte, “Toward data lakes as central building blocks for data
management and analysis”, Frontiers in Big Data 5 (2022).

18R. Eichler, C. Giebler, C. Groger, H. Schwarz, and B. Mitschang, “Modeling meta-
data in data lakes - a generic model”, Data Knowl. Eng. 136, 101931 (2021).

M. A. Zaharia, A. Ghodsi, R. Xin, and M. Armbrust, “Lakehouse: a new gener-
ation of open platforms that unify data warehousing and advanced analytics”, in
Conference on innovative data systems research (2021).

20J. Schneider-Barnes, C. Groger, A. Lutsch, H. Schwarz, and B. Mitschang, “As-
sessing the lakehouse: analysis, requirements and definition”, in International con-
ference on enterprise information systems (2023).

2IM. R. Llave, “Data lakes in business intelligence: reporting from the trenches”, in
Centeris/projman/hcist| (2018).

2A. A. Harby and F. Zulkernine, “Data lakehouse: a survey and experimental
study”, Information Systems 127, 102460 (2025).

2P, Jain, P. Kraft, C. Power, T. Das, I. Stoica, and M. A. Zaharia, “Analyzing and
comparing lakehouse storage systems”, in Conference on innovative data systems
research (2023).

24M. Cherradi, “Data lakehouse: next generation information system”, [Seminars in
Medical Writing and Education (2024).

% Trigenia s.r.l. https://www.trigenia.it/.
26 Services offered by trigenia s.r.l. https://www.trigenia.it/en/servizi/.

27 Serice energy management in trigenia, https://www.trigenia.it/en/servizi/
service-energy-management/|

BB, Cus, D. Golec, and I. Strugar, “Data lakehouse: benefits in small and medium
enterprises”, Mednarodno inovativno poslovanje = Journal of Innovative Business
and Management (2023).

2 Apache kafka, https://kafka.apache.org/.
30 Introduction to apache kafka, https://kafka.apache.org/intro.

3L Rabbitmq concepts and best practices, https://medium.com/cwan-engineering/
rabbitmg-concepts—and-best-practices—-aa3c699d6108.

32 Rabbitmg, https://www.rabbitmg.com/.

33 What is rabbitmq?, https://scalegrid.io/blog/what-is-rabbitmqg/.

34 Postgresql, https://www.postgresql.org/.

35 What is postgresql?, https://www.postgresql.org/about/.

36 Features of postgresql, https://wuw.postgresql.org/about/featurematrix/.

3" What is postgresql used for?, https : //www . percona . com/blog/what - is -
postgresql-used-for/.

132

https://api.semanticscholar.org/CorpusID:272181615
https://api.semanticscholar.org/CorpusID:272181615
https://api.semanticscholar.org/CorpusID:251705640
https://api.semanticscholar.org/CorpusID:239064140
https://api.semanticscholar.org/CorpusID:229576171
https://api.semanticscholar.org/CorpusID:258362110
https://api.semanticscholar.org/CorpusID:258362110
https://api.semanticscholar.org/CorpusID:69507004
https://doi.org/https://doi.org/10.1016/j.is.2024.102460
https://api.semanticscholar.org/CorpusID:259267242
https://api.semanticscholar.org/CorpusID:259267242
https://api.semanticscholar.org/CorpusID:269402614
https://api.semanticscholar.org/CorpusID:269402614
https://www.trigenia.it/
https://www.trigenia.it/en/servizi/
https://www.trigenia.it/en/servizi/service-energy-management/
https://www.trigenia.it/en/servizi/service-energy-management/
https://api.semanticscholar.org/CorpusID:258291283
https://api.semanticscholar.org/CorpusID:258291283
https://kafka.apache.org/
https://kafka.apache.org/intro
https://medium.com/cwan-engineering/rabbitmq-concepts-and-best-practices-aa3c699d6f08
https://medium.com/cwan-engineering/rabbitmq-concepts-and-best-practices-aa3c699d6f08
https://www.rabbitmq.com/
https://scalegrid.io/blog/what-is-rabbitmq/
https://www.postgresql.org/
https://www.postgresql.org/about/
https://www.postgresql.org/about/featurematrix/
https://www.percona.com/blog/what-is-postgresql-used-for/
https://www.percona.com/blog/what-is-postgresql-used-for/

3 The top 10 features of postgresql, https://www.databytego.com/p/the-top-
10-features-of-postgresql.

39 Timescaledb, https://www.timescale.com/.

40 Timescaledb scalability, https://wuw.timescale.com/blog/scaling-postgresql-
for-cheap-introducing-tiered-storage-in-timescalel

4 Timescaledb compression, https : / /docs . timescale . com/ use - timescale /
latest/compression/.

42 Timescaledb availability, https : / / www . timescale . com/ blog / how - high -
avallability-works—-in-our—-cloud-database|

43 Mqtt, https://mqtt.org/.

133

https://www.databytego.com/p/the-top-10-features-of-postgresql
https://www.databytego.com/p/the-top-10-features-of-postgresql
https://www.timescale.com/
https://www.timescale.com/blog/scaling-postgresql-for-cheap-introducing-tiered-storage-in-timescale
https://www.timescale.com/blog/scaling-postgresql-for-cheap-introducing-tiered-storage-in-timescale
https://docs.timescale.com/use-timescale/latest/compression/
https://docs.timescale.com/use-timescale/latest/compression/
https://www.timescale.com/blog/how-high-availability-works-in-our-cloud-database
https://www.timescale.com/blog/how-high-availability-works-in-our-cloud-database
https://mqtt.org/

Glossary

ACID Atomicity, Consistency, Isolation, Durability
AT Artificial Intelligence

API Application Programming Interface
BI Business Intelligence

CCPA California Consumer Privacy Act
CoW Copy on Write
CRUD Create, Read, Update, Delete

DL Data Lake

DW Data Warehouse

ELT Extract, Load, Transform
ESCo Energy Service Company

ETL Extract, Transform, Load
GDPR General Data Protection Regulation

IoT Internet of Things

IT Information Technology
LH Data Lakehouse

MFA Multi Factor Authentication
MoR Merge on Read

OLAP Online Analytical Processing

OLTP Online Transactional Processing
RDBMS Relational Database Management System

SME Small and Medium Sized Enterprise

134

	Introduction
	Data Warehousing
	Big Data Analytics
	History of Data Platforms
	Traditional Databases
	Data Warehouses
	Data Warehouse Architecture
	Design of a Data Warehouse

	Data Lakes
	Data Lake Architecture
	Design of a Data Lake
	Modeling Metadata in Data Lakes

	The Need for a New Data Platform
	Pros and Cons of Data Warehouses and Data Lakes
	Combining Data Warehouses and Data Lakes
	The Impact on Business Intelligence

	The Data Lakehouse
	Defining the Lakehouse
	Features
	Technical Requirements
	Analytical Workloads
	General Architecture

	Trigenia S.r.l.
	Services
	Digital
	Energy
	Finance

	Analysis of the Problem
	Analysis of the Needs of Trigenia
	Possible Solutions to the Problem
	Analysis of Existing Products
	Sending Information Over the Network
	Relational Database
	Data Lakehouse

	Design of the Infrastructure
	Data Sources
	Sending Messages
	Collecting Messages From Multiple Sources
	Relational Database
	Data Lakehouse
	Manipulating the Data

	Building the Infrastructure
	Building the Components
	Resembling IoT Devices
	Importing Historical Data From Files
	The Data Collector
	The Relational Database
	The Data Lakehouse

	Connecting All Components
	Maintaining Helpful Metadata
	Testing Collection Performance

	Usage of Collected Data
	Analyses Over Collected Data
	Machine Learning Applications
	Accessing Data Via Web

	Results
	Collecting Performance With Heavy Workloads
	Retrieving Data
	Querying Data

	Conclusions
	Glossary

