
POLITECNICO DI TORINO
MASTER’s Degree in CINEMA AND MEDIA

ENGINEERING

MASTER’s Degree Thesis
From Meshes to Splats: Exploring Dynamic Gaussian
Splatting for Human Avatars in Volumetric Capture

Workflows

Supervisors

Prof. Andrea BOTTINO

Prof. Francesco STRADA

Mr. Sven BLIEDUNG VON DER HEIDE

Candidate

Arianna FERRARIS

APRIL 2025

Abstract

Volumetric capture has revolutionized immersive media by reconstructing virtual
scenes from real-world footage, captured through multi-camera setups. This method
preserves authentic movements and textures without relying on computer-generated
elements. While mesh-based representations have dominated volumetric pipelines,
their limitations in handling complex scenarios restrict creative freedom and impose
strict capture guidelines. Gaussian Splatting introduces a novel approach for real-time
radiance field rendering, using 3D Gaussians to represent scenes. The core purpose of
this thesis is to investigate Dynamic Gaussian Splatting as a potential alternative to
meshes in Volucap GmbH ’s volumetric capture workflow, focusing on human avatars
rendering for extended reality (XR) experiences.
This research explores two primary implementation approaches for Dynamic Gaussian
Splatting: frame-by-frame Gaussian Splatting and 4D Gaussian Splatting. The
advantages and challenges of both these methods are analyzed to determine the most
suitable approach for integration into the company’s existing workflow.
This study then delves into a comparison between mesh-based and Gaussian-based
outputs both across standard scenarios, where meshes generally perform well, and
complex cases that challenge traditional pipelines, such as transparencies, thin
fabrics and objects, dark clothing, uniform textures, reflective surfaces and hair
reconstruction. The evaluation integrates quantitative and qualitative analysis,
assessing Gaussian Splatting’s ability to overcome mesh limitations while maintaining
Volucap’s production standards. The findings will help determine the suitability of
this technique for a potential integration into Volucap’s workflow.

Table of Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Purpose of the study and Volucap’s requirements 4

2 State of the Art 7
2.1 Volumetric Capture . 7

2.1.1 Studio . 7
2.1.2 Shooting pipeline . 9
2.1.3 Post-production pipeline . 11

2.2 Limitations of Mesh-Based Reconstruction 19
2.3 3D Gaussian Splatting . 22

2.3.1 Related work . 22
2.3.2 Overview of 3D Gaussian Splatting 24
2.3.3 Optimization . 26
2.3.4 Rasterization . 27

2.4 Frame-by-frame Gaussian Splatting 29
2.5 4D Gaussian Splatting . 29

2.5.1 4D Gaussian Splatting Framework 30
2.5.2 Gaussian Deformation Field Network 31
2.5.3 Optimization . 33

3 Gaussian Splatting Implementation Process 34
3.1 Input data . 35
3.2 Frame-by-frame production pipeline 37
3.3 4D Gaussian Splatting production pipeline 42
3.4 Evaluation of the approaches . 43

3.4.1 Frame-by-frame approach . 43
3.4.2 4D Gaussian Splatting approach 44
3.4.3 Method of Choice . 45

4 Meshes VS Gaussian Splatting 47
4.1 Experimental Setup . 47
4.2 Tested Scenarios . 50

4.2.1 Standard capture scenario (S) 50

II

TABLE OF CONTENTS

4.2.2 Transparent objects (TR) . 51
4.2.3 Thin objects (TH) . 51
4.2.4 Reflective objects (R) . 52
4.2.5 Loose hair (H) . 53
4.2.6 Dark and Uniformly-textured outfits (DU) 53

5 Evaluation of the Results 55
5.1 Quantitative Evaluation . 55

5.1.1 Training Time . 55
5.1.2 Output File Size . 58

5.2 Qualitative Evaluation . 60
5.2.1 Standard capture scenario . 61
5.2.2 Transparent objects . 61
5.2.3 Thin objects . 63
5.2.4 Reflective objects . 64
5.2.5 Loose Hair . 65
5.2.6 Dark and Uniformly-Textured Outfits 66

6 Conclusion 69

A Single-frame training times 72

B Single-frame output file sizes 74

Bibliography 80

III

Chapter 1

Introduction

1.1 Context and Motivation

In recent years, the video entertainment industry has undergone significant transfor-
mations. Viewers increasingly find traditional 2D video insufficient, drifting toward
more immersive and interactive technologies that are rapidly evolving and reshaping
the industry. As demand for deeper engagement grows, new formats are emerging,
offering enhanced realism and interactivity.

The first step toward immersion beyond 2D video was the 360° video (also called
omnidirectional video), where a scene is recorded in all directions, allowing users to
experience a complete 360° view.[1] This is made possible by using either a single
omnidirectional camera or multiple cameras positioned in a circular array to capture
the environment from every angle.
Omnidirectional videos provide three degrees of freedom (3 DoF), meaning the viewer
can rotate their head along the pitch, yaw, and roll axes.[2] This allows them to
freely choose their viewing direction, creating a more immersive and dynamic viewing
experience. However, a major limitation of 360° video is the lack of physical move-
ment: the viewer cannot move within the scene or interact with objects, reducing the
sense of true immersion. This led to further advancements in the quest for a fully
immersive viewing experience.

Volumetric capture is a technique that records a dynamic scene from multi-
ple angles over time using synchronized cameras and depth sensors to capture an
environment, a person, or an object. Instead of producing a flat 2D image, this
method generates a full volumetric representation of the subject, allowing for true
three-dimensional viewing. Through post-processing, this raw volumetric data is
converted into a volumetric video, which can be viewed from any angle, maintaining
realistic depth, color, and lighting.[3]
Unlike 360° video, volumetric videos offer six degrees of freedom (6 DoF): the same
three rotational movements as 360° video (pitch, yaw, and roll) plus three transla-
tional movements along the X, Y, and Z axes.[1] This means that, beyond simply

1

Introduction

changing their viewing direction, users can also physically move through the space,
enhancing their sense of presence and immersion.

Since this technique constructs the virtual environment using real-world video
footage, captured directly by advanced cameras or multi-camera setups, the virtual
world becomes a true reflection of real-world events and physical actions.[2] Unlike
computer-generated assets, which rely on digitally modeled objects and characters,
volumetric video directly captures reality, preserving authentic movement, natural
textures, and realistic lighting conditions.
This approach results in an unparalleled "reality illusion," offering a level of authen-
ticity and presence that traditional computer graphics cannot easily achieve.

Volumetric videos can be viewed on a variety of devices, including desktops,
mobile devices, and AR/VR platforms. However, the most immersive experience is
achieved through Head-Mounted Displays (HMDs).
An HMD is a wearable display device that provides a fully immersive viewing ex-
perience, surpassing traditional flat screens. These devices use a built-in Inertial
Measurement Unit (IMU) to track both head position and rotation, dynamically
adjusting the displayed video to match the user’s movements within the virtual
environment.[2]
By allowing users to look around and move freely inside the scene, HMDs create a
heightened sense of presence. This level of spatial immersion enables users to feel as
though they are truly inside the recorded environment, delivering a deeply engaging
and interactive experience.

As the demand for immersive and interactive content grows, companies special-
izing in volumetric capture have become crucial in advancing this technology. In
this rapidly evolving landscape, Volucap has distinguished itself as a pioneering force
within the volumetric capture industry.

Volucap was founded in 2018 and has since established itself as one of the world
leading companies in the volumetric capture industry, renowned for its unparalleled
quality and resolution in immersive content creation. Volucap not only produces
content for XR applications, but is also deeply involved in cinematic volumetric
capture, providing its cutting-edge technology to major feature film productions such
as Mickey 17 and Matrix Resurrections.
Furthermore, Volucap’s expertise extends to innovative work in the field of deepfakes,
positioning the company at the forefront of technological advancements in digital
human representation.

Volucap’s core product consists of volumetrically captured human avatars, which
are used for visualization, VFX, VR, AR, and various other applications, offering
high-resolution meshes and texture sequences. The ability to create these exception-

2

Introduction

ally realistic human avatars is made possible by Volucap’s state-of-the-art studio
located in Studio Babelsberg’s FX Center. This high-tech facility is equipped with
last generation cameras and a unique lighting system, enabling the high-fidelity
volumetric capture of people and objects with remarkable accuracy and realism.

A crucial step in Volucap’s pipeline for creating human avatars is the generation
and subsequent texturing of 3D meshes. Traditionally, meshes have been the domi-
nant method for representing 3D scenes in volumetric capture, primarily due to their
balance between simplicity and expressive power. They can, in fact, approximate
complex geometries with high precision by adjusting the density of vertices and faces,
offering flexible levels of detail. Moreover, their compatibility with modern graphics
hardware makes them highly efficient for real-time rendering and simulation, ensuring
smooth performance in interactive applications.[4]

However, through years of experience, the Volucap team has identified several
limitations of meshes, particularly in challenging scenarios. Some of the most
problematic cases include:

• Translucent and reflective objects (such as glass, polished metals, or glossy
fabrics);

• Thin objects and fine clothing details that do not provide sufficient depth
information;

• Extremely dark objects, which suffer from low contrast in depth estimation;

• Highly uniform textures, where the absence of distinguishable feature points
results in poor scene reconstruction;

• Hair, difficult to capture due to its intricate geometry and fine texture details.

These limitations impact both Volucap’s workflow and client projects. To ensure
optimal results, clients must strictly adhere to wardrobe guidelines given by the
Volucap team, often limiting their creative freedom. Additionally, wardrobe tests must
be conducted several days before a shoot, requiring additional time and resources
without direct compensation.
This further motivates the exploration of alternative techniques that can overcome
these constraints while maintaining high-quality visual output.

To address these challenges, alternative representations have emerged, one of the
most promising being point-based techniques. In this category, a groundbreaking
new approach has regained recognition as a promising solution: Gaussian Splatting.

Gaussian Splatting is a novel approach for real-time radiance field rendering
that represents scenes using 3D Gaussians. This method enables state-of-the-art
visual quality while maintaining competitive training times, allowing for high-quality

3

Introduction

novel view synthesis at real-time frame rates. Scene geometry is modeled using a
set of anisotropic 3D Gaussians, characterized by 3D position, opacity, anisotropic
covariance, and spherical harmonics coefficients, making it particularly efficient for
real-time rendering applications.
One of the key advantages of 3D Gaussians is that they serve as a differentiable volu-
metric representation, but they can also be rasterized very efficiently by projecting
them into 2D space and applying α-blending. This makes Gaussian Splatting an
attractive alternative to mesh-based scene representations.[5]

While 3D Gaussians are highly effective for static scene representation, extending
them to dynamic scenes introduces additional challenges. This research explores the
potential of Dynamic Gaussian Splatting as a way to overcome the limitations of
mesh-based reconstruction, investigating how it can be integrated into a volumetric
capture workflow to improve the representation of dynamic human avatars.

As Volucap continues to push the boundaries of volumetric capture, the team
remains committed to exploring cutting-edge technologies that address the limitations
of traditional mesh-based approaches. Gaussian Splatting, and more specifically
Dynamic Gaussian Splatting, represents a promising alternative that could be capable
of expanding creative possibilities.
By integrating these advanced techniques, Volucap aims to redefine the standards of
volumetric capture, ensuring unparalleled quality for the next generation of VR, AR,
and cinematic applications.

1.2 Purpose of the study and Volucap’s requirements

The core purpose of this thesis is to investigate the feasibility and benefits of inte-
grating Dynamic Gaussian Splatting into Volucap’s current workflow. In particular,
this research aims to evaluate how well Gaussian Splatting functions as a dynamic
scene rendering technique for human avatars, intended for extended reality (XR)
experiences.

By researching a new rendering technique that could replace meshes, this work
seeks to address longstanding issues that Volucap has encountered since establishing
its volumetric capture studio in 2018. Despite continuous technological advancements
in both hardware and software, meshes remain fundamentally constrained, failing to
accurately reproduce specific challenging scenarios that significantly impact the final
output quality. These limitations have led the Volucap team to actively search for
alternative solutions capable of resolving these problems.
This thesis proposes that a Gaussian Splatting-based workflow could offer a viable
alternative, integrating this innovative radiance field rendering approach into Volu-
cap’s well-established pipeline.

4

Introduction

The case study considered in this research is the representation of human avatars,
which will later be used as primary and secondary characters in extended reality
experiences. This decision is driven by the fact that the majority of Volucap’s pro-
ductions are aimed at the VR and AR market, where the company is trusted to
create high-quality, photorealistic human avatars optimized for HMD visualization.

Furthermore, this thesis aims to examine the challenges of merging state-of-the-
art volumetric capture systems with cutting-edge Gaussian Splatting technology,
evaluating the compatibility of Gaussian-based scene representations with high-end
volumetric capture data.

Like other leading volumetric capture companies, Volucap relies on a studio and
processing pipeline tailored for mesh-based rendering. Over time, the Volucap team
has developed custom processing tools, all of which are designed around the use
of meshes. Introducing an entirely different rendering technique into this workflow
presents a significant challenge, requiring adjustments to the input data, obtained
from the cameras and early pipeline stages, to be compatible with Gaussian Splat-
ting’s training requirements.

To develop solutions that best fit Volucap’s needs, I was given a set of require-
ments that shaped my research and development process.
The first requirement was that all tests and results had to be derived from real footage
captured at Volucap’s studio. Since the ultimate objective is to integrate Gaussian
Splatting into Volucap’s pipeline, testing the workflow on external or synthetic data
would have been irrelevant. Therefore, this research was conducted exclusively using
volumetric capture data obtained from past Volucap productions, along with test
footage captured specifically for this study.

A second constraint was the use of Volucap’s proprietary camera calibration sys-
tem. During each shooting session, the Volucap team employs a custom calibration
method, specifically developed for the company’s volumetric capture studio, ensuring
optimal geometric accuracy and alignment. To generate Gaussian Splatting outputs,
I was required to use Volucap’s calibration system rather than relying on automated
camera calibration software such as COLMAP, which is commonly used in radiance
field rendering workflows. Since most state-of-the-art radiance field techniques depend
on COLMAP for camera parameter estimation, this constraint necessitated bypassing
COLMAP’s calibration step and instead importing externally calibrated camera data.
This proved to be a major challenge, as not all Gaussian Splatting implementations
support external camera calibration, leading to incompatibility issues depending on
the specific software or workflow used.

Another significant challenge involved processing Gaussian Splatting representa-

5

Introduction

tions using high-resolution input images. Since Volucap’s human avatars are designed
for extended reality experiences, maintaining high visual fidelity is essential, requiring
the use of high-resolution images during training. However, working with large-scale,
high-resolution inputs introduces severe computational challenges, causing longer
processing times and increased memory consumption.

Considering all of these limitations, this research aims to determine whether
Gaussian Splatting can provide a viable alternative to mesh-based rendering in
Volucap’s workflow. By addressing the challenges of integration and evaluating its
potential benefits, this study seeks to assess whether Gaussian Splatting can enhance
volumetric capture while maintaining the high visual standards required for XR
applications.

6

Chapter 2

State of the Art

2.1 Volumetric Capture

In this chapter, Volucap’s workflow is analyzed in detail, serving as a reference model
for a comprehensive study on volumetric capture pipelines. As one of the world’s
leading companies in volumetric capture production, Volucap’s workflow serves as an
excellent reference for analysis, both in terms of capture technology and processing
pipeline, given its ability to produce some of the highest-quality volumetric outputs
available on the market.

Volucap GmbH was founded as a joint venture in June 2018 by Fraunhofer HHI,
in collaboration with Studio Babelsberg, ARRI, UFA, and Interlake. Shortly after, a
commercial volumetric studio was established on the film campus of Studio Babelsberg,
with commercial production beginning later that year following an initial testing
phase. The core technology behind volumetric video production is 3D Human Body
Reconstruction (3DHBR), originally developed by Fraunhofer HHI and later refined
by Volucap’s team to meet the company’s specific requirements.[6]

This chapter presents the current state of Volucap’s technology, providing an
overview of the studio’s hardware and an in-depth breakdown of each step in the
workflow. The processing pipeline for capturing and producing volumetric video
has undergone continuous improvements, incorporating new processing modules and
workflow optimizations over time. As a result, Volucap’s volumetric capture studio
has evolved significantly, achieving a highly advanced configuration that enables the
production of some of the highest-quality volumetric video worldwide.

2.1.1 Studio

The system is composed of 42 custom-built cameras, arranged in stereo pairs and
evenly distributed within a metal truss structure forming a cylinder measuring 6
meters in diameter and 4 meters in height. This setup allows for the full 360° capture
of volumetric video. Each camera features a 9K resolution sensor with 65 Megapix-
els, ensuring ultra-high-fidelity recordings. Additionally, the cameras are equipped

7

State of the Art

with global shutters, a crucial feature for capturing fast motion sequences without
distortion. Unlike rolling shutters, a global shutter exposes all pixels simultaneously,
effectively freezing moving objects in place. This eliminates motion artifacts, making
it particularly suitable for dynamic subjects and rapid movement sequences. For
this reason, the use of global shutter cameras is essential to maintaining high image
quality.[7]
The combined ultra-high-resolution video output from all cameras results in an
enormous data volume, reaching approximately 4TB per minute when recording in
9K resolution.
The system completely relies on a vision-based stereo approach for multi view 3D
reconstruction and does not require separate 3D sensors.[6]

Figure 2.1: Volucap’s volumetric capture studio

All cameras undergo an initial color correction and adaptation process, ensuring
consistent and uniform imagery across the entire multi-view camera system. This
step significantly impacts stereo depth estimation and, more importantly, enhances
overall texture quality during the final texturing process of the 3D object.[8]
A flat-field correction is applied to each camera to compensate for image non-
uniformities caused by variations in sensor pixel sensitivity, illumination inconsisten-
cies, and lens imperfections such as vignetting.[9]
Additionally, white and black balance corrections are applied, along with a standard
gamma LUT, ensuring harmonized imagery across all cameras in the multi-view
system.

The lighting system consists of twelve Arri SkyPanels, two Arri Orbiters, and
two Nanlux Evoke 1200s. The studio is primarily illuminated with diffused lighting
from the ceiling, where six SkyPanels provide even lighting from all directions. An
Arri Orbiter, positioned overhead, simulates sunlight from above, adding a direct

8

State of the Art

light source.
A three-point lighting setup is then used to illuminate the subject, with three lights
serving as the main, fill, and back lights. For this purpose, the Nanlux Evoke 1200s
and Arri Orbiters are utilized. This setup ensures a uniformly lit textured mesh with
minimal internal shadows. The diffused lighting further provides optimal conditions
for re-lighting 3D models during later design phases, such as in VR experiences.[6]
Additionally, all lights are flickering and synchronized with the camera shutter speed,
preventing visible light flickering during capture.

2.1.2 Shooting pipeline

Shooting days at Volucap vary significantly, as each production differs based on
several factors, including the type of content being captured, the number of clients
and cast/crew present and the number of required shots.
A typical shooting day begins with booting up the system and preparing it for capture.
The lights, cameras and recorders are turned on, along with the timecode system
and the synchronization setup that ensures the cameras’ flickering is aligned with
the lights’ flickering. Once everything is operational, a calibration and clean plate
recording is conducted. This is a critical step before filming begins, as it ensures that
all cameras are precisely calibrated and that their exact positions within the studio
space are accurately recorded.

Camera calibration is a process that estimates lens and image sensor param-
eters to accurately model optical characteristics. These parameters are essential
for correcting lens distortion, measuring object dimensions in real-world units and
determining the camera’s position within the volumetric capture studio. The key
parameters estimated during calibration include intrinsic and extrinsic parameters as
well as distortion coefficients.
To compute these parameters, a set of 3D world points and their corresponding 2D
image points is required. These correspondences are typically obtained by capturing
multiple images of a calibration pattern, such as a checkerboard, allowing for precise
camera parameter estimation and improved accuracy in 3D scene reconstruction.[10]

The camera calibration algorithm calculates the camera matrix by estimating
both extrinsic and intrinsic parameters.
Extrinsic parameters (rotation R and translation t) define the rigid transformation
that maps the 3D world coordinate system to the camera’s 3D coordinate system,
specifying the camera’s position and orientation in the scene. The optical center
serves as the origin of the camera’s coordinate system, with the x- and y-axes defining
the image plane.
Intrinsic parameters include the focal length, the optical center (principal point), and
the skew coefficient and define the projective transformation from the camera’s 3D
coordinates to 2D image coordinates, detailing the internal features of the camera.[10]

9

State of the Art

Figure 2.2: Camera calibration process
Source: [10]

Determining camera parameters involves processing the captured images that
include the calibration checkerboard. This process is time-consuming and is typically
performed by the team at a later stage, resulting in an XML file containing all camera
parameters. Therefore, during a standard shooting day, only the calibration checker-
board is captured, postponing the parameter estimation to subsequent processing
sessions.

Once camera calibration recording is complete, a clean plate capture is per-
formed. Clean plates are recordings of an empty studio, used to develop a statistical
background model for each camera. This model is fundamental for the standard
segmentation mode for foreground-background separation.[11]
In the current Volucap pipeline, this separation is primarily achieved using a cus-
tom AI-based tool that detects subjects against the background and generates a
segmentation mask. Clean plates still remain useful, especially for removing external
objects present during the shoot, such as chairs or props that need to be erased in
post-processing.
After these preliminary steps, the actual shooting process begins.

During a shoot, two teams work closely together to ensure a smooth process.
The first is the Volucap team, responsible for the technical execution of the shoot.
Their tasks include monitoring and operating the cameras, ensuring proper audio
recording, adjusting clothing and props for optimal capture, updating the shot list
for post-production, and coordinating with clients to ensure their needs are met. The
second team is the client’s team, which typically consists of a director, producer, hair
and makeup artists, and other professionals depending on the project, along with the
actors. Seamless collaboration between these two teams is essential for a successful
shoot and high-quality final output.

Once the shooting begins, the volumetric capture studio (also called rotunda) is
completely sealed off from the outside. To allow the client’s team to monitor the
shoot in real-time, two large screens placed outside the rotunda display live feeds
from the cameras, enabling the director and crew to observe the performance and
provide live feedback to the actors.

10

State of the Art

For the actors, performing in a volumetric capture environment is fairly different from
a traditional on-set experience. They are often alone inside the rotunda, unless the
scene requires multiple actors. Additionally, being surrounded by 42 cameras from all
angles can be somewhat disorienting. To mitigate this, one of the cameras has been
designated as the "main camera", serving as a fixed reference point to help actors
maintain their orientation. Despite being physically separated from the actors, the
director guides the performance remotely by watching the live feed on the monitors
and providing real-time instructions via a microphone system that feeds directly into
the rotunda.
When the director calls "Action", the camera operator starts the recording and
monitors the process to ensure everything runs smoothly. All 42 cameras record
simultaneously, remaining perfectly synchronized through the timecode system. Mean-
while, the camera operator updates the shot list, logging take details such as the shot
name, type (standard take, calibration, or clean plate), actor, director’s notes, and
technical remarks.

Over the course of the day, one or two additional camera calibrations may be
performed, depending on the length of the shoot. Since actors move around inside
the rotunda, slight shifts in the rig structure may occur, which could impact the
accuracy of the initial calibration. Performing multiple calibrations throughout the
day helps to ensure precise data capture.

Once filming is complete, all recorded takes are exported onto Volucap’s network
storage system. After the export is finalized, post-processing can begin.

2.1.3 Post-production pipeline

Each step of the pipeline is executed by a dedicated script. This paragraph will
provide a detailed breakdown of their functionality, offering insight into how Volucap
leverages its custom-built tools to produce state-of-the-art dynamic 3D human avatars.

The first step of the pipeline is Data Conversion. During filming, the cameras
capture scenes in a raw data format, which results in extremely large files, hard to
handle. Therefore, a conversion is applied to each frame of every take, including
camera calibrations and clean plates, compressing the raw data into JPG format.
This conversion significantly reduces file size, making the data more manageable for
subsequent pipeline stages while ensuring compatibility with the libraries and tools
used in the following steps.

Once Data Conversion is complete, the Masking step begins. This crucial process
handles foreground-background separation for each image, ensuring that only the
main subject, typically an actor, is included in the binary mask, while the studio
background is entirely removed. Masking serves a dual purpose: it eliminates unnec-

11

State of the Art

essary elements from the captured images and significantly reduces the amount of
data that must be processed in the following pipeline stages.
The masking tool, developed by the Volucap team, is AI-based and trained to identify
the background from the foreground by recognizing human figures within the frame.
For optimal performance, the AI relies on clear edges and strong contrasts, which
help define the subject’s silhouette.

Figure 2.3: Original capture Figure 2.4: Mask

Before the implementation of this AI-driven approach, foreground-background
separation was achieved through background subtraction (difference keying), where
the clean plate was essential for accurately isolating the actor from the scene.

The next steps in the process are Rigging and Mask Filtering, aimed at generating
a 3D skeleton that accurately represents the actor’s pose in each frame. This skeleton
is then used for mask filtering, identifying masks with missing body parts that should
be discarded.
The process begins with the creation of 2D skeletons for each input image, simulating
the actor’s pose from every available camera angle. These individual skeletons are
then triangulated to form a single 3D skeleton, ensuring that its pose is as close as
possible to the actual positioning of the actor across all views.
Since the 3D skeleton is derived from multiple perspectives, it provides a more reliable
reference than any single 2D view. This makes it particularly useful for evaluating
the accuracy of the AI-generated masks. To verify each mask, the 3D skeleton is
reprojected into image space, aligning it with the viewpoint of the corresponding
camera. This allows us to determine which body parts should be visible in that
specific mask based on the skeleton’s positioning. If a mask is found to be missing

12

State of the Art

body parts that should be present, the Mask Filtering step removes it from the
dataset, ensuring that only complete and accurate masks proceed to the next stage
of the pipeline.

Figure 2.5: Skeleton

Rigging becomes more complex when multiple actors are captured in the same
scene. Since the cameras are positioned all around them, the actors’ positions within
the frame continuously change depending on the viewing angle. For example, in a
front-facing view, Actor A may appear on the right and Actor B on the left, whereas
in a rear view, their positions are reversed, with Actor B now on the right and Actor
A on the left. This constant switching can create confusion for the rigging tool, which
must consistently track which skeleton belongs to which actor to ensure accurate
triangulation.
To address this challenge, a technique based on image histograms was implemented.
By analyzing the colors of the actors’ clothing, the system can determine their relative
positions in each view, helping to correctly identify and match the skeletons. This
method significantly improves the reliability of the rigging process, ensuring that
each actor’s movements are accurately reconstructed across all perspectives.
Removing faulty masks is crucial, as it significantly reduces the need for manual
corrections in later pipeline stages while also contributing to the creation of a more
accurate final mesh. This step is, however, optional.

The next step focuses on generating the 3D Model using a custom-built tool
that processes image files, the previously created and filtered masks, and the camera
calibration XML file obtained from the calibration data processing.
The process starts with detecting feature points across the images and matching
them between all available views. These corresponding points are then triangulated

13

State of the Art

into a sparse 3D point cloud using the camera calibration data, effectively converting
2D features into 3D space. The resulting 3D points provide an optimal estimate that
minimizes reprojection error across views, ensuring that each point aligns as closely
as possible with its corresponding 2D projections in all images.
The processing of camera calibration data, which estimates the camera parameters,
combined with the generation of a sparse point cloud, represent the key steps of a
technique known as Structure-from-Motion (SfM) [12].

A key subprocess of 3D Model creation is 3D Reconstruction, which follows the
principles of Multi-View Stereo (MVS) [13], that reconstructs dense 3D geometry
from multiple images by estimating depth maps and fusing them into a point cloud.
This relies on stereo depth estimation, taking as an input the set of images and
the camera parameters. In this case, the sparse point cloud is also considered: this
guides the selection of stereo image pairs by identifying which images have sufficient
overlapping feature points.
As described in the volumetric capture studio overview, the cameras are arranged in
stereo pairs, evenly distributed within the cylindrical setup. These stereo configura-
tions provide essential 3D information from their respective viewpoints, forming the
basis for depth computation.
Initially, 2D depth maps are computed. The chosen approach employs an iterative
algorithmic structure [14, 15] that compares projections of 3D patches between the
left and right images of each stereo pair. This is achieved through point transfer via
homography mapping, which defines the relationship between corresponding points
in both images. Given that the camera system is fully calibrated, the transformation
of a plane in 3D space across two images can be accurately represented using the ho-
mography matrix. This ensures precise depth estimation by leveraging the geometric
relationships between cameras and their respective viewpoints.[8]

From the 2D depth maps, 3D points are generated, each containing normal
information that describes surface orientation. This 3D information obtained from all
stereo pairs is then merged using a visibility-driven patch-group generation algorithm
[16], which eliminates occluded points to improve foreground segmentation. The
algorithm applies optimized visibility rules in both the 2D image space and the 3D
point cloud domain, ensuring that only the most reliable points are retained. This
results in a high-resolution 3D dense point cloud, often containing tens of millions of
points per frame.
For each of these points, a confidence value is assigned based on the reliability of the
depth estimation algorithm. This confidence level reflects how certain the algorithm
is about the accuracy of a given point’s depth calculation. The confidence is higher
in areas with a greater density of points, as the abundance of data allows for more
precise estimations. This information plays a crucial role in the subsequent Mesh
Cleaning process, ensuring that only the most accurate data contributes to the final
reconstruction.

14

State of the Art

To make the data compatible with standard rendering engines, the dense point cloud
needs then to be converted into a single, consistent mesh.[8]

The meshing process consists of two main steps. First, Screened Poisson Surface
Reconstruction (SPSR) is applied [17], to efficiently generate a watertight mesh,
significantly reducing geometric complexity while closing holes caused by occlusions
or data imperfections. Next, the mesh is trimmed and cleaned based on sampling
density, ensuring outliers and artifacts are removed. Finally, the surface is further
simplified using Quadric Error Metrics [18], allocating more triangles to detailed
areas while reducing their number in simpler regions, maintaining mesh topology
and boundary integrity to enhance overall quality.[8]
After completing these steps, the final sequence of meshes is generated, optimized for
both accuracy and efficiency.

Between 3D Model creation and the next step lies the only manual stage of the
pipeline: Mask Fixing.
After generating the meshes, it is crucial to verify that all body parts and clothing
elements of the captured subject are fully represented in each frame. In some cases,
certain limbs or fabric details may be missing due to incomplete masks, leading to
gaps in the final mesh. To ensure the highest quality output, this step is essential.
The process itself is straightforward: thanks to the GUI of the meshing tool, the
meshes (one per frame) can be inspected from all angles, allowing for a thorough
check to ensure that all expected details are present and intact. If an issue is detected
in one or more frames, a manual mask correction is performed.
First, the affected masks are identified, as those where a specific body part or clothing
item is absent. Once located, the missing section is manually added back to the
mask, followed by a Remesh process, which updates the 3D model to incorporate the
corrected areas.
Although manual intervention in this step can significantly improve the final prod-
uct, the extent of required corrections varies. When scenes are captured following
wardrobe guidelines, the need for manual fixes is minimal. However, in more chal-
lenging cases, mask fixing becomes a necessary step. To reduce reliance on human
intervention, the Rigging and Mask Filtering step was recently introduced, helping
to automate part of this process and streamline the workflow.

The next step in the process is Mesh Cleaning, where imperfections in the meshes
are corrected to create smoother surfaces and remove unwanted fragments. This
is achieved by applying a series of filtering algorithms sequentially, with multiple
iterations to refine the results.
One of the predominant cleaning steps is Smoothing, which leverages the confidence
values calculated during depth estimation to determine the level of smoothing required
in different areas. Regions with low confidence values indicate less accurate depth
estimation, often resulting in noticeable flickering in the meshes. To mitigate this, the

15

State of the Art

smoothing process is applied more aggressively in these areas, while high-confidence
regions, where flickering is minimal or absent, receive a lighter treatment.
Another essential part of the cleaning process is Removal of Small Parts. This step
evaluates the bounding box size of each independent object in the scene. If an object’s
bounding box falls below a certain threshold, the algorithm assumes it to be an
unwanted residual, such as floor or background artifacts, and automatically removes
it. However, in cases where the scene includes small props that need to be preserved,
a dedicated setting can be activated to retain these objects.
Additionally, the Holes Filling algorithm plays a crucial role by identifying and filling
surface gaps, addressing potential reconstruction errors caused by missing feature
points.
These are just a few of the numerous operations applied during Mesh Cleaning, a
fundamental step that significantly enhances the overall quality of the final 3D mesh.

Figure 2.6: Original model Figure 2.7: Cleaned model

The following step in the process is Tracking, which reduces the total number of
meshes in a sequence by morphing them, ensuring a more stable representation over
time.
The Mesh Cleaning step produces independent, cleaned meshes per frame, each with
its own individual topology, which can lead to inconsistencies when viewed as a se-
quence. To address this, a mesh registration process is applied, creating sequences of
meshes with identical topology and enhancing temporal stability. The process begins
by defining key meshes, which serve as reference points in the sequence; succeeding
meshes are then calculated by reshaping the key frame to match the geometry of
neighboring frames, while preserving topology and local structures. To better handle
sudden changes in topology within the mesh sequence, this process is performed
bi-directionally, ensuring a more stable transition between frames. Whenever the

16

State of the Art

deviation of a registered mesh reaches a predefined threshold, a new key mesh is
introduced.
This step is highly beneficial, as it allows new meshes to be generated only for
key frames, while for the registered meshes, only the 3D vertex positions need to
be adjusted. Additionally, it plays a crucial role in the next stage of the pipeline,
Unwrapping, making the overall process more efficient by maintaining the same
texture atlas for meshes with the same topology.[6]

During the Unwrapping step, the texture information of adjacent triangles is
grouped into a texture patch, provided that the normal vectors across all triangles
remain within a defined threshold. If this threshold is exceeded, a new texture patch
is generated. Once the texture patches are defined, they are arranged into a texture
atlas, starting with the largest patch placed in the bottom-left corner.
Two key mechanisms are integrated into the texture atlas in order to ensure the
efficient application of a block-based video coding method. First, the topology is
preserved across each registered mesh sequence, meaning that the shape and position
of all patches remain unchanged inside of the texture atlas, while only the content
within each patch is updated. Second, the gaps between patches are interpolated,
preventing excessive data rates when encoding image blocks that span across patch
boundaries. In addition to improving encoding efficiency, this method also simplifies
texture grading across the registered sequence of meshes, further enhancing the
overall quality and stability of the final output.[6]

The next step is Texturing, where the previously generated texture atlases are
applied to the 3D meshes to ensure accurate surface detail representation. These
texture atlases contain all necessary color information, mapped to corresponding
UV coordinates on the mesh. By assigning these UV coordinates to each vertex,
the correct texture regions are projected onto the 3D model, ensuring a seamless
appearance. This process allows the mesh to accurately retain its original visual
characteristics, preserving both fine details and color consistency across frames.

Figure 2.8: Texture atlas

17

State of the Art

The final step of the pipeline is the Encoding, where the registered mesh sequence
is compressed and multiplexed into an MP4 file using a standard mesh encoder. This
process ensures that the sequence can be seamlessly integrated into external software
environments, such as Unity or Unreal Engine, through dedicated plugins.
During encoding, the three elementary streams (Mesh, Texture Atlas, and Audio)
are combined into a single MP4 file, making it ready for efficient transmission and
storage. On the receiving end, Unity and Unreal plugins facilitate the integration
of volumetric video assets into AR and VR applications. These plugins contain a
built-in de-multiplexer and associated decoders, enabling real-time decoding of the
mesh sequence for smooth playback and interaction within the target application.[6]

Figure 2.9: Encoded file

Figure 2.10: Volucap pipeline

18

State of the Art

2.2 Limitations of Mesh-Based Reconstruction

In order to reconstruct volumetrically captured scenes, the mesh-based approach
remains the most widely used method.
As previously mentioned, meshes have traditionally been the dominant technique
for representing 3D scenes in volumetric capture, primarily due to their balance
between simplicity and expressive power. By adjusting the density of vertices and
faces, meshes can accurately approximate complex geometries with high precision,
allowing for flexible levels of detail. Additionally, their compatibility with modern
graphics hardware makes them highly efficient for real-time rendering and simulation,
ensuring smooth performance in interactive applications.[4]

Since its founding in 2018, Volucap has relied on a mesh-based approach to
reconstruct volumetrically captured scenes. For the company’s purposes, meshes
have proven to be an effective solution, offering easy manipulation and low memory
consumption, a crucial factor for integrating dynamic human avatars into XR inter-
active experiences. Over the years, each step of the pipeline handling meshes has
been significantly optimized, reducing the need for manual corrections and improving
temporal stability in dynamic reconstructions. In its current state, the mesh-based
representation of dynamic scenes delivers exceptional high-quality results, meeting
industry standards and enabling the creation of highly realistic human avatars. These
avatars are optimized for various digital outlets, including film, virtual reality (VR),
augmented reality (AR), and interactive simulations.

Despite these advantages, mesh-based reconstruction still presents several lim-
itations, many of which remain difficult to overcome. Through years of research,
experimentation, and extensive testing, the Volucap team has identified specific sce-
narios that, for various reasons, continue to pose significant reconstruction challenges.

One of the features that turns out to be extremely hard to reconstruct accurately
with a mesh-based representation is hair.
Accurately capturing and modeling hair is a crucial factor in creating realistic avatars,
as it significantly contributes to personal identity and individualization. However,
hair reconstruction poses a major challenge due to its intricate geometry and fine
texture details, which make it difficult to capture with standard volumetric methods.
Additionally, the wide variation in hairstyles, both in appearance and structure,
further complicates the process, making it particularly challenging to develop a single,
efficient solution that can accurately reconstruct and adapt to the diverse range of
hairstyles across different individuals.[19]
The Volucap team has tested and analyzed various hairstyles to determine which
can be accurately reconstructed and which should ideally be avoided. The results
show that tight hairstyles with minimal or no loose strands provide the best capture
quality. This includes tight buns and braids for long hair, as well as slicked-back or

19

State of the Art

compact styles for short hair. In contrast, loose hair, regardless of texture, poses
significant challenges; the problems increase when dealing with curly hair. The
more intricate the geometry and finer the details, the more difficult it becomes to
achieve a proper reconstruction. This challenge arises because loose strands lack
clear feature points, making it difficult for depth estimation algorithms to track and
reconstruct them accurately. Additionally, overlapping layers and semi-transparent
regions further complicate the process, as mesh-based methods struggle to differenti-
ate between individual strands, often leading to missing or incorrectly merged sections.

Transparent objects introduce another complex scenario where traditional mesh-
based methods struggle to capture accurate geometry and appearance.
Accurately reconstructing materials like glass and crystal remains an ongoing and
complex issue due to multiple factors. First, these objects do not possess their own
colors but instead derive their appearance from their surroundings, making traditional
color or texture-based reconstruction techniques ineffective. Second, transparent
materials interact with light in intricate ways, including reflection, refraction, scat-
tering, and absorption, making it nearly impossible to trace their full light paths.
Additionally, the refractive properties of such objects depend on their refractive index,
which is often unknown and varies between materials.[20]
For all these reasons, detecting feature points on translucent objects is extremely
difficult, making these items nearly impossible to reconstruct accurately. As a result,
the company actively avoids capturing translucent materials. The primary limitation
in this regard concerns reading glasses: individuals recorded in the volumetric studio
are always advised to remove them, even though these may be a defining characteristic
of their appearance.

Another category of objects that proves extremely challenging to reconstruct
using a mesh-based approach is thin objects. This includes not only very thin items
like sheets of paper but also fine clothing details, which are often part of common
outfits.
Thin objects with virtually no volume present unique difficulties in reconstruction,
particularly when it comes to shape representation and the fusion of depth informa-
tion. A major challenge specific to thin objects arises when they are viewed from
opposite perspectives: points from different surfaces usually share the same position
but have opposite normals. Measurement noise can then lead to conflicting results,
causing invisible points to occlude visible ones, a phenomenon known as the problem
of opposed surfaces.[21]
When considering real-world case studies, the joint reconstruction of shape and
appearance for thin, translucent objects presents significant challenges in computer
graphics, particularly when dealing with complex layered materials such as paper
or leaves. These multi-layered translucent materials are common in everyday life,
yet achieving a high-quality representation remains difficult. Their appearance is
heavily influenced by non-diffusive transmittance caused by multiple light scattering

20

State of the Art

between layers, resulting in a striking appearance when back-lit and significant visual
differences between the two sides when front-lit.[22]
For all these reasons, thin objects pose significant challenges for reconstruction using
typical mesh-based methods. To mitigate these issues, the company deliberately
avoids capturing objects that are too thin and makes efforts to tape down or conceal
fine clothing details in the selected outfits.

Texture-less and dark objects or fabrics present another significant challenge for
mesh-based reconstruction, as traditional methods struggle to capture their geometry
accurately.
One of the key steps in 3D model creation is identifying corresponding feature points
across multiple images. However, when an object lacks a recognizable texture, this
process becomes difficult. If the surface is completely texture-less or very dark, feature
detection algorithms struggle to identify key points, making it nearly impossible to
establish accurate feature correspondences across images [23]. Since the system relies
on recognizable patterns and textures to function correctly, surfaces without distinct
visual details lead to incorrect or incomplete reconstructions.
To minimize these issues, Volucap’s capture guidelines recommend avoiding dark or
texture-less materials whenever possible. However, in cases where capturing such
objects or fabrics is unavoidable, a thin layer of powder is applied to the surface. This
creates a subtle texture, helping the feature detection algorithm recognize matching
points across multiple images and improving the reconstruction process.

The final complex scenario analyzed in this research is reflective surfaces, which,
like the previous cases, pose significant challenges for mesh-based reconstruction.
Multi-view stereo methods work by first estimating depth maps from multiple view-
points and then fusing these depth maps in a post-processing step to reconstruct the
surface. A fundamental assumption of depth estimation is photometric consistency,
the idea that the appearance of a point on an object remains consistent across differ-
ent views. However, this assumption breaks down for glossy or reflective surfaces, as
their appearance changes depending on the viewpoint. As a result, multi-view stereo
methods fail to reconstruct these objects accurately.[24]
To prevent complications during capturing, the Volucap team advises clients to
exclude reflective objects and fabrics whenever possible. In cases where their use is
unavoidable, the team employs the same solution as in the previous scenario: applying
a fine layer of powder to reduce reflectivity and make the surface more opaque. By
minimizing reflections, this approach helps mitigate potential reconstruction issues
and improves overall capture quality.

All of these complex and problematic scenarios create significant limitations
for both Volucap’s workflow and its clients’ projects, affecting both the production
process and the creative flexibility of those involved.

21

State of the Art

Before each shoot, clients receive strict wardrobe guidelines designed to avoid
all the problematic cases mentioned above. While necessary for ensuring a smooth
capture process, these restrictions often limit creative freedom, forcing clients to
make compromises on their artistic vision. Outfits must strictly adhere to specific
material and color requirements, occasionally preventing them from using certain
fabrics, patterns, or dark tones. Similarly, hairstyle choices are highly constrained,
as styles that do not comply with reconstruction requirements must be altered or
avoided altogether. Accessories such as large jewelry or reading glasses frequently
have to be removed, further restricting personal styling choices. These limitations
directly impact the creative flexibility available to clients, making it challenging to
fully execute their original vision.

Additionally, wardrobe tests must be conducted several days before the actual
shoot, requiring the entire system to be activated, along with a new calibration and
clean plate capture. Each outfit must be individually tested, and once recorded, the
resulting data needs to be processed and analyzed, consuming valuable time and
computational resources. This process ties up workstations and personnel, leading
to an increased operational workload. Despite the effort and resources involved,
clients only pay for the official shooting day, meaning that wardrobe tests are an
uncompensated expense for Volucap. This results in considerable financial and time
losses, further adding to the inefficiencies caused by these reconstruction challenges.

Ultimately, these challenges not only increase the complexity of pre-production
planning but also restrict artistic choices, making it difficult to fully realize certain
creative visions within the constraints of volumetric capture technology.

These ongoing limitations highlight the need for alternative methods that can
overcome these constraints while maintaining the high-quality visual output expected
from Volucap. To address these issues, this research explores new approaches be-
yond traditional mesh-based representations, focusing on alternative techniques that
could improve the reconstruction of challenging cases. The next section introduces
Gaussian Splatting, a promising method that may provide a viable solution to these
longstanding problems.

2.3 3D Gaussian Splatting

2.3.1 Related work

Traditionally, meshes and point-based representations have been the most commonly
used methods for 3D scene reconstruction due to their explicit structure and efficient
compatibility with GPU/CUDA-based rasterization. These representations allow for
fast real-time rendering, making them a preferred choice in many applications.

22

State of the Art

Standard mesh-based scene reconstruction relies on Structure-from-Motion (SfM) [25]
and Multi-View Stereo (MVS) [13], which can achieve high-quality results in many
cases. However, these methods often struggle with "over-reconstruction," where MVS
incorrectly generates non-existent geometry or unreconstructed regions, where parts
of the scene fail to be reconstructed. This limitation arises because MVS relies on
identifying corresponding features across multiple images. As a result, surfaces with
low-texture regions (e.g., uniform-colored objects) or challenging material properties
(e.g., reflective or transparent surfaces) often lead to incomplete, inaccurate, or
entirely missing geometry.[5]

Recent advancements in Neural Radiance Fields (NeRFs) have introduced an
alternative approach based on continuous volumetric scene representations, which
optimize a multi-layer perceptron (MLP) for view synthesis using volumetric ray-
marching.
Unlike meshes, which explicitly store geometric structures, NeRF represents a scene
as a 5D function that maps spatial coordinates (x, y, z) and viewing direction (θ,
ϕ) to volume density and emitted radiance. This enables photorealistic novel view
synthesis by optimizing a continuous volumetric scene function using a sparse set
of input images with known camera poses, obtained through camera calibration
methods such as Structure-from-Motion (SfM) [25]. The model learns to assign
accurate colors and densities to spatial points, effectively reconstructing complex
real-world geometry and appearance.[26]
Unlike traditional multi-view reconstruction techniques, NeRF does not rely on
Multi-View Stereo to generate an explicit 3D model of the scene. Instead, it learns
an implicit function that directly synthesizes novel viewpoints without requiring a
dense geometric reconstruction. This makes it particularly advantageous in handling
view-dependent effects such as reflections and semi-transparency, which are challeng-
ing for traditional mesh-based methods.
The trade-off, however, is computational cost: achieving high visual quality with
NeRF usually involves lengthy training times. Pure NeRF models use large neural
networks that are costly to train and render, and even accelerated variants must
trade off speed for quality. While NeRF has demonstrated outstanding rendering
fidelity, its high computational demands have limited its practical application in
real-time environments.
Some advanced radiance field methods refine NeRF’s approach by storing scene in-
formation in structured formats like voxels [27], hash grids [28], or points [29]. These
methods retrieve and interpolate stored values instead of relying entirely on a neural
network, making rendering more efficient while still benefiting from a continuous scene
representation. While the continuous nature of these methods helps optimization,
their reliance on stochastic sampling for rendering remains computationally expensive
and can result in noise.[5]

An alternative approach to address some of the challenges associated with meshes

23

State of the Art

is point-based rendering. Instead of using a connected mesh, point-based methods
represent the scene as an unstructured set of points, often enriched with color or
other attributes.
While this approach accurately captures the underlying data, it has notable lim-
itations, including the presence of holes, aliasing artifacts, and a fundamentally
discontinuous nature. To mitigate these issues, pioneering research in high-quality
point-based rendering has introduced "splatting" techniques, which expand point
primitives beyond a single pixel. This is accomplished using shapes such as circular
or elliptical discs, ellipsoids, or surfels [30, 31, 32, 33].
Over time, point-based rendering has been further refined through approaches that
enhance points with neural features and employ convolutional neural networks (CNNs)
for rendering [34, 35]. These advancements have enabled faster and even real-time
view synthesis. However, a significant drawback remains: these methods still depend
on Multi-View Stereo (MVS) for initial geometry reconstruction, inheriting as a result
MVS-induced artifacts. Therefore, they continue to suffer from issues such as over
or under-reconstruction, particularly in challenging cases like featureless surfaces,
reflective materials, or thin structures.[5]

2.3.2 Overview of 3D Gaussian Splatting

In the reference research [5], 3D Gaussians are introduced as a more flexible scene
representation, enabling real-time rendering through a tile-based algorithm optimized
for projecting Gaussians, while removing the dependency on MVS geometry.

3D Gaussian Splatting is an innovative technique for real-time radiance field
rendering that represents scenes using 3D Gaussians. This approach integrates
optimization with state-of-the-art visual quality and competitive training times,
while its tile-based splatting method enables real-time rendering for 1080p resolution.
The main goal of 3D Gaussian Splatting is to allow real-time rendering for scenes
reconstructed from multiple images while achieving optimization times comparable
to the most efficient existing methods for real-world scene representation.[5]

The input for this method [5] is a set of images that capture a static scene, along
with the corresponding cameras calibrated by SfM, which produces a sparse set of
points without normals. Starting from these points, the goal is to optimize a scene
representation that allows high-quality novel view synthesis. Achieving this requires
a primitive that inherits the features of differentiable volumetric representations
while remaining both unstructured and explicitly defined. Differentiability allows
the system to be continuously optimized during training, improving the quality of
the final outcome; moreover, an unstructured and explicit representation ensures
greater flexibility for readjustments and faster rendering, avoiding costly volumetric
ray-marching (as in NeRF).
3D Gaussians are chosen as the ideal representation method, since they are differ-

24

State of the Art

entiable and can smoothly be projected to 2D splats allowing fast α-blending for
rendering. From the sparse point cloud, a set of 3D Gaussians is defined; these
gaussians are identified by 3D position p, anisotropic covariance, opacity α and
spherical harmonics (SH) coefficients.

Due to the extreme sparsity of SfM points, estimating normals turns out to be
extremely difficult. Likewise, optimizing these normals, which are prone to significant
noise, would present considerable challenges.
By modeling geometry with 3D Gaussians defined by a mean position µ and full 3D
covariance matrix Σ [36], it’s possible to avoid noisy normal estimation and enable
efficient projection into 2D splats for rendering. The 3D Gaussians are defined like
this:

G(x) = e− 1
2 (x)T Σ−1(x)

A straightforward method would be to optimize the covariance matrix Σ directly to
generate 3D Gaussians that represent the radiance field. However, directly optimizing
the covariance matrix is problematic, as gradient descent (used for optimization of all
of the parameters) can easily produce invalid matrices. To address this, the covariance
matrix Σ of a 3D Gaussian, which describes the configuration of an ellipsoid, is
divided into two separate components:

• S is a scaling matrix, which controls the size of the Gaussian;

• R is a rotation matrix, parameterized using a quaternion (q) to properly
represent rotational transformations.[5]

This decomposition allows for independent optimization of shape and orientation
while maintaining numerical stability. The covariance matrix is then reconstructed
using the equation:

Σ = RSST RT

where S is a diagonal matrix storing the Gaussian’s anisotropic scaling factors,
and R ensures proper rotation alignment.
This formulation of anisotropic covariance, appropriate for optimization, enables the
refinement of 3D Gaussians to adapt to various geometric structures in captured
scenes, leading to a quite compact representation.[5]

During rendering, these 3D Gaussians are projected into 2D splats, where their
covariance matrices are transformed using the viewing transformation matrix W. The
covariance matrix Σ′ [36] in camera coordinates becomes:

Σ′ = JWΣW T JT

where S is the Jacobian matrix of the affine transformation. This step ensures
that the Gaussian is correctly represented in image space, preserving its orientation
and spatial coherence.[5]

25

State of the Art

2.3.3 Optimization

The optimization process at the core of this approach [5] generates a dense set of
3D Gaussians that effectively represent the scene for free-view synthesis. This step
involves refining not only the position p, opacity α, and covariance Σ of each Gaussian
but also the Spherical Harmonic (SH) coefficients, which are responsible for captur-
ing view-dependent color information. To ensure an accurate representation, these
optimizations are coupled with an adaptive mechanism that dynamically adjusts the
density of the Gaussians throughout the scene.

Figure 2.11: Optimization process of 3D Gaussian Splatting
Source: [5]

The process follows an iterative approach, where images are rendered and com-
pared against the dataset’s training views. Since initial geometric estimates may
contain errors, the optimization must be capable of both generating new geometry
and refining or eliminating inaccurate structures. The covariance parameters play a
crucial role in maintaining a compact representation, as large, uniform regions can
be effectively modeled with fewer but larger anisotropic Gaussians.
To facilitate this optimization, the considered implementation [5] employs Stochastic
Gradient Descent (SGD) techniques, making use of GPU-accelerated frameworks
and allowing for the integration of custom CUDA kernels. A key challenge in this
process is efficient rasterization, as it represents the primary computational bottleneck.

Starting with the sparse point cloud produced by Structure-from-Motion (SfM),
3D Gaussian Splatting [5] adaptively adjusts the number of Gaussians and their
distribution within the scene. This ensures that the initially sparse representation is
refined into a denser and more accurate one. To enhance stability during the early
optimization stages, the process begins with a reduced-resolution image (specifically,
one-fourth of the final resolution) and progressively increases it through two upsam-
pling steps at 250 and 500 iterations.
Once the warm-up phase concludes, the density of Gaussians is adjusted every 100
iterations. Additionally, Gaussians with α values below a predefined threshold ϵα

are removed to improve efficiency. This adaptive control strategy focuses on both
under-reconstructed and over-reconstructed regions: in the former, missing geometric
details are addressed by adding Gaussians, while in the latter, excessive coverage
is refined. These problematic areas are often characterized by large view-space
positional gradients, indicating that the optimization process is actively working to

26

State of the Art

improve their accuracy.
To further enhance the scene representation, large Gaussians in regions with signifi-
cant variance are split into smaller ones. This is done by replacing a single Gaussian
with two new ones, each scaled down by an experimentally determined factor ϕ

= 1.6. The new positions are sampled using the original Gaussian’s Probability
Density Function (PDF). On the other hand, in under-reconstructed areas where
additional detail is required, Gaussians are not split but cloned. A duplicate Gaussian
is generated and shifted in the direction of the positional gradient.

Figure 2.12: Adaptive control of Gaussians
Source: [5]

These two approaches allow for an efficient and adaptive refinement process: in
the case of splitting, the total volume remains the same while increasing the number
of Gaussians, whereas in cloning, both the volume and number of Gaussians expand
dynamically to account for missing details.
To prevent an excessive increase in Gaussian density, particularly near the input
cameras where optimization can get stuck, a regulation mechanism is applied. Every
3000 iterations, the opacity α of all Gaussians is set close to zero, allowing the
optimization process to selectively increase opacity only for Gaussians that are
necessary. This method helps in moderating the overall number of Gaussians while
also utilizing a culling approach to remove those with an opacity value below a
threshold ϵα. Additionally, Gaussians that grow too large in world space or develop
a significant footprint in view space are periodically removed. Since Gaussians can
shrink, expand, and overlap during optimization, this step ensures that unnecessary
or oversized Gaussians are eliminated, helping to maintain an efficient and accurate
representation.[5]

2.3.4 Rasterization

This method [5] employs a tile-based rasterizer designed for efficient sorting and
α-blending, including for anisotropic splats, while avoiding previous limitations [37]
on the number of splats receiving gradients. The screen is initially divided into

27

State of the Art

16×16 tiles, and 3D Gaussians are culled based on their view frustum intersection.
Only Gaussians with a 99% confidence interval inside the frustum are retained, while
outliers near the near plane or far outside the view are discarded using a guard band
to prevent unstable covariance projections.
Each Gaussian is instantiated according to its tile coverage and assigned a sorting
key based on view space depth and tile ID. The sorting is performed, based on
these keys, through a fast GPU Radix sort [38], eliminating the need for per-pixel
ordering. Instead, alpha-blending follows this initial sorted order, approximating true
blending behavior. While this approximation can introduce minor inaccuracies, the
effects become negligible when splats approach pixel size. This significantly enhances
training and rendering performance without visible artifacts.
After sorting Gaussians, a list for each tile is created by identifying the first and last
depth-sorted entry that splats to a given tile. For rasterization, each tile is assigned
a dedicated thread block, which first loads Gaussians into shared memory and then
traverses the lists front-to-back, accumulating color and opacity for each pixel. To
maximize parallelism, Gaussians are processed collaboratively, and computation stops
once a pixel’s alpha reaches saturation (α = 1). Threads periodically check the tile’s
saturation status, terminating processing once all pixels are fully covered.
Unlike previous methods [37], this approach imposes no limit on the number of splats
contributing to gradients, enabling the handling of complex scenes with varying depth
without requiring scene-specific hyperparameter tuning. During backpropagation,
the system must recover the exact sequence of blended Gaussians per pixel. Instead
of storing long lists in global memory, which would introduce dynamic memory
overhead, the method reuses the sorted Gaussian array from the forward pass and
traverses it back-to-front. Only points contributing to color in the forward pass are
processed, optimizing efficiency. To compute gradients, rather than storing every
opacity step, each point retains the final accumulated alpha, which is divided by its
own alpha in the back-to-front traversal to retrieve intermediate coefficients for gra-
dient computation. This allows accurate gradient updates while minimizing memory
consumption, ensuring the method remains scalable even for high-complexity scenes.
In conclusion, this rasterizer enables efficient rendering and fast sorting, facilitating
approximate α-blending (including for anisotropic splats) while eliminating previous
constraints on the number of splats that can receive gradient updates.[5]

While 3D Gaussian Splatting has proven highly effective for static scene recon-
struction, its application is currently limited to motionless scenarios. To address
this constraint, the following two sections will explore two distinct approaches for
extending Gaussian Splatting to dynamic scene reconstruction.

28

State of the Art

2.4 Frame-by-frame Gaussian Splatting

While 3D Gaussians are highly effective for representing static scenes, extending them
to dynamic environments introduces additional challenges, primarily in modeling
complex point motions from sparse input [39].

A straightforward and widely used approach for handling motion with 3D Gaus-
sians is the frame-by-frame approach. This technique involves training and rendering
each frame of a dynamic scene independently using Gaussian Splatting. Once pro-
cessed, these frames are sequenced chronologically to reconstruct the complete motion.
In this approach, every frame is treated as an independent static scene, with its own
set of 3D Gaussians optimized separately through the standard training and rendering
pipeline. The resulting frames are then assembled into a continuous sequence using
specialized software tools such as Postshot or SuperSplat, which facilitate smooth
playback.

The primary advantage of this method is its simplicity. Since each frame is
optimized independently, it bypasses the complexities of modeling temporal defor-
mations or motion fields across frames, making implementation computationally
straightforward.
However, the frame-by-frame approach has notable drawbacks. The most significant
limitation is its high memory consumption. Since each frame is stored as a separate
file with its own set of Gaussians, no temporal compression is applied. As a result,
storage requirements increase significantly for longer sequences, quickly becoming
impractical for animations beyond a few seconds.
Additionally, temporal inconsistency is another major issue. Since each frame is
computed separately, the set of 3D Gaussians can fluctuate in size and shape between
frames, leading to visual artifacts such as flickering during playback. This lack of
coherence between consecutive frames undermines the realism of the reconstructed
motion.

Given these limitations, a more effective approach would be to model corre-
spondences over time, explicitly representing Gaussian motion and shape changes
rather than simply sequencing independently computed frames. To address this, we
introduce 4D Gaussian Splatting [39].

2.5 4D Gaussian Splatting

This section introduces 4D Gaussian Splatting (4D-GS) [39] as a technique for ex-
tending Gaussian Splatting to dynamic scene rendering.

4D Gaussian Splatting [39] is presented as a comprehensive representation for

29

State of the Art

dynamic scenes, aiming to achieve real-time rendering while maintaining high training
efficiency and optimized storage. Instead of treating each frame independently, this
approach models Gaussian motion and shape transformations through an efficient
Gaussian Deformation Field Network, which consists of a Spatial-Temporal Structure
Encoder and a compact Multi-head Gaussian Deformation Decoder.
Unlike frame-by-frame methods that require separate sets of Gaussians for each
timestamp, 4D-GS maintains a single set of 3D Gaussians, which are dynamically
transformed over time by the Gaussian Deformation Field. This transformation
process captures both motion and deformation, ensuring consistency across frames.
In terms of performance, 4D-GS enables real-time rendering of dynamic scenes, reach-
ing 82 FPS at 800×800 resolution for synthetic datasets and 30 FPS at 1352×1014
resolution for real-world datasets.

2.5.1 4D Gaussian Splatting Framework

The 4D Gaussian Splatting [39] framework extends traditional 3D Gaussian Splatting
[5] by incorporating temporal deformations, enabling the rendering of dynamic scenes.
This process begins with a given view matrix M = [R,T], which defines the camera’s
rotation and position, along with a timestamp t that specifies the moment in time
being rendered. To model scene motion, the framework integrates both 3D Gaussians
G and a Gaussian Deformation Field Network F , which learns how these Gaussians
transform over time.

To generate a novel-view image at time t, a differential splatting process S is
applied, defined as:

Î = S(M, G′)

where G′ represents the updated set of Gaussians after deformation:

G′ = ∆G + G

Here, ∆G denotes the predicted deformation applied to each Gaussian.
The deformation process is driven by a Gaussian deformation field network ∆G =
F(G, t), which encodes, through a spatial-temporal structure encoder H, both spatial
and temporal features of 3D Gaussians:

fd = H(G, t)

These features are then passed through a multi-head Gaussian deformation
decoder D, which decodes the features and predicts the necessary deformation for
each Gaussian:

∆G = D(f)

Once this transformation is applied, the deformed Gaussians G′ represent the
scene at the specified timestamp.

30

State of the Art

This approach ensures temporal coherence, meaning that the deformed Gaussians
maintain smooth transitions over time, reducing flickering and inconsistencies. In-
stead of requiring a separate set of Gaussians for each time step, 4D-GS dynamically
updates the existing Gaussians through learned deformations, preserving the effi-
ciency of the differential splatting.[39]

Figure 2.13: 4D Gaussian Splatting Framework
Source: [39]

2.5.2 Gaussian Deformation Field Network

The network responsible for learning the Gaussian Deformation Field incorporates
an efficient Spatial-Temporal Structure Encoder H and a Gaussian Deformation
Decoder D, which predict the deformation of each 3D Gaussian.[39]

The Spatial-Temporal Structure Encoder H [39] is designed to effectively
model the features of 3D Gaussians over time by capturing both spatial and temporal
information.
Since nearby 3D Gaussians tend to share similar spatial and temporal properties,
the encoder efficiently represents these relationships. The method adopts a 4D
K-Planes [40] module to decompose the 4D neural voxel into six multi-resolution 2D
planes: this reduces memory consumption while still preserving essential structural
information. Each 3D Gaussian in a given area is mapped into these planes; the
deformation of the Gaussians is also encoded in close temporal voxels.

Mathematically, the Encoder consists of six multi-resolution plane modules Rl(i, j)
and a small MLP ϕd. The spatial-temporal encoding is represented as:

H(G, t) = {Rl(i, j), ϕd|(i, j) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}, l ∈ {1, 2}}

where µ = (x, y, z) represents the mean position of the 3D Gaussian. Each voxel
module is defined by:

R(i, j) ∈ Rh×lNi×lNj

where h represents the hidden dimensionality of features, N denotes the resolution

31

State of the Art

of the voxel grid, and l represents the upsampling scale. This structure encodes
information from the 3D Gaussians within six 2D voxel planes while also considering
the temporal dimension.

In order to compute separate voxel features, bilinear interpolation is applied at
the four nearest grid vertices of each voxel plane. The final feature vector is then
obtained by merging the interpolated values:

fh =
Û
l

Ù
interp(Rl(i, j))

where (i, j) belongs to one of the six spatial-temporal coordinate pairs. Finally, a
tiny MLP ϕd merges these features into a unified feature representation:

fd = ϕd(fh)

which serves as the final encoded feature for each 3D Gaussian.[39]

The Multi-head Gaussian Deformation Decoder [39] is responsible for com-
puting the deformation of 3D Gaussians after their features have been encoded. This
decoder, denoted as D = {ϕx, ϕr, ϕs}, consists of separate MLPs that independently
predict different types of transformations for each Gaussian:

• Position Deformation (∆X): Computed by ϕx(fd), this term determines the
positional displacement of the Gaussian in 3D space;

• Rotation Deformation (∆r): Given by ϕr(fd), this component modifies the
rotation parameters;

• Scaling Deformation (∆s): Obtained through ϕs(fd), this factor adjusts the
scale of the Gaussian.[39]

The final deformed Gaussian parameters are determined using the following equation:

(X ′, r′, s′) = (X + ∆X , r + ∆r, s + ∆s)

where:

• X ′ is the new position;

• r′ is the updated rotation;

• s′ is the adjusted scale.[39]

After applying these transformations, the deformed Gaussians are represented as:

G′ = {X ′, s′, r′, σ, C}

incorporating their new spatial attributes while maintaining opacity (σ) and color
(C). These updated Gaussians are then used for rendering, ensuring the dynamic
adaptation of the scene.[39]

32

State of the Art

2.5.3 Optimization

The optimization process in 4D Gaussian Splatting [39] follows a structured approach
to refine dynamic scene representations efficiently. It begins with an initialization
phase, where Structure-from-Motion (SfM) is utilized to generate a sparse 3D point
cloud, providing a robust starting point for Gaussian optimization. Similar to its
3D counterpart, 4D-GS optimizes the 3D Gaussians for an initial 3000 iterations,
refining their structure before incorporating temporal deformations.
Once the foundational 3D Gaussians are established, the optimization process pro-
ceeds by rendering images using these Gaussians (Î = S(M, G)), rather than directly
using the temporally deformed 4D Gaussians (G′). This gradual transition helps
stabilize the training process, allowing the deformation model to learn smooth motion
trajectories. A loss function is subsequently incorporated to supervise the training
process.[39]

33

Chapter 3

Gaussian Splatting
Implementation Process

In this chapter, the implementation steps used to integrate Dynamic Gaussian Splat-
ting inside of Volucap’s pipeline will be explored.
Both Frame-by-frame Gaussian Splatting and 4D Gaussian Splatting will be ana-
lyzed and their potential integration within the company’s workflow will be considered.

Mesh-based and Gaussian-based rendering techniques substantially differ in the
way they deal with scene reconstruction. While mesh-based rendering explicitly
represents surfaces using connected polygons, Gaussian-based rendering employs a
volumetric representation where the scene is modeled as a collection of 3D Gaussians.
Meshes require predefined connectivity and rely on Multi-View Stereo techniques for
3D reconstruction. On the other hand, Gaussian-based rendering is explicit, unstruc-
tured, but more importantly differentiable: this allows for smooth optimization via
gradient descent and efficient rendering through splatting techniques, avoiding also
the use of MVS, which often causes issues while reconstructing complex scenarios.[5]
Considering their deep structural differences, the workflow of these two methods, in
order to obtain a reconstructed 3D scene, results quite different. However, the first
few steps of the pipeline used for meshes are common to the first few steps needed in
order to integrate a Gaussian-based rendering inside of a volumetric capture workflow.

As previously mentioned, Gaussian Splatting requires as an input a set of images
that capture the scene along with the corresponding cameras calibrated by Structure-
from-Motion [25]. SfM not only estimates the camera parameters but also generates
a sparse point cloud of the scene. This sparse model serves as input for the Gaussian
training process.
Typically, Gaussian Splatting workflows utilize softwares like COLMAP or similar
camera calibration systems to perform SfM. These systems estimate the positions of
each camera based on feature points detected in the input images, resulting in both
camera parameters and a sparse point cloud of the scene.
As part of the mesh-generation process employed by Volucap, a sparse set of points

34

Gaussian Splatting Implementation Process

is also created. After feature point matching, these points are triangulated, form-
ing a sparse point cloud. Since this cloud is generated from externally calibrated,
high-precision camera data, it proves to be significantly more accurate than those
obtained through conventional SfM-based calibration methods. Volucap’s workflow,
as a matter of fact, incorporates a highly precise camera calibration system: before
each shooting, the cameras undergo a dedicated calibration process using a checker-
board pattern, which is captured from multiple angles by all cameras. This method
allows for structured and reliable feature point matching, surpassing the standard
approach used in SfM-based tools like COLMAP, where feature points are extracted
from arbitrary scene images that may lack sufficient detail.
Given this, we opted to bypass the default camera calibration step typically included
in Gaussian Splatting pipelines and instead directly import Volucap’s precomputed
camera parameters. This modification allows us to fully exploit the superior accuracy
of Volucap’s calibration system while seamlessly integrating it into the Gaussian
Splatting framework.

To summarize, the initial stages of the pipeline, up to the creation of the sparse
point cloud, are shared between both workflows. These include Camera Calibration,
Data Conversion, Masking & Rigging, and Sparse Cloud Creation.
At this point, the two workflows diverge:

• In the mesh-based rendering workflow, the process proceeds with depth estima-
tion and the reconstruction of a dense 3D geometry;

• In the Gaussian-based rendering workflow, the pipeline transitions into the
training phase, where 3D Gaussians are optimized for novel-view synthesis.

In this chapter, the complete pipeline for Gaussian-based rendering within Volu-
cap’s volumetric capture workflow will be detailed. Since the initial steps were already
described in the context of mesh-based rendering [Section 2.1.3], they will not be
reiterated.

Figure 3.1: Mesh-based and Gaussian-based pipelines

3.1 Input data

Standard Gaussian Splatting workflows require undistorted images of the scene along
with sparse point cloud data as input. These images are exported as JPG files

35

Gaussian Splatting Implementation Process

undistorted, accounting for camera calibration parameters, through the company’s
proprietary meshing tool. Once processed, they are stored in a dedicated folder,
images [Figure 3.2].

Figure 3.2: images folder, containing undistorted footage

As shown in Figure 3.2, the footage stored in the images folder includes the
background. If training were performed using this raw input, not only would the
human avatar be reconstructed, but also the surrounding studio environment. To
ensure a cleaner, ready-to-use output, it’s possible to apply the masks generated
earlier in the pipeline during Masking, a step shared with the meshing process. These
masks, exported in an undistorted state from the meshing tool to perfectly align
with the images, are applied using a custom external script. This results in a new
folder, masked_images, containing the masked images, which can now be used as
input for the training process.

Figure 3.3: masked_images folder, containing masked footage

36

Gaussian Splatting Implementation Process

Another essential input is the sparse model data. Gaussian Splatting workflows
often require the sparse model in COLMAP format. This data is extracted directly
from Volucap’s meshing tool, which allows to export the sparse model (with undis-
torted camera parameters) in both Binary File Format (.bin) and Text File Format
(.txt).
Once exported, the sparse model data is stored inside a specific folder, sparse, which
contains three .bin or .txt files that constitute the sparse model: cameras, images,
and points3D. They are structured as follows:

• cameras: this file contains the intrinsic parameters of all reconstructed cameras
in the dataset;

• images: this file contains the pose and keypoints of all reconstructed images in
the dataset;

• points3D: this file contains the information of all reconstructed 3D points in
the dataset.[41]

Since the .bin format proves to be more efficient, it is preferred for training the
Gaussian-based scene [Figure 3.4].

Figure 3.4: sparse folder, containing the sparse model data

3.2 Frame-by-frame production pipeline

Frame-by-frame Gaussian Splatting reconstructs dynamic scenes by training and
rendering each frame independently and then sequencing them chronologically to
reconstruct the complete motion.

To reconstruct static frames and sequence them effectively, we utilized Jawset
Postshot, a comprehensive software solution for radiance field processing. Postshot
offers a user-friendly graphical interface that facilitates the tracking, training, editing,
and rendering of radiance fields. Notably, it integrates Gaussian Splatting techniques
to achieve fast and memory-efficient training within a seamless workflow. Users can
import images or videos, along with camera poses and sparse points. The live preview
feature allows users to observe the scene’s progression during training. Additionally,
Postshot supports exporting trained scenes as PLY files, enabling compatibility with
various applications that support Gaussian Splatting.

37

Gaussian Splatting Implementation Process

Figure 3.5: Postshot interface
Source: http: // bit. ly/ 4kNNnFL

Postshot can independently determine camera poses through a process known
as Camera Tracking. However, due to the previously discussed reasons, we opt to
bypass this step by importing externally calibrated camera data.
Considering this approach, Postshot, like other Gaussian Splatting workflows, requires
undistorted images of the scene along with sparse point cloud data as input. Since
Frame-by-frame Gaussian Splatting treats each frame independently, only the images
corresponding to a single frame are used in this workflow. Given that Volucap’s
volumetric capture system consists of 42 cameras, each static scene is reconstructed
using 42 input images capturing the subject from all angles. These images are stored
inside of the folder images.
Postshot also requires as an input the sparse model in COLMAP format.

In order to start training a scene through Postshot, both of these folders need to
be imported inside of the software. When a images folder gets imported, Postshot
will recognized the content of this folder as the training footage; when a sparse folder
gets imported, Postshot will automatically recognize the camera poses.
The training menu contains a series of different parameters that can be changed
based on the training configuration we want to set and the result we wish to obtain:

• Image Selection:

– Use Best Images: with this setting, Postshot will select, out of all the
input images, only the best ones that are well distributed across the scene
for camera tracking and radiance field training;

– Use All Images: All imported images will be used for tracking and training.
When using externally calibrated cameras, this option is set as default;

• Max Image Count: When the Use Best Images setting is enabled, the Max

38

http://bit.ly/4kNNnFL

Gaussian Splatting Implementation Process

Image Count determines how many images are selected from the imported
sequence, typically between 100 and 300. While fewer than 100 images can
be used, at least 100 are generally needed for reasonable results. Adding
many more images, instead, won’t degrade quality but may not improve it
either, especially if they come from similar viewpoints. When using externally
calibrated cameras, this number is set as default as the total number of imported
images;

• Camera poses: When importing images or videos, Postshot will execute the
Camera Tracking process, computing the camera poses from the images. This
process will be executed before the training step. If the imported shot uses
externally calibrated cameras, the camera poses are imported and the tracking
step is avoided;

• Single Lens & Focal Length: This advanced setting can be used when all of the
imported images were shot with the same lens and focal length setting and it’s
useful to create more stable camera poses. In case of imported camera poses,
this setting cannot be used;

• Max Features/Frame: This advanced setting defines the maximum number
of feature points that will be extracted per frame during Camera Tracking.
However, since the imported sparse model already contains feature points, this
setting is not applicable in our specific case;

• Radiance Field Profile: Postshot supports different profiles to create radiance
fields. Both Splat profiles allow for very fast rendering and quickly reconstruct
fine detail in well-covered regions of the scene. The two possible profiles are:

– Splat MCMC: this profile allows limiting the number of Splat primitives
(see Max Splat Count) and therefore the amount of memory and disk
space the resulting model requires;

– Splat ADC: this profile is very similar to the previous one, but differs in
the way it produces detail in the scene during training. It’s possible to
control the amount of detail it creates during training through the Splat
Density parameter;

• Downsample Images: To reduce training time, Postshot allows the use of
downscaled images. Reducing the image resolution could lead to a loss of
detail in the trained model. However, the extent of this impact depends on the
level of detail present in the original images and the degree to which they are
downscaled;

• Max Splat Count: This parameter is exclusive to the Splat MCMC profile and
defines the maximum number of Splat primitives that will be generated during
training. This directly impacts the memory and disk space required for the
radiance field model, as well as the level of fine detail that can be represented;

39

Gaussian Splatting Implementation Process

• Create Sky Model: Outdoor shots often lack sufficient texture in the sky to
guide reconstruction, leading to large floating artifacts appearing lower than
they should. To mitigate this, Postshot can generate a specialized sky model
that projects the environment onto a large surrounding sphere, reducing such
artifacts;

• Splat Density: this parameter is available only for the Splat ADC profile and
it controls the level of detail that will be created in the scene. Values larger
that 1.0 increase sensitivity, adding splats even for minor inaccuracies; values
smaller than 1.0 reduce sensitivity, resulting in fewer splats and a less detailed
representation;

• Start Training: When selected, this option automatically starts tracking (if no
sparse model is imported) and training after the images are imported;

• Stop Training After: If enabled, Postshot will stop training after reaching the
specified number of steps. A recommended starting point for many scenes is 30k
steps. While most convergence happens in the early stages, image quality can
continue to improve significantly with double or even more training steps.[42]

Figure 3.6: Postshot Training Configuration
Source: https: // bit. ly/ 4irMK2O

With the necessary parameters set, the training process can begin. Since this
workflow uses imported camera poses, Postshot bypasses the image selection and
camera tracking stages, directly initiating the training of the radiance field.

40

https://bit.ly/4irMK2O

Gaussian Splatting Implementation Process

During training, users can monitor progress in real time through the live preview
feature. This allows them to observe how the radiance field is gradually formed, not
only from a fixed perspective but also by freely moving around the scene to inspect
the evolving reconstruction. The total training duration depends on the resolution of
the input images and the selected training parameters.
Once the training process is complete, the set of Gaussians defining the scene sta-
bilizes, enabling full free-view exploration. Postshot provides a Viewport Camera
for smooth navigation, offering intuitive controls such as zoom, tilt, and pan. While
this camera is intended for previewing and cannot be animated or rendered, other
viewing options are available. If the scene contains an Image Set with tracked camera
poses, users can select these cameras in the Scene Tree, cycling through the original
input images and matching camera viewpoints to compare the trained radiance field
with the captured footage. Additionally, custom cameras can be created within the
scene, allowing to set its properties such as focal length, but also animate camera
trajectories, and eventually render video sequences.
After training, a range of post-processing actions can refine the scene. The entire
radiance field can be translated, rotated, or scaled. To further clean the output,
Postshot includes a Splat Selection tool, which enables manual selection and removal
of specific Gaussians. Additionally, the Cropping tool, available immediately after
training, creates a bounding box around the subject, eliminating unwanted Gaussians
outside of it. These tools are particularly useful for removing background artifacts or
misplaced floating splats.

At this stage, the finalized scene can be saved either as a Postshot project
file (.psth) or as a PLY file (.ply) for compatibility with other Gaussian Splatting-
supported applications and viewers. Postshot also offers the capability to render a
video of the scene. To achieve this, users must create and animate a virtual camera,
defining smooth camera movements around the subject before exporting the final
rendered sequence. For further compositing and editing, Postshot scenes can be
loaded into Adobe After Effects using the dedicated Postshot plugin. Once imported,
the software’s camera controls and animation tools can be leveraged to refine and
render the scene as part of a larger composition.

Once the .ply file is saved, the process can be repeated for each subsequent frame,
applying the same training method to reconstruct the entire sequence frame by frame.
Once all frames in the desired sequence have been individually trained, assembling
them into an animation becomes a straightforward process. Each .ply file correspond-
ing to a trained frame must be imported into the scene. At this stage, the Timeline
tool integrated within Postshot proves particularly useful. This tool allows users to
import multiple .ply files simultaneously, sequence them in chronological order, and
play them back as a continuous animation. The Timeline interface provides standard
playback controls, enabling users to preview the animation and make adjustments as
needed. Additionally, keyframes can be added to control specific parameters, allowing

41

Gaussian Splatting Implementation Process

for smooth transitions and refined motion within the sequence.

As with the reconstruction of static frames, a virtual camera can be introduced
into the scene. This camera can be animated using keyframes, enabling dynamic
perspectives and smooth motion paths throughout the animation. Once the scene
is finalized, Postshot provides the option to render the animation as a video file,
capturing both the reconstructed subject and any camera movements applied.
For additional refinements, the exported sequence can be further edited in post-
processing software such as Adobe After Effects, where additional visual effects, color
grading, and compositing can be applied.

3.3 4D Gaussian Splatting production pipeline

4D Gaussian Splatting [39] is a dynamic scene rendering technique that models Gaus-
sian motion and shape deformation using a Gaussian Deformation Field, maintaining
a single set of 3D Gaussians that are dynamically transformed over time.

The implementation of 4D Gaussian Splatting is available on the authors’ GitHub
page. This codebase facilitates data preparation, training, and rendering through
command-line operations and includes a viewer for real-time monitoring of training
progress. To set up the environment, users need to clone the repository and utilize an
Anaconda environment to install the necessary Python packages, including PyTorch.

The data preparation process involves calibrating input images to generate camera
poses and a sparse point cloud required for training. For multi-view scene datasets,
this can be achieved by:

• Using the multipleviewprogress script included in the repository to generate
camera poses and point cloud data;

• Employing nerfstudio, an external repository that allows to process the input
data through COLMAP and FFMPEG, providing camera poses and a sparse
cloud as an output;

After data preparation, the training phase begins, utilizing the processed data and a
configurable training setup defined in a configuration file.
In this configuration, the main parameters we can intervene on are:

• iterations: determines the total number of training iterations;

• batch_size: determines the number of samples processed in one iteration of
training;

• coarse_iterations: specifies the number of iterations in the coarse, warm-up
training phase;

42

https://github.com/hustvl/4DGaussians
https://github.com/hustvl/4DGaussians
https://github.com/nerfstudio-project/nerfstudio

Gaussian Splatting Implementation Process

• densify_until_iter : indicates the iteration until which the model continues to
densify the Gaussians;

• opacity_reset_interval: defines how frequently the opacity values are reset
during training.

Figure 3.7: 4D-GS training command

When training is completed, the resulting radiance field, exported in .ply format
along with some deformation files, can be viewed using external viewers such as the
one included in the Gaussian Splatting PyTorch Lightning Implementation.
The implementation also includes a rendering step that outputs a series of still images
and an .mp4 file, creating a rendered video of the animated scene from a specified
camera perspective.

3.4 Evaluation of the approaches

Both methods present a number of advantages and disadvantages, that have been
analyzed in order to choose which of these two methods we want to adopt as the
preferred one.

3.4.1 Frame-by-frame approach

The Frame-by-frame approach, implemented using Postshot offers several key advan-
tages. The primary benefit is its ease of use. The software installation is extremely
straightforward, requiring no additional external packages or libraries. Users can
simply download an executable file from the official Jawset website, complete a
quick installation, and immediately begin training radiance fields. The inclusion of a
graphical user interface (GUI) further simplifies the training and rendering process,
making Gaussian Splatting accessible even to those with limited technical expertise.
This user-friendly interface significantly lowers the barrier to entry for dynamic scene
reconstruction with Gaussian Splatting.
Additionally, Postshot provides a variety of training options and post-processing tools
that allow for fine-tuning and editing of reconstructed scenes. The software enables
users to generate rendered videos where they can not only choose specific viewpoints
but also animate complex camera movements using keyframes. This flexibility grants
significant creative control over the final output.

43

https://github.com/yzslab/gaussian-splatting-lightning
https://www.jawset.com/

Gaussian Splatting Implementation Process

Another major advantage of the Frame-by-frame approach is the ease of integrating
external camera calibration data into the training process. Since each frame is trained
independently, it is simple to bypass the automatic camera calibration included in
standard Gaussian Splatting implementations and instead utilize the highly accurate
camera poses and sparse cloud generated by Volucap’s processing pipeline. This
ensures a more precise reconstruction of the scene.

Despite these benefits, the Frame-by-frame approach also presents several notable
drawbacks. The most significant limitation is its high memory consumption. Since
each frame is stored as an independent file with its own set of Gaussians, no temporal
compression is applied. Consequently, storage requirements increase dramatically for
longer sequences, quickly becoming impractical for animations exceeding just a few
seconds.
Another major issue is the lack of temporal consistency. Because each frame is
computed separately, the set of 3D Gaussians fluctuates in size and shape between
frames, leading to noticeable visual artifacts such as flickering during playback. This
inconsistency diminishes the realism of the reconstructed motion.
Moreover, training each frame individually and then manually sequencing them
into an animation demands significant time and effort. This high level of manual
intervention is undesirable, particularly for production pipelines where efficiency and
automation are key priorities.

3.4.2 4D Gaussian Splatting approach

The primary advantage of the 4D Gaussian Splatting approach is its ability to model
correspondences over time, capturing Gaussian motion and shape deformations in-
stead of merely sequencing independently computed frames. This is achieved through
a single set of Gaussians that dynamically shift and deform throughout the sequence,
eliminating flickering artifacts present in the Frame-by-frame approach. The seamless
transformation of Gaussians ensures smooth transitions between frames, significantly
improving temporal coherence.
Another key benefit of 4D-GS is its inherent temporal compression, which drastically
reduces output file sizes and minimizes storage requirements. Additionally, since
multiple frames are trained simultaneously, the overall workflow demands far less
manual intervention compared to the Frame-by-frame method, as it eliminates the
need for training single frames and sequencing them. Given these advantages, 4D-GS
appears to effectively resolve the primary limitations of the Frame-by-frame approach.

However, a deeper analysis of 4D-GS has revealed several significant challenges
that are difficult to overcome. The first major obstacle is the complexity of instal-
lation. The repository presents compatibility issues between CUDA, PyTorch, and
required package versions, making it difficult to set up. A review of reported issues
on the official repository confirms that many users face similar struggles, indicating

44

Gaussian Splatting Implementation Process

that this implementation requires technical expertise and is not easily accessible to a
wider audience.
Another considerable limitation is the difficulty of integrating external camera cali-
bration data. Volucap’s proprietary meshing tool, like many others on the market,
exports a separate sparse model for each frame. In contrast, 4D-GS requires a
cumulative sparse model that incorporates all input images across the entire sequence,
rather than per-frame data. This discrepancy makes direct integration of Volucap’s
sparse model into 4D-GS highly complex. While integration is not impossible, it
would demand extensive modifications to either Volucap’s meshing tool (to generate
a cumulative sparse model) or to 4D-GS itself (to support multiple per-frame sparse
models as input). Either approach would require significant development effort and
code adaptation. An alternative would be generating the sparse model using the
built-in tools provided within the 4D-GS implementation. However, this would mean
foregoing Volucap’s high-precision camera calibration data and instead relying on a
less accurate reconstruction, which is not ideal for the company’s objectives.
A further drawback of 4D-GS refers to rendering performance. According to the
official paper [39], 4D-GS achieves real-time rendering at 30 FPS with a resolution of
1352×1014 when using real-world datasets. Applying this approach to Volucap’s cus-
tom dataset would necessitate a significant reduction in image resolution, potentially
affecting the level of detail captured in the trained Gaussian model. Higher-resolution
input images contribute to more accurate reconstructions of intricate textures and
complex environments, which is a crucial aspect of Volucap’s testing and development
efforts.

3.4.3 Method of Choice

After careful evaluation and extensive testing conducted during the initial phase of
the collaboration with Volucap, the Frame-by-frame approach was selected as the
preferred method for implementing Dynamic Gaussian Splatting. Several key factors
contributed to this decision.

One of the main reasons for selecting the Frame-by-frame approach was the
superior reconstruction quality it enabled, particularly when leveraging Volucap’s
highly precise camera calibration data. The ability to integrate externally calibrated
camera poses and sparse point clouds seamlessly into the training process ensured a
more accurate and detailed scene representation, which is essential for high-quality
volumetric capture. Additionally, this approach provided a much smoother integration
within Volucap’s existing pipeline, avoiding the complexities associated with 4D-GS.
The latter presented considerable installation challenges and required extensive code
modifications to incorporate external calibration data, making it far less practical
in this context. The ability to bypass the standard automatic camera calibration
in favor of a more precise, precomputed calibration workflow eliminated a major
bottleneck in achieving high-fidelity results.

45

Gaussian Splatting Implementation Process

Furthermore, despite the inherent memory limitations of storing each frame separately,
the Frame-by-frame approach remains a practical solution for handling short video
sequences. While temporal coherence is not inherently maintained across frames, the
stability of the reconstruction process and the reliability of the output compensate
for this limitation.

46

Chapter 4

Meshes VS Gaussian Splatting

The primary goal of this study is to evaluate the effectiveness of Gaussian Splatting
as a dynamic scene rendering technique for human avatars, particularly in the context
of XR experiences. Specifically, this research investigates whether Gaussian-based
rendering techniques offer improvements over traditional mesh-based reconstruction,
particularly in challenging scenarios previously discussed in Section 2.2.
Since Volucap’s establishment in 2018, meshes have been the company’s standard
method for representing 3D scenes in volumetric capture workflows. While mesh-
based rendering provides well-established advantages, it struggles with complex scene
reconstruction . These limitations arise primarily due to the reliance on Multi-View
Stereo (MVS) techniques, which can lead to incomplete geometry and visual artifacts.
To address these challenges, Gaussian Splatting was explored as a potential alternative
for volumetric reconstruction. This method introduces an unstructured, differentiable
representation that does not depend on predefined connectivity, making it particularly
appealing for capturing intricate scene details.

In this chapter, we present a conducted test designed to systematically evaluate,
through practical examples, the complex scenarios that typically challenge mesh-based
rendering. The results of this evaluation will be demonstrated through a comparative
analysis of scenes reconstructed using both mesh-based and Gaussian-based rendering
techniques. In the image captions, Ground Truth images will be labeled as GT,
Mesh-based results as M and Gaussian-based results as GS.

4.1 Experimental Setup

The test was conducted over two separate days, totaling approximately 2.5 hours
of shooting, at Volucap’s volumetric capture studio, located in Studio Babelsberg,
Potsdam. The studio features 42 ultra-high-resolution cameras, all of which were
utilized for the experiment. For further details on the studio setup, refer to Section
2.1.1.
Each take was recorded at a resolution of 6K (4508×6016) per camera, as the tested

47

Meshes VS Gaussian Splatting

scenarios involved limited movement, making the full 9K resolution unnecessary.
Prior to the start of each shooting session, a standard calibration and clean plate
procedure was performed.
To ensure the test closely mirrored a typical shooting scenario, all standard capture
and lighting settings were applied. Each take consisted of 125 frames, recorded at 25
frames per second (5 seconds per take).

The test focused on capturing a human subject in various complex scenarios, using
props and outfits that could realistically be included in standard volumetric capture
shoots. These scenarios were carefully selected based on past reconstruction difficulties
observed by Volucap. The tested objects and outfits were planned beforehand in
collaboration with the team to comprehensively cover all complex cases. The specific
scenarios evaluated include:

• A standard capture scenario;

• Transparent objects;

• Thin objects;

• Reflective objects;

• Loose hair;

• Dark and uniformly-textured outfits.

A more detailed discussion of these scenarios will be provided in the next section.
After the shooting was completed, all takes were processed on a Windows machine
equipped with an NVIDIA GeForce RTX 3090 GPU (24 GB VRAM), using both
reconstruction workflows.

For the mesh-based workflow, the standard pipeline detailed in Section 2.1.3 was
followed. All of the 3D models were built with medium quality and textured with 4K
textures. Specifically, all 125 frames per take were processed using the mesh-based
approach, utilizing all 42 cameras in the studio. The workflow and settings remained
consistent to ensure that the comparison was based on a typical output that Volucap
produces for XR experiences.
For the mesh-based workflow, processing time can vary significantly depending on the
workload of the network and workstations at the time the process begins. To ensure
consistency, we established an average processing time based on measurements taken
when both the network and workstations were free. This average processing time
is used uniformly across all tested scenarios and was determined for both a single
frame and an entire take (125 frames):

• Single frame: 12 minutes

• Whole take (125 frames): 180 minutes

48

Meshes VS Gaussian Splatting

Notably, the relationship between the processing time for a single frame and that of
a full take is non-linear.
These processing times account for all stages from stereo depth estimation onward,
marking the point where the two workflows (mesh-based and Gaussian-based) diverge
and follow their respective paths. The earlier phases, which are shared between both
workflows, are excluded from these estimates.

For the Gaussian-based workflow, the Frame-by-frame approach described in
Section 3.2 was used. In this case, each frame was reconstructed independently,
incorporating all 42 cameras as input, and later sequenced to form the final dynamic
scene. Externally calibrated camera poses and sparse point cloud data were imported.
The chosen Radiance Field Profile was Splat MCMC, with a fixed number of 30k
training steps per frame, a value considered an optimal baseline by the Postshot
guidelines. The input image resolution used to obtain the results presented in this
chapter was set to 4K. Additionally, the Max Splat Count, which determines the
number of Gaussian primitives generated during training, was fixed at 3000 kSplats.
In the following chapter, however, both parameters will be varied to conduct a quanti-
tative analysis of their impact on key aspects such as training time and output file size.

For these tests, we chose to use masked images as input, capturing only the
subject without the background. This decision was made to align the process as
closely as possible with the mesh-based workflow, which also relies on masks for mesh
creation. Additionally, training time is significantly reduced when the background
does not need to be reconstructed.
However, an important consideration must be noted: when training is performed on
the full images (background included), the subsequent removal of the background
using Postshot’s Cropping tool is highly precise. In contrast, when using pre-
masked images, any background residuals included in the original masks will also be
reconstructed. These residuals are much more difficult to remove once the radiance
field has been fully trained, as they appear in close proximity to the Gaussians that
should be preserved, making complete removal challenging.
To illustrate this point, we compare two outputs of the same scene:

• Figure 4.1: The model was trained using the full images (background included),
and the background was removed afterwards. The input images had a resolution
of 6K, and the training took approximately 2 hours and 26 minutes;

• Figure 4.2: The model was trained using pre-masked images. The input images
had a resolution of 6K, and the training took approximately 50 minutes.

This particular scenario presents challenges for masked images. Loose hair often
allows glimpses of the background through strands, as seen in Figure 4.2. Additionally,
the bottle in Figure 4.2 appears more opaque compared to Figure 4.1. This occurs
because, in the masked-image approach, the background color is partially baked into
the transparent areas of the bottle. Conversely, when the background is removed

49

Meshes VS Gaussian Splatting

after training, the depth information is correctly computed, allowing for a cleaner
separation of background and foreground elements.
In this specific test, we prioritized reduced training time over slight losses in accuracy,
acknowledging that the masked-image approach may introduce minor artifacts but
significantly accelerates the reconstruction process.

Figure 4.1: Bg removed after training Figure 4.2: Bg removed before training

This experiment aims to assess how Gaussian-based rendering performs in sce-
narios that typically pose challenges for mesh-based reconstruction. Furthermore,
the goal is to determine the optimal input resolution and training parameters that
produce Gaussian-based results comparable in quality to the high-fidelity mesh-based
human avatars Volucap regularly creates for commercial use.

4.2 Tested Scenarios

4.2.1 Standard capture scenario (S)

For the first scenario, we opted for a standard capture setup, one that aligns well
with mesh-based reconstruction. The chosen outfit fully complies with the company’s
wardrobe guidelines. The subject wore a textured grey knitted sweater and a pair
of medium-wash blue jeans with an uneven texture. Both pieces feature highly
distinguishable details that facilitate feature point detection and depth computation:
the sweater’s knitted pattern provides rich surface variation, while the jeans include
pockets and strategically placed rips, adding well-defined structural elements.
Additionally, to ensure an optimal reconstruction process, the subject’s hair was
styled in a tight bun, eliminating flyaways or loose strands that could introduce
complexity into the capture.

50

Meshes VS Gaussian Splatting

Figure 4.3: S - GT Figure 4.4: S - M Figure 4.5: S - GS

The Gaussian-based scene was trained with 4K resolution input images, and the
training process was completed in 29 minutes.

4.2.2 Transparent objects (TR)

Next, we tested the reconstruction of transparent objects, which are notoriously
difficult, if not impossible, to accurately capture using mesh-based rendering.
For this experiment, we selected three distinct transparent objects to evaluate how
each would be reconstructed using both techniques. The chosen objects included
a pair of reading glasses, a glass water jug filled halfway, and an empty glass for
pouring water. This selection allowed us to analyze how the different objects were
handled by the reconstruction process.

Figure 4.6: TR - GT Figure 4.7: TR - M Figure 4.8: TR - GS

The Gaussian-based scene was trained with 4K resolution input images, and the
training process was completed in 32 minutes.

4.2.3 Thin objects (TH)

The next test focused on thin objects, a category that is typically avoided in volumetric
capture due to its challenging reconstruction properties. For this experiment, we

51

Meshes VS Gaussian Splatting

selected two distinct objects: a paper brochure and a baseball cap. These objects
differ significantly in thickness, the cap being notably thicker than the brochure.
Additionally, the brochure, being made of paper, is far more translucent than the
cap’s visor. The goal of this test was to assess how the reconstruction quality varies
with different object thickness.

Figure 4.9: TH - GT Figure 4.10: TH - M Figure 4.11: TH - GS

The Gaussian-based scene was trained with 4K resolution input images, and the
training process was completed in 35 minutes.

4.2.4 Reflective objects (R)

Another challenging scenario involved testing reflective objects. For this, we selected
a chrome ball, an extremely reflective surface that behaves almost like a mirror,
posing significant challenges for reconstruction due to its highly dynamic reflections.

Figure 4.12: R - GT Figure 4.13: R - M Figure 4.14: R - GS

The Gaussian-based scene was trained with 4K resolution input images, and the
training process was completed in 33 minutes.

52

Meshes VS Gaussian Splatting

4.2.5 Loose hair (H)

The next complex scenario we tested was loose hair, a particularly challenging element
to reconstruct due to its intricate geometry and fine details. Hair strands are difficult
to capture accurately, often leading to inconsistencies in reconstruction. For this
reason, loose hairstyles are typically avoided in volumetric capture, with tighter
styles, such as the one used in our Standard Capture scenario, being preferred.
In this case, however, we deliberately tested how loose, wavy hair performs in both
mesh-based and Gaussian-based reconstruction, evaluating their ability to handle
the complexities associated with fine hair structures.

Figure 4.15: H - GT Figure 4.16: H - M Figure 4.17: H - GS

The Gaussian-based scene was trained with 4K resolution input images and the
training process was completed in 22 minutes.

4.2.6 Dark and Uniformly-textured outfits (DU)

The final scenario focused on capturing an outfit with minimal visible texture and
uniform color. The chosen clothes consisted of a brown, slightly shiny top, tightly
fitted to the body, and a pair of black, wide-legged pants with a completely uniform
color, lacking any noticeable variations or patterns.

Figure 4.18: DU - GT Figure 4.19: DU - M Figure 4.20: DU - GS

53

Meshes VS Gaussian Splatting

The Gaussian-based scene was trained with 4K resolution input images, and the
training process was completed in 22 minutes.

54

Chapter 5

Evaluation of the Results

In this chapter, the outcomes of the conducted tests are presented and analyzed,
comparing the mesh-based and Gaussian-based reconstruction approaches. The
evaluation is divided into two parts: a quantitative analysis, which considers objec-
tive metrics such as training time and file size, and a qualitative evaluation, which
examines the visual fidelity of the reconstructed scenes. This comparison aims to
provide a comprehensive understanding of the strengths and limitations of each
method within the context of volumetric capture.

5.1 Quantitative Evaluation

This section presents a quantitative evaluation of the Gaussian-based rendering
approach. The analysis examines how individual training parameters influence both
training time and output file size, then comparing these findings with the results
obtained from the mesh-based rendering workflow. The objective is to determine,
through measurable data, whether the Gaussian-based pipeline can be a viable
alternative to the mesh-based approach within Volucap’s volumetric capture workflow.

5.1.1 Training Time

As a first step, we investigated how training time is influenced by the resolution of
the input images. This test was conducted using a fixed set of input images, which
were downsampled, along with their corresponding masks, to different resolutions
prior to training. The masks were then applied onto the downscaled images and
imported into Postshot. This ensures greater control over the entire process.
Each image set, representing a single frame, was trained individually using its
corresponding sparse model data. To isolate the effect of input resolution, all other
training parameters were kept constant across the different runs. The goal was to
observe how changes in image resolution alone affect training time. The following
training settings were chosen for each resolution level:

• Radiance Field Profile: Splat MCMC ;

55

Evaluation of the Results

• Max Splat Count: 3000 kSplats;

• Stop Training After: 30K steps.

For the resolution of the input images, we selected four commonly used formats: 1K,
2K, 4K, and 6K, the latter being the original resolution of the captured frames. A
Gaussian-based scene was trained separately for each resolution, in order to observe
how input resolution influences the training time.

The results were visualized using three graphs, each illustrating how training time
varies with image resolution across three distinct capture scenarios. These graphs
help highlight the relationship between image resolution (in pixels) and training time
(in minutes). The detailed data used to generate the graphs is provided in three
corresponding tables, one for each scenario, which can be found in Appendix A.

Standard capture scenario [Section 4.2.1]:

Figure 5.1: Training times for Standard capture scenario

Transparent objects [Section 4.2.2]:

Figure 5.2: Training times for Transparent objects scenario

56

Evaluation of the Results

Dark and Uniformly-textured outfits [Section 4.2.6]:

Figure 5.3: Training times for Dark and Uniformly-textured outfits scenario

As illustrated in the three graphs above, the trend between input image resolution
and training time is rather linear.
For the scenes displayed in Sections [4.2] and [5.2], we chose to use 4K input reso-
lution for training. This choice provided a balanced compromise: 6K input images
significantly increased training time without showing substantial improvements in
visual quality, while 2K images began to noticeably degrade reconstruction quality.
Moreover, the mesh-based workflow typically employs textures in 4K resolution,
making 4K a more consistent and comparable benchmark for the two approaches.

Training time for Gaussian Splatting is directly comparable to Processing time
data for mesh-based rendering. As previously discussed in Section 4.1, the estimated
average mesh-based processing time is:

• Single frame: 12 minutes

• Whole take (125 frames): 180 minutes

This average was calculated under optimal network and workstation conditions and
is used consistently across all scenarios. These processing times account for all
steps from stereo depth estimation onward, marking the point where the mesh and
Gaussian-based workflows diverge. When comparing these two workflows, the time
required to reconstruct a single frame is a fair metric since both methods result in
a ready-to-use 3D avatar. For Gaussian Splatting, training time for a single frame
using 4K images and 30K training steps ranged from 22 to 35 minutes depending on
scene complexity. We determined 29 minutes to be a suitable average value.

This average training time is more than double compared to that of the mesh-
based workflow (29 minutes vs. 12 minutes per frame). The discrepancy becomes
even more significant when scaling to a full take: mesh-based processing benefits
from optimizations across frames, resulting in a non-linear increase in processing

57

Evaluation of the Results

time. In other words, the entire take does not require 12 minutes multiplied by 125
frames. Instead, inter-frame efficiencies bring the total to around 180 minutes.
In contrast, the Gaussian-based frame-by-frame approach requires each frame to be
trained independently. Even when only considering training time and excluding setup
or sequencing, the total training time for 125 frames (29 minutes × 125) reaches 3625
minutes, an unfeasible duration for commercial applications. Although training time
can be reduced by lowering input resolution and decreasing the number of training
steps, this inevitably compromises visual quality, which is critical for professional
use.

From this perspective, it becomes clear that the frame-by-frame Gaussian-based
approach is not yet practical for full dynamic scene reconstruction due to its high
computational demands. However, it remains a viable option for static scenes, where
extended training times are more acceptable. In particular, the method demonstrates
outstanding performance in complex scenarios that typically challenge mesh-based
reconstruction, as will be shown in the next section [5.2].
Depending on the nature of the scene to be reconstructed, especially when dealing
with difficult elements such as translucency, fine geometry, or reflectivity, it may be
worthwhile to consider the Gaussian-based approach. In such cases, the superior
reconstruction quality may outweigh the higher computational cost, making this
method a valuable alternative in specific high-complexity use cases.

5.1.2 Output File Size

The next data point we aim to analyze is the output file size. By this, we refer to
the size of the .ply file that is generated after completing the training process for a
single frame using the Gaussian-based approach.
To begin, we analyze how file size scales with changes in the Max Splat Count
training parameter. This parameter defines the maximum number of splat primitives
generated during training and directly influences both disk space requirements and
the level of scene detail. For this test, a fixed set of previously masked 4K images was
used, maintaining the same input image set throughout all of the different trainings.
The goal was to observe how changes in Max Splat Count alone affect the file size. To
do this, we isolated the effect of this parameter by keeping all other training settings
constant:

• Input images resolution: 4K;

• Radiance Field Profile: Splat MCMC ;

• Stop Training After: 30K steps.

We tested four values for Max Splat Count: 500, 1000, 2000, and 3000 kSplats. A
separate scene was trained for each configuration, and the resulting file sizes were
visualized in the graphs below for two different scenarios. The corresponding numeri-

58

Evaluation of the Results

cal data is presented in Appendix B.

Standard capture scenario [Section 4.2.1]:

Figure 5.4: Output file sizes for Standard capture scenario

Thin objects [Section 4.2.3]:

Figure 5.5: Output file sizes for Thin objects scenario

As seen in the graphs, the relationship between Max Splat Count and file size is
highly linear; moreover, both tested scenarios produced identical numerical results.
For Sections [4.2] and [5.2], we adopted the default Postshot value of 3000 kSplats.
However, a reduction in Max Splat Count to 1000 kSplats still produced results
with satisfactory visual detail. This makes it a valuable parameter to consider for
optimization: a moderate reduction in image quality and detail can lead to significant
file size savings.

However, even when reducing the Max Splat Count down to 1000 kSplats, the
output file size remains significantly larger compared to that of the mesh-based
rendering. For the mesh-based data, we also consider an estimate and present the
average file size for both a single frame and a complete take of 125 frames:

59

Evaluation of the Results

• Single frame: 1.85 MB

• Whole take (125 frames): 108 MB

Even when using 1000 kSplats for the Gaussian-based scene, the resulting file size per
frame is still far from comparable: while the mesh-based approach averages around
1.85 MB per frame, the Gaussian-based method produces approximately 236 MB
per frame. The contrast becomes stark when comparing entire takes: mesh-based
rendering benefits from inter-frame efficiencies and shared geometry, while Gaussian
Splatting stores each frame independently, causing linear growth in storage require-
ments, which quickly become unmanageable.

In conclusion, while frame-by-frame Gaussian Splatting shows promising recon-
struction capabilities, especially in challenging scenarios, this implementation is not
yet scalable for dynamic scenes. Both the extended training time and substantial
storage demands pose serious constraints. Although it is technically possible to
reduce training time and output size by adjusting input resolution, training steps,
and Max Splat Count, these reductions come at the cost of visual fidelity, ultimately
compromising the suitability of the results for commercial use.

5.2 Qualitative Evaluation

This section presents a qualitative evaluation of the conducted tests, providing a visual
comparison between the two reconstruction approaches. The focus lies particularly on
how the complex scenarios described in Sections [2.2] and [4.2] are handled by both
the mesh-based and Gaussian-based methods. The aim is to highlight the strengths
and weaknesses of each technique and assess which performs better depending on
the scenario. The same capture cases introduced in Section [4.2] are used here as the
basis for evaluation across both approaches.

The main issues related to mesh-based reconstruction will be discussed in the
following sections, together with practical examples. Before getting into those details,
it’s worth adding a few observations about Gaussian-based reconstruction.
Gaussian Splatting is capable of reconstructing scenes with extremely fine detail and
high visual fidelity. However, it is inherently a view-dependent rendering method.
This means that the appearance of the reconstructed scene, including its lighting,
color accuracy, and level of detail, varies depending on the viewing angle. When
the point of view is close to one or more of the input cameras, the reconstruction
quality tends to be very high. On the other hand, as the point of view moves away
from the original camera perspectives, the quality of the reconstruction can degrade.
Therefore, the greater the number of input cameras distributed around the subject,
the more complete and accurate the reconstruction becomes. In this test, each
frame was captured using 42 cameras, providing broad coverage from multiple angles.
However, some areas, such as low-angle views, were not as well covered. These

60

Evaluation of the Results

less-represented viewpoints can result in visible quality drops in the reconstructed
scene, often showing up as blurriness or aliasing artifacts [Figure 5.7].
In contrast, mesh-based scenes tend to preserve a more consistent appearance across
all viewpoints [Figure 5.6]. This is due to the inherent properties of meshes: they rely
on predefined surface connectivity and are not view-dependent, therefore maintaining
a solid and stable structure regardless of the viewing direction.

Figure 5.6: Low angle - M Figure 5.7: Low angle - GS

5.2.1 Standard capture scenario

For the standard capture scenario, both of the workflows ended up creating a result
that’s quite close to the ground truth image [Figure 4.3], as we can notice from
Figures 4.4 and 4.5. Even the finer details ended up being quite well preserved, such
as the sweater pattern or the jeans’ texture:

Figure 5.8: Sweater - GT Figure 5.9: Sweater - M Figure 5.10: Sweater - GS

5.2.2 Transparent objects

This test, when evaluated considering the mesh-based rendering workflow, delivered
largely expected results: both the glass and the water jug failed to reconstruct, while

61

Evaluation of the Results

the reading glasses were partially captured but appeared flattened and fused onto
the subject’s face, lacking a proper 3D structure.

Figure 5.11: Reading glasses - M Figure 5.12: Water jug - M

In contrast, the Gaussian-based rendering handled the translucent objects con-
siderably better. All three items appear well-defined when viewed from a moderate
distance, with shapes that closely resemble the ground truth. However, when ob-
served at closer range, particularly the jug and the glass, some blurriness becomes
noticeable: this is due to the visible splats composing their structure. This effect is
more pronounced depending on the viewing direction, and varies based on how close
the point of view is to one of the original input cameras.

Figure 5.13: Water jug, near - GS Figure 5.14: Water jug, far - GS

The jug also appears more opaque than expected. This is because the scene shown in
Figures 5.13 and 5.14 was trained using masked input images, which included some
background information in the transparent areas. This background color becomes
embedded in the reconstruction, especially in transparent regions such as the jug.

62

Evaluation of the Results

To achieve a more realistic translucent effect, closer to the ground truth, the full
images can be used during training, removing the background afterwards. While this
approach increases training time significantly, it improves the transparency of the
reconstructed objects. Nonetheless, the inherent blurriness introduced by the splats
remains visible, and some minor color artifacts can be observed in the output.

Figure 5.15: Water jug, background removed after training - GS

5.2.3 Thin objects

The results of this test were particularly interesting. The baseball cap was consistently
reconstructed with high accuracy in each frame using the mesh-based approach, an
outcome that was not entirely anticipated. This is likely due to the visor’s rigidity
and sufficient thickness, which allowed for effective feature point detection and depth
estimation, enabling an accurate reconstruction. The paper brochure, on the other
hand, was only partially reconstructed, excluding angles and other parts of the thin
paper structure.

Figure 5.16: Cap - M Figure 5.17: Paper - M

63

Evaluation of the Results

An analysis of the Gaussian-based output, on the other hand, demonstrated a
complete and accurate reconstruction of both objects:

Figure 5.18: Cap - GS Figure 5.19: Paper - GS

The paper brochure [Figure 5.19] is fully reconstructed, even in areas where the
mesh-based method struggled significantly. The same applies to the baseball cap
[Figure 5.18], which provided good results with both reconstruction techniques.
However, when viewed from certain angles, the cap exhibits slight translucency issues.
This is likely due to insufficient splat density in specific regions or opacity values that
are too low, making parts of the cap partially see-through. This effect is particularly
noticeable when observing the cap’s visor from above, where the underlying paper
brochure becomes visible through the semi-translucent splats:

Figure 5.20: Translucency issues - GS

5.2.4 Reflective objects

In the case of mesh-based rendering [Figure 5.21], the chrome ball is reconstructed with
poor accuracy, showing several missing regions and an uneven, distorted shape. This
is because mesh-based reconstruction struggles to handle reflective surfaces, whose
appearance varies significantly depending on the viewing angle, making consistent

64

Evaluation of the Results

geometry estimation particularly challenging.

Figure 5.21: Chrome ball - M

Conversely, Gaussian Splatting demonstrated a greater ability to handle reflections,
successfully reconstructing not only the chrome ball itself but also the reflected studio
within it [Figure 5.22]. However, as previously noted, Gaussian-based scenes are
inherently view-dependent, meaning the quality of the reconstruction varies based
on the proximity of the viewing angle to one of the input cameras. This limitation is
particularly evident in this scenario, where the clarity and accuracy of the reflection
inside the chrome ball fluctuate significantly between viewpoints, even with minimal
shifts in camera position.

Figure 5.22: Chrome ball, near - GS Figure 5.23: Chrome ball, far - GS

5.2.5 Loose Hair

In the mesh-based result [Figure 5.24], the reconstructed hair appears, as expected,
quite unrealistic: the loose strands are rendered in a blocky manner, while the finer
ones fail to appear at all, having been lost during processing. Much of the intricate
hair detail is simply not captured by the mesh. In contrast, the Gaussian-based
result [Figure 5.25] preserves these finer details significantly better. This is due to

65

Evaluation of the Results

the nature of Gaussians, which can represent even subtle structures and support
semi-transparent areas, allowing for loose strands to be more accurately reconstructed.

Figure 5.24: Hair detail - M Figure 5.25: Hair detail - GS

Using masked images, however, can easily lead to background artifacts close to
the hair, which result hard to remove manually. For better results, it would be
preferable to train on full images and remove the background afterwards. Despite
the higher processing cost, this approach provides considerably more precise and
artifact-free results.

5.2.6 Dark and Uniformly-Textured Outfits

Out of all the complex scenarios tested, the dark and uniformly-textured outfit
produced the most visually successful result with mesh-based rendering. The subject
was almost entirely reconstructed in every frame, with the exception of a few instances
where parts of the left arm were missing [Figure 5.26].

Figure 5.26: Arm - M

66

Evaluation of the Results

However, the main limitation of this outfit emerges when viewing the full mesh-
reconstructed take, which suffers from significant flickering artifacts, especially on
the pants and bodysuit. This is primarily due to depth estimation errors in low-
texture areas, where feature matching becomes unreliable, leading to instability in
the reconstructed geometry over time. While the Cleaning and Tracking steps in
Volucap’s pipeline typically help reduce such issues, in this case they were insufficient
to fully correct the errors, indicating that depth information in those regions was
notably less accurate than usual.

Figure 5.27: Pants flicker, f63 - M Figure 5.28: Pants flicker, f64 - M

The Gaussian-based result, by contrast, avoids these artifacts, offering more
accurate depth estimation and scene reconstruction. However, upon closer inspection,
some imperfections can be seen on the clothing:

Figure 5.29: Bodysuit detail - GS Figure 5.30: Pants detail - GS

67

Evaluation of the Results

This highlights that, although Gaussian Splatting demonstrates a clear advantage
over mesh-based reconstruction in many challenging scenarios, it is still not immune
to limitations. In particular, clothing with low texture or uniform color, such as
the tested outfit, can still present issues. These materials often lack distinct visual
features and even Gaussian Splatting may struggle to reconstruct such regions with
perfect fidelity. This is especially true when viewing angles deviate significantly from
the original input cameras, where the quality of the reconstruction may visibly drop
due to view-dependency and sparse angular coverage.

In conclusion, the visual tests conducted have clearly demonstrated that Gaussian-
based reconstruction offers a significant visual improvement over traditional mesh-
based methods, particularly when it comes to handling complex and problematic
scenarios. While meshes are limited by their reliance on explicit surface connectivity
and accurate depth maps, which frequently break down when dealing with transparent,
reflective, or finely detailed structures, Gaussians provide a more adaptable alternative.
Their unstructured and differentiable nature, combined with properties such as
view-dependent opacity and color, allows them to effectively reconstruct intricate
geometry and subtle details that meshes often fail to capture. Although not free of
challenges, Gaussian Splatting significantly broadens the range of scenarios that can
be accurately reconstructed, offering a promising alternative for advancing volumetric
capture technology.

68

Chapter 6

Conclusion

This thesis aimed to explore the potential of Dynamic Gaussian Splatting as an alter-
native rendering technique to traditional mesh-based reconstruction within Volucap’s
volumetric capture workflow. The main goal was to investigate whether Gaussian
Splatting could resolve long-standing limitations of mesh-based reconstruction, partic-
ularly in challenging scenarios that commonly affect volumetric productions involving
human avatars for XR experiences.
To achieve this, a frame-by-frame Gaussian Splatting pipeline was developed and
successfully integrated into Volucap’s existing mesh-based production workflow. This
was a significant technical achievement, requiring the adaptation of external camera
calibration data and compatibility with high-resolution input. All experiments were
conducted using real footage captured at Volucap’s studio, strictly following the
company’s internal standards and leveraging their calibration system and image
processing tools.

The primary focus of the study was on complex scenarios where mesh-based
reconstruction typically fails or underperforms, such as transparent objects, reflective
surfaces, thin items, loose hair, and dark or uniformly textured clothing. To evaluate
the performance and capabilities of a Gaussian-based approach in complex scenarios,
a dedicated test was conducted. In this test, all the difficult conditions that usually
pose challenges for standard mesh-based methods were captured, processed, and
assessed using both reconstruction approaches.

The results of the practical tests conducted demonstrated that Gaussian-based
reconstruction offers significant visual improvements over traditional mesh-based
methods, especially when it comes to handling complex and problematic scenarios.
While meshes remain limited by their dependency on explicit surface connectivity and
accurate depth maps, which often fail to accurately reproduce problematic scenarios,
Gaussian Splatting provides a more versatile alternative. Thanks to its unstructured
nature and view-dependent properties, along with the ability to encode opacity and
color per Gaussian primitive, Gaussian Splatting managed to preserve finer details and
produce more complete reconstructions, delivering higher visual fidelity. This tech-

69

Conclusion

nique significantly broadens the range of scenarios that can be accurately reproduced,
offering a promising alternative for the advancement of volumetric capture technology.

However, this research also revealed major limitations. Firstly, it’s necessary to
consider the very extended training times per frame, which remain considerably longer
than the processing times of mesh-based reconstruction, especially when aiming to
meet a certain quality threshold. Moreover, the need to train each frame indepen-
dently, without any temporal continuity, results in a linear increase in training time
that quickly becomes unmanageable for longer sequences. Secondly, another critical
limitation is the output file size: when trained at quality levels acceptable for com-
mercial use, Gaussian-based scenes result significantly larger than their mesh-based
counterparts, leading to unsustainable storage demands for full-length volumetric
videos.
Due to these limitations, the frame-by-frame Gaussian Splatting approach is currently
not applicable in a real-world production pipeline.

To sum up, while frame-by-frame Gaussian Splatting demonstrates strong recon-
struction capabilities, particularly in challenging scenarios, it becomes clear that this
implementation is not yet scalable for full dynamic scene reconstruction. Although
training time and output size can technically be reduced by adjusting training pa-
rameters, this comes at the cost of visual fidelity, making the results unsuitable for
commercial use. However, for static scenes, where longer training times and larger
files are more acceptable, it remains a viable solution. Despite these drawbacks, the
study highlights Dynamic Gaussian Splatting as a promising and effective alternative
to overcome key mesh-based reconstruction issues. Its integration into Volucap’s
pipeline confirms its potential as a valuable direction for future research and develop-
ment.

We identified a promising approach for future advancements in a paper proposed
in the SIGGRAPH Asia 2024, Representing Long Volumetric Video with Temporal
Gaussian Hierarchy [43]. This research introduces a novel approach for efficiently
reconstructing and rendering longer dynamic scenes, addressing one of the main
limitations of recent dynamic view synthesis methods, which are typically constrained
to short sequences of about 1–2 seconds. This new approach is able to successfully
model and render minutes-long volumetric videos, while maintaining state-of-the-art
quality, low storage requirements and efficient training. To efficiently model long
volumetric videos, this method introduces the Temporal Gaussian Hierarchy, a multi-
level structure of 4D Gaussian primitives. Each level delineates different regions
of the scene based on how much of their content changes over time, and Gaussian
primitives are adaptively shared across temporal segments for areas that remain
static. This strategy significantly reduces the overall number of primitives required.
One of the main strengths of this representation is its efficiency during training and
rendering, which remains consistent regardless of the video length. Moreover, thanks

70

Conclusion

to its tree-like structure, the representation can efficiently identify the relevant seg-
ments for any given moment in time, loading only the necessary segments into GPU
memory during training or rendering. This strategy ensures near-constant runtime
memory usage and prevents scalability issues when working with longer sequences.
To further minimize model size, a Compact Appearance Model is introduced: this
combines diffuse and view-dependent Gaussians, which helps to minimize the model
size while maintaining the rendering quality.[43]

In this context, integrating Long Volumetric Video [43] or similar methods into
Volucap’s pipeline could provide the solution to combine the visual advantages of
Gaussian Splatting with the scalability and efficiency needed for commercial-level
dynamic volumetric productions. Unfortunately, this implementation is not yet pub-
licly available, which prevented us from testing it during the course of this research.

In conclusion, this thesis demonstrates that Gaussian Splatting is capable of
solving critical challenges in mesh-based reconstruction, offering a higher level of
detail and realism in complex capture scenarios. While the tested frame-by-frame
method is not yet ready for production use, emerging technologies offer a promising
path forward. With further research and continued innovation, these new approaches
may soon make it possible to implement Gaussian-based rendering techniques at
scale, reshaping the future of volumetric video production.

71

Appendix A

Single-frame training times

The following section contains the tables used for the quantitative analysis. Specifi-
cally, they present the training times associated with different input image resolutions.
This data was subsequently mapped into the graphs shown in [Section 5.1.1]. Each
table reports the time required to train a single frame, along with the corresponding
input resolution. Image resolution is expressed in pixels, and Training time is given
in minutes. Each table refers to a distinct capture scenario.

Standard capture scenario [Section 4.2.1]:

Input resolution (pixels) Training time (minutes)
1K 13
2K 17
4K 29
6K 50

Table A.1: Training times for Standard capture scenario

Transparent objects [Section 4.2.2]:

Input resolution (pixels) Training time (minutes)
1K 14
2K 18
4K 32
6K 50

Table A.2: Training times for Transparent objects scenario

72

Appendix A

Dark and Uniformly-textured outfits [Section 4.2.6]:

Input resolution (pixels) Training time (minutes)
1K 8
2K 11
4K 22
6K 38

Table A.3: Training times for Dark and Uniformly-textured outfits scenario

73

Appendix B

Single-frame output file sizes

The following section contains the tables used for the quantitative analysis. Specifi-
cally, they present the output file size associated with different values of the Max
Splat Count parameter, which represents the number of Splat primitives that training
will at most create in the scene. These tables were subsequently mapped into the
graphs shown in [Section 5.1.2]. Each table shows how the output file size varies in
regards to the maximum number of splats present in a scene. As we can observe, the
two presented tables are identical, indicating that this parameter alone determines
the output file size, regardless of the specific scene being reconstructed.

Standard capture scenario [Section 4.2.1]:

Max Splat Count (kSplats) Output file size (MB)
500 118
1000 236
2000 473
3000 709

Table B.1: Output file sizes for Standard capture scenario

Thin objects scenario [Section 4.2.3]:

Max Splat Count (kSplats) Output file size (MB)
500 118
1000 236
2000 473
3000 709

Table B.2: Output file sizes for Thin objects scenario

74

List of Figures

2.1 Volucap’s volumetric capture studio 8
2.2 Camera calibration process Source: [10] 10
2.3 Original capture . 12
2.4 Mask . 12
2.5 Skeleton . 13
2.6 Original model . 16
2.7 Cleaned model . 16
2.8 Texture atlas . 17
2.9 Encoded file . 18
2.10 Volucap pipeline . 18
2.11 Optimization process of 3D Gaussian Splatting Source: [5] 26
2.12 Adaptive control of Gaussians Source: [5] 27
2.13 4D Gaussian Splatting Framework Source: [39] 31

3.1 Mesh-based and Gaussian-based pipelines 35
3.2 images folder, containing undistorted footage 36
3.3 masked_images folder, containing masked footage 36
3.4 sparse folder, containing the sparse model data 37
3.5 Postshot interface Source: http: // bit. ly/ 4kNNnFL 38
3.6 Postshot Training Configuration Source: https: // bit. ly/ 4irMK2O 40
3.7 4D-GS training command . 43

4.1 Bg removed after training . 50
4.2 Bg removed before training . 50
4.3 S - GT . 51
4.4 S - M . 51
4.5 S - GS . 51
4.6 TR - GT . 51
4.7 TR - M . 51
4.8 TR - GS . 51
4.9 TH - GT . 52
4.10 TH - M . 52
4.11 TH - GS . 52
4.12 R - GT . 52

75

http://bit.ly/4kNNnFL
https://bit.ly/4irMK2O

LIST OF FIGURES

4.13 R - M . 52
4.14 R - GS . 52
4.15 H - GT . 53
4.16 H - M . 53
4.17 H - GS . 53
4.18 DU - GT . 53
4.19 DU - M . 53
4.20 DU - GS . 53

5.1 Training times for Standard capture scenario 56
5.2 Training times for Transparent objects scenario 56
5.3 Training times for Dark and Uniformly-textured outfits scenario . . . 57
5.4 Output file sizes for Standard capture scenario 59
5.5 Output file sizes for Thin objects scenario 59
5.6 Low angle - M . 61
5.7 Low angle - GS . 61
5.8 Sweater - GT . 61
5.9 Sweater - M . 61
5.10 Sweater - GS . 61
5.11 Reading glasses - M . 62
5.12 Water jug - M . 62
5.13 Water jug, near - GS . 62
5.14 Water jug, far - GS . 62
5.15 Water jug, background removed after training - GS 63
5.16 Cap - M . 63
5.17 Paper - M . 63
5.18 Cap - GS . 64
5.19 Paper - GS . 64
5.20 Translucency issues - GS . 64
5.21 Chrome ball - M . 65
5.22 Chrome ball, near - GS . 65
5.23 Chrome ball, far - GS . 65
5.24 Hair detail - M . 66
5.25 Hair detail - GS . 66
5.26 Arm - M . 66
5.27 Pants flicker, f63 - M . 67
5.28 Pants flicker, f64 - M . 67
5.29 Bodysuit detail - GS . 67
5.30 Pants detail - GS . 67

76

List of Tables

A.1 Training times for Standard capture scenario 72
A.2 Training times for Transparent objects scenario 72
A.3 Training times for Dark and Uniformly-textured outfits scenario . . . 73

B.1 Output file sizes for Standard capture scenario 74
B.2 Output file sizes for Thin objects scenario 74

77

Acronyms

DoF Degrees of Freedom.

AR Augmented Reality.

VR Virtual Reality.

HMD Head-Mounted Display.

IMU Inertial Measurement Unit.

XR Extended Reality.

3DHBR 3D Human Body Reconstruction.

SfM Structure-from-Motion.

MVS Multi-View Stereo.

SPSR Screened Poisson Surface Reconstruction.

NeRFs Neural Radiance Fields.

MLP Multi-Layer Perceptron.

3D-GS 3D Gaussian Splatting.

SH Spherical Harmonics.

CNN Convolutional Neural Networks.

SGD Stochastic Gradient Descent.

PDF Probability Density Function.

78

Acronyms

4D-GS 4D Gaussian Splatting.

FPS Frames Per Second.

GT Ground Truth.

M Mesh.

GS Gaussian Splatting.

S Standard capture scenario.

TR Transparent objects.

R Reflective objects.

TH Thin objects.

H Loose Hair.

DU Dark and Uniformly-textured outfits.

79

Bibliography

[1] Yili Jin, Kaiyuan Hu, Junhua Liu, Fangxin Wang, and Xue Liu. From Capture
to Display: A Survey on Volumetric Video. 2024. arXiv: 2309.05658 [cs.MM].
url: https://arxiv.org/abs/2309.05658 (cit. on p. 1).

[2] Jeroen van der Hooft, Hadi Amirpour, Maria Torres Vega, Yago Sanchez,
Raimund Schatz, Thomas Schierl, and Christian Timmerer. “A Tutorial on
Immersive Video Delivery: From Omnidirectional Video to Holography”. In:
IEEE Communications Surveys & Tutorials 25.2 (2023), pp. 1336–1375. doi:
10.1109/COMST.2023.3263252 (cit. on pp. 1, 2).

[3] Arcturus. What is Volumetric Video: A Beginner’s Guide — arcturus.studio.
https://arcturus.studio/blog/what-is-volumetric-video/. [Accessed
15-02-2025] (cit. on p. 1).

[4] Zhengren Wang. 3D Representation Methods: A Survey. 2024. arXiv: 2410.
06475 [cs.CV]. url: https://arxiv.org/abs/2410.06475 (cit. on pp. 3,
19).

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. 2023. arXiv:
2308.04079 [cs.GR]. url: https://arxiv.org/abs/2308.04079 (cit. on
pp. 4, 23–28, 30, 34).

[6] Oliver Schreer, Ingo Feldmann, Peter Kauff, Peter Eisert, Danny Tatzelt,
Cornelius Hellge, Karsten Muller, Sven Bliedung, and Thomas Ebner. “Lessons
Learned During One year of Commercial Volumetric Video Production”. In:
SMPTE Motion Imaging Journal 129 (Oct. 2020), pp. 31–37. doi: 10.5594/
JMI.2020.3010399 (cit. on pp. 7–9, 17, 18).

[7] Basler AG. CMOS Global Shutter Cameras — baslerweb.com. https://www.
baslerweb.com/en/learning/cmos-global-shutter-cameras/. [Accessed
15-02-2025] (cit. on p. 8).

[8] Oliver Schreer, Ingo Feldmann, Sylvain Renault, Marcus Zepp, Markus Worchel,
Peter Eisert, and Peter Kauff. “Capture and 3D Video Processing of Volumetric
Video”. In: 2019 IEEE International Conference on Image Processing (ICIP).
2019, pp. 4310–4314. doi: 10.1109/ICIP.2019.8803576 (cit. on pp. 8, 14, 15).

80

https://arxiv.org/abs/2309.05658
https://arxiv.org/abs/2309.05658
https://doi.org/10.1109/COMST.2023.3263252
https://arcturus.studio/blog/what-is-volumetric-video/
https://arxiv.org/abs/2410.06475
https://arxiv.org/abs/2410.06475
https://arxiv.org/abs/2410.06475
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2308.04079
https://doi.org/10.5594/JMI.2020.3010399
https://doi.org/10.5594/JMI.2020.3010399
https://www.baslerweb.com/en/learning/cmos-global-shutter-cameras/
https://www.baslerweb.com/en/learning/cmos-global-shutter-cameras/
https://doi.org/10.1109/ICIP.2019.8803576

BIBLIOGRAPHY

[9] Basler AG. Flat-Field Correction | Basler Product Documentation —
docs.baslerweb.com. https://docs.baslerweb.com/flat-field-correction.
[Accessed 15-02-2025] (cit. on p. 8).

[10] Inc. The MathWorks. What Is Camera Calibration? https://de.mathworks.
com/help/vision/ug/camera- calibration.html. [Accessed 15-02-2025]
(cit. on pp. 9, 10).

[11] Fraunhofer Heinrich-Hertz-Institut. Foreground/Background Separation —
hhi.fraunhofer.de. https://www.hhi.fraunhofer.de/en/vit-imc/research-
topics/foreground-background-separation.html. [Accessed 15-02-2025]
(cit. on p. 10).

[12] Johannes L. Schönberger and Jan-Michael Frahm. “Structure-from-Motion
Revisited”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016, pp. 4104–4113. doi: 10.1109/CVPR.2016.445 (cit. on
p. 14).

[13] M. Goesele, B. Curless, and S.M. Seitz. “Multi-View Stereo Revisited”. In:
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06). Vol. 2. 2006, pp. 2402–2409. doi: 10.1109/CVPR.2006.
199 (cit. on pp. 14, 23).

[14] Wolfgang Waizenegger, Ingo Feldmann, and Oliver Schreer. “Real-time Patch
Sweeping for High-Quality Depth Estimation in 3D Videoconferencing Ap-
plications”. In: Proceedings of SPIE - The International Society for Optical
Engineering 7871 (Feb. 2011). doi: 10.1117/12.872868 (cit. on p. 14).

[15] W. Waizenegger, I. Feldmann, O. Schreer, P. Kauff, and P. Eisert. “Real-
time 3D body reconstruction for immersive TV”. In: 2016 IEEE International
Conference on Image Processing (ICIP). 2016, pp. 360–364. doi: 10.1109/
ICIP.2016.7532379 (cit. on p. 14).

[16] S. Ebel, W. Waizenegger, M. Reinhardt, O. Schreer, and I. Feldmann. “Visibility-
driven patch group generation”. In: 2014 International Conference on 3D
Imaging (IC3D). 2014, pp. 1–8. doi: 10.1109/IC3D.2014.7032597 (cit. on
p. 14).

[17] Michael Kazhdan and Hugues Hoppe. “Screened poisson surface reconstruction”.
In: ACM Trans. Graph. 32.3 (July 2013). issn: 0730-0301. doi: 10.1145/
2487228.2487237. url: https://doi.org/10.1145/2487228.2487237 (cit.
on p. 15).

[18] Michael Garland and Paul S. Heckbert. “Surface Simplification Using Quadric
Error Metrics”. In: Seminal Graphics Papers: Pushing the Boundaries, Volume
2. 1st ed. New York, NY, USA: Association for Computing Machinery, 2023.
isbn: 9798400708978. url: https://doi.org/10.1145/3596711.3596727
(cit. on p. 15).

81

https://docs.baslerweb.com/flat-field-correction
https://de.mathworks.com/help/vision/ug/camera-calibration.html
https://de.mathworks.com/help/vision/ug/camera-calibration.html
https://www.hhi.fraunhofer.de/en/vit-imc/research-topics/foreground-background-separation.html
https://www.hhi.fraunhofer.de/en/vit-imc/research-topics/foreground-background-separation.html
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2006.199
https://doi.org/10.1109/CVPR.2006.199
https://doi.org/10.1117/12.872868
https://doi.org/10.1109/ICIP.2016.7532379
https://doi.org/10.1109/ICIP.2016.7532379
https://doi.org/10.1109/IC3D.2014.7032597
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/3596711.3596727

BIBLIOGRAPHY

[19] Ziyan Wang, Giljoo Nam, Aljaz Bozic, Chen Cao, Jason Saragih, Michael
Zollhoefer, and Jessica Hodgins. A Local Appearance Model for Volumetric
Capture of Diverse Hairstyle. 2023. arXiv: 2312.08679 [cs.CV]. url: https:
//arxiv.org/abs/2312.08679 (cit. on p. 19).

[20] Yiming Qian, Minglun Gong, and Yee-Hong Yang. “3D Reconstruction of Trans-
parent Objects with Position-Normal Consistency”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 4369–4377.
doi: 10.1109/CVPR.2016.473 (cit. on p. 20).

[21] Benjamin Ummenhofer and Thomas Brox. “Point-Based 3D Reconstruction of
Thin Objects”. In: 2013 IEEE International Conference on Computer Vision.
2013, pp. 969–976. doi: 10.1109/ICCV.2013.124 (cit. on p. 20).

[22] Xi Deng, Lifan Wu, Bruce Walter, Ravi Ramamoorthi, Eugene d’Eon, Steve
Marschner, and Andrea Weidlich. “Reconstructing translucent thin objects from
photos”. In: SIGGRAPH Asia 2024 Conference Papers. SA ’24. Association
for Computing Machinery, 2024. isbn: 9798400711312. doi: 10.1145/3680528.
3687572. url: https://doi.org/10.1145/3680528.3687572 (cit. on p. 21).

[23] Ali Hosseininaveh Ahmadabadian, R. Yazdan, A. Karami, M. Moradi, and F.
Ghorbani. “Clustering and selecting vantage images in a low-cost system for 3D
reconstruction of texture-less objects”. In: Measurement 99 (2017), pp. 185–191.
issn: 0263-2241. doi: https://doi.org/10.1016/j.measurement.2016.
12.026. url: https://www.sciencedirect.com/science/article/pii/
S0263224116307242 (cit. on p. 21).

[24] Fangjinhua Wang, Marie-Julie Rakotosaona, Michael Niemeyer, Richard Szeliski,
Marc Pollefeys, and Federico Tombari. UniSDF: Unifying Neural Representa-
tions for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections.
2024. arXiv: 2312.13285 [cs.CV]. url: https://arxiv.org/abs/2312.
13285 (cit. on p. 21).

[25] Noah Snavely, Steven M. Seitz, and Richard Szeliski. “Photo tourism: exploring
photo collections in 3D”. In: ACM Trans. Graph. 25.3 (July 2006), pp. 835–846.
issn: 0730-0301. doi: 10.1145/1141911.1141964. url: https://doi.org/10.
1145/1141911.1141964 (cit. on pp. 23, 34).

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Ra-
diance Fields for View Synthesis. 2020. arXiv: 2003.08934 [cs.CV]. url:
https://arxiv.org/abs/2003.08934 (cit. on p. 23).

[27] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. “Plenoxels: Radiance Fields without Neural Networks”.
In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022, pp. 5491–5500. doi: 10.1109/CVPR52688.2022.00542 (cit. on
p. 23).

82

https://arxiv.org/abs/2312.08679
https://arxiv.org/abs/2312.08679
https://arxiv.org/abs/2312.08679
https://doi.org/10.1109/CVPR.2016.473
https://doi.org/10.1109/ICCV.2013.124
https://doi.org/10.1145/3680528.3687572
https://doi.org/10.1145/3680528.3687572
https://doi.org/10.1145/3680528.3687572
https://doi.org/https://doi.org/10.1016/j.measurement.2016.12.026
https://doi.org/https://doi.org/10.1016/j.measurement.2016.12.026
https://www.sciencedirect.com/science/article/pii/S0263224116307242
https://www.sciencedirect.com/science/article/pii/S0263224116307242
https://arxiv.org/abs/2312.13285
https://arxiv.org/abs/2312.13285
https://arxiv.org/abs/2312.13285
https://doi.org/10.1145/1141911.1141964
https://doi.org/10.1145/1141911.1141964
https://doi.org/10.1145/1141911.1141964
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1109/CVPR52688.2022.00542

BIBLIOGRAPHY

[28] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant
neural graphics primitives with a multiresolution hash encoding”. In: ACM
Transactions on Graphics 41.4 (July 2022), pp. 1–15. issn: 1557-7368. doi:
10.1145/3528223.3530127. url: http://dx.doi.org/10.1145/3528223.
3530127 (cit. on p. 23).

[29] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli,
and Ulrich Neumann. Point-NeRF: Point-based Neural Radiance Fields. 2023.
arXiv: 2201.08845 [cs.CV]. url: https://arxiv.org/abs/2201.08845
(cit. on p. 23).

[30] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. “High-quality surface splat-
ting on today’s GPUs”. In: Proceedings Eurographics/IEEE VGTC Symposium
Point-Based Graphics, 2005. 2005, pp. 17–141. doi: 10.1109/PBG.2005.194059
(cit. on p. 24).

[31] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
“Surfels: surface elements as rendering primitives”. In: Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co., 2000,
pp. 335–342. isbn: 1581132085. doi: 10.1145/344779.344936. url: https:
//doi.org/10.1145/344779.344936 (cit. on p. 24).

[32] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. “Object Space EWA Surface
Splatting: A Hardware Accelerated Approach to High Quality Point Rendering”.
In: Computer Graphics Forum 21.3 (2002), pp. 461–470. doi: https://doi.
org/10.1111/1467-8659.00606. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/1467-8659.00606. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/1467-8659.00606 (cit. on p. 24).

[33] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.
“Surface splatting”. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA:
Association for Computing Machinery, 2001, pp. 371–378. isbn: 158113374X.
doi: 10.1145/383259.383300. url: https://doi.org/10.1145/383259.
383300 (cit. on p. 24).

[34] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and
Victor Lempitsky. “Neural Point-Based Graphics”. In: Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXII. Glasgow, United Kingdom: Springer-Verlag, 2020,
pp. 696–712. isbn: 978-3-030-58541-9. doi: 10.1007/978-3-030-58542-6_42.
url: https://doi.org/10.1007/978-3-030-58542-6_42 (cit. on p. 24).

[35] Darius Rückert, Linus Franke, and Marc Stamminger. “ADOP: approximate
differentiable one-pixel point rendering”. In: ACM Trans. Graph. 41.4 (July
2022). issn: 0730-0301. doi: 10.1145/3528223.3530122. url: https://doi.
org/10.1145/3528223.3530122 (cit. on p. 24).

83

https://doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/2201.08845
https://arxiv.org/abs/2201.08845
https://doi.org/10.1109/PBG.2005.194059
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/https://doi.org/10.1111/1467-8659.00606
https://doi.org/https://doi.org/10.1111/1467-8659.00606
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00606
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00606
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00606
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00606
https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300
https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1145/3528223.3530122

BIBLIOGRAPHY

[36] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “EWA volume splatting”.
In: Proceedings Visualization, 2001. VIS ’01. 2001, pp. 29–538. doi: 10.1109/
VISUAL.2001.964490 (cit. on p. 25).

[37] Christoph Lassner. “Fast Differentiable Raycasting for Neural Rendering using
Sphere-based Representations”. In: CoRR abs/2004.07484 (2020). arXiv: 2004.
07484. url: https://arxiv.org/abs/2004.07484 (cit. on pp. 27, 28).

[38] Duane G. Merrill and Andrew S. Grimshaw. “Revisiting sorting for GPGPU
stream architectures”. In: Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques. PACT ’10. Vienna, Austria:
Association for Computing Machinery, 2010, pp. 545–546. isbn: 9781450301787.
doi: 10.1145/1854273.1854344. url: https://doi.org/10.1145/1854273.
1854344 (cit. on p. 28).

[39] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei
Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 4D Gaussian Splatting for
Real-Time Dynamic Scene Rendering. 2024. arXiv: 2310.08528 [cs.CV]. url:
https://arxiv.org/abs/2310.08528 (cit. on pp. 29–33, 42, 45).

[40] Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, and
Angjoo Kanazawa. K-Planes: Explicit Radiance Fields in Space, Time, and
Appearance. 2023. arXiv: 2301.10241 [cs.CV]. url: https://arxiv.org/
abs/2301.10241 (cit. on p. 31).

[41] Output Format; COLMAP 3.12.0.dev0 documentation — colmap.github.io.
[Accessed 12-03-2025]. url: https://colmap.github.io/format.html#text-
format (cit. on p. 37).

[42] Training Configuration — jawset.com. https://www.jawset.com/docs/
d/Postshot+User+Guide/Interface/Training+Configuration. [Accessed
15-03-2025] (cit. on p. 40).

[43] Zhen Xu, Yinghao Xu, Zhiyuan Yu, Sida Peng, Jiaming Sun, Hujun Bao, and
Xiaowei Zhou. “Representing Long Volumetric Video with Temporal Gaussian
Hierarchy”. In: ACM Transactions on Graphics 43.6 (Nov. 2024), pp. 1–18.
issn: 1557-7368. doi: 10.1145/3687919. url: http://dx.doi.org/10.1145/
3687919 (cit. on pp. 70, 71).

84

https://doi.org/10.1109/VISUAL.2001.964490
https://doi.org/10.1109/VISUAL.2001.964490
https://arxiv.org/abs/2004.07484
https://arxiv.org/abs/2004.07484
https://arxiv.org/abs/2004.07484
https://doi.org/10.1145/1854273.1854344
https://doi.org/10.1145/1854273.1854344
https://doi.org/10.1145/1854273.1854344
https://arxiv.org/abs/2310.08528
https://arxiv.org/abs/2310.08528
https://arxiv.org/abs/2301.10241
https://arxiv.org/abs/2301.10241
https://arxiv.org/abs/2301.10241
https://colmap.github.io/format.html#text-format
https://colmap.github.io/format.html#text-format
https://www.jawset.com/docs/d/Postshot+User+Guide/Interface/Training+Configuration
https://www.jawset.com/docs/d/Postshot+User+Guide/Interface/Training+Configuration
https://doi.org/10.1145/3687919
http://dx.doi.org/10.1145/3687919
http://dx.doi.org/10.1145/3687919

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my academic supervisors, Andrea
Bottino and Francesco Strada, for their continuous guidance and support throughout
the course of this research. Their expertise and encouragement have been essential
to the development and completion of this thesis.
My sincere appreciation goes to my company supervisor, Sven Bliedung von der Heide,
and to the entire Volucap team, for welcoming me into their innovative environment
and providing me with the tools to grow both professionally and personally during
my months abroad. Their support and collaboration were pivotal in shaping the
practical aspects of this work.
Finally, I would like to extend my deepest thanks to my family and friends. Their
steady support, patience, and belief in me have been a constant source of strength.
Without their love and encouragement, this journey would not have been possible.

	Introduction
	Context and Motivation
	Purpose of the study and Volucap's requirements

	State of the Art
	Volumetric Capture
	Studio
	Shooting pipeline
	Post-production pipeline

	Limitations of Mesh-Based Reconstruction
	3D Gaussian Splatting
	Related work
	Overview of 3D Gaussian Splatting
	Optimization
	Rasterization

	Frame-by-frame Gaussian Splatting
	4D Gaussian Splatting
	4D Gaussian Splatting Framework
	Gaussian Deformation Field Network
	Optimization

	Gaussian Splatting Implementation Process
	Input data
	Frame-by-frame production pipeline
	4D Gaussian Splatting production pipeline
	Evaluation of the approaches
	Frame-by-frame approach
	4D Gaussian Splatting approach
	Method of Choice

	Meshes VS Gaussian Splatting
	Experimental Setup
	Tested Scenarios
	Standard capture scenario (S)
	Transparent objects (TR)
	Thin objects (TH)
	Reflective objects (R)
	Loose hair (H)
	Dark and Uniformly-textured outfits (DU)

	Evaluation of the Results
	Quantitative Evaluation
	Training Time
	Output File Size

	Qualitative Evaluation
	Standard capture scenario
	Transparent objects
	Thin objects
	Reflective objects
	Loose Hair
	Dark and Uniformly-Textured Outfits

	Conclusion
	Single-frame training times
	Single-frame output file sizes
	Bibliography

