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Abstract  
 
The following thesis project describes the design, development and implementation of a 
monitoring system for an apple orchard through the creation of an integral digital twin 
(DT) of said orchard that supplies useful information about the apples, such as health and 
position. The work done for this thesis corresponds to the continuation of a project carried 
out by the Department of Environment, Land and Infrastructure Engineering (DIATI) and 
the Department of Mechanical and Aerospace Engineering (DIMEAS) of the Politecnico 
di Torino. 
 
Data acquisition was performed using multispectral cameras and a stereo camera mounted 
on an agricultural UGV developed by DIMEAS, called Agri.Q, that was driven around 
the orchard by remote control. The multispectral cameras were used to measure the light 
reflected by the leaves during photosynthesis, indicating the health of every single tree. 
On the other hand, the stereo camera recorded an SVO file from which a point cloud was 
extracted and, thanks to the integrated Inertial Measurement Unit (IMU) and the 
possibility of using artificial intelligence (AI) and neural networks, apples were detected 
and located. In addition, a LiDAR scanner was used to obtain a georeferenced point cloud 
of the orchard. 
 
The project required the design of the support for the sensors to be mounted on the UGV, 
taking into consideration the orientation and placement of the cameras needed to obtain 
the desired framing of the apple trees and the corresponding overlap to ensure a correct 
redundancy of the pictures. After data acquisition, point clouds were extracted from the 
outputs of the various cameras and sensors and were manipulated in order to obtain a 
single point cloud. It is interesting to mention the work done to recognise the apples: an 
AI model had to be trained to detect apples and then integrated into an application to 
recognise and locate the apples. 
 
The aforementioned materials and procedures will be explained better throughout the 
thesis, together with the software and methods used. Furthermore, conclusions, 
limitations and future applications are also discussed at the end of the thesis.  
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Chapter 1: Introduction 
 
The agricultural sector is undergoing a technological transformation driven by precision 
agriculture and smart farming. This chapter provides an overview of key innovations in 
the field, starting with an introduction to robotics for agriculture, including UGVs 
(Uncrewed Ground Vehicles) and UAVs (Uncrewed Aerial Vehicles), followed by a 
discussion on crop monitoring. Various monitoring techniques are explored, such as 
remote sensing, range sensors, fruit detection using computer vision and AI, and digital 
twins. A literature review on orchard monitoring is then presented, highlighting existing 
approaches and technologies. Finally, the chapter identifies current limitations in the field 
and outlines the contributions of this research in addressing these gaps. 
 
 

1.1 Precision agriculture and smart farming 
 
Precision agriculture (PA) is “ the application of farming strategies and methodologies 
to do the right thing, in the right place and at the right time” (Pierce & Nowak, 1999). In 
other words, PA is the employment of innovation technologies such as dedicated 
machines, sensors and information systems to improve the management and monitoring 
of agricultural production by collecting inputs that indicate the precise needs of the 
cultivated plants and soil (Vecchio et al., 2020). By monitoring in real-time their 
production, PA allows farmers to automate farming tasks and make better decisions 
regarding the management of their fields (Barrientos et al., 2011).  The better 
management of farm data, ultimately, leads to better management of soil, resources and 
crops, while potentially boosting yields and profits, and also improving environmental 
quality (Botta et al., 2022). An interesting term in the context of PA is Management Zone 
(MZ). MZs are subregions of a field with relatively uniform yield-limiting factors and 
relatively homogeneous soil-landscape attributes, that can be used as baseline to make 
most agricultural decisions, allowing for the application of a single rate of a specific crop 
input to maximize input efficiency (Nawar et al., 2017). 
 
Smart farming can be considered the evolution of PA, enhancing the principles of PA by 
integrating Information and Communications Technologies (ICT), including elements 
such as UGVs, Unmanned Aerial Vehicles (UAVs), machine learning, image processing 
and wireless sensor networks, among others (Moysiadis et al., 2021). This evolution 
occurs in the context of the era of Agriculture 5.0, in which the efficiency of agricultural 
production is increased by the application of emerging technologies such as AI, big data 
and the Internet of Things (IoT) (Ragazou et al., 2022). 
 
Nowadays, food security is challenged by the intensification of global food production, 
consequence of the ever-growing global population and, therefore, food demand (Fróna 
et al., 2019). The global population is expected to grow to 9 billion people by 2050, and 
in consequence, agricultural consumption is estimated to increase by 69% (Sylvester, 
2018). In addition, the scarce availability of skilled labour force increases the cost and 
reduces the sustainability of the harvest of specialty crops such as apples (Gongal et al., 
2015). In particular, the apple industry is said to be in a state of hypercompetition, to the 
point that, when a harvest season begins, the fruit of the previous year’s harvest has to be 



2 
 

thrown away (Harker et al., 2003). It is interesting to note that Italy is one of the main 
apple producers in Europe. Most of the apple production in Italy is concentrated in its 
northern regions. In fact, apple is the main fruit crop produced in Piedmont (Martino et 
al., 2024). 
 
Smart farming and the integration of automation technologies into the modernisation of 
agricultural processes, especially harvesting methods, have played an important role in 
smartly and innovatively solving the aforementioned problems by quickly improving the 
efficiency and sustainability of food production (G. Zhang et al., 2024). To achieve this 
goal in a sustainable and environmental-friendly manner, special attention is paid to 
avoiding food waste caused by the decay of the product or its rejection due to the lack of 
the desired quality (Miranda et al., 2023). Here is where computer vision and artificial 
intelligence come into play. 
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1.2 Robotics for agriculture 
 
The severe lack of farm workers and, in consequence, the increased need for efficient 
agricultural techniques can be supplied using intelligent machines. Robots are capable of 
doing repetitive tasks without ever losing precision, this presents them as a suitable option 
in the context of PA to apply advanced automated techniques and, ultimately, eliminating 
human involvement (Botta et al., 2022). These precision applications not only increase 
crop yield and quality but also reduce agriculture cost and environmental impact by 
optimising the use of water and nutrients (Bechar & Vigneault, 2016). Moreover, studies 
have shown that the use of robots or autonomous tractors saves fuel consumption and 
reduces air pollution (Gonzalez-de-Soto et al., 2016).  
 
To justify, in most cases, the use of robots in agriculture, Bechar & Vigneault (2016) 
summarised a series of advantages: 
 

 Employing robots is more economically convenient than employing other 
methods 

 The use of robots increases production, profits, yields, product quality and 
uniformity 

 Using robots minimises uncertainty and volatility 
 Allows the farmers to make higher-resolution judgments 
 Robots are able of performing dangerous tasks, or even tasks impossible to 

execute manually 
 
As illustrated by Auat Cheein & Carelli (2013), the abilities and applications of 
agricultural robots can be grouped into four categories: mapping, action, guidance and 
detection. These implementation of service units are expected to work together, for they 
are essential one to another. For example, an action could not be executed if guidance 
was not successful; guidance would not be successful if mapping was not complete; 
mapping would not be complete if elements of the environment were not correctly 
detected (Auat Cheein & Carelli, 2013). Some of the precision applications carried out 
by agricultural UGVs are proximal sensing, seeding, planting, picking and harvesting, 
among others. However, in this project, special attention will be paid to the detection and 
proximal sensing applications of agricultural robots. 
 
In this context, UGVs are being used to perform, predominantly, monitoring activities, in 
comparison to action applications (Smith et al., 2023). Agricultural UGVs exploited for 
monitoring the soil and the crop navigate through the field carrying sensors to collect data 
on plants and fruits conditions, presence of pests, composition of the soil and more (Vulpi 
et al., 2022). It is interesting to note the great versatility of the sensor configuration that 
can be mounted on a UGV, allowing to collect relevant data at different times using the 
necessary sensors, and adapting their configuration accordingly. This is the case of 
Agri.Q, the UGV used in this project, that, as it will be further explained in a later section, 
had its sensor layout reconfigured to satisfy the requirements. 
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Figure 1.1: Agricultural UGV Agri.Q equipped with robotic arm (Botta et al., 2022) 

 
Another robotic tool largely used in PA applications is UAVs. UAVs are mostly used for 
vegetation and soil monitoring through Remote Sensing (RS), and for crop spraying 
(Radoglou-Grammatikis et al., 2020). While UAVs are widely used for aerial monitoring 
and large-scale data collection, UGVs offer a ground-based alternative with distinct 
advantages in certain applications. For example, UAVs can monitor individual plants, but 
their typical spatial resolution for Management Zones (MZs) is around 10 meters, which 
may not always provide enough detail for precise field management. Although 
advancements in UAV technology can enhance resolution, limitations persist. UGVs help 
address this issue by providing localized, high-precision data collection, allowing for 
more detailed assessments of plant and soil conditions (Botta et al., 2022). Moreover, 
despite their great mobility, UAVs are constrained by payload limitations, unlike UGVs, 
that have the advantage of being able to carry multiple sensors and robotic components, 
granting them greater versatility (Smith et al., 2023). 
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1.2 Crop monitoring 
 

1.2.1 Remote sensing 

 
RS and image analysing are a very popular tool in PA, allowing the assessment of soil 
conditions and vegetation health from a distance, using images most commonly obtained 
through aerial monitoring with satellites, manned aircrafts, UAVs, and, sometimes, 
ground vehicles, too (Botta et al., 2022).  
 
The two main types of RS technologies are vision-based sensors and range sensors. 
Yandun Narvaez et al., (2017) divided optical-visible and near visible spectrum sensors 
and technologies into three groups:  
 

 Structural characterisation: these sensors are used for estimating characteristics 
such as biomass, canopy volume, leaf area coverage, and plant height, among 
others. 

 Physiology assessment: sensors are used to measure the physical response of the 
leaves to sunlight to obtain information about the health of the plant. 

 Plant and fruit detection: physical characteristics of the plant and/or the fruits, 
usually colour and morphology, are detected to allow precise automation of 
agricultural actions such as harvesting and pruning.  

 
As their name suggests, vision-based sensors are devices that capture and process visual 
information from the environment. Some common types of visual sensors are RGB 
cameras, stereo cameras, multispectral cameras, thermal cameras and Structured Light 
cameras. In this project, stereo cameras and multispectral cameras were used, and they 
will be explained thoroughly throughout the work, while the other types of sensors will 
be mentioned and commented for the sake of completeness. 
 
The most basic vision-based sensors are RGB, or colour, cameras, used to obtain relevant 
information on physical characteristics of the terrain, plants or fruits.  The most common 
use of colour cameras is the detection of fruits among the leaves of the trees. An important 
factor to be considered when using vision-based sensors is the influence of ambient 
lighting, which represents a major drawback of these applications. Detection is not 
possible using vision sensors alone, the integration with segmentation algorithms and AI 
detection algorithms, together with examples of applications, will be discussed further 
on. 
 
Another type of vision-based sensors are stereo-vision systems. Stereo-vision systems use 
two or more cameras placed in different positions to capture images of the same scene, 
enabling depth perception. They allow the recreation of the environment in three 
dimensions through the creation of 3D point clouds. In particular, stereo-vision systems 
that use two cameras are designed to mimic human binocular vision. Studies that explore 
the use of this technology for fruit detection will be discussed further. 
 
Some physiological parameters of plants and fruits can be studied through the 
measurement of radiation absorption and reflection in certain portions of the 
electromagnetic spectrum. For example, chlorophyll levels can be measured by 
measuring the reflection of green light, for chlorophyll absorbs red and blue light, while 
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it reflects green light. Other physiological parameters that can be studied include water 
stress and nitrogen content. The sensors that measure the reflectance of light are 
spectrometers or cameras that can be divided into multispectral or hyperspectral. 
Multispectral imaging measures the reflectance in a few, broad and not always continuous 
spectral bands. On the other hand, hyperspectral cameras measure the reflectance of light 
in a limited, continuous range of the electromagnetic spectrum. The parameters that 
researchers have studied using this kind of sensors will be discussed later in this work. 
 
Thermal cameras are used for diagnostic and identification outside of the visible 
spectrum. Researchers have exploited plant temperature to study water availability 
(Baluja et al., 2012a), water stress (Jones et al., 2009), and fruit identification (Wachs et 
al., 2010). Another interesting application of these vision-based sensors is the 
enhancement of the ambient awareness of a robot through thermal imaging, allowing it 
to distinguish human operators or animals not visible due to deep vegetation (Reina et al., 
2016). 
 
Structured light cameras function by projecting an infrared pattern onto a surface and 
assessing the distortions in the reflected pattern to measure distances. Since their accuracy 
is highly dependent on lighting conditions, they are predominantly used in controlled 
environments like laboratories or greenhouses. These sensors are mainly employed to 
determine structural characteristics such as the size, height, and volume of plants and trees 
(Botta et al., 2022). 
 
 

1.2.2 Range sensors 

 
Ultrasound range sensing consists of a short-duration, high-frequency sound wave that 
travels through the air, reflects off a target, and returns as an echo. The sensor, then, 
calculates the distance from the target by considering the time delta between the moment 
the acoustic pulse was sent, and the moment it was received as an echo. This technique is 
commonly used for measuring volumes and densities. A similar technique, but with light 
pulses instead of acoustic pulses, is exploited by Time-of -Flight (ToF) cameras. The use 
of light instead of sound allows to obtain both 3D distance and intensity data, increasing 
the quality of plant characterisation and identification (Botta et al., 2022). 
 
A similar principle to the one of ToF is shared by LiDAR (Light Detection and Ranging) 
sensors, with the main difference being that LiDARs typically use laser pulses to measure 
distances with higher precision and over longer ranges, making them more suitable for 
detailed 3D mapping and outdoor applications. There are 3D and 2D LiDARs, being the 
latter the most used, for it is less expensive and, with the right configuration, it can obtain 
3D data, too. A particular kind of LiDAR is the hyperspectral LiDAR, that can recognise 
various wavelengths. In this project, a Terrestrial Laser Scanner (TLS), that is, a ground-
based LiDAR, was used. 
 
A summary of the aforementioned sensors, both remote and range, and the characteristics 
they measure agricultural applications is presented in Figure 1.2. 
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Figure 2.2: RS instruments and their uses (Botta et al., 2022) 
 
 
 

1.2.3 Fruit detection through computer vision and AI 

 
Several studies have been conducted regarding the use of neural networks and artificial 
intelligence to recognise apples and their characteristics, such as size, shape and colour, 
that indicate if the single fruit is an optimal candidate for harvesting and later 
commercialisation (Miranda et al., 2023).  
 
Taking a step backwards, computer vision algorithms depended on human vision to 
design a methodology for the identification and extraction of image features, such as 
borders and shapes, and the classification of these features to identify parts of the image 
(Nanni et al., 2017). These “handcrafted” algorithms are preferred when a small amount 
of data is needed to train them (compared to deep neural networks), and thus, low 
computer power and memory are available (C. Zhang et al., 2020). Gongal et al. (2018) 
described this method in a paper in which a colour charged coupled device (CCD) and a 
ToF camera were used for the detection of apples. Their image processing consisted of 
equalising the histograms of the images in HIS (hue, intensity and saturation) colour space 
to amplify the colour difference between the apples and the background; then, a series of 
filters were applied to obtain a binary image with clear differentiation between foreground 
and background, and to recognise round objects, thus recognising the apples. Finally, the 
size of the apples was estimated through two different methods: 3D coordinates and 
physical size of image pixels. 
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Miranda et al., (2023) summarise the handcrafted fruit detection algorithm into two main 
steps: 

 
i. Generation of candidate region proposals 
ii. Detection and recognition 

 
The purpose of the generation of candidate region proposals is to binarize data present on 
the image to fully differentiate the object of interest from the background, usually through 
thresholding. Region selection methods and their corresponding criteria can be 
summarised as follows (Miranda et al., 2023): 
 

 Thresholding 
o Fruit reflectance 
o Geometric features 
o Temperature 
o Area of pixels 
o Depth 
o Colour 

 
 Application of machine learning classifiers 

o k-means algorithm 
o Bayesian probabilistic classifier 
o k-nearest neighbours (KNN) 
o Support Vector Machine (SVM) procedures 
o Euclidean cluster, when working with 3D point clouds 
o Density-based spatial clustering and application of white noise 

(DBSCAN), when working with 3D point clouds 
 

Together with region selection, region description must be performed to extract features 
of the objects of interest. Common descriptors are colour, shape and texture. After these 
features are obtained and classified, it is possible to proceed with object detection and 
recognition. Classifiers used to distinguish fruit from background are (Miranda et al., 
2023): 
 

 SVM 
 KNN 
 Adaboost 
 Random forest 
 Backpropagation neural network (BPNN) 
 Gaussian mixture model (GMM) 

 
On the other hand, deep learning has revolutionized computer vision, significantly 
advancing fruit detection, convolutional neural networks (CNNs) being the most widely 
used. CNNs are a particular kind of artificial neural networks (ANNs) that use 
convolution operations in at least one of their layers and are very efficient for image 
classification, especially for fruit classification (Naranjo-Torres et al., 2020). Some 
common computer vision tasks for which CNNs are used are: 
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 Image classification: classifying the image in a particular class 
 Object detection: locating the object of interest in a region of the image by 

identifying its bounding box 
 Semantic segmentation: labelling each pixel in the image into a class 
 Instance segmentation: assigning each pixel to a single detected object 

 
CNNs used for image classification consist of convolutional layers that extract features 
from the input image, followed by fully connected convolutional layers that act as 
classifiers. The convolutional layers generate feature maps by detecting patterns in the 
input image and refining them into more discriminative features through learned weights. 
At the final stage, the fully connected layers process these extracted features and classify 
the image into one of the predefined categories in the output layer (Miranda et al., 2023). 
 
CNNs used for object detection consist of two structures: the backbone (first layers of an 
image classification CNN) and the head, that predicts object locations and their respective 
classes. They can be one-stage networks or two-stage networks, depending on how the 
head operates. The head of a two-stage network has a module that proposes regions of 
interest, and a module that classifies the regions into objects of interest or background, 
while also refining the bounding boxes. Two-stage CNNs are also called region-based 
CNNs (R-CNNs). Some typical examples are Fast R-CNN and Faster R-CNN. On the 
other hand, one-stage networks have heads with a single module that simultaneously 
assign classes and bounding boxes, without the need for suggestions of regions of interest 
(Sun et al., 2024; Miranda et al., 2023). One-stage CNNs are also called single shot 
detectors (SSD). An SSD commonly used in agricultural applications is You Only Look 
Once (YOLO) algorithm (Jocher et al., 2023).  
 
YOLO is a state-of-the-art, real-time object detection system, able to accurately identify 
and classify objects into various classes. Its name derives from the fact that, unlike 
traditional object detection methods, this model works with a single pass of the image, in 
other words, looking at the image only once; this outstanding capacity grants significant 
speed to the real-time detection (YOLO Object Detection Explained, 2024). The algorithm 
is based on a deep CNN that detects objects in the input image. It divides the input image 
into a grid and then looks for the centre of objects and predicts bounding boxes in every 
single cell of the grid, assigning confidence scores for the boxes. This unified approach 
allows YOLO to perform simultaneously both object localization and classification, 
streamlining the detection process (Kundu, 2023).  
 
In this project, YOLOv8 was used. Key improvements of YOLOv8 with respect to 
previous versions are (Torres, 2024): 
 

1. Improved backbone architecture: This version uses the CSPDarknet53 backbone 
architecture, that enables the algorithm to better recognise intricate details in the 
image 

 
2. Integration of PANet: Path Aggregation Network integrates information from 

different scales in the image, enhancing the recognition of objects present in 
different sizes 
 

3. Introduction of dynamic anchor assignment: adapts anchor box dimensions during 
training, allowing for better recognition of objects with different shapes and sizes 
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4. Improved training process 

 
5. Advanced augmentation techniques: integration of mosaic augmentation and self-

paced learning 
 

YOLO is currently in its 11th version (YOLOv11). However, YOLOv8 was chosen for 
better integration with previous work (Smith et al., 2023) and the sensors chosen for this 
project. 
 
The YOLO model can be integrated with the SAHI (Slicing Aided Hyper Inference) 
library, which optimises object detection algorithms by slicing images and running object 
detection on each slice, to finally integrate the results of each slide. Although it improves 
detection when the objects of interest are small, it is not suited for real time detection 
(Ultralytics, 2025). 
  
Results obtained by using deep learning detection methods will be discussed and 
compared in section 1.3.  
 
 
 

1.2.4 Digital twins 

 
A Digital Twin (DT) is “a dynamic virtual representation of a physical object or system, 
usually across multiple stages of its lifecycle, that uses real-world data, simulation, or 
machine learning models combined with data analysis to enable understanding, learning, 
and reasoning. DT can be used to answer what-if questions and should be able to present 
insights in an intuitive way” (Stanford-Clark et al., 2019). In the agricultural context, DTs 
can be defined as virtual representations of real agricultural systems that are continuously 
updated using smart farming technologies and sensors, allowing the management and 
storage of vast amounts of crop data (Smith et al., 2023).  
 
According to Grieves (2015), a DT is composed of three main parts: 
 

 Physical component, whose data will be acquired 
 Virtual component, which is the digital representation of the physical component 
 The stream of data and information that connects both components 

 
DTs are predominantly used in the automotive, manufacturing, and energy sectors, but 
seldomly used in the agricultural sector, raising questions about their possible 
contribution to farming applications (Pylianidis et al., 2021). Smith et al. (2023) suggest 
that orchards could be optimal environments for testing the creation of DTs of living 
systems since trees can easily be differentiated one from the other, always remain in the 
same position, and are usually organised in easy-to-recognise patterns. Moreover, DTs of 
living systems could help increase product quality, lower costs of production, and detect 
diseases and other hazards (Pylianidis et al., 2021).  
 
There has been limited research conducted on the use of agricultural digital twins (DTs); 
however, some relevant studies and their findings will be presented later. 
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1.3 Orchard monitoring 
 
Some of the aforementioned technologies have been used and integrated for the 
monitoring of orchards. For example, Wang et al. (2013) conducted a study to estimate 
the crop yield of an apple orchard, of both red and green apples. For this scope, they 
mounted a stereo rig, composed of two identical high-resolution monocular cameras, on 
an autonomous orchard vehicle. After data acquisition, apple detection, registration and 
count were done on MATLAB. For red apples, the researchers obtained estimations per 
row significantly below the actual number of apples, but a small 3,2% standard deviation, 
indicating that the system is consistent. On the other hand, for green apples, the error of 
raw counts and standard deviation were significantly large. Two sources of error were 
identified, first, the software encountered difficulties detecting visible apples, particularly 
when dealing with fruit clusters with more than two apples. The second source of error 
affects green apples only, for the software could not recognise those with sunburn on their 
skins, or the ones in overexposed images. 
 
Multispectral cameras are commonly used to study various physiological parameters of 
crops, such as the normalised difference vegetation index (NDVI), which is associated 
with leaf chlorophyll levels, leaf area index, crop biomass accumulation and 
photosynthetically active radiation absorbed by the canopy (Zaman-Allah et al., 2015). 
For example, Baluja et al. (2012) used a UAV equipped with a multispectral sensor 
Multiple Camera Array to assess water variability in a vineyard. They measured 
multispectral indices related to vine vigour, leaf stomatal conductance and stem water 
potential. In particular, NVDI showed a high coefficient of determination with the stem 
water potential and the leaf stomatal conductance of R2 = 0,68 and Pearson correlation 
value of p < 0,05; moreover, the ratio between transformed chlorophyll absorption in 
reflectance and optimized soil-adjusted vegetation index (TCARI/OSAVI) indicated a 
high coefficient of determination with the stem water potential and the leaf stomatal 
conductance of R2 = 0,84 and p < 0,05. Other indices that showed significant coefficients 
of determination when linking them to the stem water potential were MSR (modified 
simple ratio) and SRI (simple ratio index). 
 
A study to compare the dynamic accuracy of versions 4, 5 and 7 of YOLO was carried 
out by Abeyrathna et al. (2023). The study consisted of detecting and counting apples in 
real-time with a stereo camera mounted on a forward-moving tractor using YOLOv4, 
TOLOv5 and YOLOv7. The results obtained by the authors (presented in Table 1.1), 
comparing precision, recall, F1-score metric and mean average precision at IoU 
(intersection over union) at threshold of 0,5 (mAP@0,5), clearly show better performance 
by YOLOv7: 
 

Model Precision Recall F1 mAP@0,5 
YOLOv4 0,840 0,790 0,810 0,840 
YOLOv5 0,874 0,783 0,830 0,861 
YOLOv7 0,892 0,828 0,860 0,905 

 
Table 1.1: Performance evaluation of YOLO models (Abeyrathna et al., 2023) 
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Another relevant study was conducted by Chu et al. (2023) to confront the performance 
of a novel, self-developed, deep learning-based apple detection framework, Occluder-
Occludee Relational Network (O2RNet), against other state-of-the-art models. All the 
models were given the same customised apple dataset. The evaluation metrics the authors 
compared were AP at different thresholds, average recall (AR) at different thresholds and 
the F1-score. The results are presented in Table 1.2. Although the researchers tested 
multiple versions of some of these models, only the results of the most efficient versions 
are presented. Also, only the average precision and recall at a threshold of 0,5 are 
presented. 
 

Model AP AP@0,5 AR AR@0,5 F1 
FCOS 0,48 0,89 0,34 0, 87 0,80 

YOLOv4 0,45 0,87 0,29 0,84 0,76 
Faster R-CNN 

ResNet101 
0,49 0,94 0,31 0,84 0,82 

EfficientDet-b5 0,50 0,95 0,34 0,88 0,83 
CompNet via RPN 0,51 0,95 0,35 0,94 0,86 

O2RNet-
ResNet101 

0,52 0,96 0,36 0,94 0,86 

 
Table 1.2: Performance evaluation of object detection models (Chu et al., 2023) 

 
As mentioned before, not many papers that discuss the functioning DTs of living plants 
or trees have been published. However, Verdouw & Kruize (2017) present some 
interesting examples of DTs for farm management. An interesting project is OLIFLY that 
consists of the DT of olive trees to monitor the presence of olive flies and the pest traps 
through real-time image acquisition. A similar, but more rudimental, project is Open PD, 
used for pest detection, in which the DT consists of pictures and descriptions provided by 
the users. The authors also present other cases related to the monitoring of farm equipment 
and structures. Pylianidis et al. (2021) present other cases of DTs for agricultural 
applications. It is worth noting that no studies regarding a complete workflow for the 
creation and deployment of DTs of living systems have been found. 
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1.4 Current limitations and proposed contributions 
 
Despite the great advances of the PA technologies, the reviewed literature showed some 
significant gaps and room for improvement that this work aims to fill. 
 
First, there is a lack of fully integrated systems combining UGVs and real-time 
monitoring systems. While UGVs and monitoring technologies have been extensively 
studied separately, most studies focus on either mobility and automation or sensor-based 
data collection, but not on a seamless system that enables both. In addition, most of the 
current agricultural monitoring systems rely on data collected during specific survey 
periods and later processed offline. However, real-time data acquisition and processing 
could improve farm management efficiency, allowing for immediate intervention when 
hazards to the crops are detected, or identifying the best harvesting period, according to 
the physical characteristics of the fruits. This project could potentially solve these first 
two issues, by using an agricultural UGV mounted with stereo cameras and sensors able 
to detect and assess apples in real-time. 
 
Many existing studies on fruit and crop monitoring focus on 2D image analysis, 
overlooking the possibility of 3D analysis, which provides valuable information but lacks 
depth perception. Here, dedicated instruments for 3D analysis of crops are integrated. In 
particular, a stereo camera and a TLS are used to provide 3D images of the fruits of 
interest, enabling better volume estimation, shape analysis, and occlusion handling, 
leading to more accurate assessments of fruit conditions. 
 
Another gap noted among the reviewed works is the georeferencing of individual fruits, 
which is currently an emerging area of study. Through georeferencing, either in a global 
or local system, it is possible to co-register spatial information collected at different 
acquisition times. This enables orchard monitoring, for example, by performing change 
detection of the fruit present on each tree and health indices differences in time. One of 
the main scopes of this project is georeferencing apples thanks to the integration of YOLO 
and the stereo camera, which could benefit yield mapping, robotic harvesting, and 
logistics optimisation. 
 
Finally, the scope of the work is to create a DT of the apple orchard, providing a workflow 
and basis on how to reproduce it. As already mentioned, there are few, if not at all, 
deployed DTs of living systems, such as trees. 
 
This project proposes the creation of an automated real-time orchard monitoring system, 
obtaining a DT containing relevant information on the monitored apples, such as health 
and size. To this aim, several of the aforementioned PA technologies are integrated into 
a single system, such as the use of a dedicated UGV, stereo vision enhanced with AI, and 
multispectral cameras.  
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Chapter 2: Materials 
 
To address the need for a real-time and 3D monitoring system in orchards and the creation 
of their DTs, this study employs a mobile robotic platform equipped with advanced 
monitoring instruments capable of capturing detailed data of the crops. This chapter 
outlines the design and specifications of the mobile robot, including its key features. 
Additionally, the instruments mounted on the robot, such as a stereo camera and 
multispectral cameras, are detailed, highlighting their roles in providing the high-
resolution and multidimensional data essential for precise orchard monitoring. Finally, 
the steps previous to data acquisition are described. 
 
 

2.1 Agri.Q 
 
Agri.Q is an agricultural UGV developed by the DIMEAS department of Politecnico di 
Torino designed to achieve locomotion efficiency on unfavourable ground conditions, 
such as slippery, wet and or uneven terrain, when performing precision agriculture 
activities (Cavallone, Botta, et al., 2021). 
 
It was developed for applications in orchards, olive groves and vineyards, that are 
agricultural productions largely exploited on the Italian territory. The characteristics of 
the terrain, such as steep hills and the width of the spacing of the tree lines and vine lines, 
arise the need for very specific design requirements, such as the ability to climb terrains 
with an incline of at least 25%, width under 1.5 m, top speed limited to 5 km/h, and the 
ability of being remotely controlled or autonomous, among other specifications that aim 
to allow a precise work and avoid damaging the terrain and the surroundings (Botta, 
2022.). 
 

 

 
Figure 2.1: Dimensions and main parts of Agri.Q  (Botta, 2022) 
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To ensure stability and optimal performance in an agricultural environment, the rover was 
designed with two front driving units and two rear driving units of two wheels each, for 
a total of eight off-road wheels. Each driving unit, equipped with a single drive motor, 
consists of a rocker arm connected to the rest of the robot body with a passive joint, 
granting a correct distribution of the static and dynamic forces on the surface. It is 
interesting to notice that this locomotion system was chosen as a convenient midpoint 
between a tracked system and a wheel system, for tracks are usually the preferred choice 
for this kind of rovers thanks to how they distribute the weight of the vehicle on the 
ground, but are extremely inefficient (Cavallone, Visconte, et al., 2021). 
 

 
 

Figure 2.2: Agri.Q functional design (Cavallone, Botta, et al., 2021) 
 
As observed in Figure 2.2, the frame of Agri.Q is attached to two solar panels that serve 
a double function: charge the battery of the rover and act as a landing platform for drones. 
This platform is connected to the frame by an active roll joint, thus making the back of 
the chassis orientable on the vertical axis, allowing to maximise sunrays collection and 
offer a horizontal surface for drones even on steep slopes(Cavallone, Visconte, et al., 
2021). 
 
Originally, Agri.Q was expected to perform manipulation tasks, such as grabbing objects 
and interacting with the environment or a drone on the platform. For this scope, a robotic 
arm was attached to the rear of the chassis, from where it could be lifted, thanks to the 
orientable platform, and its workspace could be increased(Cavallone, Visconte, et al., 
2021). 
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However, for this project, the robotic arm was removed freeing the attachment point and 
allowing for greater flexibility in the system’s configuration. Instead of the robotic arm, 
a sensor support platform was attached to the back chassis of Agri.Q, from where, 
analogously to how the workspace of the robotic arm could be increased, the field of view 
of the sensors could be increased too. The support platform was connected to the chassis 
using a hinge joint, allowing to keep the platform parallel to the ground. 
 

 
Figure 2.3: Inclination of the chassis of Agri.Q (Smith et al., 2023) 

 
It is interesting to comment on the power efficiency of the rover, and thus its autonomy. 
The robot was tested while performing its typical activities, observing that in a sunny day 
it could sustain itself thanks to the contribution of the solar power collected by the panels. 
It was noted that, despite the fact that during movement the solar power is not enough to 
recharge the battery, it reduces its discharge. Thus, a correct planning of the rover activity 
to maximise its recharging period during peak solar irradiance, or the control of the panels 
orientation to follow the Sun during movement, would highly increase its efficiency 
(Botta & Cavallone, 2022). 
 
Taking into consideration the aforementioned characteristics of Agri.Q, it was clear that 
it was the ideal rover to choose for this project:  
 

 Its reduced dimensions allowed easy access and navigation through the apple 
orchard 

 The locomotion system ensured optimal performance regardless of the conditions 
of the ground  

 The possibility of controlling the speed of the rover, plus the stability of the 
locomotion system, could guarantee a correct data acquisition, avoiding the 
collection of blurry or shaken images 

 Its high efficiency and autonomy would allow continuous work without needing 
to stop to wait for the battery to recharge 

 The ability to lift the support panel provided greater flexibility in capturing the 
trees from different angles, allowing for a more adaptable data acquisition process 
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2.2 Optical sensors 
 
Four optical sensors were mounted on the support platform of the UGV, one ZED 2 stereo 
camera developed by Stereolabs, and three MAPIR Survey3W multispectral cameras. 
 
The ZED 2 camera was designed for the development of depth perception, object 
detection and 3D mapping applications by using a stereo vision system with two high-
resolution RGB cameras spaced 12 cm apart, allowing it to compute depth information 
using disparity mapping. Additionally, it counts with an integrated Inertial Measurement 
Unit (IMU), useful for motion tracking.  It was designed for easy integration with artificial 
intelligence algorithms through its dedicated Python API. The output of the camera 
corresponds to left and right images collected into an SVO (Stereolabs Video Output) file 
with a resolution of 1920 x 1080 at a rate of 30 frames per second (fps).  
 
 

 
 

Figure 2.4: Stereolabs ZED 2 stereo camera 
 

The ZED camera needs a power supply and a processing platform. For this scope, a 
NVIDIA Jetson Nano, a compact, power-efficient computer designed for AI 
computations, robotics and deep learning applications, was chosen. Since it can be 
powered by a medium-sized power bank, and thanks to its reduced dimensions, it is 
perfect for on-terrain applications. Before data acquisition, it was loaded with the 
dedicated ZED SDK and its corresponding Python API, from where the real-time 
streaming of the camera could be watched, and the recording could be controlled.  

 

 
 

Figure 2.5: NVIDIA Jetson Nano 
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To protect the Jetson Nano from possible adverse weather conditions during data 
acquisition, the board was fixed into a custom 3D-printed case that was then fixed to the 
sensor support platform. In addition, a portable monitor and wireless mouse and keyboard 
were connected to the computer during data acquisition. It is worth noting that during the 
first tests in laboratory with the Jetson Nano connected to ZED camera and other 
peripherals, its heat sink reached very high temperatures, therefore a small fan was 
connected to the dedicated fan header. 
 

 
 

Figure 2.6: NVIDIA Jetson Nano with fan and (open) custom case 
 

The MAPIR Survey3W (“W” stands for “wide”, for it has a wider field of view (FOV) 
than other models) is a compact low-cost multispectral camera designed for aerial and 
ground-based remote sensing applications. It captures images in the red (R), green (G) 
and near-infrared (NIR) bands with settable frequency and it has a FOV of 87°. The 
corresponding bandwidths and wavelengths are presented in Table 2.1. It is widely used 
in agriculture research projects due to its ability to capture high-quality multispectral 
imagery for vegetation analysis and terrain mapping, among other data-driven studies. In 
particular, it allows assessing the health, vigour and chlorophyll content of a plant or fruit 
by analysing the reflected green light. The dimensions of the MAPIR camera are 
presented in Figure 2.7. 
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Figure 2.7: MAPIR Survey 3W multispectral camera 
 

 
Band Bandwidth (nm) Central wavelength (nm) 

Red (R) 630 - 700 ~670 
Green (G) 500 - 580 ~550 

Near-infrared (NIR) 800 - 910 ~850 
 

Table 2.1: MAPIR Survey 3W RGN filter transmission 
 
To complement the data acquired by the MAPIR cameras, each one was connected to a 
Survey3 Advanced GNSS Receiver, produced by the same company that produces the 
cameras. In particular, the receiver is based on a U-blox NEO-M8. This advanced, low-
cost, GNSS receiver enhances image geolocation accuracy compared to the standard 
GPS, significantly improving latitude, longitude, and altitude precision. It counts with 
high sensitivity and fast acquisition times while maintaining low power consumption. 
Additionally, its sophisticated radio frequency architecture and interference suppression 
technology ensure optimal performance even in challenging GNSS environments. The 
integration of this module, and therefore the improved georeferencing, allows the Image 
Matching algorithm to perform better, leading to a more accurate and well-aligned point 
cloud reconstruction. 
 

 
 

Figure 2.8: MAPIR Survey 3 Advanced GNSS receiver 
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In addition to the multispectral cameras and the stereo camera, a terrestrial laser scan 
(TLS) Leica RTC360 was used to obtain a 3D point of the orchard. This compact and 
portable TLS is a high-precision 3D mapping system designed for rapid and accurate 
point cloud acquisition, being able to capture up to 2 million points per second with a 
range of up to 130 meters and an accuracy of less than 2 mm at 20 meters. Thanks to a 
360° horizontal × 300° vertical field of view, it provides comprehensive scene coverage. 
It counts with an integrated Visual Inertial System (VIS) and IMU that enhance 
registration efficiency, while HDR imaging enables colorized point clouds. Compact and 
portable, the RTC360 is widely used in geospatial mapping, construction, and agricultural 
studies for detailed environmental modelling. 
 

 
 

Figure 2.9: Leica RTC360 TLS 
 
For high precision positioning measures, an Emlid Reach RS2 was to be mounted on the 
sensor support platform of Agri.Q. This dual-frequency GNSS geodetic receiver can 
achieve centimetre-level accuracy using Real-Time Kinematic (RTK) corrections. Its 
high-precision positioning data was to be integrated with the ZED 2 stereo camera output 
data, enhancing the accuracy of sensor localization and improving the georeferencing of 
captured images for more precise point cloud reconstruction.  
 

 
 

Figure 2.10: Emlid Reach 2 GNSS dual-frequency geodetic receiver 
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The complete list of used sensors and their functions is presented in Table 2.2. 
 

 

Sensor Name Sensor Type Data Collected Information 
Coordinate 
Reference 

System 

ZED 2 Stereo Camera 

RGB images 
Depth images 

Colourised point 
cloud of orchard 

Left RGB 
(stereo pairs) 
Right RGB 

(stereo pairs) 
Depth images 

Local 

MAPIR Survey 
3W 

Multispectral 
Camera 

Multispectral 
images (R, G, 

NIR) 

3-bands images: 
Near Infrared 
850 nm, Red 
660 nm, and 

Green 550 nm 

Global, EPSG: 
32632 

Leica RTC360 TLS 
Point cloud of 

orchard 

X, Y, Z 
Intensity values 

Time stamps 
RGB values 

Global, EPSG: 
32632 

Emlid Reach 2 GNSS Receiver HLS position 

East, North, 
elevation above 

the Ellipsoid 
Root Mean 

Squared Errors 

Global, EPSG: 
32632 

 
Table 2.2: Sensors used for data acquisition 
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2. 3 Preliminary tests (Smith et al., 2023) 
 
This project builds upon and enhances the work conducted in 2023 by the DIATI and 
DIMEAS departments of Politecnico di Torino. Accordingly, the setup and methodology 
were designed to leverage the strengths identified in the initial study while addressing its 
limitations and gaps. 
 
For this preliminary test, only two optical sensors were used: one ZED 2 stereo camera 
and one MAPIR Survey3N (“N” stands for “narrow”) multispectral camera with a FOV 
of 47°. Both cameras were oriented parallel to the row of trees, thus perpendicular to the 
direction of movement of the UGV. 
 

 
 

Figure 2.11: Sensor layout on Agri.Q during preliminary test (Smith et al., 2023) 
 

Most of the limitations were due to the orientation of the optical sensors, for they 
correspond to not sufficient point clouds in which elements had undefined shapes and 
were difficult to distinguish, especially individual apples where several were growing 
closely together. These undefined point clouds were obtained from the SVO of the ZED 
2 camera, in which images looked almost identical one from the other due to the recurring 
pattern of trees.  
 
Moreover, the images obtained from the MAPIR camera were not included in the 
workflow for the images were practically undistinguishable one from the other because 
of the lack of GNSS localization and the repetitive pattern of trees between pictures, 
which prevented the Image Matching algorithm from properly working, therefore, a 
correct point cloud could not be obtained. 
 
The conference paper published by Smith et al. (2023) suggests that different lighting 
conditions and orientations of the optical sensors could be tested to obtain better results. 
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2.4 Set-up and design 
 
Following the suggestions of Smith et al. (2023) the position and orientation of the sensors 
on the support platform were designed to enhance spatial coverage and improve data 
consistency across the scene by ensuring the right redundancy in the captured images, 
avoiding as much as possible the repetitiveness of the pattern of trees. 
 
A major change with respect to the work done by Smith et al. (2023) was the addition of 
two multispectral cameras, with the intention of capturing both rows of trees at the same 
time, instead of just one. Therefore, the cameras should be placed one next to the other, 
with the central camera pointing forward and the lateral cameras turned away from the 
central camera, pointing at the left row and right row, respectively. The position and 
orientation of the cameras had to satisfy an overlap of the FOVs between 50% and 60%, 
ensuring enough redundancy of the acquired data for image matching algorithm. 
 
Considering the FOVs as cones, the intersection of the FOVs could be described as the 
intersection of one circle and two ellipses, where the circle corresponds to the central 
camera and the ellipses to the lateral cameras. Knowing the geometry of the cameras, 
their FOV angle, the distance between the tree rows and the average height of the apple 
trees to be captured, the distance between the cameras and the orientation of the lateral 
cameras could be calculated to obtain the desired overlap by using the characteristic 
equations of an ellipse and of a circle. A diagram representing the FOVs, object distance 
and radius of the FOV of the central camera is presented in Figure 2.12. To begin with 
the calculations, the following parameters were fixed: 
 

Parameter Value 
FOV angle 87° 

Objective distance (h) 2,5 m 
Distance between cameras 15 cm 

Distance of the cameras from the ground 1,1 m 
Average tree height 4 m 

Orientation of side cameras (with respect to 
central camera) 

30° 

Distance between the lenses of the cameras 20,9 cm 
 

Table 2.3: Initial parameters for FOV intersection calculations 
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Figure 2.12: Diagram representing the FOVs 
 

The FOV of the central camera can be considered as the base of a cone with height (h) 
2,5 m, corresponding to the objective distance, and angle (θ) 43,5°, corresponding to half 
of the FOV angle. Therefore, the radius (r) of the base of the cone can be calculated using 
the sine law: 
 

𝑟

ℎ
= tan (𝜃) 

 

𝑟 =
ℎ ∙ 𝑠in (𝜃)

sin (90° − 𝜃)
 

 

𝑟 =
2,5 ∗ sin (43,5°)

sin (56,5°)
 

 
𝑟 = 2,37 𝑚 

 
On the other hand, the FOV of the lateral cameras can be calculated in a similar way, but 
since they are slightly turned away from the central cameras, the projection of their FOVs 
would correspond to ellipses. The length of the semi-minor axis (b) corresponds to the 
radius of the centred cone. The length of the major axis was calculated considering the 
displacement of the centre of the ellipse (c) introduced by the extra 30°, using the sine 
law. A diagram helpful to better understand the calculations is presented in Figure 2.13 
 

𝑐

ℎ
= tan (30° + 𝜃) 

 
𝑐 =  1,44 𝑚 

 
The remainder of the major axis was calculated in a similar way:  
 

𝑑

ℎ
= tan (30° + 𝜃) 
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𝑑 = 8,44 𝑚 
 

𝑎

ℎ
= tan (30° − 𝜃) 

 
𝑎 = 0,6 𝑚 

 
Then, the final length of the major axis is: 
 

𝑎 + 𝑑 = 9,04 𝑚 
 

 
 

Figure 2.13: Diagram representing the ellipse characteristcs 
 
Finally, the overlap of the FOVs was graphically represented using the graphic calculator 
Desmos (Figure 2.13). The y axis was centred on the lens of the central camera and the x 
axis was considered as ground level, therefore, each FOV has an offset of 1,1 m on the y 
axis, and each side camera has an offset of 0,209 m (distance between lenses) plus 1,44 
m (displacement of the centre of the ellipse) on the x axis, on each side of the y axis. The 
corresponding characteristic equations are: 
 

 Central camera (in red):  
 

2,37 = 𝑥ଶ + (𝑦 − 1,1)ଶ 
 

 Right camera (in blue): 
 

(
𝑥 − 0,209 − 1,44

4,52
)ଶ + (

𝑦 − 1,1

2,37
)ଶ = 1 

 
 
 

 Left camera (in green): 
 

(
𝑥 + 0,209 + 1,44 

4,52
)ଶ + (

𝑦 − 1,1

2,37
)ଶ = 1 
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As observed in Figure 2.13, the cameras can easily cover the whole width of the space 
between the tree rows (4 m), and the trees. Moreover, the overlap of the FOVs was 
calculated using MATLAB, and the results, presented in Table 2.4, were deemed 
satisfactory (overlap between 50% and 60%). The complete script is presented in Annex 
1. 
 

 
 

Figure 2.14: Graphical representation of the overlap of the FOVs of multispectral cameras 
 

 
Measurement Result 

FOV of central camera 19,64 m2 

FOV of lateral cameras 33,69 m2 

Estimated overlapping area 17,06 m2 

Overlap as percentage of central camera 86,90% 
Overlap as percentage of lateral camera 50,95% 

 
Table 2.4: Areas and overlap of the FOVs of multispectral cameras 

 
On the other hand, after analysing the outputs of the ZED 2 camera obtained by Smith et 
al. (2023), it was observed that a point cloud could better be made if the camera was able 
to distinguish something other than trees, for example, the end of the tree row. In 
consequence, it was decided that the camera should be turned 45° away from the tree row, 
capturing one end of it during the whole data acquisition process, while capturing as many 
apples as possible.  
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2.5 Field tests 

 
Once the relative position of optics was mathematically identified, a first prototype was 
built and three field tests were conducted to evaluate the goodness of the orientation, and 
other relevant parameters, such as images acquisition frequency rate, ISO and exposure. 
 
To evaluate the distribution of the MAPIR cameras, there was no need to use Agri.Q, 
therefore, the prototype consisted of an easy-to-carry sensor support platform. Hence, the 
three multispectral cameras and their corresponding GNSS receivers were mounted on a 
piece of cardboard, as observed in Figure 2.16. 
 
The first two tests were conducted trying to simulate the characteristics of an orchard, 
that is, narrow and long spaces with repetitive textures. On the other hand, the third test 
was conducted on an actual apple orchard, located close to the orchard where data was to 
be acquired. 
 
For the first test (Test N°1), it was decided to not include the GNSS receivers, for it was 
conducted in a corridor inside of Politecnico, where the GNSS signal was expected to be 
bad. The pictures taken by the multispectral cameras confirmed that the distance between 
them and their corresponding orientations was sufficient to cover the desired FOV in a 
narrow space. On the other hand, the creation of a point cloud from the picture was not 
possible for two reasons: 
 

 The alignment was unsatisfactory due to the lack of GNSS data 
 The creation of a 3D model was faulty because of the light reflected by the 

windows in the corridor 
 

 
 

Figure 2.15: Test N°1 
 
The second test (Test N°2) was conducted in a courtyard of Politecnico, between 
lightwells with plants between them. This test confirmed the configuration of the 
multispectral cameras for outdoor conditions, and the GPS receivers ensured a correct 
alignment of the pictures. Nonetheless, the light reflected by the glass of the lightwells 
and the windows on the buildings surrounding the courtyard did not allow the creation of 
a point cloud. 
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Figure 2.16: Politecnico courtyard 

 
Finally, the third test (Test N°3) confirmed once more the configuration of the cameras. 
It was, also, useful to estimate the speed with which Agri.Q should move during data 
acquisition, since the quality of the point cloud was not sufficient due to the blurriness 
caused by the high speed and vibration with which the pictures were taken. The main 
characteristics of tests are summarised in Table 2.5. 
 

 
Figure 2.17: Prototype during field Test N°3 

 

Test 
N° 

Capture 
frequency 

rate 
ISO  Exposure 

GNSS 
receiver 

Image 
format 

Total 
number 

of 
pictures 

Satisfactory 
point cloud 

1 1 sec Auto 0,0 No RAW 145 No 
2 1 sec Auto 0,0 Yes RAW 391 No 
3 1 sec Auto 0,0 Yes RAW 724 Yes 

 
Table 2.5: Summary of field tests 
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2.6 Sensor support platform 

 
The support platform used by Smith et al. (2023) had to be modified to meet the new 
requirements by drilling additional holes to fix the sensors in the desired position. The 
platform consisted of two plexiglass plates of different sizes, with the smaller plate 
mounted above the larger one using aluminium profiles. 
 
Before drilling new holes in the plexiglass, the various optical sensors were presented on 
the support platform to control their FOVs, ensuring they did not capture the platform 
itself. 
 
Specifically, the three multispectral cameras were fixed on the border of the bottom level 
of the platform, one at the centre of the plate, and the others as close as possible to the 
lateral borders. The GPS receivers connected to the MAPIR cameras were positioned on 
the bottom level, ensuring they remained unobstructed by the top level to maintain proper 
GPS reception. 
 
Moreover, the ZED 2 camera was fixed on a corner of the top plate, as close as possible 
to the right side of the platform. 
 
It is interesting to notice that the optical sensors were placed on top of a printed protractor 
template, centred on the screw that allowed for their rotation. Additionally, custom 3D-
printed cases were designed for each camera, incorporating a needle to precisely indicate 
and adjust their orientation. 
 
On the other hand, the MAPIR GPS receivers, the case of the Jetson Nano and the power 
bank were secured to the bottom plate using Velcro. The Emlid Reach 2 was not available 
at the time, but it was supposed to be mounted on the top plate, in order to maintain a 
stable GNSS reception. 
 
 

 
 

Figure 2.18: Lateral view of the sensor support platform while presenting components in their 
possible positions 
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Figure 2.19: Frontal view of the sensor support platform with the optical sensors fixed to their 
definite positions 
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Chapter 3: Methods 
 
This chapter outlines the methodology used in the data acquisition process and the 
generation of point clouds from the optical sensors. It then describes the apple detection 
approach using the stereo camera and YOLOv8. The workflow for processing and 
analysing the collected data is explained, including techniques for extracting relevant 
features from point clouds. Additionally, the methods used to evaluate the obtained results 
are presented.  
 
 

3.1 Data acquisition 
 
Data acquisition was performed in a commercial apple orchard in Manta di Saluzzo, 
Piedmont, Italy, (44°36'30"N 7°31'17"E) on October 30th, 2024. The apple trees were 4 
meters tall, on average; the tree rows were 255 meters long and were distanced by 
approximately 4 meters. The tree lines were orientated from North to South, with a slight 
deviation towards the East (164,25°). The weather and ground conditions were optimal, 
with clear skies and firm terrain that was not excessively muddy, therefore, Agri.Q was 
expected to perform excellently. 
 
As observed in Figure 3.2, a hail net covered the orchard. This net was unaccounted for, 
and its presence could disturb the GNSS reception and, more importantly, could present 
a difficulty when creating a clean point cloud of the orchard.  
 
 

 
 

Figure 3.1: Location of the orchard in Piedmont, Italy 
 



32 
 

 
 

Figure 3.2: Agri.Q in the orchard 
 
Before data acquisition, some of the support poles of the orchard were tagged with unique 
georeferenced QR codes to be used as visual cues during post processing. 
 
To accurately reconstruct the orchard geometry and achieve high precision 
georeferencing, TLS and GNSS surveys were carried out. The objective was to use the 
obtained dataset as a reference for validating the acquired data and as an initial baseline 
survey for mapping the case study. 11 scans with Leica RTC360 were realised in the field 
with low density due to the closeness with the tree rows. Thanks to the IMU and visual 
odometry system of the TLS, the clouds were automatically pre-aligned and then refined 
manually using common points (markers) and the coordinates of the poles.  
 
Using the GNSS receiver in RTK modality, the coordinates of the bases of the poles were 
measured in global reference system wgs84/32N. The quality of the measurements varies 
according to the GNSS signal and the number of satellites visible. Indeed, due to the 
geometry of the orchard, a small portion of the sky was visible, preventing the fixing of 
the ambiguity (necessary to obtain 3-5 cm precision) in some parts. Nevertheless, the 
measured and fixed points were sufficient for georeferencing the TLS cloud through a 
roto-translation based on 5 points.  
 
To better understand the data acquisition procedure, it is first essential to consider the 
movement direction of Agri.Q and how this influenced the way the sensors captured data. 
Due to the design of Agri.Q and the position of the sensor support platform, as the rover 
moved forward, the sensors, mounted at the rear, gradually moved away from the starting 
point, continuously capturing data from an increasing distance. 
 
 
 
A preliminary test was conducted to confirm the sensor layout, the camera parameters, 
the speed of the rover and the motion path. The rover was driven through two tree lines 
in only one direction. The real-time streaming of the ZED camera was continuously 
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controlled on the display connected to the Jetson Nano, while the pictures taken by the 
MAPIR cameras had to be downloaded into a laptop to be better controlled.  
 
Moreover, it was observed that the orientation of the stereo camera allowed for a complete 
capture of only the tree row on the right. As a result, the original path was deemed 
insufficient for generating a complete point cloud. To address this, it was decided that the 
rover would traverse the space between two tree rows twice, following the same trajectory 
in both senses, as illustrated in Figure 3.3. Additionally, the tree rows were long enough 
to allow the acquisition of sufficient data of just two rows. 

  

 
 

Figure 3.3: Definitive path 
 
While preparing for the definitive run, a technical error occurred with one of the MAPIR 
cameras, nonetheless, after analysing again the pictures obtained during the preliminary 
test, it was decided that the coverage of just the central camera and the right camera would 
be enough to obtain a good point cloud. After analysing the output of the various sensors, 
the following parameters were set: 
 

MAPIR Parameter Value 
Capture Frequency rate 0,5 s 

ISO Auto 
Exposure 0 

 
Table 3.1: MAPIR parameters 

 
 

ZED 2 Parameter Value 
Brightness 4 (out of 8) 
Contrast 4 (out of 8) 

Hue 0 
Saturation 4 (out of 8) 
Sharpness 4 (out of 8) 
Gamma 5 (out of 9) 

White balance auto adjust 
Exposure auto adjust 

 
Table 3.2: ZED 2 parameters 
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Once the sensors were configured and working, two runs were performed. The rover was 
driven using a remote control, keeping a constant speed of 0,41 m/s and staying in the 
middle of the space between the two tree lines. The first run was made at 15:20 and 
consisted of a one-way trip of the tree line to obtain only images from the MAPIR 
cameras; 449 pictures were obtained. The second run began at 16:00 and consisted of a 
forward and return pass along the tree line; at the end of the tree line the rover was turned 
around and the correct position and orientation of the sensors were controlled. The 
streaming of the ZED camera was controlled on the monitor, while the function of the 
MAPIR cameras was controlled by listening to the beep they emitted when they took a 
picture. Data acquisition of the sensors was completed only when the rover had fully 
stopped back at the starting point. The results of the run were: 
 

 Duration of data acquisition: 21 minutes 
 

 Pictures captured by MAPIR cameras: 624 
 

 Frames captured by ZED camera: 19899 
 

 
 

Figure 3.4: Image from MAPIR multispectral camera 
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3.2 MAPIR point cloud and 3D model creation 
 
The outputs of the multispectral cameras from the last two data acquisition runs were 
compared, and the images captured during the first run were selected over those from the 
second due to more favourable sunlight conditions. Additionally, although the second run 
included a round trip along the tree line, the images from the one-way pass were 
considered sufficient to generate a satisfactory point cloud of the trees. 
 
The images taken by the two MAPIR cameras were added to an Agisoft Metashape 
project. Some of the first and last images that did not include apple trees were removed 
from the project, thus only 431 images were used.  
 
Camera calibration on Metashape was performed according to the settings provided by 
the MAPIR website for the Survey3W model (Ramseyer, 2016), setting the following 
parameters: 
 

 Camera type: frame 
 

 Pixel size (mm): 0,00155 x 0,00155 
 

 Focal length (mm) 3,37 
 

Moreover, the site indicated that all camera parameters should be set to “fixed”, and that 
“Generic pre-selection” should be turned off during the Align photos step. 
 
Alignment was performed with the following settings: 
 

 Accuracy: high 
 

 Generic preselection: No 
 

 Key point limit: 40,000 
 

 Tie point limit: 4,000 
 
Moreover, a raster transform was applied to calculate the normalised difference 
vegetation index (NDVI), using its formula: 
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 
 

 
 
This process was repeated on a small section of the orchard, with an additional step. 
Before generating the point cloud, a colour-based mask was applied to 112 images to 
minimise the presence of the hail net and the sky.  
 
 



36 
 

3.3 ZED point cloud creation and alignment with GNSS point cloud 
 
Extraction of the point cloud from the SVO was performed on the Jetson Nano using the 
ZEDfu tool of the ZED SDK, as a fused point cloud. Due to memory limitations of the 
Jetson, extraction was not possible on a single instance, instead, it had to be performed 
continuously stopping and restarting the extraction to avoid crashes, obtaining different 
separate pieces of the point cloud. 
 
Using CloudCompare, the point clouds generated by the ZED stereo camera were aligned 
and merged by referencing the point cloud obtained from the TLS, which served as a 
template. In other words, the TLS point cloud acted as a fixed reference onto which the 
different segments acquired with the ZED camera were manually overlaid and aligned. 
To simplify the process and improve accuracy, the two tree rows (left and right) were 
treated separately during the alignment procedure. As for the point cloud obtained from 
the multispectral cameras, the hail net had to be manually deleted from these point clouds, 
too. Overlapping and alignment were performed by choosing at least 4 equivalent point 
pairs on the TLS point cloud and on the ZED point cloud. Most of the visual cues chosen 
for alignment were support poles, particularly those tagged with a QR code. Once point 
pairs are selected, CloudCompare computes the rigid transformation matrix that best 
aligns the selected points using a least squares method.  
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3.4 Apple detection 
 
As already mentioned, the ZED 2 stereo camera can be easily integrated with the YOLO 
algorithm. The algorithm can be run online in real time or afterwards using the SVO file 
given as output by the ZED camera. For this project, apple recognition was performed on 
the SVO file after data acquisition. Due to the extensive length of the tree lines, the SVO 
file was divided into several fragments of the orchard, from which the last fragment was 
selected for testing (7696 frames). 
 
The YOLOv8 segmentation model used had already been trained by Smith et al. (2023) 
using images from the MinneApple data set (Hani et al., 2020) and RGB images 
previously exported by them from the stereo camera when performing the preliminary 
test. After trying the model on the fragment of tree line selected for testing, it was decided 
to further train the model with 33 RGB images obtained from fragments different from 
the test fragment, in order to minimise dataset bias. These images were sliced into smaller 
images to satisfy the YOLOv8 input size (640 x 640), from which only 27 could be 
labelled using V7 Darwin (V7 | AI Document Processing & Data Labelling, 2025), and 
then split into training (17), validation (6), and testing (4) datasets.  
 
To run the detection model on the ZED camera, the object detection example Python 
script provided by the ZED Python SDK was used with some minor modifications, such 
as the display of the ID of the detected object, its coordinates and its dimension, plus 
saving them on a text file.  
 
In addition to running detection on the SVO, inference was performed using YOLOv8, 
and YOLOv8 integrated with SAHI, on a single still frame.  
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3.5 Apple georeferencing 
 
Before describing the georeferencing process, it is helpful to define two concepts relative 
to the functioning of the ZED 2 stereo camera (Coordinate Frames - Stereolabs, 2025): 
 

1. Camera Frame: located at the back of the left lens of the device. 
 

2. World Frame: describes the position of the camera with respect to a stationary 
point. By default, it corresponds to the point where the stereo camera began 
motion tracking and is oriented in the direction where it was looking at. 

 
To further improve the work done by Smith et al. (2023), it was decided to also add 
georeferencing to the apple detection. Three options were proposed for this purpose: 
 

1. GNSS integration: the output data of the ZED 2 camera can be integrated with a 
GNSS receiver that has followed the same trajectory of the stereo camera by 
combining visual odometry and GNSS position. This makes it easy to obtain the 
position of the camera, and thus the position of the detected objects, in a global 
reference frame. 
 

2. Manually set the starting point coordinates: it is possible to set an initial world 
transform as the starting position and orientation of the Camera Frame in world 
space. From this point onwards, the position of the camera, and thus the position 
of the detected objects, can be obtained with respect to the starting point. 
 

3. QR with known coordinates: following the same principle as in Option 2, the 
initial world transform could correspond to the known coordinates of a detected 
object that remains static, for example, a QR code attached to a post. 

 
Option 1 was not possible due to bad satellite distribution during data acquisition and the 
presence of the hail net over the orchard that interfered with the GSM signal reception. 
While Options 2 and 3 operate in a similar manner, QR code recognition was set aside 
for future enhancements, leading to the selection of Option 2. 
 
The same Python script used for apple detection was further modified for apple 
georeferencing. More precisely: 
 

 Change of coordinate system: The ZED camera uses as an initial parameter, by 
default, a right-handed, y-down coordinate system. The coordinate system was 
changed to left-handed, z-up, in order to have x in the direction of the movement 
of the rover (the rover moves away from the origin), z as height, and y for the 
distance from the camera and the tree line. Different coordinate systems supported 
be the ZED 2 are shown in Figure 3.19.  

 
 World reference: the ZED run time parameters set as default the Camera Frame 

as reference, therefore, to obtain the position of the detected objects with respect 
to the starting point, the reference was set to World reference. Then, when 
retrieving the camera position, it must be specified that it is with respect to the 
World Reference Frame. 
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 Positional tracking parameters: the UTM coordinates of the starting point must be 
set as the origin of the world frame when setting the positional tracking 
parameters. This is done by creating a translation vector with the UTM 
coordinates, assigning it to a transform object, and then setting this transform as 
the initial world transform in the positional tracking parameters. However, since 
the GNSS data was not satisfactory, the vector was set to a generic origin (0,0,0), 
creating a reference frame from the starting position of the ZED camera. 
 

 Create LAS point cloud: using the laspy Python library, a LAS point cloud 
containing the positions and the dimensions of the detected apples was created. It 
was noted that when printing the positions of the apples, some of them slightly 
changed when detected in different frames. In fact, when generating the first point 
clouds, a dragging effect was observed, for the same apple was represented several 
times. To solve this, the position of the apple was saved only the first time its ID 
was detected. The resulting point cloud is presented in Figure 3.20 and Figure 
3.21. 

 
The complete Python script us presented in Annex 2. 
 

 
Figure 3.5: ZED 2 possible coordinate frames (Coordinate Frames - Stereolabs, n.d.) 
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Chapter 4: Results 
This chapter presents the outcomes of the methods applied in the study, including the 
performance of the detection model, the characteristics of the generated 3D models and 
point clouds, and the alignment process. 
 
 

4.1 MAPIR point cloud and 3D model creation 
 
After uploading the images captured by the multispectral cameras on Metashape, the 431 
obtained images were correctly aligned, and 311,548 tie points were found. From these 
tie points, the point cloud was created and manually cleaned to delete as many points as 
possible that corresponded to the hail net and points far from the tree lines, obtaining 
2,689,341,944 points. The 3D model was built using these points, obtaining 17,510 faces. 
A fragment of the obtained model is presented in Figure 4.1. 
 

 
 

Figure 4.1: 3D model obtained from MAPIR images 
 
The 3D model obtained after applying the NDVI formula presented in section 3.2 is 
presented in Figure 4.2: 
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Figure 4.2: 3D model obtained from MAPIR images NDVI 
 

The colour-based mask applied to a smaller fragment of the orchard is presented in Figure 
4.3. After applying the mask 82,652 tie points were obtained, the point cloud consisted 
of 2,541,037 points and the 3D model had 4,146,159 faces. Fragments of the 3D model 
are presented in Figure 4.4 and Figure 4.5. 
 

 
 

Figure 4.3: Mask applied to eliminate hail net and sky 
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Figure 4.4 3D model obtained after masking by colour 
 
 
 

 
 

Figure 4.5: 3D model after masking by colour NDVI 
 
 
 
 
 
 
 
 



43 
 

4.2 ZED point cloud creation and alignment with GNSS point cloud 
 
As discussed in section 3.3, the point clouds obtained from the ZED data and the point 
cloud obtained from the TLS were aligned using CloudCompare. The final RMSE on the 
11th cloud obtained from the TLS dataset, was of 10 cm. The final point cloud was filtered 
and cleaned of the hail nets, setting a threshold on the radiometric response of points. 
Also, it was then subsampled to lighten the file size (final size 1,01 GB). The average 
Root Mean Square Error (RMSE) obtained from the alignment of the different segments 
of the point cloud was of 20 cm. Fragments of the various point clouds are presented 
below. 
 
 

 
 

Figure 4.6: Fragment of final point cloud obtained from the ZED point cloud and the TLS point 
cloud 

 
 

 
 

Figure 4.7: Top view of the TLS point cloud 
 
 
 

 
 

Figure 4.8: Lateral view of the ZED point cloud 
 
 

 
 

Figure 4.9: Top view of the ZED point cloud 
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Figure 4.10: Fragment of the ZED point cloud 
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4.3 Apple detection 
 
The performance metrics on training and validation of the YOLOv8 model are 
presented in Table 4.1. 
 

Metric Value 
Recall 0,918 

Precision  0,884 
F1-score 0,900 

 
Table 4.1: Training and validation performance metrics 

 
The outputs obtained from detection on SVO, inference using YOLOv8 and inference 
using YOLOv8 plus SAHI are presented in Figure 4.11, Figure 4.12 and Figure 4.13, 
respectively. It should be noted that the same frame was used to run inference with and 
without SAHI. The printed output of the apple size and positions in the local reference 
frame is presented in Figure 4.14. 
 

 
 

Figure 4.11: Apple detection model run on SVO 
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Figure 4.12: Inference using YOLOv8  

 

 
Figure 4.13: Inference using YOLOv8 integrated with SAHI 

 

 
Figure 4.14: Output of apple dimensions and positions in local frame 
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4.4 Apple georeferencing 
 
After performing apple recognition and georeferencing, a point cloud representing the 
positions of the apples was obtained. The point cloud contains 1,162 points and is 
presented in Figure 4.15 and Figure 4.16 
 

 
 

Figure 4.15: Top view of the point cloud containing the positions of the detected apples 
 
 

 
 

Figure 4.16: Fragment of the point cloud containing the positions of the detected apples 
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Chapter 5: Discussion 
 
This chapter presents and assesses the results presented in the previous chapter. 
Moreover, the limitations observed during data acquisition and post processing will be 
discussed, along with proposed improvements and a brief consideration of potential 
directions for further research. 
 
The quality and reliability of the data collected were influenced by several practical 
limitations encountered during data acquisition. These constraints, related mostly to 
environmental characteristics, had a direct impact on the performance of the sensors and 
the accuracy of the resulting models.  
 
Due to the orchard’s North–South orientation with a slight tilt towards the East, sunlight 
exposure during data acquisition was uneven across the tree rows, leading to inconsistent 
lighting conditions that affected image quality and, consequently, model rendering and 
detection performance. The effect of lighting conditions can be observed in the images 
captured by the stereo camera, in which the colour of the apples and the leaves are not 
bright and, thus, hardly distinguishable. In fact, apple detection was not satisfactory, for 
only a very small fraction of the apples were correctly detected, resulting in a large 
number of false negatives. Although the integration of SAHI improved inference, still a 
large proportion of apples remained undetected. Moreover, as mentioned in section 1.2.3, 
SAHI is not suitable for real time detection, thus, it cannot be applied on an SVO, nor the 
real time streaming of the ZED camera. It is interesting to note that this problem was also 
encountered by Smith et al. (2023). To mitigate the effects of uneven lighting conditions, 
Wang et al. (2013) conducted data acquisition during nighttime using ring flashes 
mounted with the cameras to illuminate the orchard. Nonetheless, this solution could only 
be applied during nighttime, which is not sufficient if constant real time monitoring is 
desired.  
 
It is important to note that the unsatisfactory apple detection does not concur with the 
values of the training and validation metrics presented in section 3.4, which are, indeed, 
high. This discordance could be due to the difference in quality and conditions between 
the training dataset and the actual field scenario. In addition to the limitations due to the 
quality and clearness of the images, apples that were small, partially occluded, or 
clustered together proved to be more difficult for the model to detect in real-world 
conditions. 
 
Another limitation introduced by the characteristics of the orchard was the hail net 
covering the trees, which affected both model construction and apple georeferencing. 
When creating the 3D model of the orchard from the images captured by the MAPIR 
cameras, Metashape recognised the hail net as a roof, creating a “tunnel effect”. This 
effect limited the 3D reconstruction of the orchard, in which the trees seem enclosed, and 
their shape is not clear. The removal of the hail net through masking-by-colour 
significantly improved 3D reconstruction, in fact, the shape and volume of the canopy 
and of the fruits are clearly distinguishable. Moreover, the NDVI output appears coherent 
and consistent with the vegetative structure of the orchard, indicating a correct 
implementation of the index, especially for the model created after applying the mask. 
Nonetheless, performing radiometric calibration of the multispectral cameras could 
improve the results of the NDVI model. 
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Additionally, the point cloud created from the SVO file presents both tree rows curved, 
which completely differs from the distribution of the orchard. This anomaly could be due 
to the IMU in the ZED camera, as it could have had certain difficulties to track a straight 
line for long distances. 
 
On the other hand, as mentioned in section 3.5, the presence of the hail net disturbed 
GNSS reception by the GNSS receiver, which drastically limited the apple 
georeferencing. Also, the geometry of the orchard itself limits the GNSS constellation 
visibility, leading to conditions similar to the urban canyon and increasing the possibility 
of multipath-induced uncertainties. These factors made the data collected by the GNSS 
not compatible with the data retrieved by the IMU present in the ZED camera. If both 
outputs could have been merged, the path followed by the ZED would have been 
automatically georeferenced and corrected, and thus, the exact positions of the apples 
could have been obtained in world coordinates. Instead, the positions of the apples were 
obtained in a local frame with the origin at the starting point of the ZED camera, as 
discussed in section 3.5. Nonetheless, the obtained point cloud of the positions of the 
apples can be deemed satisfactory, for their distribution resembles the shape of the point 
cloud of the orchard, including the curves introduced by the IMU.  
 
However, a possible solution to correct the error introduced by the path registered by the 
IMU could be to constantly update the position of the ZED camera through the 
recognition of visual cues with known exact positions, such as georeferenced QR 
markers. This solution would also require the exact starting point of the camera. In such 
a way, the drift introduced by the IMU would be reduced, and the position of the detected 
objects could be obtained with respect to the most recent position of the camera in the 
world frame. 
 
While the images captured by the MAPIR and ZED cameras were suitable for analysis, 
their clarity was compromised by blur caused by the movement of the rover during 
acquisition. Even if this was not an impediment to the creation of the 3D model and the 
apple detection, slightly reducing the speed of Agri.Q during data acquisition could 
increase the quality and clearness of the final models. Despite of the aforementioned 
issue, the performance of Agri.Q was optimal. 
 
Moreover, the georeferenced point cloud captured by the TLS was optimal, for it correctly 
represented the shapes and colours of the trees and apples. 
 
Taking into consideration the results and limitations discussed above, the workflow for 
creating a DT can be considered functional but incomplete. These missing aspects can be 
solved by further improving the workflow. Table 4.1 summarises the encountered 
limitations and the proposed solutions. 
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Limitation Proposed solution 

Incorrect shape of point cloud created with 
the stereo camera 

Integration of ZED 2 with GNSS receiver 
that follows the same path, self-repositioning 

of the stereo camera 

Apple detection 
Constant artificial lighting during data 

acquisition, better trained detection model 

Apple georeferencing 
Integration with GNSS data, self-
repositioning of the stereo camera 

 
Table 4.1: Limitations and proposed solutions 

 
Further research on this work could include the integration of information on the trees 
and fruits, such as the colour intensity of the apples, water status of the orchard and the 
presence of pests or diseases. These additions could be developed by adding classes to 
the detection model run on the stereo camera, as well as the contribution of ground data 
collected by farmers. Greater autonomy of Agri.Q could ensure constant monitoring 
without the need for an operator to drive it. The introduction of the detection of markers, 
besides improving georeferencing, could also enhance the autonomy of the rover, aiding 
it to follow predefined paths. Better integration of the sensors and a more performing 
onboard processing system could allow for real time updates of the orchard, eliminating 
the need for downloading the data for processing. 
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Chapter 6: Conclusions 
 
This final chapter consists of a summary of the thesis project, recalling the contents of 
each chapter and the relevance of the project. 
 
This thesis project corresponds to the continuation of the work done by Smith et al. 
(2023), and aims to propose a workflow for the creation of a DT of an apple orchard. The 
development of DTs aligns with the goals of precision agriculture and smart farming, 
which seek to optimise resource use, increase yield quality, and reduce environmental 
impact through data-driven decision-making. By integrating robotics, remote sensing, and 
computer vision, this work contributes to the advancement of automated, efficient, and 
sustainable agricultural practices. Moreover, the creation of DTs of living systems is a 
field not yet fully developed; therefore, this work also contributes to exploring its 
potential and related challenges and limitations. 
 
Chapter 1 introduces the context of the project, exploring the concepts of precision 
agriculture and the research performed regarding it. Special attention is paid to the tools 
and instruments used in the agricultural field, and the application of more recent 
technologies, such as artificial intelligence and DTs. 
 
Chapter 2 presents in depth the materials used for data acquisition, explaining their 
characteristics and their expected behaviours and outputs. It also describes the 
preparations previous to data acquisition, such as the field tests performed with a 
prototype and the adjustment of the sensor-carrying platform. 
 
Chapter 3 describes data acquisition, the procedures followed to obtain digital 
representations of the orchard from the outputs of the optical sensors, and the process of 
apple detection and georeferencing.  
 
Chapter 4 presents the results of the methods discussed in Chapter 3. In particular, the 3D 
models and point clouds created from the outputs of the cameras, and the detection and 
georeferencing of the apples. 
 
Chapter 5 discusses the quality of the results obtained in Chapter 4. Limitations 
encountered and proposed solutions are also discussed, along with considerations for 
future research. 
 
The materials used for data acquisition were the same as the ones used by Smith et al. 
(2023), but with a different configuration: one ZED 2 stereo camera and three MAPIR 
Survey3w, instead of one, were used. The configuration and orientation of the optical 
sensors were chosen in order to obtain sufficient overlap of the captured scene, and to 
avoid framing only the repetitive pattern of the tree rows. The optical sensors were 
mounted on Agri.Q, an agricultural rover with ideal characteristics for navigation in 
orchards. 
 
Although a final DT integrating all relevant orchard information was not fully achieved, 
the methodology followed for data acquisition and processing allowed for the generation 
of 3D representations of the orchard, despite the fact that not all were entirely accurate. 
Additionally, apple detection and georeferencing were successfully performed, yet both 
processes leave room for significant improvement. 
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Annexes 

Annex 1: MATLAB script for computation of overlap of multispectral cameras 
 

clc 
clear all 
close all 
 
syms x y 
 
h = 2.5 
theta = (43.5)*pi/180; 
 
r = h*sin(theta)/sin((pi/2)-theta) 
 
% displacement of the centre of the ellipse: 
 
c=h*sin(30*pi/180)/sin(60*pi/180) 
 
% rest of major axis: 
 
d=h*sin(theta+(30*pi/180))/sin((pi/2)-(theta+(30*pi/180))) 
 
a=h*sin(theta-(30*pi/180))/sin((pi/2)-(theta-(30*pi/180))) 
 
major_axis=d+a 
 
% Define the implicit equations of the two ellipses and the circle 
a1 = major_axis/2; b1 = r;  % Semi-axes of ellipse 1 
a2 = major_axis/2; b2 = r;  % Semi-axes of ellipse 2 
r = h;           % Radius of the circle 
%% 
y_offset=1.1; 
x_offset=(0.209+c); 
 
ellipse1 = (x-x_offset/ a1)^2 + ((y-y_offset)/ b1)^2 - 1;  % Equation of left ellipse 
ellipse2 = ((x + x_offset)/ a2)^2 + ((y - y_offset)/ b2)^2 - 1; % Equation of right 
ellipse 
circle = (x)^2 + (y - y_offset)^2 - r^2;  % Circle equation 
 
% Solve the intersection points numerically 
eq1 = solve([ellipse1 == 0, circle == 0], [x, y]); 
eq2 = solve([ellipse2 == 0, circle == 0], [x, y]); 
eq3 = solve([ellipse1 == 0, ellipse2 == 0], [x, y]); 
 
% Convert solutions to numerical values 
points1 = double([eq1.x, eq1.y]); 
points2 = double([eq2.x, eq2.y]); 
points3 = double([eq3.x, eq3.y]); 
 
% Monte Carlo Integration to estimate overlapping area 
numSamples = 1e6; % Number of random points 
xMin = -max([a1, a2, r]); xMax = max([a1, a2, r]) + 3; 
yMin = -max([b1, b2, r]); yMax = max([b1, b2, r]) + 3; 
 
randX = xMin + (xMax - xMin) * rand(numSamples, 1); 
randY = yMin + (yMax - yMin) * rand(numSamples, 1); 
 
insideEllipse1 = ((randX - x_offset) / a1).^2 + ((randY - y_offset) / b1).^2 <= 1; 
insideEllipse2 = ((randX + x_offset) / a2).^2 + ((randY - y_offset) / b2).^2 <= 1; 
insideCircle = (randX.^2 + (randY-y_offset).^2) <= r^2; 
 
overlapPoints = insideEllipse1 & insideEllipse2 & insideCircle; 
overlapArea = sum(overlapPoints) / numSamples * (xMax - xMin) * (yMax - yMin); 
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% Compute the area of each shape 
ellipse1Area = pi * a1 * b1; 
ellipse2Area = pi * a2 * b2; 
circleArea = pi * r^2; 
 
% Compute overlap percentage relative to each figure 
overlapPercentageEllipse1 = (overlapArea / ellipse1Area) * 100; 
overlapPercentageEllipse2 = (overlapArea / ellipse2Area) * 100; 
overlapPercentageCircle = (overlapArea / circleArea) * 100; 
 
% Display results 
fprintf('Estimated Overlapping Area: %.4f\n', overlapArea); 
fprintf('Area of Ellipse 1: %.4f\n', ellipse1Area); 
fprintf('Area of Ellipse 2: %.4f\n', ellipse2Area); 
fprintf('Area of Circle: %.4f\n', circleArea); 
fprintf('Overlap as Percentage of Ellipse 1: %.2f%%\n', overlapPercentageEllipse1); 
fprintf('Overlap as Percentage of Ellipse 2: %.2f%%\n', overlapPercentageEllipse2); 
fprintf('Overlap as Percentage of Circle: %.2f%%\n', overlapPercentageCircle); 
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Annex 2: Python script for apple detection and georeferencing 
 

import sys 

import numpy as np 

 

import argparse 

import torch 

import cv2 

import pyzed.sl as sl 

from ultralytics import YOLO 

 

from threading import Lock, Thread 

from time import sleep 

 

import ogl_viewer.viewer as gl 

import cv_viewer.tracking_viewer as cv_viewer 

 

import os 

from datetime import datetime 

 

import pyproj 

from pyproj import Proj, transform 

 

import open3d as o3d 

 

import laspy 

 

lock = Lock() 

run_signal = False 

exit_signal = False 

 

camera_height = 1.6 #meters 

# using UTM coordinates 

 

altitude = 383.73 # meters above sea level 

utm_x = 32507.127 

utm_y = 4940652 

# utm_z = 320.325 

# utm_z= altitude + camera_height 

 

def xywh2abcd(xywh, im_shape): 

    output = np.zeros((4, 2)) 

 

    # Center / Width / Height -> BBox corners coordinates 

    x_min = (xywh[0] - 0.5*xywh[2]) #* im_shape[1] 

    x_max = (xywh[0] + 0.5*xywh[2]) #* im_shape[1] 
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    y_min = (xywh[1] - 0.5*xywh[3]) #* im_shape[0] 

    y_max = (xywh[1] + 0.5*xywh[3]) #* im_shape[0] 

 

    # A ------ B 

    # | Object | 

    # D ------ C 

 

    output[0][0] = x_min 

    output[0][1] = y_min 

 

    output[1][0] = x_max 

    output[1][1] = y_min 

 

    output[2][0] = x_max 

    output[2][1] = y_max 

 

    output[3][0] = x_min 

    output[3][1] = y_max 

    return output 

 

def detections_to_custom_box(detections, im0): 

    output = [] 

    for i, det in enumerate(detections): 

        xywh = det.xywh[0] 

 

        # Creating ingestable objects for the ZED SDK 

        obj = sl.CustomBoxObjectData() 

        obj.bounding_box_2d = xywh2abcd(xywh, im0.shape) 

        obj.label = det.cls 

        obj.probability = det.conf 

        obj.is_grounded = False 

        output.append(obj) 

    return output 

 

def torch_thread(weights, img_size, conf_thres=0.2, iou_thres=0.45): 

    global image_net, exit_signal, run_signal, detections 

 

    print("Intializing Network...") 

 

    model = YOLO(weights) 

     

    output_dir = "saved_frames" 

    os.makedirs(output_dir, exist_ok=True)  # Create directory if it doesn't exist 

 

    frame_counter=0 

    while not exit_signal: 

        if run_signal: 
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            lock.acquire() 

 

            img = cv2.cvtColor(image_net, cv2.COLOR_RGBA2RGB) 

            # https://docs.ultralytics.com/modes/predict/#video-suffixes 

            #save each frame: 

            det = model.predict(img, save=True, imgsz=img_size, conf=conf_thres, 

iou=iou_thres)[0].cpu().numpy().boxes 

            #det = model.predict(img, imgsz=img_size, conf=conf_thres, 

iou=iou_thres)[0].cpu().numpy().boxes 

 

            # Save the image with a unique filename (using timestamp + frame number) 

            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") 

            filename = os.path.join(output_dir, 

f"frame_{timestamp}_{frame_counter}.jpg") 

            #cv2.imwrite(filename, img) 

            #print(f"Saved {filename}") 

 

            frame_counter += 1  # Increment frame count 

 

            # ZED CustomBox format (with inverse letterboxing tf applied) 

            detections = detections_to_custom_box(det, image_net) 

            lock.release() 

            run_signal = False 

        sleep(0.01) 

 

def main(): 

    global image_net, exit_signal, run_signal, detections 

 

    apple_positions = [] 

    apple_dimensions = [] 

    utm_positions = [] 

 

    capture_thread = Thread(target=torch_thread, kwargs={'weights': opt.weights, 

'img_size': opt.img_size, "conf_thres": opt.conf_thres}) 

    capture_thread.start() 

 

    print("Initializing Camera...") 

 

    zed = sl.Camera() 

 

    input_type = sl.InputType() 

    if opt.svo is not None: 

        input_type.set_from_svo_file(opt.svo) 

 

    # Create a InitParameters object and set configuration parameters 

    init_params = sl.InitParameters(input_t=input_type, svo_real_time_mode=False) 

    init_params.coordinate_units = sl.UNIT.METER 

    init_params.depth_mode = sl.DEPTH_MODE.ULTRA  # QUALITY 
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    init_params.coordinate_system = sl.COORDINATE_SYSTEM.LEFT_HANDED_Z_UP 

    init_params.depth_maximum_distance = 40 

 

    runtime_params = sl.RuntimeParameters() 

    runtime_params.measure3D_reference_frame = sl.REFERENCE_FRAME.WORLD 

    status = zed.open(init_params) 

 

    if status != sl.ERROR_CODE.SUCCESS: 

        print(repr(status)) 

        exit() 

 

    image_left_tmp = sl.Mat() 

 

    print("Initialized Camera") 

 

    # Create initial world transform matrix 

    initial_position = sl.Transform() 

    initial_translation = sl.Translation() 

    #initial_translation.init_vector(utm_x, utm_y, altitude) 

    initial_translation.init_vector(0, 0, 0) 

     

    initial_position.set_translation(initial_translation) 

     

    positional_tracking_parameters = sl.PositionalTrackingParameters() 

    positional_tracking_parameters.set_initial_world_transform(initial_position) 

    positional_tracking_parameters.enable_area_memory = False 

    

    print("Initial position set to:", initial_translation) 

       

    positional_init = zed.enable_positional_tracking(positional_tracking_parameters) 

 

    if positional_init != sl.ERROR_CODE.SUCCESS: 

        print("[ZED][ERROR] Can't start tracking of camera : " + repr(status) + ". 

Exit program.") 

        exit() 

 

    obj_param = sl.ObjectDetectionParameters() 

    obj_param.detection_model = sl.OBJECT_DETECTION_MODEL.CUSTOM_BOX_OBJECTS 

    obj_param.enable_tracking = True 

    obj_param.enable_segmentation = False  # designed to give person pixel mask with 

internal OD 

    zed.enable_object_detection(obj_param) 

 

    objects = sl.Objects() 

    obj_runtime_param = sl.ObjectDetectionRuntimeParameters() 

 

    # Display 

    camera_infos = zed.get_camera_information() 

    camera_res = camera_infos.camera_configuration.resolution 
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    # Create OpenGL viewer 

    viewer = gl.GLViewer() 

    point_cloud_res = sl.Resolution(min(camera_res.width, 720), 

min(camera_res.height, 404)) 

    point_cloud_render = sl.Mat() 

    viewer.init(camera_infos.camera_model, point_cloud_res, 

obj_param.enable_tracking) 

    point_cloud = sl.Mat(point_cloud_res.width, point_cloud_res.height, 

sl.MAT_TYPE.F32_C4, sl.MEM.CPU) 

    image_left = sl.Mat() 

    # Utilities for 2D display 

    display_resolution = sl.Resolution(min(camera_res.width, 1280), 

min(camera_res.height, 720)) 

    image_scale = [display_resolution.width / camera_res.width, 

display_resolution.height / camera_res.height] 

    image_left_ocv = np.full((display_resolution.height, display_resolution.width, 

4), [245, 239, 239, 255], np.uint8) 

 

    # Utilities for tracks view 

    camera_config = camera_infos.camera_configuration 

    tracks_resolution = sl.Resolution(400, display_resolution.height) 

    track_view_generator = cv_viewer.TrackingViewer(tracks_resolution, 

camera_config.fps, init_params.depth_maximum_distance) 

    track_view_generator.set_camera_calibration(camera_config.calibration_parameters) 

    image_track_ocv = np.zeros((tracks_resolution.height, tracks_resolution.width, 

4), np.uint8) 

    # Camera pose 

    cam_w_pose = sl.Pose() 

 

     

    f=open("results.txt", "w") 

 

    detected_ids = set() 

 

    while viewer.is_available() and not exit_signal: 

        if zed.grab(runtime_params) == sl.ERROR_CODE.SUCCESS: 

            # -- Get the image 

            lock.acquire() 

            zed.retrieve_image(image_left_tmp, sl.VIEW.LEFT) 

            image_net = image_left_tmp.get_data() 

            lock.release() 

            run_signal = True 

 

            # -- Detection running on the other thread 

            while run_signal: 

                sleep(0.001) 

 

            # Wait for detections 
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            lock.acquire() 

            # -- Ingest detections 

            zed.ingest_custom_box_objects(detections) 

            lock.release() 

            zed.retrieve_objects(objects, obj_runtime_param) 

 

             

            # print id and position for all objects in list 

            for object in objects.object_list: 

                print("{} {} {}".format(object.id, object.dimensions, 

object.position)) 

                f.write("{} {} {}\n".format(object.id, object.dimensions, 

object.position)) 

 

                if object.id not in detected_ids: 

                    apple_pos = object.position 

                    apple_size = object.dimensions  

                    if np.all(np.isfinite(apple_pos)): 

                        apple_positions.append([apple_pos[0], apple_pos[1], 

apple_pos[2]]) 

                    if np.all(np.isfinite(apple_size)): 

                        apple_dimensions.append([apple_size[0], apple_size[1], 

apple_size[2]]) 

 

                    detected_ids.add(object.id) 

 

            # print("\n ids: \n", detected_ids)     

            apple_positions = [pos for pos in apple_positions if 

np.all(np.isfinite(pos))] 

 

            # Convert local positions to UTM 

             

            for pos in apple_positions: 

                x_local, y_local, z_local = pos 

                # ZED: X = forward, Y = right, Z = up (LEFT_HANDED_Z_UP) 

                utm_x_pos = utm_x + x_local 

                utm_y_pos = utm_y + y_local 

                utm_z_pos = altitude + camera_height + z_local  # Altitude above sea 

level 

                utm_positions.append([utm_x_pos, utm_y_pos, utm_z_pos]) 

            

            utm_np = np.array(utm_positions)        

            print("\n pos_np: \n", utm_np ) 

 

            apple_dimensions = [size for size in apple_dimensions if 

np.all(np.isfinite(size))] 

            sizes_np = np.array(apple_dimensions)    

            print("\n size_np: \n", sizes_np) 

            ### create point cloud 
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            # Split into X, Y, Z 

            xs = utm_np[:,0] 

            ys = utm_np[:,1] 

            zs = utm_np[:,2] 

 

            # print("\n zs: \n", zs) 

            # Create header 

            header = laspy.LasHeader(point_format=3, version="1.4") 

            header.offsets = np.min(utm_np, axis=0) 

            header.scales = np.array([0.001, 0.001, 0.001])  # scale to mm precision 

 

            # Create point cloud 

            las = laspy.LasData(header) 

            las.x = xs 

            las.y = ys 

            las.z = zs 

 

            las.red[:] = 255 

            las.green[:] = 0 

            las.blue[:] = 0 

 

            # Add custom extra dimension: "apple_size" 

            las.add_extra_dim(laspy.ExtraBytesParams(name="apple_size", 

type=np.float32)) 

            las.apple_sizes = sizes_np 

 

            # Save to .las 

            las.write("apples_ip.las") 

 

            # -- Display 

            # Retrieve display data 

            zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA, sl.MEM.CPU, 

point_cloud_res) 

            point_cloud.copy_to(point_cloud_render) 

            zed.retrieve_image(image_left, sl.VIEW.LEFT, sl.MEM.CPU, 

display_resolution) 

            zed.get_position(cam_w_pose, sl.REFERENCE_FRAME.WORLD) 

            print("camera positon: {}\n".format(zed.get_position)) 

 

            # 3D rendering 

            viewer.updateData(point_cloud_render, objects) 

            # 2D rendering 

            np.copyto(image_left_ocv, image_left.get_data()) 

            cv_viewer.render_2D(image_left_ocv, image_scale, objects, 

obj_param.enable_tracking) 

            global_image = cv2.hconcat([image_left_ocv, image_track_ocv]) 

            # Tracking view 
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            track_view_generator.generate_view(objects, cam_w_pose, image_track_ocv, 

objects.is_tracked) 

 

            cv2.imshow("ZED | 2D View and Birds View", global_image) 

            key = cv2.waitKey(10) 

            if key == 27 or key == ord('q') or key == ord('Q'): 

                exit_signal = True 

                 

        else: 

             

            exit_signal = True 

 

    viewer.exit() 

    exit_signal = True 

    zed.close() 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--weights', type=str, default='apple_seg4.pt', 

help='model.pt path(s)') 

    parser.add_argument('--svo', type=str, default='test.svo', help='optional svo 

file, if not passed, use the plugged camera instead') 

    parser.add_argument('--img_size', type=int, default=416, help='inference size 

(pixels)') 

    parser.add_argument('--conf_thres', type=float, default=0.4, help='object 

confidence threshold') 

    opt = parser.parse_args() 

 

    with torch.no_grad(): 

        main() 
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