
POLITECNICO DI TORINO

"ICT 4 Smart Societies"
course of the Master Degree in

Telecommunications Engineering.

Master Degree Thesis

Automation of ETL Pipelines in DataStage

Academic Tutor: Candidate:
prof. Albertengo Guido Benedetti Alex Umberto
Company Tutor:
Chiarello Donato

Academic year 2024-2025

Ai miei genitori,
che hanno permesso la
realizzazione di tutto
questo .

Abstract

In today’s business ecosystem for enterprise data management, the automation process of
ETL (Extract Transform Load) pipelines has become one of the primary objectives. This
master’s thesis explores the use of latest Artificial Intelligence techniques to simplify data
integration and transformation, with the aim of minimizing the human effort in designing
and managing workflows to process data.

Conducted in partnership with Mediamente Consulting Srl, this research aims to design
and implement a system that examines and utilizes advanced technologies to effectively
manage user requests in an ETL data flow context.

The central process involves the automation of DataStage components using XML tem-
plates to dynamically create and configure jobs based on the interpreted user requests.
Through the development of custom scripts, the system automates the deployment and
configuration of DataStage jobs, transforming the ETL setup from a manual, error-prone
process into a more efficient and reliable automated procedure. It employs complex meth-
ods of data representation techniques designed to capture the semantic nuances and con-
textual elements present in the queries. These distributed representations represent the
basis in order to finding the most appropriate ETL solution between a set of different
available options presented. The selected solution is then analyzed by a generative model,
again adapting it to the original specifications and thus enhancing the overall relevance
and coherence of the final outcome.

In developing the proposed pipeline, different embedding techniques and generative
models are analyzed and tested. The most effective methods are selected based on their
ability to provide answers that closely adapt to the user’s needs, as discussed in the thesis.

The application of this methodologies yields an optimized ETL configuration which
closely adapt to the user needs, minimizing the manual configuration in the ETL tasks.
These type of operations not only improve operational efficiency but also allows enterprises
to respond more dynamically to changing data requirements.

Acknowledgements

2

Table of Contents

1 Introduction 5
1.1 Objectives and structure of the thesis . 5

2 State of the Art 11
2.1 Introduction to data warehouse . 11

2.1.1 Data lake . 12
2.1.2 Data mart . 13

2.2 The architectures of data warehouse:
star schema vs snowflake . 15
2.2.1 Star schema . 15
2.2.2 Snowflake schema . 16

2.3 Database: OLAP vs OLTP . 17
2.3.1 OLTP . 17
2.3.2 OLAP . 18

3 Introduction to ETL (Extract, Transform, Load) processes 21
3.0.1 ETL pipelines - Extract . 21
3.0.2 ETL pipelines - Transform . 22
3.0.3 ETL pipelines - Load . 23

3.1 MMCONS Framework . 23
3.1.1 Level L0 - Staging area . 24
3.1.2 Level L1 - Transformation area . 25
3.1.3 Level L2 - Publishing area . 26

4 IBM DataStage architecture 27
4.1 IBM Datastage overview . 27

4.1.1 IBM Datastage Designer . 28
4.1.2 Parallelism and Partitioning . 29
4.1.3 Metadata management and reusability 29
4.1.4 Logging and error handling . 29

5 The revolution of language models: from statistical methods to trans-
formers 31
5.1 Introduction . 31
5.2 Origin of the natural language processing: statistics model 32

3

5.3 Word embeddings . 33
5.3.1 Traditional approach . 33
5.3.2 Neural approach . 35

5.4 Fast Text: A Word2Vec improvement: . 36
5.5 From RNN to Transformers: The Evolution of Deep Learning in NLP . . . 37

5.5.1 Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) . 37

5.5.2 Transformers and Multi-Head Attention Mechanism 39
5.5.3 Self-Attention Mechanism . 39
5.5.4 Encoder-Decoder structure in transformer 40
5.5.5 Real application of transformer . 42
5.5.6 Pre-Trained models: Bert & GPT 43
5.5.7 Question-Answering system . 44

6 XML Generation: ETL Automation with AI 47
6.1 Component creation with Datastage . 48
6.2 Table structure in excel . 49
6.3 Construction of database . 49

6.3.1 Splitting of dataset: train and test 50
6.4 Flow implementation of the automation 50
6.5 Generation of embeddings . 51
6.6 Implementation of retrieval system . 52

6.6.1 Similarity methods implemented 52
6.7 XML generation . 53

6.7.1 Description of function and large language model: Gemini 53
6.7.2 Different prompt techniques implemented 55

6.8 Results . 59
6.8.1 Evaluation of the different text embedding models 59
6.8.2 Evaluation of the different prompting techniques 62

7 Conclusions and future works 67

4

Chapter 1

Introduction

This thesis is the result of an internship experience at Mediamente Consulting S.R.L., an
IT consulting company that specializes in data management and enhancement. Media-
mente Consulting is an integral part of VAR Group.
VAR Group, a well-established conglomerate in the IT sector, comprises various compa-
nies specialized in different aspects of information technology and digital transformation.
The company, with offices in Turin, Bologna, Milan and Rome, is organized into different
business units: Data Integration, Data Science, Data Visualization, Corporate Perfor-
mance Management and Advanced Analytics.
Together, these units provide clients with IT infrastructures that manage, organize and
analyze complex data, with the goal of transforming it into useful information for strategic
business decisions.

1.1 Objectives and structure of the thesis

Effective data management today represents a crucial element for any organization aim-
ing to maintain competitiveness in the market and to facilitate strategic decision-making.
The quality, integrity and accessibility of data play a fundamental role in supporting quick
and effective strategic decisions, thus emphasizing the importance of robust data handling
practices.

The central focus of this thesis is the automation of ETL pipelines using advanced
Artificial Intelligence techniques. It explores integrating these technologies into IBM Info-
Sphere DataStage through the automated generation of XML-based job templates, signif-
icantly simplifying and streamlining data integration processes. Custom scripts automate
DataStage job configuration from natural language user requests, thus minimizing human
effort and enhancing operational efficiency.

Chapter 2 provides an overview of the foundational concepts, methodologies and archi-
tectural evolutions that characterize modern data management and analytical processing

5

Introduction

systems, highlighting their crucial role in supporting strategic decision-making within or-
ganizations. The discussion begins by introducing the fundamental concepts behind data
Warehouse, exploring its significance as a structured and consolidated repository that
integrates diverse sources of data to facilitate efficient analytics and informed decision-
making.
After this general introduction the focus start onto the principal characteristics of data
lake, data mart and databases, enhancing the benefit of data marts.
After discussing these aspects, the chapter progresses to explore in greater depth the struc-
tural architectures employed within data warehouse systems, focusing on Star Schema and
Snowflake Schema. A comparison of these two schemas provides clarity regarding what
are the advantages and trade-offs, enabling informed architectural choices aligned with
specific business needs and analytical contexts.
Subsequently, the chapter expands the discussion to cover database processing method-
ologies, notably Online Transaction Processing (OLTP) and Online Analytical Processing
(OLAP). Here, is explored the contrasting characteristics, design objectives and typical
applications of these database systems.The integration and evolution of OLAP systems are
further discussed, particularly emphasizing their increasing role in big data analytics. Re-
cent developments such as the adoption of cloud-based deployments and the incorporation
of machine learning algorithms have significantly expanded their analytical capabilities,
enabling dynamic scaling and more advanced predictive insights.
In essence, this chapter outlines the evolution and interplay among various approaches to
data warehousing, storage architectures and database management methodologies, provid-
ing readers with a clear understanding of how these technological advancements contribute
to enhancing organizational decision-making and analytical processes. The chapter aims
to equip readers with the knowledge required to navigate and implement effective data
warehousing solutions.

In Chapter 3, the thesis provides an in-depth analysis of the MMCONS Framework,
exploring how data is systematically collected, processed, validated and ultimately pub-
lished to effectively support business intelligence and analytical operations. The chapter
will guide the reader through each essential stage of this structured data-management
pipeline, highlighting the critical tasks performed at each step and explaining their im-
portance for the integrity, reliability and usability of the final analytical outcomes.
Initially is presented a detailed overview of ETL (Extract, Transform, Load) processes,
which form the backbone of the MMCONS Framework. These processes are fundamental
for ensuring data integrity, consistency and readiness for downstream analysis. The ETL
pipeline is divided into three fundamental phases: Extraction, Transformation and Load-
ing.
Subsequently, the chapter introduces and details the architecture and stages of the MM-
CONS Framework, a systematic approach for managing complex data workflows. This
framework is designed to streamline and automate the processing of business-critical
data, facilitating rapid, informed decision-making. Each stage of the MMCONS frame-
work—ranging from initial data staging (Level L0 - Staging) through validation and trans-
formation (Level L1 - Core Processing) up to the final data preparation and publication

6

1.1 – Objectives and structure of the thesis

(Level L2 - Publishing)—will be examined in detail, highlighting its specific role and func-
tionalities.
Specifically, the Level L0 (Staging) represents the preliminary step where raw data from
multiple heterogeneous sources, such as operational databases or external file feeds, is
ingested into staging tables without undergoing any transformations.
After, the focus shifts into the core of data quality management within the Level L1
- Core Processing. This intermediate phase represents a cornerstone of the MMCONS
framework, wherein the raw data loaded into staging is thoroughly validated, cleaned and
transformed. Emphasis will be placed on essential validation mechanisms, including ref-
erential integrity checks and record validation rules.
The next stage, Level L2 - Publishing, represents the culmination of the MMCONS
pipeline. In this final phase, data is organized according to thematic areas relevant to
specific business processes, typically structured into Fact Tables and Dimension Tables
to effectively support analytical operations. Here, the chapter will discuss the strategic
considerations behind selecting between two common data warehouse architectures: Star
Schema and Snowflake Schema.
The chapter wants to highlighting how the MMCONS framework exemplifies modern
best practices in data management, striking a balance between simplicity, performance
and accuracy. By systematically detailing each stage—from data acquisition to its final
availability for analytical queries—the chapter underscores the critical role of structured
frameworks in modern enterprises.

Chapter 4 introduces the architecture and core functionalities of IBM DataStage, high-
lighting its role in the context of ETL processes within data warehouse environments. The
chapter presents the fundamental aspects of DataStage, emphasizing the functionalities
and interconnections of its key components, which collectively ensure efficient data ex-
traction, transformation and loading (ETL) operations.
The first part of this chapter outlines the main components of DataStage, detailing their
specific roles within ETL operations. The role of the DataStage Manager is explained, em-
phasizing its critical function in managing project metadata and maintaining the integrity
and consistency of the metadata repository. Next, the chapter addresses the DataStage
Director, highlighting its operational and administrative capabilities, including job execu-
tion, real-time monitoring, logging, scheduling and alerting. Additionally, the DataStage
Administrator component is examined, detailing its pivotal role in the configuration, op-
timization and security of the ETL environment.
The key elements discussed include the DataStage Designer, which provides an intuitive
graphical interface to define and visualize data processing workflows through intercon-
nected stages and links. This component is crucial because it serves as the primary tool
for creating, visualizing and managing ETL jobs. The DataStage Designer utilizes visual
programming through ’stages’ and ’links’, facilitating the clear definition and seamless
management of complex data workflows.
Moreover, the chapter explores the different job types supported by DataStage, specifi-
cally distinguishing between Parallel jobs and Sequence jobs.
Finally, the chapter underlines the critical relevance of DataStage as an enabler of robust

7

Introduction

data governance and strategic decision-making. The comprehensive understanding pre-
sented in this chapter serves to emphasize DataStage’s importance in modern business
intelligence and strategic decision-making environments, highlighting its role as a corner-
stone in the effective management and integration of enterprise data.

Chapter 5 aims to illustrate the evolution of Natural Language Processing (NLP),
starting from its foundational methods and progressing toward contemporary models and
how NLP techniques transitioned from early statistical model to sophisticated neural
architectures, emphasizing developments and key technologies that have revolutionized
language understanding and generation.
Initially the chapter explores classical Statistical Language Model. These methods, which
include techniques such as N-grams, represent language probabilistically by estimating the
likelihood of word sequences based on statistical patterns found in training corpora. The
limitations of purely frequency-based statistical approaches laid the groundwork for more
semantically-rich methods, as for example Word Embeddings. Consequently, is discussed
the advent and widespread adoption of Word Embeddings, particularly models such as
Word2Vec which capture semantic and syntactic relationships, enabling NLP models to
perform analogical reasoning and semantic similarity tasks with unprecedented accuracy.
The methodologies behind word embeddings are explored, highlighting the context-based
learning process (CBOW and Skip-gram in Word2Vec). However, traditional embeddings
still had limitations, notably their inability to effectively handle out-of-vocabulary (OOV)
words and their sensitivity to morphological variations. To address these challenges, at-
tention is given to FastText, an advanced word embedding method developed by Facebook
AI Research, this approach effectively handles OOV words, rare terms and morphological
variations, significantly enhancing NLP tasks involving diverse linguistic forms and mor-
phologically rich languages.
After examining these fundamental embedding methods, the focus shifts towards neural
network-based sequential models, highlighting the critical role played by Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) architectures.
After this discussion, is introduced the transformative innovation of the Transformer archi-
tecture. The heart of the Transformer—its Multi-Head Attention (MHA) mechanism—is
discussed in-depth, demonstrating its ability to concurrently capture multiple types of re-
lationships across various tokens in sequences, significantly enhancing the representation
and understanding of linguistic contexts. The exploration of the Transformer is further
expanded by describing its Encoder-Decoder structure, which effectively facilitates com-
plex tasks like language translation and text generation.
Following this, the focus shifts on two prominent Transformer-based models—BERT (Bidi-
rectional Encoder Representations from Transformers) and GPT (Generative Pre-Trained
Transformer)—detailing their distinct architectures, training strategies and application
scopes.
Lastly, this analysis delves into the specialized area of Question-Answering (QA) sys-
tems, elucidating how contemporary NLP models, particularly Transformers, contribute
to the effective design and deployment of QA solutions. It is outlined the operational
components of typical QA architectures: question processing, information retrieval and
answer extraction/generation. Moreover, is distinguished between extractive approaches

8

1.1 – Objectives and structure of the thesis

(predominantly BERT-based), which select precise answer spans from provided texts and
generative approaches (typically GPT-based), capable of synthesizing new, contextually
coherent answers.
Through this structured narrative, the chapter provides a holistic understanding of NLP’s
remarkable evolution, clearly illustrating how foundational statistical models and em-
bedding methodologies have naturally progressed towards sophisticated neural network
architectures.

Chapter 6 delves into the innovative core of this research: the automated creation of
ETL jobs through dynamic XML generation using advanced AI techniques. This chapter
outlines the developed methodology for translating natural language user requests into
XML job configurations via semantic embedding techniques and generative models, thor-
oughly discussing implementation specifics, challenges encountered and practical solutions
adopted during the project.
The chapter 6 presents the results derived from the experimentation and evaluation of the
various techniques used within the developed pipeline, focusing particularly on the use
of text embedding models and advanced prompting techniques with generative models.
Specifically, a comparative analysis of the various text embedding techniques (Word2Vec,
FastText and BERT) is initially provided, which are used to retrieve similar queries within
a database. The performance of these techniques has been evaluated through standard
metrics such as Precision@K, Recall@K and Top-1 Accuracy, with the aim of identifying
the most effective approach in semantically representing user requests.
Subsequently, the chapter addresses the analysis of various prompting techniques applied
to Gemini generative models, used to automatically generate XML files from user tex-
tual requests. The techniques explored include different simple approaches as Zero-Shot,
Few-Shot, Chain-of-Thought, Task Decomposition and Iterative Refinement, both alone
and combined . The results clearly highlighted how combined technique as Few-Shot with
Iterative Refinement produce higher accuracy results with respect to simpler technique
like Zero-Shot or Few-Shot alone.
In conclusion, the results obtained confirm the effectiveness of advanced strategies based
on customized embeddings and iterative prompting with limited examples, highlighting
how such techniques enable optimal performance in the context of ETL process automa-
tion through generative models. These results provide an important foundation for future
investigations aimed at further refinements of the techniques and models used.

Finally, Chapter 7 presents the conclusions and suggests future research improvements,
outlining possible developments to further enhance ETL process automation. It discusses
how these advancements could provide increased flexibility, scalability and effectiveness
in responding to evolving data requirements and business opportunities.

9

10

Chapter 2

State of the Art

2.1 Introduction to data warehouse
A Data Warehouse is a centralized repository that consolidates structured historical data
from various sources. This data, originating from business activities, external entities,
application outputs and log files, undergoes a transformation process to become uniform
information. This refined data is then used by decision makers through Business Intelli-
gence tools and other analytical applications to drive strategic initiatives.
There are several key attributes that differentiate data warehouses from other decision-
support systems[24]:

1. Subject-Oriented: data within the data warehouse are organized by subject, mak-
ing it easier to provide comprehensive information related to specific areas or fields.

2. Integrated: data warehouses combine data from different sources which often differ
in format and encoding, ensuring that the information is consistent and consolidated.

3. Time-Variant: unlike operational systems that manage real-time data, a data ware-
house stores data over an extended period. This characteristic supports the analysis
of trends and the evolution of data over time, providing a historical perspective.

4. Non-Volatile: once entered into the data warehouse, the data become static. It
does not undergo further updates or deletions, thus preserving its integrity over time.

It is essential to differentiate between the various systems used to manage company
information resources. In next section are explored the distinct characteristics, needs and
purposes of data lakes, data marts and data warehouses.

11

State of the Art

2.1.1 Data lake
Data Lakes are scalable repositories that store large quantities of data in structured and
unstructured form. Due to the unrefined nature of the data, utilizing data lakes necessi-
tates more advanced and dynamic analysis technologies compared to those that are used
in data warehouses. These systems are designed to handle the complexity and scale of
raw data, enabling flexible data processing and analysis strategies. In addition to their
capacity to manage vast amounts of raw data, data lakes can significantly augment the
capabilities of a company by leveraging the potential of newer and more diverse data
types. This adaptability allows organizations to explore and extract value from data that
was previously inaccessible or underutilized due to technological constraints. [25]

Furthermore, data lakes can contribute to the operational efficiency of legacy systems.
By offloading data processing tasks from older and more rigid systems to more agile and
scalable environments, companies can extend the life and performance of their existing
IT infrastructure. This transition not only reduces the strain on legacy systems, but also
allows them to operate more efficiently, focusing on their core functionalities while data
lake handles the heavy lifting of data processing and analytics.

This dual capability makes data lakes an indispensable component of modern data
architecture offering both, enhanced data analysis opportunities and practical solution to
improve system efficiency.

Figure 2.1. Organization and operation of Data Lake system

12

2.1 – Introduction to data warehouse

2.1.2 Data mart
Data Marts and data warehouses share structural similarities since both environments
store consolidated and analyzed-ready data. However, data marts differs in their focus on
meeting needs of individual segments or groups. Typically, data marts serve as specialized
subset of data warehouses , each customized to the specific needs of distinct business units,
such as finance or marketing.[1]
data marts provide several benefits:

• Increased query performance: with the fact that they have to manage smaller
data volumes, data marts can offer rapid processing speeds, significantly enhancing
query response times.

• Enhanced security measures: Data Marts restrict the access to data to only
some stakeholders within specific departments, enhancing data security and enabling
precise control over sensitive data.

• Reduced complexity: focusing on a singular business function reduces the com-
plexity, in order to simplifies maintenance and administrator efforts

On the other hand, data marts have also some limitations:

• Restricted scope: given that they are limited to specific departmental data, data
marts may not have all the business information that a larger data warehouse pro-
vides.

• Potential for data redundancy: there is the risk of overlapping data among
multiple data marts, which can generate inefficiencies and increased storage require-
ments.

Figure 2.2. Organization of data warehouse system in the field of Business intelligence

13

State of the Art

Databases are collections of information arranged to have efficient storing, accessing
and retrieval. Most databases have one purpose and have high speed reads and writes
optimized for a single application. Databases actually can be in numerous forms such
as XML, CSV and Excel spreadsheets. Databases differ in purpose and structure from
data warehouses. They are useful to support immediate operational needs, while Data
Warehouses work to facilitate strategic decision making through a consolidated view of
business information.

As shown in picture 2.2, transactional databases act as standalone sources of infor-
mation. Information in such and other sources is collected and cleaned out through ETL
processes and they are stored in the data warehouse. While transactional databases utilize
entity-relationship models and normalization for database schema, these methodologies
are used less in data warehouses, whose operations rely on other architectural frameworks
for preparing information for analysis and reporting.

14

2.2 – The architectures of data warehouse: star schema vs snowflake

2.2 The architectures of data warehouse:
star schema vs snowflake

2.2.1 Star schema
The star schema is the widely used dimensional model when dealing with the creation
of data warehouses and data marts due to its simple and efficient structure for querying
large datasets. This schema is optimized for query performance by minimizing complexity
through fewer joins.

As suggested by the name, the star schema has a structure where a central fact table
is directly connected to various dimension tables, forming a star-like shape. The fact
table contains quantitative data (facts) related to business processes events, or conditions
and foreign keys that reference the surrounding dimension tables. Dimension tables, on
the other hand, contain descriptive attributes that provide context for facts in the fact
table. Primary keys in the fact table, which are viewed as a composite keys derive from
foreign keys that connect the fact table to the dimension tables and foreign keys, which
correspond to the primary keys of the dimensions, allow dimension tables to be linked to
the fact tables. [13]

In this type of schema, there are normalized fact tables; instead the dimension tables
are denormalized. This approach offers several advantages, including simplified query
processing due to fewer joins and improved queries performance, which is very helpful for
environments where speed is crucial. Conceptual modeling is a fundamental step when
designing star schemas, ensuring data integrity, consistency and efficient data loading.
[24]

Figure 2.3. Example of star schema [10]

15

State of the Art

2.2.2 Snowflake schema
The snowflake schema is an extension of the star schema, it involves additional normal-
ization of dimension tables, which are broken down into smaller related tables. This
subdivision gives a reduction of data redundancy. Here the key management is slightly
different with respect to the star schema, primary keys are present in each dimension and
sub-dimension table, which is critical not only for ensuring data integrity but also for
linking data across the schema efficiently. On the other hand the foreign keys play a key
role in this schema , these keys not only connect the dimension tables to the central fact
table but they also link sub-dimension tables to their respective parent dimension tables.

This approach has the advantages of higher data integrity and reduces redundancy
through the operation of normalization. The disadvantages of this approach are the
increased complexity in query processing due to the additional joins required and the
higher maintenance demands due to the complex data structure with respect to the star
schema. Snowflakes schema are often used for financial analysis or customer relationship
management systems. Organizing detailed hierarchies and saving storage space are more
important than query speed in these cases. [26][24]

Figure 2.4. Example of snowflake schema [10]

16

2.3 – Database: OLAP vs OLTP

In table 2.1 it is possible to see an highlighting of the key differences between a
snowflake and star schema [27]:

Feature Star Schema Snowflake Schema

Architecture Fact table with denormalized
dimension tables

Fact table with normalized
dimension tables

Complexity Simpler to understand
and design

More complex due to normalization
and additional sub-dimensions

Normalization Denormalized Normalized

Performance Suitable for simple
data structures

Suitable for complex
data relationships

Query Maintenance Easier maintenance More challenging maintenance

Storage Requires more storage
due to data redundancy

Requires less storage
due to normalized structure

Data Redundancy Higher redundancy Lower redundancy

Query Performance Faster queries
due to simpler structure

Slower queries
because of additional joins

Ease of Maintenance Easier to design
and maintain

More complex to design
and maintain

Table 2.1. Star Schema vs. Snowflake Schema: A Detailed Comparison

2.3 Database: OLAP vs OLTP
In the world of data management, databases are broadly categorized into two types based
on their primary utilization : OLTP (Online Transaction Processing) and OLAP (Online
Analytical Processing).

2.3.1 OLTP
OLTP databases are specifically built to efficiently manage applications that rely on fre-
quent transactions. These type of databases are known for transactional operations and
play a critical role in support a business’s day-to-day activities. Common tasks include
adding, updating, or removing some data, ensuring in the mean time , real-time speed
and accuracy.
Below it is possible to see some key features:

• High concurrency: OLTP systems are designed to accommodate thousands of
users and transaction happening at the same time while maintaining consistent speed
and reliability.

• Short transactions: transactions in OLTP are fast and usually involve few records
to be efficient.

17

State of the Art

• Data integrity: mechanisms like locking and rollback are used to safeguard trans-
actions and ensure data consistency throughout the process.

• Normalized database schema: OLTP databases typically employ a highly nor-
malized schema, reducing redundancy and optimizing storage usage. [9]

In the contemporary tech landscape, OLTP systems are increasingly incorporating in-
memory computing capabilities, which dramatically speed up data processing times and
enable real-time analytics within transactional databases. This integration is pivotal for
applications requiring instant decision-making capabilities, such as financial trading plat-
forms an online retail transaction system.[8]

2.3.2 OLAP
On the other hand OLAP databases focus on enabling complex data analysis and queries
over heavy datasets. They are essential for business in order to generate insights, produce
reports and support strategic decision-making. The OLAP’s key features are:

• Multidimensional analysis: OLAP data are structured in cubes , making it easier
to perform analysis in multiple dimensions (e.g. time, location, product)

• Handling large data volumes: these type of databases can store and process
large amounts of historical data for analysis purposes.

• Complex queries: OLAP supports advanced queries to cover trends, relationship
and patterns in data.

• Denormalized schema: unlike OLTP systems, OLAP databases often use denor-
malized structures, such as star or snowflake schemas, in order to optimize perfor-
mances during analytical tasks. [9]

The evolving role of OLAP in big data analytics is marked by its integration with ma-
chine learning algorithm to further refine data analysis processes and predictive modeling.
Additionally, the deployment of OLAP systems on cloud platforms allow organizations
to scale resources dynamically based on data volumes and computational needs, which is
crucial for handling peak loads during critical business periods.

1. Machine learning integration: the enhancement of OLAP systems through the
integration of machine learning algorithms can significantly improve predictive ana-
lytics. These systems can handle large volumes of data and apply machine learning
models to perform complex predictions, thereby enhancing decision-making processes
and enabling more accurate forecast.[28]

2. Cloud deployment: the deployment of OLAP systems in cloud offer scalability
and flexibility, two crucial elements in order to managing large datasets and com-
putational demands. This type of approach, called cloud-based approach, supports
dynamic resource scaling, which is essential for dealing with variable workloads and
peak data processing periods. Cloud environments also facilitate easier integration

18

2.3 – Database: OLAP vs OLTP

with other data services and applications, enhancing the overall analytical capabili-
ties of OLAP systems. [22]

In table 2.2 it is possible to see differences in the use and application of OLAP and
OLTP databases.

Feature OLAP (Online Analytical Pro-
cessing)

OLTP (Online Transaction Pro-
cessing)

Purpose Used for complex analytical and
decision-making queries

Used for day-to-day transactional
processing

Data Structure Historical and aggregated data for
analysis

Current, real-time, detailed transac-
tional data

Query Type Complex queries for reporting, data
mining and analytics

Simple queries focused on CRUD
(Create, Read, Update, Delete) op-
erations

Performance Optimized for read-heavy workloads Optimized for high-speed transac-
tional processing

Data Redundancy Often contains redundant data for
performance optimization (denor-
malization)

Highly normalized to avoid redun-
dancy and ensure consistency

Storage Requirements Requires large storage due to histor-
ical data

Requires minimal storage since it
only retains current transactions

Users Used by business analysts, data sci-
entists and executives

Used by front-end users, clerks and
application programs

Backup and Recovery Periodic backups, not time-sensitive Critical backups required frequently
due to real-time operations

Transactions Fewer but complex transactions in-
volving large datasets

Large number of simple transactions
performed frequently

Example Systems Data Warehouses, Business Intelli-
gence tools (e.g., SAP BW, Google
BigQuery)

Banking systems, e-commerce plat-
forms, reservation systems

Table 2.2. OLAP vs. OLTP: A Comparative Analysis

19

20

Chapter 3

Introduction to ETL (Extract,
Transform, Load) processes

Nowadays, companies need data to know what happens internally or externally, take deci-
sions and maintain competitiveness on the market. Data are necessary but not sufficient.
What truly matters is the quality of the data and, more importantly, the ability to utilize
and derive value from it. [4]

ETL which means Extract, Transform, Load, is a three phase data integration process
which allows making data available for analysis and all activities in the context of business
intelligence, consolidating data from various source systems into a data warehouse, data
lake or another target system to enhance data accessibility. ETL pipelines prepares data
for analysts and decision makers, saving time and reducing errors associated with manual
data processing. How said before, ETL pipelines is composed by three phases:

• Extract

• Transform

• Load

3.0.1 ETL pipelines - Extract
The first phase of the ETL process is the extraction stage, during it, the objective is
to retrieve data from multiple source systems. The method used for extraction can be
different depending on how the data is available at the source. It could require SQL queries
to extract subsets from relational databases, API to extract data from web application
and FTP protocols for flat files.[2] This process could be made in two ways:

• Full Load: all data from the source is transferred to the data warehouse of destination
after transformation. This is typically done the first time data is loaded from the
sorce to the target, in this case a data warehouse.[4]

21

Introduction to ETL (Extract, Transform, Load) processes

Figure 3.1. ETL Schema [2]

• Incremental Load: in this case only the records added after the last extraction are
loaded. This can be done in streaming for low data volumes, allowing continuous
data flow monitoring and processing. For large data volumes changes are collected
and transferred in batches.[4]

3.0.2 ETL pipelines - Transform
After the extraction, there is the transformation phase , the most important phase of this
pipeline, where data are processed with rigorous checks to ensure its values, schema, data
type , structure and absence of error. This ensures the integrity of data , which is crucial
for reliable analytics and decision-making. Various can be the techniques to transform
data :

• Aggregation: data is aggregated to provide a full view, this is useful for analysis
and reporting, in order to aggregate data can be done sums,averages or statistical
measures

• Data masking and encryption: process to encrypt or masked sensitive informa-
tion to protect privacy

• Normalization and standardization: this type of transformation ensure data
respect quality standards helping in mantaining consistency.

• Data formatting: consist in convert data in required format based on the need of
the target system.

• Data merging and integration: it consists in combining various source to create
a unified view.

22

3.1 – MMCONS Framework

These transformations typically are done in a STAGING AREA . This area helps in
isolating processing tasks from the operational system , improve performance and reduce
the impact of transformation process. [2]
Implementing a well-designed data transformation strategy is very important for any
company that aims to make data-driven decisions. It not only safeguards data integrity
but also increase agility of business operations, ensuring business can quickly adapt to
changes and new opportunities.

3.0.3 ETL pipelines - Load
This phase is the final step in the ETL process where the data transformed in the previous
phase now are transferred to the destination. This can be an on-premise database, a cloud-
based data warehouse, a data hub or a data lake , it depends on the organization rule and
needs. A successful loading process starts with data mapping, which consists in defining
how each data element from the source system aligns with a specific field in target system.
Data loading techniques are different based on the use case:

• Bulk Load: designed for large datasets, this approach divides data in batches ,
reducing load time and optimizing transfer performance.

• Incremental Load: this method is designed for situations of frequent data updates,
it transfers only the modified or new records, ensuring real-time freshness .

• Full Load: this method replaces the entire target dataset with the latest version ,
using all data. Useful for scenarios which need a complete synchronization.

3.1 MMCONS Framework

Figure 3.2. MMCONS Framework

A data pipeline is a sequence of steps that transform and manipulate data using various
components. Each component processes data from the previous step and send it to the
next one , creating a seamless automated data management flow. This framework typically
starts by receiving data and culminates in a data repository where the processed data is
stored in order to be used in a Data Warehouse. A more deep analysis will be conducted on
the data flow framework implemented by the company Mediamente Consulting , focusing
on its operational characteristics and functionalities. As after is possible to see it is
composed by three main level : Level L0, Level L1, Level L2

23

Introduction to ETL (Extract, Transform, Load) processes

3.1.1 Level L0 - Staging area
The first step in this data process is the staging area, which holds an exact copy of the
raw data coming from various sources, like relational databases or customer-provided files.
Since data is copied as it is, it might contains errors or be incomplete, but that is accept-
able, data cleaning is not done at this point. Data is ingested in scheduled batches, with
each batch (identified by a JOBID) handling one table or file at a time. During ingestion,
three types of tables are used: delta tables, staging tables and error tables.

DLT (Delta) tables are used to store only the new or changed data coming from
source systems. For every source table, there is a matching DLT table with the same
structure. New data can be captured in three main ways:

• CDC (Change Data Capture): this method tracks just the changes since the last
load, making it ideal for large tables because it avoids reloading everything. The
data is ready to be processed right away.

• MINUS: if CDC is not available the system compares the latest version of the data
with the previous one using a MINUS operation, however it requires temporarily
storing both versions in staging tables.

• FULL: the entire table or file is reloaded each time, this is fine for small datasets or
ones that do not change much. It is also used when is loaded a new source for the
first time.

To protect against data loss or errors during the ETL process, it is important to keep
a history of what was loaded before. This can be done either by saving the history di-
rectly in the DLT table (organized by JOBID), or by using separate history tables (called
DLT_HIS) that also keep track of each load by JOBID. Thanks to this setup, often DLT
tables do not need to store everything and so they can be quickly refreshed using a simple
truncate and insert, which speeds things up.

STG (Staging) tables are used when data is loaded in full load in order to figure
out what have changed compared to the previous load, so that only the differences are
passed in the Delta (DLT) tables. It works as follow:

• The system compares the latest version of the data with the previous one using two
steps:

1. A POSITIVE MINUS finds the new or updated records.
2. A NEGATIVE MINUS finds the deleted records.

• The results from both comparisons are then combined into one final list using a
UNION, which is sent to the DLT table.

To keep track of the type of change (insert, update, or delete), the DLT table includes
an extra field which is often called FLAG that marks each record accordingly.

24

3.1 – MMCONS Framework

3.1.2 Level L1 - Transformation area
The subsequent, more critical phase of the ETL process involves transforming the staged
data from mere replication of source structures to a format that integrates and reshapes
the information for analytical processing. This phase includes normalization, integration
and the generation and resolution of internal keys. Central to this stage is the data quality
check, where data are validated through different mechanisms to ensure its accuracy and
consistency, these type of checks are done from data which come from the DLT tables in
the OK tables and consist of:

• Referential integrity checks: ensure that relationships across tables are main-
tained, using foreign keys to join tables correctly.

• Record validation rules: validate records against different criteria, such as non-
null constraints and attribute-based checks , to ensure that all data meet the required
standards.

• Business rules: apply specific business logic to discover suspicious data values,
involving comparisons or methods to find outliers or errors.

After these checks, data which are unsuited for reconciliation, are ’sent’ to tables used
for the error management, the ERR tables. These error tables are present also in the
layer L0, but they are analyzed in the layer L1 in order to store during the data quality
checks, those records that fail such rules explained before. These records are temporarily
excluded but reused in future processing cycles once the issues are resolved. ERR tables
extend the original schema with error descriptions and technical fields from DLT tables.
A retention period is set to automatically delete old records and prevent system overload.

In this layer are present also the ODS(operational data store) tables which repre-
sent the standard implementation of the L1 layer. They provide a centralized, normalized
data model that meets the company’s requirements and offer a consolidated and historic
version of source data ready for integration. ODS tables are updated incrementally using
MERGE statements and a primary key is required to enable record updates. Due to fre-
quent updates, especially during multiple iterations in one load process, these tables are
not compressed.

Furthermore other key structures in this layer are the MDM (Master Data Man-
agement) tables which play two key roles in the ETL process: integrating data from
multiple sources and enriching it. They merge data from different ODS tables, collecting
attributes into a central, unified structure, in order to avoid redundancy these tables only
integrate new sources. In addition to integration, the MDM tables assign surrogate keys
which are unique identifiers used instead of natural keys in order to improve query perfor-
mance, simplify joins, reduce storage needs and to be more stable when attribute values
change.

25

Introduction to ETL (Extract, Transform, Load) processes

After the two steps of enrichment and integration of the data , it is transformed and
organized to match the structure of the Data Warehouse, getting it ready for reporting
and visualization. At this stage, the OUT tables come into play. They use surrogate
keys to structure the data in a way that works well with visualization tools. Since data
comes from different sources, it is common to find different ways of representing the same
value. To avoid confusion or errors, a standard format is chosen for each value.

3.1.3 Level L2 - Publishing area
The final stage is needed to prepare and publish the data. This stage is divided in thematic
area that align with specific business processes structured into:

• Fact tables: store quantitative metrics of business operations and are linked to
dimension tables through foreign keys.

• Dimension tables: contain attributes which help aggregate the fact table data, in
order to facilitate intelligence and reporting.

Data at this stage are modeled both as a Star Schema , with a central fact table connected
to non normalized dimension tables and as a Snowflake Schema, where the dimension
tables are normalized. Depending on the specific needs of the business and analytical
performance considerations, it is possible to choice between these models, preferring mod-
els that minimize computational load during analysis. This framework outlines how data
flows from initial assimilation to final analysis, ensuring data is accurately captured, pro-
cessed and stored, ready for strategic business decision-making.

26

Chapter 4

IBM DataStage architecture

4.1 IBM Datastage overview
IBM DataStage offers a suite of tools which work together in order to facilitate the design,
management, execution and administration of ETL processes. Each of the component has
a different role , satisfying different aspects of the data integration workflow:

• Datastage Designer: it is the primary interface to build ETL jobs. It provides a
graphical environment where the user can create data integration solutions by using
various types of stages onto a canvas and configuring them to create complex ETL
processes. Designer allows users to visually define data extraction, transformation
and loading. This tool is essential for ETL developers as it supports the creation of
both simple and highly complex transformations and integrations.

• Datastage Manager: it is used for managing metadata associated with Datastage
projects. It acts as a repository management tool where all Datastage objects such
as jobs, job sequences and other components are organized and maintained. The
manager ensures that the metadata are consistent and accessible across projects and
jobs, providing an essential function in managing the ETL job history.

• Datastage Director: it is used for validate, schedule and monitor jobs. It provides
ETL administrators and operators with tools to execute and control jobs developeed
in the Designer. With the Director the users are able to view job logs, schedule
job runs , set alerts and monitor job-execution in real-time. It is important for
maintaining operational health and efficiency of ETL workflows, ensuring that data
loads and transformations continue as planned without errors or interruptions

• Datastage Administrator: it is responsible for the overall configuration and man-
agement of DataStage environment. This tool allows administrators to set up the
properties of projects, configure global settings, manage user’s roles and permis-
sions and handle resource allocations. Administrator ensures that the environment
is optimized for performances and security and that is compliant with organizational
policies and data governance standards.

27

IBM DataStage architecture

These components together create a robust framework for handling all aspects of
ETL processes, from design and implementation to management. Each tool is spe-
cialized in different specific tasks within the data integration life cycle, making IBM
datastage a very interesting solution for enterprise data management challenges. [7]

4.1.1 IBM Datastage Designer

Within the suite of IBM Datastage’s tools, the Designer holds an important position for
its direct engagement with the construction and visualization of ETL jobs. The Designer
provides a sophisticated interface where the complexity of ETL processes is managed
through an intuitive interface. It uses various components called ’stages’ which are con-
nected among each other by ’links’, this in order to define flows of data through ETL
processes. These stages can be view as modular elements of the software, where each
stage performs a specific function such as extracting data, transforming data or loading
data into a database. Connectors are specialized stages which allow the connection with
various data sources and targets. They make easier the extraction and load of data by
interfacing with different databases systems, as for example relational databases, flat files
or big data systems. It is possible to find many type of stages which perform different
functionality. The main types are:

• Source stages: enable the extraction of data

• Transformation stages: like transformer, aggregator and sort stages, which ag-
gregate or modify data.

• Target stages: for loading data into a data warehouse or other storage systems.

These, depending on how they are connected to each other can perform various functions
in order to process data at the various levels of the framework explained before.

There are two types of job which can be created in DataStage:

• Parallel jobs: they permit to the data transformation process to run in parallel
using multiple processors, this enhances performances by distributing the workload
across various resources, speeding up data processing tasks.

• Sequence jobs: they manage the execution of other jobs and activities in Datastage.
These jobs allow the schedule and orchestration of multiple jobs, specifying the
execution order and conditions for starting each job.

Through the use of IBM DataStage Designer, the enterprise achieves a refined control over
data processing activities, allowing developers to construct highly efficient and customiza-
tion ETL workflows. This tool’s capabilities are very important to translate complex data
integration requirements on executable and manageable tasks, also supporting robust data
governance and strategic decision-making processes in business environments.

28

4.1 – IBM Datastage overview

4.1.2 Parallelism and Partitioning
One of the key strengths of IBM DataStage lies in its ability to execute ETL jobs in
parallel, significantly improving performance and scalability. DataStage supports multiple
forms of parallelism:

• Pipeline parallelism: it allows different stages in a job, in order to process data
simultaneously, passing results from one stage to the next without waiting for the
entire dataset to complete.

• Partition parallelism: it splits datasets into partitions that are processed inde-
pendently across multiple nodes or processors.

• Data parallelism: it distributes data subsets across different processing units that
execute the same logic in parallel.

The use of partitioning strategies makes it possible to balance workload distribution
and optimize data flow.

4.1.3 Metadata management and reusability
In automated ETL flows, consistency and maintainability are essential. DataStage pro-
motes these qualities through metadata-driven design and reusable components.

• Shared containers encapsulate reusable logic or groups of stages, enabling stan-
dardized patterns to be reused across multiple jobs.

• Parameter sets allow for dynamic configuration of jobs at runtime, reducing the
need to duplicate logic for different environments or scenarios.

These features contribute to reducing development time and simplify maintenance,
which is particularly important in projects where ETL flows must adapt to evolving busi-
ness requirements with minimal manual intervention.

4.1.4 Logging and error handling
Automated ETL systems require robust monitoring and error management to ensure re-
liability without human supervision. DataStage provides detailed logging capabilities
through the Director tool, where each job execution is recorded with metadata such as
timestamps, record counts, warnings and errors.

Additionally, DataStage allows the use of reject links to redirect records that fail
validations and configurable alert systems to notify administrators in case of job failure
or threshold violations.

These mechanisms ensure that the ETL process can self-monitor, isolate issues and
continue processing when possible key aspects in an automated data pipeline.

29

30

Chapter 5

The revolution of language
models: from statistical
methods to transformers

5.1 Introduction

In the last years, the field of natural language processing (NLP) has experienced an im-
portant revolution, thanks to the emerging of the large language model (LLM). These
model, as for example GPT-3,GPT-4, BERT and their successor , modify the way of pro-
cessing natural language. Enabling applications from the machine translation to content
generation, question answering and virtual assistants.
First LLMs were based on statistics approach which, also if they represent fundamental
steps, they were limited in their ability to capture semantic and contextual complexities
of language. A real turning point there was with the introduction of the embedding tech-
niques as Word2Vec or GloVe which are able to represent words in vector , in order to be
processed to more sophisticated neural networks capable of capture the subtle nuances of
semantic and generalizing knowledge from large data sets.This was the first step towards
creating systems capable of interpreting language in a more natural and contextualized
way.
After, subsequently to the arrival of the transformer and the ’attention’ mechanism, the
models begin able to process complete sequence of words in parallel, managing the long-
term dependencies present in the text. This innovative approach allowed us to increase
the number of parameters and consequently, the ability of these models to learn and gen-
eralize in a surprising way. This evolution is driven by both incremental progresses and
radical innovations that refined the standards of NLP.
This chapter wants to give an historical and technical panoramic on the evolution of the
LLM, analyzing the principal evolution events, from the embedding models to transform-
ers and question-answering systems which open the way to the actual pre-trained and
fine-tuned models, giving also a particular attention to the future perspectives and the

31

The revolution of language models: from statistical methods to transformers

open challenges in this field. These models not only represent a revolution from a tech-
nical point of view but they constitute a new paradigm for understanding and modeling
the complexity of human language and also open up new perspectives for the future of
digital communication and artificial intelligence. Below is possible to observe figure 5.1
which shows the various step from one of the first statistic model to the nowadays chat-gpt
models.[32][19]

Figure 5.1. Development of Large Language Model

5.2 Origin of the natural language processing: statis-
tics model

One of the first statistics model is the N-GRAM model which want to predict the next
element in a sequence based on N previous elements. It is based on the principle of
probability , in which the probability of a word or a sequence of words is determined
by their frequency occurrences in a dataset. It divides the text in smaller units called
’n-gram’ allowing the model to capture the relationships among the words. It is possible
to have different type of models depending on the value assigned to n. For example in a
’bigram’ model (n=2) the probability of a word is approximated as follows:

P (w1, w2, . . . , wN) ≈
NÙ

i=1
P (wi | wi−1)

Instead a ’trigram’ model (n=3) considers the context of the two previous words

P (w1, w2, . . . , wN) ≈
NÙ

i=1
P (wi | wi−2, wi−1)

32

5.3 – Word embeddings

This simplification reduces the computational complexity of the problem but introduces
some important limitations . In fact, in order to obtain better context of the text, are
needed higher values of n, but this lead to an higher computational complexity.[11]

5.3 Word embeddings
With the Word embedding techniques are intended a numeric representation of words in
lower dimensional spaces capable of capturing semantic and syntactic information.
Their usage plays a very important role in natural language processing since they allow to
represent a phrase with a numeric vector and so, the words with similar meanings would
have similar representation. Large input vectors will result in a huge number of weights
which will lead to an high computation required for training, with the word embeddings
is possible to avoid this problem. The word embedding are used:

• as input to machine learning models; the process will result in :
take the words–> Give a numeric representation–> Use in training or inference

• to represent any pattern in the corpus used to train them.

Figure 5.2. Word Embedding mechanism [3]

There are different approach for text representation:

5.3.1 Traditional approach
The traditional method involves the compilation of a list of distinct terms and the assign-
ment of a unique integer value to each term. In this way a wide vocabulary results in a
very large features size. Traditional method includes:

One-hot encoding: it is a simple method which represents words in the natural
language processing , where every single word is represented by a unique vector and the

33

The revolution of language models: from statistical methods to transformers

dimension of the vector is equal to the dimension of the vocabulary. The vector has all
the elements equal to zero except for the element corresponding to the index of the word
in the vocabulary which is set to 1 . This type of encoding is a very simple and intuitive
method to represent words, but it has some disadvantages lead to make it inefficient in
certain application. In fact this method will produce high dimensional vectors which need
high computation in calculus and memory , it represents each word as isolated from the
context so it does not capture the semantic relationships among words and is limited to
the vocabulary used during training.[3]

Bag of Words (BoW): it is a technique which represents a text as an unordered set
of words, capturing the frequency of each word in the document creating a vector rep-
resentation. This mode of work lead to lose some sequential and contextual information
, making it inefficient for those application where the order of words is important as for
example in the comprehensions of natural words. Furthermore it has a sparse representa-
tion with a lot of element equal to zero and this results in an inefficient computation and
higher memory requisites when working with large datasets.

Term-Frequency Inverse-Document-Frequency (TF-IDF): it is a numerical
statistic techniques that reflects the importance of a word in a document with respect
to a collection of document called ’corpus’. Widely used in the natural language process-
ing it is composed by :
Term Frequency TF which represents the frequency of appearance of a word in a doc-
uments so it can be calculated as:

TF(t, d) = Total number of word in document D d

Total number of time the term t appear in the document d
.

Inverse Document Frequency measures the importance of a certain terms in a col-
lection of documents, calculated as:

IDF(t, D) = log(Total documents
Number of document containing the term t

),

and the final formula will combine TF and IDF in a single value

TFIDF(t, d, D) = TF(t, d) × IDF(t, D).

the higher is the score of TF-IDF for a term, the higher will be the importance of
that term for that document with respect to the entire corpus. This results very useful in

34

5.3 – Word embeddings

application as text mining, in the information retrieval and clustering of documents. Also
this method introduce some limitations as for example the sensitivity to the document
length, in fact long documents may have higher overall terms frequencies, potentially bi-
asing TF-IDF towards long document.[6]

5.3.2 Neural approach

The main neural approach to generate word embedding is the Word2Vec,it is a popular
technique in the NLP and it tends to represent words as continuous vector spaces. The
main idea is that, words with similar meanings should have similar vector representation.
In this method to a single word is assigned a single vector. It is possible to divide this
method in:

Continuos Bag of Words (CBOW): it is a feedforward neural network architec-
ture used in Word2Vec , its main objective is to predict a target word with respect to the
context which consists in the words included in a given window, the target word will be
in a center of this window context. [12]

Skip-Gram: with this architecture it can be said that it performs the inverse process
of the previous explained Continuos Bag of Words. In fact in this architecture, the objec-
tive is to predict the context words which are around a target word given as input.

In figure 5.3 it is possible to see the key difference between CBOW and Skip-Gram,
which is the direction of prediction.[12]

Figure 5.3. difference between CBOW and Skip-Gram

35

The revolution of language models: from statistical methods to transformers

But there are also other differences such as:

performance with different word types: in fact , CBOW is particularly effective
with frequent words , it captures syntactic information well. On the other hand, Skip-
Gram excels in working with rare words and understanding semantic relationships. This
make Skip-Gram particularly useful for application such as semantic similarity or text
generation.

Computational efficiency: regarding this, CBOW is less resource intensive than
Skip-Gram . Indeed CBOW aggregates context words in a single representation, simpli-
fying calculations, while Skip-Gram requires more computations because need to predicts
multiple context words from a single input word.

Use cases: both have their specific applications in Natural Language Processing.
CBOW is choosen when training resources are limited or when the priorities is to capture
syntactic informations. Skip-Gram indeed is widely used in applications which require
semantic similarity, information retrieval and when understanding relationships between
words is critical.

Even if Word2Vec is an algorithm used in a lot of applications, it suffers of some
limitations:

• Dependence on large amounts of data: if it is used with a small corpus, the
model is not able to capture the complexity of relationships.

• Problem with homonymous and antonymic words: it can have difficult with
words semantically related but dissimilar that share similar contexts, such as syn-
onyms and antonyms.

• Inefficient management of Out Of Vocabulary (OOV) words: in scenarios
with an evolving vocabulary, the lack of certain words in the training set limits the
model’s adaptability.

5.4 Fast Text: A Word2Vec improvement:
Nevertheless , in order to solve problems of the Word2Vec, is introduced the FastText, a
word embedding model which improves word embedding technique introducing the con-
cept of representing the vector of the word as a sum of character n grams. It is a open
library introduced by Facebook in order to deal with the lot amount of data generated by
the users every days. It treats each word as compose of the sum of characters n-grams,
which is the key difference with respect to the original Word2Vec.

For example, the word "kingdom" results in a sum of n-grams like this below:

36

5.5 – From RNN to Transformers: The Evolution of Deep Learning in NLP

[’k’,’in’,’kin’,’king’,’kingd’,’kingdo’,’kingdom’,...]

with this technique each word is represented as the combination (sum and average)
of the n-gram components. The word vectors which are generated have the information
about not only the word itself, but also about all the sub-word components. For instance
in the example about "kingdom", one of the sub-component is "king", this enabling the
model to establish semantic connection about words and capture also the meaning of
suffixes and prefixes.

Additionally FastText generates better word embedding for rare or unseen words like
the out of vocabulary (OOV) words. It could maintains its accuracy also without remove
the stopwords, allowing for a simple pre-processing.

Due to its ability of leverage sub-word information, FastText can be particularly useful
for morphologically rich languages such as Spanish, French or German. However, while
it provides more refined word embeddings, it requires more memory if compared with
Word2Vec, because it generates an high number of sub-words for each word. [5]

5.5 From RNN to Transformers: The Evolution of
Deep Learning in NLP

5.5.1 Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM)

The Recurrent Neural Networks (RNNs) is a class of neural network built in order to elab-
orate sequential information. Differently from the feed-forward neural networks (which
elaborate data in a single direction), Recurrent Neural Networks are equipped with recur-
rent connections which allow to ’memorize’ or more precisely maintain the information
about a past concept and use it during the elaboration of the next elements of the se-
quence.

A RNN is consisting of :
• Input layers: receive data inputs (text token, audio signal frame)

• Hidden layers: each containing an hidden state ht which is updated by both cur-
rent inputs and previous hidden state.

• Output layers: which produce the final result

The key aspect is the presence of an hidden state which is updated at each timestamp
t. The formula for a standard RNN can be summarized as follows:

ht = σ
!
Whh · ht−1 + Wxh · xt + bh

"
where:

37

The revolution of language models: from statistical methods to transformers

• ht is the hidden state at time t.

• ht−1 is the hidden state from the previous time step.

• xt is the input at time t.

• Whh and Wxh are weight matrices.

• bh is the bias term.

• σ is an activation function (e.g., tanh, ReLU).

The output at time t is often given by:

yt = Why · ht + by

where Why is the projection from the hidden state to the output, and by is the correspond-
ing bias term.

Recurrent Neural Networks are good for tasks where order and context are important,
such as:

• Natural Language Processing

• Speech recognition and Speech Synthesis

• Time Series Prediction

• Sequence Generation

However, a problem of the standard RNNs is the long-term dependencies, in fact they
often face with vanishing or exploding gradients during backpropagation, when have to
deal with very long sequences.[17]

In order to handle this problem is introduced the LSTM (Long Short-Term Memory)
networks.

The cells of this type of networks maintain an internal memory and use a system of
gates to control how information flows through the time:

• Input gate: determines how much new information is stored in the internal state
from the current input

• Forget gate: decides which parts of the internal state are discarded or not.

• Output gate: Controls how much of the internal cell state is exposed as the hidden
state output for each time.

With this structure LSTM networks can preserve information for longer periods and
so, they are better at capturing long-range dependencies. [17]

38

5.5 – From RNN to Transformers: The Evolution of Deep Learning in NLP

5.5.2 Transformers and Multi-Head Attention Mechanism
The transformer architecture is proposed for the first time by Vaswani in ’Attention is
All You Need’ [30] and it marks a turning point in the field of Natural Language pro-
cessing (NLP) eliminating the reliance on sequential models such as RNNs and LSTMs,
which had a significant limitations in handling long term dependencies and parallelizing
computations. This leads to a drastic reduction in training times and allows the efficient
management of very long sequences.
The heart of the Transformer architecture is the Multi-Head Self-Attention Mech-
anism (MHA), an extension of the self-attention mechanism that allows to model the
relationships between words in a sequence independently of their distance. The main
advantage of this approach is the ability to capture both local and global dependencies
without the need for sequential propagation of information [30]

5.5.3 Self-Attention Mechanism
Attention is an operating that given a set of input vectors, computes a similarity score
between each pair of tokens based on their contextual relevance [20]. This mechanism is
built around three fundamental matrices Query (Q), Key (K) e Value (V). The input
X (represented as an embedding matrix of size n × dmodel) is transformed into these three
spaces through multiplications with weight matrices learned during training:

Q = XWQ, K = XWK , V = XWV (5.1)

where WQ, WK , WV are the projection of matrices of size dmodel × dk.
The attention score is calculated by the normalized dot product between Q and K, followed
by a softmax function to obtain a probability distribution:

Attention(Q, K, V) = softmax
A

QKT

√
dk

B
V (5.2)

The division by
√

dk serves to reduce the variance of the resulting values and stabilize
the training process. The softmax function ensures that the attention weights are dis-
tributed in such a way as to give greater emphasis to the most relevant tokens. [18]
However, in some contexts, such as auto regressive text generation, it is necessary to
restrict the model’s ability to attend to future tokens. This is achieved by applying a
masking mechanism that sets certain attention scores to negative infinity before applying
the softmax function. This prevents the model from accessing information from future
positions, ensuring a causal flow of information.

Furthermore, the original attention mechanism operates on a single representation
space, limiting the diversity of relationships that can be captured. To enhance this,
Multi-Head Attention is introduced [30]. Instead of applying a single attention func-
tion, multiple attention heads operate in parallel, each with its own projection matrices
W i

Q, W i
K , W i

V :

headi = Attention(QW i
Q, KW i

K , V W i
V) (5.3)

39

The revolution of language models: from statistical methods to transformers

The outputs of all heads are concatenated and projected back to the original space
using a learned weight matrix WO:

MHA(Q, K, V) = Concat(head1, ..., headh)WO (5.4)
This mechanism allows the model to capture multiple types of relationships simulta-

neously, improving its ability to model complex linguistic structures.

Figure 5.4. Left: Scaled Dot-Product Attention mechanism. Right: Multi-Head Attention.

5.5.4 Encoder-Decoder structure in transformer
The original transformer architecture, introduced by Vaswani et al. [30], consists of two
main components: the encoder and the decoder. These components play complemen-
tary roles in the sequence processing process as is possible to see from the figure below
5.5.

• The encoder is responsible of encode the input sequence into an abstract represen-
tation, also called latent representation. It consists of a series of identical blocks
stacked on top of each other, each of which contains two main sublayers: a multi-
head attention mechanism (Multi-Head Self-Attention), followed by a feed-forward
fully connected neural network (feed-forward neural network). Each sublayer uses
residual connections and layer normalization to stabilize training and accelerate con-
vergence. The final representation produced by the encoder contains rich contextual
information and is used by the decoder to generate the final output.

• The decoder uses the representation produced by the encoder to generate a target
sequence (e.g., a translated sentence). It is also composed of several similar blocks
stacked vertically, each consisting of three sublayers: a first layer of masked self-
attention that allows the decoder to see only the previous tokens in the generated
sequence, a second layer of multi-head attention that considers the output coming
from the encoder and finally a feed-forward neural network similar to that of the

40

5.5 – From RNN to Transformers: The Evolution of Deep Learning in NLP

encoder. Masked attention is essential to ensure that during training the model
cannot access future information and is forced to learn to generate coherent sequences
step by step.

Figure 5.5. Transformer architecture. [30]

41

The revolution of language models: from statistical methods to transformers

Practically, the decoder computes the final output based on the latent representations
generated by the encoder and the tokens already generated:

This type of architecture is particularly effective in tasks such as machine translation
and text generation, where it is essential to understand a source sequence and generate
a syntactically and semantically coherent target sequence. In cases where it is wanted to
use the transformer for tasks not related to sequential generation (e.g. text classification),
it is often sufficient to use only the encoder component, as it is done in models such as
BERT or RoBERTa.

DecoderOutput = Decoder (Yinput, EncoderOutput) (5.5)

where Yinput represents the tokens previously generated by the decoder itself and
EncoderOutput represents the encoded sequence.

5.5.5 Real application of transformer
The introduction of the Multi-Head Attention Mechanism transforms the paradigm of
NLP models, offering richer and more parallelizable context modeling than traditional
recurrent networks. Due to its efficiency and flexibility, Transformer becomes the standard
for many deep learning applications and current research suggests that its impact will
continue to grow in the coming years.
Applications of transformers are used in a wide range of real-world applications. Some
notable examples include:

• Automatic translation: google translate has left its old LSTM-based model in
favor of transformers, improving quality of translation and reducing processing times.

• Search engines: google has integrated the BERT model (a Transformer-based
implementation) into its search engine to improve the understanding of user queries.

• Virtual assistants and chatbots: transformer-based models are the basis of
Alexa, Siri and Google Assistant, improving natural language processing capabil-
ities and making interactions more natural.

• Biomedical data analysis: transformer-based models are used in genomic data
analysis and AI-assisted medical diagnosis. For example, some models are trained
to analyze DNA sequences in order to recognize patterns associated with specific
genetic diseases.

• Content Synthesis and Generation: models like GPT-3/ GPT-4 are used to
generate articles, stories, code and even creative content like poetry and videos

42

5.5 – From RNN to Transformers: The Evolution of Deep Learning in NLP

5.5.6 Pre-Trained models: Bert & GPT
Pre-trained language models have revolutionized NLP by learning universal language
representations, which can be fine-tuned for various tasks. Two of the most influential
transformer-based models are BERT(Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pre-Trained Transformer). Both use the transformer
architecture but with different designs and objectives, leading to distinct strengths.
In fact, while Bert is an encoder-only transformer that reads text bidirectionally, in con-
trast GPT is a decoder only transformer used in an auto regressive (unidirectional) way.
So Bert’s self-attention considers both left and right context of each word simultaneously,
on the other hand GPT processes text left-to-right, where each token only attends to pre-
vious tokens. [16]. This key difference means BERT deeply encodes full sentence context
while GPT generates text predicting next word.

BERT’s bidirectional nature allows it to capture rich contextual dependencies, making
it very effective for tasks like question answering and token classification where is crucial
to understand the entire input. GPT’s unidirectional (causal) modeling makes it natu-
rally suited for language generation tasks, as it produces text one token after another
in a coherent sequence. However, GPT’s left-to-right constraint can be sub-optimal for
tasks that require understanding context from both ends of a sentence. Conversely, BERT
cannot natively generate free-form text because it lacks a mechanism to produce sequence
output autoregressively; it encodes but does not decode text.

In figure 5.6 it is possible to see the difference in architecture.

Figure 5.6. Difference between BERT(bidirectional transformer) and OpenAI
GPT(Left to Right transformer)[16]

In summary, BERT’s encoder architecture is optimized for understanding and extract-
ing information from text (classification, retrieval, QA), since every input token’s repre-
sentation integrates all context. GPT’s decoder architecture is optimized for generation
– it excels at producing fluent and contextually consistent continuations of text (story
generation, summarization) due to its auto regressive nature.

Regarding pre-training, it is done with different self-supervised learning tasks.
BERT uses Masked Language Modeling (MLM) and Next Sentence Prediction

43

The revolution of language models: from statistical methods to transformers

(NSP). In MLM , random tokens in the input are masked and the model must predict
them, forcing learning from both left and right context. NSP is a secondary task where
the model learns to predict if one sentence follows another, improving BERT’s handling
of sentence relationships. [16]
On the other hand, GPT uses a Causal Language Modeling (CLM) objective, it
learns to predict the next token in a sequence, given all previous tokens. This unidirec-
tional training aligns with GPT’s left-to-right architecture and directly trains it for text
generation.
Furthermore the models also differ in the scale and nature of pre-training data. BERT
is trained on a smaller but high quality corpus (BookCorpus ˜ 800M words + English
Wikipedia ˜ 2,500M words)[16] instead GPT leverage web-scale data , the original GPT
is trained in BookCorpus, GPT-2 is trained on 40+GB of WebText and GPT-3 (175 bil-
lion parameters) is trained on around 300 billion tokens from diverse sources (Common
Crawl web data, books, Wikipedia, etc.), orders of magnitude more data than BERT.
This massive scale gives GPT-3 with broad knowledge and the ability to perform many
tasks with little or no fine-tuning.
Both BERT and GPT are fine-tuned for downstream tasks, but while BERT typically uses
supervised fine-tuning, adding a small output layer to its pre-trained encoder for tasks
like classification or span extraction, GPT often employs prompting or instruction tuning.
Notably, GPT models have been further refined using Reinforcement Learning from Hu-
man Feedback (RLHF), a process that aligns the model’s outputs with user intents, as
seen in InstructGPT, ChatGPT and GPT-4. In contrast, BERT’s fine-tuning remains
primarily focused on understanding tasks and does not incorporate RLHF, reflecting its
design for comprehension rather than free-form generation.
In practice, these models can complement each other in complex NLP systems. For
example, one can use BERT to interpret or retrieve information (thanks to its strong
comprehension of context) and then feed that information to GPT to generate a natural
language response. Research in speech recognition has shown that combining bidirectional
and unidirectional models (BERT with GPT) yields improved results.

5.5.7 Question-Answering system
A question-answering (QA) system is a software system designed to automatically an-
swer question posed in natural language by understanding the query, retrieving relevant
information and providing a concise answer.[14]. Such systems combine techniques from
natural language processing and information retrieval to deliver precise results.
QA technology is highly valuable in real-world applications: for instance, search engines
leverage QA components to deliver direct answers to user queries instead of just lists of
documents and customer service platforms employ QA to automatically handle frequently
asked questions, providing instant and consistent support. [21].
Furthermore knowledge-based AI assistants (e.g. voice-activated virtual assistants) rely
on QA techniques to interpret user queries and produce helpful answers in a conversa-
tional manner, making QA a cornerstone of modern information-access systems.
The typical QA system has an architecture composed of three key components, each
responsible for a stage in the process[23]:

44

5.5 – From RNN to Transformers: The Evolution of Deep Learning in NLP

• Question Processing: in this step the system analyzes the input question in order
to understand what the user is asking. This involves natural language processing
steps like parsing and keyword extraction to form a query, as well as identifying what
is the focus and what is the expected response [23].

• Information Retrieval (IR): in this step the system searches a large collection
of documents or a knowledge base for relevant information that could contain the
answer. Traditional IR methods are often used to fetch a set of candidate passages,
but modern QA systems increasingly use vector-based semantic search powered by
deep learning.[31]

• Answer Processing: this is the final stage, where the system examines the retrieved
text and extracts or formulate the answer. The system may employ techniques such
as named-entity recognition, answer type checking or a reading-comprehension model
to select the most appropriate answer. Then the chosen answer is typically returned
in a natural language form (sometimes with slight rephrasing) to ensure the result
is accurate and easy to understand.[23]

The question answering model can be classified into extractive and generative ap-
proaches, which is different based on how they produce the answer.
Extractive QA systems identify the answer within a document by selecting and return-
ing an existing sequence of text. For example, model like BERT can be fine-tuned to
precisely detect answer spans in benchmarks such as SQuAD [16].
On the other hand, Generative QA systems produce answer in natural language by
synthesizing information learned from large training corpora, as seen in large language
models like GPT-3, which generate text word based on context. [21]
These approaches leverage the transformer architecture, where the self-attention mecha-
nism enables both a deep understanding of context and the production of coherent and
contextually relevant responses.[14] So, extractive QA is ideal when a source-anchored
answer is required. While, generative QA is particularly useful for open-ended questions
that demand articulated and synthesized responses.

45

46

Chapter 6

XML Generation: ETL
Automation with AI

This chapter explores the focus of the project carried out at Mediamente Consulting,
aiming to automate the creation of parallel jobs in IBM InfoSphere DataStage. This ini-
tiative marks a significant advancement in data integration processes which traditionally
require extensive manual set up and configuration. By leveraging custom scripts and
advanced programming techniques, the project aim to reduce the time and complexity as-
sociated with defining, deploying and managing ETL tasks in complex data environments.

The automation scripts are written in Python and utilize XML structures to define
job specifications and configurations dynamically. This scripts interacts with Datastage’s
underlying systems to programmatically set up data connections, specify data transfor-
mations and orchestrate job sequences. This approach not only wants to deal with the
scalability and reproducibility of data workflow, but also it significantly reduces the po-
tential for human error and the overall time needed for job set up.

The subsequent sections provide a comprehensive overview of the scripting techniques
employed, the architecture of the automation solution and a detailed analysis of the al-
gorithms in the scripts, highlighting how these interact with DataStage components to
reproduce automation. Additionally the chapter discusses the challenges encountered dur-
ing implementation and the solution implemented, offering insights in the practical aspects
of automating data integration tasks in a corporate setting.

47

XML Generation: ETL Automation with AI

6.1 Component creation with Datastage
The automation of DataStage jobs starts with a fundamental understanding of the tool’s
operations and its potential for automation, particularly in the context of the company’s
existing data management framework as outlined in Chapter3.1 . Initially, the first step
involved creating a standard job into DataStage to serve as a baseline for automation
scripts. This initial step is critical because it estabilishes a template from which all the
next automated tasks come from.

Figure 6.1. STG stage in DataStage Figure 6.2. DLT stage in DataStage

Once the job is configured and operational, it is exported to an XML format. Ex-
porting the job as XML is pivotal because it provides a comprehensive blueprint of the
job’s structure, including details about its configuration and the inter dependencies of its
components. This XML is crucial as an artifact for understanding the static and dynamic
aspects of the job configuration.

The next phase consists in a detailed analysis of the exported XML to identify which
parameters are constant across similar jobs and which parameters need to be dynamically
adjusted to prepare the job for the specific requests of the user. This analysis is essential
for developing scripts capable to modify the XML in a controlled and predictable manner.
The parameters typically subject to modification include:

• Job names and identifiers: unique identifiers for each job.

• Data connections: sources and destinations for data flows which are very depen-
dent on the project or the specific task.

• Transformation rules: specific data manipulation tasks within the job

The parametrization of the elements in the automation scripts makes it possible to
deploy customized jobs without manual intervention. To do this, placeholders are used
in the XML structure, replaced by user-specific or application-specific data. With this
approach, it is possible to reduce not only the setup time for new jobs but also enhance
the adaptability of the data integration infrastructure to meet evolving business needs.

48

6.2 – Table structure in excel

Furthermore, the automation scripts are designed in order to be reusable and easily
adaptable, allowing for quick modifications and updates to the job configurations as new
requirements emerge. This flexibility is fundamental to maintain efficiency in a dynamic
business environment, where data sources , business rule and data targets frequently
change.
In conclusion, the ability to automate DataStage job creation using XML templates,
significantly simplifies the process of setting up, modifying and deploying ETL jobs. This
method reduces the manual effort required, decreasing the potential for errors and allowing
data teams to focus more on strategic tasks rather than repetitive configuration.

6.2 Table structure in excel
This is a necessary step in order to gather information from the client and compose the
attributes of the database tables, used at various stage of the project.
This process is needed for a documentation to support the automation process on the
DataStage platform, which relies on predefined mapping structures for data manipulation.
This automation process includes the mapping in a sequential manner for algorithmic
processing.
This excel setup has been customized to align with the specific requirements of DataStage
workflows. Adjustments include integration of fields used to identify primary keys of table
and in order to manage the expressions necessary for generating new data fields,which are
transferred sequentially from a table to another. These fields are for example, INS_TIME
or JOBID. This excel file is a crucial part for the creation of the custom XML files in order
to generate new jobs. It contains, in addition to the name of the fields, specifications such
as data type, length, scale and precision. Despite it is one of the manual tasks in the
workflow, it offers a standardized structure which minimizes the effort required by users
in the compilation of it.

6.3 Construction of database
This JSON-based repository, kept in a simple file format for convenience, is created to
store user instructions alongside the corresponding function calls required by DataStage to
fulfill those instructions. While the JSON file itself is not a vector database, its records will
be converted in next steps into vector embeddings to enable semantic searches. Concretely,
each record in the file consists of two fields:

1. request: a textual description of a task that the user want to perform (for example,
from simple request as "Create a job with name JOB" or a more complex like "Create
a job for the STG phase called data_flow with two ODBC connectors data_source
and data_target and a copy stage called data transfer")

2. response: a specific function call that represents how DataStage should create or
configure the job in question (for example "create_job_only(’JOB’)" or
"create_copy_job_odbc(’data_flow’, ’data_source’,
’data_transfer’, ’data_target’)")

49

XML Generation: ETL Automation with AI

In this way, the organization of the database becomes the cornerstone of the automation
pipeline, enabling the system to interpret user queries, retrieving matching records and
producing the correct DataStage job creation code with minimal manual effort. Naturally,
not all the possible types of stages configuration and connectors that it is possible to create
with DataStage, are inserted in the Database, but only those common and necessary for
the company’s workflows, as described in Chapter 3.1.

6.3.1 Splitting of dataset: train and test
When the splitting of datasets works in a situation like this, it is very important to not
fall in situation of overfitting or underfitting. In the preparation of dataset of user re-
quests for DataStage job generation, the entries are first labeled according to the different
functions, as said in the previous paragraph. These labels ensure that each request can
be associated with the corresponding transformation or connector logic. Despite using a
random approach to divide the dataset, the script used to split it attempts a stratified
division. In fact, it checks the distribution of labels and tries to preserve their portions in
training and test sets. This approach is crucial to maintains a similar variety of function
calls in both sets, preventing any single category from becoming underrepresented.
Therefore, after splitting, there is a training subset (VectDB_train.json) used to guide
the model’s learning about which function corresponds or which type of request. Con-
versely, the test subset (VectDB_test.json) is preserved in order to evaluate the model
and see how good it generalizes when there are unseen requests. The preservation of the
label variety as much as possible in both subsets, helps ensuring that the model perform
robustly with the different DataStage job configurations it will encounter.

6.4 Flow implementation of the automation
In this section the overall architecture of the designed automation system is presented.
In figure 6.3 it is possible to visualize the main steps to implement the pipeline which is
described in the next subsection.

Figure 6.3. Pipeline implementation

50

6.5 – Generation of embeddings

6.5 Generation of embeddings
In this section it is explained the part of the project regarding the generation of embed-
dings from the text.
In the context of Natural Language Processing (NLP) mentioned above, an embedding
is a numeric representation of a text (phrase,word or document) in a continuous vector
space. The idea is to capture semantic of text, similar phrases or similar words might be
near in this space. Practically, it allows to facilitate the comparison between text queries,
perform similarity searches or feed the vector into machine learning and language analysis
algorithms.
The database explained before contains a series or text-based requests: for each of these
strings it is calculated a corresponding value (embedding). In this way, results enrich
database adding a structure (typically an array of floating-point numbers) which repre-
sents its meaning.

In this process there are three main phases :

1. Before generate the embedding, a preprocessing stage is performed and each request
undergoes a cleaning pipeline (in order to remove unnecessary punctuation and stop-
words), normalization and keyword recognition. This step simplifies the text without
loosing important information.

2. Once the tokens are cleaned, it is possible to switch to the embedding generation
part, different techniques are used to convert tokens into numbers:

• Word2Vec standard: trained on the requests , each word is associated with
a fixed-sized vector. Then, the words in a sentence are combined (for example
taking the average) to obtain a single sentence embedding.

• Word2Vec with TF-IDF weights: with respect to the standard Word2Vec,
it is given more importance to certain terms. In this case, TF-IDF technique
prioritizes words that occur less frequently but have higher significance.

• Word2Vec with custom weights: in this case, as before for TF-IDF, there
is an extension of the standard Word2Vec, but there are no weights given in a
statistical manner, so they are customized based on domain knowledge.

• BERT: it is a pre-trained transformer model on large amounts of text. It ex-
tracts a single embedding for the entire sentence, capturing the complex contexts
and relationships between words.

• Fast-text standard: it incorporates subword information, which can be partic-
ularly beneficial for handling out-of-vocabulary or morphologically rich words.

• Fast-text with TF-IDF weights: like it happens for Word2Vec it is given
more importance to those words which less frequently appear, but they have an
higher importance.

• Fast-text with custom weights: in this case, the weights of different words
are setting in a custom manner in a file, containing all the different weights.

51

XML Generation: ETL Automation with AI

3. Finally, the resulting vector is stored within the same database (in JSON format),
adding an ’embedding’ field to each record.

This technique is a sort of feature extraction where each word or sentence is associated
with a numeric representation. Differently from simple ’bag of words’ representations
, embeddings aim to preserve semantic relationships. Thus, words/sentences with
similar meanings generate vectors that are close together,regardless of syntactic form
or verb tense. During DB analysis or querying , working with vectors make it
possible to use a variety of quantitative techniques (for example distance metrics,
similarity) which are far more effective than only evaluate text matching. Therefore,
this technique has proven to be useful in the semantic search; in fact, once every
question is transformed into a vector , it is possible to quickly compare similarity
between requests (using cosine similarity). This is very useful since different requests
with similar concepts appear close to each other in the vector space. Moreover by
computing embeddings just once and saving them in the DB, it is not needed to
recompute them for each query: this will greatly improves performances.

6.6 Implementation of retrieval system
The retrieval system implemented consists in the semantic identification of the most sim-
ilar queries among those in the database created with respect to the new queries sent
as input by the user. The system through a embedding representation of queries, can
calculate the similarity between the user requests and the request in the database.
It is organized in several phases:

1. Load or train of the model: according to the selected technique, the system loads
an embedding model that is just trained and saved. If the model is not saved, it
trains a new model. Both for Word2Vec and FastText. It works differently for
model based on BERT, which is a pre-trained model and generate the embedding
without the need of a local train.

2. Calculating the Query Embedding: the user query is converted into an embed-
ding vector using the specified method.

3. Comparison with the queries in the database: the embedding calculated pre-
viously, now are loaded, extracted and converted in a Numpy array to be compared
with the new query.

By each new query given as input by the user, for each method, the results are three
different queries returned from the database, sorted in decreasing order based on the most
similar to the one given as input by the user.

6.6.1 Similarity methods implemented
In order to calculate the similarities between the queries, three different methods are used,
the cosine similarity, the euclidean distance and the manhattan distance. The formulas

52

6.7 – XML generation

are shown below:

Cosine Similarity: Given two vector x e y , cosine similarity is defined as:

sim(x, y) = x · y

∥x∥∥y∥

Euclidean Distance: Euclidean distance between x e y is calculated with the following
formula:

d(x, y) =

öõõô nØ
i=1

(xi − yi)2

Manhattan Distance: Manhattan distance is given by :

d(x, y) =
nØ

i=1
|xi − yi|

Among the three metrics examined, cosine similarity is often considered to be the most
effective as it measures the angle between two vectors and it is therefore independent of
their magnitude. In contrast, Euclidean distance is useful in spaces where all dimensions
are equally significant. Its reliability can suffer in high-dimensional contexts due to the
"curse of dimensionality", where sparse data and numerous variables can distort the results.
Manhattan distance, on the other hand, tends to perform better than Euclidean distance in
high-dimensional or sparse settings because it aggregates the absolute differences linearly
across dimensions, although it still remains sensitive to the overall scale of the vectors.

6.7 XML generation
For the generation of the XML files, a script is implemented, the process has been struc-
tured in a modular way to facilitate the management, reuse and maintenance of the code.

In the code, placeholders are fundamental elements for the dynamic generation of XML
files. They are values replaced when the code is executed, ensuring that the final XML
file contains the correct and complete information.

6.7.1 Description of function and large language model: Gemini
One of the main step of the project pipeline is the use of generative model, in order to
make the process really simple and useful for the user. Through it, it is possible with a
simple request to Gemini to receive as response the function with all parameters processed
and returned at the end an XML files that is ready to be imported in DataStage to create
the job the user need.

Gemini is a Large Language Model (LLM) developed by GoogleAI, trained on a mas-
sive dataset of text and code. It can generate text and translate languages, write different

53

XML Generation: ETL Automation with AI

kinds of creative contents and answer your questions in an informative way.

There are several different gemini models with different strengths and capabilities. The
gemini model tested are:

• Gemini 2.0 Pro Exp: it is the largest and most capable Gemini model. It is well
suited for a wide range of tasks, including code generation, text summarization and
question answering.

• gemini-2.0-flash: this is a faster and more efficient version of Gemini Pro. It is
ideal for tasks that require real-time interaction, such as chatbots and conversation
AI.

• Gemini 2.0 Flash Lite 001: this model is a highly optimized version of Gemini,
designed to be light and fast. "Lite" indicates that it is a scaled-down version,
designed for devices with limited resources or for applications that require quick
responses. It’s ideal for tasks where speed and efficiency are prioritized, although it
may have slightly lower capabilities than larger models

• Gemini 1.5 Flash 8b Latest: this model is oriented to be fast and the dimension
of this model is of 8 billion of parameters. The parameters measure how good is a
model to learn complex patterns: thr more parameters , the better the models.

54

6.7 – XML generation

6.7.2 Different prompt techniques implemented
After the identification of the most similar question to the one posed by the user along
with its corresponding answer, a critical step in the automation process is reached: prompt
creation. Therefore, understanding and mastering different prompt techniques is vital to
optimize interactions with the generative model. Below it is possible to analyze the five
prompt technique used:

1. Zero-Shot: it consists of asking the model a task or question in natural language,
without providing any examples, the prompt contains only the description of the
activity and the model has to produce the answer by drawing exclusively on the
knowledge learned during the pre training. Furthermore on very complex or spe-
cialized tasks, the model may not possess sufficient knowledge and in these cases,
zero-shot results in incorrect or superficial responses.[15]

2. Few-Shot: this technique consists in providing in the prompt some examples as
input with the corresponding answers before asking the new question. The model,
observing these demonstrations, conditions its own generation based on them and
produces an output that follows the pattern learned from the few examples provided.
Compared to zero-shot , it is generally more effective precisely because of the pro-
vided examples to the model. Despite being powerful, it presents some critical issues;
in fact, accuracy can vary greatly depending on which examples are presented and
in what order. Indeed, it has been observed that rearranging the examples, using
slightly different formulations, or even including unrelated examples, can significantly
affect the outcome. Furthermore, the few-shot model does not learn permanently: if
it is necessary to answer to many queries of the same type, include example in every
prompt can become inefficient. [29]

Figure 6.4. comparison between zero-shot and few-shot example prompt [15]

3. Chain-of-Thought (CoT): with this technique the model is trained to generate
intermediate reasoning steps before providing the final answer. Instead of just asking
the model for the answer, the prompt is formulated in such a way that the model
"thinks aloud", outlining a logical sequence of deductions.
The purpose of CoT prompting is to assist the model in breaking down complex
problems into simpler parts,making the solution process explicit before providing

55

XML Generation: ETL Automation with AI

the final output.
Some limitations of this prompt technique are that it requires sufficiently large mod-
els: in fact, below a certain threshold of parameters, the model is unable to produce
useful reasoning chains. Another issue may be that if the model makes a logical error
in one of the intermediate steps, this can compromise the final response. Another as-
pect is the computational cost: generating detailed explanations means using many
more tokens for each query, which can reduce speed and increase the usage costs of
the model.[35]

Figure 6.5. example of CoT prompt technique [35]

4. Iterative Refinement: it is a technique where a model incrementally improves its
outputs through sucessive cycles of self-assessment and modification. This process
allows the model to enhance the quality and accuracy of its responses by continuously
refining its initial outputs. For instance, the ISR-LLM framework employs iterative
self-refinement to boost the planning capabilities of large language models (LLMs)
in complex, long-term sequential tasks. By translating inputs from natural language
into a structured planning language and iteratively refining the generated plans,
ISR-LLM (iterative Self Refined Large Language Model) achieves higher success
rates compared to traditional LLM-based planners. Similarly, the COrAL(Context-
Wise Order-Agnostic Language Modeling) approach integrates iterative refinement
directly into the LLM architecture, enabling the model to internally improve its
outputs during the generation process. This method captures diverse dependencies
without incurring the high inference costs associated with sequential generation,
leading to improved performance and efficiency in reasoning tasks. [36][33]

5. Task Decomposition: it involves transforming complex tasks into smaller, man-
ageable sub-tasks that can be addressed individually to achieve the overall objective.
This strategy leverages the strengths of LLMs in managing discrete components
of a problem, facilitating more effective problem-solving. This dynamic adjust-
ment leads to significant improvements in success rates across various interactive
decision-making tasks. Furthermore, the Task Navigator framework extends mul-
timodal LLMs to tackle complex tasks by breaking them down into vision-related
sub-questions. This method integrates a refinement process to ensure the feasi-
bility and responsiveness of the sub-questions, enabling LLMs to provide accurate
responses for intricate tasks. [37] [34]

56

6.7 – XML generation

Figure 6.6. example of Task decomposition prompt flow [34]

These are only a subset of all types of prompt techniques available, but they clearly
illustrate how even subtle variations in prompt design can significantly influence a
model’s output. By understanding, tailoring and even combining these strategies,
performance can be optimized, response consistency enhanced and the full potential
of large language models can be unlocked for a variety of complex tasks.

Next page contains a snippet which encapsulates all the entire process of the prompt
engineering developed and the creation of the XML file through the generative model in
which is possible to distinguish 5 steps:

• Step 1 Retrieving similar examples: is used the retrieve_all_similarities func-
tion in order to search in the database a pair of examples (question-answer) seman-
tically close to the user’s query.

• Step 2 Few-Shot prompt construction: the retrieved examples are included into
a Few-Shot prompt in order to provide the context for the prompt.

• Step 3 Gemini API call: the prompt is sent to gemini including some parameters
such as temperature, max_output_tokens and max_retries in order to generate a
response including the python code.

• Step 4 Execution and saving of the generated code: the python code is exe-
cuted in order to produce the XML file to import in DataStage and it is saved to
disk in a defined location, completing the process.

57

XML Generation: ETL Automation with AI

Algorithm 1 XML Generation Process using Gemini API with Few-Shot Prompting

Listing 6.1. High-level process for generating and saving an XML file
def generate_xml_from_request (user_request) :

−− STEP 1 −−
−−− R e t r i e v e s i m i l a r q u e s t i o n s from q u e s t i o n embedding database −−−

r e s u l t s = r e t r i e v e _ a l l _ s i m i l a r i t i e s (use_request , candidate_db_fi lepath , top_k = 2)

−−− Example o f s i m i l a r r e t r i e v e d q u e s t i o n −−−

s i m i l a r _ q u e s t i o n 1 = Design an Oracle i n t e g r a t i o n by g e n e r a t i n g two connectors ,
PRIMARY_ACCOUNT and SECONDARY_ACCOUNT, for the job f i n a n c i a l _ s y n c with a Copy
s t a g e named u p d a t e _ f i n a n c i a l for the STG phase

s imi lar_answer1= create_copy_job_oracle (’ f i n a n c i a l _ s y n c ’ , ’PRIMARY_ACCOUNT’ , ’
u p d a t e _ f i n a n c i a l ’ , ’SECONDARY_ACCOUNT’)

s i m i l a r _ q u e s t i o n 2 =
Create a job for the STG phase c a l l e d data_flow with two ODBC c o n n e c t o r s data_source

and data_target and a Copy s t a g e c a l l e d d a ta _ tr a ns f e r
s imi lar_answer2 =
create_copy_job_odbc (’ data_flow ’ , ’ data_source ’ , ’ da t a_ t r an s fe r ’ , ’ data_target ’)

−− STEP 2 −−
−−− Construct the few−shot prompt us ing the s i m i l a r q u e s t i o n r e t r i e v e d −−−

prompt = f " " "
Example 1:
Q: { simi lar_quest ion1 }
A: { similar_answer1 }

Example 2:
Q: { simi lar_quest ion2 }
A: { similar_answer2 }

Given t h i s two example above and t h i s new quest ion : { user_request }
wri te the answer a s s o c i a t e d to the new quest ion .

−− STEP 3 −−
−−− API Cal l to Gemini −−−
response = call_gemini_api (

prompt ,
temperature =0.5 ,
max_output_tokens=1000,
max_retries=5

)
code_response = clean_code_response (response . t e x t)

−− STEP 4 −−
−−− Execute the Generated Code to Produce XML −−−

−−− Save the Generated XML F i l e −−−
complete_code = " r e s u l t = " + code_response . s t r i p ()
loca l_vars = {}
exec (complete_code , g l o b a l s () , loca l_vars)
xml_content = loca l_vars . ge t (" r e s u l t ")

o u t p u t _ f i l e p a t h = "C:/ path / to / output . xml "
save_xml_to_file (xml_content , o u t p u t _ f i l e p a t h)
return xml_content

−−− Example usage : −−−
user_request = (I need an STG phase c a l l e d staging ,

two Oracle connectors (source and t a r g e t) ,
and a copy s tage named t r a n s f e r with ODBC connectors)

xml_generated = generate_xml_from_request (user_request)

58

6.8 – Results

6.8 Results

This section presents the results of the various techniques and models used and experi-
mented within the pipeline. Embedding techniques are the backbone of the retrieval of
similar queries in the database, their evaluation of the text is the beginning of the anal-
ysis. The embeddings serve as the foundation for the generative model, enabling it to
produce more context-sensitive and relevant results. The evaluation of the performance
of the generative model, which examines how well it uses the retrieved similar queries to
generate accurate and meaningful results, comes next in the chapter. The purpose of the
analysis is to compare various configurations of the parameters and how each influences
the overall performance, with the ultimate purpose of identifying the best setup for the
pipeline.

6.8.1 Evaluation of the different text embedding models

To calculate the similarities between the queries, there are three different methods us-
able: cosine similarity, Euclidean distance and Manhattan distance. The formulas are
summarized in Table 6.1.

Metric Formula

Cosine Similarity sim(x, y) = x·y
∥x∥∥y∥

Euclidean Distance d(x, y) =
ñqn

i=1(xi − yi)2

Manhattan Distance d(x, y) = qn
i=1 |xi − yi|

Table 6.1. Summary of Similarity Metrics Used for Retrieval

Among these similarity measures, the cosine similarity is particularly effective,
as it accurately captures the semantic similarity between text embeddings without be-
ing influenced by vector magnitudes. Although Euclidean distance and Manhattan
distances provide valuable alternatives based on geometric proximity. They tend to be
more sensitive to the absolute magnitudes of embedding vectors, potentially diminishing
their effectiveness in high-dimensional or sparse embedding spaces.

While similarity measures are very imporatnt in the ranking phase to select the most
relevant candidate responses, the last evaluation of retrieval effectiveness is based on
metrics such as Precision@K, Recall@K and Top-1 Accuracy, which quantify the quality
of retrieved results in a practical manner. These metrics measure the effectiveness of the
model in including correct responses within the top ranked positions, providing concrete
indicators of model performance.

59

XML Generation: ETL Automation with AI

• Precision@K quantifies the proportion of relevant results among the top K re-
trieved candidates:

Precision@K = Number of relevant responses in top K

K

This metric highlights the effectiveness of the model in ranking the correct or relevant
responses at the top of the list. A higher value indicates better performance.

• Recall@K is a binary measure defined as:

Recall@K =
I

1, if the expected response is among the top K retrieved responses,
0, otherwise.

By averaging this binary indicator over all queries, it is obtained an overall measure
of how often the correct response is retrieved within the top K candidates.

• Top-1 Accuracy is defined as:

Top-1 Accuracy = Number of queries for which the top ranked response is correct
Total number of queries

This metric provides insight into the model’s ability to place the correct response in
the very first position of its ranking.

The performance of each method is evaluated on a test set and the following table
summarizes the final results.

Method Precision@K Recall@K Top-1 Accuracy
Word2Vec Standard 0.61 1.00 0.75
Word2Vec TF-IDF 0.54 0.96 0.63
Word2Vec Custom 0.82 1.00 0.88
BERT 0.49 0.83 0.63
FastText Standard 0.61 1.00 0.75
FastText TF-IDF 0.67 1.00 0.71
FastText Custom 0.78 1.00 0.83

Table 6.2. Final Comparison of Text Embedding Methods

The experimental results demonstrate that the Word2Vec Custom model outper-
forms the other methods across all three key metrics. In particular, it achieves a Preci-
sion@K of 0.8194, a Recall@K of 1.0000 and a Top-1 Accuracy of 0.8750. These results
indicate that this model is highly effective in retrieving relevant queries and placing the
correct response at the top of the list.

One plausible explanation for the superior performance of the Word2Vec Custom
method is its tailored weighting strategy. Unlike the standard Word2Vec model, which

60

6.8 – Results

assigns equal importance to all words, the custom variant adjusts the weights of the
individual word embeddings. This adjustment allows the model to emphasize more in-
formative or discriminative words that are crucial for capturing the semantic content of
the text. As a consequence, the resulting embeddings are more representative of the true
meaning of the queries, leading to better similarity measurements.

When compared to the Word2Vec TF-IDF approach, the custom method still shows
a marked improvement. Although TF-IDF incorporates an inverse document frequency
component to highlight rarer terms, it may not fully capture the domain-specific im-
portance of certain words. The custom weighting scheme, on the other hand, can be
designed to reflect nuances specific to the application domain, which likely contributes to
its enhanced performance.

Moreover, while models based on BERT and FastText also provide strong contextual
embeddings, they do not match the retrieval performance of the Word2Vec Custom model.
BERT, despite its deep contextual understanding, is primarily designed for general lan-
guage understanding tasks and might not be optimized for the precise similarity matching
required in this retrieval scenario. Similarly, while the FastText Custom model also bene-
fits from a custom weighting strategy, its overall performance still lags slightly behind the
Word2Vec Custom method, further emphasizing the effectiveness of the latter’s approach.

Thus, in conclusion the analysis confirms that employing a custom weighting strategy
within the Word2Vec framework yields significant improvements in retrieval tasks. The
Word2Vec Custom model consistently outperforms other variants and alternative embed-
ding approaches in terms of Precision@K, Recall@K and Top-1 Accuracy. This study
highlights the potential of tailored embedding strategies for enhancing the performance
of text retrieval systems. Future research may extend these findings by exploring further
refinements in weighting mechanisms and integrating additional context-aware features to
push the performance envelope even higher.

61

XML Generation: ETL Automation with AI

6.8.2 Evaluation of the different prompting techniques
The results presented below in figures 6.11 and 6.14 offer meaningful insights into the rela-
tionship between different prompting techniques, their combinations and the performance
of different Gemini models. Specifically, the metrics analyzed are the average accuracy
percentage in correctly responding to a set of requests (which included both clearly and
ambiguous prompts) and the average response times associated with each prompting tech-
nique and model.

Firstly, it is immediately evident that Few-Shot + Iterative Refinement achieve
the highest accuracy with a success rate of more than 90% across both gemini-2.0-flash and
gemini-2.0-flash-lite-001. The strong performance observed with this combination can be
attributed to two primary factors. This represents a significant improvement compare to
the Few-Shot technique alone, which has a success rate of 85%. This increment under-
scores the added value of iterative refinement when integrated into a Few-Shot context.
This improvement likely results from iterative refinement’s ability to systematically refine
model responses through a cyclical feedback mechanism. In fact, the iterative refinement
allows model to progressively approach an optimal solution by reevaluating previous out-
puts and incrementally improving accuracy based on intermediate feedback. Thus, the
high success rates obtained are aligned with theoretical expectations about the effective-
ness of combining few-shot exemplars with iterative validation processes. Interestingly,
we observed that Few-Shot alone slightly outperforms Few-Shot combined with Task De-
composition. This can occur because task decomposition, although generally beneficial
for complex tasks, may introduce unnecessary complexity in simpler scenarios, leading the
model to split its focus and slightly decrease performance.

Similarly, the combination Chain-of-Thought(CoT) with Iterative Refinement
maintains strong performance, achieving approximately 88% success for Gemini 2.0 model
and little bit more with Gemini 2.0 light model. The CoT technique explicitly instructs
the model to reason step-by-step,breaking down complex requests and thus improving
comprehension and subsequent answer quality. When combined with iterative refinement
this technique can benefit from incremental improvements as it prompts the model to re-
peatedly evaluate its reasoning steps, ensuring consistency and robustness in final results.
However, CoT alone, without iterative refinement, demonstrates less stable performance,
ranging from 65.22% to 82.61% depending on the model and it even drops to 47.83%
with the 1.5 model. It also results in notably longer average response times (1.63 to 2.55
seconds). This suggests that, while explicit reasoning can lead to improved accuracy, it
may impose a computational overhead due to the increased complexity of intermediate
steps.

62

6.8 – Results

Comparing the simpler techniques, a clear under performance emerges with the Zero-
Shot configurations. It systematically resulted in a 0% success rate, demonstrating com-
plete inadequacy for accurately resolving even moderately ambiguous queries. This finding
aligns with the idea that Zero-Shot prompting has no effectiveness in scenario with ambi-
guity or under-specified requests when used alone, without providing any examples. This
technique is also further disadvantaged by having the longest response times recorded (up
to 3.29 seconds for the gemini-2.0-flash-lite-001 model), reflecting the potential difficulty
the model experiences in processing under-constrained instructions.However, introducing
techniques such as Task Decomposition or Iterative Refinement provides a noticeable
improvement, highlighting the importance of structured prompting even without initial
examples. Nevertheless, the older Gemini 1.5 model shows limited improvement, likely
due to its lower capability in managing ambiguity without explicit guidance or context.

Figure 6.7. Accuracy for gemini-
2.0-flash

Figure 6.8. Accuracy for gemi-
ni-2.0-flash-lite-001

Figure 6.9. Accuracy for gemi-
ni-1.5-flash-8b-latest

Figure 6.10. Average response time of
different models

Figure 6.11. Accuracy for different type of gemini models and average response time

Instead, considering the two prompting strategies Task Decomposition and Itera-
tive Refinement alone, it is noticeable that individually they produce moderately ef-
fective results, especially iterative refinement, which reached approximately 60% success
with the lighter Gemini models. Interestingly, Task Decomposition alone shows varied
performance depending on the model, in fact while reaching a good accuracy with the
model gemini-2.0-flash-lite-001 and gemini-2.0-flash, it experiences significant drops with
gemini-1.5-flash-8b-latest (about 40/50% less of accuracy). This highlights how the capa-
bility of certain models to handle decomposed sub-tasks can differ significantly, confirming
literature findings that decomposition can be effective if properly supported by powerful
models capable of context retention.

63

XML Generation: ETL Automation with AI

Figure 6.12. Accuracy for Task De-
composition

Figure 6.13. Accuracy for Iterative
Refinement

Figure 6.14. Comparison between Iterative Refinement and Task Decomposition

The choice of the Gemini model has a very important influence on both the accuracy
and response time. For instance, models like gemini-2.0-flash and gemini-2.0-flash-lite-001
consistently delivery good accuracy and remarkably fast response times (typically under
1 second), whereas the older gemini-1.5-flash-8b-latest frequently produces lower
accuracy and also an higher average latency . The variations in accuracy and speed across
models likely derive from differences in parameter counts, training data and underlying
architecture optimizations.
The Gemini 1.5 model consistently shows lower performance even when employing ad-
vanced prompting techniques. This limited effectiveness is primarily due to its lower
number of parameters and less advanced training methods, leading to weaker semantic
understanding and reduced context retention compared to newer Gemini 2.0 models.

Furthermore, some combinations of prompt techniques provide minimal different out-
put. Techniques like Zero-Shot combined with Iterative Refinement and task decompo-
sition consistently underperformed, suggesting limited benefit from refinement steps in
absence of context. Similarly, Few-Shot used with Task Decomposition provides lower ac-
curacy improvements compared to used with Iterative Refinement, further reinforcing the
crucial role iterative feedback plays in elevating outcomes, rather than mere task break-
down alone.

Finally, the most advanced model proposed by gemini, the gemini-2.0-pro-exp, does
not be evaluated with the same extension and with all the different queries used by
the other models. However, a clear trend has emerges from the few tests conducted
: although the responses required more time, their quality is decidedly superior. It is
therefore reasonable to hypothesize that, if additional resources had been available for an
extensive test, the "pro" model would have consistently ranked at the top for accuracy
and reliability, especially in the more complex cases.

64

6.8 – Results

In conclusion these results align with theoretical expectations from recent studies,
reinforcing the importance of context-rich prompting methods and iterative correction
processes. They highlight the substantial advantage provided by combining Few-Shot
prompting with Iterative Refinement, while clearly illustrating the limits of simpler tech-
niques (Zero-shot) when dealing with ambiguous user requests. Moreover, these findings
underscore the critical role played by the choice of LLM in balancing accuracy and compu-
tational efficiency, reinforcing the importance of selecting both the appropriate prompting
strategy and an optimized language model to achieve the desired performance outcomes.
In the table 6.3 it is possible to see the aggregated results by prompt technique, in order
to see , independent from the model, which is the best prompt technique to use, both
in term of accuracy with respect to the given answer and the time, that is the time the
model need to generate the response.

Prompting Technique Average Response Time (s) Average Accuracy (%)
Zero-Shot 2.25 0.0
Zero-Shot + Task Decomposition 0.64 42.01
Zero-Shot + Iterative Refinement 0.91 39.13
Few-Shot 0.62 81.37
Few-Shot + Task Decomposition 0.59 76.81
Few-Shot + Iterative Refinement 0.63 89.27
Chain-of-thought 2.06 65.22
Chain-of-Thought + task decomposition 0.66 71.04
Chain-of-Thought + Iterative Refinement 0.65 79.24
Iterative Refinement 0.60 46.26
Task Decomposition 0.62 66,56

Table 6.3. Aggregated Results by Prompt Technique

65

66

Chapter 7

Conclusions and future works

This thesis presents a comprehensive approach towards automating ETL (Extract, Trans-
form, Load) process using advanced artificial intelligence techniques, focusing specifically
on the generation of XML job configurations within the IBM DataStage environment.
The main goal is to significantly reduce manual configuration effort, minimize potential
human errors and improve the overall flexibility and responsiveness of ETL processes in
adapting to evolving data management requirements.
The developed solution explores sophisticated text embedding methods and advanced
prompting techniques, employing state-of-the-art generative models such as Gemini to
translate natural language user requests into structured, executable XML templates. The
research demonstrated that integrating customized embedding models, particularly the
Word2Vec Custom approach, with Few-Shot prompting combined with Iterative Refine-
ment provides the highest accuracy and optimal computational performance. This combi-
nation allows for the accurate interpretation of complex user requirements, ensuring that
generated DataStage jobs closely match user specifications and operational needs.
The experimentation demonstrates a significant advantage in operational efficiency, relia-
bility and adaptability, confirming the effectiveness of AI-driven automation in ETL job
creation. This approach not only streamlines workflows but also provides organizations
with a powerful tool for rapidly responding to new data integration scenarios, a crucial
capability in the rapidly evolving landscape of business intelligence and analytics.

Regarding the future works, this thesis opens several way for future research and devel-
opment, with significant potential for further improvements and extensions of the current
automated ETL system. Some future developments that could be done are described
below:

Automatic Excel Sheet Generation
A natural future progression of this research would be to fully automate the creation of the
Excel sheets which is now compiled manually. By extending the Generative AI techniques
employed in this thesis, future development could automatically produce and update Ex-
cel sheets based on initial user inputs. This would further minimizes manual intervention

67

Conclusions and future works

and improves the reliability of initial data entry and configuration tasks, reducing human-
induced errors and enhancing operational accuracy even if the excel is simple to compile
for an user also without automation.

Extension of database and model exploration
Another things that could be improved in the future is the expansion of the existing
database to incorporate a broader range of ETL configurations beyond those currently
used by the company. By enriching the training dataset with a wider variety of config-
urations, the system could generalize better to different enterprise contexts, making it
applicable to broader set of business scenarios. This would involve the continuous inte-
gration of new user requests and examples into the system, further refining embedding
models and enhancing overall flexibility.

User interface and usability improvements
Another future direction could be the development of a more user-friendly interface or
chatbot enabling end users to interact with the ETL automation system more intuitively.
By providing an easy-to-use, conversational interface leveraging NLP, users without tech-
nical knowledge could directly define complex data integration processes, further democ-
ratizing the ETL automation capability across business units.

Fine-Tuning of generative models for enhanced performance
Lastly, an important future development could involve performing fine-tuning of the gener-
ative models employed in the ETL automation pipeline. The models utilized in this thesis
are used without specific tuning on task-specific datasets. Thus, fine-tuning represents
a promising method to enhance their precision and contextual accuracy. By training
the generative models on a domain-specific corpus consisting of real user requests and
associated accurate XML outputs, the system could learn domain-specific terminology,
linguistic patterns and technical details more effectively. This would potentially improve
the accuracy and reliability of the generated ETL pipeline scripts. Fine-tuning could also
reduce response times and enhance the model’s ability to handle ambiguities and highly
technical instructions, making the overall automation system even more robust and tai-
lored to the precise needs of the data integration scenarios.

Each of these suggested developments have the potential to significantly enhance the
efficiency, flexibility and usability of ETL processes, ultimately empowering organizations
to fully leverage their data resources and improve decision-making capabilities in an in-
creasingly data-driven business landscape.

68

List of Figures

2.1 Organization and operation of Data Lake system 12
2.2 Organization of data warehouse system in the field of Business intelligence 13
2.3 Example of star schema [10] . 15
2.4 Example of snowflake schema [10] . 16

3.1 ETL Schema [2] . 22
3.2 MMCONS Framework . 23

5.1 Development of Large Language Model . 32
5.2 Word Embedding mechanism [3] . 33
5.3 difference between CBOW and Skip-Gram 35
5.4 Left: Scaled Dot-Product Attention mechanism. Right: Multi-Head At-

tention. 40
5.5 Transformer architecture. [30] . 41
5.6 Difference between BERT(bidirectional transformer) and OpenAI GPT(Left

to Right transformer)[16] . 43

6.1 STG stage in DataStage . 48
6.2 DLT stage in DataStage . 48
6.3 Pipeline implementation . 50
6.4 comparison between zero-shot and few-shot example prompt [15] 55
6.5 example of CoT prompt technique [35] . 56
6.6 example of Task decomposition prompt flow [34] 57
6.7 Accuracy for gemini-2.0-flash . 63
6.8 Accuracy for gemini-2.0-flash-lite-001 . 63
6.9 Accuracy for gemini-1.5-flash-8b-latest . 63
6.10 Average response time of different models 63
6.11 Accuracy for different type of gemini models and average response time . . 63
6.12 Accuracy for Task Decomposition . 64
6.13 Accuracy for Iterative Refinement . 64
6.14 Comparison between Iterative Refinement and Task Decomposition 64

69

List of Tables

2.1 Star Schema vs. Snowflake Schema: A Detailed Comparison 17
2.2 OLAP vs. OLTP: A Comparative Analysis 19

6.1 Summary of Similarity Metrics Used for Retrieval 59
6.2 Final Comparison of Text Embedding Methods 60
6.3 Aggregated Results by Prompt Technique 65

List of Algorithms

1 XML Generation Process using Gemini API with Few-Shot Prompting . . 58

70

Bibliography

[1] Designing data marts for data warehouses. ACM Transactions on Software Engineer-
ing and Methodology.

[2] Etl pipeline guide. URL https://airbyte.com/data-engineering-resources/
etl-pipeline.

[3] Embeddings and llm. URL https://datasciencedojo.com/blog/
embeddings-and-llm/.

[4] Etl: significato, funzionamento e vantaggi. URL https://www.dedatech.com/blog/
etl-significato-funzionamento-e-vantaggi/.

[5] Fasttext - working and implementation. URL https://www.geeksforgeeks.org/
fasttext-working-and-implementation/.

[6] Word embeddings in nlp. URL https://www.geeksforgeeks.org/
word-embeddings-in-nlp/.

[7] Ibm datastage documentation. URL https://www.ibm.com/docs/en/ws-and-kc?
topic=data-datastage.

[8] Real-time in-memory oltp and analytics with apache ignite
on AWS. URL https://aws.amazon.com/blogs/big-data/
real-time-in-memory-oltp-and-analytics-with-apache-ignite-on-aws/.

[9] Database olap ed oltp - cosa sono ed a cosa servono. URL https://managedserver.
it/database-olap-ed-oltp-cosa-sono-ed-a-cosa-servono.

[10] Star schema - data glossary, . URL https://www.starburst.io/data-glossary/
star-schema/.

[11] Cos’è il modello n-gram? una panoramica completa, .
URL https://it.statisticseasily.com/glossario/cos%27%C3%
A8-il-modello-n-gram-una-panoramica-completa/.

[12] 11 word2vec approaches - word embedding in nlp. URL https://ayselaydin.
medium.com/11-word2vec-approaches-word-embedding-in-nlp-538478c14b37.

71

https://airbyte.com/data-engineering-resources/etl-pipeline
https://airbyte.com/data-engineering-resources/etl-pipeline
https://datasciencedojo.com/blog/embeddings-and-llm/
https://datasciencedojo.com/blog/embeddings-and-llm/
https://www.dedatech.com/blog/etl-significato-funzionamento-e-vantaggi/
https://www.dedatech.com/blog/etl-significato-funzionamento-e-vantaggi/
https://www.geeksforgeeks.org/fasttext-working-and-implementation/
https://www.geeksforgeeks.org/fasttext-working-and-implementation/
https://www.geeksforgeeks.org/word-embeddings-in-nlp/
https://www.geeksforgeeks.org/word-embeddings-in-nlp/
https://www.ibm.com/docs/en/ws-and-kc?topic=data-datastage
https://www.ibm.com/docs/en/ws-and-kc?topic=data-datastage
https://aws.amazon.com/blogs/big-data/real-time-in-memory-oltp-and-analytics-with-apache-ignite-on-aws/
https://aws.amazon.com/blogs/big-data/real-time-in-memory-oltp-and-analytics-with-apache-ignite-on-aws/
https://managedserver.it/database-olap-ed-oltp-cosa-sono-ed-a-cosa-servono
https://managedserver.it/database-olap-ed-oltp-cosa-sono-ed-a-cosa-servono
https://www.starburst.io/data-glossary/star-schema/
https://www.starburst.io/data-glossary/star-schema/
https://it.statisticseasily.com/glossario/cos%27%C3%A8-il-modello-n-gram-una-panoramica-completa/
https://it.statisticseasily.com/glossario/cos%27%C3%A8-il-modello-n-gram-una-panoramica-completa/
https://ayselaydin.medium.com/11-word2vec-approaches-word-embedding-in-nlp-538478c14b37
https://ayselaydin.medium.com/11-word2vec-approaches-word-embedding-in-nlp-538478c14b37

BIBLIOGRAPHY

[13] Conceptual model for star schema data warehouse. International Research Journal
of Modernization in Engineering Technology and Science, 2023. ISSN 2582-5208.

[14] Adam Jatowta Abdelrahman Abdallah, Bhawna Piryani. Exploring the state of
the art in legal qa systems. arXiv preprint arXiv:2304.06623, 2023. Accessed via
https://arxiv.org/pdf/2304.06623.

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. URL https://arxiv.org/abs/2005.14165.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the North American Chapter of the Association for Computational Linguistics
(NAACL), 2019. URL https://arxiv.org/abs/1810.04805.

[17] Benyamin Ghojogh and A. Ghodsi. Recurrent neural networks and long short-term
memory networks: Tutorial and survey. ArXiv, abs/2304.11461, 2023. doi: 10.48550/
arXiv.2304.11461.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. ISBN 978-0262035613. URL https://www.deeplearningbook.org/.

[19] Jack Grieve, Sara Bartl, Matteo Fuoli, Jason Grafmiller, Weihang Huang, Alejandro
Jawerbaum, Akira Murakami, Marcus Perlman, Dana Roemling, and Bodo Winter.
The sociolinguistic foundations of language modeling.

[20] Zhen Huang, Haiping Dong, et al. A survey on attention mechanisms in deep learning.
ACM Computing Surveys, 2020. doi: 10.1145/3439721. URL https://dl.acm.org/
doi/10.1145/3439721.

[21] IBM. Question answering. https://www.ibm.com/think/topics/
question-answering. Accessed: 2025-02-26.

[22] IBM. How artificial intelligence is enhancing olap for better business insights, 2023.
URL https://www.ibm.com/think/topics/ai-for-olap. Accessed: 2025-02-17.

[23] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall, 2009. URL https://web.stanford.edu/~jurafsky/
slp3/old_oct19/25.pdf.

[24] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. Wiley, 2016.

[25] Michael Lock. Angling for insight in today’s data lake. October 2017. Senior Vice
President, Analytics and Business Intelligence.

[26] Tim Lu. Star schema vs. snowflake schema. URL https://www.datacamp.com/
blog/star-schema-vs-snowflake-schema.

72

https://arxiv.org/pdf/2304.06623
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://www.deeplearningbook.org/
https://dl.acm.org/doi/10.1145/3439721
https://dl.acm.org/doi/10.1145/3439721
https://www.ibm.com/think/topics/question-answering
https://www.ibm.com/think/topics/question-answering
https://www.ibm.com/think/topics/ai-for-olap
https://web.stanford.edu/~jurafsky/slp3/old_oct19/25.pdf
https://web.stanford.edu/~jurafsky/slp3/old_oct19/25.pdf
https://www.datacamp.com/blog/star-schema-vs-snowflake-schema
https://www.datacamp.com/blog/star-schema-vs-snowflake-schema

BIBLIOGRAPHY

[27] Aditi Prakash. Star schema vs. snowflake schema: What to
choose? URL https://airbyte.com/data-engineering-resources/
star-schema-vs-snowflake-schema.

[28] Guru Prasad Selvarajan. Integrating machine learning algorithms with olap sys-
tems for enhanced predictive analytics. World Journal of Advanced Research and
Reviews, pages 62–71, 2019. URL https://wjarr.com/sites/default/files/
WJARR-2019-0064.pdf.

[29] Mikel Artetxe Mike Lewis Hannaneh Hajishirzi Luke Zettlemoyer Sewon Min, Xinxi
Lyu Ari Holtzman. Rethinking the role of demonstrations:what makes in-context
learning work? arXiv preprint arXiv:2202.12837, 2022.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems (NeurIPS), volume 30, 2017. URL https:
//arxiv.org/abs/1706.03762.

[31] Sewon Min† Patrick Lewis Ledell Wu Sergey Edunov Danqi Chen Wen-tau Yih]
[Vladimir Karpukhin, Barlas Oguz. [dense passage retrieval for open-domain question
answering]. arXiv preprint arXiv:2004.04906, 2020. Accessed via https://arxiv.
org/pdf/2004.04906.

[32] Zichong Wang, Zhibo Chu, Thang Viet Doan, Shiwen Ni, Min Yang, and Wenbin
Zhang. History, development, and principles of large language models - an introduc-
tory survey.

[33] Yuxi Xie, Anirudh Goyal, Xiaobao Wu, Xunjian Yin, Xiao Xu, Min-Yen Kan, Liang-
ming Pan, and William Yang Wang. Coral: Order-agnostic language modeling for
efficient iterative refinement. arXiv preprint arXiv:2410.09675, 2024.

[34] Zhiting Yao, Maarten Bosma, Yue Zhao, Xuezhi Wang, Ed Chi, Quoc Le, and Denny
Zhou. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.02406, 2022.

[35] Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma Brian Ichter Fei Xia Ed
H. Chi Quoc V. Le Denny Zhou. Chain-of-thought prompting elicits reasoning in
large language models. arXiv preprint arXiv:2201.11903, 10 Jan 2023.

[36] Zhehua Zhou et al. Isr-llm: Iterative self-refined large language model for long-horizon
sequential task planning. arXiv preprint arXiv:2308.13724, 2023.

[37] Yuting Zhuang et al. Task navigator: Decomposing complex tasks for multimodal
large language models. arXiv preprint arXiv:2311.05772, 2023.

73

https://airbyte.com/data-engineering-resources/star-schema-vs-snowflake-schema
https://airbyte.com/data-engineering-resources/star-schema-vs-snowflake-schema
https://wjarr.com/sites/default/files/WJARR-2019-0064.pdf
https://wjarr.com/sites/default/files/WJARR-2019-0064.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/pdf/2004.04906
https://arxiv.org/pdf/2004.04906

	Introduction
	Objectives and structure of the thesis

	State of the Art
	Introduction to data warehouse
	Data lake
	Data mart

	The architectures of data warehouse: star schema vs snowflake
	Star schema
	Snowflake schema

	Database: OLAP vs OLTP
	OLTP
	OLAP

	Introduction to ETL (Extract, Transform, Load) processes
	ETL pipelines - Extract
	ETL pipelines - Transform
	ETL pipelines - Load

	MMCONS Framework
	Level L0 - Staging area
	Level L1 - Transformation area
	Level L2 - Publishing area

	IBM DataStage architecture
	IBM Datastage overview
	IBM Datastage Designer
	Parallelism and Partitioning
	Metadata management and reusability
	Logging and error handling

	The revolution of language models: from statistical methods to transformers
	Introduction
	Origin of the natural language processing: statistics model
	Word embeddings
	 Traditional approach
	Neural approach

	Fast Text: A Word2Vec improvement:
	From RNN to Transformers: The Evolution of Deep Learning in NLP
	Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
	Transformers and Multi-Head Attention Mechanism
	Self-Attention Mechanism
	Encoder-Decoder structure in transformer
	Real application of transformer
	Pre-Trained models: Bert & GPT
	Question-Answering system

	XML Generation: ETL Automation with AI
	Component creation with Datastage
	Table structure in excel
	Construction of database
	Splitting of dataset: train and test

	Flow implementation of the automation
	Generation of embeddings
	Implementation of retrieval system
	Similarity methods implemented

	XML generation
	Description of function and large language model: Gemini
	Different prompt techniques implemented

	Results
	Evaluation of the different text embedding models
	Evaluation of the different prompting techniques

	Conclusions and future works

