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Summary

Serial Multicode Direct Sequence Spread Spectrum (DSSS) was originally introduced
by Garello [1], who showed how embedding alternative spreading codes in a pilot
channel can provide additional information to expedite synchronization tasks, such
as resolving ambiguities in code phases. Building upon this idea, this thesis offers
the following contributions:

Analytical Error Performance and Upper Bound for Serial Bicode/-
Multicode DSSS: While the error probability under incoherent demodulation
was originally presented by [1], we derive closed-form expressions for the error
performance of Serial Bicode DSSS signals under coherent demodulation. Beyond
the bicode case, we also provide an upper-bound analysis for generic Serial Mul-
ticode DSSS configurations, using a union bound approach to establish a tight
bound (especially at medium to low error probabilities) by averaging pairwise error
probabilities over all possible code combinations.

Table 1: Error performance for Serial Bicode/Multicode DSSS.

Demodulation Type Pb(e) Serial Multicode DSSS Union Bound

Coherent 1
2 erfc

(√
L−R
4 σ2

) 1
2k

2k∑
i=1

2k∑
j=1
j /=i

dH(vi, vj)
k

1
2 erfc

(√
(L−Rij)

4 σ2

)

Incoherent f
(

ρ01, k =1, Eb

N0

) 1
2k

2k−1∑
i=0

∑
l /=i

dH(vl, vi)
k

f
(

ρli, k, Eb

N0

)

Pilot Channel Application: Garello [1] demonstrated how Serial Bicode DSSS
can embed patterns within a pilot channel to resolve ambiguities by detecting block
transitions. These blocks are structured so that once a transition is identified, both
the primary and the secondary code time ambiguities can be resolved.

In this thesis, we develop a statistical framework to evaluate the performance of
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block detection, namely the probabilities of false alarm and missed detection. Note
that this detection stage assumes knowledge of the delay and Doppler shift affecting
the received signal. Consequently, the acquisition process, used to estimate delay
and Doppler by computing the Cross Ambiguity Function (CAF), is also analyzed
for pilot channels employing Serial Bicode DSSS. Specifically, we derive statistical
metrics to evaluate the probability of false alarm and the probability of detection,
both at the cell and decision level:

1. Block Transition Detection: We derive the probability of miss detection (Pmd)
and the probability of false alarm (Pfa) under both soft and hard decision
rules, covering both coherent and incoherent demodulation strategies.

2. Acquisition Analysis: We assess the impact of alternative codes on the ac-
quisition process under long non-coherent integrations. We derive, at the
search space cell level, the probability of detection (Pd) and the probability of
false alarm (Pfa); and at the decision level, the probability of detection (PD)
along with false alarm probabilities in two scenarios: (P p

FA) when the signal is
present and (P a

FA) when the signal is absent.

Pilot Channel Design Methodology. Lastly, we propose a general method
for designing pilot channels utilizing Serial Bicode DSSS technique by formulating
the design problem as an optimization problem, thus improving synchronization
time and accuracy in MEO GNSS systems. And we showcase three pilot channels
with very good performance, each emphasizing a different aspect.

Block Transition Detection Results Table 2 summarizes the derived probabil-
ities of miss detection (Pmd) for Serial Bicode DSSS pilot channels when detecting
block transitions, under various assumptions of demodulation and decision meth-
ods (coherent, incoherent, soft, hard). Table 3 then reports the corresponding
probabilities of false alarm (Pfa).
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Table 2: Block Transition Detection – Miss Detection Probability Pmd.

Demodulation Type Pmd

Coherent (Soft)
P (T < t|H1) = 1

2 erfc
(

BLs − t√
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)
,
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)
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)
Incoherent (Hard) (Similar to Coherent (Hard), but using the modified error probability

for incoherent demodulation.)

Table 3: Block Transition Detection – False Alarm Probability Pfa.

Demodulation Type Pfa

Coherent (Soft)
1
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1
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)
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Acquisition Results The acquisition stage is analyzed under long non-coherent
integration. We derive analytical expressions for the cell-level probabilities of
detection Pd and false alarm Pfa. These metrics are then used to compute the
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overall decision probabilities: PD (probability of detection), P p
FA (false alarm

probability when the signal is present), and P a
FA (false alarm probability when the

signal is absent).

Table 4: Acquisition performance for Serial Bicode DSSS pilot channels under
long non-coherent integration (cell-level probabilities).

Metric Expression

Probability of Detection Pd

1
K
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Table 5: Acquisition performance for Serial Bicode DSSS pilot channels under
long non-coherent integration (decision-level probabilities).

Metric Expression

Probability of Detection PD Pd(t)

Probability of Missed Detection PMD
[

1 − Pfa(t)
]M−1 [ 1 − Pd(t)

]
False Alarm Probability (signal absent) P a

FA 1 −
(

1 − Pfa(t)
)M

False Alarm Probability (signal present) P p
FA 1 − PD(t) − PMD(t)

Pilot Channel Design Methodology as an Optimization Problem We
formulate the pilot channel design as the following optimization problem:

min Z

subject to
(i+1)B∑
j=iB+1

pj = m, ∀i = 0, 1, . . . , (b − 1),

Z ≥ Pi ·
(
Sj

)T
, ∀i = 1, 2, . . . , b, ∀j = 1, . . . , K, j /= (i − 1)B + 1.
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Chapter 1

Introduction

Pilot channels are extensively utilized in GNSSs to improve the signal acquisition
and tracking processes essential for receiver synchronization with satellite signals
through delay and Doppler shift estimation [2, 3, 4]. However, until navigation
data is demodulated, the receiver only obtains a relative timing marker rather than
the absolute signal travel time. This relative marker’s ambiguity primarily depends
on the structure of GNSS signals and the processing capabilities of the receiver.

The absence of data bits on a pilot channel prevents, therefore, independent
and unambiguous PVT estimation. Furthermore, incorporating a pilot channel
introduces a trade-off, as the transmitted power must be shared between the
data and pilot components [4]. However, pilot channels enable extended coherent
integration times and improved carrier tracking, significantly enhancing receiver
sensitivity [5]. As a consequence, the pilot component supports data channel pro-
cessing and improves data demodulation performance. Efforts have also been made
to design pilot signals that provide more synchronization-relevant information [6],
also potentially contributing to an improved TTFF, a key performance indicator
for GNSS services [7].

The work presented in [1] introduces Serial Multicode DSSS, as a promising
alternative to parallel Multicode DSSS/CDMA [8, 9, 10, 11, 12]. The author in [1]
demonstrates how we can embed a pattern into a pilot channel using a Serial
Bicode DSSS to facilitate a faster extraction of key temporal information at the
receiver, which in turn greatly accelerates initial synchronization. Moreover, this
method offers flexibility in reducing time resolution ambiguity and, depending on
the design parameters and application, may even be designed to provide absolute
time information.

The core principle involves constructing a Serial Bicode DSSS pilot channel using
two alternative spreading codes—one legitimate and one alternative code—that
convey a synchronization information. Without loss of generality, we can consider
a pilot channel made of a short, primary, and secondary code that form a tiered
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code pattern, where the two alternative short codes are made of Ls chips, with Ls

being an integer divisor of the primary code length L1 > Ls. At the receiver, long
non-coherent integration over several short code periods is employed to estimate
Doppler shifts and code delays. However, this process leaves two ambiguities to be
resolved: one associated with the primary code and another with the secondary
code.

To address these ambiguities, the Serial Bicode DSSS signal is leveraged to
embed a structured pattern within the pilot channel. This pattern is organized
into distinct blocks that makes it easily recognizable. where transitions between
consecutive blocks play a crucial role due to two key properties:

1. The transitions are consistently aligned with the primary code.

2. They provide a unique identification of the position within the secondary code.

By determining the position of a 1-block pattern, which is the sequence of
spreading codes corresponding to a single block within the pilot channel and
serves as a fundamental unit for transition detection, the transition between two
consecutive blocks can be identified. This resolves the timing ambiguities in both
the primary and secondary codes.

In this Thesis, we provide a comprehensive theoretical framework for evaluating
the performance of pilot channels constructed using Serial Bicode DSSS, focusing
on both acquisition and block transition detection. Furthermore, we propose a
method for designing distinctive pilot channels based on Serial Bicode DSSS that
are customized to optimize performance according to mission-specific requirements,
yielding considerable improvement in both acquisition and block transition detection
when compared to the channel originally proposed by the author in [1]. The work is
organized as follows: In Chapter 2, we review Serial Multicode DSSS and its natural
extension to CDMA. In Chapter 3, we analyze the performance of Serial Multicode
DSSS under both coherent and incoherent demodulation. In Chapter 4, we provide
the necessary GNSS background for understanding the subsequent chapters. In
Chapter 5, we review the pilot channel construction introduced by Garello [1] for
MEO and LEO cases. In Chapter 6, we present the statistical framework for block
detection under different demodulation and detection schemes. In Chapter 7, we
analyze the acquisition stage under Serial Bicode DSSS pilot channels and derive
the corresponding statistical framework for performance evaluation. Finally, in
Chapter 8, we propose a method to design various pilot channels using the same
technique of utilizing Serial Bicode DSSS by formulating the design problem as
an optimization problem, and we showcase three pilot channels with excellent
performance, each emphasizing a different aspect. Chapter 9 outlines potential
directions for future work.
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Chapter 2

Serial Multicode DSSS

2.1 Direct Sequence Spread Spectrum (DSSS)

A spread-spectrum signal involves additional modulation that broadens the signal’s
bandwidth beyond what is necessary for the data modulation alone. Spread-
spectrum communication systems [13] are particularly effective for suppressing
interference, complicating interception, accommodating fading and multipath chan-
nels, and enabling multiple-access capabilities. The most widely used and practical
methods in spread-spectrum communications are direct-sequence modulation in
digital communications.

It may seem paradoxical at first to broaden the signal’s bandwidth, since doing
so would require a wider receive filter, potentially leading to an increase in noise
entering the demodulator. However, when a signal passes through a filter designed
to match it while accompanied by white Gaussian noise, the signal-to-noise ratio
(SNR) depends on the noise power spectral density rather than the filter’s bandwidth.
Interestingly, this means that the filter’s bandwidth and the corresponding noise
power at its output do not affect the SNR, underscoring the practical advantages
of spread-spectrum communication techniques.

In traditional Direct Sequence Spread Spectrum (DSSS), each user is given a
distinct code consisting of a sequence of L chips, which is used to modulate the
information sequence. By employing DSSS, the signal’s bandwidth is expanded by
a factor of L as a result of this encoding. This widening of the bandwidth greatly
improves the system’s ability to resist noise, interference, and jamming. However,
this benefit comes at the cost of a lower information bit rate [13].
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2.2 Serial Multicode DSSS

Serial Multicode DSSS assigns each user multiple spreading codes that are used
sequentially rather than simultaneously. In this scheme, individual bits or groups
of bits are mapped to distinct spreading codes, resulting in a single DSSS signal
whose spreading code alternates in accordance with the transmitted data. This
contrasts with the Parallel Multicode approach, where several coded streams are
transmitted concurrently and the bit rate increases with the number of active codes
[1].

At the receiver, a set of correlators—each matched to one of the potential
spreading codes—is employed to detect the transmitted symbol. By selecting the
correlator with the maximum output magnitude, the system identifies the code
associated with the transmitted bit. This method decouples the information from
the phase or sign of the spreading sequence, enabling incoherent demodulation.
Such a design is especially beneficial in environments with high Doppler effects, for
instance in satellite or UAV communications, where reducing receiver complexity
and the need for stringent synchronization can significantly improve performance.
Moreover, because only a single DSSS signal is transmitted at any given time, the
scheme allows for dynamic bit rate adaptation without increasing the interference
level among users [1].

2.2.1 Serial Bicode DSSS

In Serial Bicode DSSS, two distinct spreading codes of length L are assigned to
each user. The legitimate code, c0 = (c01, . . . , c0L) where c0j ∈ {−1, +1}, is used
when the binary input is 0. Conversely, the alternative code, c1 = (c11, . . . , c1L)
with c1j ∈ {−1, +1}, is employed for a binary input of 1. This mapping directs each
bit of the binary sequence v = (v(0), v(1), . . . , v(i), . . .) with v(i) ∈ {0, 1} to its
corresponding code, creating a transmission sequence s = (x(1), x(2), . . . , x(i), . . .).
This method extends the traditional Direct Sequence Spread Spectrum (DSSS)
by incorporating flexibility in the choice of spreading codes, thus generalizing the
classic DSSS framework [1].
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Fig. 1. Serial Bicode DSSS: Construction and Example

Given a binary information sequence

v = (v(0), v(1), . . . , v(i), . . .) v(i) ∈ {1, 0},

any binary symbol v(i) is mapped into a spreading code x(i)
by:

v(i) = 1 −→ x(i) = c1

v(i) = 0 −→ x(i) = c0

and the transmitted sequence is the spreading code sequence

s = (x(1), x(2), . . . , x(i), . . .) .

This construction is summarized in Fig. 1.
Note that we deliberately do not exclude the possibility of

choosing c1 = −c0 that corresponds to classic DSSS where
the information is associated to the sign of the spreading code.
Then, Serial Bicode can be seen as a generalization of classic
DSSS, where the two spreading codes are not forced to be
antipodal, but can be freely chosen. Since in this paper we are
more interested to incoherent demodulation applications, in
the following we will typically focus on orthogonal spreading
codes instead of antipodal ones.

B. Serial Multicode DSSS

We can extend the definition from Serial Bicode to Serial
Multicode DSSS, where to each user we assign a set

H = {c0, . . . , cH−1}

of H = 2k different spreading codes. We establish a one-to-
one map

f : {0, 1}k −→ H

between k-bit information vectors and spreading codes and we
build the transmitted sequence as

s = (x(0), x(1), . . . , x(i), . . .) ,

with
x(i) = f (v(i))

where the k-bit information vector is

v(i) = (v(ik), . . . , v((i+ 1)k − 1)) i = 0, 1, ....

An example of Serial Multicode DSSS signal for H = 8 is
shown in Fig. 2.

Fig. 2. Example of Serial Multicode DSSS

III. PERFORMANCE FOR INCOHERENT DEMODULATION

For incoherent demodulation, given the complex received
vector r = (r1, . . . , rj , . . . , rL), the optimal receiver computes
for each spreading code ci = (ci1, . . . , cij , . . . , ciL) the
magnitude of the complex correlation:

|Li| =
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and selects the spreading code corresponding to the highest
magnitude |Li|.

To compute the incoherent error probability we start from
the case of two equal energy signals with a given correlation
and we adapt it to our DSSS signals. With some manipulation
we obtain that for Serial Bicode DSSS, the error probability
is given by
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The best performance is obtained when the two sequences
are orthogonal (ρ = 0); in this case Equation (1) simplifies to
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As an example, in Fig. 3 we present the analytical (Eq.
(1)) for a Serial Bicode DSSS with length L = 256 with two
randomly extracted codes. The simulated curve is perfectly
matched.

For Serial Multicode DSSS with k > 1 we can use the
pairwise error probability of Eq. (1) and write the union bound
to establish an upper bound, which is tight at medium/low
values of error probability. In general, the distance profile is
not independent from the spreading sequences and the decision
regions are not congruent, then we need to calculate the
average over all H = 2k codes:

Figure 2.1: Serial Bicode DSSS. [1].

2.2.2 Serial Multicode DSSS
Extending the Serial Bicode framework, Serial Multicode DSSS allocates a set
H = {c0, . . . , cH−1} of spreading codes to each user, where the cardinality of H,
H = 2k, represents the different codes available. A bijective function f : {0, 1}k →
H maps k-bit information vectors to these codes. The transmission sequence is
thus constructed as s = (x(0), x(1), . . . , x(i), . . .), with x(i) = f(v(i)) and the k-bit
information vector defined as v(i) = (v(ik), . . . , v((i + 1)k − 1)) [1].2 IEEE TRANSACTIONS ON COMMUNICATIONS
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Given a binary information sequence

v = (v(0), v(1), . . . , v(i), . . .) v(i) ∈ {1, 0},

any binary symbol v(i) is mapped into a spreading code x(i)
by:

v(i) = 1 −→ x(i) = c1

v(i) = 0 −→ x(i) = c0

and the transmitted sequence is the spreading code sequence

s = (x(1), x(2), . . . , x(i), . . .) .

This construction is summarized in Fig. 1.
Note that we deliberately do not exclude the possibility of

choosing c1 = −c0 that corresponds to classic DSSS where
the information is associated to the sign of the spreading code.
Then, Serial Bicode can be seen as a generalization of classic
DSSS, where the two spreading codes are not forced to be
antipodal, but can be freely chosen. Since in this paper we are
more interested to incoherent demodulation applications, in
the following we will typically focus on orthogonal spreading
codes instead of antipodal ones.

B. Serial Multicode DSSS

We can extend the definition from Serial Bicode to Serial
Multicode DSSS, where to each user we assign a set

H = {c0, . . . , cH−1}

of H = 2k different spreading codes. We establish a one-to-
one map

f : {0, 1}k −→ H

between k-bit information vectors and spreading codes and we
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s = (x(0), x(1), . . . , x(i), . . .) ,

with
x(i) = f (v(i))

where the k-bit information vector is

v(i) = (v(ik), . . . , v((i+ 1)k − 1)) i = 0, 1, ....

An example of Serial Multicode DSSS signal for H = 8 is
shown in Fig. 2.
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III. PERFORMANCE FOR INCOHERENT DEMODULATION

For incoherent demodulation, given the complex received
vector r = (r1, . . . , rj , . . . , rL), the optimal receiver computes
for each spreading code ci = (ci1, . . . , cij , . . . , ciL) the
magnitude of the complex correlation:

|Li| =
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and selects the spreading code corresponding to the highest
magnitude |Li|.

To compute the incoherent error probability we start from
the case of two equal energy signals with a given correlation
and we adapt it to our DSSS signals. With some manipulation
we obtain that for Serial Bicode DSSS, the error probability
is given by
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where ρ01 is the normalized correlation (inner product) be-
tween c0 and c1:

ρ01 =
p01
L

=

∑L
j=1 c0jc1j
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,

Q is the Marcum Q-function, and I0 is the modified Bessel
function of order zero.

The best performance is obtained when the two sequences
are orthogonal (ρ = 0); in this case Equation (1) simplifies to
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As an example, in Fig. 3 we present the analytical (Eq.
(1)) for a Serial Bicode DSSS with length L = 256 with two
randomly extracted codes. The simulated curve is perfectly
matched.

For Serial Multicode DSSS with k > 1 we can use the
pairwise error probability of Eq. (1) and write the union bound
to establish an upper bound, which is tight at medium/low
values of error probability. In general, the distance profile is
not independent from the spreading sequences and the decision
regions are not congruent, then we need to calculate the
average over all H = 2k codes:

Figure 2.2: Serial Multicode DSSS [1].

2.3 Extension to Code Division Multiple Access
(CDMA)

To address the reduction in bit rate caused by spreading in DSSS, multiple users
can transmit simultaneously within the same frequency band using Code Division
Multiple Access (CDMA) [1]. In CDMA, each user is assigned a unique code
of L chips with favorable cross-correlation properties, ensuring minimal mutual
interference among users. Information theory suggests that in an isolated cell,
CDMA systems can achieve spectral efficiency comparable to that of TDMA or
FDMA [13]. CDMA is widely used in systems such as the 3G UMTS mobile
network and Global Navigation Satellite Systems (GNSS) like GPS and Galileo,
which are crucial for one-way positioning.

In this sense, Serial Multicode DSSS extends naturally to CDMA, where each
user is assigned multiple spreading codes. This approach, Serial Multicode CDMA,
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is beneficial in scenarios where many coexisting users want to dynamically change
their data rates without changing the spreading factor. Examples include satellite
constellations and massive IoT applications [1].

In Serial Multicode CDMA, each user transmits a single DSSS signal charac-
terized by a fixed spreading factor L. This design allows for dynamic adjustment
of the bit rate while ensuring that any modifications do not lead to increased
interference with other users. The fixed spreading factor maintains a consistent
level of spreading regardless of bit rate changes, which is crucial for preserving
overall system performance.

Furthermore, this approach is particularly well-suited for incoherent demodula-
tion—a method often employed during the initial acquisition and synchronization
phases of many communication systems. Incoherent demodulation simplifies re-
ceiver design by eliminating the need for phase tracking, thereby reducing both
complexity and latency.

The robustness and flexibility inherent in Serial Multicode CDMA make it
especially advantageous for applications such as the transmission of specific patterns
or sporadic messages over pilot channels. This is particularly relevant in satellite
navigation systems like GPS and Galileo, where reliable communication under
challenging conditions (e.g., high Doppler shifts) is essential [1].
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Chapter 3

Serial Bicode/Multicode
DSSS Performance

3.1 Introduction

In this chapter, we will analyze the performance of Serial Bicode DSSS and
Serial Multicode DSSS under two distinct demodulation schemes: coherent and
incoherent demodulation. Our objective is to evaluate and compare the reliability
and effectiveness of these systems in practical scenarios.

By exploring the performance of these systems under both demodulation tech-
niques, we aim to provide a comprehensive understanding of how each method
influences the overall system behavior, particularly in terms of bit error rate (BER).
The following sections will present detailed theoretical analyses accompanied by
simulation results.

3.2 Incoherent Demodulation

Incoherent Demodulation refers to a method in communication systems to detect
signals where the phase of the carrier wave is unknown. This technique is commonly
used when the signal phase cannot be accurately tracked due to rapid changes or
when the system lacks a coherent reference signal. Incoherent detection focuses
on using the magnitude of the received signal to make decisions, which simplifies
the receiver design but typically results in requiring a higher signal-to-noise ratio
threshold for reliable detection. [14]
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3.3 Serial Bicode/Multicode DSSS Performance
for Incoherent Demodulation

In incoherent demodulation, the optimal receiver computes the magnitude of the
complex correlation for each spreading code ci = (ci1, . . . , ciL) from the received
complex vector r = (r1, . . . , rL). This is given by:

|Li| =
∣∣∣∣∣∣

L∑
j=1

rjcij

∣∣∣∣∣∣ (3.1)

The receiver then selects the spreading code corresponding to the highest
magnitude |Li|.

3.3.1 Serial Bicode DSSS
Analytic Performance

For Serial Bicode DSSS, the error probability Pb(e), under incoherent demodulation,
as explored by Garello [1], is modeled as:

Pb(e) = f
(

ρ = ρ01, k = 1,
Eb

N0

)
(3.2)

where the function f(ρ, k, Eb

N0
) is defined by the expression:
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) =

Q
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√
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√
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)
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2exp
(
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2

)
I0

(
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√
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(3.3)

with
a = 1

2

(
1 −

√
1 − |ρ|2

)
b = 1

2

(
1 +

√
1 − |ρ|2

)
Here, ρli is the normalized correlation (inner product) between the sequences cl

and ci, computed as:

ρli =
∑L

j=1 cljcij

L
(3.4)

In this specific context, ρ01 is the normalized correlation between c0 and c1, i.e.,

ρ01 =
∑L

j=1 c0jc1j

L
(3.5)
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Q is the Marcum Q-function and I0 the modified Bessel function of the first
kind. The most favorable scenario occurs when the two sequences are orthogonal
(ρ = 0), simplifying the error probability to:

Pb(e) = 1
2exp

(
−1

2
Eb

N0

)
(3.6)

Simulation

Following the theoretical development of the error probability for Serial Bicode
DSSS, simulations were conducted to validate the analytical expressions and observe
the system’s behavior under varying conditions of Eb/N0.

The simulation involved transmitting binary signals modulated according to the
Serial Bicode DSSS scheme over a noisy channel (AWGN) and decoding them at
the receiver using incoherent demodulation principles. The spreading codes c0 and
c1 were randomly generated, and the system’s bit error rate (BER) was estimated
across a range of Eb/N0 from 0 dB to 12 dB.

A total of 1000 bit errors were collected for each Eb/N0 value to ensure statistical
relevance. The idea of collecting a constant number of errors rather than fixing
the number of simulations is that under low Eb/N0, errors can be collected faster,
making the simulation adaptable to the Eb/N0 values. The received signals were
affected by additive white Gaussian noise (AWGN) with varying noise levels
corresponding to the Eb/N0 values tested. The decision at the receiver was made
based on the higher correlation between the received signal and the spreading
codes.

The results of the simulation are plotted alongside the theoretical error probabil-
ities calculated from the derived formulas. These results demonstrate the alignment
between the theoretical predictions and the practical performance of the Serial
Bicode DSSS system under incoherent demodulation conditions.
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Figure 3.1: Bit error rate performance of Serial Bicode DSSS under incoherent
demodulation. The figure shows both simulated and analytical error probabilities as
functions of Eb/N0, with random spreading codes of length L = 256 and normalized
cross-correlation ρ01.

3.3.2 Serial Multicode DSSS
Analytic Performance

For Serial Multicode DSSS configurations where each symbol represents multiple
bits (k > 1), the error probability is analyzed using a union bound approach to
establish an upper bound. This bound is particularly tight at medium to low error
probabilities. The computation involves averaging the pairwise error probabilities
across all possible combinations of 2k spreading codes within the set H :

Pb(e) ≤ 1
2k

2k−1∑
i=0

∑
l /=i

dH(vl, vi)
k

· f(ρli, k,
Eb

N0
) (3.7)

where dH(vl, vi) is the Hamming distance between the vectors vl and vi, and ρli is
their normalized cross-correlation defined in (3.4).

In the special case, when using 2k orthogonal spreading codes, the error probabil-
ity simplifies significantly due to uniformity in the distance profiles and congruence
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in the decision regions. The simplified error probability expression becomes:

Pb(e) ≤ 2k−2exp
(

−1
2k

Eb

N0

)
(3.8)

Simulation

Following the theoretical framework, simulations were conducted to empirically
validate the error probabilities for Serial Multicode DSSS under various Eb/N0
conditions. The simulations leveraged a system with L = 256 spreading code length
and k = 2 bits per symbol, reflecting a practical scenario where each short code can
represent multiple bits. This setup aimed to test the system’s error performance
over an Additive White Gaussian Noise (AWGN).

The simulation involved generating 2k = 4 random spreading codes, each of
length L. Each transmission involved selecting a code based on the binary repre-
sentation of k-bit symbols, modulating this with a random phase, and transmitting
over a noisy channel. The receiver then determined the most likely transmitted
code by calculating the correlation between the received signal and each possible
code. This process was repeated until 1000 bit errors were collected for each Eb/N0
value to ensure statistical accuracy.

The bit error rate (BER) was computed for each Eb/N0 value and plotted
alongside the analytical predictions derived from the union bound described in
(3.7). This provided a visual comparison between the theoretical predictions and
the actual performance of the Serial Multicode DSSS system under noisy conditions.
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Figure 3.2: Performance of Serial Multicode DSSS in terms of bit error rate
(BER) as a function of Eb/N0. The plot shows simulation results with analytical
predictions for a system with L = 256 and k = 2.
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Finally, we compare the error performance of Serial Bicode and Multicode DSSS
systems to observe the impact of different spreading techniques and dimensionalities
on bit error rates.

0 2 4 6 8 10 12 14 16
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100
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k=2 analytic
k=1 simulation
k=1 analytic

Figure 3.3: Error performance comparison between Serial Bicode and Multicode
DSSS systems under incoherent demodulation. The graph displays BER as a
function of Eb/N0 for L = 256 with k = 1 and k = 2.

Figure 3.3 illustrates the effects of increasing the dimensionality (from k = 1 to
k = 2) on system performance, highlighting the differences in error probabilities
between the two systems.

13



Serial Bicode/Multicode DSSS Performance

3.3.3 Performance Analysis of Serial Multicode DSSS with
Orthogonal Spreading Codes
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Figure 3.4: Bit error rate performance of Serial Multicode DSSS for different
values of k using orthogonal spreading codes. The graph shows BER across a range
of Eb/N0 settings for L = 256.

This graph displays the BER for different coding complexities using orthogonal
spreading sequences, indicating how increasing k influences error probabilities.
Notably, as k increases, the BER decreases for medium to high Eb/N0 values.

3.4 Coherent Demodulation

Coherent demodulation involves the receiver utilizing the phase of the carrier signal,
alongside its amplitude, to decode the transmitted information. This method
requires a reference signal or carrier synchronization at the receiver to align the
phase. It is generally more complex but provides better sensitivity and accuracy
compared to incoherent detection[14].
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3.5 Serial Bicode/Multicode DSSS Performance
for Coherent Demodulation

In coherent demodulation, the receiver calculates the correlation of the received
signal r = (r1, . . . , rL) with each spreading code ci = (ci1, . . . , ciL):

Li =
L∑

j=1
rjcij (3.9)

The code with the highest correlation Li is selected by the receiver as the most
likely transmitted signal.

3.5.1 Serial Bicode DSSS
Analytic Performance

For Serial Bicode DSSS, the bit error probability Pb(e) is computed as:

Pb(e) = 1
2

(
P (e|c1 Tx) + P (e|c0 Tx)

)
(3.10)

This is because we transmit c1 or c0 with equal probability.
Since P (e|c1 Tx) = P (e|c0 Tx) (because in Serial Bicode DSSS we have only 2

spreading codes c0 and c1), the overall bit error probability Pb(e) can be expressed
as:

Pb(e) = 1
2 · 2 · P (e|c1 Tx) = P (e|c1 Tx) (3.11)

Let’s compute P (e|c1 Tx). When c1 is transmitted, an incorrect decision occurs
when:

L∑
i=1

ric1i <
L∑

i=1
ric0i (3.12)

Here, r = (r1, . . . , rL) is the received signal with ri = ci +ni, where ni is a Gaussian
random variable with zero mean and variance σ2 = N0

2 , representing channel
Gaussian noise.

Define:

X =
L∑

i=1
ric1i =

L∑
i=1

(c1i + ni)c1i =
L∑

i=1
c1ic1i +

L∑
i=1

c1ini = L +
L∑

i=1
c1ini (3.13)

Y =
L∑

i=1
ric0i =

L∑
i=1

(c1i + ni)c0i =
L∑

i=1
c0ic1i +

L∑
i=1

c0ini = R +
L∑

i=1
c0ini (3.14)
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where ∑L
i=1 c1ic1i = L as c1 is bipolar sequence with length L, and R is the

cross-correlation between c0 and c1 define as:

R =
L∑

i=1
c0ic1i (3.15)

The terms ∑L
i=1 c1ini and ∑L

i=1 c0ini are both sums of L independent Gaussian
random variables with mean 0 and variance σ2, resulting in Gaussian random
variables with mean 0 and variance Lσ2.

Thus, X and Y are Gaussian distribution: X ∼ N (L, Lσ2) and Y ∼ N (R, Lσ2).
Now define Z = X − Y , which represents the decision variable.

Thus, an error occurs when:

Z = X − Y < 0

The variable Z is again a Gaussian random variable with:

E[Z] = E[X − Y ] = E[X] − E[Y ] = L − R

where E[.] is the expected value operator, and

var(Z) = var(X) + var(Y ) − 2 · cov(X, Y )

where var(.) and cov(.) are the variance and the covariance operators respectively.
The covariance between X and Y , cov(X, Y ), can be calculated as:

cov(X, Y ) = E[XY ] − E[X]E[Y ]

Given:
X = L +

L∑
i=1

c1ini and Y = R +
L∑

i=1
c0ini

Expanding XY yields:

XY =
(

L +
L∑

i=1
c1ini

)(
R +

L∑
i=1

c0ini

)

= LR + L
L∑

i=1
c0ini + R

L∑
i=1

c1ini +
L∑

i=1
c1ini

L∑
i=1

c0ini

Taking the expectation:

E[XY ] = E

[
LR + L

L∑
i=1

c0ini + R
L∑

i=1
c1ini +

L∑
i=1

c1ini

L∑
i=1

c0ini

]
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Since E[ni] = 0 for all i, the terms involving E[ni] vanish, leaving:

E[XY ] = LR + E

[
L∑

i=1
c1ini

L∑
i=1

c0ini

]

we have:

E

[
L∑

i=1
c1ini

L∑
i=1

c0ini

]
= E

[
L∑

i=1

L∑
j /=i

c1ic0jninj +
L∑

i=1
c1ic0in

2
i

]

This can be further broken down as:

E

[
L∑

i=1

L∑
j /=i

c1ic0jninj

]
+ E

[
L∑

i=1
c1ic0in

2
i

]

Since ni and nj are independent for i /= j, the term E

[∑L
i=1

∑L
j /=i c1ic0jninj

]
simplifies to:

L∑
i=1

L∑
j /=i

c1ic0jE[ninj] =
L∑

i=1

L∑
j /=i

c1ic0jE[ni]E[nj] = 0

Therefore, we are left with:

E

[
L∑

i=1
c1ic0in

2
i

]
=

L∑
i=1

c1ic0iE[n2
i ] = σ2

L∑
i=1

c1ic0i = σ2R

Thus:
E[XY ] = LR + σ2R (3.16)

Subtracting E[X]E[Y ] = LR, we get:

cov(X, Y ) = E[XY ] − E[X]E[Y ] = σ2R (3.17)

This leads us to the variance of Z = X − Y :

var(Z) = var(X) + var(Y ) − 2cov(X, Y )
= 2Lσ2 − 2Rσ2

= 2σ2(L − R)
(3.18)

Thus, Z is distributed as:

Z ∼ N (L − R, 2σ2(L − R))
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The probability of error when c1 is transmitted (P (e|c1 Tx)) and an error occurs if
Z < 0 is then given by:

P (e|c1 Tx) = P (Z < 0) = 1
2erfc


√√√√ (L − R)2

2(2σ2(L − R))


= 1

2erfc
√L − R

4σ2

 (3.19)

Using (3.11), we arrive at the final expression for the bit error probability:

Pb(e) = 1
2erfc

√L − R

4σ2

 (3.20)

Simulation

After theoretically deriving the error probability for Serial Bicode DSSS, we con-
ducted simulations to validate these theoretical predictions with coherent demodu-
lation. The simulations track the performance of the Serial Bicode DSSS system as
it decodes signals in the presence of Gaussian noise.

The results of these simulations are visualized in the figure 3.5, which compares
the simulated error probabilities against the analytical predictions.
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0 5 10 15
10-8

10-6

10-4

10-2

100

k=1 simulation
k=1 analytic

Figure 3.5: Comparison of simulated and theoretical bit error probabilities for
Serial Bicode DSSS under coherent demodulation.

The simulation results align perfectly with the analytical predictions derived
in the previous section, demonstrating the accuracy of our theoretical model for
coherent demodulation performance in Serial Bicode DSSS.

3.5.2 Serial Multicode DSSS
Analytic Performance

The probability of error Pe,multi for a Serial Multicode system with k-bit symbols
can be estimated by averaging the pairwise error probabilities across all distinct
code pairs. Using the pairwise error probability from Equation (3.20) and applying
the union bound to establish an upper bound, we have:

Pe,multi ≤ 1
2k

2k∑
i=1

2k∑
j=1,j /=i

dH(vi, vj)
k

· 1
2erfc

√(L − Rij)
4σ2

 (3.21)

where Rij is given in Equation (3.15).
This expression provides a bound on the probability of error which is tight at

medium/low values of error probability.

19



Serial Bicode/Multicode DSSS Performance

Simulation

To validate the theoretical predictions of error probabilities, simulations were
performed for coherent demodulation scheme. For this, we simulated a Serial
Multicode DSSS system with k = 2, over a range of Eb/N0 values. The bit error
rates (BER) obtained from these simulations are plotted alongside the analyti-
cal predictions, providing a direct comparison between simulated outcomes and
theoretical expectations.

0 2 4 6 8 10 12 14
10-8

10-6

10-4

10-2

100

k=2 simulation
k=2 analytic

Figure 3.6: Bit error rate performance of Serial Multicode DSSS under coherent
detection.

Combined Simulation for Serial Bicode and Multicode DSSS To provide a
comprehensive analysis of the performance of Serial Bicode (k = 1) and Multicode
(k = 2) DSSS systems under coherent demodulation conditions, we plot both
bit error rate (BER) performances of Serial Bicode and Multicode DSSS under
incoherent demodulation alongside each other. This approach enables a direct
comparison, highlighting the impact of increasing code complexity from bicode to
multicode on system performance. By examining the BER for both systems, we
can illustrate how the increased complexity of multicode DSSS influences overall
performance, emphasizing the effects of the increased complexity on the BER.
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Figure 3.7: Comparison of bit error rate performance between Serial Bicode and
Multicode DSSS under coherent demodulation.

Fig. 3.7 showcases BER as a function of Eb/N0 for systems with L = 256 and
varying k values, highlighting the differences in error probabilities with increasing
complexity.

These results underscore how the increase in symbol complexity (k) impacts the
system’s error performance across different demodulation schemes. The comparison
clarifies the performance enhancements when transitioning to a more complex
coding scheme.
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Chapter 4

GNSS Background

4.1 Introduction

Global Navigation Satellite Systems (GNSS) are indispensable for providing po-
sitioning, navigation, and timing (PNT) services globally [2]. These systems,
comprising GPS, Galileo, GLONASS, and BeiDou, operate through a constellation
of satellites that transmit signals to ground-based receivers. The receivers process
these signals to determine location, velocity, and time [15]. This chapter establishes
the foundational knowledge required to comprehend the acquisition process in
GNSS receivers. It begins with an overview of the front-end stage of the receiver,
followed by a detailed discussion on the acquisition process—the initial and crucial
step in GNSS signal processing. This process involves detecting a satellite signal
and making preliminary estimates of key parameters like code delay and Doppler
frequency, essential for the subsequent tracking and position determination stages
[16].

4.2 Receiver Architecture

A GNSS receiver’s primary function is to measure the propagation time τ of signals
transmitted by GNSS satellites, which is crucial for determining the range between
the receiver and the satellites, and ultimately, the user’s precise location [17].
Additionally, estimating the Doppler shift fD is necessary to compute user velocity
and clock drift.

The receiver must first identify which satellites are visible at any given moment.
It continuously scans for radio signals to acquire and then track, ensuring the
correct extraction of information needed to solve the Position, Velocity, and Timing
(PVT) equations [18].
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4.3 Front-End
Although GNSS receivers vary in design, their core components are largely consistent.
The process starts with an antenna that captures the satellite signals in space
(SIS), including any accompanying noise and interference. Once received, the signal
undergoes front-end processing, including filtering, down-conversion, sampling, and
quantization.

Initially, the front-end filters the incoming signal to eliminate out-of-band noise
and interference, ensuring that only relevant frequency bands are processed. The
signal is then amplified to strengthen the weak satellite signals, which are often
below the noise floor due to their long travel distance.

Next, the signal is downconverted from the high-frequency carrier to a lower
intermediate frequency (IF) or directly to baseband, simplifying digital processing.
Following downconversion, the signal is sampled and quantized by an analog-to-
digital converter (ADC), converting the continuous-time signal into a digital format
suitable for the acquisition and tracking stages.

The design and performance of the front-end are pivotal in determining the
GNSS receiver’s sensitivity and accuracy, as it sets the foundation for all subsequent
signal processing operations [19].

4.3.1 Signal Model at the Front-End Output
For the analysis that follows, relatively small coherent integration times are assumed,
so certain second-order effects (e.g., Doppler impact on the spreading code) can
often be safely neglected [20]. Likewise, the potential impact of the local oscillator
on the sampling frequency remains out of scope given these short integration
periods [20]. Note also that a complex sampling scheme is considered because with
a real sampling, one would face additional summed-frequency components after
mixing that could affect correlation results [21]. Nonetheless, results from real and
complex sampling approaches remain reasonably close [22].

Consequently, at the output of the front end, considering a complex sampling
approach, the received signal can be expressed as:

rx(t) =
√

2PRX D(t − τ) c(t − τ) exp
(
2π(fIF + fD)t + Φ

)
+ η(t), (4.1)

where:

• τ represents the code delay due to signal propagation,

• fD is the Doppler shift,

• d(t − τ) and c(t − τ) are the data and spreading code, respectively,
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• fIF is the intermediate frequency,

• Φ denotes the phase at the receiver,

• η(t) accounts for noise modeled as zero-mean White Gaussian Noise (WGN),

• PRX is the received power, considerably lower than the transmitted power due
to various signal impairments.

For dataless pilot channels, the received signal does not include the data com-
ponent. Thus, in our analysis, we model the post front-end signal for dataless
pilot channels as follows (with the amplitude assumed to be unity, which does not
impact the analysis):

rx(t) = α c(t − τ) exp
(
2π(fIF + fD)t + Φ

)
+ η(t), with α = 1. (4.2)

4.4 Acquisition Stage
After being processed by the front end, the signal is directed to the acquisition
and tracking stages, where digital signal processing (DSP) occurs. The acquisition
stage serves as the preliminary phase, identifying the presence of satellites and
initiating signal processing. The acquisition’s output is passed to the tracking stage,
where the delay of the local code replica—used for pseudorange computation—is
precisely estimated [23]. Once the pseudorange is calculated, the PVT solution
can be determined. It is important to highlight that acquisition and tracking are
continuous, parallel processes. As satellites enter and leave the receiver’s view,
these operations are constantly updated to ensure accurate PVT calculations [24].

4.4.1 Signal Acquisition Process

The initial operation of a GNSS receiver is signal acquisition, which detects the
presence of the signal under test and provides a rough estimation of the code
delay and Doppler frequency of the incoming signal. Acquisition systems are based
on correlating the received signal with a local replica, specifically through the
evaluation and processing of the Cross Ambiguity Function (CAF). This involves
a global search for approximate values of delay and Doppler shift. The CAF is a
two-dimensional correlation function in the delay and Doppler domains that is used
to compare the incoming signal with a local replica, yielding the best estimation of
its parameters [25].
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Cross Ambiguity Function (CAF)

The CAF in the discrete time domain is given by:

R(τ̂ , f̂d) = 1
L

L∑
n=1

rx(nTs)c(nTs − τ̂)exp
(
j2π(fIF + f̂d)nTs

)
(4.3)

where rx(nTs) is the received signal in the coherent window Tcoh, sampled at
intervals Ts.

In our analysis, we take Tcoh = LsTs = Tshort, where Ts is the sampling period,
Ls is the number of chips of a short code and Tshort is the duration of the short
spreading code, obtaining 1 sample for each chip for the short code.

and c(nTs−τ̂)exp
(
j2π(fIF + f̂d)nTs

)
is the local replica. fIF is the intermediate

frequency provided by the front-end receiver, and c ≡ c0 defined as the legitimate
code in chapter 1.

Let F̂d = (fIF + f̂d)Ts be the normalized frequency. Eq. (4.3) can be then written
as:

R(τ̂ , F̂d) = 1
L

L∑
i=1

rx(iTs) c0(iTs − τ̂)exp(−j2πF̂di) (4.4)

Which can be ordered as:

R(τ̂ , F̂d) = YR(τ̂ , F̂d) + jYI(τ̂ , F̂d) . (4.5)

The phase of the received signal is unknown and is not estimated at this stage;
hence, we consider the square modulus of the CAF to eliminate phase dependency,
obtaining:

Y 2(τ̂ , F̂d) =
∣∣∣R(τ̂ , F̂d)

∣∣∣2
= Y 2

R(τ̂ , F̂d) + Y 2
I (τ̂ , F̂d) .

(4.6)

Search Space and Grid

The CAF function is evaluated over a set of values that define the search space.
The grid has the dimensions of delay (time) and Doppler shift (frequency). The
search space contains bins, each representing a unique combination of delay and
Doppler shift values.

The number of delay bins, Nτ , depends on the sampling frequency fs and the
coherent integration time Tcoh, which is the time window taken into consideration
for the calculation of the correlation function. The coherent integration time is a
multiple of the code period. The number of delay bins is then:

Nτ = fsTcoh = Tcoh

Ts

= LTs

Ts

= L (4.7)
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where Ts is the sampling period.
The Doppler shift bins, ∆f , take discrete values, and the optimal bin size

depends on the integration time. An empirical rule used by many GNSS receivers
is adopted to limit the loss when the actual Doppler shift is not one of the values
tested [2, 26, 27, 25]. This rule ensures that, in the worst case, the loss is less than
3 dB. The empirical bin size is given by:

∆f = 2
3Tcoh

(4.8)

Then the Doppler domain D is given by:

D = (fd,min, fd,min + ∆f, . . . , fd,min + i∆f, . . . , fd,max)

with |D| = H, where H is the total number of Doppler bins.

4.4.2 Non-Coherent Integration
In order to reduce the impact of noise, we consider non-coherent integration, where
we average the CAF evaluated over Nc coherent blocks, thereby reducing the noise
variance by Nc [28]. This process enhances the detection probability of weak signals
and improves the overall performance of the acquisition system.

The non-coherent integration of the CAF is given by:

X(τ̂ , F̂d) = 1
Nc

Nc∑
k=1

Y 2
k (τ̂ , F̂d), (4.9)

where Y 2
k (τ̂ , F̂d) is the squared modulus of the CAF evaluated for the k-th coherent

integration. By averaging the squared modulus of the CAF over Nc blocks, we
achieve a significant reduction in noise variance, improving the reliability of the
signal acquisition process.

Search Strategy

In this context, the decision involves finding the maximum of the non-coherently
integrated CAF:

p̂ML,NC = arg max
p̂

X(τ̂ , F̂d), (4.10)

where p̂ = (τ̂ , F̂d) represents the set of trial parameters.
There are different strategies to explore the search space. In our analysis, we

adopt a strategy that involves evaluating the CAF over the entire search space.
The decision is made based on the maximum of the ambiguity function. If the
maximum value is greater than a predetermined threshold, the satellite signal is
considered present and aligned. The estimated Doppler and code delay are those
corresponding to the maximum value.
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Chapter 5

Application of Serial
Multicode DSSS to Pilot
Channel Construction

5.1 Introduction
In this chapter, we discuss how Serial Multicode Direct Sequence Spread Spectrum
(DSSS) can be applied to the design of pilot channels, which are crucial for improving
the initial stages of position computation in Global Navigation Satellite Systems
(GNSS) such as GPS and Galileo. Serial Multicode DSSS leverages alternative
spreading codes to encode information within a DSSS pilot channel. Once these
encoded patterns are detected, they provide precise temporal references, facilitating
efficient system synchronization.

This method was originally proposed by Garello [1]. In this chapter, we revisit
his approach to constructing pilot channels for both Medium Earth Orbit (MEO)
and Low Earth Orbit (LEO) GNSS systems, employing Serial Bicode DSSS.

5.2 MEO GNSS Application

5.2.1 Scenario Overview
In typical Medium Earth Orbit (MEO) GNSS, each satellite sends out a data
stream that includes:

• A primary code with a length L1 = 4000 chips (as in the example of Fig. 5.1).

• A secondary code with a length L2 = 20 chips (as in the example of Fig. 5.1).
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These systems encounter challenges with time ambiguity in signal reception, which
can delay or complicate synchronization.

At the receiver side, the following steps are essential:
1. Estimation of the Doppler shift and Code Delay values.

2. Alignment with the primary and secondary codes.

3. Data decoding.
For the first step, non-coherent integration is necessary, but this process is slowed
down by data transitions with their change of sign. To address this issue, data-less
pilot channels are used to speed up the acquisition process. By using these pilot
channels, non-coherent correlations can be performed to estimate the Doppler shift
and Code Delay values efficiently. Once these values are estimated, the primary
and secondary code time ambiguities still need to be resolved to achieve proper
alignment and synchronization with the primary and secondary code.4 IEEE COMMUNICATIONS LETTERS

Fig. 4. Construction of a data-less pilot channel by Serial Bicode DSSS for MEO GNSS

we can perform long non-coherent correlations to estimate
the Doppler and Code Delay values. Having done this, we
still need to resolve the primary and the secondary code time
ambiguity, i.e., to align with primary and secondary code. To
solve these ambiguities, we design a Serial Bicode DSSS pilot
channel with two alternative short spreading codes with length
Ls which is an integer divisor of the primary code length L1

(Ls = 250 in Fig. 4), and the same chip rate Rc1 as the
primary code.

The pilot channel has no data or secondary code. Then, at
the receiver side, we can apply a long non-coherent integration
spanning over many short code periods to estimate the Doppler
and the code delay of the short code. When we succeed,
we are synchronized with the short code, but we must still
solve two ambiguities: one on the primary code (the primary
and the short code have the same chip rate, the first has
L1 = 4000 chips and the second Ls = 250 chips, then there
are Ns = L1/Ls = 16 possible alternatives) and one on the
secondary code (inside a secondary code period there are 320
short codes).

To solve these ambiguities, we exploit the Serial Bicode
DSSS signal. We use it to embed a pattern into the pilot
channel as shown in Fig. 4. The pattern is organized in blocks.
Every block consists of 64 short codes (then its duration is
Tb = 16 ms). In each block we have: 52 legitimate blue
short codes c0 and 12 alternative orange short codes c1. Each
block is characterized by a different pattern that makes it
easily recognizable. (In this example, five blocks are needed
to completely cover the entire secondary code.)

The transitions between consecutive blocks have a key role
because (i) They are always aligned with the primary code;
(ii) They uniquely identify the position inside the secondary
code. Then, if we are able to identify the position of a block,
we identify the transition between two consecutive blocks, we
automatically get the correct alignment and we solve the time
ambiguity of both the primary and the secondary code.

At the receiver side, we proceed as shown in Fig. 6. We
apply a long non-coherent accumulation of the c0 correlator
to estimate the short code Doppler/delay pair. The alternative
code presence slightly slows down the estimation. After the
recognition of the correct slot, we work with both the two cor-
relators, one matched to c0 and the other to c1. By comparing

Fig. 5. Block error probability, incoherent demodulation, hard decision

Fig. 6. Receiver structure

their outputs, we reconstruct the transmitted pattern. When
we observe any of the five blocks, we automatically achieve
both the primary and the secondary code synchronization, too.
In our example, we can solve the code ambiguity in 16 ms
(one blocks). This is a significant reduction with respect to
usual techniques based on secondary code acquisition, which
requires observing multiple of 80 ms blocks.

To recognize a block pattern we can use different strategies.
The simplest one is to use the hard decision based on the two
correlator outputs (0 for c0 and 1 for c1) and search for the
exact block pattern. As an example, the error performance of
this hard decision technique is shown in Fig. 5, where Ec is
the chip energy. System performance can be further improved
by using the soft information produced by the correlators or
by employing pattern recognition techniques. These methods
will be the subject of future research.
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Figure 5.1: Construction of a data-less pilot channel by Serial Bicode DSSS for
MEO GNSS [1].

Advantages of Data-less Pilot Channels: These channels accelerate the
acquisition process by focusing solely on the essential synchronization signals,
eliminating the complications introduced by unknown data modulation.

5.2.2 Construction of Serial Bicode DSSS Pilot Channel
for MEO GNSS

The construction of pilot channels using Serial Bicode DSSS in MEO GNSS systems
involves utilizing two distinct spreading codes to effectively resolve primary and
secondary time ambiguities. This design leverages the simplicity of data-less pilot
channels to enhance the speed and accuracy of satellite signal acquisition and
synchronization.
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Design Specifications The pilot channel employs two short spreading codes,
each with a length Ls = 250 chips. The length of these codes is an integer divisor of
the primary code length L1 = 4000 chips. Both codes operate at the same chip rate
Rc1 as the primary code, without any overlay of secondary coding or data. This
means that 16 short codes are required to cover the entire primary code length.

Pattern Embedding The Serial Bicode DSSS signal uses two short codes of the
same length Ls: the legitimate code c0 (blue) and the alternative code c1 (orange).
These codes embed a pattern p into the pilot channel s, as illustrated in Fig. 5.1.
For example, if p = (0,0,0,1), then s = (c0, c0, c0, c1).

The patterns are structured in blocks, each block consisting of 64 symbols (short
codes) and having a duration of Tb = 16 ms. Thus, five blocks are needed to
completely cover the entire secondary code length in this example, yielding a total
of 320 symbols modulated by Serial Bicode DSSS. Within each block:

• 52 ’0’ symbols are modulated by the legitimate code c0.

• 12 ’1’ symbols are modulated by the alternative code c1.
Each block has a unique discrete frequency characteristic, aiding synchronization.

Block Transitions and Code Alignment Each block is characterized by a
different discrete frequency, making it easily identifiable. The transitions between
consecutive blocks play a key role because:

• They are always aligned with the primary code.

• They uniquely identify the position within the secondary code.
By detecting the transition between two consecutive blocks, the receiver automati-
cally achieves the correct alignment and resolves the time ambiguity of both the
primary and secondary codes.

Designing Distinctive Pattern Blocks The pattern blocks facilitate quick
and precise synchronization. Each block alternates between c0 and c1, creating a
unique discrete frequency signature. This arrangement aids in distinguishing each
block and achieving effective synchronization.

5.3 LEO GNSS Application

5.3.1 Scenario Overview
In this section, we describe the application of Serial Bicode DSSS to a LEO GNSS
system. The system under consideration comprises:
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• A 2-PSK modulated data channel with a primary spreading code having a
code rate Rc = 1.023 Mchip/s and a code length of 4096 chips (code period of
4 ms), without a secondary code.

• A 2-PSK modulated pilot channel with Serial Bicode DSSS using short spread-
ing codes, having a code rate Rc = 1.023 Mchip/s and a code length of 256
chips (code period of 4/16 ms).

As introduced by Garello [1], this scenario differs significantly from the MEO
GNSS-like setup, where a secondary code is included. Here, a simpler pattern is
sufficient to achieve synchronization because no secondary code ambiguity needs to
be resolved.

5.3.2 Construction of Serial Bicode DSSS Pilot Channel
for LEO GNSS

In a LEO GNSS system, where the signal-to-noise ratio is typically higher, secondary
codes are generally not used. Even so, Serial Bicode DSSS can still enhance the
receiver’s acquisition performance by simplifying primary code synchronization.
For this purpose, we can employ the pattern depicted in Fig. 5.2.

SUBMITTED PAPER 5

Fig. 7. Construction of a data-less pilot channel by Serial Bicode DSSS for
LEO GNSS

B. Application to LEO positioning

In this section we describe an application of Serial Bicode
DSSS to a LEO GNSS system. For this scenario, we consider
a system made by:

• A 2-PSK modulated data channel with a primary spread-
ing code having code rate Rc = 1.023 Mchip/s and code
length 4096 chips (code period 4 ms), without secondary
code.

• A 2-PSK modulated pilot channel encoded with Serial
Bicode DSSS with short spreading codes having code
rate Rc = 1.023 Mchip/s and code length 256 chips (code
period 0.25024=4/16 ms).

This scenario is radically different from that considered in the
previous section. In a LEO GNSS system, where the signal-
to-noise is higher, we can expect to have no secondary code.
Serial DSSS can still be used to improve the receiver acqui-
sition performance to simplify primary code synchronization.
For this purpose, as an example we can use the pattern shown
in Fig. 7.

Since the primary code period is 16 times the short code
period, we can use a simplified pattern made by a single
alternative short code, placed in position number 16 of 16. As
explained in the previous section, we can apply a long incoher-
ent correlation on the data-less pilot channel to estimate Delay
and Doppler. In addition, when the pattern is recognized, it
automatically provides the primary code synchronism, too.

As an example of performance evaluation, Fig. 8 shows the
pattern detection error obtained by simulating a scenario with
6 interfering LEO satellites, a Doppler rate randomly extracted
between ±10 kHz, and a bandwidth B = 4Rc with 4 samples
per chip. Additionally, the figure includes a curve obtained
using a simplified soft detection method, where the reliability
of the absolute value of the orange correlator output is also
considered, demonstrating the available gain. A comprehensive
study of the analytical and simulated performance of hard and
soft detectors is left for future research.

V. CONCLUSIONS

In this paper we have introduced Serial Bicode/Multicode
DSSS/CDMA where the information is associated to multiple
spreading codes. The technique can be used to dynamically
adapt the bit rate, is well-suited for applications where in-
coherent demodulation is preferred, and produces a single
DSSS signal, maintaining constant interference levels for other
users. The error probability performance has been analyzed.
As an additional example of application, we have presented

Fig. 8. Block error probability, LEO pattern

the design of data-less pilot channels able to improve initial
acquisition by embedding special patterns. Two examples of
application to MEO and LEO GNSS systems, able to solve
the time ambiguity of secondary and primary codes, have been
presented.
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Figure 5.2: Pattern used for Serial Bicode DSSS in a LEO GNSS system [1].

Given that the primary code period is 16 times the short code period, a simplified
pattern can be used. This pattern includes a single alternative short code placed
in position number 8 out of 16. Once detected, this pattern automatically provides
primary code synchronization [1].
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Chapter 6

Block Transition Detection

As demonstrated by [1] and introduced in the previous chapter, block transitions
are of paramount importance. Detecting the transition between two consecutive
blocks (i.e., identifying a 1-block sequence) enables the receiver to achieve correct
alignment and resolve the time ambiguity of both the primary and secondary codes.

In this chapter, we provide a statistical analysis for transition detection. We
assume the pilot channel s is transmitted over an AWGN channel and that the
receiver is already aligned with the short codes, having obtained the delay and
Doppler estimates from the acquisition stage.

Generic Pilot Channel Model. The analysis is carried out for a generic
pilot channel utilizing Serial Bicode DSSS. Such a channel consists of b blocks,
each containing B short codes, resulting in a total of K = b × B short codes in
the pilot channel. Although the derivations are performed generally, for the sake
of performance comparison with simulation, we adopt the channel introduced by
Garello in [1], which has b = 5, B = 64, and K = 320.

The analysis primarily focuses on the probability of false alarm
(
Pfa

)
and the

probability of missed detection
(
Pmd

)
for the first block. However, this methodology

can be easily extended to other blocks by cyclically shifting the pilot channel such
that the i-th block becomes the first block.

This approach effectively characterizes the entire process, since computing Pmd

and Pfa for all blocks allows us to determine the probability of detecting the i-th
transition, P

(i)
d , as follows:

P
(i)
d = (1 − P

(i)
md)

b∏
j=1
j /=i

(1 − P
(j)
fa ), (6.1)

where P
(i)
md and P

(i)
fa denote the probability of missed detection and false alarm for

the i-th block, respectively, and b is the total number of blocks.
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6.1 Block Transition Detection of MEO GNSS
Pilot Channel with Soft Detection

In this section, we present a comprehensive analysis of block transition detection
performance for patterns constructed using Serial Bicode DSSS in MEO GNSS
applications. We focus on evaluating performance under both coherent and inco-
herent demodulation scenarios, specifically examining the key probabilities of false
alarm (Pfa) and missed detection (Pmd). This analysis emphasizes soft detection,
in which the entire received signal is utilized to make a decision.

Scenario Description We consider a scenario involving a pattern p composed
of b = 5 blocks (each of length 64 bits) that are spread using Serial Bicode DSSS
to produce the pilot channel s, as described earlier, where symbol 0 is mapped to
the legitimate code c0 and symbol 1 to the alternative code c1. Both c0 and c1 are
sequences of length L. We focus on the first block (1), being B = 64 symbols long.
When this pattern p1 is spread using Serial Bicode DSSS, we refer to the resulting
sequence as s1. We consider the signal s1 for further analysis.

We transmit a signal s of length KL over an AWGN channel, with the received
signal given by:

rx = s + n

where n = (n1, n2, . . . , ni, . . . , nKL) represents the noise vector, with ni ∼ N (0, σ2),
and we check if the sequence s1 is present within a window of length BL.

Hypotheses:

• Null Hypothesis H0: The 1-block sequence is absent at the receiver. The
received signal does not contain the 1-block sequence s1.

• Alternative Hypothesis H1: The 1-block sequence s1 is present at the
receiver.

6.1.1 coherent Demodulation
To evaluate the performance under coherent demodulation, we begin by testing
the following statistic:

T =
BL∑
i=1

rx,is1,i

We correlate the received signal with the 1- block sequence s1, and compare this
against a threshold t. We decide:

32



Block Transition Detection

H1 if T ≥ t,

H0 if T < t.

Under H0:

T =
BL∑
i=1

(st,i + ni)s1,i =
BL∑
i=1

st,is1,i +
BL∑
i=1

nis1,i (6.2)

where st is a segment of length BL that could be any sub-sequence of the pilot
channel s, aligned with the short codes, and excluding s1, defined as follows:

First, let the pattern p embedded within the pilot channel s be represented as:

p = (p1, . . . , pi, . . . , pK) p ∈ {0, 1}

We then define the set S which contains all possible sub-sequences st of length
BL within s (excluding s1), where:

S =
{
st = (x(pi mod K), . . . , x(p(i+B−1) mod K)) | 2 ≤ i ≤ K

}
where x(·) is a mapping from 0 → c0, 1 → c1. Here, the subscript indices are
taken modulo K, ensuring that the segment wraps around to the start of p if
i + B − 1 > K.

In Eq. (6.2) we have s1,i ∈ {−1,1}, hence the second term is a sum of BL
Gaussian random variables with mean 0 and variance σ2, so ∑BL

i=1 nis1,i is Gaussian
with mean 0 and variance BLσ2.

For the first term, ∑BL
i=1 st,is1,i, the value depends on the specific transmitted

segment st ∈ S. We compute correlations for all possible segments and collect the
values c in a vector c.

Let:

cj =
BL∑
i=1

s(t,j),is1,i ∀s(t,j) ∈ S. (6.3)

Thus, under H0:

T = cj +
BL∑
i=1

nis1,i with probability 1
K − 1 .

This means that the pdf of T under H0 is an average of (K − 1) Gaussian
distributions, each with variance BLσ2 and mean cj ∈ c:

fH0(T ) = 1
K − 1

K−1∑
i=1

1√
2π · BLσ2

exp−(T − ci)2

2 · BLσ2 . (6.4)
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Under H1:

T =
BL∑
i=1

(s1,i + ni)s1,i =
BL∑
i=1

s1,is1,i +
BL∑
i=1

nis1,i

Since ∑BL
i=1 s1,is1,i = BL, and ∑BL

i=1 nis1,i is Gaussian with mean 0 and variance
BLσ2, then T under H1 is Gaussian with mean BL and variance BLσ2,

T1 ∼ N (BL, BLσ2)

fH1(T ) = 1√
2πBLσ2

e
−(T −BL)2

2·BLσ2 (6.5)

6.1.1.1 Probability of False Alarm (Pfa)

The probability of false alarm (Pfa) refers to the event where the receiver incorrectly
decides that the sequence s1 is present when it is actually absent, meaning it
incorrectly accepts H1 when H0 is true [29].

In this section, we will present the analytical expression for Pfa and compare it
with simulation results for coherent demodulation.

Analytical Pfa

The probability of false alarm, Pfa, is defined as P (H1|H0), which represents the
likelihood of deciding H1 (the presence of the sequence s1) when H0 (absence of
the sequence) is actually true. Mathematically, this is expressed as P (T ≥ t|H0).

As illustrated previously in (6.4), under H0, the test statistic T is an average
of K − 1 Gaussian distributions, each with a variance of BLσ2 and a mean c ∈ c.
Therefore, the probability of false alarm is given by:

Pfa = P (T ≥ t | H0) = 1
K − 1

K−1∑
j=1

1
2 erfc

(
t − cj√
2 BL σ2

)
.

This formulation allows us to compute the probability of false alarm by summing
over the contributions of each Gaussian component..

Simulation of Pfa

To verify the analytical results, we generated Nsim = 1,000,000 simulation runs. In
each simulation, a sub-sequence of s (a segment of length BL excluding the sequence
s1), st was randomly selected from the pilot channel s to transmit. Gaussian noise
with variance σ2 was added to the selected segment, which was then correlated
with the sequence s1 and the results were stored in a vector T0 . For each threshold
t, Pfa was estimated as the proportion of T0 values exceeding t. If fewer than 100
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samples exceeded t, Pfa was not estimated for that threshold to ensure statistical
reliability.

-1 -0.5 0 0.5 1 1.5 2
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Figure 6.1: Comparison of analytical and simulated Pfa for soft detection coherent
demodulation.

Fig. 6.1 demonstrates the alignment between the analytical and simulation re-
sults, validating the accuracy of the analytical expressions derived for the probability
of false alarm. Ec is the energy of the chip.

6.1.1.2 Probability of Missed Detection (Pmd)

The probability of missed detection (Pmd) occurs when the receiver incorrectly
decides that H0 (absence of the sequence s1) is true, even though H1 (presence of
the pattern) is correct. Mathematically, this is expressed as Pmd = P (H0|H1) =
P (T < t|H1).

Analytical Pmd

As described previously in Eq. (6.5), under the alternative hypothesis H1, the test
statistic T follows a Gaussian distribution with a mean of BL and a variance of
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BLσ2. Therefore, the probability of missed detection is given by:

Pmd = P (T < t|H1) = 1
2 erfc

(
BL − t√
2 BL σ2

)
,

This formulation allows us to calculate Pmd by evaluating the error function
complement (erfc) based on the threshold t, the mean BL, and the variance BLσ2.

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd), we
conducted a simulation with Nsim = 1,000,000 simulation runs. In each simulation
run, the test statistic T was calculated by computing the inner product of the
pilot sequence s1 with itself including added Gaussian noise with variance σ2, and
the results were collected in vector T1 This simulates the scenario where the s1 is
present at the receiver.

For each threshold t, Pmd was estimated as the proportion of T1 values falling
below t. If fewer than 100 samples were below t, Pmd was not estimated for that
threshold to ensure the statistical reliability of the results.
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Figure 6.2: Comparison of analytical and simulated Pmd for soft detection coherent
demodulation.
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Fig. 6.2 shows the alignment between analytical and simulation results, confirm-
ing the accuracy of the derived analytical expressions for the probability of missed
detection.

Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation
of the trade-off between the probability of detection (Pd) and the probability of
false alarm (Pfa). It illustrates the performance of the soft detection coherent
demodulation system by plotting Pd against Pfa for various threshold values.

10-4 10-3 10-2 10-1 100
10-3

10-2

10-1

100

Figure 6.3: ROC curve for soft detection coherent demodulation.

The curve in Fig. 6.3 demonstrates the relationship between the probability of
detection (Pd) and the probability of false alarm (Pfa), indicating the detection
performance of the system.
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6.1.2 Incoherent Demodulation
To evaluate the performance under incoherent demodulation, we begin by testing
the following statistic:

T =
∣∣∣∣∣
BL∑
i=1

rx,is1,i

∣∣∣∣∣
correlating the received signal with s1, and comparing the magnitude of this
correlation against a threshold t. We decide for H1 if T ≥ t and for H0 otherwise.

Under H0:

T =
∣∣∣∣∣
BL∑
i=1

rx,is1,i

∣∣∣∣∣ =
∣∣∣∣∣
BL∑
i=1

(
st,ie

jΦ + nr,i + jnim,i

)
s1,i

∣∣∣∣∣ , st ∈ S

Expanding this, we get:

T =
∣∣∣∣∣
BL∑
i=1

((st,i cos(Φ) + nr,i) + j(st,i sin(Φ) + nim,i)) s1,i

∣∣∣∣∣
Separating the real and imaginary parts, we have:

T =
∣∣∣∣∣
(

cos(Φ)
BL∑
i=1

st,is1,i +
BL∑
i=1

s1,inr,i

)

+j

(
sin(Φ)

BL∑
i=1

st,is1,i +
BL∑
i=1

s1,inim,i

)∣∣∣∣∣
Let

X = cos(Φ)
BL∑
i=1

st,is1,i +
BL∑
i=1

s1,inr,i

Y = sin(Φ)
BL∑
i=1

st,is1,i +
BL∑
i=1

s1,inim,i

Given that s1,i ∈ {−1, +1}, we have:

X ∼ N
(

cos(Φ)
BL∑
i=1

st,is1,i, BLσ2
)

Y ∼ N
(

sin(Φ)
BL∑
i=1

st,is1,i, BLσ2
)
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Thus, the test statistic T can be expressed as:

T = |X + jY | =
√

X2 + Y 2 ∼ Rice(ν =
BL∑
i=1

st,is1,i, BLσ2)

T follows a Rician distribution with parameters ν (the non-centrality parameter)
and BLσ2 (the variance).

For the non-centrality parameter, ∑BL
i=1 st,is1,i depends on the specific transmitted

sequence st ∈ S. Again, exactly as we did in (6.3) We calculate the correlations
for all possible sequences, and we collect the values c in a vector c.

Thus, under H0:

T ∼ Rice(ν = cj, BLσ2) with probability 1
K − 1 .

Therefore, pdf of T under H0 is an average of (K − 1) Rician distributions, each
with variance BLσ2 and non-centrality parameter ci:

fH0(T ) = 1
K − 1

K−1∑
i=1

T

BLσ2

× exp−T 2 + c2
i

4BLσ2 I0

(
T · ci

BLσ2

) (6.6)

where I0(z) is the modified Bessel function of the first kind with order zero.

Under H1

T =
∣∣∣∣∣
(

cos(Φ)
BL∑
i=1

s1,i × s1,i +
BL∑
i=1

s1,i × nr,i

)

+j

(
sin(Φ)

BL∑
i=1

s1,i × s1,i +
BL∑
i=1

s1,i × nim,i

) ∣∣∣∣∣
Since s1,i ∈ {−1, +1}, we have ∑BL

i=1 s1,is1,i = BL. Thus, under H1, the test
statistic T follows a Rician distribution with a non-centrality parameter ν = BL
and variance BLσ2:

T ∼ Rice(ν = BL, BLσ2)

The probability density function of T under H1 is given by:

fH1(T ) = T

BLσ2 exp
(

−T 2 + (BL)2

2 · BLσ2

)
I0

(
T · BL

BLσ2

)
(6.7)

where I0(z) is the modified Bessel function of the first kind with order zero.
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6.1.2.1 Probability of False Alarm (Pfa)

In this section, we will provide the analytical expression for Pfa and compare it
with the simulation results for coherent demodulation.

Analytical Pfa

As previously illustrated in (6.6), under H0, the test statistic T is a weighted average
of K − 1 Rician distributions, each with a variance of BLσ2 and a non-centrality
parameter c ∈ c. Therefore, the probability of false alarm is given by:

Pfa = P (T ≥ t|H0)

= 1
K − 1

K−1∑
i=1

P
(
Rice(n = 2, ν = ci, BLσ2) > t

) (6.8)

Pfa = 1
K − 1

K−1∑
i=1

Q1

(
ci√

BLσ2
,

t√
BLσ2

)
(6.9)

where Q1(·, ·) is Marcum Q-function of order 1.

Simulation of Pfa

To validate the analytical results for incoherent demodulation, we generated Nsim =
1,000,000 simulation runs. In each simulation, a signal was randomly selected from
the pilot channel for transmission (excluding the 1-block sequence). This signal was
multiplied by a random phase shift and Gaussian noise with variance σ2 was added.
The noisy signal was then correlated with the sequence s1 and the magnitude of
the correlation was computed. The results were then collected in vector T0

For each threshold t, Pfa was estimated as the proportion of T0 values exceeding
t. If fewer than 100 samples exceeded t, Pfa was not estimated for that threshold
to ensure statistical reliability.
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Figure 6.4: Comparison of analytical and simulated Pfa for soft detection inco-
herent demodulation.

Fig. 6.4 demonstrates the alignment between analytical and simulation results,
confirming the accuracy of the derived analytical expressions for the probability of
false alarm.

6.1.2.2 Probability of Missed Detection (Pmd)

In this section, we will provide the analytical expression for Pmd and compare it
with the simulation results for coherent demodulation.

Analytical Pmd

As previously described in Eq. (6.7), under the alternative hypothesis H1, the test
statistic T follows a Rician distribution with a non-centrality parameter ν = BL
and variance BLσ2:

T ∼ Rice(ν = BL, BLσ2)

Therefore, the probability of missed detection is given by:

Pmd = P (T < t|H1) = 1 − Q1

(
BL√
BLσ2

,
t√

BLσ2

)
(6.10)
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where Q1 is the Marcum Q-function of order 1.

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd)
in incoherent demodulation, we conducted a simulation with Nsim = 1,000,000
simulation runs. In each simulation run, the test statistic T1 was calculated by
finding the magnitude of the inner product of the pilot sequence s1 including
Gaussian noise with variance σ2 and random phase with itself, then the results
were collected in the vector T 1. This setup simulates the scenario where the 1
pattern is present at the receiver.

For each threshold t, Pmd was estimated as the proportion of T 1 values falling
below t. If fewer than 100 samples were below t, Pmd was not estimated for that
threshold to ensure the statistical reliability of the results.
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Figure 6.5: Comparison of analytical and simulated Pmd for soft detection
incoherent demodulation.

Fig. 6.5 demonstrates the alignment between analytical and simulation results,
confirming the accuracy of the derived analytical expressions for the probability of
missed detection with σ2.
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Receiver Operating Characteristic (ROC) Curve
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Figure 6.6: ROC curve for soft detection incoherent demodulation.

The curve in Fig. 6.6 shows the relationship between the probability of detection
(Pd) and the probability of false alarm (Pfa), indicating the detection performance
of the incoherent demodulation system.

6.2 Performance Analysis of MEO GNSS Pilot
Channel with Hard Detection

In this section, we provide a detailed analysis of the performance metrics for patterns
created using Serial Bicode DSSS in MEO GNSS applications. We evaluate the
system’s performance under both coherent and incoherent demodulation scenarios,
focusing on two key probabilities: the probability of false alarm (Pfa) and the
probability of missed detection (Pmd). This analysis emphasizes hard detection,
where each DSSS sequence is decoded, and decisions are made based on the resulting
sequence. Hard detection involves decoding the spreading sequences, computing
the Hamming distance between the received sequence and the expected pattern,
and making decisions accordingly.
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6.2.1 Coherent Demodulation
Scenario Description

We consider a scenario with a pattern p composed of b = 5 blocks, each B = 64
bits long, spread using Serial Bicode DSSS to form s. We focus on the first block
(1) of length B bits for the pattern p1. The first block features single consecutive
1’s. This pattern is modulated using Serial Bicode DSSS, where bit 0 maps to
c0 (legitimate code) and bit 1 maps to c1 (alternative code). Both c0 and c1 are
sequences of length L, producing the signal s1.

We transmit a signal s of length KL over an AWGN channel, with the received
signal given by rx = s + n where n = (n1, n2, . . . , ni, . . . , nKL) represents the noise
vector, with ni ∼ N (0, σ2), and we check if the sequence s1 is present within a
window of length BL.

Hypotheses:

• Null Hypothesis H0: The 1-block pattern is absent at the receiver.

• Alternative Hypothesis H1: The 1-block pattern is present at the receiver.

We test the statistic T = dH(r, p1), where r is a segment of length BL that
we check for the presence of the pattern p1 within after decoding each L chips to
either 0 or 1 according to Serial DSSS discussed before. Here, dH(·, ·) represents
the Hamming distance.

Under H0

T = dH(r, p1)

Let h(·) be a function that maps each L chips according to Serial DSSS discussed
in Section 3.4. Then r = h(rt) where rt could be any segment of length BL.

The probability of a mistaken bit flip for coherent demodulation is given by Eq.
(3.20).

The resulting Hamming distance T depends on the initial Hamming distance
between the initial sequence pt = h(st) and p1, representing the number of initially
differnt bits. We can conceptualize this as flipping two sets of coins:

1. The first set is flipped dH(pt, p1) times with a success probability of 1 − Pb,
representing the likelihood of a flipped bit remaining flipped and contributing
to the final Hamming distance.

2. The second set is flipped B − dH(pt, p1) times with a success probability of Pb,
representing the likelihood of a correct bit becoming flipped and contributing
to the Hamming distance.
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Thus, under H0, T is the sum of two binomial distributions:

T = X + Y

where X ∼ Binomial(dH(pt, p1), 1 − Pb) and Y ∼ Binomial(B − dH(pt, p1), Pb).
Let d = dH(pt, p1). The probability P (T = k) is given by:

P (T = k) =
min(d,k)∑

n=max(0,k−(B−d))

(
d

n

)
(1 − Pb)nP d−n

b

(
B − d

k − n

)
P k−n

b (1 − Pb)(B−d)−(k−n)

We collect all possible patterns pt and compute their Hamming distance from
p1, denoted as dH(pt, p1). We then compile all unique values of these Hamming
distances into DP (distance profile).
Let:

p = (p1, . . . , pi, . . . , pK)

We then define the set P which contains all the possible segments of length B
within p, excluding p1:

P =
{
pt = (p(i) mod K , p(i+1) mod K , . . . , p(i+B−1) mod K) | 2 ≤ i ≤ K

}
The subscript indices are taken modulo K, ensuring that the segments wrap around
to the start of p if i + B − 1 > K. Now we define

DPi = dH(p
t,j

, p1), ∀pt,j ∈ P

The cardinality of DP, |DP | = K − 1.
Under H0, the probability P (T0 = k) is:

P (T = k) = 1
K − 1

|DP |∑
i=0

min(DPi,k)∑
n=max(0,k−(B−DPi))

(
DPi

n

)

× (1 − Pb)nP DPi−n
b

(
B − DPi

k − n

)
× P k−n

b (1 − Pb)(B−DPi)−(k−n)

(6.11)

Under H1

T = dH(h(s1 + n), p1)
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Under H1, We receive the signal s1, which is p1 spread according to Serial DSSS,
with noise n. In this scenario, since the initial Hamming distance dH(p1, p1) is 0,
under H1, T follows a binomial distribution:

T ∼ Binomial(B, Pb)

The probability P (T = k) is given by:

P (T = k) =
(

B

k

)
(1 − Pb)B−kP k

b (6.12)

6.2.1.1 Probability of False Alarm (Pfa)

In this section, we provide the analytical expression for Pfa and compare it with
simulation results for hard detection coherent demodulation.

Analytical Pfa

For coherent demodulation hard detection, we compute the Hamming distance
between the decoded received sequence and p1, and compare it to a threshold t. A
false alarm occurs when, under H0, the Hamming distance falls below the threshold
t.

Using (6.11) it can be shown that the probability of false alarm is given by:

Pfa = P (T < t|H0) = P (T < t)

=
t−1∑
k=0

1
K − 1

K−1∑
i=0

min(DPi,k)∑
n=max(0,k−(B−DPi))

×
(

DPi

n

)
(1 − Pb)nP DPi−n

b

×
(

B − DPi

k − n

)
P k−n

b (1 − Pb)(B−DPi)−(k−n)

(6.13)

Simulation of Pfa

To validate the analytical results for the probability of false alarm (Pfa), we
conducted a simulation with Nsim = 1,000,000 simulation runs. In each simulation
run, a signal st was selected from the matrix S. Gaussian noise with variance σ2

was added to the selected signal, and the received signal was decoded determining
whether each L-chips segment corresponds to a 0 or 1. The Hamming distance T0
between the decoded pattern and the expected pattern p1 was calculated.

46



Block Transition Detection

For each threshold t, Pfa was estimated as the proportion of T0 values falling
below t. If fewer than 100 samples fall below t, Pfa was not estimated for that
threshold to ensure statistical reliability.

Finally, we plot the simulation results against the analytical results to verify
the accuracy of the analytical expression for Pfa.
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Figure 6.7: Comparison of simulated and analytical Pfa for hard detection
coherent demodulation, demonstrating perfect alignment.

6.2.1.2 Probability of Missed Detection (Pmd)

The probability of missed detection (Pmd) occurs when the receiver incorrectly
concludes that H0 (absence of the pattern p1) is true, even though H1 (presence of
the pattern) is correct. Mathematically, this is expressed as Pmd = P (H0|H1) =
P (T > t|H1).

In this section, we provide the analytical expression for Pmd and compare it
with simulation results for hard detection coherent demodulation.
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Analytical Pmd

As previously described is Eq. (6.12), under the alternative hypothesis H1, the test
statistic T follows a binomial distribution:

T1 ∼ Binomial(B, Pb)

Therefore, the probability of missed detection is given by:

Pmd = P (T1 > t) = 1 −
t∑

k=0

(
B

k

)
(1 − Pb)B−kP k

b (6.14)

This formulation is used because t is typically much smaller than B −k, simplifying
the calculation.

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd), we
conducted a simulation with Nsim = 1,000,000 simulation runs . In each simulation
run, the signal s1 was transmitted with added Gaussian noise having a variance
σ2. The received signal was then decoded by assessing each L-chips segment. The
Hamming distance T1 between the decoded pattern and the expected pattern p1
was computed.

For each threshold t, Pmd was estimated as the proportion of T1 values exceeding
t. If fewer than 100 samples exceeded t, Pmd was not estimated for that threshold
to maintain statistical reliability.

Finally, we plot the simulation results against the analytical results to verify
the accuracy of the analytical expression for Pmd.
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Figure 6.8: Comparison of simulated and analytical Pmd for hard detection
coherent demodulation, demonstrating perfect alignment.
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Receiver Operating Characteristic (ROC) Curve
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Figure 6.9: ROC curve for hard detection coherent demodulation.

The curve in Fig. 6.9 shows the relationship between the probability of detection
(Pd) and the probability of false alarm (Pfa), indicating the detection performance
of the hard detection coherent demodulation system.

6.2.2 Incoherent Demodulation
Scenario Description

The scenario is identical to the coherent demodulation case, with the exception
that the probability of error Pb(e) is now given by the error probability of Serial
Bicode DSSS under incoherent demodulation, as expressed in Eq. (3.2).

The subsequent analysis follows the same approach as in the coherent demodu-
lation case but with the modified error probability Pb.

Under H0

P (T = k) = 1
K − 1

K−1∑
i=0

min(DPi,k)∑
n=max(0,k−(B−DPi))
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×
(

DPi

n

)
(1 − Pb)nP DPi−n

b

×
(

B − DPi

k − n

)
P k−n

b (1 − Pb)(B−DPi)−(k−n)
(6.15)

Under H1

P (T = k) =
(

B

k

)
(1 − Pb)B−kP k

b (6.16)

6.2.2.1 Probability of False Alarm (Pfa)

Analytical Pfa

The analytical expression for Pfa in incoherent demodulation is similar to that
in coherent demodulation, with the modified error probability Pb, we now use Pb

given in Eq. (3.2). It is given by:

Pfa = P (T < t|H0) = P (T < t)

=
t−1∑
k=0

K−1∑
i=0

1
K − 1

min(DPi,k)∑
n=max(0,k−(B−DPi))

×
(

DPi

n

)
(1 − Pb)nP DPi−n

b

×
(

B − DPi

k − n

)
P k−n

b (1 − Pb)(B−DPi)−(k−n)

(6.17)

Simulation of Pfa

To validate the analytical expression for Pfa, a simulation with Nsim = 1,000,000
simulation runs was conducted. In each run, a signal st was randomly selected
from S, modulated with random phase, and combined with Gaussian noise. The
received signal was then decoded to calculate the test statistic T0, representing the
Hamming distance from the expected pattern p1.

Finally, the simulation results were compared to the analytical results to ensure
their accuracy.
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Figure 6.10: Comparison of simulated and analytical Pfa for hard incoherent
demodulation, demonstrating perfect alignment.

6.2.2.2 Probability of Missed Detection (Pmd)

The probability of missed detection (Pmd) measures the likelihood that the receiver
fails to detect the presence of the pattern p1 when it is actually present.

Analytical Pmd For the incoherent demodulation scenario, the analytical expres-
sion for Pmd is derived similarly to the coherent case, but with the modified error
probability specific to incoherent demodulation:

Pmd = P (T1 > t) = 1 −
t∑

k=0

(
B

k

)
(1 − Pb)B−kP k

b

Simulation of Pmd To validate the analytical expression for Pmd, a simulation
was performed with Nsim = 1,000,000 simulation runs. For each run, the signal s1
was modulated with random phase and Gaussian noise, then decoded to compute
the test statistic T1. The statistic T1 represents the Hamming distance from the
expected pattern p1.

The simulation results were compared to the analytical results to ensure their
accuracy.
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Figure 6.11: Comparison of simulated and analytical Pmd for hard incoherent
demodulation, demonstrating perfect alignment.
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Receiver Operating Characteristic (ROC) Curve
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Figure 6.12: ROC curve for hard incoherent demodulation.

The curve in Fig. 6.12 shows the relationship between the probability of detection
(Pd) and the probability of false alarm (Pfa), indicating the detection performance
of the hard incoherent demodulation system.

6.3 Performance Analysis of LEO GNSS Pilot
Channel with Soft Detection

In this section, we provide a comprehensive analysis of the performance metrics for
patterns constructed using Serial Bicode DSSS in LEO GNSS applications. We
focus on evaluating the system’s performance under both coherent and incoherent
demodulation scenarios, specifically targeting the key probabilities: probability
of false alarm (Pfa) and probability of missed detection (Pmd). This analysis
emphasizes soft detection, where the entire received signal is utilized to make a
decision.

54



Block Transition Detection

6.3.1 Coherent Demodulation
Scenario Description

We consider a scenario involving a pattern p:

p = (0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)

This pattern is spread using Serial Bicode DSSS to produce the pilot channel, where
bit 0 is mapped to c0 (legitimate code) and bit 1 to c1 (alternative code). Both c0
and c1 are sequences of length L, forming the sequence s:

s = (c0, c0, c0, c0, c0, c0, c0, c1, c0, c0, c0, c0, c0, c0, c0, c0)

We continuously transmit a signal s of length 16L over an AWGN channel and
check if the pattern s is present within a window of length 16L.

Hypotheses

• Null Hypothesis H0: The pattern within s is absent at the receiver. The
received signal does not contain the pattern.

• Alternative Hypothesis H1: The pattern within s is present at the receiver.

We test the statistic:
T =

16L∑
i=1

rx,isi

where rx is the received signal within a window of 16 short codes.
We correlate the received signal with the s block pattern and compare this

against a threshold t.
The decision rule is: H1 if T ≥ t,

H0 if T < t.

Under H0

T =
16L∑
i=1

(st,i + ni)si =
16L∑
i=1

st,isi +
16L∑
i=1

nisi (6.18)

where st is any cyclic shift of pattern p excluding the pattern itself, mapped
into spreading codes with the mapping from 0 → c0 and 1 → c1. There are 15
possible segments for st as p consists of 16 bits.

In Eq. (6.18), the second term is a sum of 16L Gaussian random variables
with mean 0 and variance σ2, so ∑16L

i=1 nisi is Gaussian with mean 0 and variance
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16Lσ2. The first term is the cross-correlation between s and st. This can be easily
computed by noticing that any cyclic shift p

t
of the pattern p has dH(p, p

t
) = 2,

and that c0 and c1 are sequences in {−1, 1}. Thus, the cross-correlation is:

16L∑
i=1

st,isi = 14L + 2
L∑

i=1
c0,ic1,i = 14L + 2R ∀st (6.19)

where R is given by Eq. (3.15).
This means that T under H0 is a Gaussian distribution with variance 16Lσ2

and mean 14L + 2R:

fH0(T ) = 1√
2π16Lσ2

exp
(

−(T − (14L + 2R))2

2 · 16Lσ2

)
(6.20)

Under H1

T =
16L∑
i=1

(si + ni)si =
16L∑
i=1

sisi +
16L∑
i=1

nisi = 16L +
16L∑
i=1

nisi (6.21)

Similarly to before, the second term is a sum of 16L Gaussian random variables
with mean 0 and variance σ2, so it is Gaussian with mean 0 and variance 16Lσ2.

Thus, T under H1 is a Gaussian distribution with variance 16Lσ2 and mean
16L:

fH1(T ) = 1√
2π16Lσ2

exp
(

−(T − 16L)2

2 · 16Lσ2

)
(6.22)

Probability of False Alarm (Pfa)

In this section, we will present the analytical expression for Pfa and compare it
with simulation results for coherent demodulation.

Analytical Pfa

As illustrated previously in (6.20), T under H0 is a Gaussian distribution with
variance 16Lσ2 and mean 14L + 2R. Therefore, the probability of false alarm is
given by:

Pfa = P
(
T ≥ t | H0

)
= 1

2 erfc
t −

(
14L + 2R

)
√

2 · 16Lσ2

. (6.23)
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Simulation of Pfa

To verify the analytical results, we generated Nsim = 1,000,000 simulation runs. In
each simulation, a segment of length 16L, st, was randomly selected to transmit.
Gaussian noise with variance σ2 was added to the selected segment, which was
then correlated with the pilot s. The results were stored in a vector T0. For each
threshold t, Pfa was estimated as the proportion of T0 values exceeding t. If fewer
than 1000 samples exceeded t, Pfa was not estimated for that threshold to ensure
statistical reliability.
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Figure 6.13: Comparison of analytical and simulated Pfa for soft detection
coherent demodulation.

Probability of Missed Detection (Pmd)

In this section, we will present the analytical expression for Pmd and compare it
with simulation results for coherent demodulation.
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Analytical Pmd

As described previously, T under H1 is a Gaussian distribution with variance 16Lσ2

and mean 16L. Therefore, the probability of missed detection is given by:

Pmd = 1
2 erfc

(
16L − t√
2 · 16Lσ2

)
(6.24)

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd), we
conducted a simulation with Nsim = 1,000,000 simulation runs. In each simulation
run, the test statistic T was calculated by summing the product of the pilot channel
s with itself, including added Gaussian noise with variance σ2. The results were
collected in the vector T1.

For each threshold t, Pmd was estimated as the proportion of T1 values falling
below t. If fewer than 1000 samples were below t, Pmd was not estimated for that
threshold to ensure the statistical reliability of the results.
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Figure 6.14: Comparison of analytical and simulated Pmd for soft detection
coherent demodulation.

The figure shows the alignment between analytical and simulation results,
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confirming the accuracy of the derived analytical expressions for the probability of
missed detection.

Receiver Operating Characteristic (ROC) Curve
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Figure 6.15: ROC curve for soft detection coherent demodulation.

6.3.2 Incoherent Demodulation
The scenario for incoherent demodulation is identical to the previously described
scenario for coherent demodulation.

Hypotheses:

• Null Hypothesis H0: The pilot s is absent at the receiver.

• Alternative Hypothesis H1: The pilot s is present at the receiver.

For incoherent demodulation, we test the statistic T =
∣∣∣∑16L

i=1 rx,isi

∣∣∣, correlating
the received signal with s, and comparing the magnitude of this correlation against
a threshold t. We decide for H1 if T ≥ t and for H0 otherwise.
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Under H0: By performing the same analysis as we did for the MEO case and
noting that the cross-correlation between st and s is 14L + 2R for any segment
st, it can be found that the test statistic T under H0 follows a Rician distribution
with non-centrality parameter ν = 14L + 2R and variance 16Lσ2.

Therefore, the probability density function of T under H0 is given by:

fH0(T ) = T

16Lσ2 exp
(

−T 2 + (14L + 2R)2

2 · 16Lσ2

)
I0

(
T · (14L + 2R)

16Lσ2

)
(6.25)

where I0(z) is the modified Bessel function of the first kind with order zero.

Under H1: Following the same analysis as for the MEO case, we find that under
H1, T follows a Rician distribution with non-centrality parameter ν = 16L and
variance 16Lσ2.

The probability density function of T under H1 is given by:

fH1(T ) = T

16Lσ2 exp
(

−T 2 + (16L)2

2 · 16Lσ2

)
I0

(
T · 16L

16Lσ2

)
(6.26)

where I0(z) is the modified Bessel function of the first kind with order zero.

Probability of False Alarm (Pfa)

In this section, we will provide the analytical expression for Pfa and compare it
with the simulation results for incoherent demodulation.

Analytical Pfa

As previously illustrated in Eq. (6.25), the test statistic T under H0 follows a
Rician distribution with non-centrality parameter ν = 14L + 2R and variance
16Lσ2. Therefore, the probability of false alarm is given by:

Pfa = P (T ≥ t | H0) = P
(
Rice(n = 2, ν = 14L + 2R, 16Lσ2) > t

)

Pfa = Q1

(
14L + 2R√

16Lσ2
,

t√
16Lσ2

)
(6.27)

where Q1(·, ·) is the Marcum Q-function of order 1.

Simulation of Pfa

To validate the analytical results for incoherent demodulation, we generated Nsim =
1,000,000 simulation runs. In each simulation, a segment of length 16L, st, was
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randomly selected to transmit. This signal was multiplied by a random phase shift,
and Gaussian noise was added. The noisy signal was then correlated with the pilot
channel s, and the magnitude of the correlation was computed. The results were
then collected in the vector T0.

For each threshold t, Pfa was estimated as the proportion of T0 values exceeding
t. If fewer than 1000 samples exceeded t, Pfa was not estimated for that threshold
to ensure statistical reliability.
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Figure 6.16: Comparison of analytical and simulated Pfa for soft detection
incoherent demodulation.

Probability of Missed Detection (Pmd)

Analytical Pmd As previously described in Eq. (6.26), under the alternative
hypothesis H1, the test statistic T follows a Rician distribution with a non-centrality
parameter ν = 16L and variance 16Lσ2:

T ∼ Rice(ν = 16L, 16Lσ2)

Therefore, the probability of missed detection is given by:

Pmd = P (T < t | H1) = 1 − Q1

(
16L√
16Lσ2

,
t√

16Lσ2

)
(6.28)
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where Q1 is the Marcum Q-function of order 1.

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd)
in incoherent demodulation, we conducted a simulation with Nsim = 1,000,000
simulation runs. In each simulation run, the test statistic T1 was calculated by
finding the magnitude of the inner product of the pilot pattern s, including Gaussian
noise with variance σ2, with itself. The results were collected in the vector T 1.

For each threshold t, Pmd was estimated as the proportion of T 1 values falling
below t. If fewer than 1000 samples were below t, Pmd was not estimated for that
threshold to ensure the statistical reliability of the results.
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Figure 6.17: Comparison of analytical and simulated Pmd for soft detection
incoherent demodulation.

The figure shows the alignment between analytical and simulation results,
confirming the accuracy of the derived analytical expressions for the probability of
missed detection.
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Figure 6.18: ROC curve for soft detection incoherent demodulation.

6.4 Performance Analysis of LEO GNSS Pilot
Channel with Hard Detection

In this section, we provide a detailed analysis of the performance metrics for patterns
created using Serial Bicode DSSS in LEO GNSS applications. We evaluate the
system’s performance under both coherent and incoherent demodulation scenarios,
focusing on two key probabilities: the probability of false alarm (Pfa) and the
probability of missed detection (Pmd). This analysis emphasizes hard detection,
where each DSSS sequence is decoded, and decisions are made based on the resulting
sequence. Hard detection involves decoding the spreading sequences, computing
the Hamming distance between the received sequence and the expected pattern,
and making decisions accordingly.
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6.4.1 Coherent Demodulation
Scenario Description

We consider a scenario involving a pattern p:

p = (0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)

This pattern is spread using Serial Bicode DSSS to produce the pilot channel, where
bit 0 is mapped to c0 (legitimate code) and bit 1 to c1 (alternative code). Both c0
and c1 are sequences of length L, forming the sequence s:

s = (c0, c0, c0, c0, c0, c0, c0, c1, c0, c0, c0, c0, c0, c0, c0, c0)

We continuously transmit a signal s of length 16L over an AWGN channel and
check if the pattern p embedded within the received sequence is present a window
of length 16L.

• Null Hypothesis H0: The pattern p embedded within s is absent at the
receiver. The received signal does not contain the pattern.

• Alternative Hypothesis H1: The pattern p embedded within s is present
at the receiver.

We test the statistic T = dH(r, p), where r is obtained from a segment of length
16L after decoding each L bits to either 0 or 1 according to the Serial DSSS method
discussed before. Here, dH(·, ·) represents the Hamming distance.

Under H0
T = dH(r, p)

Following the same analysis we performed for the MEO case, and noticing that any
cyclic shift pt of pattern p, excluding the pattern itself, has a Hamming distance
dH(pt, p) = 2 , it can be shown that under H0, T is the sum of two binomial
distributions:

T = X + Y

where X ∼ Binomial(dH(pt, p) = 2, 1 − Pb) and Y ∼ Binomial(16 − dH(pt, p) =
14, Pb).

Then, under H0, the probability P (T0 = k) is:

P (T0 = k) =
min(2,k)∑

n=max(0,k−14)

(
2
n

)
(1 − Pb)nP 2−n

b

(
14

k − n

)
P k−n

b (1 − Pb)14−(k−n) (6.29)
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Under H1

Under H1, T1 follows a binomial distribution:

T1 ∼ Binomial(16, Pb)

The probability P (T1 = k) is given by:

P (T1 = k) =
(

16
k

)
(1 − Pb)16−kP k

b (6.30)

6.4.1.1 Probability of False Alarm (Pfa)

In this section, we provide the analytical expression for Pfa and compare it with
simulation results for hard detection coherent demodulation.

Analytical Pfa

For coherent demodulation hard detection, we compute the Hamming distance
between the decoded received sequence and p, and compare it to a threshold t. A
false alarm occurs when, under H0, the Hamming distance falls below the threshold
t.

Using (6.29) it can be shown that the probability of false alarm is given by:

Pfa = P (T < t|H0) = P (T0 < t)

=
t−1∑
k=0

min(2,k)∑
n=max(0,k−14)

(
2
n

)
(1 − Pb)nP 2−n

b

(
14

k − n

)
P k−n

b (1 − Pb)14−(k−n) (6.31)

Simulation of Pfa

To validate the analytical results for the probability of false alarm (Pfa), we
conducted a simulation with Nsim = 1,000,000 simulation runs. In each simulation
run, a pattern pt was selected randomly and encoded using serial bicode DSSS
to form the transmitted signal. Gaussian noise was added to the selected signal,
and the received signal was decoded by determining whether each L-chips segment
corresponds to a 0 or 1. The Hamming distance T0 between the decoded sequence
and the expected pattern p was calculated and stored in the vector T0.

For each threshold t, Pfa was estimated as the proportion of T0 values falling
below t. If fewer than 1000 samples fall below t, Pfa was not estimated for that
threshold to ensure statistical reliability.

Finally, we plot the simulation results against the analytical results to verify
the accuracy of the analytical expression for Pfa.
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Figure 6.19: Comparison of simulated and analytical Pfa for hard detection
coherent demodulation, demonstrating perfect alignment.

6.4.1.2 Probability of Missed Detection ((Pmd)

Analytic Pmd As previously described is Eq. (6.30), under the alternative
hypothesis H1, the test statistic T follows a binomial distribution:

T1 ∼ Binomial(16, Pb)

Therefore, the probability of missed detection is given by:

Pmd = P (T1 > t) = 1 −
t∑

k=0

(
16
k

)
(1 − Pb)16−kP k

b (6.32)

This formulation is used because t is typically much smaller than 16−k, simplifying
the calculation.

Simulation of Pmd

To validate the analytical results for the probability of missed detection (Pmd), we
conducted a simulation with Nsim = 1,000,000 simulation runs. In each simulation
run, the signal s was transmitted with added Gaussian noise having a variance
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σ2. The received signal was then decoded by assessing each L-chips segment. The
Hamming distance T1 between the decoded sequence and the expected pattern p
was computed and stored in the vector T1.

For each threshold t, Pmd was estimated as the proportion of T1 values exceeding
t. If fewer than 1000 samples exceeded t, Pmd was not estimated for that threshold
to maintain statistical reliability.

Finally, we plot the simulation results against the analytical results to verify
the accuracy of the analytical expression for Pmd.
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Figure 6.20: Comparison of simulated and analytical Pmd for hard detection
coherent demodulation
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Receiver Operating Characteristic (ROC) Curve
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Figure 6.21: ROC curve for hard detection coherent demodulation.

6.4.2 Incoherent Demodulation
Scenario Description

The scenario is identical to the coherent demodulation case, with the exception
that the probability of error Pb(e) is given in Eq. (3.2).

The subsequent analysis follows the same approach as in the coherent demodu-
lation case but with the modified error probability Pb.

Under H0

P (T0 = k) =
min(2,k)∑

n=max(0,k−14)

(
2
n

)
(1 − Pb)nP 2−n

b

(
14

k − n

)
P k−n

b (1 − Pb)14−(k−n) (6.33)

Under H1

P (T1 = k) =
(

16
k

)
(1 − Pb)16−kP k

b (6.34)
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6.4.2.1 Probability of False Alarm (Pfa)

Analytical Pfa

The analytical expression for Pfa in incoherent demodulation is similar to that
in coherent demodulation, with the modified error probability Pb, we now use Pb

given in Eq. (3.2). It is given by:

Pfa = P (T < t|H0) = P (T0 < t)

=
t−1∑
k=0

min(2,k)∑
n=max(0,k−14)

(
2
n

)
(1 − Pb)nP 2−n

b

(
14

k − n

)
P k−n

b (1 − Pb)14−(k−n) (6.35)

Simulation of Pfa

To validate the analytical expression for Pfa, a simulation with Nsim = 1,000,000
simulation runs was conducted. In each run, a cyclic shift of pattern p was randomly
selected and then encoded according to Serial Bicode DSSS to form the transmitted
signal. This signal was then modulated with random phase and combined with
Gaussian noise. The received signal was decoded to calculate the test statistic T0,
representing the Hamming distance from the expected pattern p. The results were
stored in the vector T0.

For each threshold t, Pfa was estimated as the proportion of T0 values falling
below t. If fewer than 1000 samples fell below t, Pfa was not estimated for that
threshold to ensure statistical reliability.

Finally, the simulation results were compared to the analytical results to ensure
their accuracy.
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Figure 6.22: Comparison of simulated and analytical Pfa for hard incoherent
demodulation.

6.4.2.2 Probability of Missed Detection (Pmd)

The probability of missed detection (Pmd) measures the likelihood that the receiver
fails to detect the presence of the pattern p embedded within the received signal
when it is actually present.

Analytical Pmd For the incoherent demodulation scenario, the analytical expres-
sion for Pmd is derived similarly to the coherent case, but with the modified error
probability specific to incoherent demodulation:

Pmd = P (T1 > t) = 1 −
t∑

k=0

(
16
k

)
(1 − Pb)16−kP k

b

Simulation of Pmd To validate the analytical expression for Pmd, a simulation
was performed with Nsim = 1,000,000 simulation runs. For each run, the pilot
channel s was modulated with random phase and Gaussian noise, then decoded to
compute the test statistic T1. The statistic T1 represents the Hamming distance
from the expected pattern p. The results were stored in the vector T1.
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For each threshold t, Pmd was estimated as the proportion of T1 values exceeding
t. If fewer than 1000 samples exceeded t, Pmd was not estimated for that threshold
to ensure statistical reliability.

Finally, the simulation results were compared to the analytical results to ensure
their accuracy.
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Figure 6.23: Comparison of simulated and analytical Pmd for hard incoherent
demodulation.
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Receiver Operating Characteristic (ROC) Curve
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Figure 6.24: ROC curve for hard incoherent demodulation.
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Chapter 7

Signal Acquisition for GNSS
Serial Bicode DSSS Pilot
Channels

7.1 Introduction

In the previous chapter, we examined the performance of block detection of pilot
channels utilizing Serial Bicode DSSS for both MEO and LEO GNSS systems.
Those analyses assumed that the Doppler shift and code delay values were already
estimated. It was assumed that the receiver was aligned with the short code,
facilitating a straightforward search and detection of the embedded patterns.

In this chapter, we turn our attention to the essential task of estimating the
Doppler shift and code delay values, enabling the receiver to synchronize with the
satellite signals. Unlike earlier scenarios, we no longer assume that the receiver is
already aligned with the short codes. Instead, the acquisition process now seeks to
determine these parameters, after which the receiver can decode and locate the
embedded patterns in the GNSS signals. In the subsequent analysis, to evaluate the
Cross-Ambiguity Function (CAF), we adopt the approach introduced in Chapter 4.
Specifically, we compute the squared modulus of the CAF across the entire search
space, accumulate these values over Nc coherent integrations, and then select
the maximum value to make our decision. (Note that this analysis can be easily
extended to other search strategies.) We begin by deriving a general model for
acquisition performance, followed by a comparison of analytical and simulated
results using the MEO and LEO pilot channels introduced by Garello in [1] and
presented in Chapter 5.
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7.2 General Framework

7.2.1 Introduction

In this section, we establish a general framework for analyzing the acquisition of
GNSS Serial Bicode DSSS pilot channels. The received signal at the output of the
front-end stage can be expressed as:

rx(t) = cr(t − τ) exp
(

2π
(
fIF + fD

)
t + Φ

)
+ nR(t) + j nI(t), (7.1)

where cr(t − τ) is the result of an unknown serial combination of the two codes
c0 and c1. The different possible code patterns that may arise from this serial
configuration will be discussed in detail in the following sections. The term fIF +fD

accounts for the sum of the intermediate frequency and Doppler shift, Φ is the
carrier phase, and nR(t)+j nI(t) represents complex-valued additive white Gaussian
noise (AWGN).

7.2.2 Statistical Modeling and Cell Probabilities

The basic elements of the performance evaluation in our analysis are the detection
and false alarm probabilities for a single cell of the non-coherent accumulation
output, hereinafter referred to as Pd and Pfa, respectively. However, the overall
performance depends on decisions made based on the entire search space. Conse-
quently, the overall detection and false alarm probabilities, denoted hereafter as
PD and PF A, respectively, are also evaluated.

We distinguish between two hypotheses:

• a null hypothesis, H0, where the signal is not present or does not align with
the local replica; and

• an alternative hypothesis, H1, where the signal is present and correctly aligned
with the local replica.

We assume that the ambiguity function is null in the absence of noise for τ̂n /= τ

and F̂dn /= Fd, where (τ, Fd) is the cell in which the signal is present and aligned.

Note: Discrete-time signals are denoted with square brackets (e.g., nR[i] =
nR(iTs)), omitting the explicit Ts.
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Statistical Characterization Under H0

Under H0, the received signal consists solely of noise. Hence, the nth cell of the
CAF in (4.3) is

Rn = R(τ̂n, F̂d,n) = 1
L

L∑
i=1

(
nR[i] + j nI [i]

)
c0[i − τ̂n] exp

(
−j2πF̂d,ni

)
, (7.2)

where nR[i] and nI [i] are the real and imaginary parts of the noise, assumed i.i.d.
Gaussian with zero mean and variance σ2 = N0

2 (N0 is the one-sided noise spectral
density).

By reformulating (7.2) as in (4.5), we can evaluate the variance of the real and
imaginary part as [30]

var[YR,n] = var
ℜ

 1
L

L∑
i=1

(
nR[i] + j nI [i]

)
c0[i − τ̂n]ej2πF̂d,ni




= 1
L2

L∑
i=1

var
{

nR[i] cos(2πF̂d,ni) − nI [i] sin(2πF̂d,ni)
}

= 1
L2

L∑
i=1

[
σ2 cos2(2πF̂d,ni) + σ2 sin2(2πF̂d,ni)

]
= σ2

L
.

Similarly

var [YI,n] = σ2

L
.

It follows that Yn = Y 2
R,n + Y 2

I,n with variance σ2
Y = σ2

L
. Therefore, Yn follows a

central scaled chi-square distribution with two degrees of freedom:
Yn ∼ σ2

Y χ2(2).
The non-coherent accumulation over Nc integrations then averages Nc indepen-

dent scaled chi-squared random variables, resulting in another scaled chi-squared
distribution with 2Nc degrees of freedom. The variance is σ2

Nc
= σ2

Y

Nc
= σ2

L Nc
:

Xn = 1
Nc

Nc∑
k=1

Yk,n ∼ σ2
Nc

χ2(2Nc).

The probability density function (PDF) under H0 is then:

fXn|H0(x) = 1
2 σ2

Nc

(
x

2 σ2
Nc

)Nc−1 1
Γ(Nc)

exp
(
− x

2 σ2
Nc

)
for x ≥ 0,

where Γ(·) is the gamma function.
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Cell Probability of False Alarm The probability of false alarm Pfa for a
single cell at a predefined threshold t is given by [31]:

Pfa(t) =
∫ ∞

t
fXn|H0(x) dx =

Γ
(

Nc,
t

2σ2
Nc

)
Γ(Nc)

, (7.3)

where Γ(s, x) is the upper incomplete gamma function.

Statistical Characterization Under H1

Under the H1 hypothesis, we consider the signal in the cell A, where the signal is
present and correctly aligned. In this case, the CAF in cell A can be defined as:

RA = 1
L

L∑
i=1

(
cr[i − τ ]ej(2πFdi+Φ) + nR[i] + jnI [i]

)
c0[i − τA]e−j2πF̂d,Ai (7.4)

where Φ is an unknown but constant carrier phase offset during the observation
interval. The term cr represents the possible code pattern in the observed signal
resulting from the unknown serial combination of c0 and c1. The possibilities of
which will be discussed in detail in the following sections.

Under this hypothesis, the real and imaginary parts of RA, denoted by YR,A and
YI,A, respectively, are no longer zero-mean. To show it, we begin by expressing the
expectation of the real part as

E[YR,A] = E

R

 1
L

L∑
i=1

(
cr[i − τ ] ej(2πFdi+Φ) + nR[i] + j nI [i]

)
c0[i − τA] e−j2πF̂d,Ai




H1= E

R

 1
L

L∑
i=1

cr[i − τ ] ej(2πFdi+Φ) c0[i − τ ] e−j2πFdi




= 1
L

L∑
i=1

cr[i − τ ] c0[i − τ ] R
{

ej(2πFdi+Φ) e−j2πFdi
}

= 1
L

L∑
i=1

cr[i − τ ] c0[i − τ ] R
{

ejΦ
}

= 1
L

L∑
i=1

cr[i − τ ] c0[i − τ ] cos(Φ) .

(7.5)

where (7.5) follows from the H1 assumption that F̂d,A = Fd and τA = τ .
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Similarly, for the imaginary part we get

E[YI,A] = 1
L

L∑
i=1

cr[i − τ ]c0[i − τ ] sin(Φ) .

Now, due to the presence of the alternative codes c1 in the pilot channel, cr

depends on the window where coherent integration is considered. We define cr,k

as the pattern found within the k-th coherent integration of the non-coherent
accumulation, and we introduce the parameter:

αk = 1
L

L∑
i=1

cr,k[i − τ ]c0[i − τ ] (7.6)

The variance of YR,A and YI,A is not affected by the presence of the useful signal
(a deterministic component). Hence:

YR,A ∼ N (αk cos(Φ), σ2

L
), (7.7)

and

YI,A ∼ N (αk sin(Φ), σ2

L
). (7.8)

Since the sum of the squares of two non-zero mean independent Gaussian random
variables leads to a non-central χ2 distribution, we have:

YA = Y 2
R,A + Y 2

I,A

YA ∼ χ2
nc,2(λk,

σ2

L
). (7.9)

where:

λk = E2
[
YR,A

]
+ E2

[
YI,A

]

=
(

1
L

L∑
i=1

cr,k[i − τ ]c0[i − τ ]
)2 (7.10)

Therefore, the final random variable XA, which is the output of the non-coherent
accumulation in cell A, is the average of Nc non-central χ2 random variables, each
with 2 degrees of freedom. This results in a non-central χ2 variable with 2Nc

degrees of freedom and a non-centrality parameter:

λ = 1
Nc

Nc∑
k=1

λk, (7.11)
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where λk is given in (7.10).

Possible Scenarios of cr

To compute the non-centrality parameter of XA, it is necessary to account for all
possibilities of cr within the coherent integration time and consequently for λk.

For a generic pilot channel constructed using Serial DSSS, three distinct scenarios
of cr are identified. These scenarios, labeled 1, 2, and 3 in Fig. 7.1, correspond to
λ(1), λ(2), and λ(3), respectively.

Figure 7.1: Illustration of the three possible scenarios of cr within the coherent
integration time.

1. Cyclic Shift of c0: In this case:

λ(1) =
 1

L

L∑
i=1

c2
0,i

2

= 1.

2. Cyclic Shift of c1: The value of λ(2) in this case depends on the cross-
correlation between c0 and c1, and can be expressed as:

λ(2) =
 1

L

L∑
i=1

S−τ
(

Sτ c1,i

)
c0,i

2

=
 1

L

L∑
i=1

c1,ic0,i

2

= ρ2
01.

(7.12)

where Sτ c1 denotes the cyclic shift of length τ of c1 and ρ01 is the normalized
cross-correlation between c0 and c1.
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3. Leakage from c1:
For this scenario, the amount of leakage clearly depends on the true delay τ .
We also notice that whenever c1 exists, there is leakage from c1 onto c0, as
well as leakage from c0 onto c1. The corresponding non-centrality parameters,
λ

(3)
(0→1) and λ

(3)
(1→0), are computed for these leakages. These scenarios are labeled

as 3 in Fig. 7.1. This leakage is independent of the length of runs of the
alternative code c1.
We define:

c01 = (c0, c1) = (c0,1, . . . , c0,i, . . . , c0,L,

c1,1, . . . , c1,i, . . . , c1,L),
(7.13)

where c0 and c1 are the short spreading codes. The cyclic shift by τ of c01 is
denoted as Sτ c01. For example:

S1c01 = (c1,L, c0,1, . . . , c0,i, . . . , c0,L,

c1,1, . . . , c1,i, . . . , c1,L−1).
(7.14)

We denote Sτ
L,1c01 as the first L entries of the cyclic shift of length τ of c01,

and we similarly denote Sτ
L,2c01 as the second L entries.

We define the leakage l(τ) as follows:

l(τ) = λ
(3)
0→1 + λ

(3)
1→0,

and

l(τ) =
 1

L

L∑
i=1

S−τ
(

Sτ
L,1c01,i

)
c0,i

2

+
 1

L

L∑
i=1

S−τ
(

Sτ
L,2c01,i

)
c0,i

2 (7.15)

The first term represents the cross product between the first L entries of the
cyclic shift of c01 by τ , where only these L entries are further cyclically shifted
by −τ , and the legitimate code c0. The second term is computed in exactly
the same way but uses the second L entries of the τ -shifted c01.
The leakage characterizes the normalized cross-correlation between the legiti-
mate code c0 and the received mixed code for a given delay τ (with the delay
determining the amount of the leakage), within cell A, where the legitimate
code itself is cyclically shifted by τ .
The term l(τ) is defined for the two cases of leakage together (1 → 0 and 0 → 1)
because they always coexist.
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Occurrence of Scenarios

the non-centrality parameter of the random variable characterizing the cell A in
the output of non-coherent integration depends on the occurrence of each scenario,
denoted N1 (number of occurrences of scenario 1), N2 (number of occurrences of
scenario 2), and N2 (number of occurrences of scenario 3), depends on Nc, the
number of runs of codes c1, denoted Nc1 , and the length of each run denoted Lc1,i

(the length of the i-th run of alternative codes). These quantities are related by
the following equations:

N3 = Nc1 , (7.16)

N2 =
Nc1∑
i=1

(
Lc1,i − 1

)
, (7.17)

N1 = Nc − 2N3 − N2. (7.18)

Therefore, the non-centrality parameter λ(τ) becomes:

λ(τ) = 1
Nc

(
N1λ

(1) + N3λ
(3) + N2λ

(2)
)

= 1
Nc

(
N1 + N3l(τ) + N2ρ

2
01

)
,

(7.19)

Since the delay τ is equally probable for any value, λ(τ) has a probability of 1
L

for each τ .

Having defined the non-centrality parameters and the number of occurrences
for each scenario, we now note that the number of occurrences N1, N2, and N3
depends on the specific segment of the pilot channel s being considered.

We extract from the pilot channel s all possible segments y of length Nc short
codes, aligned with the short codes. For each segment ym, we compute Nm

c1 , repre-
senting the number of runs of the alternative code c1 within the segment, and Lm

c1,i,
denoting the length of each run in segment ym. The total number of segments is
K, which corresponds to the number of short codes in s. The probability of each
segment is then by 1

K
.

For each ym, we then compute:

λm(τ) = 1
Nc

(
Nm

1 + Nm
3 l(τ) + Nm

2 ρ2
01

)
∀τ
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where Nm
1 , Nm

3 , and Nm
2 are computed using equations (7.18), (7.16), and (7.17)

respectively. Thus, the probability density function of the random variable XA is
given by:

fXA
(x) = 1

K

K∑
m=1

1
L

L∑
τ=1

1
2σ2/(LNc)

(
x

λm(τ)

)(Nc−1)/2

exp− x + λm(τ)
2σ2/(LNc)

INc−1


√

xλm(τ)
σ2/(LNc)

 (7.20)

x ≥ 0;

Important Note: When an alternative code appears at the edges of the non-
coherent accumulation window, each type of leakage may be introduced in two
different windows. Our analysis, however, combines both types of leakage within a
single window, leading to a slight overestimation of one non-centrality parameter
and a slight underestimation of the other. Despite this, the impact on the overall
non-centrality parameter remains minimal, particularly for long non-coherent accu-
mulation periods. Notably, when the non-coherent accumulation spans the entire
pilot channel, our analysis is exact since, in this case, shifts in the segments are
truly cyclic.

Cell Probability of Detection

Finally, we are able to compute the probability of detection Pd for a single cell for
a predefined threshold t:

Pd(t) =
∫ +∞

t
fXA

(x) dx

Pd(t) = 1
K

K∑
m=1

L∑
τ=1

1
L

QNc


√√√√ λm(τ)

σ2/(LNc)
,

√
t

σ2/(LNc)

 (7.21)

where QNc is the Marcum Q-function of order Nc.

7.2.3 Decision Probabilities

Building on the single-cell detection and false alarm probabilities Pd and Pfa, we
now derive the overall decision probabilities using the maximum search strategy.

81



Signal Acquisition for GNSS Serial Bicode DSSS Pilot Channels

Missed Detection Probability

A miss-detection occurs when the satellite is present but it is not detected. This
happens when no cell value exceeds the threshold, corresponding to the event that
all the random variables Xn are lower than the threshold t.

The miss-detection probability is given by

PMD(t) =
M∏

n=1
P (Xn < t)

where

P (Xn < t) =
1 − Pd(t) when XA /= Xn,

1 − Pfa(t) when XA = Xn,

Where Pd(t) and Pfa(t) are the single cell probabilities derived in 7.21 and 7.3
respectively. The miss-detection probability becomes:

PMD(t) = [1 − Pd(t)]
M−1∏
n=1

[1 − Pfa(t)]

= [1 − Pfa(t)]M−1[1 − Pd(t)]
(7.22)

Detection Probability

The overall detection probability PD(t), based on the maximum search strategy, is:

PD(t) = P
(

XA = max
n

{Xn}, XA > t
)

, (7.23)

PD(t) can then be expressed as [30]:

PD(t) =
∫ +∞

t
(1 − Pfa(x))M−1fXA

(x) dx (7.24)

Assuming small false alarm probabilities, Eq.(7.24) reduces to:

PD(t) ≈
∫ +∞

t
fXA

(x) dx = Pd(t) (7.25)
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False Alarm Probability

It is important to distinguish between the probability of false alarm of the decision
when the signal is absent P a

FA and when the signal is present P p
FA. The threshold

t is chosen based on P a
FA since it represents a more critical system performance

indicator [30]:

P a
FA(t) ≥ P p

FA(t) ∀t. (7.26)

The probability P a
F A, the false alarm probability of the decision adopting the

maximum strategy, is:

P a
F A(t) = P

(
max

n
(Xn) > t

)
= 1 − P

(
max

n
(Xn) < t

)M

= 1 − (1 − P (Xn > t))M = 1 − (1 − Pfa(t))M (7.27)

P a
FA(t) = 1 − (1 − Pfa(t))M (7.28)

The probability of false alarm of the decision when the signal is present P p
FAcan

be obtained by:

P p
FA(t) = 1 − PD(t) − PMD(t),

7.2.4 Simulation Results

MEO GNSS Pilot Channel

To validate the theoretical analysis, we performed simulations to estimate both the
false alarm probability PFA and the detection probability PD.

Probability of False Alarm Figure 7.2 shows the simulation results for PFA
alongside the analytical curve. The close agreement between the simulated and
theoretical results confirms the accuracy of the model.
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Figure 7.2: Simulation results for P a
FA compared with the analytical curve.

Probability of Detection Figure 7.3 presents the simulation results for PD
together with the theoretical curve. Once again, the perfect alignment between the
two indicates that the derived expressions accurately predict system performance.
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Figure 7.3: Simulation results for PD compared with the analytical curve.

LEO GNSS Pilot Channel

We also conducted simulations for the LEO GNSS pilot channel to validate our
theoretical predictions of PFA and PD.

Probability of False Alarm Figure 7.4 illustrates the simulated PFA values
alongside the corresponding analytical curve. The two show excellent alignment,
thereby confirming the validity of our model in a LEO scenario as well.
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Figure 7.4: Simulation results for P a
FA compared with the analytical curve.

Probability of Detection Figure 7.5 displays the simulation outcomes for PD
together with the analytical results. The agreement between the curves verifies the
robustness of the analytical model for a LEO environment.
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Figure 7.5: Simulation results for PD compared with the analytical curve.
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Chapter 8

Design of Pilot Channels for
MEO GNSS Systems

8.1 Introduction
In the previous chapters, we examined the construction and performance of pilot
channels for MEO GNSS systems based on the Serial Bicode DSSS approach as
presented by Garello [1]. While the existing designs are effective in resolving code
ambiguity, there is potential for exploring alternative pilot channel designs.

This chapter introduces well-considered alternative pilot channels designs that
aim to provide a balanced approach to both block transition detection and acquisi-
tion processes. These alternatives focus on achieving distinct patterns with sufficient
Hamming distances while maintaining efficient acquisition through thoughtful man-
agement of the number of alternative codes.

8.2 Design Considerations for New Pilot Chan-
nels

The design of the pilot channels is guided by three primary considerations:

1. Transition Detection Distinctiveness: The pilot channel is structured into
b blocks, the detection of each block allows the detection of a transition. To
ensure clear detection, the minimum Hamming distance is maximized between
each block pattern and all possible segments of the same length, enhancing
the distinctiveness of block.

2. Minimization of Alternative Codes: Fewer occurrences of the alterna-
tive code c1 within the channel are preferred, as this improves acquisition

88



Design of Pilot Channels for MEO GNSS Systems

performance.

3. Reduction of Consecutive Alternative Code Runs: Reducing consec-
utive runs of the alternative code (c1) contributes to improved acquisition
performance.

Balancing Trade-Offs A reduction in the alternative code count, while beneficial
for acquisition, tends to lower the minimum Hamming distance between each
transition pattern and all possible segments, potentially impacting transition
detection accuracy. However, through careful channel design, it is possible to find
a balance that achieves satisfactory performance in both areas.

8.2.1 Optimization-Based Design Approach
The pilot channel design is framed as an optimization problem. The optimization
goal is to maximize the minimum Hamming distance between each of the 1-block
patterns and all possible shifts of equal length, enhancing transition distinctiveness.
For acquisition efficiency, rather than minimizing the average number of alternative
code runs (which would complicates the problem), the focus is on reducing the
overall count of alternative codes (c1) within each block, with transition detection
optimized under this constraint.

The result is a binary pattern when mapped to legitimate and alternative codes
per Serial DSSS principles, it forms the pilot channel.

8.2.2 Modeling of the Problem
The pilot channel optimization problem is formulated using the following parameters,
decision variables, and constraints:

8.2.3 Parameters
• K: Length of the binary pattern p.

• B: Block length within the binary pattern.

• m: Number of ones per block.

• b = K
B

: Number of blocks.

8.2.4 Decision Variables
• p: Binary pattern with pi representing the i-th bit, where pi ∈ {0, 1} for

i = 1, 2, . . . , K.
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8.2.5 State Variables
• P: Matrix where each row is a 1-block pattern:

P =


p1 . . . . . . . . . . . . pB

pB+1 . . . . . . . . . . . . p2B
... ... ... ... ... ...

p(b−1)B+1 . . . . . . . . . . . . pbB


• S: Matrix containing all segments of length B in p:

S =



p1 . . . . . . pB

p2 . . . . . . pB+1
... ... ... ...

p(b−1)B+1 . . . pbB p1
... ... ... ...

pbB p1 . . . pB−1


• Z ∈ Z: Integer for the maximum dot product between any 1-block pattern

and any 1-block long shift of p (excluding itself).

8.2.6 Problem Formulation
min Z

subject to:

(i+1)B∑
j=iB+1

pj = m, ∀i = 0, 1, . . . , (b − 1),

Z ≥ Pi · ST
j , ∀i = 1, 2, . . . , b, ∀j = 1, . . . , K,

j /= (i − 1)B + 1.

8.3 Pilot Channel Presentation
For the presented pilot channel, the following parameters were selected:

• K = 320: Total length of the binary pattern.

• B = 64: Length of each block within the binary pattern.
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• b = K
B

= 5: Total number of blocks.

The pilot channel optimization problem was solved using the Gurobi optimizer
with a time limit given the challenge of achieving optimal convergence due to the
problem’s complexity. The solutions presented here, while not optimal, provide
considerable improvements over the original channel.

We introduce three distinct pilot channel designs:

• Channel A: Enhanced Acquisition - This design prioritizes acquisition
performance with m = 8 (ones per block), facilitating improved signal acquisi-
tion.

• Channel B: Enhanced Transition Detection - Focused on block transition
distinctiveness, this design sets m = 12, enhancing detection accuracy for
transitions.

• Channel C: Balanced Design - This design balances acquisition efficiency
and transition detection accuracy, setting m = 10 to achieve a compromise
between the two objectives.

The three pilot channel designs are illustrated in Fig. 8.1, where orange indicates
a ’1’ and blue indicates a ’0’. In these designs, ’1’ is mapped to the alternative
code (c1), and ’0’ is mapped to the legitimate code (c0), forming the complete pilot
channel.

Block 1 Block 2 Block 3 Block 4 Block 5

Channel A:

Channel B:

Channel C:

Figure 8.1: Visualization of the three pilot channel designs: Channel A, Channel
B, and Channel C. Orange represents ’1’ (mapped to the alternative code), and
blue represents ’0’ (mapped to the legitimate code).

8.3.1 Channel A: Enhanced Acquisition
Channel A is tailored to improve acquisition by reducing the presence of alternative
codes (c1) in each block. With m = 8, this design facilitates efficient acquisition
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performance by limiting the number of ones. Although fewer runs of c1 codes
could further enhance acquisition, this would increase optimization complexity as
discussed before. Instead, the focus here remains on minimizing the maximum dot
product to aid in block transition detection.

Performance of Channel A The ROC curve in Fig. 8.2 compares Channel A’s
transition detection performance to the original pilot channel.

10-20 10-15 10-10 10-5 100

10-4

10-3

10-2

10-1

100

Channel Original
Channel A
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Figure 8.2: ROC curve for Channel A, comparing transition patterns with the
original channel.

The acquisition performance of Channel A, shown in Fig. 8.3, illustrates its
balance between detection accuracy and acquisition efficiency, highlighting its
effective compromise.
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Figure 8.3: Acquisition performance comparison between the original and Channel
A, showing detection probability (PD).

8.3.2 Channel B: Improved Block Transition Detection

Channel B is designed to maximize the distinctiveness of block transitions, with
m = 12 to ensure highly distinguishable transitions for accurate detection.

Performance Comparison The ROC curve in Fig. 8.4 compares Channel B’s
transition detection performance to the original pilot channel, highlighting its
enhanced distinctiveness for block transitions.
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Figure 8.4: ROC curve for Channel B, comparing transition patterns with the
original channel.

The acquisition performance of Channel B, shown in Fig. 8.5, illustrates
the trade-off, where enhanced transition detection slightly impacts acquisition
performance.
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Figure 8.5: Acquisition performance comparison between the original and Channel
B, showing detection probability (Pd).

8.3.3 Channel C: Balanced Approach

Channel C provides a compromise between acquisition efficiency and transition
detection accuracy, with m = 10 to balance both aspects.

Performance Comparison The ROC curve in Fig. 8.6 compares Channel C’s
transition detection performance to the original pilot channel, highlighting its
balance between distinct transitions and acquisition efficiency.
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Figure 8.6: ROC curve for Channel C, comparing transition patterns with the
original channel.

The acquisition performance for Channel C, shown in Fig. 8.7, illustrates its
balanced approach, maintaining reasonable performance in both acquisition and
transition detection.
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Figure 8.7: Acquisition performance comparison between the original and Channel
C, showing detection probability (Pd).
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Chapter 9

Conclusion and Future Work
This thesis has presented a comprehensive treatment of Serial Bicode/Multicode
DSSS pilot channels, including derivations of error performance under coherent
demodulation, analytical frameworks to evaluate the performance of pilot channels
employing Serial Bicode DSSS, and a novel approach to channel design by treating
the design as an optimization task. The results confirm the potential of embedding
additional codes within a single pilot channel to expedite synchronization tasks,
particularly under challenging satellite navigation conditions in both MEO and
LEO orbits.

While the proposed design methodology demonstrates significant performance
gains, there remain several avenues for refinement and further research:

• Enhanced Optimization: The proposed Algorithm for selecting the code
blocks may be improved by adopting refined solvers or heuristics. Alter-
natively, more advanced techniques—such as integer programming or meta-
heuristics—could be explored.

• Machine Learning for Transition Detection: Transition detection in
block-structured pilot signals may benefit from modern machine learning
techniques. Neural network architectures, or lightweight denoising models
coupled with conventional correlators, could potentially reduce false alarms
and improve performance under various conditions.

• Personalized Local Code for Extended Coherent Integration: A
carefully optimized local reference code, tailored for the bicode structure, could
enable extended coherent integration times in the cross ambiguity function.
Increasing coherent processing intervals could further enhance acquisition
performance in low-SNR scenarios.

Collectively, these proposed directions promise to further advance the design
and performance of Serial Bicode/Multicode DSSS pilot channels, offering new
ways to meet the requirements of next-generation satellite navigation systems.

98



Bibliography

[1] R. Garello. «Serial Multicode Direct Sequence Spread Spectrum with Appli-
cations to Satellite Navigation Pilot Channels». In: IEEE Transactions on
Communications (2023) (cit. on pp. ii, 1, 2, 4–6, 8, 27, 28, 30, 31, 73, 88).

[2] Elliott D. Kaplan and Christopher J. Hegarty. Understanding GPS/GNSS:
Principles and Applications. 3rd. Artech House, 2017 (cit. on pp. 1, 22, 26).

[3] Peter Teunissen and Oliver Montenbruck. Springer handbook of global naviga-
tion satellite systems. Springer, 2017 (cit. on p. 1).

[4] Daniele Borio. «GNSS Data/Pilot Combining with Extended Integrations for
Carrier Tracking». In: Sensors 23.8 (2023). doi: 10.3390/s23083932 (cit. on
p. 1).

[5] Kannan Muthuraman. «Tracking Techniques for GNSS Data/Pilot Signals».
PhD thesis. Calgary, Canada: University of Calgary, Jan. 2010 (cit. on p. 1).

[6] Stefan Wallner et al. «Quasi-Pilot Signal Design – Facilitating New Signal
Processing Concepts». In: Proceedings of the 34th International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+
2021). 2021, pp. 1859–1876. doi: https://doi.org/10.33012/2021.17981
(cit. on p. 1).

[7] Marco Anghileri, Matteo Paonni, Stefan Wallner, Jose-Angel Avila-Rodriguez,
and Bernd Eissfeller. «Estimating the Time-To-First-Fix for GNSS Signals
Theory and Simulation Results». In: European Navigation Conference (ENC
GNSS) Proceedings. Toulouse, France, Jan. 2008 (cit. on p. 1).

[8] Don Torrieri. Principles of Spread-Spectrum Communication Systems. Switzer-
land AG 2022: Springer Cham, 2022. doi: https://doi.org/10.1007/978-
3-030-75343-6 (cit. on p. 1).

[9] Chih-Lin I and R.D. Gitlin. «Multi-code CDMA wireless personal com-
munications networks». In: Proceedings IEEE International Conference on
Communications ICC ’95. Vol. 2. 1995, 1060–1064 vol.2. doi: 10.1109/ICC.
1995.524263 (cit. on p. 1).

99

https://doi.org/10.3390/s23083932
https://doi.org/https://doi.org/10.33012/2021.17981
https://doi.org/https://doi.org/10.1007/978-3-030-75343-6
https://doi.org/https://doi.org/10.1007/978-3-030-75343-6
https://doi.org/10.1109/ICC.1995.524263
https://doi.org/10.1109/ICC.1995.524263


BIBLIOGRAPHY

[10] Dong In Kim. «Optimum packet data transmission in cellular multirate CDMA
systems with rate-based slot allocation». In: IEEE Transactions on Wireless
Communications 3.1 (2004), pp. 165–175. doi: 10.1109/TWC.2003.821160
(cit. on p. 1).

[11] Rajan Kapoor and Preetam Kumar. «Multicode CDMA/CI for multimedia
services over LEO satellite channel». In: 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). 2014,
pp. 301–304. doi: 10.1109/ICACCI.2014.6968464 (cit. on p. 1).

[12] Sagheer Khan, Muhammad Zeeshan, and Yasar Ayaz. «Implementation and
analysis of MultiCode MultiCarrier Code Division Multiple Access (MC–MC
CDMA) in IEEE 802.11ah for UAV Swarm communication». In: Physical
Communication 42 (2020), p. 101159. issn: 1874-4907. doi: https://doi.
org/10.1016/j.phycom.2020.101159 (cit. on p. 1).

[13] D. Torrieri. Principles of Spread-Spectrum Communication Systems. Springer,
2005 (cit. on pp. 3, 5).

[14] John G. Proakis and Masoud Salehi. Digital Communications. 5th. McGraw-
Hill, 2007. isbn: 978-0072957167 (cit. on pp. 7, 14).

[15] Pratap Misra and Per Enge. Global Positioning System: Signals, Measurements
and Performance. 2nd. Ganga-Jamuna Press, 2006 (cit. on p. 22).

[16] Kai Borre, Dennis M. Akos, Nicolaj Bertelsen, Peter Rinder, and Soren Holdt
Damm. A Software-Defined GPS and Galileo Receiver: A Single-Frequency
Approach. Birkhauser, 2007 (cit. on p. 22).

[17] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS - Global Navi-
gation Satellite Systems: GPS, GLONASS, Galileo & more. Springer, 2008
(cit. on p. 22).

[18] James Bao-Yen Tsui. GPS Fundamentals and Applications. John Wiley &
Sons, 2005 (cit. on p. 22).

[19] European Space Agency (ESA). Front End. Navipedia. 2024. url: https:
//gssc.esa.int/navipedia/index.php/Front_End (cit. on p. 23).

[20] J. Leclère. «Resource-efficient parallel acquisition architectures for modernized
GNSS signals». Ph.D. Thesis. PhD thesis. Ecole Polytechnique Fédérale de
Lausanne (EPFL), 2014 (cit. on p. 23).

[21] B. Motella and L. Lo Presti. «The Math of Ambiguity: What is the acquisition
ambiguity function and how is it expressed mathematically?» In: Inside GNSS
5 (2010), pp. 20–28 (cit. on p. 23).

100

https://doi.org/10.1109/TWC.2003.821160
https://doi.org/10.1109/ICACCI.2014.6968464
https://doi.org/https://doi.org/10.1016/j.phycom.2020.101159
https://doi.org/https://doi.org/10.1016/j.phycom.2020.101159
https://gssc.esa.int/navipedia/index.php/Front_End
https://gssc.esa.int/navipedia/index.php/Front_End


BIBLIOGRAPHY

[22] M. Foucras, J. Leclère, C. Botteron, O. Julien, C. Macabiau, et al. «Study on
the cross-correlation of GNSS signals and typical approximations». In: GPS
Solutions (2016). hal-01353985. doi: 10.1007/s10291-016-0556-7 (cit. on
p. 23).

[23] Phillip W. Ward, John W. Betz, and Christopher J. Hegarty. Satellite Signal
Acquisition, Tracking, and Data Demodulation. Vol. 1. Understanding GPS
Principles and Applications. Within Understanding GPS Principles and Ap-
plications, edited by Elliott D. Kaplan and Christopher J. Hegarty. Artech
House, 2006 (cit. on p. 24).

[24] M. L. Psiaki, H. Jung, and P. M. Kintner. «Design of a GPS Software
Receiver: A Case Study». In: GPS Solutions 4.4 (2001), pp. 30–46. doi:
10.1007/PL00012854 (cit. on p. 24).

[25] Fabio Dovis. GNSS Interference Threats and Countermeasures. Artech House,
2015. isbn: 978-1608078100 (cit. on pp. 24, 26).

[26] Pratap Misra and Per Enge. Global Positioning System: Signals, Measure-
ments, and Performance. 2nd. Ganga-Jamuna Press, 2011. isbn: 978-0970954428
(cit. on p. 26).

[27] A. J. Van Dierendonck. «GPS Receivers». In: Global Positioning System:
Theory and Applications. Ed. by Bradford W. Parkinson and James J. Spilker.
Vol. 1. American Institute of Aeronautics and Astronautics, 1996, pp. 329–407
(cit. on p. 26).

[28] Il Heung Choi, Sang Hyun Park, Deuk Jae Cho, Sang Jun Yun, Young Baek
Kim, and Sang Jeong Lee. «A novel weak signal acquisition scheme for assisted
GPS». In: Proceedings of the 15th International Technical Meeting of the
Satellite Division of The Institute of Navigation (ION GPS 2002). Sept. 2002
(cit. on p. 26).

[29] Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory. Prentice Hall, 1998. isbn: 978-0135041352 (cit. on p. 34).

[30] Daniele Borio. «A Statistical Theory for GNSS Signal Acquisition». Ph.D.
Thesis. PhD thesis. Department of Electronics and Telecommunications:
Politecnico di Torino, Jan. 2007 (cit. on pp. 75, 82, 83).

[31] L. Musumeci, F. Dovis, Pedro F. Silva, Hugo D. Lopes, and João S. Silva.
«Design of a very High Sensitivity acquisition system for a space GNSS
receiver». In: 2014 IEEE/ION Position, Location and Navigation Symposium
- PLANS 2014. 2014, pp. 556–568. doi: 10.1109/PLANS.2014.6851417
(cit. on p. 76).

101

https://doi.org/10.1007/s10291-016-0556-7
https://doi.org/10.1007/PL00012854
https://doi.org/10.1109/PLANS.2014.6851417


BIBLIOGRAPHY

[32] Cillian O’Driscoll. «Performance Analysis of the Parallel Acquisition of Weak
GPS Signals». Ph.D. Thesis. PhD thesis. Department of Electrical and Elec-
tronic Engineering: National University of Ireland, Cork, Jan. 2007.

[33] Elliott Kaplan and Christopher Hegarty. Understanding GPS: principles and
applications. Artech House, 2005.

[34] Elliott Kaplan and Christopher Hegarty. Understanding GPS/GNSS: Princi-
ples and Applications. Artech House, 2017.

[35] Roberto Garello. «Serial Multicode Direct Sequence Spread Spectrum With
Applications to Satellite Navigation Pilot Channels». In: IEEE Communi-
cations Letters 28.11 (2024), pp. 2603–2607. doi: 10.1109/LCOMM.2024.
3457693.

[36] P. Henkel. «Precise Point Positioning with Kepler». In: 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall). 2019, pp. 1–5.

[37] B. T. Fang. «Geometric dilution of precision in Global Positioning System
navigation». In: Journal of Guidance and Control 4.1 (1981), pp. 92–94. doi:
10.2514/3.19719.

[38] Peter Teunissen and Oliver Montenbruck, eds. Springer Handbook of Global
Navigation Satellite Systems. Cham, Switzerland: Springer, 2017.

[39] Philip Mayne Woodward. Probability and Information Theory, with Applica-
tions to Radar. Dedham, Mass.: Artech House, 1980.

[40] Parisa Borhani-Darian, Haoqing Li, Peng Wu, and Pau Closas. «Deep Learning
of GNSS Acquisition». In: Sensors 23.3 (2023), p. 1566. doi: 10.3390/
s23031566.

102

https://doi.org/10.1109/LCOMM.2024.3457693
https://doi.org/10.1109/LCOMM.2024.3457693
https://doi.org/10.2514/3.19719
https://doi.org/10.3390/s23031566
https://doi.org/10.3390/s23031566

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Serial Multicode DSSS
	Direct Sequence Spread Spectrum (DSSS)
	Serial Multicode DSSS
	Serial Bicode DSSS
	Serial Multicode DSSS

	Extension to Code Division Multiple Access (CDMA)

	Serial Bicode/Multicode DSSS Performance
	Introduction
	Incoherent Demodulation
	Serial Bicode/Multicode DSSS Performance for Incoherent Demodulation
	Serial Bicode DSSS
	Serial Multicode DSSS
	Performance Analysis of Serial Multicode DSSS with Orthogonal Spreading Codes

	Coherent Demodulation
	Serial Bicode/Multicode DSSS Performance for Coherent Demodulation
	Serial Bicode DSSS
	Serial Multicode DSSS


	GNSS Background
	Introduction
	Receiver Architecture
	Front-End
	Signal Model at the Front-End Output

	Acquisition Stage
	Signal Acquisition Process
	Non-Coherent Integration


	Application of Serial Multicode DSSS to Pilot Channel Construction
	Introduction
	MEO GNSS Application
	Scenario Overview
	Construction of Serial Bicode DSSS Pilot Channel for MEO GNSS

	LEO GNSS Application
	Scenario Overview
	Construction of Serial Bicode DSSS Pilot Channel for LEO GNSS


	Block Transition Detection
	Block Transition Detection of MEO GNSS Pilot Channel with Soft Detection
	coherent Demodulation
	Incoherent Demodulation

	Performance Analysis of MEO GNSS Pilot Channel with Hard Detection
	Coherent Demodulation
	Incoherent Demodulation

	Performance Analysis of LEO GNSS Pilot Channel with Soft Detection
	Coherent Demodulation
	Incoherent Demodulation

	Performance Analysis of LEO GNSS Pilot Channel with Hard Detection
	Coherent Demodulation
	Incoherent Demodulation


	Signal Acquisition for GNSS Serial Bicode DSSS Pilot Channels
	Introduction
	General Framework
	Introduction
	Statistical Modeling and Cell Probabilities
	Decision Probabilities
	Simulation Results


	Design of Pilot Channels for MEO GNSS Systems
	Introduction
	Design Considerations for New Pilot Channels
	Optimization-Based Design Approach
	Modeling of the Problem
	Parameters
	Decision Variables
	State Variables
	Problem Formulation

	Pilot Channel Presentation
	Channel A: Enhanced Acquisition
	Channel B: Improved Block Transition Detection
	Channel C: Balanced Approach


	Conclusion and Future Work
	Bibliography

