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Abstract

In a context where robotics and autonomous vehicles are becoming increasingly cen-
tral in industry and research, this thesis presents the development of an autonomous
driving system for Yahboom ROSMASTER X3 educational robot.

The main objective is the implementation of a rover capable of autonomously
following a line and recognising road signs by integrating sensor fusion techniques
between Light Detection And Ranging (LiDAR) and a depth camera. This combi-
nation allows the robot to obtain a more accurate perception of its surroundings,
enhancing navigation adaptability to complex scenarios.

The system is based on Robot Operating System (ROS)2 and exploits a hardware
platform consisting of an NVIDIA Jetson Nano for image processing and autonomous
navigation and Mecanum wheels that provide omnidirectional mobility, improving
the robot manoeuvring capabilities. Computer vision plays a key role in traffic sign
recognition, implemented via a MobileNetV2 Single Shot multiBox Detector (SSD)
deep learning model, suitably trained on a customised dataset. The software pipeline
includes the implementation of navigation algorithms, Message Queuing Telemetry
Transport (MQTT) communication for remote management, and integration with
ROS2 to ensure modularity and efficiency.

After the assembly and configuration phase of the rover, the system was subjected
to several tests to evaluate performance in real navigation scenarios for signal recog-
nition, stability in line tracking, and responsiveness to environmental variations.

The results obtained demonstrate that the integration of sensor fusion and ma-
chine learning within a ROS2 architecture allows a significant improvement in the
robot autonomous capabilities. This work represents a contribution to research on
robotic navigation systems, highlighting the potential of advanced perception tech-
nologies for real-world applications in dynamic environments.
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Chapter 1

Introduction

This thesis is developed as part of a collaborative effort with Fabio Marchisio who
worked on the Master thesis Autonomous Robot Driving using Sensor Fusion [1].

1.1 Objectives

The main goal of this thesis is to develop an autonomous driving system for a robot,
which allows it to autonomously follow a line while recognising and responding to
traffic signs. The system integrates sensor fusion, combining data from LiDAR and
a camera, along with computer vision techniques. This integration enhances the per-
ception of the robot in its environment, allowing it to navigate reliably and perform
complex manoeuvres facilitated by its omnidirectional Mecanum wheels. The fusion
of LiDAR and camera data compensates for the limitations inherent in individual
sensors, providing a more comprehensive understanding of the surroundings [2].

In addition to sensor fusion, the system incorporates computer vision algorithms
to detect and interpret traffic signs, improving the decision-making process of the
robot and enabling it to adjust its trajectory accordingly.

The robot used in this thesis is the ROSMASTER X3, an educational robot
developed by Shenzhen Yahboom Technology Co., specifically designed for exploring
the ROS environment and advancing robotics research [3]. The ROSMASTER X3
is equipped with high-performance hardware modules, including LiDAR, a depth
camera, and a voice interaction module. Its aluminium alloy chassis and Mecanum
wheels facilitate 360° omnidirectional movement, rendering it an ideal platform for
developing and testing autonomous driving systems [4].

1.2 Overview and Motivations

Autonomous navigation has become a fundamental topic in the field of robotics, with
applications spanning industrial automation, smart transportation, and assistive
robotics. The capacity of a robot to move autonomously on a path and make
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dynamic adjustments for obstacles is a significant advancement towards developing
more sophisticated autonomous systems.

The demand for intelligent robotic systems capable of sensing, comprehending,
and responding appropriately is increasing. Standard line following robots rely on
vision or sensor-based tracking, but often encounter challenges in diverse environ-
ments, occlusions, and real-world conditions. The integration of intelligent artificial
technology aims to enhance the robustness of autonomous robots, demonstrating
the potential for combining machine learning and robotics to develop advanced nav-
igation systems [5].

Beyond navigation, autonomous robotics hold significant potential in various in-
dustrial sectors. In the field of manufacturing, autonomous robots facilitate the
efficient transportation of goods within warehouses and production lines. In the
context of urban mobility, self-driving vehicles employ advanced navigation prin-
ciples to enhance transportation safety and efficiency [6]. Furthermore, assistive
robots equipped with intelligent navigation systems can support individuals with
disabilities, facilitating movement in controlled environments and improving overall
accessibility.

The integration of Machine Learning and Robotics will continue to evolve, driving
further advancements in autonomy. The development of more robust and adaptive
autonomous robots will further the safer, faster and smarter automation in other
research areas as research progresses.

1.3 Thesis Outline

This thesis is divided into seven chapters, each covering a specific aspect of the
research and development process:

Chapter 1 introduces the goals and the context of the project, providing a back-
ground information on key concepts of autonomous driving and the thesis structure.

Chapter 2 presents a comprehensive review of the existing technologies perti-
nent to the project, encompassing an introduction to ROS, a comparative analysis
of ROS1 and ROS2, an overview of LiDAR and depth camera technologies, and
the application of machine learning in object detection, specifically utilising SSD
MobileNetv2 for traffic sign recognition.

Chapter 3 describes the hardware components used in the project, including the
Jetson Nano, LiDAR, sensors, motors, and camera. It also covers the assembly of
the rover and the system configurations required for development, such as Visual
Studio Code (VS Code), Secure Shell Protocol (SSH), and Docker setup.

Chapter 4 explains the process of preparing a custom dataset, training the SSD
MobileNetv2 model, and evaluating the performance of the model using standard
metrics.

Chapter 5 provides an in-depth discussion of the software framework, including
the ROSMaster library, Python scripts for line following and traffic sign detection,
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ROS2 scripts, and MQTT communication. The chapter also explains the environ-
ment setup and launch files.

Chapter 6 presents the testing scenarios, evaluates the performance of the rover,
and discusses encountered issues and possible improvements.

Chapter 7 summarises the results, highlights system limitations, and suggests
potential extensions of the project. The chapter also explores practical applications
and the broader impact of this research.
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Chapter 2

State of the Art

2.1 ROS

Robot Operating System (ROS) is an open source framework, used in the field of
robotics, that defines the components, interfaces and tools for building advanced
robots. Initially created in 2007 by Willow Garage, ROS has revolutionised the
approach to the development of robotic systems by providing a flexible, modular
and scalable platform that facilitates the design, implementation and testing of
complex robotic algorithms [7] [8]. It supports a federated system reminiscent of
code repositories, thus facilitating collaboration and dissemination of projects. This
means that individual projects can be developed and executed independently, while
being fully integrated with the core tools provided by ROS.

Currently, ROS is designed to run exclusively on Unix-based platforms. Although
its software is mainly tested on Ubuntu and macOS systems, the ROS community
has helped extend support to other Linux distributions, including Fedora, Gentoo
and Arch Linux [8].

2.1.1 Architecture of ROS

ROS has three levels of concepts: the filesystem level, the computing graph level
and community level [9].
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Filesystem level

Figure 2.1: Filesystem Level of ROS.

The Filesystem layer, shown in Figure 2.1 [10], comprises the primary resources
stored on disk, which are essential for organising and managing software components.
These resources include:

• Meta packages: A specialised type of package that serves as a logical group-
ing of related packages. Meta packages are often used to maintain backward
compatibility for projects that have moved from older ROS build systems, such
as rosbuild stacks.

• Packages: The fundamental unit of software organisation in ROS. A package
may contain runtime processes (nodes), libraries, data sets, configuration files
or any other related resource. Packages are the smallest unit that can be built
and released within ROS, making them the most atomic element of the system.

• Package manifests: Each package includes a manifest file (package.xml),
which provides essential metadata such as package name, version, description,
licence details, dependencies and additional exported information.

• Messages: Message files define the structure of data exchanged between nodes
in ROS. These descriptions are stored in the package directory, following the
format my package/msg/MyMessageType.msg.

• Services: Services in ROS enable synchronous communication between nodes
by defining request and response structures [10] [8].

6
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Computation Graph Level

Figure 2.2: The computation Graph Level of ROS.

The ROS Computation Graph, in Figure 2.2 [10], is a peer-to-peer network of ROS
processes that work together to process data. The main concepts of the ROS Com-
putation Graph are nodes, the Master, the Parameter Server, Messages, Services,
Topics and Bags. Each of these components plays a role in the flow of data through
the system [9].

• Nodes: Nodes are the individual processes responsible for computation in
ROS. A robotic control system usually consists of several nodes, each of which
performs a specific task, such as controlling a sensor (e.g. a laser rangefinder),
motors, localisation or path planning. The nodes are implemented using ROS
client libraries such as roscpp or rospy.

• Master: The ROS Master is responsible for registration and name look-up,
enabling nodes to find each other, exchange messages and invoke services. The
Master facilitates dynamic connections between nodes when they are added or
removed. Although the Master helps nodes find each other, it does not directly
manage communication between them. Nodes that subscribe to a topic connect
to nodes that publish that topic. This connection is made via a protocol based
on standard TCP/IP sockets.

• Parameter Server: The Parameter Server stores data in a central location,
identified by a key. It is part of the Master and is used to share configuration
or parameter data between the various nodes.

• Messages: Messages are the fundamental unit of communication between
nodes. They are data structures composed of fields of specific types, such
as integers, floating-point numbers, Booleans and arrays. Messages can include
complex structures and nested arrays, similar to C structures.
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• Topics: They are used for communication via a publish/subscribe model. A
node sends messages by publishing them on a topic and other nodes can sub-
scribe to the topic to receive the data. Multiple publishers and subscribers may
exist for a single topic. This model decouples the production of information
from its consumption, providing flexibility to the system.

• Services: While the publish/subscribe model is ideal for many-to-many com-
munication, it is not suitable for request/reply interactions. For such interac-
tions, ROS uses services, which involve a pair of messages: one for the request
and one for the response. A service provider node offers a service with a name
and a client node sends a request message and waits for a response.

• Bags: Bags are used to store and replay ROS message data. They are essential
for storing data that might be difficult to collect but are important for algorithm
development and testing, such as sensor data.

This structure allows flexibility and decoupling. For example, a node that pub-
lishes data does not need to know which nodes subscribe to it and vice versa. This
decoupling makes it easier to modify or expand the system. For example, if we add
another sensor, we only have to re-attribute the names of the topics to which nodes
subscribe or publish, instead of making changes to the nodes themselves [8] [9].

Community Level

At the community level, several resources facilitate the exchange of software and
knowledge within the ROS ecosystem. These include:

• Distributions: Much like Linux distributions, ROS distributions group spe-
cific sets of software versions together, facilitating installation and ensuring
consistent versions across multiple components.

• Repositories: ROS uses a federated network of code repositories where differ-
ent institutions can develop and release their own robot software components.

• ROS Wiki: The community Wiki is the main platform for documenting in-
formation on ROS. It is an open space for anyone who wants to contribute by
creating tutorials, providing corrections or updating existing documentation.

• Bug reporting system: This is the place where tickets can be submitted to
report problems or bugs of ROS.

• Discussion lists: The ros-users mailing list is the main means of communica-
tion for updates on ROS and a forum to discuss software-related questions.

• ROS Answers: A dedicated Q&A platform where users can ask and answer
ROS-related questions.
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• Blog: The official ROS blog provides regular updates, including pictures and
videos, offering insights into new developments and community events.

2.1.2 ROS2

ROS2 represents the second generation of the Robot Operating System. It is an
enhanced version of ROS1, specifically designed to address several of the issues
and limitations present in the previous system. This version introduces a more
robust and flexible framework for creating robotic applications, providing improved
functionality and addressing major challenges:

• Platform Support: ROS1 primarily supports Linux, with some support for
Mac OS and Windows. ROS 2 extends support to multiple platforms, including
Windows 10 and Mac OS X, broadening its applicability.

• Distributed architecture: In ROS1, the communication relies on a central
master node that manages the registration of nodes and facilitates their commu-
nication. This master-slave architecture can become a bottleneck in large-scale
systems. In contrast, ROS2 adopts a distributed architecture based on the
Data Distribution Service (DDS), that plays a central role in the ROS2 sys-
tem and enabling direct communication between nodes without the need for a
central master. This model is somewhat similar to the broadcast model, where
all nodes can publish and subscribe to messages on the DataBus. However, its
key improvement is that communication involves multiple parallel paths. Each
node only needs to focus on the messages it cares about and can ignore those
it does not need (it is like a rotating hot pot where various dishes are trans-
mitted on the DataBus). In the architecture of ROS2, illustrated in Figure 2.3
[11], the blue and red sections represent DDS. By incorporating DDS into the
four major components of ROS, it significantly enhances the overall capabilities
of the distributed communication system. This means that when developing
robots, communication issues no longer need to be a concern, allowing more
focus on other aspects of application development.
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Figure 2.3: ROS2 architecture

Another crucial feature of DDS is its Quality of Service (QoS), a network trans-
mission strategy where the application specifies the required quality of network
communication. It ensures that these requirements are met as much as possible,
aiming to satisfy the communication quality needs of the customer.

This concept can be regarded as an agreement between the data provider and
the receiver, ensuring that the transmission adheres to the specified require-
ments [11].

• Real-Time Capabilities: A key feature of ROS2 is the support of real-time
functionality. This is especially important for robotic applications that require
timely responses, such as hardware control or real-time sensor data processing.
This real-time support is a fundamental upgrade from ROS1, where real-time
performance was often difficult to achieve.

• Support for modern programming languages: ROS2 also embraces mod-
ern programming languages, supporting C++11 and Python 3.5 or later. This
allows developers to take advantage of the latest features and improvements of
the languages, making their code more efficient and maintainable.

• Support for modern programming languages: In addition, ROS2 in-
troduces a new compilation system called Ament, which replaces the Catkin
system of ROS1. Ament provides a more flexible and powerful compilation
system that better supports the needs of modern robotic applications.

• Communication: ROS1 and ROS2 can still communicate with each other
through a bridge known as the rosbridge. This allows developers to integrate
existing ROS1 systems with ROS2, easing the transition for projects already
built on ROS1.
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2.1.3 Comparison of ROS1 and ROS2

ROS2 improvements and the main differences between ROS1 and ROS2 are sum-
marised in the Table 2.1. Figure 2.4 [12] illustrates the main architectural differences
between ROS1 and ROS2.

Feature ROS1 ROS2

Architecture Centralised Master node
for communication

Distributed architecture
without a Master node

Platform Support Ubuntu, limited support
for other platforms

Ubuntu, macOS, Win-
dows 10

Node Communication Synchronous (via Master
node)

Asynchronous and more
flexible

Real-Time Support Limited or no real-time
support

Full real-time support

Node Writing Style No specific convention for
writing nodes

Uses Object-Oriented
Programming (OOP)
conventions

Programming Lan-
guages

C++03, Python 2.7 C++11, Python 3.5+

Cross-compatibility ROS1-only ROS1 and ROS2 can
communicate through
rosbridge

Middleware Custom protocol, not
DDS-based

Built on DDS

Table 2.1: Comparison between ROS1 and ROS2
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Figure 2.4: ROS1 and ROS2 architecture comparison

2.2 LiDAR Technology

The LiDAR is a remote sensing method that uses laser pulses to measure distances
to objects. This systems emit laser beams and measure the time it takes for the
reflected light to return, calculating distances with high accuracy. This technology
is widely used in autonomous vehicles and robotic systems for spatial awareness
and can be classified into single-line and multi-line configurations, depending on the
number of laser beams used for scanning.

2.2.1 Single-line LiDAR

A single-line LiDAR emits a single laser beam and is commonly used in robotics due
to its high scanning speed, high resolution and reliable performance. It operates with
a higher angular frequency and sensitivity than multi-line LiDARs, which makes it
particularly accurate in measuring distances and detecting obstacles.

Considering a single-line LiDAR, developed by SLAMTEC, the system consists
of four main components: the laser, the receiver, the signal processing unit and the
rotation mechanism, as shown in Figure 2.5.

• The laser serves as the emission source of the LiDAR and operates in pulsed
mode.

• Once the laser beam hits an obstacle, the reflected light is captured by the
receiver through a lens system that focuses the signal for further processing.

• The signal processing unit monitors the laser emission and processes the
received signals. Based on these signals, it calculates the distance to the target
object with great accuracy.
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• These three main components are mounted on a rotating mechanism, which
ensures continuous scanning by rotating at a stable speed. This enables LiDAR
to generate a 2D plan of the environment in real time [13].

Figure 2.5: System composition of RPLIDAR

Two methods of single-line LiDAR, to compute the distance, are the triangulation
measurement and the time of flight (ToF) [13].

Triangulation method

The laser triangulation technique, shown in Figure 2.6 [14], determines the distance
by projecting a laser beam at an angle onto a target. The reflected laser is then
captured by a lens and focused on a Charge-Coupled Device (CCD) position sensor.
As the target moves along the path of the laser, the position of the reflected dot
on the sensor shifts accordingly. The displacement of the dot is proportional to the
movement of the target and allows the distance to be calculated using an appropriate
algorithm.

This method is based on the principles of trigonometry, as the incident and
reflected beams form a triangle. By applying geometric calculations, the system
accurately determines the distance between the target and the LiDAR sensor.
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Figure 2.6: RPLIDAR based on laser triangulation.

Time-of-Flight

The Time-of-Flight (ToF) technique, illustrated in Figure 2.7 [15], determines dis-
tance by measuring the time it takes for a laser pulse to reach a target and return.
The system emits a modulated laser beam that hits the target and is partially re-
flected by the LiDAR sensor. By analysing the phase shift between the transmitted
and received signals, the system accurately calculates the distance. The method
is based on directing a laser beam towards a target. A portion of the photons in
the beam is reflected upon impact and detected by the sensor. By recording the
time taken for this round trip, the system calculates the distance using the following
formula:

Distance =
Photon travel time

2
× Speed of light
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Figure 2.7: ToF Method

2.3 Depth Camera: Astra

Depth cameras are designed to capture and record three-dimensional information
from a scene. Unlike traditional 2D cameras, they are able to sense depth, allowing
detailed 3D representations of objects and environments to be generated [16].

The Astra series by Orbbec is a line of depth cameras that provide 3D sensing
capabilities. These cameras are compatible with ROS 2, allowing for seamless inte-
gration into robotic systems. The Astra cameras utilize structured light technology
to capture depth information, offering high-resolution depth data suitable for various
applications, including object detection and environment mapping [17].

Figure 2.8: The components of a depth sensor

Depth cameras, illustrated in Figure 2.8 [18], use IR (Infra-Red) technology to

15



State of the Art

generate depth maps of the environment. Unlike standard RGB (Red Green Blue)
cameras, depth sensors require two essential components: an IR projector and an
IR camera. Although some depth sensors may include an RGB camera, this is not a
fundamental requirement for depth detection. The IR projector emits a structured
pattern of infrared light that illuminates objects in the scene. Although invisible
to the human eye, this pattern appears as a dense grid of dots when observed by
an IR camera. The IR camera, which functions like a standard camera but in
the infrared spectrum, captures this pattern as it is distorted by objects struck at
different distances. The depth sensor processor then analyses these distortions to
calculate depth information. Objects closer to the sensor show a more distorted
pattern of points, while those further away appear with a denser distribution. By
evaluating the displacement of these points, the system constructs a depth map
representing the spatial geometry of the scene. This depth map can be viewed
directly from the sensor and processed by a computer for applications such as 3D
reconstruction, object recognition and augmented reality [18].

2.4 Machine Learning and Object Detection

Machine learning has revolutionised the field of computer vision, allowing systems to
perform complex visual recognition tasks with remarkable precision. One of the most
important applications of machine learning in computer vision is object detection,
which involves not only identifying objects within images or video frames but also
determining their location. Unlike traditional image classification, which only labels
an entire image, object detection offers both classification and localisation of objects
[19].

In recent years, deep learning has transformed object detection, making it faster
and more accurate than ever before. Thanks to powerful neural networks and GPU
acceleration, advanced models can detect and track objects in real time, paving the
way for advanced applications based on artificial intelligence.

In automotive technology, it plays a key role in Advanced Driver Assistance
Systems (ADAS), helping vehicles detect pedestrians, lane markings and other cars,
thereby improving overall road safety. Modern object detection is based on deep
learning and Convolutional Neural Networks (CNNs). Some of the most widely used
models are YOLO (You Only Look Once), SSD and R-CNN (Region-based CNN),
all of which are designed to quickly and accurately identify and locate objects in an
image. [20] [21]

There are two main ways to implement object detection using deep learning:

• Using pre-trained models: these are models that have already been trained
on huge datasets and are able to instantly detect common objects (such as
people, vehicles and text) without additional training.

16



2.4 – Machine Learning and Object Detection

• Training a Custom Model: when a specific type of object needs to be
detected, a technique called transfer learning allows an existing model to be
fine-tuned for a specific application. This saves time compared to training a
model from scratch, as the underlying network has already learned useful visual
models. In this project, a custom model was trained to detect road signs [20].

2.4.1 SSD MobileNet

Single Shot multiBox Detector SSD MobileNet is an object detection model designed
for real-time inference on devices with limited computational resources, such as
smartphones and embedded systems. This models achieve a balance between speed
and accuracy by using depth-wise separable convolutions and they are vital for
robotic perception tasks that involve object detection [22].

In this project, the SSD MobileNet model is used for object detection and runs
on the Jetson Nano with Compute Unified Device Architecture (CUDA) acceler-
ation, that allows the model to use parallel processing on the Jetson Nano GPU,
significantly improving the inference speed, which enables real-time detection and
classification of objects.

Architecture

The architecture of SSD MobileNet consists of two main components: the base
MobileNetV2 convolutional neural network and the SSD layer. The MobileNetV2
network serves as a feature extractor, providing feature maps that are subsequently
processed by the SSD layer to classify detected objects [22]. It employs an in-
verted residual structure, where the residual connections are positioned between
the bottleneck layers. The intermediate expansion layer utilises efficient depthwise
convolutions to process features, introducing non-linearity. In its entirety, the Mo-
bileNetV2 architecture consists of an initial fully convolutional layer with 32 filters,
followed by 19 residual bottleneck layers, as shown in Figure 2.9 [23].
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Figure 2.9: MobileNet V2 Architecture

SSD Networks

SSD networks work by dividing the output space into a series of predefined bounding
boxes with varying aspect ratios and scales. During inference, confidence scores
are assigned to each class for each selection rectangle, followed by non-maximum
suppression to discard redundant detections. In addition, predictions of multiple
levels are merged to improve the detection of objects at different scales [24].

The architecture of SSD, illustrated in Figure 2.10 [25], is built upon the well-
established VGG-16 model, though it omits the fully connected layers. VGG-16
was chosen as the base network due to its proven effectiveness in high-quality image
classification tasks and its widespread use in problems where transfer learning en-
hances performance. Instead of the original fully connected layers, SSD incorporates
a series of auxiliary convolutional layers (beginning from conv6). This modification
facilitates the extraction of features at multiple scales and progressively reduces the
input size at each subsequent layer [25].
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Figure 2.10: Architecture of SSD
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Chapter 3

ROSMASTER X3 Hardware

In this chapter, the hardware components and structure of the robot are detailed,
with a particular emphasis on the step-by-step assembly process.

The ROSMASTER X3, as introduced in Chapter 1.1, is an advanced robotic plat-
form designed for research and development in autonomous navigation and robotic
applications. It offers a versatile design that is compatible with both the Raspberry
Pi and Jetson series controllers, ensuring that users can choose the hardware that
best suits their performance requirements. All configurations operate on the Ubuntu
system.

The choice of main controller primarily influences the performance of the robot,
for example, differences in processing power can affect the speed of data handling
and the efficiency of executing complex algorithms. However, the course materials,
product features, and control software provided remain consistent regardless of the
selected hardware. This consistency allows researchers and developers to concentrate
on optimising their applications without the need to adapt to different software
ecosystems.

The structure of the robot is shown in Figure 3.1 [26]. It is constructed of
aluminium alloy, ensuring durability while maintaining a lightweight frame.
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Figure 3.1: ROSMASTER X3

3.1 Main components of the robot

The heart of the system is the Jetson Nano 4GB, which serves as the primary pro-
cessing unit. It is connected to a dedicated ROS expansion board that acts as the
central hub for interfacing with all peripheral components. A high-performance
LiDAR sensor is strategically mounted on the chassis to provide comprehensive
environmental scanning, essential for 3D mapping and obstacle detection. Comple-
menting the LiDAR is a depth camera, connected via a Universal Serial Bus (USB)
interface to the Jetson Nano, which supplies real-time depth information critical for
navigation and object recognition tasks.

Additionally, the platform incorporates a voice interaction module, allowing users
to control robot movement and execute functions through voice commands. This
module is integrated with the system through appropriate interfacing, via USB or
GPIO connections, ensuring seamless communication with the Jetson Nano. Its 360°
omnidirectional Mecanum wheels, each driven by independent DC motors, grant the
robot exceptional manoeuvrability.

Furthermore, the ROSMASTER X3 supports multiple remote control methods,
including a mobile phone application, a handheld controller, the ROS system itself,
and even a computer keyboard.
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3.1.1 Jetson Nano

The Jetson Nano 4GB SUB (Figure 3.2 [27]) is the main board of ROSMASTER
X3 and it is configured with the image provided by Yahboom, which provides a
pre-configured environment and useful material. Developed by NVIDIA, the board
is an embedded computing platform designed for edge AI applications, providing a
balance between performance and power efficiency.

Figure 3.2: Jetson Nano 4GB SUB

The status of the board is shown on the OLED display, which is directly connected
to it, and provides key system information, including:

• Central Processing Unit (CPU) Utilisation: Displays the current pro-
cessing load, allowing for monitoring of computational resource usage.

• RAM Usage: Indicates the amount of memory that is being used, helping to
assess system performance and potential bottlenecks.

• Storage Utilisation: Provides insights into available disk space, ensuring
sufficient capacity for data logging and software execution.

• Network Status: Shows the IP address assigned to the Jetson Nano, facili-
tating remote access and ROS communication over a network.

The Jetson Nano possess better computing power, thanks to its NVIDIA Maxwell
Graphic Processing Unit (GPU) with 128 CUDA cores, and can be combined with
NVIDIA TensorRT to accelerate deep learning. Compared with Raspberry Pi 4B,
it can run basic Artificial Intelligence (AI) deep learning algorithms more efficiently
and with greater stability. Despite having a faster CPU, the latter is not designed for
heavy AI workloads, as it lacks a dedicated GPU acceleration unit for deep learning.
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The detailed specifications of the Jetson Nano are presented in Table 3.1 [28],
where they are compared with those of the Raspberry Pi 4B.

Feature Jetson Nano 4GB SUB Raspberry Pi 4B

CPU
Quad-core ARM Cortex-A57

MPCore (1.43 GHz)
Quad-core ARM

Cortex-A72 (1.5 GHz)

GPU
NVIDIA Maxwell, 128

CUDA cores
Broadcom VideoCore VI

RAM 4GB LPDDR4
2GB, 4GB, 8GB

LPDDR4

Storage
MicroSD, eMMC (optional),

USB
MicroSD

AI Acceleration
Yes, CUDA, TensorRT,
Deep Learning optimised

No AI acceleration

Video Output HDMI + DisplayPort 2x micro-HDMI

USB Ports
4x USB 3.0, 1x USB 2.0

Micro-B
2x USB 3.0, 2x USB 2.0

Ethernet Gigabit Ethernet Gigabit Ethernet

Wireless Requires USB Wi-Fi module
Wi-Fi 802.11ac,
Bluetooth 5.0

Power Consumption 5W - 10W Max 6.7W

OS Support
Ubuntu-based NVIDIA

JetPack
Raspberry Pi OS,

Ubuntu

ROS Compatibility Optimised for ROS/ROS2
Supports ROS, but less

optimised

Edge AI Applications
Yes, supports TensorFlow,

PyTorch, OpenCV
Limited, lacks hardware

acceleration

Table 3.1: Comparison between Jetson Nano 4GB SUB and Raspberry Pi 4B

3.1.2 ROS robot expansion board

The ROS Expansion Board V1.0, shown in Figure 3.3 [29], serves as the primary
interface between the Jetson Nano and the various hardware components of the
ROSMASTER X3, acting as both a communication bridge and a power management
hub. Communication between the Jetson Nano and the expansion board occurs via

24



3.1 – Main components of the robot

a USB serial connection, where the Jetson Nano transmits serial data to the onboard
microcontroller (MCU). This microcontroller, an STM32F103RCT6, is responsible
for interpreting and executing commands, enabling seamless control over multiple
peripherals [30].

Figure 3.3: ROS expansion board

The expansion board plays a crucial role in power management. It connects to a
12V battery via a T-type DC interface, with an onboard voltage converter ensuring
a stable 5V supply to the Jetson Nano. This also powers essential peripherals such
as the USB hub, motors and sensors.

The board supports four 12V encoder motors (Figure 3.4 [29]), allowing for precise
closed-loop control, which is critical for autonomous navigation. In addition, it
features four PWM-controlled and serial bus servos, providing flexible actuation.
For real-time localisation and stability, an integrated 9-axis attitude sensor provides
essential motion and orientation data.
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Figure 3.4: 4-Channel motor with encoder

Beyond power and motion control, the board includes various interactive inter-
faces and components, such as an RGB light bar, an active buzzer and control
buttons (RESET, KEY1, and BOOT0) for firmware management and system con-
figuration. These elements are managed by the onboard microcontroller, which
responds to commands from the Jetson Nano.

3.1.3 RPLIDAR A1

This type of LiDAR (Figure 3.5) is based on laser triangulation ranging principle,
already discussed in Section 2.2.1, and uses high-speed vision acquisition and pro-
cessing hardware developed by Slamtec. The system measures distance data in more
than 8000 times per second.

The core of RPLIDAR A1 runs clockwise to perform a 360 degree omnidirectional
laser range scanning for its surrounding environment and then generate an outline
map for the environment. It improves the internal optical design and algorithm
system to make the sample rate up to 8000 times,which is the highest in the current
economical LiDAR industry.

Figure 3.5: RPLIDAR A1 dimensions

The performance of this type of sensor is defined by several key parameters [13]:
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• Ranging Radius: The maximum distance the LiDAR can measure.

• Ranging Sample Rate: The number of distance measurements performed
per second.

• Scanning Frequency: The number of full scans the LiDAR performs per
second.

• Angular Resolution: The angle between two consecutive measurements.

• Measurement Accuracy: The smallest detectable change in distance.

A summary of the LiDAR specifications is presented in Table 3.2 [31].

Measuring Range 0.15m - 12m

Sampling Frequency 8K

Rotational Speed 5.5Hz

Angular Resolution ≤ 1°
Dimensions 96.8 x 70.3 x 55mm

System Voltage 5V

System Current 100mA

Power Consumption 0.5W

Output UART Serial (3.3V voltage level)

Temperature Range 0℃ - 40℃
Angular Range 360°
Range Resolution ≤ 1% of the range (≤ 12m)

≤ 2% of the range (12m - 16m)

Accuracy 1% of the range (≤ 3m)

2% of the range (3m - 5m)

2.5% of the range (5m - 25m)

Table 3.2: Specifications of the RPLIDAR A1 Sensor

3.1.4 Astra Pro Plus

The Orbbec Astra Pro Plus is an advanced 3D depth camera designed for robotics,
computer vision, and various AI applications. It integrates depth sensing, colour
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imaging, and infrared technology, making it suitable for applications requiring pre-
cise spatial perception.

This type of camera uses structured light technology to capture depth informa-
tion, enabling high-precision 3D mapping. In this project, the model of machine
learning is trained on RGB frames, so only RGB camera is used.

Astra Pro Plus operates efficiently in a depth range of 0.6 m to 8 m, providing a
resolution of 640 × 480 pixels at 30 frames per second for depth data and 1920 ×
1080 pixels for RGB images.

The Table 3.3 shows the technical features of the camera [32].

Specification Details

Depth Technology Structured Light

Depth Range 0.6m - 8m

Depth Resolution 640 × 480 @30fps

RGB Resolution 1920 × 1080 @30fps

Field of View (FOV) Horizontal: 60° / Vertical: 49.5° / Diagonal: 73°

Operating
Temperature

0℃ - 40℃

Interface USB 2.0

Power Consumption 2.25W

Operating System
Compatibility

Windows, Linux, Android

Dimensions 165mm × 30mm × 40mm

Weight 200g

Table 3.3: Technical specifications of the Orbbec Astra Pro Plus
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3.1.5 Mecanum Wheels

Figure 3.6: Wheels hub

A Mecanum wheel consists of a central hub, shown in Figure 3.6, and several rollers
arranged around it. These rollers are passive, i.e. they are not directly powered but
rotate freely. The axis of each roller is positioned at an angle of 45° to the axis of
the hub. The Mecanum wheel assembly comprises two distinct types, designated A
and B, which are the mirror image of each other.

Mecanum wheels are classified into two types based on their directional move-
ment. When a type A wheel moves forward, it simultaneously moves to the right,
creating an oblique forward-right movement. In contrast, when moving backward,
it moves to the left, resulting in a back-left oblique movement. Similarly, the type
B wheel follows the opposite pattern, allowing an oblique forward-left or back-right
movement.

Throughout this study, the front of the carriage is considered the positive direc-
tion. The forward movement of a wheel corresponds to standard motor rotation,
while the backward movement indicates motor reversal.

The correct configuration for installing Mecanum wheels in ROSMASTER X3
should follow the diagram [ABBA] (Figure 3.7 [33]).
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Figure 3.7: Mecanum wheels configuration

3.2 Rover Assembly

The ROSMASTER X3 robot was provided by MCA Engineering S.r.l., which sup-
plied a kit containing all the necessary components, requiring full assembly, before
proceeding with the implementation phase.

Figure 3.8: ROSMASTER X3 components

Starting with the components illustrated in Figure 3.8, the assembly process
began with the construction of the bottom frame, which serves as the structural
foundation of the robot (Figure 3.9). This stage involved securely fastening the
base components to ensure stability and alignment. Following this, Jetson Nano
(Figure 3.10), the camera (Figure 3.11) and front motors were carefully mounted
onto the frame. The positioning of these elements was crucial, as the Jetson Nano
acts as the central processing unit of the system, while the camera plays a key role
in autonomous navigation. The assembly of the bottom frame was then completed
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by installing the 12V battery, ensuring a reliable power supply for the entire system,
the rear motors and attaching the four wheels (Figure 3.12). Special attention was
given to aligning the motors correctly to guarantee smooth and efficient movement.

Figure 3.9: Bottom frame Figure 3.10: Jetson Nano

Figure 3.11: Depth Camera
Figure 3.12: Mecanum Wheels

With the base structure fully assembled, the focus shifted to integrating the upper
components, which included mounting the LiDAR sensor, ROS expansion board, and
OLED display onto the upper frame (Figure 3.13). The LiDAR was positioned at an
optimal height to provide a clear 360-degree scan of the surrounding environment,
essential for mapping. The USB hub and ROS expansion board were securely fixed
to facilitate seamless communication between various electronic modules. The Wi-
Fi antenna was then attached to enable wireless connectivity, which is essential for
remote control and data transmission. All necessary cables were connected, with
care taken to secure them in place using cable ties and protective sleeves to prevent
tangling and accidental disconnections.
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Upon completion of these steps, the assembly process was finalised, resulting in
a fully constructed and operational robot (Figure 3.14).

Figure 3.13: LiDAR and Expansion
Board

Figure 3.14: Robot fully assembled
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Chapter 4

Traffic Sign Recognition System

This chapter discusses the object detection process for traffic sign recognition, cov-
ering the entire pipeline from dataset preparation to model training and real-time
inference on the Jetson Nano.

The training phase was conducted on a Lenovo IdeaPad 3 15ITL6 (technical spec-
ifications are shown in Table 4.1) running Windows 11 Home, as the computational
demands of the training exceeded the memory limits of the Jetson Nano. Once the
model was successfully trained, it was subsequently deployed on the board, lever-
aging its built-in processing capabilities for real-time inference in a resource-limited
environment.

Component Value
CPU 11th Gen Intel(R) Core(TM) i7-1165G7

@2.80GHz
Number of Cores 4
RAM Capacity 16 GB
RAM Speed 3200 MHz
Graphics Card Intel(R) Iris(R) Xe Graphics
Video Memory 128 MB

Table 4.1: Details of hardware used for training

4.1 Preparation of the Custom Dataset

The decision to create a custom dataset was driven by several key factors:

• Pre-trained datasets were unsuitable: While various publicly available
object detection datasets exist, they often contain images that are too small.
In fact, the selected SSD MobileNet model operates on 300× 300 pixel images,
requiring dataset images of appropriate resolution to ensure optimal feature
extraction and detection accuracy.
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• Lack of specific traffic sign data: Large-scale datasets, such as COCO
(Common Objects in Context), do not contain the particular traffic signs chosen
for this application, making them inadequate for model training.

Consequently, a custom dataset was created that included four traffic signs:
mandatory straight ahead, advance warning of the left turn, advance warning of
the right turn and stop. The goal was to train an SSD MobileNet model tailored to
the specific objects of interest, enabling robust and reliable detection performance.

Examples of images are presented in Figure 4.1.
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Figure 4.1: Example images from the dataset.

4.1.1 Dataset generation

The initial stage of the dataset preparation process leverages the functionalities pro-
vided by the jetson-inference repository, developed by NVIDIA itself for educational
and instructional purposes. The repository serves as a comprehensive inference and
real-time computer vision Deep Neural Network (DNN) library specifically designed
for Jetson devices.

In this phase a custom video was recorded specifically for dataset creation. This
video featured the four selected traffic signs in various environments to ensure a
diverse range of lighting conditions and viewing angles. Capturing signs at different
illumination levels and perspectives was essential to improving the robustness of
the model, enabling it to generalise more effectively to real-world scenarios. By in-
corporating variations in brightness, shadowing, and orientation, the dataset better
represents the challenges encountered in real-time traffic sign detection.

Once the video was recorded, the next step involved preparing the dataset for
training, which required generating the necessary image samples and organising
the dataset structure. To achieve this, a dedicated Python script (Figure 4.2) was
executed and prompts the user to enter a model name, in this case signals, which
is then used to create a dedicated directory within the data folder.
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Figure 4.2: Dataset creation

Three subdirectories are generated within this folder:

• ImageSets/Main: This directory contains text files that define the train-
validation split for the dataset. These files are used to specify which images
will be used for training and which will be reserved for validation and testing,
ensuring proper evaluation of the performance of the model.

• JPEGImages: This folder holds the extracted image frames, from the recorded
video in JPEG format, which are used as input for training the object detec-
tion model. Each image is stored at a resolution of 300 × 300 pixels, ensuring
compatibility with the SSD MobileNet architecture.

• Annotations: This directory is initially empty, as the images must first be
manually annotated before they can be used for training. Annotation involves
defining bounding boxes around the traffic signs to create ground-truth labels
for the object detection model.

Once the images are generated, the script automatically partitions the dataset:
by default, 10% of the images are allocated to the validation and test sets, while the
remaining 90% is designated for training. The filenames of these images are stored
in corresponding text files within the ImageSets/Main/ directory.

FPS

Frames Per Second (FPS), in the previous Figure 4.2, refers to the number of frames
processed or displayed per second.

In the context of this project, FPS represents the speed at which frames are
extracted from the video and saved as images. The value is calculated as:

FPS =
Total number of processed frames

Total time elapsed (in seconds)

A higher value indicates greater efficiency in the frame extraction process, whereas
a lower value may suggest a slowdown due to hardware limitations or a high-
resolution input video.

In the field of computer vision and deep learning, FPS is also used to measure
the performance of inference models in real-time applications. For example, on the
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Jetson Nano, an object detection model with a high value can process more images
per second, ensuring a faster response in real-time scenarios.

4.1.2 Image Annotation Process

Since the images extracted from the video do not come with pre-existing labels,
manual annotation is required to specify the locations of traffic signs within each
image. To achieve this, the LabelImg software was utilised. It is an open-source
annotation tool, developed by Tzutalin, that allows users to create bounding boxes
around objects of interest and save the annotations in Pascal VOC format (XML
files), which is compatible with the SSD MobileNet training pipeline [34].

By using LabelImg, each image in the JPEGImages directory was carefully la-
belled, and the corresponding annotation files were stored in the Annotations folder.
This step was critical in ensuring that the dataset contained high-quality ground-
truth labels, enabling the object detection model to learn accurate feature represen-
tations of the selected traffic signs.

An example of how the images are labelled can be seen in Figure 4.3

Figure 4.3: LabelImg utilization

Each annotated image corresponds to an individual XML file (an example is
shown in Figure 4.4) containing detailed information about the objects present in
the image. The format of the XML file is designed to be machine-readable and
provides essential metadata for each object, including:

• File Information: The XML file begins with general information about the
image, such as its file name and the size of the image (height and width). This
ensures that the model knows the exact dimensions of the image when it is
being processed.
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• Object Details: For each traffic sign or object in the image, there is a cor-
responding <object> tag that contains specific information about that object.
This includes:

– Name: The class label (in this case, the traffic sign type) for the object.

– Bounding Box Coordinates: The coordinates of the bounding box that
surrounds the object, expressed in terms of the object top-left and bottom-
right corners (xmin, ymin, xmax, ymax). These coordinates define the region
in the image that contains the object.

• Additional Metadata: Some annotation files may also contain extra infor-
mation, such as the pose or the truncation level of an object. However, in
this specific case, only the class label and the bounding box coordinates are
typically required.

Figure 4.4: Pascal VOC format XML file

After labelling all, a file named labels.txt is created within the data/signals
folder. This file contains the names of all the labels used in the dataset:

Stop

Turn_Right

Turn_Left

Go_Straight
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4.2 Training the SSD MobileNetV2 Model

Once the dataset preparation is complete, the training process can commence using
the following command, as illustrated in Figure 4.5:

python train_ssd.py --dataset-type=voc --data=data/signals/ \

--model-dir=models/signals --resolution=300 --batch-size=4 \

--workers=0 --epochs=500 --validation-mean-ap 1 --use-cuda False

Figure 4.5: Training phase

The parameters used in the training command are detailed as follows:

• --dataset-type=voc: Specifies the dataset format. The VOC format refers
to the PASCAL VOC dataset structure, which is commonly used for object
detection tasks.
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• --data=data/signals/: Defines the path to the dataset directory containing
training and validation images along with their annotations.

• --model-dir=models/signals: Specifies the directory where the trained model
checkpoints and related files will be stored.

• --resolution=300: Defines the input image resolution for the model. A value
of 300 indicates that images will be resized to 300×300 pixels before being
processed.

• --batch-size=4: Sets the number of images processed in a single training
iteration. A batch size of 4 is chosen to balance memory constraints and training
stability.

• --workers=0: Specifies the number of worker threads used for data loading. A
value of 0 means that data loading is handled by the main process, which can
be beneficial for resource-constrained hardware.

• --epochs=500: Defines the total number of training epochs. An epoch repre-
sents one complete pass through the training dataset.

• --validation-mean-ap=1: Enables the computation of the Mean Average Pre-
cision (mAP) on the validation dataset. The mAP metric is a standard evalu-
ation measure for object detection models.

• --use-cuda=False: Determines whether to utilise CUDA for GPU accelera-
tion. Setting this to False forces training to run on the CPU, which may be
necessary for environments with limited GPU resources.

At regular intervals, the model is saved in a checkpoint that includes the state
dictionary of the model (weights), as well as epoch and loss information to track
training progress. This enables the model to be resumed or tested at a later stage. In
addition, the checkpoint facilitates systematic evaluation and comparison of different
training stages. Since the loss function serves as a key metric in assessing the
performance of the model, each checkpoint is associated with a specific loss value
recorded at the time of saving.

At the end of the training process, the best-performing model is selected based
on the checkpoint that exhibits the lowest loss value. This approach ensures that
the final deployed model is the most optimised version, having achieved the best
balance between under-fitting and over-fitting during training. Using this checkpoint
strategy, not only training can be made more robust against potential failures, but it
also allows for fine-grained model selection based on empirical performance metrics.
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4.3 Evaluation Metrics

In the field of object detection, particularly in critical applications such as traffic
sign recognition, it is essential to assess the performance of the model using metrics
that effectively summarise both the accuracy of object localisation and the reliability
of classification. The evaluation of an object detection model goes beyond simple
accuracy measurements, as it involves determining how well the model detects ob-
jects, how precise the bounding box predictions are, and how confidently the model
classifies each object. The key metrics used in this study are discussed below, along
with their significance and expected values.

4.3.1 Loss Function

The SSD model employs the MultiboxLoss function, which is specifically designed
for Single-Shot object detection. The loss function consists of two key components:

• Classification Loss: Measures how accurately the model predicts the class
of each detected object. It is computed using a cross-entropy loss function,
which measures the divergence between the predicted class probabilities and
the actual class labels. A lower classification loss indicates better performance
in distinguishing different object categories. Figure 4.6 provides a visual rep-
resentation of this loss function. The horizontal axis represents the number
of epochs, while the vertical axis indicates the classification loss value. In
this context, an epoch refers to a complete pass through the entire training
dataset by the model. During each epoch, the model processes all available
training samples and updates its parameters accordingly. Multiple epochs are
typically required for the model to learn meaningful patterns and improve its
performance. The downward trend in the curve suggests that the model is
progressively improving in distinguishing object classes as training proceeds.

• Regression Loss: Quantifies the accuracy of the bounding box predictions,
assessing how well the predicted bounding boxes align with the ground truth.
It is typically computed using a smooth L1 loss function, which penalises large
deviations while remaining less sensitive to minor errors to ensure stability
during training. Figure 4.7 illustrates the regression loss over time. The x-
axis represents the number of epochs, and the y-axis denotes the loss value. A
decreasing regression loss suggests that the model is becoming more precise in
localising objects within the image.

The classification and regression losses are computed separately and then com-
bined with their respective weights to form the total loss, which is minimized during
training. So, the total loss represents the overall discrepancy between the predic-
tions of the model (both class labels and bounding box coordinates) and the true
values. In Figure 4.8, after 500 epochs, the loss decreases as training progresses,
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reflecting that both the classification and regression errors are being reduced. The
curve exhibits a characteristic pattern often observed in deep learning models. Ini-
tially, the loss is significantly high due to the random initialisation of the network
weights. As training progresses, the loss rapidly decreases, indicating that the model
is learning meaningful features from the dataset. However, after the initial rapid de-
cline, the loss stabilises and presents minor oscillations. These oscillations indicate
that the performance of the model varies across different batches. This behaviour
could be attributed to variations in the dataset, where certain samples are more
challenging for the model. The presence of these fluctuations suggests the neces-
sity of fine-tuning hyperparameters, such as the learning rate, batch size, and data
augmentation strategies, to enhance model stability.

Figure 4.6: Classification Loss Figure 4.7: Regression Loss

Figure 4.8: Training Loss
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For example, the Stochastic Gradient Descent (SGD) optimiser was used to min-
imise the loss. This optimiser is well-suited for object detection tasks as it helps
improve convergence and stability. The primary hyperparameters that affect the
learning process include:

• Learning rate (lr): Determines the step size at each iteration while moving
towards a minimum of the loss function.

• Momentum: Helps accelerate gradient descent in relevant directions and
dampens oscillations.

• Weight decay: Regularises the model to prevent over-fitting by penalising
large weights.

4.3.2 Mean Average Precision

The Mean Average Precision (mAP) is one of the most widely used metrics
for evaluating object detection models. It measures the overall accuracy of object
detection across all classes. The mAP is computed as follows:

1. Precision: Defined as the ratio of correctly detected objects (true positives)
to the total number of predicted objects (true positives + false positives). Pre-
cision indicates how many of the detections of the model are correct.

Precision =
TP

TP + FP
(4.1)

2. Recall: Defined as the ratio of correctly detected objects to the total number of
actual objects present in the dataset (true positives + false negatives). Recall
represents the ability of the model to detect all relevant objects.

Recall =
TP

TP + FN
(4.2)

3. Precision-Recall Curve: By varying the confidence threshold for detections,
a precision-recall curve is generated, showing the trade-off between precision
and recall at different thresholds.

4. Average Precision (AP): The area under the precision recall curve for each
class. A higher AP indicates better performance in detecting objects of a
specific class.

5. mAP: The mean of the AP values across all object classes, providing a single
summarised metric for overall model performance.
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mAP =
1

N

NX
i=1

APi (4.3)

where N is the total number of classes.

A higher mAP trend, illustrated in Figure 4.9, indicates that the model demon-
strates strong performance in accurately detecting and classifying traffic signs. The
dark purple line indicates the mean value of the mAP, illustrating how the accuracy
of the model evolves over the training epochs. By contrast, the light pink line likely
represents fluctuations or individual precision measurements for specific batches,
highlighting transient performance variations during training.

At the beginning of the training process, the mAP increases rapidly, suggesting
that the model is effectively learning to recognise traffic signs. However, there are
sudden drops in mAP, which may be attributed to variations in the data distribu-
tion or batch size effects. Despite these fluctuations, the mAP remains close to 1,
indicating a robust adaptation of the model.

Figure 4.9: mAP

Nonetheless, it is essential to analyse class-wise AP values to ensure that the
model does not exhibit disproportionately high performance on certain classes while
underperforming on others. The graphs corresponding to the four classes are pre-
sented in Figure 4.10.

44



4.3 – Evaluation Metrics

(a) Go Straight

(b) Stop

(c) Turn Left
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(d) Turn Right

Figure 4.10: Average Precision for each traffic sign class

The AP remains close to 1 for most of the training process, suggesting that
the model is highly effective at recognising all traffic signs. However, intermittent
sharp declines to lower values are observed from variations in the dataset, changes
in lighting conditions, occlusions, or similarities between certain traffic signs. The
consistently high AP values across all four classes suggest that the model has suc-
cessfully learned to generalise across different traffic sign types.

By evaluating these metrics, it is possible to refine the training process, adjust
hyperparameters, and improve the dataset to achieve better real-time performance
in traffic sign recognition.

4.4 Inference and Testing on Jetson Nano

4.4.1 Exporting the Model to ONNX Format

The trained model, originally stored in the .pt format, was exported to the .onnx

format to facilitate deployment on the Jetson Nano. The ONNX (Open Neural
Network Exchange) format enables interoperability between different deep learning
frameworks and optimizes inference performance when used with TensorRT, the
high-performance deep learning inference SDK developed by NVIDIA. The model
conversion was performed using the following command:

python onnx_export.py --net ssd-mobilenet --input best_model.pth \

--output best_model.onnx --labels labels.txt --width 300 --height 300

4.4.2 Inference Execution

After exporting the model to ONNX format, inference was conducted using the
detectnet utility, shown in Figure 4.11:
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Figure 4.11: Inference on Jetson Nano

The parameters used in the command are as follows:

• --model: Specifies the path to the ONNX model file.

• --labels: Defines the label file associated with the model.

• --input-blob: Names the input tensor of the model.

• --output-cvg: Defines the output tensor for confidence scores.

• --output-bbox: Specifies the output tensor for bounding box coordinates.

• --device: Identifies the video input source (e.g., a camera at /dev/video0).

The objects recognised along with their corresponding confidence scores are pre-
sented in Figure 4.12. The confidence score is a numerical value, ranging from 0 to
100%, indicating the probability that the predicted object belongs to a given class.
In this context, confidence scores reflect how confidently the model identifies traffic
signs within the given input images, with higher values indicating stronger certainty
in the detection.
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(a)

(b)
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(c)

Figure 4.12: Object detections

It is noteworthy that the confidence scores for most traffic signs are above 99%.
However, for the ”Turn Left” and ”Turn Right” signs, the scores are slightly lower,
although still above 90%. This small discrepancy might seem to come due to greater
diversity in their look - caused by variances such as differing viewpoints, occlusions
or diagens. Nevertheless, a confidence level above 90% shows robust performance
and indicates that the model is reliable in detecting these signs.

4.4.3 Inference Latency and FPS Evaluation

For real-time applications, such as Advanced Driver Assistance Systems (ADAS),
evaluating inference time and FPS is critical. These metrics significantly impact
system responsiveness. The inference time for each frame can be measured using
the profiling option:

/usr/local/bin/detectnet --model=best_model.onnx \

--labels=labels.txt --input-blob=input_0 \

--output-cvg=scores --output-bbox=boxes \

--device /dev/video0 --profile

This command provides execution times for preprocessing, inference, and post-
processing stages (Figure 4.13).
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Figure 4.13: Inference time

The timing report for best model.onnx shows what is the time needed for what
in the processing. The total inference time on the CPU is 37.23812 ms, however, it
is much lower at 28.20255 ms for the CPU (CUDA). This suggests that offloading
computations to the GPU improves performance.

• Pre-processing: The GPU takes approximately 0.97 ms, which is consider-
ably higher than the CPU 0.05 ms. However, this difference is relatively small
in the overall computation.

• Network inference: This is longest operation. The CPU takes 34.64 ms
while the GPU speeds it up to 24.49 ms, which is considerable.

• Post-processing: The GPU takes 1.92 ms compared to the CPU 2.35 ms,
showing a moderate improvement.

• Visualisation: GPU performance (0.82 ms) is better than the CPU (0.20
ms), but this step is not a major contributor to the total time.

Overall, using CUDA decreases the whole processing time by about 25%, there-
fore the GPU acceleration is profitable in this model. However, further optimi-
sations, such as model pruning or quantisation, could enhance efficiency further,
especially given the resource constraints of the Jetson Nano.

4.4.4 Benchmarking FPS using trtexec

To evaluate the frames per second (FPS) performance of a given model, the trtexec
benchmarking tool in TensorRT can be employed. This tool facilitates the execution
and performance measurement of TensorRT engines, providing valuable insights into
the inference speed and efficiency of the model under various configurations.

The command used to run the benchmark is as follows:
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/usr/src/tensorrt/bin/trtexec \

--loadEngine=best_model.onnx.1.1.8001.GPU.FP16.engine \

--batch=1

This command loads the pre-compiled TensorRT engine and performs inference
with a batch size of one, which is typical for real-time applications where the model
processes individual frames in sequence.

The output generated by the tool contains several performance metrics, including
the inference time per batch and the corresponding FPS. The relevant section of
the output, which provides the inference performance data, is shown in Figure 4.14.

Figure 4.14: Inference performance metrics.

From this output, FPS can be calculated by dividing the number of iterations by
the total time taken for inference. Specifically, in this case, the FPS is computed
using the following formula:

FPS =
82

1.77365
≈ 46.23 (4.4)

In this calculation, 82 represents the number of frames processed, and 1.77365
seconds is the total time taken for the inference process. The resulting FPS value
indicates that the model achieves a frame rate of 46.23 frames per second on the
Jetson Nano.

This performance demonstrates that the model is capable of real-time processing,
making it well-suited for applications requiring high throughput, such as real-time
object detection.
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Chapter 5

Software Implementation

This chapter presents the code development process for the autonomous driving
system. The process begins with the initial configuration of the environment, en-
suring that all required dependencies and settings are properly established. It then
details the implementation of a Python-based vision script and concludes with the
adaptation of the ROS node to support autonomous driving, incorporating MQTT
communication, a feature that was partially developed in the previous master’s the-
sis [1].

5.1 System Architecture

The system has been developed within a structured architectural framework to en-
sure efficient communication and seamless processing between multiple components.
Each component is responsible for distinct tasks that contribute to the autonomous
operation of the robot. The architecture revolves around two primary elements: a
Python-based vision script running on the Jetson Nano and a ROS2 node encapsu-
lated within a Docker container. The communication between these components is
handled via the MQTT protocol, ensuring reliable message exchange.

The main functionalities of the system can be divided into two stages:

• Python Script: Initially, the vision script focuses on detecting and tracking a
coloured line, enabling the robot to follow a predefined path. This functional-
ity is implemented using OpenCV-based image processing techniques. Subse-
quently, the system is extended to incorporate traffic sign recognition through
a machine learning model capable of detecting specific road signs. The ex-
tracted information, including the coordinates of the boundary box and the
classification results, is then used to generate high-level motion commands.
These commands are transmitted via MQTT to the ROS2 node, which handles
execution.
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• ROS2 Node within a Docker Container: The ROS2 node, running in-
side a Docker container, is responsible for interpreting the commands received
from the vision script and translating them into precise movement instruc-
tions. It achieves this by integrating data from multiple sensors, including the
onboard camera and LiDAR, allowing for real-time obstacle detection and au-
tonomous navigation. The node ensures that the robot reacts appropriately to
the detected road signs, executing manoeuvres such as turning or stopping as
required. Additionally, it facilitates low-level motion control by communicat-
ing with the STM32 microcontroller (not covered in this thesis) via dedicated
Python libraries.

This architecture, illustrated in Figure 5.1, separates the vision and motion con-
trol tasks while ensuring smooth interaction between them through MQTT com-
munication. The modular design allows for future extensions, such as enhanced
navigation algorithms or additional sensor integrations.

Python
Script

MQTT
ROS2 Node
(Docker)

LiDAR Camera

Commands Motion

Figure 5.1: System architecture

5.2 Python Script

This Python script is part of a broader project initially developed in the Master’s
thesis Deep Learning-Based Real-Time Detection and Object Tracking on an Au-
tonomous Rover with GPU-based Embedded Device [35]. It was later extended
in a subsequent thesis focusing on the development of the Follow Me functionality
for target person tracking [1]. The programme is structured around a graphical
menu that provides various features and has undergone significant enhancements.
In particular, the interface has been completely overhauled to deliver a more vi-
sually appealing and intuitive experience, thereby facilitating smoother navigation.
Additionally, improvements in window management ensure that all menu windows
are closed gracefully when the programme terminates, preventing resource leaks
and ensuring a clean exit. These enhancements not only contribute to an improved
aesthetic but also bolster the robustness and reliability of the overall system.
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This thesis specifically builds upon this work by improving the Follow Line func-
tionality. The initial focus of the code was the implementation of vision-based line
tracking. At a later stage, traffic sign recognition was integrated using the pre-
trained SSD MobileNet V2 neural network discussed in Chapter 4.

5.2.1 Line Following

In the context of computer vision systems for autonomous driving, the correct seg-
mentation of the line to be followed is crucial. The presented module is based on
two main components:

• Colour Mask Calibration: Allows the user to interactively set the threshold
parameters in the Hue Saturation Value (HSV) colour model to isolate the line
(assumed to be green in this case) from the background.

• Follow Line Core: The main function (Follow Line Core) that, after acquir-
ing the calibrated threshold parameters, executes the autonomous line tracking
procedure.

Mask Calibration

The maskCalibration() function (Listing 5.1) provides an interactive graphical
interface using trackbars, allowing the user to adjust the HSV parameters in real time
for line segmentation. The video stream is initialised using OpenCV, in particular
cv2.VideoCapture(0), enabling real-time video capture from the webcam. By
utilising cv2.namedWindow("Trackbars") and cv2.createTrackbar(), a window
is created containing six sliders, each dedicated to adjusting the lower and upper
threshold values for each HSV channel. Default values are set for a green-coloured
line. The frame is then converted from BGR to HSV using cv2.cvtColor(), as the
HSV colour space is more robust for analysis under varying lighting conditions. The
cv2.inRange() function creates a binary mask that isolates pixels within the defined
minimum and maximum values, highlighting the area of interest and a while loop
continuously updates the frame and mask, allowing the user to observe the effect of
adjustments in real time. The loop terminates when the ’q’ key is pressed.

Listing 5.1: Mask calibration function

1 def maskCalibration ():

2

3 # Start video stream from the webcam

4 cap = cv2.VideoCapture (0)

5

6 # Create the window for sliders

7 cv2.namedWindow("Trackbars")

8

9 # Set default values for the green line

10 default_low_b = np.uint8 ([38, 71, 125])
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11 default_high_b = np.uint8 ([77, 255, 255])

12

13 # Create sliders for Hue , Saturation , and Value channels

14 cv2.createTrackbar("Low H", "Trackbars", default_low_b [0],

179, nothing)

15 cv2.createTrackbar("High H", "Trackbars", default_high_b [0],

179, nothing)

16 cv2.createTrackbar("Low S", "Trackbars", default_low_b [1],

255, nothing)

17 cv2.createTrackbar("High S", "Trackbars", default_high_b [1],

255, nothing)

18 cv2.createTrackbar("Low V", "Trackbars", default_low_b [2],

255, nothing)

19 cv2.createTrackbar("High V", "Trackbars", default_high_b [2],

255, nothing)

20

21 # Initialise sliders with default values

22 cv2.setTrackbarPos("Low H", "Trackbars", default_low_b [0])

23 cv2.setTrackbarPos("High H", "Trackbars", default_high_b [0])

24 cv2.setTrackbarPos("Low S", "Trackbars", default_low_b [1])

25 cv2.setTrackbarPos("High S", "Trackbars", default_high_b [1])

26 cv2.setTrackbarPos("Low V", "Trackbars", default_low_b [2])

27 cv2.setTrackbarPos("High V", "Trackbars", default_high_b [2])

28

29 while True:

30 ret , frame = cap.read()

31 if not ret:

32 break

33

34 # Convert the frame from BGR to HSV colour space

35 hsv_frame = cv2.cvtColor(frame , cv2.COLOR_BGR2HSV)

36

37 # Read the current slider values

38 low_h = cv2.getTrackbarPos("Low H", "Trackbars")

39 high_h = cv2.getTrackbarPos("High H", "Trackbars")

40 low_s = cv2.getTrackbarPos("Low S", "Trackbars")

41 high_s = cv2.getTrackbarPos("High S", "Trackbars")

42 low_v = cv2.getTrackbarPos("Low V", "Trackbars")

43 high_v = cv2.getTrackbarPos("High V", "Trackbars")

44

45 # Define arrays for the HSV range

46 low_b = np.uint8 ([low_h , low_s , low_v ])

47 high_b = np.uint8 ([high_h , high_s , high_v ])

48

49 # Create the mask to isolate the line

50 mask = cv2.inRange(hsv_frame , low_b , high_b)

51

52 # Display the mask and the original frame

53 cv2.imshow("Mask", mask)

54 cv2.imshow("Frame", frame)

55
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56 # Exit loop when ’q’ key is pressed

57 if cv2.waitKey (1) & 0xFF == ord(’q’):

58 break

59

60 cap.release ()

61 cv2.destroyAllWindows ()

62

63 # Check if the user modified the values from the default

settings

64 if (low_b == default_low_b).all() and (high_b ==

default_high_b).all():

65 print("No changes detected , using default green line

values")

66 return default_low_b , default_high_b

67

68 return low_b , high_b

69

70 def nothing(x):

71 # Empty callback function for sliders.

72 pass

Follow Line

The function Follow Line() (Listing 5.2) integrates the calibration phase with the
tracking algorithm. With the parameters obtained, the function Follow Line Core

is invoked, which manages the autonomous line tracking algorithm by sending com-
mands to the control system. The use of a try/except block allows the handling
of any interruptions (e.g. via KeyboardInterrupt) and the activation of a clean-up
routine (exit handler), thus guaranteeing a safe program stop.

Listing 5.2: Follow Line function

1 def Follow_Line ():

2 print("Starting mask calibration before Follow Line ...")

3

4 # Start calibration to obtain updated HSV parameters

5 low_b , high_b = maskCalibration ()

6

7 print(f"Using HSV range: Low={low_b}, High={ high_b}")

8 try:

9 # Start line tracking with the calibrated parameters and

control functions

10 return Follow_Line_Core(send_activate , send_command ,

send_stop , truncate , low_b , high_b)

11 except KeyboardInterrupt:

12 # Handle keyboard interruption

13 exit_handler(None , None)

57



Software Implementation

Follow Line Core

The function Follow Line Core (Listing 5.3) implements the actual control algo-
rithm for tracking the visible line in the video stream.

Specifically, the script starts by opening the camera using cv2.VideoCapture(0)
and configuring the image resolution to improve computational handling. Each
frame captured by the camera is converted from the BGR color space to HSV using
cv2.cvtColor(frame, cv2.COLOR BGR2HSV). The HSV color space is more robust
for object detection under varying lighting conditions. At this point, the function
cv2.inRange(hsv frame, low b, high b) creates a binary mask that isolates the
line based on the HSV color values defined by the arguments low b and high b,
already set during calibration.

Using cv2.findContours, the contours in the binary mask are identified, and
the largest contour is selected, which is assumed to represent the line to follow. The
moments of the contour (cv2.moments) are then used to calculate the centroid of
the contour, providing the horizontal (X) position of the line. The position of the
centroid is compared with the center of the image to calculate the horizontal error
(error x).

Depending on the horizontal error, the robot will perform one of the following
actions, sending the correct command through the MQTT protocol:

• Move forward if the line is centered

• Turn left if the line is to the left of the center

• Turn right if the line is to the right of the center

The maximum steering angle (max steering angle) is set to 30° to prevent sharp
turns.

Listing 5.3: Follow Line Core function

1 def Follow_Line_Core(send_activate , send_command , send_stop ,

truncate , low_b , high_b):

2

3 # Initialize video stream

4 cap = cv2.VideoCapture (0)

5 cap.set (3 ,160) # Set image width

6 cap.set (4 ,120) # Set image height

7

8 # Define the maximum steering angle to prevent excessive

movement

9 max_steering_angle = 30 # Limits the maximum steering angle

10

11 try:

12 # Main loop to read the video stream and track the line

13 while True:

14 ret , frame = cap.read()
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15 hsv_frame = cv2.cvtColor(frame , cv2.COLOR_BGR2HSV) #

Convert to HSV color space

16

17 # Create the mask to detect the line

18 mask = cv2.inRange(hsv_frame , low_b , high_b)

19

20 # Find contours in the mask

21 contours = cv2.findContours(mask , cv2.RETR_EXTERNAL ,

cv2.CHAIN_APPROX_SIMPLE)[-2]

22 if len(contours) > 0:

23 c = max(contours , key=cv2.contourArea) # Select

the largest contour (presumably the line)

24 M = cv2.moments(c)

25

26 if M["m00"] != 0: # Check if the contour has a

non -zero area

27 cx = int(M["m10"] / M["m00"]) # Calculate the

contour centroid in X

28 cy = int(M["m01"] / M["m00"]) # Calculate the

contour centroid in Y

29

30 # Calculate the horizontal error with respect

to the image center

31 image_center_x = frame.shape [1] / 2

32 error_x = cx - image_center_x

33

34 # Calculate the steering angle based on the

horizontal error

35 steering_angle = (error_x / image_center_x) *

max_steering_angle

36

37 # Based on the horizontal error , send commands

to move the robot

38 if abs(error_x) < 10: # Line is centered

39 print("On track forward!")

40 send_activate () # Activate movement

41 send_command("forward") # Move forward

42 elif error_x < -10: # Line is to the left

43 print("Turning left!")

44 send_activate () # Activate movement

45 send_command("left", int(-1 *

steering_angle)) # Turn left

46 elif error_x > 10: # Line is to the right

47 print("Turning right!")

48 send_activate () # Activate movement

49 send_command("right", int(steering_angle))

# Turn right

50

51 # Draw the centroid on the frame to visualize

the position of the line
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52 cv2.circle(frame , (cx , cy), 5, (255, 255,

255), -1)

53

54 # Draw the contour of the line

55 cv2.drawContours(frame , [c], -1, (0, 255, 0), 1)

56

57 # Show the mask and the original frame

58 cv2.imshow("Mask", mask)

59 cv2.imshow("Frame", frame)

60

61 # Exit if the user presses ’q’

62 if cv2.waitKey (1) & 0xFF == ord(’q’):

63 break

64

65 finally:

66 # Release the camera and close the windows

67 cap.release ()

68 cv2.destroyAllWindows ()

69

70 return

5.2.2 Integration of traffic signals

In the new function Follow Road Core, the script loads and integrates the pre-
trained neural network for traffic sign recognition, including “Stop”, “Go Straight”,
“Turn Left”, and “Turn Right”, modifying the behaviour of the rover.

The main integrations (Listing 5.4) consist of the initialisation of the object
detection model, using the best model.onnx model, with a detection threshold of
90% to avoid false positives. The threshold parameter sets the confidence level
required for the detection to be considered valid. The labels.txt file contains the
labels for the traffic signs.

The robot, as before when only tracking the line, uses the webcam to continuously
capture frames, which are now processed to detect traffic signs. For each captured
frame, the function detection(frame, net, truncate) is called, which processes
the frame and returns a list of detected objects (traffic signs). If a sign has not been
detected recently or the cooldown time has passed, the system will handle the sign
accordingly.

Listing 5.4: Follow Road Core function

1 def Follow_Road_Core(send_activate , send_command , send_stop ,

truncate , low_b , high_b):

2

3 print("Follow Road started")

4
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5 net = jetson_inference.detectNet("best_model.onnx",

threshold =0.85 , input_blob="input_0", output_cvg="scores",

output_bbox="boxes", labels="labels.txt")

6

7 cap = cv2.VideoCapture (0)

8

9 max_steering_angle = 30

10 stop_detected = False

11 stop_start_time = 0

12 stop_cooldown = 15

13

14 last_detection = None # Last detected sign

15 detection_cooldown = 2 # Minimum time between two detections

of the same sign

16 last_detection_time = 0 # Timestamp of the last detection

17

18 try:

19 while True:

20 ret , frame = cap.read()

21 if not ret:

22 continue

23

24 detections = detection(frame , net , truncate)

25

26 # Traffic sign handling

27 if not stop_detected and detections:

28 for detect in detections:

29 item = net.GetClassDesc(detect.ClassID).strip()

30

31 # If the sign is new or at least 2 seconds

have passed , process it

32 if item != last_detection or (time.time() -

last_detection_time > detection_cooldown):

33

34 if item == "Stop":

35 print("Stop Sign Detected!")

36 send_stop ()

37 stop_detected = True

38 stop_start_time = time.time()

39 last_detection = "Stop"

40 last_detection_time = time.time()

41 break

42

43 elif item == "Go_Straight":

44 print("Go_Straight Detected!")

45 send_activate ()

46 send_command("forward")

47 last_detection = "Go_Straight"

48 last_detection_time = time.time()

49 break

50
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51 elif item == "Turn_Left":

52 print("Turn_Left Detected!")

53 send_activate ()

54 send_command("left",

max_steering_angle)

55 last_detection = "Turn_Left"

56 last_detection_time = time.time()

57 break

58

59 elif item == "Turn_Right":

60 print("Turn_Right Detected!")

61 send_activate ()

62 send_command("right",

max_steering_angle)

63 last_detection = "Turn_Right"

64 last_detection_time = time.time()

65 break

66

67 # Cooldown for stop sign

68 if stop_detected:

69 if time.time() - stop_start_time < stop_cooldown:

70 cv2.imshow("Frame", frame)

71 if cv2.waitKey (1) & 0xff == ord(’q’):

72 break

73 continue

74 else:

75 print("Stop cooldown finished , resuming line

tracking.")

76 stop_detected = False

77 send_activate ()

78 ....

The detection (Listing 5.5) function is responsible for detecting traffic signs
within the frame. For each detected sign, a rectangle is drawn around the area of
interest, and the name of the sign along with its confidence score is displayed.

Listing 5.5: Detection function

1

2 def detection(frame , net , truncate , ct):

3

4 height = frame.shape [0]

5 width = frame.shape [1]

6

7 frame_color = cv2.cvtColor(frame ,

cv2.COLOR_BGR2RGBA).astype(np.float32)

8 frame_cuda = jetson_utils.cudaFromNumpy(frame_color)

9

10 detections = net.Detect(frame_cuda , width , height)

11

12 matching_detections = []
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13 rects = []

14 all_objects = []

15

16 for detect in detections:

17

18 ID = detect.ClassID

19 confidence = detect.Confidence

20 top = int(detect.Top)

21 left = int(detect.Left)

22 bottom = int(detect.Bottom)

23 right = int(detect.Right)

24 item = net.GetClassDesc(ID)

25 item = item.strip() # Removes spaces and invisible

characters like \r and \n

26 box = (left , top , right , bottom)

27

28 matching_detections.append(detect)

29 box_stop = (left , top , right , bottom)

30 rects.append(box_stop)

31 cv2.putText(frame , f"{item} ({ confidence :.2f})", (left ,

top - 10), cv2.FONT_HERSHEY_SIMPLEX , 0.5, (0, 255, 0),

2)

32 cv2.rectangle(frame , (left , top), (right , bottom), (0,

255, 0), 2)

33

34 return matching_detections

For each detected traffic sign, the system compares it with the last detected sign.
If a different sign is detected or the cooldown has expired, the appropriate command
is issued:

• Stop: The robot will stop and enter a cooldown phase.

• Go Straight: The robot will continue moving forward.

• Turn Left and Turn Right: The robot will turn left or right, respectively, with
a maximum steering angle defined by max steering angle.

After handling the traffic signs, the system proceeds to track the road line as
before.

5.3 MQTT communication

Message Queuing Telemetry Transport (MQTT) is a lightweight communication
protocol built on the TCP/IP framework. It serves as an efficient mechanism for
transmitting commands to the container running ROS2.

The process begins with the initialisation of an MQTT client that connects to
a broker configured to use localhost and the default port 1883 ensuring that all
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communication occurs within the same machine. A dedicated topic, "robot/control",
is used to standardise message transmission.

The system provides various functions to transmit commands via MQTT:

• send command(direction, angle=None): Sends a movement command spec-
ifying a direction. If an angle is provided, it is included in the message.

• send activate(): Transmits an "activate" command to initialise the system.

• send deactivate(): Sends a "deactivate" command to disable the system.

• send stop(): Dispatches a "stop" command to pause the movement of the
robot.

Each command is structured in JSON format and published to the defined MQTT
topic, ensuring a uniform communication protocol.

The MQTT client is configured with an on connect callback to verify successful
connection, printing a confirmation message upon a successful connection. Once the
connection is established, the loop start() function is invoked to handle incoming
and outgoing messages continuously in the background and ensures that the system
remains responsive to commands without requiring manual intervention.

5.4 ROS2 workspace

5.4.1 Docker

Docker is an open source technology developed in the Go programming language
for creating, managing, and deploying applications in containerised environments.
The concept of Docker is to provide an isolated environment for each application,
preventing conflicts due to software dependencies and optimising system resource
utilisation. In the past, running multiple applications on a single server could cause
compatibility issues such as network port conflicts or interference between various
libraries. The use of containers, on the other hand, provides each application with
its own isolated and distinct environment, thereby enhancing stability and security
[36]. This approach provides a modular and isolated execution framework, enhancing
system stability and maintainability.

In this thesis, Docker is used to execute ROS2 in a suitable environment, thereby
bypassing the constraints imposed by the native Jetson Nano operating system.
Specifically, the board is set up with a Software Development Kit (SDK) based
on Ubuntu 18.04, which only natively supports ROS1. However, ROS2 requires
Ubuntu version 20.04 or higher, making it necessary to use a Docker container to
implement a compatible environment without directly altering the board operating
system. This provides a convenient way to utilise the features of ROS2 while ensuring
compatibility with the Jetson Nano software framework.
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5.4.2 Visual Studio Code and SSH Configuration

VS Code provides a development experience across remote environments, enabling
developers to edit, debug, and execute code on different machines. One of the most
effective ways to achieve this is through the “Remote Development” extension, which
allows secure connections to remote hosts via SSH.

In this project, this feature proves particularly useful, as it enables direct access to
the robot computing resources from a local development machine. By ensuring that
both the host (ROSMASTER X3) and the client machine are connected to the same
Wi-Fi network, VS Code can establish a stable SSH connection. This eliminates the
need for direct physical access to the embedded system while facilitating real-time
code modifications and debugging.

To configure remote SSH access in VS Code, the process begins by pressing the
shortcut key Ctrl + Shift + P to reveal the command palette. In the input win-
dow, the term “remote” should be typed to filter and display the available remote
commands, after which the option to log into the designated remote host must be
selected.

Subsequently, the option remote-SSH: Add New SSH Host should be chosen.
At this stage, a prompt will appear requesting the connection command, which
should be entered as follows:

ssh jetson@192.168.1.80

In this command, “jetson” designates the username for the remote system, while
“192.168.1.80” specifies its IP address. This particular IP address is used as both the
robotic system and the local computer are connected to the same network, ensuring
efficient communication between the two devices.

Furthermore, to streamline remote SSH access within VS Code, the ROSMAS-
TER X3 can be added as a remote host in the ~/.ssh/config file. This file should
include the IP address of the remote host (in this case, 192.168.1.80), the username
(jetson) and hostname (yahboom), as illustrated in Figure 5.2. This configuration
facilitates future connections while also enhancing security and manageability.

Figure 5.2: New SSH connection

Once connected (Figure 5.3), VS Code provides a fully functional development
environment, enabling interaction with the remote filesystem, execution of terminal
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commands, and seamless integration of debugging tools.
For Docker integration, the extension for VS Code, installed from the Market-

place, ensuring that a running container is available on the robot. Using the Attach
to Running Container feature within the extension grants full access to the con-
tainer’s filesystem, including the workspace directory /root/yahboomcar ros2 ws

(Figure 5.4). This approach isolates the development environment, mitigating con-
flicts with system-wide dependencies while ensuring consistency across different se-
tups through a pre-configured containerised workspace.

Figure 5.3: SSH connection
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Figure 5.4: Workspace directory

5.4.3 Development Environment and Launch Files

In ROS2 a launch file is an essential component that facilitates the simultaneous
execution of multiple nodes while also enabling the configuration of runtime param-
eters. ROS2 supports three primary formats for launch files: XML, YAML, and
Python. Each of these formats provides a structured approach to defining node
execution, parameter settings and additional runtime configurations.

To organise launch files within a ROS2 package, a new package is created and
a dedicated directory is added within the package source using the following com-
mands:

cd ~/yahboomcar_ros2_ws/yahboomcar_ws/src/pkg_autonomous_follow_road

mkdir launch

Typically, launch files follow a naming convention: LaunchName launch.py, where
LaunchName is a user-defined identifier and the suffix launch.py is standardised.
Consequently, the file autonomous follow road launch.py is created in the launch
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folder. This file integrates an external launch script for the LiDAR sensor and defines
a node for autonomous road-following behaviour, as shown in Listing 5.6.

Listing 5.6: Autonomous follow road launch file

1 import os

2 from ament_index_python.packages import get_package_share_directory

3 from launch import LaunchDescription

4 from launch.actions import IncludeLaunchDescription

5 from launch.launch_description_sources import

PythonLaunchDescriptionSource

6 from launch_ros.actions import Node

7

8 def generate_launch_description ():

9 # Define the path to the LiDAR launch file

10 sllidar_launch_file =

’/root/yahboomcar_ros2_ws/software/library_ws/src/

11 sllidar_ros2/launch/sllidar_launch.py’

12

13 # Include the LiDAR launch file

14 lidar_node = IncludeLaunchDescription(

15 PythonLaunchDescriptionSource(sllidar_launch_file)

16 )

17

18 # Define the autonomous navigation node

19 follow_node = Node(

20 package=’pkg_autonomous_follow_road ’, # Package name

21 executable=’follow_road ’, # Executable name

22 name=’autonomous_follow_road ’, # Node name

23 output=’screen ’,

24 parameters =[

25 {"mqtt_broker": "localhost"},

26 {"mqtt_port": 1883}

27 ]

28 )

29

30 # Return the launch description containing both nodes

31 return LaunchDescription ([ lidar_node , follow_node ])

This launch file ensures that the LiDAR sensor is properly initialised before the
autonomous navigation node begins execution. The IncludeLaunchDescription

function allows for seamless integration of pre-existing launch scripts, thereby en-
hancing modularity and maintainability. Furthermore, the configuration parameters
specified within the Node object allow for customisation of the MQTT broker and
port settings, which are essential for real-time data communication.

To ensure that a launch file is correctly included in the ROS2 package structure,
it is necessary to modify the setup.py file. This step involves specifying the location
of the launch file within the package and ensuring that it is correctly registered upon
compilation (Listing 5.7).
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Listing 5.7: Modifications to setup.py for launch file integration

1 from setuptools import setup

2 import os

3 from glob import glob

4

5 package_name = ’pkg_autonomous_follow_road ’

6

7 setup(

8 name=package_name ,

9 version=’0.0.0’,

10 packages =[ package_name],

11 data_files =[

12 (’share/ament_index/resource_index/packages ’,

13 [’resource/’ + package_name ]),

14 (’share/’ + package_name , [’package.xml’]),

15 (os.path.join(’share ’, package_name , ’launch ’),

glob(os.path.join(’launch ’, ’*launch.py’)))

16 ],

17 install_requires =[’setuptools ’],

18 zip_safe=True ,

19 maintainer=’root’,

20 maintainer_email=’1461190907 @qq.com’,

21 description=’TODO: Package description ’,

22 license=’TODO: License declaration ’,

23 tests_require =[’pytest ’],

24 entry_points ={

25 ’console_scripts ’: [

26 ’follow_road =

pkg_autonomous_follow_road.follow_road:main’

27 ],

28 },

29 )

5.4.4 Rosmaster Library and ROS2 Script

The ROS2 node follow road.py, within the pkg autonomous follow road pack-
age, implements the core logic for sensor fusion between the camera and LiDAR.
Central to this architecture is the Rosmaster library, which provides a robust com-
munication framework between various nodes. This library simplifies node registra-
tion, topic discovery, service management, and parameter handling.

Key aspects of the code include:

• Hardware Communication via Rosmaster: The node establishes com-
munication with the STM32 board by creating an instance of the Rosmaster

class (i.e., self.car = Rosmaster()). It configures the car type and initiates
a receiving thread, ensuring smooth integration between the hardware and the
higher-level control software.
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• Sensor Fusion through LiDAR Data Subscription: The node subscribes
to LiDAR data on the /scan topic. The associated callback function processes
the range data to detect obstacles, enabling the robot to adjust its trajectory
based on the proximity of obstacles.

• Watchdog Mechanism for Safety: A watchdog timer monitors the reception
of MQTT messages. If no message is received within a predefined timeout
period, the watchdog triggers a stop command to prevent unintended robot
movement.

• LED Status Indicators: LED indicators provide visual feedback of the state
of the robot: blue when idle, green when the follow-line mode is active and red
when obstacles are detected or a stop is triggered.

The entire system is compiled and launched using the following steps:

1. Compile the Workspace: Navigate to the workspace directory and build the
package:

cd ~/yahboomcar_ros2_ws/yahboomcar_ws

colcon build --packages-select pkg_autonomous_follow_road

source install/setup.bash

2. Launch the ROS2 Node: Run the launch file to start the node:

ros2 launch pkg_autonomous_follow_road

autonomous_follow_road_launch.py

The integration provided by the Rosmaster library ensures effective communica-
tion between the hardware and software components, while the sensor fusion and
safety mechanisms contribute to reliable autonomous operation.
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Testing and Results

After developing the code, the rover behaviour was initially tested using the follow-
line mode before integrating road signals with the follow-road functionality.

Once the container is launched by executing the script run docker.sh, shown in
Figure 6.1, the ROS2 workspace can be navigated and the script initiated, assuming
that the navigation package has been compiled in ROS2 as outlined in Section 5.4.4.

Figure 6.1: Access to the container

Subsequently, the ROS script is executed using the following command:

ros2 launch

pkg_autonomous_follow_road autonomous_follow_road_launch.py

This command initiates several ROS2 nodes essential for the operation of the
autonomous driving mode along a road or line. For example, the sllidar node

communicates details about the LiDAR SDK version, firmware and hardware, indi-
cating that it is beginning to send laser scan data correctly (Figure 6.2).
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Figure 6.2: ROS2 node

In a separate terminal, the Python script is started with:

python3 object_detection_module_new.py

Figure 6.3: Principal Menu
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This action launches an interactive menu, as illustrated in Figure 6.3. The system
features two operational modes for handling different types of situations. The robot
functions in Static Mode when stationary for processing tasks which do not need
movement. The Dynamic Modes option directs users to a secondary menu, from
which they can access the Reach Target and Follow Me functions developed in a
previous thesis, as well as the Follow Line and Follow Road options created in this
thesis (Figure 6.4). The Reach Target mode of the robot system detects targets
through the field of view and tracks them while navigating towards the person
designated as the target through continuous detection methods. The Follow Me
mode renders real-time object tracking capability that lets the robot follow chosen
individuals or objects as it moves within the field of view.

Figure 6.4: Dynamic Modes Menu

When the user selects the “Follow Line” option, a colour calibration window
featuring adjustable sliders is displayed before initiating the line-tracking process,
as illustrated in Figure 6.5. Additionally, two supplementary windows are opened:
one displaying the live video frame and the other showing the corresponding binary
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mask (Figure 6.6).
At this stage, the user is provided with the opportunity to fine-tune the colour pa-

rameters of the line using the HSV (Hue, Saturation, and Value) colour space. This
calibration ensures optimal detection of the line under varying lighting conditions
and surface characteristics. Once the calibration is completed, the script can pro-
ceed by launching the “Follow Line Core” module, which operates using the selected
parameters. If the user does not manually adjust the sliders, the system will default
to pre-configured HSV values, which are optimised for detecting a green-coloured
line.

Figure 6.5: Colour calibration interface

Figure 6.6: Mask frame

At this point, Figure 6.7 illustrates the interaction between the follow-line node
and the commands received via MQTT. With each command (such as “left” or
“activate”), the robot adjusts its linear and angular speeds to remain on course or
to turn in the required direction. In addition, the system monitors for obstacles and
checks the battery voltage.
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Figure 6.7: Interaction between the follow line and commands via MQTT

6.1 Testing Scenarios

The script was evaluated using several circuits of varying sizes, created with adhesive
tape in different environments under various lighting conditions. This approach
enabled the assessment of system performance across a range of scenarios.

Initially, the system was tested without incorporating road sign signals. During
this phase, the line tracking performance was generally satisfactory, although some
instabilities were observed.

Refer to Figures 6.8, 6.9 and 6.10 for visual examples of the circuit configurations.

Figure 6.8: Set-up with a small circuit
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Figure 6.9: Commands detected on terminal

Figure 6.10: Set-up with a larger circuit
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Subsequently, the Follow Road function, which integrates road sign signals, was
examined. Although the code was designed to recognise four road signs (Go Straight,
Turn Left, Turn Right, and Stop), the system experienced significant difficulties in
accurately responding to all signals. It frequently detected incorrect signs, leading
to confusion, as demonstrated in Figure 6.11.

Figure 6.11: Detected a false Go Straight

As a result, the integration was limited to the Stop signal, which consistently
produced correct responses (Figures 6.12, 6.13 and 6.14).

Figure 6.12: Stop detected in the MCA company
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Figure 6.13: Stop detected on terminal

Figure 6.14: Stop detected at home

When the robot is unable to detect the green line in the mask, the display turns
completely black, signalling that the line is no longer present. As a result, the robot
halts its movement. This mechanism acts as a safety measure to prevent the robot
from moving in an undefined direction (Figure 6.15).
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Figure 6.15: No line recognised

6.2 Performance Evaluation of the Rover

In order to complete the experimental segment of this thesis, a comprehensive suite
of tests and quantitative analyses was implemented. These tests were designed to
highlight and measure the performance of the follow line and follow road systems.
This approach outlines avenues for subsequent optimisation. The following sections
elaborate on the methodological framework and the corresponding results obtained,
summarised in the Figure 6.16.

Figure 6.16: Performance data

6.2.1 Analysis of Tracking Accuracy

The assessment of tracking accuracy was conducted by recording the horizontal
error, which is defined as the pixel distance between the centre of the acquired
image and the centre of the detected line. For each frame, this measurement was
subjected to statistical analysis using specific metrics, as detailed below:

• Mean error: The average error was found to be approximately under 80 pixels.
This indicates that, under standard conditions, the centre of the detected line
is, on average, displaced by under 80 pixels from the centre of the image. Such
a value points to the presence of a systematic deviation, suggesting that further
optimisation is required to achieve more precise alignment.
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To convert the error from pixels to centimetres, the following relation can be
used:

Error in cm = Error in pixels× Width of the scene in cm

Width of the image in pixels
.

In this case, the camera operates at 160× 120 pixels resolution with the mount
height of H ≈ 13 cm above the ground as it faces forward. Because the camera
is not significantly inclined downward, we approximate the effective distance
to the ground (at the centre of the view) by considering the geometry of the
situation. With a horizontal field of view (FOV) of 60◦, the distance to the
ground where the central line of sight intersects can be estimated by:

D ≈ H × tan(60◦).

Substituting H = 13 cm:

D ≈ 13 cm× 1.732 ≈ 22.5 cm.

Here, 22.5 cm represents the effective width of the scene at the level of interest,
which is used to convert pixel measurements to real-world dimensions.

Given the image width of 160 pixels, the scale is:

22.5 cm

160 pixels
≈ 0.14 cm per pixel.

Therefore, 80 pixels is equivalent to:

80× 0.14 ≈ 11.25 cm.

Therefore, the observed error corresponds to an average displacement of ap-
proximately 11.25 cm from the centre of the image.

• Standard deviation: With a standard deviation of approximately 64 pixels,
the results reveal a significant variability between frames. While the system
demonstrates accuracy in certain frames, other instances exhibit more pro-
nounced deviations, thereby highlighting potential inconsistencies in the track-
ing performance.

• Percentage of errors within a 10-pixel threshold: Analysis shows that
only about 20% of the frames have an error of less than 10 pixels. This threshold
is considered acceptable for the correct functioning of the system. However, the
finding that the majority of frames exceed this optimal range underscores the
need for further calibration and refinement of the detection algorithms.
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The data were visualised using two graphical representations: a line graph (Fig-
ure 6.17) and a box plot (Figure 6.18). These visual tools provide valuable insights
into both the temporal evolution of the error and its overall distribution across the
dataset. Analysing these patterns is essential for assessing the system stability over
time and identifying any inconsistencies in the robot tracking performance.

Figure 6.17: Temporal progression of the error

The line graph illustrates how the error fluctuates during operation. Signifi-
cant variations suggest that the robot frequently deviates from the centre of the
line, requiring continuous corrective adjustments. Sharp peaks, whether positive or
negative, may indicate moments when the line is not correctly detected or when
the robot makes sudden steering corrections. These fluctuations highlight poten-
tial weaknesses in the line-following algorithm or sensor reliability, which should be
addressed to improve overall tracking accuracy.
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Figure 6.18: Error distribution analysis

The box plot provides a summary of the error distribution over multiple test
runs. The median, represented by the central line within the box, appears to be
around 70-80 pixels. If this value is significantly different from zero, it implies that
the rover is, on average, misaligned with the ideal centre of the path by that margin.
The interquartile range (IQR), defined by the height of the box, represents the
middle 50% of the data (spanning from the 25th to the 75th percentile). A wide
IQR suggests considerable variability in the error, meaning the alignment of the
rover is inconsistent throughout the test. In an optimal line-following system, both
the median and the IQR should be smaller, indicating a more stable trajectory with
fewer deviations.

Furthermore, the presence of outliers (extreme data points beyond the whiskers of
the box plot) suggests instances where the robot significantly failed to track the line.
These extreme errors may result from sudden changes in environmental conditions,
suboptimal sensor calibration, or delays in the control response.

6.2.2 Computational Performance Analysis

The performance evaluation of the system was performed by quantifying the pro-
cessing time for each individual frame. To achieve this, the methodology involved
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recording timestamps using functions such as time.time() at the initiation and
completion of the image acquisition and processing cycle. This approach facilitated
the accurate computation of the elapsed time for each frame.

Subsequently, the frame rate was derived by calculating the number of frames
processed per second, resulting in an average of approximately 28.594 FPS. This
metric is pivotal as it directly reflects the efficiency of the system in handling real-
time data.

Moreover, an in-depth analysis was undertaken to assess the latency between
the moment of frame acquisition and the subsequent decision-making process. This
latency is indicative of the system responsiveness and is a critical parameter in
applications where prompt processing is essential. The measured mean processing
time per frame was found to be around 0.044 seconds, suggesting a good performance
level in terms of speed.

6.2.3 Steering Command Analysis

In this section, the computed steering angle is recorded at each iteration, allowing
for a detailed evaluation of the system dynamic response. A graph is subsequently
generated, which depicts the evolution of the steering command either as a function
of time or in relation to the position error. The mean steering angle observed
during the trials is 9.751, reflecting the average magnitude of directional adjustment
executed by the system.

Figure 6.19: Steering angle variations over time

Figure 6.19 provides insight into the system steering performance, illustrating
how quickly it responds to deviations and corrects errors.
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The blue line represents the steering angle computed by the system at each
frame, while the red dashed line denotes the average steering angle across the entire
run. The presence of noticeable oscillations, both positive and negative, indicates
continuous adjustments made to maintain the desired trajectory.

It is important to note that the chosen trajectory in this experiment is circular. In
a perfectly straight path, the steering angle would ideally be zero, since no directional
adjustment is needed. However, a circular path requires a constant non-zero steering
angle to maintain the curvature. Therefore, the observed mean steering angle, which
remains close to 15° confirms that the system is executing a steady turning command
consistent with a circular trajectory. The fluctuations around the mean represent
the dynamic corrections of the system to counteract disturbances and measurement
noise while following the circular path.

6.2.4 Utilisation of System Resources

Key components such as the CPU and memory play a fundamental role in deter-
mining the overall responsiveness and stability of the system. Therefore, continuous
monitoring of these resources during execution is essential to identify potential in-
efficiencies, detect bottlenecks, and implement corrective measures.

By tracking CPU and memory consumption over time, it is possible to detect
patterns that may indicate excessive resource usage or underutilisation. Such in-
sights can guide optimisation efforts, ensuring that the system operates within an
acceptable performance range. The collected data can be visualised using a line
graph, which aid in interpreting trends and making informed decisions and provide
a clear visualisation of computational load fluctuations over time.

In the present analysis, the average CPU utilisation was recorded at 77.62%,
while the average memory usage reached 65.46%. These figures provide a quantita-
tive basis for assessing system performance and can be used as reference points for
comparison against predefined benchmarks or for evaluating improvements following
optimisation efforts.
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Figure 6.20: Graphical representation of CPU utilisation over time

The graph in Figure 6.20 displays CPU usage (represented by the blue line) and
RAM usage (represented by the green line) over a given time period. Several key
observations can be drawn from this data:

• High CPU utilisation: CPU usage occasionally reaches 100%, which may
hinder real-time frame processing, potentially causing delays or performance
degradation.

• Elevated memory consumption: Memory usage remains consistently high,
which may lead to slowdowns, inefficient memory allocation, or, in extreme
cases, system crashes due to insufficient available memory.

• Acceptable performance thresholds: Maintaining CPU usage below 80%
and memory consumption under 70% significantly reduces the risk of hardware-
related performance bottlenecks.

Possible solutions include refining image processing algorithms, reducing input
frame resolution or employing hardware acceleration to improve efficiency.
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Chapter 7

Conclusions and Future

Developments

The main aim of this thesis was to design and assess an autonomous navigation
system that employs the follow line technique, while also incorporating real-time
road sign recognition and management. The use of the ROSMASTER X3, including
the Jetson Nano, has allowed for the exploitation of advanced real-time processing
capabilities. This integration has produced a system that functions in controlled
settings. However, several significant limitations have been identified. This chapter
examines the main challenges and constraints experienced during the project and
outlines possible avenues for future improvements.

7.1 System Limitations

The implementation of the system was restricted by the computational capacity
of the Jetson Nano. These constraints had a particular impact on the frame rate,
which needed to be above 30 FPS to support optimal tracking and object detection.
During testing, the Jetson Nano frequently generated CPU throttling alerts due to
the high computational load, resulting in the need for reduced speeds to maintain
accurate tracking and road sign recognition.

In addition, the current system configuration has revealed other structural issues,
for example, the position of the camera may not be ideal for detecting road lines.

7.1.1 Sensitivity to Environmental Variations

One of the most critical challenges encountered is the sensitivity of the system to
environmental conditions. The performance of the algorithm is markedly affected by
variations in ambient lighting, which can alter the perceived contrast of the path-
way. In instances where the surface exhibited low contrast, the system struggled
to accurately detect the guiding line. This vulnerability not only compromises the
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reliability of the line-following mechanism but also affects the overall stability of the
navigation process. Future work should consider incorporating adaptive threshold-
ing and dynamic calibration techniques to mitigate these issues.

7.1.2 Limitations in Road Sign Recognition

The recognition of road signs, while successful in static scenarios, presents several
challenges during dynamic operation:

• Proximity-Dependent Recognition: When the rover is in motion, the sys-
tem tends to recognise signs only when the vehicle is in close proximity. This
delay in detection is critical, as it can lead to the execution of incorrect ma-
noeuvres or delayed responses.

• Confusion Among Signs: The system has demonstrated a notably robust
recognition capability only for stop signs. Other signs are frequently misclas-
sified, suggesting that the feature extraction and classification components of
the algorithm require further refinement. The limited size and diversity of the
dataset contribute significantly to this problem, leading to an increased rate of
false positives that directly impact the decision-making process of the rover.

7.1.3 Limitations of memory

Limited memory emerged as the most significant issue encountered during the
project. The problem was largely due to the very large size of the container, which
quickly consumed the available memory. As a result, it often became impossible
to update the system or install necessary packages and libraries. This limitation
not only affected routine maintenance but also restricted the overall functionality
and scalability of the system. Future work should explore more memory-efficient
container configurations or optimisation techniques to ensure smoother updates and
installations, thereby enhancing the performance and reliability of the system

7.1.4 Processing Speed and Frame Rate Issues

The system has also been observed to operate at a lower frame rate than desired.
This limitation has a twofold effect: it reduces the frequency at which visual data
can be processed, and it contributes to a lag in the overall system response. The
consequence of these low frame rates is a diminished capacity to perform real-time
adjustments, which is particularly problematic in dynamic environments where rapid
processing is crucial for safe and effective navigation.
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7.2 Future Developments

In light of the limitations observed, several promising directions for future research
and development have been identified:

• Algorithm Improvement: It is essential to improve the efficiency of the line-
following and, especially, sign recognition algorithms. This may involve using
better image processing methods, such as adaptive thresholding and straightfor-
ward machine learning techniques that can deal with changes in environmental
conditions.

• Dataset Expansion and Enhancement: Addressing the challenges in recog-
nising road signs requires a larger and more varied dataset. The dataset should
cover a broader range of environmental conditions and different sign designs,
while also reducing false positives. Expanding the road sign database will en-
able the system to generalise more effectively, resulting in improved precision.
Additionally, it is important to refine the handling of signs that have not pro-
duced satisfactory results in the current system.

• Real-Time Processing Improvements: Improving the frame rate of the sys-
tem is crucial for achieving better overall performance. This can be achieved
through hardware acceleration or by optimising the software to run more effi-
ciently. Techniques such as parallel processing and the use of dedicated hard-
ware for neural network operations could greatly improve real-time processing.

• Enhanced Performance in Dynamic Conditions: Future work should
focus on developing methods that allow the system to accurately recognise
and process road signs while in motion. This may involve creating predictive
algorithms that utilise contextual information to detect signs sooner, thereby
reducing the dependency on close-range detection.

7.3 Final Reflections

In summary, this project presented a considerable challenge. It involved assembling
the robot from individual components and creating a code to work effectively within
a complete robotic system. This required a careful examination of the system archi-
tecture to ensure smooth communication among all parts. Furthermore, the software
needed thorough testing and adjustments to guarantee reliable performance.

The integration process highlighted the importance of a clear and organised sys-
tem design, as even small miscommunications between components could lead to
significant performance issues. The necessity of rigorous testing became apparent,
as it allowed the identification and resolution of unexpected problems before they
could affect the overall functionality of the robot.
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Despite these obstacles, the project achieved its main goal: creating an au-
tonomous robot that follows a line and responds appropriately to road signs. This
success not only demonstrates the feasibility of the chosen approach but also shows
that careful planning and systematic testing can overcome many technical chal-
lenges.

Moreover, the work underscores the potential for further improvements that could
lead to a more responsive and reliable autonomous robot.
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