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Summary

The exponential growth of space debris in Low Earth Orbit (LEO) poses a signif-
icant challenge to the sustainability of space operations. Despite preventive mea-
sures aimed at limiting debris generation, they remain insufficient to address the
increasing accumulation of defunct satellites, rocket stages, and collision fragments.
Active Debris Removal (ADR) has emerged as a promising solution, particularly
in multi-target missions, which require solving complex combinatorial optimiza-
tion problems similar to the Traveling Salesman Problem (TSP) to maximize the
efficiency of the missions, minimizing fuel use and mission duration. This thesis
explores the application of Quantum Annealing (QA) and Hybrid Quantum An-
nealing (HQA) to optimize multi-target ADR missions. Specifically, it introduces
a Quadratic Unconstrained Binary Optimization (QUBO) model tailored for ADR
using quantum computing frameworks to enhance solution efficiency. The research
develops a generalized quadratization method to reduce computational complexity,
enabling large-scale mission planning. Additionally, it proposes a novel constraint-
handling strategy, embedding mission constraints in post-processing to improve
quantum solver performance. The proposed approach is applied to real-world satel-
lite debris datasets and benchmarked against classical metaheuristic optimizers,
including Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithms
(GA). The results highlight the potential of quantum optimization for ADR mission
planning, offering a scalable and computationally efficient solution. This research
represents one of the first applications of quantum computing to orbital debris
management, contributing to the advancement of sustainable space operations.
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Chapter 1

Background and Motivation

1.1 Historical Evolution of Space Debris
The Space Age began in 1957 with the launch of Sputnik 1, marking not only
humanity’s first artificial satellite but also the creation of the first human-made
orbital debris—namely, the spent rocket stage and the inert satellite itself. During
the 1960s, the increasing frequency of space launches, along with occasional in-orbit
explosions and tests, contributed to a steadily growing debris population.

A pivotal event occurred in 1961 when the Thor-Ablestar upper stage became the
first known satellite to undergo fragmentation in orbit, producing over 200 track-
able fragments. However, the implications of space debris as a long-term hazard
became more apparent in 1978, when NASA scientist Donald Kessler introduced
a theoretical model predicting that, beyond a critical threshold, debris collisions
could trigger a self-sustaining cascade of fragmentations—an effect later known as
the Kessler Syndrome [1]. This hypothesis raised concerns about the long-term
usability of Low Earth Orbit (LEO) and the necessity of mitigation strategies [2].
Although early fragmentation events occurred, the full impact of this phenomenon
had yet to be observed.

Throughout the late 20th century, each decade witnessed an increasing number
of launches and occasional major fragmentation events, leading to a steady rise in
the number of tracked objects in orbit. However, two incidents in the late 2000s
significantly exacerbated the space debris problem:

• 2007: China conducted an anti-satellite (ASAT) test, deliberately destroying
the defunct Fengyun-1C weather satellite. This event alone generated over
2,000 trackable debris fragments, making it one of the most significant single
sources of orbital debris [3].

• 2009: An accidental collision occurred between the active Iridium 33 satellite
and the defunct Cosmos-2251, producing more than 1,800 additional fragments
[4].
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1 – Background and Motivation

These incidents resulted in an immediate and dramatic increase in the debris
population within LEO, intensifying global concerns over space traffic management
and long-term orbital sustainability. Figure 1.1 illustrates the exponential growth
in debris count over time, correlating with the growing launch rates and cumulative
effects of accidental breakups and deliberate satellite destructions.

National Aeronautics and Space Administration

5

18th Space Defense Squadron (18 SDS) tracking total of  
~46,000 objects

-Baseball size or larger (≥10 cm):  ~26,000 

Dot or larger (≥1 mm):  >100,000,000 

(a grain of salt)

How Much Junk Is Currently Up There? 

• Due to high impact speed in space (~10 km/sec in 
LEO), debris as small as grain of salt could end a 
mission! 

– 10 km/sec = 22,000 MPH

– speed of a bullet ~1,500 MPH

• Total mass: >9300 tons LEO-to-GEO
      (~4000 tons in LEO)

Marble size or larger (≥1 cm):  

~500,000

Penny ~ 19mm

0

5000

10000

15000

20000

25000

19
56

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

Nu
m

be
r o

f O
bj

ec
ts

Year

Monthly Number of Objects in Earth Orbit by Object Type

Total Objects

Fragmentation Debris

Spacecraft

Mission-related Debris

Rocket Bodies

Collision of Cosmos 
2251 & Iridium 33

Destruction of 
Fengyun-1C

Russian ASAT

~5800 are 
operational

Figure 1.1: Orbital Debris Population Trend. This graph shows the number
of objects in orbit—from small fragments to objects roughly the size of a base-
ball—tracked by the NASA Orbital Debris Program Office. It highlights significant
increases following key events (e.g., the Iridium 33–Cosmos 2251 collision and the
Chinese ASAT test), which have dramatically raised the total number of debris
objects. (Source: Space Debris and ISS, NASA, DAA 20230010751) [5]

1.2 Current State of the Orbital Environment
The near-Earth space environment is increasingly congested with debris of various
sizes, posing significant challenges to satellite operations and future space missions.
According to the European Space Agency (ESA), as of 2019, the estimated debris
population included:

• 40,500 objects larger than 10 cm

• 1,100,000 objects between 1–10 cm

• 130 million fragments measuring 1 mm to 1 cm [6]
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1.2 – Current State of the Orbital Environment

Of the total orbital population, only a few thousand objects are active satellites,
while the vast majority consist of defunct payloads, spent rocket stages, and frag-
mentation debris. These objects travel at velocities exceeding 7 km/s, meaning
that even millimeter-sized paint flakes have the potential to damage or disable a
spacecraft upon impact. A collision with a 10 cm debris fragment could be catas-
trophic, completely destroying a satellite and generating thousands of additional
fragments. A notable example of such risks occurred in 2021 when a small debris
strike punctured the International Space Station’s (ISS) robotic arm, underscoring
the persistent threat posed even by sub-centimeter fragments [7].

The spatial distribution of debris is heaviest in Low Earth Orbit (LEO), particu-
larly below 2,000 km altitude, where approximately 70% of all cataloged objects are
concentrated. Figure 1.2 provides a visual representation of the density of tracked
debris around Earth, with object sizes exaggerated for clarity.

Figure 1.2: Representation of debris objects in low-Earth orbit. Crowded clusters of
dots (not to scale) illustrate the concentration of man-made objects around Earth,
especially in LEO. Over 70% of catalogued orbital objects reside within 2000 km
of Earth’s surface. The ring of objects along the equator depicts the geostationary
belt. (Image credit: ESA)

The operational consequences of this debris environment are substantial. Satel-
lite operators now routinely perform collision avoidance maneuvers to mitigate
impact risks. For instance, an average satellite in LEO may receive dozens of close-
approach alerts per week, and if the estimated collision probability exceeds 1 in
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1 – Background and Motivation

10,000, operators must adjust the satellite’s trajectory, consuming valuable fuel
and operational resources. The ISS alone has had to conduct multiple orbit adjust-
ments per year to avoid potential collisions. In one critical event, in October 2022, a
fragment from the 2021 Russian ASAT test of Cosmos-1408 necessitated an urgent
maneuver to increase the ISS altitude and avoid a predicted impact trajectory [8].

An even more pressing concern is the potential onset of Kessler Syndrome. While
Kessler’s model was originally a theoretical concern, recent decades have shown in-
creasing evidence of its potential onset. ESA data indicates a 50% rise in key orbital
debris levels over the last five years [9], driven by major fragmentation events such as
the 2009 Iridium-Cosmos collision. The growing frequency of uncontrolled breakups
suggests that, without decisive intervention, the combination of ongoing launches
(particularly large constellations) and spontaneous collisions could accelerate this
process, jeopardizing the long-term sustainability of space operations.

To address this escalating issue, international space agencies and organizations
have introduced guidelines aimed at limiting further debris generation. One of the
most significant frameworks is the Space Debris Mitigation Guidelines, published
in 2002 by the Inter-Agency Space Debris Coordination Committee (IADC) [10].

1.3 Active Debris Removal (ADR) and Its Im-
portance

The escalating risks associated with space debris proliferation necessitate not only
mitigation strategies but also active intervention to remove existing debris from
orbit. While traditional debris mitigation efforts—such as collision avoidance ma-
neuvers and post-mission disposal guidelines—have slowed debris accumulation,
they are insufficient to reverse the current trend. Without additional measures, the
number of hazardous objects in orbit will continue to rise, increasing the likelihood
of collisional cascading and exacerbating long-term sustainability concerns.

Active Debris Removal (ADR) refers to the deliberate capture and removal of
debris objects using specialized spacecraft. Unlike mitigation strategies that aim
to prevent new debris formation, ADR seeks to reduce the existing debris load
by removing the most problematic objects before they fragment further or cause
additional collisions.

The rationale for ADR is supported by numerical simulations showing that even
a modest removal rate—as low as five large debris objects per year—could signif-
icantly stabilize the LEO environment and slow the progression toward collisional
cascading [11, 12, 13]. Targeting large, intact rocket bodies and defunct satellites
is particularly important, as these objects represent the highest potential for future
fragmentation due to fuel leaks, structural degradation, and accidental impacts.

Several pioneering ADR missions are in development to demonstrate the feasi-
bility of debris removal. For example, ESA has contracted a commercial start-up,
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1.3 – Active Debris Removal (ADR) and Its Importance

ClearSpace SA, to conduct the ClearSpace-1 mission in 2025 — which aims to ren-
dezvous with a leftover Vega rocket adapter (about 100 kg in mass) and deorbit it
safely [14]. This will be the world’s first attempt to actively capture and dispose
of an uncontrolled object in orbit.

Figure 1.3: Artist’s illustration of an active debris removal concept: ESA’s proposed
e.Deorbit mission using a robotic arm to capture the defunct Envisat satellite (≈
8.5 tonnes) in low Earth orbit. After grappling the target, the combined stack
would be deorbited for controlled atmospheric re-entry. e.Deorbit was planned as
the first ADR mission (originally slated for mid-2020s), intended to demonstrate
safe capture and disposal of a large uncooperative object. (Image credit: ESA/D.
Ducros)

Despite the clear need, scaling up ADR presents economic challenges. Each re-
moval mission is costly; for instance, the ClearSpace-1 contract is valued at €86
million for a single object removal. At this price, removing dozens of objects annu-
ally would require substantial funding. However, the cost of inaction could be far
higher — an uncontrolled growth of debris could lead to frequent satellite losses,
interruptions to services, and lost access to entire orbital regions. Recognizing
this, agencies are investing in ADR technologies and partnerships to drive down
costs and improve efficiency. Initiatives like ESA’s Clean Space and NASA’s Space
Technology programs are fostering innovations (e.g. low-cost capture mechanisms,
better tracking, and AI for autonomous rendezvous) that will feed into future ADR
efforts. The ultimate goal is to make debris removal a routine part of space op-
erations. Achieving that will likely require not only technical breakthroughs but
also optimization of ADR mission plans – which is where advanced computational
approaches, including emerging quantum computing techniques, come into play.
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Chapter 2

Problem Statement and
Research Motivation

2.1 The Active Debris Removal (ADR) Optimiza-
tion Challenge

Considering the issues previously discussed, this thesis focuses on optimizing multi-
target Active Debris Removal (ADR) missions. In these missions, a single chaser
spacecraft is tasked with capturing and disposing of multiple debris objects within
one mission. The challenge lies in determining the optimal sequence and trajectory
that minimizes both the total time of flight (TOF) and fuel consumption (∆v),
while satisfying complex operational constraints such as orbital dynamics (e.g.,
RAAN alignment, Hohmann transfer maneuvers) and target prioritization based
on debris desirability.

Due to its combinatorial nature—resembling the well-known Traveling Salesman
Problem (TSP) [15]—the ADR mission planning problem is classified as NP-hard.
The number of possible capture sequences grows exponentially with the number of
debris targets, making exhaustive search methods computationally intractable. The
problem is further complicated by the time-dependent dynamics of orbital mechan-
ics, as debris objects follow distinct trajectories and precession rates. Given the im-
practicability of obtaining exact solutions for real-world scenarios, various heuristic
and metaheuristic approaches have been proposed to compute near-optimal solu-
tions within feasible time constraints.

Notable heuristic techniques include tree search procedures such as Beam Search
[16], Ant Colony Optimization [17], and A∗ search [18], which iteratively build
solutions by sequentially adding debris targets. Metaheuristic approaches such as
Simulated Annealing (SA) [19] and Genetic Algorithms (GAs) [20] refine a set of
candidate solutions through iterative improvement. More recently, Reinforcement
Learning (RL) and Machine Learning (ML) techniques [21, 22] have been explored,
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2 – Problem Statement and Research Motivation

offering a data-driven approach to optimizing debris removal sequences.
However, due to the inherent complexity of the ADR optimization problem,

even state-of-the-art metaheuristic methods may struggle to identify high-quality
solutions or may require prohibitive computational resources as the problem size
increases. These limitations have motivated the exploration of alternative compu-
tational paradigms, including the emerging field of quantum computing.

2.2 Quantum Annealing for ADR Optimization

2.2.1 Quantum Computing in Aerospace Applications

Quantum computing has gained increasing attention in aerospace applications, par-
ticularly in mission scheduling and optimization problems. In 2016, NASA outlined
the opportunities and challenges of quantum annealing (QA) for space-related tasks,
with a focus on path planning and scheduling [23]. Since then, significant progress
has been made in this area, particularly in optimizing Earth Observation (EO)
mission scheduling, as demonstrated by recent studies [24, 25].

Despite this growing interest, the application of quantum annealing to ADR
remains largely unexplored, with only a few pioneering works addressing debris
removal optimization. In [26], the ADR mission planning problem is tackled using
a hybrid approach that combines Artificial Neural Networks (ANNs) with the Fu-
jitsu Digital Annealer, a quantum-inspired digital optimization architecture [27].
Another study [28] applies quantum annealing to the problem of atmospheric dis-
posal via the uncontrolled reentry of small debris. However, a comprehensive,
quantum-based framework for large-scale multi-target ADR planning has yet to be
developed.

2.3 Quantum Annealing for ADR Optimization
Quantum Annealing (QA) [29] is a promising approach for solving combinatorial
optimization problems such as ADR mission planning. Unlike classical optimiza-
tion methods, which explore solutions sequentially or heuristically, QA leverages
quantum mechanics—specifically superposition and quantum tunneling—to explore
vast solution spaces more efficiently. This ability makes it particularly well-suited
for problems with a rugged cost landscape, where traditional algorithms often get
trapped in local minima.

In this context, the ADR optimization problem can be formulated as a Quadratic
Unconstrained Binary Optimization (QUBO) model. By encoding decision vari-
ables into a binary matrix representing the capture sequence of debris targets, the
problem becomes compatible with quantum annealers. This approach enables the

10



2.4 – Objectives and Contributions

simultaneous evaluation of an exponential number of solutions, potentially yielding
higher-quality mission plans within a shorter time frame [30, 31].

While quantum computing is still in its early stages, hybrid quantum-classical
methods have already demonstrated competitive performance on NP-hard routing
and scheduling problems, suggesting potential advantages for ADR optimization.
The benefits of quantum annealing for ADR are compelling:

• Fuel efficiency: Optimized debris removal sequences can significantly reduce
the ∆v required.

• Shorter mission durations: More efficient trajectories reduce time of flight
(TOF), allowing for faster debris clearance.

• Scalability: Quantum annealers can handle large-scale ADR problems more
efficiently than classical heuristics.

Despite current hardware limitations—such as qubit count and noise—the combi-
natorial nature of ADR planning makes it an ideal candidate for quantum-enhanced
optimization. Even incremental improvements in solution quality or computational
efficiency could translate into substantial cost savings, making large-scale debris
removal economically viable.

By integrating quantum annealing into ADR mission planning, this research
explores new strategies to address the growing space debris crisis, improve sus-
tainability in low-Earth orbit, and ensure the long-term viability of future space
activities.

2.4 Objectives and Contributions
The primary objectives of this thesis are to:

1. Formulate a Comprehensive ADR Optimization Model: Develop a
rigorous mathematical formulation that captures the critical parameters of
ADR missions—including time of flight, delta-v, and debris desirability—while
integrating complex orbital dynamics constraints such as RAAN alignment and
Hohmann transfer maneuvers.

2. Develop a QUBO Model for ADR Mission Planning: Translate the
ADR problem into a Quadratic Unconstrained Binary Optimization (QUBO)
formulation suitable for quantum annealing. This includes the design of a
novel quadratization method that approximates higher-order terms using the
synodic period, thereby reducing the problem’s computational complexity from
exponential to polynomial order.
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3. Integrate Quantum Optimization Techniques: Implement and bench-
mark the formulated QUBO model on quantum annealing hardware using
both pure Quantum Annealing (QA) and Hybrid Quantum Annealing (HQA).
The performance of these quantum-based approaches is compared with clas-
sical metaheuristic methods such as Simulated Annealing, Tabu Search, and
Genetic Algorithms.

4. Validate with Real-World Data: Test the developed framework using real
satellite debris datasets derived from Two-Line Element (TLE) files. This val-
idation demonstrates the practical applicability and potential advantages of
quantum-enhanced optimization in real-world ADR mission-planning scenar-
ios.

5. Propose a Novel Constraint-Handling Strategy: Address the challenges
posed by the combinatorial explosion of potential debris capture sequences
by introducing a post-processing constraint management strategy that signif-
icantly improves solver performance without compromising solution quality.

In summary, this thesis contributes a novel, quantum-optimized framework for
multi-target ADR mission planning. By bridging advanced quantum computing
techniques with the critical challenges of space debris removal, the research not
only advances the state-of-the-art in orbital debris mitigation but also lays the
groundwork for more sustainable space operations in the future.

2.5 Thesis Structure Overview
This thesis is organized into five main parts, each addressing a specific aspect of
the Active Debris Removal (ADR) optimization problem via Quantum Annealing
(QA).

• Part I: Introduction and Background sets the context and rationale for
this research. Chapter 1 reviews the historical development and current chal-
lenges of orbital debris, highlighting the critical role of ADR in ensuring the
long-term sustainability of space activities. Chapter 2 defines the ADR op-
timization problem, outlines the research objectives and contributions, and
presents the structure of the thesis.

• Part II: Theoretical Foundations and Modeling Tools provides the
conceptual framework underpinning the study. Chapter 3 introduces NP-hard
problems and combinatorial optimization techniques relevant to ADR mission
planning. Chapters 4 and 5 explore the QUBO and HUBO formulations and
quadratization methods required for quantum optimization. Chapter 6 com-
pares classical and quantum optimization algorithms, offering a foundation for
subsequent experimental analysis.
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• Part III: Problem Modeling and Quadratization Strategies formalizes
the ADR optimization problem. Chapters 7 and 8 detail the mathematical
modeling and complexity analysis. Chapter 9 presents an innovative quadra-
tization approach to enhance computational efficiency, while Chapter 10 fo-
cuses on translating the ADR problem into QUBO/HUBO formats suitable
for quantum solvers.

• Part IV: Implementation, Experimentation, and Comparative Anal-
ysis describes the implementation of the proposed optimization framework.
Chapters 11 and 12 present the experimental setup, performance evaluation,
and comparative analysis between quantum and classical solvers. Chapter
13 validates the theoretical models through MATLAB/Simulink-based simu-
lations of ADR missions.

• Part V: Conclusions summarizes the research findings and discusses future
directions, emphasizing the potential contributions of quantum computing to
sustainable space operations.
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Theoretical Foundations and
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Chapter 3

NP Problems and
Combinatorial Optimization

3.1 Introduction to NP Problems
In computational complexity theory, problems are classified based on the com-
putational resources required to solve them. A problem belongs to the class NP
(Nondeterministic Polynomial time) if a proposed solution can be verified in poly-
nomial time by a deterministic algorithm [32]. However, this does not imply that
solutions can be efficiently computed—only that they can be efficiently verified.
Many decision and optimization problems of practical significance belong to NP,
where solution verification is polynomial-time, but solution discovery may be com-
putationally intractable.

A problem is classified as NP-hard if it is at least as difficult as the hardest
problems in NP [33]. Formally, a problem H is NP-hard if every problem in NP
can be polynomial-time reduced to H. If, in addition, the problem itself is in NP
(i.e., both NP-hard and verifiable in polynomial time), it is termed NP-complete.
NP-complete problems are the most challenging within NP — if any NP-complete
problem is solved in polynomial time, it would imply P = NP , a fundamental
unsolved question in theoretical computer science. It is widely conjectured that
P /= NP , suggesting that no polynomial-time algorithms exist for NP-complete
problems [33].

A well-known example is the Traveling Salesman Problem (TSP) [32]. Given
a set of n cities and pairwise distances, the objective is to determine the shortest
possible tour visiting each city exactly once before returning to the starting point.
The number of possible tours grows as (n − 1)!/2, making an exhaustive search
infeasible even for moderate values of n. TSP is NP-hard in its optimization form
and NP-complete in its decision version. Similarly, the Active Debris Removal
(ADR) problem in orbital mechanics, which optimizes satellite removal sequences,
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Figure 3.1: Diagram of Complexity Classes illustrating the relationships between
P, NP, NP-Complete, and NP-Hard problems. This figure visually represents how
these classes are nested and highlights the relative computational complexity of
each.

shares structural similarities with TSP and is also NP-hard.
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Figure 3.2: Example of an NP-Hard problem: the Traveling Salesman Problem
(TSP). The diagram displays some of the several possible sequences for visiting
cities, emphasizing the exponential increase in route combinations as the number
of cities grows.

For NP-hard problems like TSP, exact algorithms (e.g., dynamic programming,
integer programming) are impractical for large inputs due to exponential growth in
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computational complexity. Instead, researchers employ approximation algorithms
and heuristic approaches to obtain near-optimal solutions in a reasonable time.
Common heuristics and metaheuristics include Beam Search, Ant Colony Opti-
mization, A∗ search, Simulated Annealing, and Genetic Algorithms, which leverage
problem-specific properties and randomness to navigate the solution space effi-
ciently. However, even sophisticated heuristics can struggle with large-scale in-
stances, requiring extensive computational resources and fine-tuning while offering
no formal guarantee of optimality.

In conclusion, the complexity classes NP, NP-hard, and NP-complete play a
crucial role in understanding computational feasibility. Many real-world combina-
torial optimization problems, such as scheduling, routing, and resource allocation,
fall within these categories. Given the intractability of exact solutions, continued
research explores improved heuristics, approximation techniques, and alternative
computational paradigms, including quantum computing, to address NP-hard op-
timization problems effectively.

3.2 Optimization Paradigms and Mathematical
Modeling

In mathematical optimization, problems are classified based on the nature of their
objective functions and constraints. Two fundamental categories are continuous
optimization, which includes linear and nonlinear programming, and combinatorial
optimization, which involves discrete decision variables, often modeled using binary
or integer values. This discussion focuses on combinatorial optimization, which aims
to find an optimal solution over a discrete but potentially exponentially large search
space.

3.2.1 Linear vs. Nonlinear Optimization
Linear Programming (LP) involves optimization problems where the objective func-
tion and constraints are linear functions of the decision variables. LP problems can
be solved efficiently using algorithms such as the Simplex method or interior-point
methods [34]. However, if we introduce integer or binary constraints on decision
variables, the problem transforms into Integer Programming (IP) or Mixed-Integer
Programming (MIP), which are generally NP-hard and significantly more difficult
to solve exactly [35].

Nonlinear optimization arises when the objective function or constraints involve
nonlinear terms. If the problem is convex, efficient algorithms exist, and any local
optimum is also a global optimum [36]. However, non-convex problems present
greater computational challenges as they may contain multiple local optima, making
global optimization intractable.
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3.2.2 Combinatorial Optimization
Combinatorial optimization involves problems where the solution space is discrete,
often structured as permutations, subsets, or assignments. Classical examples in-
clude:

• Scheduling problems (e.g., job shop scheduling, course timetabling)

• Routing problems (e.g., Traveling Salesman Problem, Vehicle Routing Prob-
lem)

• Assignment problems (e.g., matching workers to tasks, facility location prob-
lems)

• Graph-based problems (e.g., network design, clique finding, coloring problems)

These problems are commonly modeled using binary (0-1) decision variables, where
each variable represents a discrete choice—such as whether to include an item in a
knapsack or whether an edge in a graph is used.

A powerful way to model such problems is through 0-1 Integer Linear Program-
ming (0-1 ILP). For example, in the Traveling Salesman Problem (TSP), the binary
variable xij may indicate whether the salesman travels directly from city i to city
j. The objective function minimizes total travel distance, while constraints ensure
that each city is visited exactly once and that subtours (cycles within the tour) are
eliminated. However, due to the binary nature of the decision variables, such ILP
models are typically NP-hard, requiring advanced solving techniques.

3.2.3 Binary Optimization and Constraint Handling
A particularly significant subclass of combinatorial optimization problems is binary
optimization, where all decision variables are binary. These models are widely used
in operations research, artificial intelligence, and theoretical computer science, in-
cluding applications in SAT solvers, ILP solvers, and quantum optimization frame-
works. The significance of binary models lies in their flexibility—many complex
problems can be reformulated as binary problems through appropriate constraints
and objective function transformations. Some modern solvers and even quantum
annealers are designed to handle binary decision variables natively. By formulating
a problem in terms of binary variables, we make it amenable to these solvers.

Traditional constrained optimization problems (such as ILPs) impose explicit
feasibility conditions that solutions must satisfy. However, some solving approaches
— such as quantum annealing — prefer unconstrained formulations. This has led to
a modeling shift where hard constraints are incorporated into the objective function
via penalty terms, effectively transforming constrained problems into unconstrained
ones.
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3.2.4 From Linear Models to QUBO/HUBO
Linear models, while widely used, may not always capture complex relationships
between decision variables. In many practical applications, quadratic or higher-
order interactions naturally arise. For instance, in scheduling, a quadratic term
xi · xj might model a conflict cost if tasks i and j are scheduled together.

This leads to Quadratic Unconstrained Binary Optimization (QUBO), a formu-
lation where the objective function consists of quadratic terms over binary variables.
QUBO models are particularly important because they are directly solvable by
modern quantum annealers [37] and specialized combinatorial optimization solvers.

If the objective function contains higher-order interactions (e.g., cubic, quartic
terms), the problem is classified as Higher-Order Binary Optimization (HUBO).
While these models can be more compact and expressive, they often require trans-
formation into an equivalent quadratic form (a process known as quadratization)
to leverage existing QUBO solvers.
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Chapter 4

QUBO and HUBO
Mathematical Formulations

As optimization models evolve to incorporate quadratic and higher-order interac-
tions over binary variables, the QUBO (Quadratic Unconstrained Binary Optimiza-
tion) and HUBO (Higher-Order Unconstrained Binary Optimization) frameworks
become central in combinatorial optimization [38]. These formulations capture com-
plex decision structures and are particularly relevant for emerging computational
paradigms, including quantum computing and specialized classical solvers.

4.1 Quadratic Unconstrained Binary Optimiza-
tion (QUBO)

QUBO problem consists of an objective function defined over n binary decision
variables x = (x1, x2, ..., xn), where each xi takes values in {0,1}. The term “un-
constrained” signifies that any hard constraints have been incorporated into the
objective function via penalty terms, so the problem is presented in a form with no
explicit constraints. The objective of a QUBO is a quadratic polynomial in these
binary variables. The standard QUBO formulation is:

min
x∈{0,1}n

xT Q x, (4.1)

where Q is an n×n real-valued upper-triangular (or symmetric) matrix contain-
ing weights for variable interactions. Expanding this quadratic form yields:

min
x∈{0,1}n

nØ
i=1

nØ
j=1

Qij xixj (4.2)
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Since x2
i = xi for binary variables (i.e., xi is either 0 or 1), purely linear terms

can be embedded within the quadratic framework by setting Qii = qi:

min f(x) =
Ø

i

qixi +
Ø
i<j

Qij xixj, (4.3)

where:

• qi = Qii are linear coefficients representing individual variable contributions,

• Qij (for i /= j) are pairwise interaction coefficients, defining how two binary
variables influence the objective.

The task is to find the binary vector x∗ that minimizes f(x).

4.1.1 Why QUBO Matters
The QUBO framework is widely used because:

1. Generalized Combinatorial Modeling: Many NP-hard problems (e.g.,
MAX-CUT, Graph Partitioning, Boolean Satisfiability) can be expressed as
QUBOs [38].

2. Direct Quantum Compatibility: Quantum annealers (such as D-Wave)
solve problems in an Ising model form, which can be directly mapped to QUBO
matrices [37].

3. Specialized Classical Solvers: Even outside quantum computing, several
neuromorphic architectures and classical solvers are optimized for QUBO prob-
lems [39].

Despite its flexibility, solving a QUBO is NP-hard, as it generalizes well-known
hard combinatorial problems. However, heuristic and metaheuristic methods (sim-
ulated annealing, genetic algorithms, etc.) enable practical solutions for large in-
stances.

4.2 Higher-Order Unconstrained Binary Optimiza-
tion (HUBO)

A HUBO model extends QUBO by allowing terms of degree higher than two in the
objective function. Instead of just linear and quadratic terms, a HUBO formulation
may include:

• Cubic terms: xixjxk

• Quartic terms: xixjxkxℓ
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• Higher-order interactions: xi1xi2 . . . xik

The general HUBO objective function can be expressed as:

H(x) =
Ø

i1,i2,...,ik

ai1i2...ik
xi1xi2 · · · xik

, (4.4)

where each xi is binary and the coefficients ai1i2...ik
represent interaction weights

for multi-variable terms. The value k denotes the order of the highest-order term;
QUBO is the special case where k ≤ 2.

HUBO models are more expressive than QUBOs and arise naturally in problems
with multi-variable dependencies, such as:

• Higher-order Markov Random Fields (MRFs) in machine learning

• Complex interaction models in computational physics and chemistry

• Operations research problems where rewards/costs depend on combinations of
multiple binary decisions

While HUBO models provide a richer representation, they are even more com-
putationally difficult than QUBO problems because:

1. Solving HUBO directly is intractable for large k (exponential scaling).

2. Most existing solvers and quantum hardware only support quadratic terms—
necessitating a transformation from HUBO to QUBO.

4.3 From HUBO to QUBO – Problem Mapping
Because most combinatorial solvers (classical and quantum) are designed for QUBO
problems, it is common to convert a HUBO into an equivalent QUBO. This trans-
formation process is known as quadratization, and it introduces auxiliary binary
variables to replace higher-order terms.

Consider the cubic term xixjxk in a HUBO. We introduce an auxiliary binary
variable z such that:

z = xixjxk

To ensure z correctly represents the product xixjxk, we introduce penalty con-
straints into the objective function, such as:

P (x, z) = M(z − xixjxk)2 (4.5)

where M is a large penalty coefficient. Expanding and simplifying this term
introduces only quadratic interactions, converting the problem into a QUBO.
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A fundamental result by Rosenberg (1975) [40] states that any pseudo-Boolean
function (i.e., a binary polynomial objective) can be transformed into an equivalent
quadratic form by introducing extra variables and constraints. While this trans-
formation is always possible, it can significantly increase problem size, making it
computationally expensive. Therefore:

• If a problem is naturally quadratic, formulating it directly as a QUBO is
preferred to avoid introducing extra variables.

• If the problem contains high-order terms, one must carefully apply quadrati-
zation techniques, balancing accuracy, problem size, and solver compatibility.

For example, in space debris removal optimization, certain time-of-flight terms
introduced high-order dependencies between decision variables. To solve this prob-
lem efficiently on available solvers, a HUBO-to-QUBO transformation was required,
leveraging auxiliary variables and penalty terms.
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Chapter 5

Quadratization Techniques

5.1 Classical Quadratization Methods

Quadratization is the process of transforming a Higher-Order Unconstrained Binary
Optimization (HUBO) problem into a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem. This transformation is essential because most modern com-
binatorial solvers—including quantum annealers, Ising machines, and specialized
classical solvers—are designed to handle at most quadratic terms. Quadratization
ensures that a higher-order polynomial objective can be rewritten using only linear
and quadratic terms, while maintaining the equivalence of optimal solutions.

The general quadratization process follows these key steps [41]:

1. Identify higher-order terms: List all polynomial terms of degree greater
than two (e.g., cubic terms xixjxk, quartic terms xixjxkxℓ, etc.). Each such
term is a candidate for reduction.

2. Introduce auxiliary variables: Replace each higher-order term with a new
binary variable that represents the product of certain original variables.

3. Add penalty terms: Modify the objective function by introducing penalty
constraints to enforce consistency between the auxiliary variables and the orig-
inal binary variables. These penalties are constructed so that they are mini-
mized (zero or low cost) if and only if the auxiliary truly equals the product
of the originals.

Once these steps are applied systematically, the problem is reduced to a purely
quadratic form (QUBO) in an expanded variable space. The optimal solution of
the transformed QUBO should ideally satisfy all the penalty constraints, ensuring
it corresponds to a valid solution of the original HUBO.
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5.1.1 Quadratization of a Cubic Term: A Concrete Exam-
ple

Consider a cubic term xixjxk in a HUBO problem. The goal is to replace it with a
new auxiliary variable y while maintaining equivalence in the objective function.

1. Introduce an Auxiliary Variable
Define a new binary variable y = yijk that should ideally represent the product
xixjxk.

2. Replace the Higher-Order Term
Modify the objective function by replacing xixjxk with y.

3. Enforce Consistency with a Penalty Term
To ensure that y correctly represents xixjxk, add a penalty function that
assigns a cost if y /= xixjxk. A common penalty function is:

P (y − xixjxk)2

where P is a large positive coefficient ensuring that the constraint is enforced
in the optimal solution.
Expanding this term:

P (y2 − 2yxixjxk + x2
i x

2
jx

2
k)

Since y2 = y and x2
i = xi for binary variables, this simplifies to:

P (y − 2yxixjxk + xixjxk)

This term is now quadratic, meaning the HUBO has been successfully con-
verted to QUBO.

5.1.2 Rosenberg’s Quadratization Method (1975)
A classical quadratization technique, proposed by Rosenberg (1975) [40], is widely
used to reduce high-order binary interactions. Instead of using a direct squared-
penalty function, Rosenberg introduced auxiliary variables that enforce consistency
through alternative linearized constraints.

For example, to quadratize a cubic term xixjxk, we introduce an auxiliary y and
impose the following transformation:

M(xixj − 2xiy − 2xjy + 3y) (5.1)
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• If y = xixj, the penalty evaluates to zero, ensuring a valid transformation.

• If y /= xixj, the penalty incurs a cost, discouraging infeasible assignments.

This technique efficiently reduces cubic or higher-order terms (by applying such
transformations iteratively) without introducing excessive auxiliary variables, mak-
ing it preferable in many applications.

5.1.3 Quadratization of Quartic and Higher-Order Terms
For a quartic term xixjxkxℓ, a common approach is to reduce it in two steps:

1. Introduce an intermediate auxiliary variable z to represent xixj, replacing the
quartic term with zxkxℓ.

2. Introduce a second auxiliary y to represent xkxℓ, yielding a purely quadratic
formulation zy.

This recursive reduction method generalizes to higher-degree terms, ensuring
that any HUBO can be quadratized systematically.

5.2 Efficiency Considerations in Quadratization
While quadratization is mathematically guaranteed to work, it introduces new chal-
lenges:

1. Increased Problem Size: Introducing auxiliary variables expands the search
space [41]. If a problem originally has n variables, quadratization may increase
this to n + m, where m is the number of auxiliaries. This makes solving the
QUBO more computationally expensive, both for classical algorithms (more
variables to consider) and for quantum annealers (more qubits required).

2. Penalty Strength Selection: Choosing an appropriate penalty coefficient
P is crucial. If P is too small, the solver may return infeasible solutions. If P
is too large, it can distort the solution landscape and affect numerical stability.

3. Avoiding Local Minima: Some quadratization methods introduce spurious
local minima, where the solver gets stuck in infeasible configurations. Careful
tuning of penalty functions is necessary to mitigate this issue.

Thus, an active area of research is finding alternative quadratization approaches
that reduce higher-order terms while minimizing side effects. Researchers explored
alternative methods:
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• Minimal Auxiliary Variable Methods: Some quadratization techniques
seek to reduce the number of auxiliary variables, preserving a compact problem
formulation [42].

• Adaptive Penalty Scheduling: Instead of using a fixed penalty coefficient
P , some methods use an adaptive approach that gradually increases penalties
during optimization [43].

• Hypergraph-Based Quadratization: Advanced techniques use hypergraph
structures to systematically decompose higher-order interactions into chains
of quadratic terms, reducing computational overhead [44].

In this thesis, a novel quadratization method was developed for the specific
ADR optimization problem to handle a troublesome high-degree term efficiently –
by exploiting problem-specific structure (the orbital mechanics context) to reduce
polynomial degree with minimal overhead.
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Chapter 6

Solvers and Optimization
Algorithms

Once a mathematical model is defined—whether as an Integer Linear Program
(ILP), Quadratic Unconstrained Binary Optimization (QUBO), or another formulation—
the next step is solving it efficiently. For NP-hard combinatorial problems, exact
methods such as brute-force search, branch-and-bound, and cutting-plane algo-
rithms quickly become impractical as problem size grows due to their exponential
worst-case complexity. Instead, heuristic and metaheuristic solvers are commonly
employed, prioritizing scalability and speed over guaranteed optimality.

6.1 Heuristic and Metaheuristic Approaches
A heuristic is a problem-specific rule or algorithm that constructs a solution step
by step, often using locally optimal choices [45]. For instance, a greedy heuristic for
the Traveling Salesman Problem (TSP) might always select the nearest unvisited
city. While these approaches are computationally efficient, they are prone to getting
stuck in suboptimal solutions.

To address this, metaheuristics provide higher-level strategies that enhance search
exploration and help escape local minima. Several widely used metaheuristics in
combinatorial optimization include:

• Simulated Annealing (SA): Inspired by the annealing process in metal-
lurgy, SA explores solutions by accepting both improving and worsening moves
with a probability that decreases over time [19]. Early on, it allows large, dis-
ruptive moves to escape local optima; as the temperature parameter decreases,
the search narrows around promising regions. SA is particularly well-suited
for QUBO problems, where the energy landscape corresponds to the optimiza-
tion objective. However, performance heavily depends on the cooling schedule,
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and poor parameter tuning can lead to premature convergence or inefficient
exploration.

• Genetic Algorithms (GA): GA is based on natural selection principles,
maintaining a population of candidate solutions that evolve over generations
[20, 46]. Through mechanisms like crossover (recombination of solutions), mu-
tation (random changes), and selection (favoring better solutions), the algo-
rithm explores the search space broadly. GA is particularly effective for large,
complex optimization problems like scheduling and routing. However, it re-
quires careful tuning of mutation rates, population size, and selection pressure
and can suffer from slow convergence if the population lacks diversity.

• Tabu Search (TS): TS enhances local search by using a memory-based
mechanism to avoid revisiting recently explored solutions [47]. Each move is
recorded in a tabu list, preventing immediate reversals and forcing the search
toward unexplored regions. TS is particularly effective for problems where
local search is strong but prone to cycles, such as graph-based optimization
and QUBO problems, where flipping binary variables represents solution tran-
sitions. Despite its effectiveness, TS requires manual tuning of tabu tenure
and can struggle with vast search spaces.

Other advanced metaheuristics include Ant Colony Optimization (ACO) [48],
Particle Swarm Optimization (PSO) [49], Iterated Local Search (ILS), and hybrid
methods that combine elements from multiple approaches. Beam Search (a trun-
cated tree search) and Reinforcement Learning techniques have also been explored
for combinatorial optimization, particularly in mission planning problems like Ac-
tive Debris Removal (ADR).

6.2 Quantum Annealing (QA) and Hybrid Quan-
tum Annealing (HQA)

Quantum optimization can be approached through two primary paradigms: the
quantum circuit model [50] and adiabatic quantum computation (AQC) [51]. The
quantum circuit model, widely used for algorithms like Shor’s factoring algorithm
and Grover’s search, relies on sequences of unitary quantum gate operations ap-
plied to qubits. In contrast, AQC operates by continuously evolving a quantum
system from the ground state of a simple Hamiltonian to the ground state of a final
Hamiltonian that encodes the optimization problem.

This work focuses on Quantum Annealing (QA), a heuristic implementation
of AQC that is tailored specifically for combinatorial optimization problems [52,
53]. While QA follows the adiabatic principle, it operates in a non-ideal regime
where hardware limitations, thermal effects, and noise influence the computation.
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Unlike an ideal AQC process, which requires infinitely slow evolution to guarantee
optimality, practical quantum annealers are designed to find good solutions within
finite annealing times.

6.2.1 How Quantum Annealers Work
Quantum Annealers (QAs) are specialized quantum devices optimized for solving
Quadratic Unconstrained Binary Optimization (QUBO) problems [29]. They lever-
age two fundamental quantum phenomena:

1. Superposition, which allows the system to explore multiple solutions simulta-
neously.

2. Quantum tunneling, which enables the system to pass through energy barriers
rather than climbing over them, reducing the likelihood of getting trapped in
local minima.

A QA consists of a network of superconducting qubits, physically implemented
using Josephson junctions [53, 54]. These qubits interact via programmable cou-
plers, allowing the system to encode an optimization problem as a quantum Hamil-
tonian. Unlike classical bits, which are strictly 0 or 1, qubits can be in a superpo-
sition of both states, enhancing the exploration of the solution space.

6.2.2 Solving a QUBO Problem with a Quantum Annealer
The annealing process in QA follows these key steps:

1. Initialization
The system begins in a uniform superposition state, where each qubit is equally
likely to be in |0⟩ or |1⟩. This corresponds to the ground state of a simple
transverse-field Hamiltonian, HI .

2. Adiabatic Evolution
The system’s Hamiltonian is gradually transformed from the initial Hamilto-
nian HI to the final Hamiltonian HF , which encodes the optimization problem.
This transition follows the time-dependent equation:

HQA = φ(t)HI + (1 − φ(t))HF , (6.1)

where φ(t) smoothly decreases from 1 to 0 over the annealing time TA. During
this evolution, quantum tunneling helps the system avoid local optima by
allowing transitions that would be difficult in classical methods.
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Figure 6.1: Overview of quantum annealing.

3. Measurement
At the end of the anneal, the system collapses into a classical binary configu-
ration that represents a candidate solution to the optimization problem. This
final state is read as σ∗, which corresponds to a binary vector solution ζ∗.

4. Post-processing
Due to hardware noise and thermal fluctuations, the raw quantum output
may require classical post-processing using methods like simulated annealing
or tabu search to refine the solution further.

5. Repetitions
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Since quantum annealing is probabilistic, the process is repeated multiple times
to improve the likelihood of obtaining an optimal or near-optimal solution.

6.2.3 The Adiabatic Condition and Annealing Time Con-
straints

The effectiveness of QA relies on the Adiabatic Theorem, which states that if the
Hamiltonian evolves slowly enough, the system remains in its lowest energy state.
The minimum required annealing time TA satisfies:

TA ≥ 1
mint∈[0,TA] ∆E(t)2 , (6.2)

where ∆E(t) is the energy gap between the ground state and the first excited
state. If the evolution is too fast (i.e., TA is too small), non-adiabatic transitions
can occur, causing the system to settle in suboptimal excited states rather than the
true global minimum.

In practice, a balance must be struck:

• Longer annealing times increase the probability of reaching an optimal so-
lution but are constrained by hardware decoherence and practical runtime
considerations.

• Shorter annealing times allow for faster computations but increase the risk of
finding suboptimal solutions.

6.2.4 QUBO to Ising Model Mapping
Quantum annealers natively solve Ising model problems [55], which can be written
as:

HF =
Ø

i

hiσi +
Ø
i,j

Jijσiσj, (6.3)

where:

• σi ∈ {−1, +1} are spin variables (related to binary variables via xi = (1+σi)/2.

• hi are local qubit biases, influencing individual spins.

• Jij represents coupling strengths between qubits, encoding pairwise interac-
tions.

Since QUBO problems are naturally expressible in this Ising Hamiltonian form,
they can be directly mapped onto quantum annealers like D-Wave systems.

35



6 – Solvers and Optimization Algorithms

6.2.5 Hybrid Quantum Annealing (HQA)
Due to the limited qubit count and connectivity in current quantum annealers,
purely quantum optimization struggles with large, complex problems. Hybrid
Quantum Annealing (HQA) combines classical pre- and post-processing with quan-
tum optimization to improve scalability and solution quality [37].

One common HQA approach is problem decomposition:

1. The large problem is split into smaller subproblems that fit within the quantum
hardware’s constraints.

2. The quantum annealer solves each subproblem, and a classical solver stitches
solutions together to form a global result.

This allows larger instances to be tackled while still benefiting from quantum
speedups.

6.3 Classical vs. Quantum Optimization Meth-
ods: A Comparative Discussion

Optimization plays a central role in solving NP-hard problems, and over the decades,
classical algorithms have evolved into powerful tools for tackling large-scale combi-
natorial optimization problems. However, with the emergence of quantum optimiza-
tion methods, particularly quantum annealing (QA) and hybrid quantum-classical
approaches (HQA), there is growing interest in whether quantum methods can offer
an advantage over classical techniques. This section provides a comparative anal-
ysis of classical vs. quantum optimization, highlighting their respective strengths,
limitations, and future potential.

6.3.1 Strengths of Classical Methods
Classical optimization techniques have been extensively refined and optimized, in-
cluding exact algorithms, heuristics, and metaheuristics. Their maturity, flexibility,
and wide availability make them the dominant approach for solving NP-hard prob-
lems today.

• Maturity and Proven Performance: Decades of research have led to highly
optimized solvers for many NP-hard problems. For instance, integer linear
programming (ILP) solvers, such as CPLEX, Gurobi, and SCIP, can han-
dle thousands of variables using advanced techniques like branch-and-bound,
branch-and-cut, and cutting planes. Specialized algorithms, such as Held-Karp
dynamic programming for TSP or column generation for routing problems,
further enhance efficiency.

36



6.3 – Classical vs. Quantum Optimization Methods: A Comparative Discussion

• Heuristics and Metaheuristics for Scalability: Methods like Simulated
Annealing (SA), Genetic Algorithms (GA), Tabu Search (TS), and Ant Colony
Optimization (ACO) are problem-agnostic, highly customizable, and scalable
to large instances. These approaches often find high-quality solutions in a
reasonable time, even when exact methods become infeasible.

• Direct Constraint Handling: Classical solvers naturally handle hard con-
straints (e.g., ILP directly enforces feasibility through explicit constraints). In
contrast, quantum annealing requires constraints to be embedded as penalty
terms, which may lead to violations if not tuned properly.

• Runs on Standard Hardware: Classical solvers operate on widely available
computing infrastructure, from laptops to high-performance clusters. They are
not limited by qubit count, connectivity, or noise issues impacting quantum
hardware.

6.3.2 Limitations of Classical Methods
Despite their strengths, classical methods face fundamental challenges, especially
in scalability and search efficiency for large NP-hard problems.

• Exponential Growth in Complexity: Exact methods scale poorly—what
works for 50 cities in TSP might fail for 100 cities due to factorial growth in
solution space. Even heuristics struggle beyond certain problem sizes.

• Local Minima Traps: Classical algorithms can get stuck in local optima,
especially for highly nonlinear or multimodal landscapes. While metaheuristics
mitigate this, finding global optima remains difficult.

• High Computational Cost for Large Problems: Solving NP-hard prob-
lems often requires millions of iterations, making classical heuristics computa-
tionally expensive and computation time to grows exponentially. Additionally,
problems with high-dimensional feasible regions can cause random or evolu-
tionary searches to spend significant time in infeasible areas.

6.3.3 Strengths of Quantum Optimization
Quantum optimization, particularly quantum annealing (QA) and quantum ap-
proximate optimization algorithms (QAOA) [56], leverages quantum effects to ex-
plore the solution space fundamentally differently than classical methods.

• Quantum Tunneling Overcomes Energy Barriers: Unlike classical op-
timization, which requires “hill climbing” to escape local minima, quantum
tunneling allows a system to pass through energy barriers, making it more
likely to reach a better global solution.
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• Superposition Enables Parallel Exploration: Quantum states allow the
system to explore many possible solutions simultaneously, accelerating the
search process.

• Entanglement Encodes Correlations Efficiently: Quantum correlations
allow decision variables to be optimized jointly, capturing dependencies faster
than iterative learning in classical heuristics.

• Potential for Exponential Speedups: While general speedups remain de-
bated, certain spin glass problems show that quantum annealing avoids “crit-
ical slowing down” better than classical simulated annealing. This suggests
that QA might outperform classical heuristics in specific problem instances.

• Fast Solution Generation: Quantum annealers can generate a diverse set
of near-optimal solutions in microseconds to milliseconds. For example, in our
ADR mission planning, the quantum annealer produced multiple low-energy
solutions in under a second, giving decision-makers a variety of high-quality
mission plans to choose from.

6.3.4 Limitations of Quantum Optimization

Despite its potential, quantum optimization faces significant practical challenges,
particularly due to hardware limitations and the current state of quantum technol-
ogy.

• Hardware Constraints: Current quantum processors have limited qubits,
sparse connectivity, and noise issues, restricting their ability to solve large-scale
problems natively.

• Embedding Overhead: Mapping a logical problem with N variables onto
quantum hardware often requires many more physical qubits due to minor-
embedding and chain qubits, significantly increasing problem size. If chains
break, solutions become invalid.

• No Guaranteed Optimality: Like classical heuristics, quantum annealing
does not guarantee the global optimum. It often requires thousands of runs,
followed by post-processing to extract the best solution.

• Constraint Handling is Indirect: Since QA primarily solves unconstrained
QUBO problems, hard constraints must be encoded as penalties. If penalties
are not perfectly tuned, the QA may return infeasible solutions. In contrast,
classical ILP solvers enforce strict feasibility.
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6.3.5 Potential Impact and Outlook
If quantum optimization methods—whether improved QA hardware or fault-tolerant
quantum gate models like QAOA—continue to scale, they could revolutionize NP-
hard problem-solving.

A realistic near-term impact is that quantum optimization will augment classical
solvers rather than replace them. We already see:

• Hybrid Quantum-Classical Algorithms (HQA): Classical solvers handle
constraints, while quantum optimizers focus on combinatorial bottlenecks.

• Quantum-Assisted Heuristics: Quantum processors (QPUs) can rapidly
generate diverse initial solutions, accelerating classical solvers.

• Cloud-Based Hybrid Services: Commercial providers offer hybrid solvers
that automatically distribute workload across classical and quantum hardware.

If quantum optimization achieves scalability and reliability, it could extend the
frontier of solvable problems, impacting fields like aerospace, finance, or logistics.
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Part III

Problem Modeling and
Quadratization Strategies
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Chapter 7

Problem Description and
Mathematical Formalization

7.1 The Space Debris Collection Problem

This article aims to address the problem of disposing and removing multiple space
debris items using a single chaser spacecraft. As shown in Figure 7.1, the mission
involves a sequence of maneuvers for the chaser:

• departing from a designated disposal orbit;

• rendezvousing and docking with each target debris;

• transporting and releasing each debris into the disposal orbit.

This process is repeated for all scheduled debris items. The disposal orbit is de-
signed by the IADC guidelines, ensuring complete deorbit within 25 years. Compli-
ance with international debris mitigation standards helps reduce long-term orbital
congestion.

The debris population considered in this study is derived from real satellite de-
bris data obtained from Two-Line Element (TLE) files, ensuring accurate orbital
parameter representation. Since all debris items are in LEO with low eccentricity,
their orbits can be approximated as circular. To optimize fuel efficiency, the selec-
tion of the target debris is restricted to objects with an orbital inclination similar to
that of the chaser’s disposal orbit, while variations in altitude and Right Ascension
of the Ascending Node (RAAN) are possible.

The core issue is to obtain an optimal sequence of debris-clearing operations for
minimizing propellant consumption and maximizing efficiency in a mission.
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7.2 Definition of the Capture Pattern and Vari-
ables

For a mission designed to perform C capture operations on a set of D debris objects,
the capture sequence is represented as:

d0, seq = {d1, d2, d3, ..., dD} , (7.1)
where di ∈ seq denotes the ith debris object selected for capture, while d0 rep-

resents the initial state of the chaser before any capture operation. The capture
pattern consists of:

1. Departure from the Disposal Orbit:
The chaser departs from its disposal orbit, characterized by an initial altitude
aril and RAAN Ωcin

.

2. RAAN Alignment via J2 Perturbation:
To align its RAAN with that of the target debris (Ωd(i), where i = 1, . . . , D),
the chaser exploits the Earth’s oblateness effect, specifically the J2 gravita-
tional perturbation. This gradual drift in RAAN is used to minimize fuel
consumption.

Figure 7.1: Mission maneuvers: depart from the disposal orbit, debris capture and
return to the disposal orbit.
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3. Optimal Rendezvous Timing:

Once the chaser’s RAAN aligns with that of the target debris, initiate a pre-
cisely timed waiting period. This ensures that, after executing a Hohmann
transfer, the chaser arrives at the target orbit at the optimal position for ren-
dezvous.

4. Hohmann Transfer to the Target Debris:

The chaser executes a Hohmann transfer, an energy-efficient orbital maneuver,
to move from its current orbit to the target debris orbit.

5. Capture Operation:

Upon reaching the target orbit, the chaser executes a precise relative posi-
tioning maneuver, enabling the execution of the capture operation within a
predefined period.

6. Return to Disposal Orbit:

After capture, the chaser performs another Hohmann transfer to return to the
disposal orbit.

7. Debris Release:

Upon reaching the disposal orbit, the chaser remains in position for a specified
period while releasing the captured debris.

8. Cycle Repetition:

The process is repeated for the subsequent debris in the capture sequence until
all target objects are processed.

In order to optimize the sequence of debris capture by minimizing operational
costs (in terms of time and propellant consumption) while maximizing strategic
benefits, the optimization problem includes three terms, described in the following.

7.3 TOF
The Time of Flight (TOF) represents the total time required to complete the cap-
ture of a debris object. For the capture of the ith debris object in the selected
sequence, TOF is expressed as:

TOF(0,1,...,i) = tR(i−1,i) + tW (0,1,...,i) + 2 · tH(i) + tcat + tril ∀i = 1,2, . . . , C (7.2)
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7.3.1 RAAN Alignment Time tR

tR is the time required for the chaser’s RAAN to align with that of the ith debris
object by exploiting the Earth’s J2 gravitational perturbation. The effect of the
J2 term in Earth’s gravitational potential causes a deterministic, unidirectional
variation of the RAAN, which is described by the following equation:

Ω̇ = −3
2J2

A
RE

a(1 − e2)

B2

n cos(i) , (7.3)

where:

• J2 is the second zonal coefficient in the Legendre series approximating Earth’s
gravitational potential,

• RE is Earth’s equatorial radius,

• n =
ñ

µ
a3 is the mean motion,

• i is the orbital inclination.

Since the J2-induced RAAN variation is unidirectional, its direction depends on
the orbit’s inclination:

• For prograde orbits (i < 90°), RAAN decreases over time:

tR(0,1) = mod (Ωd(1) − Ωcin
, −2π)

Ω̇
,

tR(i−1,i) = mod (Ωd(i) − Ωd(i−1), −2π)
Ω̇

• For retrograde orbits (i > 90°), RAAN increases over time:

tR(0,1) = mod (Ωd(i) − Ωcin
, 2π)

Ω̇
,

tR(i−1,i) = mod (Ωd(i) − Ωd(i−1), 2π)
Ω̇

• For polar orbits (i = 90°), the perturbation effect is null, meaning it cannot
be used for RAAN alignment.
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7.3.2 Hohmann Transfer Time tH

tH represents the time required to perform an orbital change using a Hohmann
transfer maneuver. Whether moving to a higher or lower orbit, according to Ke-
pler’s third law, the transfer time is given by:

tH(i) = 1
2

öõõô4π2 · a3
H(i)

µ
= π

öõõôa3
H(i)

µ
(7.4)

where aH(i) = ad(i)+aril

2 is the semi-major axis of the Hohmann transfer orbit.

7.3.3 Rendezvous Waiting Time: tW

The waiting time tW ensures that, after executing the Hohmann maneuver, the
chaser arrives at the debris object’s orbit at the correct position for rendezvous.
The lead angle αlead is the angular displacement between the initial position of the
target and the rendezvous point, given by:

αlead = wd · tH

Additionally, the final phase angle ϕf is the angular displacement between the
chaser and the target at rendezvous:

ϕf = π − αlead

To ensure correct timing, the chaser must wait such that:

ϕf = ϕi + (wd − wril) · tW

Solving for tW :

tW = ϕf − ϕi

wd − wril

Since the initial phase angle is ϕi = ud − uc, we obtain:

tW = π − wd · tH − (ud − uc)
wd − wril

If this expression yields a negative result, it is adjusted as follows, considering
that wril > wd for every debris object (as the release orbit is always lower than the
debris orbit):

tW = mod (π − wd · tH − (ud − uc), −2π)
wd − wril

(7.5)

47



7 – Problem Description and Mathematical Formalization

Figure 7.2: Depiction of a rendezvous maneuver between an interceptor and a
target satellite. The diagram illustrates the phase angles ϕf and αlead required
for synchronization, showing both spacecraft trajectories and the rendezvous point.
Image from Lynnane George’s Open Educational Resource [57].

where ud and uc represent the arguments of latitude for the debris and the chaser,
respectively, after RAAN alignment via J2 perturbation. The J2 perturbation also
affects the argument of perigee (ω) and the mean anomaly (M), described by:

ẇ = 3
4J2

A
RE

a(1 − e2)

B2

n(5 · cos2(i) − 1) (7.6)

Ṁ = n

1 + 3
4J2

A
RE

a(1 − e2)

B2 √
1 − e2(3 cos2(i) − 1)

 (7.7)

Since we consider circular orbits (e = 0), the argument of perigee ω is unde-
fined, and the true anomaly θ coincides with the mean anomaly M . Therefore, the
variation in the argument of latitude u is influenced solely by M :
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u̇ = Ṁ

The chaser’s argument of latitude is updated as follows:

uc(i−1,i) = ucfin(i−1) + u̇ · tR(i−1,i)

ucfin(i−2,i−1) = ucfin(i−2) + u̇ · tR(i−2,i−1) + wril · (tW (i−1) + tril) + wd(i−1) · tcat + 2π

. . .

ucfin(0,1) = ucin
+ u̇ · tR(0,1) + wril · (tW (1) + tril) + wd(1) · tcat + 2π

where the final argument of latitude for previous captures recursively depends
on earlier ones. For the debris argument of latitude:

ud(0,1,...,i) = udin(i) + wd(i) · (tR(i−1,i) +
i−1Ø
j=0

TOF(0,1,...,j))

Thus, the waiting time for the ith capture is:

tW (0,1,...,i) = mod (π − wd(i) · tH(i) − (ud(0,1,...,i) − uc(0,1,...,i)), −2π)
wd(i) − wril

(7.8)

This formulation accounts for all prior captures, emphasizing the sequential
dependency in computing waiting times. This sequential dependency represents
the bottleneck of this approach, making the optimization problem very complex.
A solution to this issue is described in Section 9.2.

7.3.4 Capture Time tcat

Once the chaser successfully reaches the debris, a specific period is allocated for the
actual capture process. This phase includes: i) ensuring that the spacecraft is po-
sitioned and aligned with the debris, minimizing any relative motion, ii) deploying
capture mechanisms (such as robotic arms or nets), iii) securing the debris, and iv)
verifying that the capture is successful. The duration of this phase depends on the
complexity of the capture system and the characteristics of the debris object.

7.3.5 Release Time tril

After securing the debris, it must be moved to the designated disposal orbit where
it is either deorbited or stored safely. The release process includes positioning the
debris in the correct disposal path and disengaging it from the chaser. Similar to
the capture phase, this step requires careful execution to ensure that the debris
follows the intended trajectory post-release.
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7.4 Delta-v ∆v

Delta-v (∆v) represents the instantaneous change in velocity that must be imparted
to the chaser to perform the required orbital maneuvers. Since ∆v is directly
proportional to fuel consumption, it serves as a critical indicator in the optimization
process. A Hohmann transfer is a commonly used maneuver that involves two
propulsion impulses: the first accelerates the chaser into an elliptical transfer orbit
with its periapsis at the initial orbit and its apoapsis at the target orbit; the second
is applied at the apoapsis (for ascent) or periapsis (for descent) to circularize the
orbit and match the debris’s velocity. Using the vis viva equation, the velocity on
the transfer orbit is:

vH,periapsis = vH,p =
ó

µ( 2
rH,p

− 1
aH

)

vH,apoapsis = vH,a =
ó

µ( 2
rH,a

− 1
aH

)

The total required for the Hohmann transfer is:

∆v =
|vf − vH,a| + |vi − vH,p|, if ri < rf ,

|vf − vH,p| + |vi − vH,a|, if ri > rf ,
(7.9)

Where vf =
ñ

µ
rf

and vi =
ñ

µ
ri

. The total ∆v for capture is given by the Hohmann
maneuver required to reach the debris and return to the release orbit:

vHcat,p(i) =
ó

µ( 2
aril

− 1
aH(i)

)

vHcat,a(i) =
ó

µ( 2
ad(i)

− 1
aH(i)

)

∆vcat(i) =
-----
ó

µ

ad(i)
− vHcat,a(i)

-----+
-----
ó

µ

aril

− vHcat,p(i)

----- (7.10)

vHril,p(i) =
ó

µ( 2
ad(i)

− 1
aH(i)

)

vHril,a(i) =
ó

µ( 2
aril

− 1
aH(i)

)

∆vril(i) =
-----
ó

µ

aril

− vHril,a(i)

-----+
-----
ó

µ

ad(i)
− vHril,p(i)

----- (7.11)

∆vtot(i) = ∆vcat(i) + ∆vril(i) (7.12)
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7.5 Desirability
Each debris object is associated with a desirability metric that quantifies its relative
priority for capture. Although TLE files lack direct information regarding the mass
or cross-sectional area of debris, they provide the drag term and other orbital
parameters that—when processed via the SGP4 (Simplified General Perturbations
Model 4) propagator [58]—allow for the estimation of decay times. In this study,
the desirability of a debris object is defined as the time required for it to reach
the disposal orbit naturally. Consequently, debris that would take a longer time to
decay are assigned a higher desirability, thus prioritizing their capture over objects
with shorter decay times.

7.6 Mathematical Formulation of Objectives and
Constraints

The subsequent sections give a detailed description of the mathematical model,
including the decision variables, important parameters, and the optimization func-
tion. Constraints are also formulated to guarantee the feasibility and effective use
of the debris capture method.

7.6.1 Variables and Parameters
Decision Variable

We define the binary decision variable as follows: xij ∈ {0,1}:

• xij = 1 if debris j is captured in capture event i;

• xij = 0 otherwise.

Parameters

• TOF(·): The total time associated with the complete sequence of captures.
For a given sequence (j1, j2, . . . , jC), the parameter TOF(j1,j2,...,jC) represents
the total time required to execute all captures in that order. Note that, as
previously discussed in Section X.X (tW accounts for the cumulative effect of
prior captures), the TOF parameter is calculated over the entire sequence and
cannot be decomposed into components associated with individual xij.

• ∆vj: The total delta-v required to perform the two Hohmann maneuvers for
capturing debris j. This parameter is directly linked to the decision to capture
debris j during a specific event.
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• desj: The strategic desirability of debris j represents the benefit gained from
its capture as described in Section X.X. This parameter is also directly incor-
porated into the corresponding term for xij.

Weighting Coefficients

CT , CV , and CD are positive coefficients that balance the impact of TOF , ∆v, and
des within the objective function, respectively.

7.6.2 Objective Function
The model aims to optimize the capture sequence of space debris by minimizing
operational costs (in terms of time and delta-v) while maximizing strategic benefits.
Since the TOF parameter pertains to the entire sequence, its integration into the
objective function is structured as follows.

Term Associated with TOF

For each capture sequence (j1, j2, . . . , jC), where C represents the total number of
capture events, we define:

CT · TOF(j1,j2,...,jC) ·
CÙ

i=1
xi,ji

This formulation ensures that TOF(j1,j2,...,jC) contributes to the objective func-
tion only when the selected debris items j1, j2, . . . , jC are captured in sequence
during events 1, 2, . . . , C (i.e., when x1,j1 = x2,j2 = · · · = xC,jC

= 1).

Terms Associated with ∆v and des

Since these parameters are associated with individual capture events, they con-
tribute linearly:

CV

CØ
i=1

DØ
j=1

∆vjxij and − CD

CØ
i=1

DØ
j=1

desjxij

Complete Objective Function

By combining these terms, the final objective function is expressed as:

min
x

CT

Ø
(j1,...,jC)∈S

TOF(j1,...,jC)

CÙ
i=1

xi,ji
+ CV

CØ
i=1

DØ
j=1

∆vjxij − CD

CØ
i=1

DØ
j=1

desjxij

(7.13)
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where S represents the set of all feasible debris capture sequences (i.e., all com-
binations that satisfy operational constraints).

7.6.3 Model Constraints
To ensure the operational feasibility of the solution, the model includes the following
constraints:

1. Unique Assignment Constraint: Each debris item j can be captured at
most once, ensuring the exclusivity of the action:

CØ
i=1

xij ≤ 1 ∀j = 1, . . . , D

2. Operational Sequencing Constraint: In each capture event i, at most one
debris item can be selected, ensuring sequential execution:

DØ
j=1

xij ≤ 1 ∀i = 1, . . . , C

These constraints ensure that:

• No debris is captured more than once.

• No simultaneous captures occur within the same operational event.

7.6.4 Final Considerations
The model proposed succeeds in bringing together core features of the problem:
selection at each event of the best debris to capture, balancing cost (time and
delta-v) and benefits (desirability).

The objective function, in particular, through coefficients CT , CV , and CD, al-
lows modulation of each parameter contribution, and assignment and sequencing
constraints allow maintenance of compliance with key operational requirements in
any generated solution.

The model’s salient features include:

• The TOF term, which depends on the overall sequence, is addressed through
a high-order expression (product of sequence’s xij values over its full sequence),
emphasizing the sequential and cumulative nature of timing-related costs.

• The ∆v and des terms, being tied to individual events, contribute linearly,
making their integration into the objective function straightforward.
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The inclusion of the TOF term adds complexity—requiring proper transforma-
tion into QUBO/HUBO-conformal form in follow-on rounds of optimization—but
its form provides a good foundation for the expression of the debris capture problem
in real and operational terms, in harmony with mission operational dynamics.
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Chapter 8

Complexity Analysis and
Theoretical Challenges

Building upon the formulation presented in Chapter 5, this chapter delves into
the computational complexity of the objective function, analyzing how the solu-
tion space scales as the number of debris (D) and capture events (C) increases.
The focus is on identifying the dominant computational bottlenecks and discussing
potential strategies to mitigate them. The objective function is composed of two
categories of terms:

• Linear terms (∆v and des), which contribute linearly to the overall cost.

• A high-degree polynomial term (TOF ), which depends on the full capture
sequence.

Here the explanation focuses on how the polynomial term induces exponential
blowup in the solution space, with significant implications for problem solving.

8.1 Analysis of the Polynomial Objective Func-
tion and Its Complexity

From Subsection 7.6.2, we obtained the total objective function 7.13 as follows:

min
x

CT

Ø
(j1,...,jC)∈S

TOF (j1, . . . , jC)
CÙ

i=1
xi,ji

+ CV

CØ
i=1

DØ
j=1

∆vjxij − CD

CØ
i=1

DØ
j=1

desjxij

We therefore continue to perform a complexity analysis for each of its terms.
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8.1.1 Analysis of the TOF Term
The polynomial term associated with TOF is:

fT OF (x) = CT TOF (j1, . . . , jC)
CÙ

i=1
xi,ji

Complexity of Evaluating a Single Sequence

Considering a single sequence (j1, . . . , jC), evaluating the polynomial termrC
i=1 xi,j0i

requires O(C) operations , as the binary nature of xij makes each multiplication
trivial. (since xij is binary, the computation itself has negligible cost). However,
when extending this evaluation to all admissible sequences, the complexity escalates
significantly due to the combinatorial nature of S.

Number of Admissible Sequences

Since each capture event must be uniquely assigned to debris, the total number of
possible sequences is given by:

|S| = D!
(D − C)!

whose order of magnitude, for D ≫ C, can be approximated as:
|S| = O(DC)

Thus, an exhaustive evaluation of all possible sequences would result in an overall
complexity of the TOF term of:

O(C · DC)

8.1.2 Analysis of the Linear Terms
The terms related to ∆v and des sum linearly:

f∆v(x) = CV

CØ
i=1

DØ
j=1

∆vjxij, fdes(x) = −CD

CØ
i=1

DØ
j=1

desjxij

The computational cost of evaluating each of these terms is O(C · D), which is
significantly lower than the polynomial component.

8.2 Impact of Increasing Debris and Capture Events
on Computational Effort

This section analyzes how increasing the parameters D (number of debris) and C
(number of capture events) affects the overall computational cost of the problem.
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8.2.1 Effect of the Number of Debris (D)
Since the number of admissible sequences is:

|S| = D!
(D − C)!

For increasing values of D (with C fixed), the number of possible combinations
increases rapidly. Asymptotically, if C is considered constant, we have:

|S| = O(DC)

This means that even a moderate increase in D can lead to an explosion in the
number of possible sequences, making solution space exploration computationally
expensive.

8.2.2 Effect of the Number of Capture Events (C)
With D fixed, increasing the number of events C leads to exponential growth in
the number of sequences, since:

|S| = D!
(D − C)! ≈ O(DC) for C ≪ D

In other words, increasing C by even one unit results in a multiplicative increase
of D in the sequence count.

Practical Implications

This exponential dependency imposes practical limits on the problem dimensions
that can be handled with an exact approach. For D = 20 and C = 5, for instance,
the number of admissible sequences is on the order of O(205) = O(3.2 × 106); when
C = 6, it reaches O(206), exceeding 64 million possible configurations.

This increase highlights the need to resort to variable domain reduction strategies
or heuristic/metaheuristic algorithms to handle realistically sized problems.

8.3 Overall Considerations
The analysis shows that the TOF term is the primary contributor to the combi-
natorial explosion of the solution space, leading to an asymptotic complexity of
O = (DC). This makes the problem inherently NP-hard.

Effectively handling the TOF term requires a trade-off between computational
feasibility and the accuracy of time cost modeling. Two primary approaches can
be considered:
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1. Quadratization techniques, which transform the high-degree polynomial
terms into QUBO-compatible forms.

2. Heuristic/metaheuristic methods, such as simulated annealing or quan-
tum annealing, to explore the solution space efficiently.
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Chapter 9

Quadratization Strategies
and Innovations

A key challenge in solving the debris capture optimization problem is the presence of
high-degree polynomial terms in the objective function, particularly the TOF term.
These terms hinder the use of quantum optimization methods, which require QUBO
formulation. This chapter explores strategies for transforming the problem into a
quadratic form, making it computationally feasible while preserving its essential
structure. We will illustrate:

• Traditional quadratization techniques, with particular reference to substitution-
and penalty-based methodologies;

• The proposed novel methodology, which simplifies the computation of TOF
by approximating the waiting time term tW using the synodic period, thereby
reducing the problem’s degree;

• A comparative analysis of both approaches in terms of computational perfor-
mance and solution quality.

9.1 Traditional Quadratization of Polynomial Prob-
lems (Case >2 Captures)

Transforming a HUBO problem into a QUBO problem is a crucial step to lever-
age efficient optimization algorithms. In the context of this thesis, the ’to_qubo’
function from the Python library ’qubovert’ is used to automate the conversion
by applying a quadratization procedure. Although the exact method implemented
within ’to_qubo’ may vary, it typically relies on introducing auxiliary variables and
adding penalty terms to ensure equivalence between the original product and the
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new formulation. The quadratization process (Section 5.1) follows a structured
approach:

1. Term Scanning: The algorithm scans each term of the polynomial function.
If the term is already quadratic (i.e., it contains at most two variables), it
remains unchanged.

2. Decomposition of Higher-Degree Terms: For each term of degree D > 2
(e.g., a term of the form rD

i=1 xi), the method proceeds to “decompose” the
term through the following steps:

• Introduction of Auxiliary Variables: A pair of variables, such as xixj,
is replaced with a new auxiliary variable z that must satisfy the condition
z = xi · xj.

• Addition of Penalty Terms: To enforce the equivalence between z and
the product xixj, penalty terms are integrated into the objective function.
An example of a penalty term is:

penalty × (xixj − 2xiz − 2xjz + 3z)

where the coefficient (called the “penalty”) is appropriately chosen to
“force” the new variable to assume the correct value.

• Iterative Process: The algorithm proceeds iteratively or recursively un-
til all terms are reduced to quadratic form.

This quadratization strategy, based on substitution and penalty addition, is well
documented in the literature (e.g., Rosenberg, 1975 [40]; Boros & Hammer [41])
and is widely used to convert HUBO models into QUBO, for which numerous solu-
tion methods exist, including combinatorial optimization algorithms and quantum
approaches.

9.2 Novel Generalized Quadratization Method

9.2.1 Context and TOF Problematic
In the original formulation 7.2, the total operation time TOF for a sequence of
captures (0, 1, . . . , i) is expressed as:

TOF(0,1,...,i) = tR(i−1,i) + tW (0,1,...,i) + 2 · tH(i) + tcat + tril ∀ i = 1,2, . . . , C

where:
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• tR(i−1,i) represents the RAAN alignment time from the previous capture to the
current one (thus a quadratic term),

• tH(i) is the time required to perform the Hohmann maneuver in capture i,

• tcat and tril are the times associated with capture and release, respectively,

• tW (0,1,...,i) is the waiting time necessary for the chaser to reach the debris at
the right moment for rendezvous after the Hohmann maneuver.

The exact calculation of tW (0,1,...,i) is particularly problematic as it requires
knowledge of the entire sequence of previous captures, making the term’s degree
equal to the number of captures C. This high dependency results in significant
computational complexity when formulating the problem (Section 8.1.1).

9.2.2 Approximation via the Synodic Period
The key challenge in reducing the complexity of TOF lies in the waiting time term
tW , which depends on the entire sequence of previous captures. To address this, we
introduce a novel approximation: instead of computing tW explicitly, we estimate it
using the synodic period. The synodic period represents the time interval required
for two orbiting bodies (in this case, the chaser and the debris) to realign in the same
relative configuration. Operationally, it corresponds to the worst-case scenario: if
the chaser has just missed an optimal departure opportunity, it must wait for a time
equal to the synodic period to obtain the ideal alignment for rendezvous again.

This substitution implies:

tW (0,1,...,j) ≈ Tsynodic,j

where Tsynodic,j depends only on the debris j (i.e., on the variable xij associated
with the current event) rather than on the complete sequence of captures. The
primary advantage of this approximation is the reduction of the TOF term’s degree:

• The term tW is reduced from degree C to degree 1,

• The overall TOF term becomes quadratic (since tR(i−1,i) remains a quadratic
term).

While this approximation results in a conservative estimate (i.e., an overesti-
mation) of the waiting time, its impact on solution optimality is minimal, as the
dominant contribution to TOF generally comes from the tR term. Only in specific
scenarios, such as multiple coplanar operations (when many debris share the same
RAAN but have different altitudes), could the approximation’s impact be more
pronounced, though such cases are highly unlikely.
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9.2.3 Advantages of the New Methodology
• Reduction of Computational Complexity: The simplification achieved

by reducing the degree of tW leads to a significant decrease in the number of
required auxiliary variables and results in a more compact QUBO model.

• Preservation of Solution Accuracy: The synodic period approximation
retains the primary set of optimal solutions, as the dominant term (tR) remains
unchanged, and the impact of tW is relatively minor.

• Applicability to Any Number of Captures: The proposed methodology
allows obtaining a quadratic formulation regardless of the number of captures,
making the model scalable for realistic instances.

9.3 Comparative Analysis: Performance and Com-
putational Efficiency

A fundamental difference between the two methodologies lies in the asymptotic
complexity associated with handling high-degree terms:

• Traditional Method: Managing the TOF term exactly results in a degree
equal to the number of captures C. Evaluating or converting such a term
into a QUBO requires considering several combinations of O(DC), where D
represents the number of available debris. This exponential complexity makes
the problem inherently NP-hard and can significantly inflate the QUBO model.

• New Methodology: By replacing tW with the synodic period, we achieve
a quadratic formulation that dramatically reduces computational complexity
from exponential (O(DC)) to polynomial (O(C · D2)). This enables the use of
QUBO-based optimization techniques on real-world problem instances, mak-
ing large-scale debris capture scenarios computationally feasible.

Aspect Traditional Method Proposed Method
Degree of TOF term O(C) O(2)
Computational Complexity O(DC) O(C · D2)
Accuracy Exact, but computationally infeasible Approximate, but retains key optimal solutions
Applicability Limited to small-scale problems Scalable to realistic mission sizes

Table 9.1: Comparative analysis of the traditional and proposed methods.
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Chapter 10

Conversion to
QUBO/HUBO Format

Bridging the gap between a mathematically quadratized model and a hardware-
compatible QUBO/HUBO formulation is fundamental for leveraging quantum an-
nealing. The challenge lies in encoding the problem in a way that maintains its
computational tractability while respecting the constraints imposed by quantum
hardware limitations. This chapter explores the methodology adopted to achieve
this transformation, emphasizing the key decision to rely on a linear penalty term
for quantum annealing, a choice driven by experimental insights into constraint
violations in traditional “one-hot” encodings.

10.1 Mapping Techniques to QUBO/HUBO For-
mat

The QUBO format is the standard for formulating combinatorial optimization prob-
lems intended for use on quantum hardware. As previously explained in Section
4.1, in this format, the objective function takes the form:

f(x) = xT Qx

where x is the vector of binary variables and Q is a symmetric matrix containing
the coefficients of the linear and quadratic terms. In cases where the original
problem involves higher-degree monomials, a quadratization procedure is required
(as described in Chapter 5), introducing auxiliary variables and penalty terms to
ensure the correct reduction to QUBO/HUBO format. This mapping phase is
crucial for leveraging quantum annealing techniques requiring a fully quadratic
formulation.
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Figure 10.1: QUBO data structure, representing a valid solution. The highlighted
circles are variables set to one, i.e. represent the debris-capture association.

10.2 Variable Structure and Costas Array En-
coding

To encode decision variables, we employ a structure inspired by the Costas array, a
well-established technique in permutation problems such as the Traveling Salesman
Problem. In this rectangular encoding, the binary matrix X = [xij] is organized as
follows:

• Rows (i = 1, . . . , C): Represent capture operations, i.e., the events in which
a selection is made.

• Columns (j = 1, . . . , D): Represent the available space debris.

This encoding imposes two essential constraints:

1. Row Uniqueness: each row must contain exactly one variable set to “1,”
formally expressed as: qD

j=1 xij = 1 ∀, i.

2. Column Uniqueness: each column can contain at most one variable set to
“1,” i.e., qC

i=1 xij ≤ 1 ∀, j.
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These constraints, analogous to the “one-hot” encoding used in permutation
problems, have been translated into penalty terms in the QUBO model, as reported
in the literature, for example, in the paper “Domain-Wall / Unary Encoding in
QUBO for Permutation Problems” [59]. The traditional encoding, expressed in
quadratic form, takes the following expression (where n corresponds to the size of
the square Costas Array):

P2way1hot = −
nØ

i=1

nØ
j=1

xij +
nØ

k=1

Ø
i<j

(xki xkj + xik xjk)

10.3 Definition of Penalty Terms and Variable
Reduction Strategies

In the studied model, the final objective function to be minimized is formulated as:

f = CT · TOF + CV · ∆v + CD · des + λ · PenaltyTerm (10.1)
Where the quadratic formulations of TOF , ∆v, and des have already been

presented in the previous chapters, while PenaltyTerm consists of a combination
of three components:

• Term 1 – Binary Matrix Validity: Pmatrix = qC
k=1

qD
j=1 xkj. This term

penalizes the presence of an excessive number of “1”s in the matrix.

• Term 2 – Row Uniqueness: Prow = qC
k=1

qD
j=1

qj−1
i=1 xkixkj. Ensures that

no two “1”s appear in the same row.

• Term 3 – Column Uniqueness: Pcolumn = qD
k=1

qC
j=1

qj−1
i=1 xikxjk. Prevents

two “1”s from appearing in the same column.

The overall PenaltyTerm is defined as:

PenaltyTerm = λ1 · Pmatrix + λ2 · Prow + λ3 · Pcolumn (10.2)
The three penalty components are inspired by the previously introduced “one-

hot” approach, with a difference in the sign of the linear component.
Combining all terms, the complete objective function becomes:

f(x) = fT OF + f∆v + fD + λ1Pmatrix + λ2Prow + λ3Pcolumn =

= CT

Ø
(j1,...,jC)∈S

TOF(j1,j2,...,jC)

CÙ
i=1

xi,ji
+ CV

CØ
i=1

DØ
j=1

∆vjxij − CD

CØ
i=1

DØ
j=1

desjxij+

+ λ1

CØ
k=1

DØ
j=1

xkj + λ2

CØ
k=1

DØ
j=1

j−1Ø
i=1

xkixkj + λ3

DØ
k=1

CØ
j=1

j−1Ø
i=1

xikxjk (10.3)
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10.3.1 Decision of Exclusive Use of Pmatrix in QA

Experimental results revealed a critical issue when using traditional “one-hot”
quadratic constraints in quantum annealing (QA): the annealer tended to converge
towards high-energy configurations that violated the constraints, despite following
a descending energy trajectory. The reason lies in the excessive coupler strength re-
quired to enforce row and column uniqueness, which distorted the energy landscape
and led to invalid solutions.

To address this, we adopted a simplified penalty strategy, relying solely on the
linear term Pmatrix and eliminating Prow and Pcolumn (λ2 = λ3 = 0). This approach
offers two key advantages:

• Reduction in the Number of Couplers: Lowering quadratic terms signif-
icantly decreases the number of couplers required by the hardware, enabling
better scalability for large debris capture problems.

• Improved Exploration of Valid Solution Space: Exclusive use of Pmatrix

has led to a dynamic annealing behavior where the optimal solution initially
consists of all xij = 0. However, by properly adjusting the chain_strength
parameter, it is possible to force the annealer to progressively explore con-
figurations that satisfy the constraints: in fact, the qubit chain preserves the
integrity of the logical variable and allows the system to gradually “scale” the
number of “1”s present in the solution. In this way, the quantum annealer is
able to identify valid solutions (i.e., those that respect the row and column
uniqueness constraints) before ultimately converging to the optimal solution
or an approximation of it.

10.3.2 Why a High Lambda Coefficient Worsens Annealing

A natural attempt to enforce constraints even in the QA case while continuing to
use Prow and Pcolumn could be to increase the λ coefficient associated with the entire
PenaltyTerm. However, excessively increasing λ has been shown to have negative
effects on the annealing process, as raising the coefficients λ2 and λ3 (when used)
results in very high values in the couplers. Such high values can create a non-
submodular energy landscape where local energy variations are too abrupt, making
it difficult for the annealer to escape non-optimal local minima. In practice, exces-
sively high weights of the penalty terms can “compress” the solution space, pre-
venting proper exploration and favoring convergence to solutions with high energy.
This issue led to the decision to eliminate the quadratic terms (Prow and Pcolumn)
in the QA case, using exclusively Pmatrix and delegating constraint enforcement to
the tuning of the chain_strength parameter.
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10.3.3 The Role of Chain Strength and Embedding Man-
agement

In a quantum annealer, each logical variable is mapped onto a chain of physical
qubits. If the coupling strength within the chain (chain strength) is too low, “chain-
breaking” occurs, meaning that qubits representing the same variable take different
values, leading to invalid solutions. In contrast, if the chain strength is too high,
the system becomes rigid, reducing the annealer’s ability to explore alternative con-
figurations. Our approach, which relies solely on Pmatrix, leverages precise tuning
of the chain strength to guide the annealer through an effective exploration of the
solution space. By gradually increasing the strength, we prevent the solution from
prematurely converging to the configuration where all xij = 0 and promote a grad-
ual transition in which the number of “1”s gradually decreases. This enables the
identification, through a post-annealing analysis of the samples, of configurations
that satisfy the constraints and have relatively low energy, facilitating the selection
of the optimal solution.

10.4 Comparison Between QA and HQA/SA Strate-
gies

The penalty strategies adopted differ depending on the platform used:

• Quantum Annealer (QA): In the QA case, the choice to use only the linear
term Pmatrix (with λ2 = λ3 = 0) led to a significant reduction in the number
of required couplers and a more compact embedding. Although this results
in an initially trivial solution (all xij = 0), tuning the chain strength allows
the annealer to progressively explore the valid solution space, from which the
lowest-energy solution will be selected. The simplified approach used for QA
facilitates the resolution of problems with a larger number of debris.

• Hybrid Quantum Annealing / Simulated Annealing (HQA/SA): In
these cases, the full use of constraints (including Prow and Pcolumn) is more
manageable, as hybrid or simulated annealing algorithms can tolerate greater
complexity in the QUBO model. However, even in these cases, adding too
many penalty terms increases the number of couplers, which can limit the
scalability of the problem.

67



68



Part IV
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Chapter 11

Quantum Annealing
Implementation

11.1 Hardware Description
Optimizing multi-target Active Debris Removal (ADR) missions poses complex
combinatorial challenges, often characterized as NP-hard. In recent years, quan-
tum computing—and specifically quantum annealing—has emerged as a promising
computational paradigm capable of tackling such challenges more efficiently than
classical methods. In this section, the D-Wave quantum annealer is explored as a
potential solution for large-scale trajectory optimization in ADR mission planning.

11.1.1 Quantum Annealer Architecture
The D-Wave quantum annealer [37] is engineered to exploit the principles of quan-
tum mechanics to solve combinatorial optimization problems. Its architecture is
based on superconducting flux qubits that are maintained at cryogenic tempera-
tures (approximately 16 mK) inside a dilution refrigerator. The low-temperature
environment is crucial for ensuring quantum coherence and minimizing thermal
noise during computation.

Two main generations of D-Wave hardware are notable in literature: the earlier
systems based on the Chimera topology and the more recent systems featuring
the Pegasus topology. In the current generation (e.g., D-Wave Advantage), the
hardware is characterized by:

• Qubit Count and Layout: The device comprises thousands of supercon-
ducting qubits arranged in a Pegasus graph (Figure 11.1b). This topology
significantly enhances qubit connectivity compared to the earlier Chimera de-
sign (Figure 11.1a).
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(a) Chimera topology used in earlier gen-
erations of D-Wave quantum annealers.
Each unit cell contains eight qubits ar-
ranged in a bipartite structure, enabling
local and long-range connections. Image
sourced from D-Wave’s official documenta-
tion [37].

(b) Pegasus graph representation illustrat-
ing the qubits and their couplings. Pegasus
topology offers significantly increased con-
nectivity compared to Chimera, enabling
more complex QUBO embeddings. Image
sourced from D-Wave’s official documenta-
tion [37].

Figure 11.1: D-Wave QPU Topologies

• Superconducting Circuitry: The qubits are implemented as superconduct-
ing loops interrupted by Josephson junctions. These junctions provide the
necessary non-linearity, allowing each qubit to represent a two-level quantum
system (|0⟩ and |1⟩ states) with the possibility of superposition.

• Connectivity and Couplers: Each qubit is connected to multiple others
through programmable couplers (Figure 11.2) that enable the encoding of in-
teraction strengths (i.e., the Ising spin-spin coupling terms). These couplers
encode the quadratic coefficients and enforce correlations between binary vari-
ables. The Pegasus topology typically provides each qubit with up to 15 or
more couplings, which facilitates embedding larger and more complex QUBO
problems.

• Flux Biasing and Control: Precise flux bias control ensures that qubits
remain in their intended states during the annealing process. This control is
crucial for maintaining the adiabatic evolution from the initial superposition
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(a) Coupling graph representation. (b) Roadway layout view.

Figure 11.2: Visualization of the Pegasus topology couplers in D-Wave quantum an-
nealers. (a) shows the coupling graph with all possible connections between qubits,
highlighting the high connectivity of Pegasus compared to earlier architectures. (b)
presents the roadway layout, clarifying the structured routing of couplers and the
physical arrangement of qubit connections. Images sourced from D-Wave’s official
documentation [37].

state to the final ground state that encodes the optimal solution.

• Annealing Process: Quantum annealing is achieved by slowly varying the
Hamiltonian from an initial driver Hamiltonian HI to the final problem Hamil-
tonian HF . The process leverages quantum tunneling to escape local minima,
with the minimum annealing time determined by the adiabatic theorem (Sec-
tion 6.2). This controlled evolution is central to obtaining low-energy, near-
optimal solutions.

11.1.2 Hardware Specifications and Performance
The operational specifications of the D-Wave quantum annealer [37] are optimized
to support large-scale optimization problems:

• Operating Temperature: ~16 mK, maintained via a dilution refrigerator.

• Qubit Count: Modern systems such as the D-Wave Advantage offer over
5000 qubits.

• Coupler Density: The Pegasus topology allows for an increased number of
couplers per qubit, which is critical for mapping complex QUBO problems
with many variables and higher connectivity requirements.
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• Chain Embedding: Due to limited qubit connectivity, logical variables may
be represented by chains of physical qubits. The proper tuning of chain
strength is crucial to preserving the integrity of the logical qubit and en-
suring that the final measured state corresponds to a valid solution. If the
chain strength is too weak, “chain breaking” may occur, leading to inconsis-
tent representations; if too high, the system’s ability to explore alternative
configurations is impaired.

• Precision and Noise: Despite inherent noise and decoherence challenges in
quantum hardware, careful calibration and improved qubit design have led to
enhanced precision and reliability in solution sampling.

• Scalability: The increased connectivity and qubit count have made it feasible
to tackle problems with hundreds of decision variables—an essential feature
for solving the combinatorial explosion inherent in ADR mission planning.

11.2 Development Environment

11.2.1 Software Tools and Frameworks
The successful implementation of quantum optimization solutions on D-Wave hard-
ware relies on a sophisticated software ecosystem. Central to this environment is
the D-Wave Ocean Software Development Kit (SDK), a Python-based framework
that simplifies the process of formulating and submitting QUBO problems to the
quantum annealer.

Key components of the development environment include:

• Ocean SDK: This toolkit provides libraries such as dimod for defining binary
quadratic models and QUBO formulations, as well as dwave-system for inter-
facing with the quantum hardware. Ocean SDK abstracts the complex em-
bedding process, allowing researchers to focus on problem formulation rather
than low-level hardware details.

• Problem Formulation Libraries: The SDK includes tools to convert op-
timization problems into a QUBO format. Functions for problem decompo-
sition, variable embedding (using tools like minorminer), and constraint han-
dling are provided. These features are critical when addressing high-degree
polynomial terms present in the ADR optimization model.

• Hybrid Solvers: In addition to direct access to the quantum processing unit
(QPU), the development environment supports hybrid solvers that combine
classical and quantum optimization. These hybrid approaches (e.g., D-Wave’s
Leap Hybrid Solver) allow large or complex problems to be partitioned into
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subproblems, with the QPU solving the most computationally challenging
parts while classical algorithms refine the overall solution.

• Classical Optimization Libraries: For benchmarking purposes, classical
solvers—including Simulated Annealing (SA), Tabu Search (TS), and Genetic
Algorithms (GA)—are implemented using dwave and pymoo [60] libraries in
Python. These solvers are configured to solve the same QUBO formulation to
enable a direct comparison of performance metrics.

11.2.2 Programming and Workflow Integration

The typical workflow for a quantum optimization task using the D-Wave system is
as follows:

1. Problem Modeling: The ADR optimization problem is first modeled in
mathematical terms. This includes defining the QUBO formulation that en-
capsulates both the objective function (minimizing fuel consumption and mis-
sion duration) and the necessary constraints (e.g., one debris per capture ma-
neuver).

2. Embedding: Using the Ocean SDK, the problem is embedded onto the phys-
ical qubit connectivity graph. The minorminer tool automatically finds a
mapping of logical variables onto physical qubits, considering the specific con-
straints of the Pegasus topology.

3. Submission and Annealing: The QUBO problem is submitted to the
D-Wave QPU. The annealing schedule is configured (with parameters such as
annealing time, chain strength, and repetition count) to maximize the proba-
bility of reaching a low-energy state.

4. Post-Processing: After annealing, the results are retrieved and subjected
to classical post-processing. This step includes filtering out invalid solutions
(those that violate constraints) and refining the best solutions using classical
metaheuristic algorithms if necessary.

5. Hybrid Optimization: In cases where the problem size exceeds the QPU’s
direct capacity, a hybrid approach partitions the problem. The QPU tackles
the core combinatorial challenge, while classical solvers handle the less com-
putationally intensive parts of the model.

The integration of these tools enables a robust, iterative optimization process
that leverages both quantum and classical computational strengths.
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11.3 Dataset Handling

11.3.1 Source of Satellite Debris Data
Satellite debris data is primarily sourced from Two-Line Element (TLE) files, which
provide the orbital parameters of space objects. TLE files are maintained by orga-
nizations such as NORAD and are publicly accessible via repositories like CelesTrak
[61]. In this study, TLE data corresponding to known debris events (e.g., the col-
lision between Iridium 33 and Cosmos 2251) serve as the input dataset for mission
planning. Key parameters extracted from TLE files include:

• Orbital Inclination (i): Crucial for filtering debris that reside in similar
orbital planes.

• Semi-major Axis (a) and Eccentricity (e): Although real orbits have
eccentricity, debris in LEO are approximated as having circular orbits for the
purpose of this model.

• Right Ascension of the Ascending Node (RAAN, Ω): Essential for
computing the RAAN alignment time tR.

• Mean Motion (n) and Epoch Data: Used in propagators such as SGP4
to estimate orbital evolution.

11.3.2 Data Filtering and Preprocessing
The raw TLE dataset undergoes several preprocessing steps:

• Altitude Filtering: Debris objects are filtered to ensure that only those
above a designated minimum altitude (e.g., above 550 km) are considered.
This is necessary because the disposal orbit is defined as being around 550 km
to ensure compliance with IADC guidelines.

• Inclination Filtering: Debris with orbital inclinations within a narrow band
(e.g., ±5◦ of the mean inclination) are selected to minimize the need for large
inclination changes during the mission. Since the debris in our study largely
originated from the same satellite breakup event, this filtering step minimally
affected the overall dataset.

• RAAN Consistency: Objects with RAAN values that are significantly mis-
aligned with the chaser’s operational parameters are excluded.

• Desirability Ranking: Each debris object is assigned a desirability score
based on its estimated natural decay time. Objects with longer decay times
receive higher scores, reflecting their priority in removal operations.
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The refined dataset consists of D debris objects, which serve as the columns in
the binary decision matrix X.

Furthermore, in each scenario considered, the initial position and orbit of the
chaser—defined by its argument of latitude and RAAN—were generated randomly.
This approach allowed us to account for a broader range of possible mission con-
figurations and prevented the optimization process from converging to the same
solution across all cases. By varying these orbital parameters, we ensured a more
diverse and robust assessment of feasible mission trajectories.

To standardize mission parameters and maintain consistency across scenarios,
we imposed constant arbitrary durations for key mission phases. Specifically, the
capture phase was set to a duration of 2 hours, while the release phase was set to 1
hour. These standard timeframes allow for uniform analysis of mission performance
and operational feasibility across different scenarios.

11.3.3 QUBO Formulation from Debris Data
The processed satellite debris data is transformed into a QUBO problem that bal-
ances multiple mission objectives:

• Objective Function Components: The QUBO formulation incorporates
terms representing the total delta-v (∆v) required for maneuvering, the overall
time of flight (TOF) for each capture operation, and a desirability metric based
on the debris’ natural decay times (Subection 7.6.2).

• Constraint Incorporation: Assignment constraints ensure that each debris
object is captured only once and that the capture maneuvers do not overlap.
These constraints are embedded in the QUBO using penalty terms, carefully
weighted to maintain the balance between feasibility and solution quality (Sec-
tion 10.3).

• Quadratization Techniques: Since some terms (those related to TOF) are
non-quadratic, a quadratization method is employed (Section 9.1). The novel
method that approximates higher-order terms through the use of the synodic
period is also used, thereby reducing the problem to a native quadratic form
without introducing excessive auxiliary variables (Section 9.2).

This transformation from TLE data to a binary optimization problem is critical,
as it bridges the gap between the raw orbital data and the quantum annealer’s
requirement for a QUBO input.

11.4 Overall Workflow
The methodology adopted in this work harnesses the complementary strengths of
quantum and classical computing to address the multi-target Active Debris Removal
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(ADR) optimization problem. Quantum annealing excels in rapidly exploring the
vast combinatorial solution space of the QUBO model, while classical computing
ensures precise data handling, constraint verification, and orbital dynamics simu-
lation. The integrated workflow is structured as follows:

1. Preprocessing: Satellite debris data from TLE files is cleaned, normalized,
and encoded into a binary format.

2. QUBO Construction: The multi-objective ADR mission planning problem
is formulated as a QUBO, integrating objectives (minimizing TOF and ∆v,
maximizing debris desirability) and constraints.

3. Quantum Optimization: The QUBO problem is embedded and submitted
to the D-Wave quantum annealer via the Ocean SDK. The annealer performs
the quantum annealing process, returning candidate solutions.

4. Post-Processing: Classical algorithms filter and refine the quantum-generated
solutions, ensuring all operational constraints are satisfied.

5. Simulation Feedback: The best candidate solution is fed into a classical
orbital mechanics simulator to verify mission feasibility. Any discrepancies
prompt adjustments to the QUBO formulation for subsequent iterations.

This seamless integration enables the system to harness the speed of quantum
annealing while ensuring the practical applicability of the results through rigorous
classical verification.
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Chapter 12

Comparative Analysis of
Quantum and Classical
Approaches

12.1 Quantum Annealing Constraint Management
The energy evolutions of QA reported in Figure 12.1 clearly demonstrate a signifi-
cant improvement when using only the Pmatrix penalty term. Initially, we evaluated
the full set of constraints — specifically, Prow and Pcolumn — across various chain
strength settings in a scenario with 2 capture maneuvers and 50 debris objects
from the Iridium 33 dataset (Figure 12.1a). Although the best energy value was
achieved with a chain strength of 200, this configuration still yielded an invalid
solution. Lowering the chain strength further resulted in highly oscillatory energy
trends due to frequent chain breaks, while excessively high chain strength limits the
solution space exploration; in this case, the energy decreased too slowly to reach
any valid configurations. In essence, despite optimal tuning efforts, the conven-
tional approach failed to enable effective exploration of the valid solution space,
making it impossible to identify feasible — let alone optimal — solutions.

In contrast, using only the Pmatrix penalty term yields a distinctive staircase
search behavior, as shown in Figure 12.1b. In this approach, the annealer initially
explores configurations with all the variables active (i.e., variables set to 1), then
transitions sequentially to configurations with all active variables except one, and so
on, until it reaches the trivial all-zeros solution. This stepwise exploration allows for
a straightforward post-processing strategy: filtering the results to retain only those
solutions with the correct number of active variables. Specifically, the solutions
that satisfy the matrix constraints are maintained and that with the lowest energy
is selected (Figure 12.1c).

This methodology allows for a more efficient exploration of the valid solution
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Figure 12.1: QA energy evolutions, considering 2 capture maneuvers and 50 debris
objects from the Iridium 33 dataset.

space compared to the traditional full-constraint approach. Even in relatively sim-
ple scenarios with few debris objects and capture maneuvers, the conventional
method with full constraints consistently fails to lead any valid solutions when
used with QA. On the other hand, the optimized Pmatrix-based approach not only
increases the likelihood of finding valid solutions but also enables more consistent
identification of optimal solutions.
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12.2 Solver Comparison and Scalability

C D Energy Value Time (s)
QA HQA SA GA TS QA HQA SA GA TS

2

15 -0.56 -0.56 -0.56 -0.56 -0.56 0.12 2.99 0.75 6.57 21.00
20 -0.65 -0.65 -0.65 -0.65 -0.65 0.21 2.99 1.10 8.61 21.00
25 -0.58 -0.58 -0.58 -0.58 -0.58 0.14 3.00 1.90 10.72 21.01
50 -0.58 -0.58 -0.58 -0.58 -0.58 0.19 2.99 4.95 30.84 21.02
75 -0.92 -0.93 -0.93 -0.93 -0.93 0.22 2.99 7.80 63.30 21.04
100 -1.37 -1.37 -1.37 -1.37 -1.37 0.25 2.99 19.33 192.86 21.25
114 -1.36 -1.48 -1.48 -1.48 -1.48 0.27 2.99 22.33 282.11 21.56

3

15 — -0.67 -0.67 -0.29 -0.67 — 2.99 4.79 27.77 21.05
20 — -0.64 -0.64 0.07 -0.38 — 2.99 11.64 60.51 23.52
25 — -0.94 -0.94 0.60 -0.62 — 2.99 21.80 112.33 30.57
50 — -0.43 -0.47 0.75 — — 7.02 91.57 2381.04 535.75
75 — -0.80 -0.89 — — — 19.98 400.57 5357.58 1253.38
100 — -0.66 -0.88 — — — 43.95 808.34 6632.49 3531.35
114 — -1.21 -1.06 — — — 69.37 1320.92 8696.00 27803.17

4 25 — -0.07 -0.21 — — — 8.43 235.79 — —
50 — 0.69 0.26 — — — 73.86 3704.42 — —

Table 12.1: Results obtained from the Iridium 33 datasets changing the number of
capture maneuvers and debris objects.

The scalability of our approach is evidenced by the experimental results obtained
for both the Iridium and Cosmos datasets (Table 12.1 and 12.2).

For the Iridium dataset, with 2 capture maneuvers, the QA solver consistently
delivered competitive energy values while maintaining remarkably low computa-
tional times — even as the number of debris objects (D) increased from 15 to
114. For example, the QA solver’s runtime increased only marginally from ap-
proximately 0.12 seconds to 0.27 seconds, whereas classical solvers such as SA and
GA experienced substantial increases, with GA’s time escalating from about 6.6
seconds to over 280 seconds.

In scenarios with 3 capture maneuvers, although QA results were not available,
the HQA approach demonstrated stable energy performance with relatively low
computational times compared to SA, GA, and TS. It is possible to notice that as
the problem size grew, classical methods exhibited a dramatic rise in computation
time: GA and TS, for instance, required several orders of magnitude more time
(e.g., GA reaching over 2.300 seconds for D = 50 and TS exceeding 25.000 seconds
for D = 114) compared to HQA.

The unavailability of QA results for 3 or more capture maneuvers stems from the
nature of the problem formulation. Since the degree of the problem is equal to the
number of capture maneuvers, cases with more than 2 captures required a quadrati-
zation process, which in turn introduced a substantial number of auxiliary variables.
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Experimental results revealed that this excessive number of auxiliary variables hin-
dered the QA solver’s ability to effectively explore the valid solution space. Specif-
ically, the newly introduced constraints from quadratization significantly restricted
QA’s search dynamics, leading to inaccurate and inefficient exploration of feasible
solutions. As a result, the solver frequently produced constraint-violating solutions,
making it impractical for cases involving more than 2 capture maneuvers.

However, this limitation is effectively addressed by the new quadratization method
introduced in this work. By transforming the problem into a native quadratic form
without excessive auxiliary variables, the new approach enables QA to handle prob-
lems with a higher number of capture maneuvers while preserving solution quality
and computational efficiency. With this improved quadratization technique, QA
can now be applied to scenarios involving larger numbers of captures without en-
countering the inefficiencies and constraints observed in the previous formulation.

C D Energy Value Time (s)
QA HQA SA GA TS QA HQA SA GA TS

2

25 -1.00 -1.00 -1.00 -1.00 -1.00 0.20 2.98 1.25 22 21
50 -0.81 -0.81 -0.81 -0.81 -0.81 0.16 2.99 2.58 60 21
75 -0.93 -1.00 -1.00 -1.00 -1.00 0.22 2.99 4.75 130 21
150 -0.88 -1.00 -1.00 -1.00 -1.00 0.27 3.00 34 480 22

Table 12.2: Results obtained from the Cosmos 2251 datasets changing the number
of capture maneuversand debris objects.

Similar trends are observed in the results from Cosmos dataset (Table 12.2).
For 2 capture maneuvers, QA maintained a low runtime (ranging between 0.16 and
0.27 seconds) while delivering energy values equivalent to HQA, SA, GA, and TS.
In contrast, classical solvers again showed significant increases in computation time
as the number of debris objects increased — for example, GA required nearly 480
seconds for D = 150.

Table 12.3 reports the figures of merit for evaluating the mission performance
obtained by the best QUBO solver in terms of final energy and solving time for
the larger problem solved. It is possible to observe that the best solver is mainly a
quantum-based solver.

Figures 12.2 and 12.3 show the execution time required to solve the debris collec-
tion problem using the Iridium 33 datasets, as a function of the number of debris
objects. The results highlight the rapid growth in execution time for classical
solvers as the problem size increases, while QA and HQA exhibit nearly constant
performance, proving their scalability advantage.

Overall, these results demonstrate that the quantum annealing-based approaches,
particularly QA and HQA, scale better with increasing problem complexity. The
minimal increase in computational time with larger datasets, combined with com-
petitive energy performance, suggests that quantum methods offer a promising
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Figure 12.2: Time considering 2 capture maneuvers from Iridium 33 varying the
number of debris.

pathway for tackling large-scale active debris removal mission planning.

Dataset CxD Best Energy Value Best Time
Solver TOF (days) ∆v des Solver TOF (days) ∆v des

Iridium
2x114 HQA 52.62 458.90 1.71 QA 52.62 442.86 1.55
3x114 HQA 555.40 495.09 1.72 HQA 555.40 495.09 1.72
4x50 SA 910.22 492.39 1.05 HQA 994.53 375.99 0.089

Cosmos 2x150 HQA 11.40 218.21 0.45 QA 105.48 175.69 0.25

Table 12.3: The best results obtained for the larger problems of the Iridium 33 and
Cosmos 2251 dataset in terms of energy and time.

12.3 Advantage of the new Quadratization Method
Introducing our novel quadratization technique offers substantial advantages in
both solution quality and computational efficiency. As reported in Tables 12.4,
12.5, 12.6, and 12.7 and in Figures 12.4, the new method significantly reduces
the complexity of the objective function by transforming high-degree polynomial
constraints into a native quadratic form without introducing auxiliary variables.

A key aspect of this improvement is illustrated in Table 12.4. For scenarios
involving 3 and 4 capture maneuvers, the reported energy values are not directly
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Figure 12.3: Time considering 3 capture maneuvers from Iridium 33 varying the
number of debris.

C D Energy Value Time (s)
HQA_quad SA_quad GA_quad TS_quad HQA_quad SA_quad GA_quad TS_quad

3

15 -0.67 -0.67 -0.67 -0.67 3.00 1.67 9.25 21.00
20 -0.64 -0.64 -0.64 -0.64 3.00 2.63 12.77 21.02
25 -0.94 -0.94 -0.94 -0.94 2.99 3.53 17.82 21.01
50 -0.59 -0.59 -0.59 -0.59 3.00 9.00 52.05 21.03
75 -1.25 -1.25 -1.25 -1.25 2.99 23.88 108.51 21.07
100 -1.38 -1.38 -1.38 -1.38 3.00 28.09 204.14 21.15
114 -1.55 -1.55 -1.55 -1.55 2.99 34.15 269.05 21.53

4 25 -0.76 -0.76 -0.76 -0.76 2.99 3.29 21.44 21.01
50 -0.69 -0.69 -0.66 -0.69 3.00 9.32 73.68 21.05

5 114 -4.79 -4.75 -4.24 -4.77 2.99 34.91 486.12 25.99
10 114 -8.69 -8.76 -6.92 -9.41 3.25 93.59 1107.29 49.09

Table 12.4: Results obtained from the Iridium 33 datasets changing the number of
capture maneuvers and debris objects with the new quadratization method.

derived from the new function but instead obtained by evaluating the old function
on the optimal solutions found using the new quadratization approach. This allows
for a direct comparison between the two methodologies. However, for cases with
5 and 10 capture maneuvers, we report the energy values directly from the new
method. This is because computing the energy using the old method becomes pro-
hibitively time-consuming, and no corresponding results were available for direct
comparison. The advantage of the new quadratization method is intuitively re-
ported in terms of time, solution quality and composited efficiency in Figure 12.4a.
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C D Energy Value Time (s)
HQA_quad SA_quad GA_quad TS_quad HQA_quad SA_quad GA_quad TS_quad

5 200 -4.37 -4.46 -4.47 -4.52 3.00 111.16 1489.61 42.40

Table 12.5: Results obtained from the Cosmos 2251 dataset with the new quadra-
tization method.

The radar chart shows three normalized performance scores, each normalized in the
range [0, 1], where 1 represents the best performance. The scores are:

• Solution Quality Score: This metric measures the closeness between the
energy of the obtained solution and the best-known energy — score one. For
each run, a normalized quality gap (d) is calculated to measure how far the
obtained solution is from the best observed quality. For each case, the mini-
mum quality value (best_val_min) is identified, and a dummy value is used
as a worst-case reference — score zero — for normalization. The dummy is
defined as the energy of the trivial solution, i.e., collecting the debris in se-
quential order since we do not know the energy value of the valid solution with
maximum energy. The gap is computed as:

d = best_val − best_val_min

dummy − best_val_min

Since a lower d indicates a better solution (with 0 being optimal), the final
quality score is given by:

score_d = 1 − mean_d

where mean_d is the average d for the optimization method.

• Time Score: This score evaluates execution time performance, where higher
values indicate better efficiency. For each run, the time gap (t) is defined as:

t = tot_time_s

min_time
− 1

where min_time is the fastest execution time observed for that file (so the
fastest run has t = 0). Because lower t values are better, but we want scores
where higher is better, we transform the values into scores between 0 and 1
using the formula:

score_t(x) = max − x

max − min

for each value x in the series of times (with max and min being the maximum
and minimum values observed, respectively). This way, the best (lowest) time
is mapped to 1 and the worst to 0.
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• Composite Efficiency Score: This score provides an overall measure of
performance by balancing both solution quality and execution time. It is
derived from a combination of two normalized scores: one for solution quality
and one for execution time, each contributing equally.

score_eff = 0.5 × score_d + 0.5 × score_t

The highest efficiency score corresponds to the best trade-off between these
two aspects, while lower scores indicate either poorer solution quality or longer
execution times.

One of the most relevant advantages of the new quadratization technique is the
drastic reduction in function assembly times, i.e. the time required for creating the
QUBO. As evidenced in Table 12.7 and in Figure 12.4b, the new approach reduces
these times by several orders of magnitude. For instance, in the Iridium dataset with
3 capture maneuvers, the function assembly time decreased from 0.5127 seconds
(old method) to just 0.0241 seconds (new method) for 15 debris objects. Similarly,
for 114 debris objects, the time was reduced from 278.65 seconds to just 1.1763
seconds. For 4 capture maneuvers, the improvements are even more pronounced:
the assembly time dropped from 321.30 seconds to 0.0846 seconds for 25 debris
objects and from 5949.25 seconds to just 0.3078 seconds for 50 debris objects.

Dataset CxD Best Energy Value Best Time
Solver TOF (days) ∆v des Solver TOF (days) ∆v des

Iridium
3x114 HQA_quad 554.02 687.38 2.60 HQA_quad 554.02 687.38 2.60
4x50 HQA_quad 253.60 358.91 1.01 HQA_quad 253.60 358.91 1.01
5x114 HQA_quad 880.43 1126.35 3.86 HQA_quad 880.43 1126.35 3.86
10x114 TS_quad 375.38 1737.30 5.10 HQA_quad 1755.26 1833.76 5.15

Cosmos 5x200 TS_quad 123.52 532.14 1.84 HQA_quad 121.86 591.29 1.85

Table 12.6: The best results obtained for the larger problems of the Iridium 33
and Cosmos 2251 dataset in terms of energy and time with the new quadratization
method.

Beyond the significant reductions in computational time, the new quadratization
method also provides meaningful improvements in the energy values obtained by the
solvers. Although the optimal solutions remain consistent between the two meth-
ods, the new approach’s intrinsic quadratic formulation — avoiding the overhead
introduced by auxiliary variables —dramatically reduces the problem’s complexity.
This streamlined approach allows solvers to explore a significantly less convoluted
energy landscape, leading to better energy values and, consequently, higher-quality
solutions.

These dual benefits — reduced computational charge and improved solution
quality — are particularly critical in extreme scenarios. With the new quadratiza-
tion method, cases involving 10 capture maneuvers with 114 debris objects or even
5 capture maneuvers with 200 debris objects become computationally tractable. In
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Dataset C D Function Assembly Time (s)
Old Method New Method

Iridium

3

15 0.51 0.02
20 1.34 0.04
25 2.67 0.07
50 44.18 0.21
75 146.72 0.52
100 188.59 0.95
114 278.65 1.18

4 25 321.30 0.08
50 5949.25 0.31

5 114 — 2.24
10 114 — 4.61

Cosmos 5 200 — 6.90
Table 7: Assembly time with the old and the new quadratization method.

contrast, these scenarios would have been infeasible with the old method due to
excessive function assembly times and high problem complexity.

By substantially reducing both computational overhead and problem difficulty,
the new quadratization technique enables solvers to efficiently identify better solu-
tions. This advancement provides a promising pathway for scaling ADR mission
planning to larger and more complex datasets, facilitating the development of real-
world applications in space debris management.

12.4 Discussion
The results of this work highlight the potential of quantum optimization techniques
— in particular, QA and HQA — in addressing the complex combinatorial chal-
lenges associated with multi-target ADR missions. By formulating the ADR
problem as a QUBO model, we proved that quantum solvers can efficiently ex-
plore the solution space, reducing computational complexity compared to classical
metaheuristic methods such as SA, GA, and TS.

The key findings of this work are:

• Computational Efficiency and Scalability: Quantum-based methods,
particularly HQA, maintained stable performance and outperformed classi-
cal solvers in terms of computational time for large-scale ADR scenarios. As
problem size increased, classical methods exhibited exponential growth in
computational time, whereas quantum solvers scaled more efficiently.

• New Quadratization Method: The new quadratization approach signifi-
cantly reduces function assembly times and problem complexity by
transforming high-degree polynomial constraints into a native quadratic form
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without introducing auxiliary variables. This enables the application of QUBO-
based solvers to larger ADR instances that were previously infeasible.

• Constraint Handling Strategy: Our modified constraint management ap-
proach for QA improves the probability of obtaining valid solutions while mit-
igating common issues related to energy landscape distortion.

• Competitive Energy Solutions: Across multiple test scenarios, quantum
solvers lead to near-optimal solutions, proving their potential for real-world
ADR mission planning.

These outcomes establish quantum computing as a feasible tool for orbital
debris management, offering a pathway toward more efficient and scalable ADR
mission planning.

88



12.4 – Discussion

Solution Quality Score

Time Score

Composite Efficiency Score

0.0
0.2

0.4
0.6

0.8
1.0

Radar Chart of Normalized Performance Scores
GA
GA_quad
HQA
HQA_quad
SA
SA_quad
TS
TS_quad

(a) Average normalized performance score of the Irid-
ium 33 tests, considering three captures

3x
15

3x
20

3x
25

3x
50

3x
75

3x
10

0
3x

11
4

CxD

10
0

10
1

10
2

10
3

Ti
m

e 
(s

)

Time Comparison (s) - Logarithmic Scale

Method
SA - Function Assembly Time
SA - Optimization Time
SA_quad - Function Assembly Time
SA_quad - Optimization Time

(b) Assembly and optimization time

Figure 12.4: Time, energies and scores considering 3 capture events collecting de-
bris from Iridium 33 datasets with and without the new quadratization methods
proposed.
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Chapter 13

MATLAB/Simulink Mission
Simulation

This chapter describes the MATLAB/Simulink simulation environment developed
to validate the feasibility and accuracy of the debris capture sequences derived from
the optimization. The simulations utilize MATLAB’s Spacecraft Dynamics Block-
set and Satellite Scenario toolkit to verify optimized mission solutions. Key mis-
sion metrics—particularly Time-of-Flight (TOF) and delta-v (∆v)—are compared
against theoretical values obtained from the optimization process. The integration
of advanced modeling and visualization tools enables comprehensive validation of
the mission planning framework, bridging theoretical design with practical imple-
mentation.

13.1 Simulation Objectives
The MATLAB/Simulink simulation serves as a critical verification tool, assessing
the practical feasibility of the capture sequences obtained through the ADR problem
optimization. The primary objectives of the simulation are:

• Validation of Optimized Solutions: To ensure that the capture sequences
proposed by the optimization are executable and feasible under realistic orbital
mechanics scenarios.

• Accuracy Assessment: To quantitatively verify the correctness of the theo-
retical TOF and delta-v values, fundamental in the optimization formulation,
by comparison with results obtained from detailed simulations.

• Qualitative Visualization: To utilize detailed visualizations, provided by
MATLAB’s Satellite Scenario toolkit, for qualitative assessments, ensuring
intuitive verification of trajectory accuracy, maneuver correctness, and mission
operational feasibility.
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13.2 Simulation Environment
The simulation framework utilized a combination of advanced toolsets from MAT-
LAB and Simulink to achieve accurate and realistic modeling of spacecraft trajec-
tories:

• Spacecraft Dynamics Blockset: Used to model spacecraft maneuvers with
precision [62]. In particular, it simulates Hohmann transfer maneuvers between
debris orbits and the final disposal orbit. The model includes gravitational
perturbations, such as Earth’s J2 effect, ensuring accurate simulation of RAAN
alignment and orbital transfers.

• Satellite Scenario Toolkit: The Satellite Scenario toolkit [63] offered ca-
pabilities for detailed mission visualization, allowing dynamic rendering and
animation of spacecraft trajectories. This tool significantly aided in quali-
tative mission assessment and facilitated intuitive validation through visual
confirmation.

• Hohmann Transfer Modeling: The Hohmann transfer approach follows the
guidelines and methodologies described in MathWorks’ official documentation
[64], ensuring a physically accurate representation of transfer maneuvers.

13.3 Simulation Workflow
The simulation workflow involved the following structured steps:

1. Sequence Input: The optimal debris capture sequences identified by the
optimization were input into the MATLAB environment as initial simulation
conditions.

2. Orbital Parameters and Initial Conditions: Orbital data for debris and
the chaser spacecraft are sourced from the dataset used in the optimization
process, ensuring consistency with the theoretical analysis.

3. Standardized Mission Durations: For consistency, fixed durations of 2
hours for debris capture and 1 hour for release operations are applied across
all simulations.

4. Trajectory Simulation and Animation: Each capture sequence simulation
included the calculation of RAAN alignment using Earth’s J2 perturbation,
the execution of Hohmann transfer maneuvers, and a waiting time. The sim-
ulations were visually animated using MATLAB’s Satellite Scenario toolkit,
providing an additional qualitative validation step.
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Figure 13.1: 3D visualization of the spacecraft and debris objects in Earth orbit, as
generated by MATLAB’s Satellite Scenario toolkit. The trajectories illustrate the
chaser spacecraft’s orbit (cyan) and the target debris objects (orange, green, and
purple). The simulation provides qualitative validation of the optimized capture
sequence and orbital maneuvers.

13.4 Results and Verification
Following each simulation, key mission performance metrics—namely, TOF and
delta-v (∆v)—were collected. These values were rigorously compared to the theo-
retical calculations initially embedded in the optimization objective function. The
results demonstrated strong agreement between the simulated and theoretical val-
ues, with minimal discrepancies within acceptable operational margins.

Specifically—as shown in Table 13.1— the verification confirmed:

• TOF Validation: Simulated TOF closely matched theoretical values from the
optimization, indicating accurate modeling of orbital dynamics and realistic
mission timelines.

• Delta-v Accuracy: The simulated delta-v required for maneuver execution
is fully aligned with optimization-based predictions, thus validating fuel effi-
ciency calculations integral to optimization criteria.
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Figure 13.2: Time evolution of the chaser spacecraft’s altitude over the entire mis-
sion duration. The plot highlights the different orbital altitudes corresponding to
each debris rendezvous.
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Figure 13.3: Evolution of the RAAN for the chaser spacecraft compared to the
debris targets. The alignment points indicate optimal windows for transfer maneu-
vers, accounting for the precession due to Earth’s J2 perturbation.

13.5 Discussion and Implications
The MATLAB/Simulink-based verification approach significantly strengthens the
credibility and applicability of optimization solutions in practical aerospace mission
planning. By demonstrating that simulated outcomes align closely with theoretical
predictions, the proposed optimization framework’s reliability and accuracy are
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C D TOF (days) ∆v
Theoretical Simulated Error Theoretical Simulated Error

2

15 673.11 673.46 0.05% 276.86 276.86 0.00%
20 464.90 465.25 0.08% 276.86 276.86 0.00%
25 632.67 633.02 0.06% 276.86 276.86 0.00%
50 621.70 622.48 0.13% 257.37 257.37 0.00%
75 674.91 674.91 0.00% 451.53 451.53 0.00%
100 178.21 178.21 0.00% 451.53 451.53 0.00%
114 52.63 52.62 0.02% 458.90 458.90 0.00%

3

15 508.76 509.12 0.07% 349.06 349.06 0.00%
20 606.79 607.14 0.06% 349.06 349.06 0.00%
25 162.26 162.59 0.20% 329.04 329.04 0.00%
50 689.92 690.24 0.05% 503.71 503.71 0.00%
75 569.61 569.73 0.02% 560.07 560.07 0.00%
100 668.55 668.52 0.00% 404.46 404.46 0.00%
114 555.40 555.39 0.00% 495.09 495.09 0.00%

4 25 1103.60 1103.77 0.02% 583.50 583.50 0.00%
50 994.53 994.59 0.01% 375.99 375.99 0.00%

Table 13.1: Comparison between Theoretical and Simulated Results for TOF and
∆v. Values from Iridium Dataset and HQA Solver.

substantially reinforced.
This validation highlights the practical potential of Quantum Annealing in solv-

ing complex aerospace mission planning challenges. Furthermore, it underscores
the importance of simulation-based verification as a critical step in transitioning
from theoretical optimization to practical implementation in space operations.
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Conclusions
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Chapter 14

Conclusions and Future
Directions

This thesis has presented an innovative and comprehensive framework for optimiz-
ing multi-target Active Debris Removal (ADR) missions by leveraging emerging
quantum computing paradigms, specifically Quantum Annealing (QA) and Hybrid
Quantum Annealing (HQA). The methodology developed in this work addresses
the pressing challenge of sustainable space operations, focusing on the removal of
orbital debris—a growing threat to the security and operability of the near-Earth
environment.

By reformulating the ADR trajectory optimization problem into a Quadratic Un-
constrained Binary Optimization (QUBO) model, the research has demonstrated
how quantum computing techniques can efficiently handle complex combinatorial
optimization tasks. Traditional approaches to such problems, typically character-
ized by NP-hard complexity, often face limitations in scalability and computational
time. In contrast, the application of QA and HQA shows tangible benefits in terms
of computational speed, energy efficiency, and the quality of the solutions generated.

A distinctive contribution of this study lies in the development of an advanced
quadratization technique. Unlike conventional methods, the proposed approach
enables the transformation of higher-order polynomial constraints into quadratic
expressions without the need for auxiliary variables. This advancement significantly
reduces the overhead typically associated with embedding problems on quantum
annealing hardware, which is often constrained by limited qubit connectivity and
topology restrictions. The ability to directly quadratize complex objective functions
enhances both the scalability and the practical feasibility of large-scale ADR mission
planning.

The thesis also introduces an alternative strategy for constraint management,
shifting the burden of constraint enforcement from the QUBO formulation phase
to a dedicated post-processing stage. This methodological adjustment preserves
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the inherent advantages of quantum solvers—specifically their ability to explore
vast solution spaces rapidly—while ensuring that mission-critical constraints are
robustly satisfied. The approach leads to an overall improvement in the feasibility,
quality, and robustness of the mission plans generated.

The comparative analyses conducted in this research have provided empirical
evidence of the superiority of quantum optimization methods over classical meta-
heuristic algorithms, including Simulated Annealing (SA), Tabu Search (TS), and
Genetic Algorithms (GA). Quantum solvers demonstrated enhanced computational
efficiency, reduced time complexity, and superior scalability, particularly when deal-
ing with larger and more complex ADR scenarios. The integration of QA and HQA
approaches into the ADR mission planning process represents a significant step to-
ward more autonomous, efficient, and reliable mission design methodologies.

Despite these promising results, several limitations inherent to current quantum
annealing hardware were identified. Among these are issues related to the limited
number of available qubits, the constraints imposed by the hardware connectivity
graph (often requiring complex minor embedding techniques), and the presence of
thermal noise and decoherence, which can impact solution quality and repeatabil-
ity. These challenges underscore the necessity for continued advancements in both
quantum hardware and quantum algorithm design.

Looking ahead, future research should focus on several key areas to build upon
the findings of this thesis:

1. Hybrid Quantum-Classical Optimization: The further development of
hybrid algorithms that intelligently combine the strengths of quantum solvers
with classical optimization techniques could yield significant improvements in
solution quality, particularly for large-scale, real-world ADR missions.

2. Quantum-Inspired Algorithms: While quantum hardware is still matur-
ing, quantum-inspired optimization algorithms running on classical architec-
tures offer a promising intermediate step. Techniques such as Digital Anneal-
ing and Coherent Ising Machines could be explored as scalable alternatives for
industrial applications.

3. Error Mitigation and Robustness: Addressing the challenges posed by
noise and decoherence in current quantum annealers is critical. Advanced error
mitigation techniques, along with more robust post-processing methods, will
be essential to improve the consistency and reliability of quantum optimization
outputs.

4. Enhanced Quadratization Methods: The quadratization method intro-
duced in this work has shown promising results; however, further refinements
could lead to additional efficiency gains. Exploring adaptive quadratization
techniques that dynamically adjust based on the problem structure and the
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target hardware characteristics represents an interesting avenue for future re-
search.

5. Application to Broader Space Mission Planning: While this thesis fo-
cused on ADR mission planning, the methodologies developed have broader
applicability. Future studies could explore their use in other space mission
contexts, such as satellite constellation management, interplanetary trajectory
design, and autonomous spacecraft operations.

In conclusion, this thesis has demonstrated the significant potential of quantum
computing technologies, particularly Quantum Annealing and Hybrid Quantum
Annealing, in addressing one of the most critical challenges of modern space ex-
ploration: the sustainable management of orbital debris. By proposing a scalable,
efficient, and innovative framework for ADR mission optimization, this work con-
tributes to advancing the state-of-the-art in both quantum optimization and space
mission planning. It lays the groundwork for future research and development
aimed at ensuring the long-term sustainability, safety, and accessibility of the space
environment.

Continued investment in quantum technologies—both hardware and software—
alongside international cooperation on debris removal initiatives, will be essential in
transforming these theoretical advancements into practical solutions that safeguard
humanity’s shared orbital commons.

101



102



Bibliography

[1] Donald J Kessler, Nicholas L Johnson, JC Liou, and Mark Matney. The kessler
syndrome: implications to future space operations. Advances in the Astronau-
tical Sciences, 137(8):2010, 2010.

[2] Donald J. Kessler and Burton G. Cour-Palais. Collision frequency of artificial
satellites: The creation of a debris belt. Journal of Geophysical Research:
Space Physics, 83(A6):2637–2646, 1978.

[3] Nicholas L. Johnson, E. Stansbery, J.-C. Liou, M. Horstman, C. Stokely, and
D. Whitlock. The characteristics and consequences of the break-up of the
fengyun-1c spacecraft. Acta Astronautica, 63(1-4):128–135, 2008.

[4] Ting Wang. Analysis of debris from the collision of the cosmos 2251 and the
iridium 33 satellites. Science & Global Security, 18(2):87–118, 2010.

[5] Nate Estell and collaborators. Space debris and iss. Technical report, National
Aeronautics and Space Administration, 2023. Approved for Public Release via
NASA STI Process DAA 20230010751.

[6] European Space Agency (ESA). Space debris by the numbers, 2024. Informa-
tion last updated on 24 February 2025.

[7] Saket Kaurav Singh. Space debris – potential threat to space exploration.
Scientific Reports, pages 20–24, 2021.

[8] Carmen Pardini and Luciano Anselmo. The short-term effects of the cosmos
1408 fragmentation on neighboring inhabited space stations and large constel-
lations. Acta Astronautica, 210:465–473, 2023.

[9] European Space Agency (ESA). The kessler effect and how to stop it, 2024.

[10] Inter-agency Space Debris Coordination Committee, 2002. IADC Space Debris
Mitigation Guidelines. UN COPUOS 40th session, Vienna.

[11] J.-C. Liou and Nicholas L. Johnson. A sensitivity study of the effectiveness of
active debris removal in leo. Acta Astronautica, 64(2):236–243, 2009.

103



BIBLIOGRAPHY

[12] J.-C. Liou, N.L. Johnson, and N.M. Hill. Controlling the growth of future leo
debris populations with active debris removal. Acta Astronautica, 66(5):648–
653, 2010.

[13] Hugh G. Lewis, Adam E. White, Richard Crowther, and Hedley Stokes. Syn-
ergy of debris mitigation and removal. Acta Astronautica, 81(1):62–68, 2012.

[14] Robin Biesbroek, Sarmad Aziz, Andrew Wolahan, Ste-fano Cipolla, Muriel
Richard-Noca, and Luc Piguet. The clearspace-1 mission: Esa and clearspace
team up to remove debris. In Proc. 8th Eur. Conf. Sp. Debris, pages 1–3, 2021.

[15] Merrill M Flood. The traveling-salesman problem. Operations research,
4(1):61–75, 1956.

[16] Dario Izzo, Ingmar Getzner, Daniel Hennes, and Luís Felismino Simões. Evolv-
ing solutions to tsp variants for active space debris removal. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO ’15, page 1207–1214, New York, NY, USA, 2015. Association for
Computing Machinery.

[17] Hong-Xin Shen, Tian-Jiao Zhang, Lorenzo Casalino, and Dario Pastrone. Op-
timization of active debris removal missions with multiple targets. Journal of
Spacecraft and Rockets, 55(1):181–189, 2018.

[18] Lorenzo Federici, Alessandro Zavoli, and Guido Colasurdo. On the use of a*
search for active debris removal mission planning. Journal of Space Safety
Engineering, 8(3):245–255, 2021.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[20] Oliver Kramer. Genetic Algorithms, pages 11–19. Springer International Pub-
lishing, Cham, 2017.

[21] Jianan Yang, Xiaolei Hou, Yu Hen Hu, Yong Liu, and Quan Pan. A reinforce-
ment learning scheme for active multi-debris removal mission planning with
modified upper confidence bound tree search. IEEE Access, 8:108461–108473,
2020.

[22] Giulia Viavattene, Ellen Devereux, David Snelling, Niven Payne, Stephen
Wokes, and Matteo Ceriotti. Design of multiple space debris removal missions
using machine learning. Acta Astronautica, 193:277–286, 2022.

[23] Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Man-
drà, Bryan O’Gorman, Alejandro Perdomo-Ortiz, Andre Petukhov, John
Realpe-Gómez, Eleanor Rieffel, Davide Venturelli, Fedir Vasko, and Zhihui

104



BIBLIOGRAPHY

Wang. A nasa perspective on quantum computing: Opportunities and chal-
lenges. Parallel Computing, 64:81–98, 2017. High-End Computing for Next-
Generation Scientific Discovery.

[24] Tobias Stollenwerk, Vincent Michaud, Elisabeth Lobe, Mathieu Picard, Achim
Basermann, and Thierry Botter. Agile earth observation satellite scheduling
with a quantum annealer. IEEE Transactions on Aerospace and Electronic
Systems, 57(5):3520–3528, 2021.

[25] Vinicius Marchioli, Mattia Boggio, Deborah Volpe, Luca Massotti, and Carlo
Novara. Scheduling of satellite constellation operations in eo missions using
quantum optimization. In Optimization, Learning Algorithms and Applica-
tions, pages 227–242, Cham, 2024. Springer Nature Switzerland.

[26] David Snelling, Ellen Devereux, Niven Payne, Matthew Nuckley, Giulia Vi-
avattene, Matteo Ceriotti, Stephen Wokes, Giuseppe Di Mauro, and Harriet
Brettle. Innovation in planning Space Debris removal missions using Artificial
Intelligence and Quantum-inspired computing. In 8th European Conference on
Space Debris, 04 2021.

[27] Satoshi Matsubara, Motomu Takatsu, Toshiyuki Miyazawa, Takayuki
Shibasaki, Yasuhiro Watanabe, Kazuya Takemoto, and Hirotaka Tamura. Dig-
ital annealer for high-speed solving of combinatorial optimization problems and
its applications. In 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 667–672, 2020.

[28] Thomas Swain. Optimisation of active space debris removal missions with
multiple targets using quantum annealing. arXiv preprint arXiv:2311.01852,
2023.

[29] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the trans-
verse ising model. Physical Review E, 58(5):5355, 1998.

[30] Yan Wang, Jungin E. Kim, and Krishnan Suresh. Opportunities and challenges
of quantum computing for engineering optimization. Journal of Computing and
Information Science in Engineering, 23(6):060817, 08 2023.

[31] Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry
Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J Egger,
Bruce G Elmegreen, et al. Challenges and opportunities in quantum optimiza-
tion. Nature Reviews Physics, pages 1–18, 2024.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[33] Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

105



BIBLIOGRAPHY

[34] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
volume B. Springer Berlin, 01 2003.

[35] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Opti-
mization. John Wiley & Sons, Ltd, 1988.

[36] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[37] D-wave systems. https://www.dwavesys.com/.

[38] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics,
2, 2014.

[39] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa,
Hirotaka Tamura, and Helmut Katzgraber. Physics-inspired optimization
for quadratic unconstrained problems using a digital annealer. Frontiers in
Physics, 7:48, 04 2019.

[40] I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case.
CAH. CENTRE ET. RECH. OPERAT.; BELG.; DA. 1975; VOL. 17; NO 1;
PP. 71-74; BIBL. 10 REF., 1975.

[41] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete
Applied Mathematics, 123(1):155–225, 2002.

[42] Nike Dattani. Quadratization in discrete optimization and quantum mechanics,
2019.

[43] Neculai Andrei. Penalty and Augmented Lagrangian Methods, pages 185–201.
Springer International Publishing, Cham, 2017.

[44] Yves Crama, Sourour Elloumi, Amélie Lambert, and Elisabeth Rodriguez-
Heck. Quadratization and convexification in polynomial binary optimization.
working paper or preprint, 2022.

[45] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3):268–308, 2003.

[46] David E. Goldberg. Genetic algorithms in search, optimization, and machine
learning. Reading, Mass. : Addison-Wesley Pub. Co., 1989.

[47] Fred Glover. Tabu search - part i. INFORMS Journal on Computing, 2:4–32,
01 1990.

106

https://www.dwavesys.com/


BIBLIOGRAPHY

[48] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 26(1):29–41, 1996.

[49] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942–1948 vol.4, 1995.

[50] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical review A,
52(5):3457, 1995.

[51] Tameem Albash and Daniel A Lidar. Adiabatic quantum computation. Reviews
of Modern Physics, 90(1):015002, 2018.

[52] Satoshi Morita and Hidetoshi Nishimori. Mathematical foundation of quantum
annealing. Journal of Mathematical Physics, 49(12):125210, 12 2008.

[53] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting,
Firas Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson,
Paul Bunyk, et al. Quantum annealing with manufactured spins. Nature,
473(7346):194–198, 2011.

[54] Philipp Hauke, Helmut G Katzgraber, Wolfgang Lechner, Hidetoshi Nishimori,
and William D Oliver. Perspectives of quantum annealing: Methods and im-
plementations. Reports on Progress in Physics, 83(5):054401, 2020.

[55] Deborah Volpe, Giacomo Orlandi, and Giovanna Turvani. Improving the solv-
ing of optimization problems: A comprehensive review of quantum approaches.
Quantum Reports, 7(1):3, 2025.

[56] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm, 2014.

[57] Lynnane George. Introduction to Orbital Mechanics. 01 2023.

[58] David Vallado and Paul Crawford. SGP4 orbit determination. In AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, 2008.

[59] Philippe Codognet. Domain-wall / unary encoding in qubo for permutation
problems. In 2022 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 167–173, 2022.

[60] Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in
python. IEEE Access, 8:89497–89509, 2020.

107



BIBLIOGRAPHY

[61] CelesTrak. Norad gp element sets.

[62] MathWorks. Spacecraft Dynamics. Available at: https://it.mathworks.com
/help/aeroblks/spacecraftdynamics.html.

[63] MathWorks. Satellite Scenario Overview. Available at: https://it.mathwor
ks.com/help/aerotbx/ug/satellite-scenario-overview.html.

[64] MathWorks. Hohmann Transfer with the Spacecraft Dynamics Block. Available
at: https://it.mathworks.com/help/aeroblks/hohmann-transfer-wit
h-the-spacecraft-dynamics-block.html.

108

https://it.mathworks.com/help/aeroblks/spacecraftdynamics.html
https://it.mathworks.com/help/aeroblks/spacecraftdynamics.html
https://it.mathworks.com/help/aerotbx/ug/satellite-scenario-overview.html
https://it.mathworks.com/help/aerotbx/ug/satellite-scenario-overview.html
https://it.mathworks.com/help/aeroblks/hohmann-transfer-with-the-spacecraft-dynamics-block.html
https://it.mathworks.com/help/aeroblks/hohmann-transfer-with-the-spacecraft-dynamics-block.html

	I Introduction and Background
	Background and Motivation
	Historical Evolution of Space Debris
	Current State of the Orbital Environment
	Active Debris Removal (ADR) and Its Importance

	Problem Statement and Research Motivation
	The Active Debris Removal (ADR) Optimization Challenge
	Quantum Annealing for ADR Optimization
	Quantum Computing in Aerospace Applications

	Quantum Annealing for ADR Optimization (1)
	Objectives and Contributions
	Thesis Structure Overview


	II Theoretical Foundations and Modeling Tools
	NP Problems and Combinatorial Optimization
	Introduction to NP Problems
	Optimization Paradigms and Mathematical Modeling
	Linear vs. Nonlinear Optimization
	Combinatorial Optimization
	Binary Optimization and Constraint Handling
	From Linear Models to QUBO/HUBO


	QUBO and HUBO Mathematical Formulations
	Quadratic Unconstrained Binary Optimization (QUBO)
	Why QUBO Matters

	Higher-Order Unconstrained Binary Optimization (HUBO)
	From HUBO to QUBO – Problem Mapping

	Quadratization Techniques
	Classical Quadratization Methods
	Quadratization of a Cubic Term: A Concrete Example
	Rosenberg’s Quadratization Method (1975)
	Quadratization of Quartic and Higher-Order Terms

	Efficiency Considerations in Quadratization

	Solvers and Optimization Algorithms
	Heuristic and Metaheuristic Approaches
	Quantum Annealing (QA) and Hybrid Quantum Annealing (HQA)
	How Quantum Annealers Work
	Solving a QUBO Problem with a Quantum Annealer
	The Adiabatic Condition and Annealing Time Constraints
	QUBO to Ising Model Mapping
	Hybrid Quantum Annealing (HQA)

	Classical vs. Quantum Optimization Methods: A Comparative Discussion
	Strengths of Classical Methods
	Limitations of Classical Methods
	Strengths of Quantum Optimization
	Limitations of Quantum Optimization
	Potential Impact and Outlook



	III Problem Modeling and Quadratization Strategies
	Problem Description and Mathematical Formalization
	The Space Debris Collection Problem
	Definition of the Capture Pattern and Variables
	TOF
	RAAN Alignment Time tR
	Hohmann Transfer Time tH
	Rendezvous Waiting Time: tW
	Capture Time tcat
	Release Time tril

	Delta-v v
	Desirability
	Mathematical Formulation of Objectives and Constraints
	Variables and Parameters
	Objective Function
	Model Constraints
	Final Considerations


	Complexity Analysis and Theoretical Challenges
	Analysis of the Polynomial Objective Function and Its Complexity
	Analysis of the TOF Term
	Analysis of the Linear Terms

	Impact of Increasing Debris and Capture Events on Computational Effort
	Effect of the Number of Debris (D)
	Effect of the Number of Capture Events (C)

	Overall Considerations

	Quadratization Strategies and Innovations
	Traditional Quadratization of Polynomial Problems (Case >2 Captures)
	Novel Generalized Quadratization Method
	Context and TOF Problematic
	Approximation via the Synodic Period
	Advantages of the New Methodology

	Comparative Analysis: Performance and Computational Efficiency

	Conversion to QUBO/HUBO Format
	Mapping Techniques to QUBO/HUBO Format 
	Variable Structure and Costas Array Encoding
	Definition of Penalty Terms and Variable Reduction Strategies
	Decision of Exclusive Use of Pmatrix in QA
	Why a High Lambda Coefficient Worsens Annealing
	The Role of Chain Strength and Embedding Management

	Comparison Between QA and HQA/SA Strategies


	IV Implementation, Experimentation, and Comparative Analysis
	Quantum Annealing Implementation
	Hardware Description
	Quantum Annealer Architecture
	Hardware Specifications and Performance

	Development Environment
	Software Tools and Frameworks
	Programming and Workflow Integration

	Dataset Handling
	Source of Satellite Debris Data
	Data Filtering and Preprocessing
	QUBO Formulation from Debris Data

	Overall Workflow

	Comparative Analysis of Quantum and Classical Approaches
	Quantum Annealing Constraint Management
	Solver Comparison and Scalability
	Advantage of the new Quadratization Method
	Discussion

	MATLAB/Simulink Mission Simulation
	Simulation Objectives
	Simulation Environment
	Simulation Workflow
	Results and Verification
	Discussion and Implications


	V Conclusions
	Conclusions and Future Directions


