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Abstract

Autonomous navigation in agricultural environments has emerged as a key innovation
in modern agritech, providing significant benefits in terms of efficiency, cost reduction,
and sustainability. In particular, autonomous systems in vineyards can alleviate labor
shortages, optimize resource usage, and enable precision agriculture practices. However,
the structured yet highly variable nature of vineyards presents unique challenges for
autonomous navigation. Vineyards are characterized by narrow and uneven pathways,
curved and sloped terrains, and dense vegetation that can obstruct visibility and inter-
fere with traditional localization methods. Furthermore, environmental factors such as
changing lighting conditions, seasonal variations, and occlusions from foliage add addi-
tional layers of complexity to perception and decision-making systems.

To achieve reliable autonomy, a combination of advanced perception, localization, and
control strategies is necessary. Traditional approaches primarily rely on GNSS-based lo-
calization, often complemented by LiDAR, IMU, and wheel odometry to enhance accuracy
and robustness. While these sensor fusion techniques have proven effective in open-field
agricultural applications, they encounter significant limitations in vineyards and orchards.
Tall and dense vegetation can obstruct GNSS signals, leading to localization errors and
reduced reliability in environments with limited satellite visibility. Additionally, wheel
odometry can suffer from drift and inaccuracies on uneven or slippery terrain, further
complicating long-term navigation.

This thesis explores both localization-based and position-agnostic solutions to address
these challenges. By leveraging behavior trees, an approach widely used in robotic control
and decision-making, the proposed navigation system benefits from modularity, hierar-
chical structure, and real-time feedback mechanisms. These characteristics enable flexi-
ble and adaptable control pipelines capable of handling complex vineyard environments
with varying terrain and occlusion conditions. The developed solutions are extensively
evaluated through a combination of simulated environments and real-world experiments,
providing a comprehensive assessment of their performance, robustness, and applicability
in practical agricultural settings.
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Chapter 1

Introduction

1.1 Objective of the thesis

Agricultural technology (agritech) has been fundamental to the development of human
society since its inception. Every major historical era has been shaped by innovations
in this field, from the first deliberate crop cultivation to the mechanization of agricul-
ture during the Industrial Revolution. The pursuit of increased farming efficiency and
productivity has consistently been a major driving force in society.

As demand for resources increased dramatically over the last century, agricultural
infrastructure has evolved to keep pace. Precision agriculture, driven by data analytics
and GNSS technology, emerged as a key solution to maximize efficiency. However, with
a projected need to increase food production by up to 56% between 2010 and 2050 [13],
the demand for highly autonomous and intensive farming solutions is at an all-time high.
In response, agritech has expanded over the last decades to incorporate autonomous
machinery, drones, and robotics to monitor and tend to crops.

The use of autonomous machinery in open field crops has become more widespread
as the technology matures. These systems primarily rely on GNSS-based localization
and satellite imagery for navigation planning and control. However, these solutions often
face limitations in more complex environments, such as vineyards or orchards, which are
characterized by narrow and uneven pathways, curved and sloped terrains, and dense
vegetation that can obstruct visibility and disrupt GNSS localization. As a result, for
these complex environments, more robust and adaptable control architectures are needed.
These systems must handle navigation through a combination of traditional localization
methods, when available, and environmental sensors such as cameras, LiDAR, IMUs, etc.
to extrapolate navigation information.

This thesis focuses on the development of two control algorithms for autonomous
navigation in vineyards. The first, a baseline algorithm, employs a traditional approach
that uses GPS for robot localization along with GPS waypoints to mark the start and
end of each vineyard row. In addition, it integrates LiDAR, IMU, and wheel odometry
through sensor fusion to enhance obstacle avoidance and accurately determine the robot’s
position and orientation.

The second algorithm offers a position-agnostic solution that does not rely on GPS.
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Introduction

Instead, it uses LiDAR data to detect row edges, plan navigation within the row, identify
the row’s end, and guide the robot to the next row. Like the baseline approach, this
method also utilizes LiDAR, IMU, and wheel odometry for obstacle avoidance and for
robust estimation of position and orientation via sensor fusion.

The common thread linking both algorithms is the implementation of an underly-
ing control architecture based on Behavior Trees (BTs) [7]. BTs are a formalism for
structuring decision-making processes using a tree-like hierarchy that organizes actions
and conditions. This modular and hierarchical framework not only makes the system
more responsive through internal feedback loops but also simplifies debugging and future
expansion, which is particularly beneficial for complex agricultural control tasks.

In addition to BTs, this work leverages the Robot Operating System (ROS) [8], an
open-source middleware widely used for robotic application development. ROS provides
a rich ecosystem of packages for sensor simulation, data filtering, navigation, and control,
significantly streamlining the integration of various sensor inputs and control strategies.
This allowed the focus to be on refining the BT-based algorithms while relying on robust,
community-supported tools for key functionalities.

The performance of both algorithms was rigorously evaluated through extensive test-
ing in simulation. This comprehensive evaluation enabled a direct comparison of the two
approaches, highlighting the benefits and limitations of each method in addressing the
challenges of autonomous vineyard navigation.

1.2 Thesis structure
• Chapter 2, State of the Art.

• Chapter 3, Algorithms for Complete Path Coverage.

• Chapter 4, Simulation Evaluation of Algorithms.

• Chapter 5, Conclusion.
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Chapter 2

State of the Art

Autonomous navigation in complex environments requires robust control systems. This
chapter reviews current approaches for vineyard navigation and examines how BTs can
enhance control architectures.

2.1 Algorithms for Autonomous navigation in vineyards

Recent research has focused on complete path coverage in vineyards employing different
combinations of sensors, navigation data, and underlying algorithms for control.

For example, in A Deep Learning Driven Algorithmic Pipeline for Autonomous Nav-
igation in Row-Based Crops [3], a georeferenced occupancy grid map of the field is used
to generate a global path composed of geographic waypoints. Navigation is performed
either with pure reliance on GNSS or augmented with a Semantic segmentation algorithm
that leverages visual perception. Within a row the Semantic segmentation algorithm [6]
maintains the Autonomous Ground Vehicle (AGV) centered, while the end of a row is
identified by a threshold on the Euclidean distance between the next waypoint and the
AGV’s estimated position. Navigation to the next row follows the previously computed
global path. While this approach is highly scalable thanks to the low cost sensors it
employs, its reliance on GNSS signals and satellite imagery considerably affects its flexi-
bility. Satellite imagery may not be accurate due to seasonality or changes in the layout
of the field, moreover the reliance on geographical waypoints for the end row navigation
is not compatible with areas where GNSS signals are weak or absent altogether.

An alternative is proposed in A Map-Free LiDAR-Based System for Autonomous
Navigation in Vineyards [2], in this work the simple geometrical structure of row based
crops is used to extrapolate navigation information from LiDAR data. While navigating
inside a row, the algorithm tries to keep the AGV centered, while avoiding any obstacles.
The end of a row is detected if the number of points obtained from the LiDAR projection
in front of the robot falls below a certain threshold. Finally, the AGV navigates to the
next row aligning itself with the row ends, which are detected through Euclidean Cluster
Extraction. In this approach a robust map-free solution was implemented; however, the
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State of the Art

algorithm would highly benefit from the control architecture provided by BTs, which allow
for modular behavior integration without restructuring the entire navigation algorithm.

2.2 BTs in Control Systems

BTs were originally developed in the gaming industry to overcome the limitations of
Finite State Machines (FSMs). While FSMs can provide hierarchical modularity [5],
their reliance on one-way control transfers forces each state to be directly connected
to every other state. This results in up to N2 possible transitions for N states, which
causes exponential growth in complexity as the system scales. The increase in complexity
naturally leads to longer development times and higher maintenance costs.

In contrast, BTs employ a two-way control transfer mechanism that is more aligned
with modern programming practices. This paradigm allows execution to return to the
main control flow once a function completes, enhancing modularity and facilitating eas-
ier feedback integration. This structure is particularly advantageous when developing
complex, reactive and modular control systems.

2.2.1 An Informal Description of BTs

A more in-depth and formal definition of BTs is provided in Behavior Trees in Robotics
and AI [4]:

“A BT is a directed rooted tree where the internal nodes are called control
flow nodes and leaf nodes are called execution nodes”

In a BT, every node except the root has exactly one parent, with the root node having
none. Execution begins at the root, which issues a tick signal at a fixed frequency. This
tick propagates from parent to child nodes, ensuring that each node executes only when
it is ticked. When a node executes, it returns one of three statuses: Running, Success, or
Failure. As shown in Table 2.1, control flow nodes such as Sequence, Fallback, Pipeline,
and Decorator determine their return status based on the statuses of their child nodes.
While execution nodes, which include Actions and Conditions, operate based on their
internal algorithms.

Node type Symbol Succeeds Fails Running
Action text Upon completion If impossible to complete During completion

Condition
▷⊴ �◁text If true If false Never

Decorator ♢ Custom Custom Custom
Fallback ? If one child succeeds If all children fail If one child returns Running
Sequence → If all children succeed If one child fails If one child returns Running
Parallel ⇒ If ≥ M children succeed If > N − M children fail else

Table 2.1: Adapted from Behavior Trees in Robotics and AI [4], p. 9. Overview of
classical BT node types.
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2.2 – BTs in Control Systems

The hierarchical structure of BTs not only facilitates modular design but also allows
each node to act as the root of a sub-BT. This means that complex behaviors can be
encapsulated within subtrees and later reused or modified as needed for higher-level tasks.
This modularity is exemplified in Fig. ??, where a high-level behavior is decomposed into
finer, lower-level activities.

2.2.2 The Navigation 2 ROS package and BTs

To handle navigation, the Navigation 2 package (NAV2) for ROS Humble was used. For
two reasons. Firstly, this package is widely adopted by the ROS community, providing a
well-tested pipeline for path computation and navigation. It supports different types of
controllers, is highly configurable, and benefits from documentation and readily available
example code. The second reason is NAV2’s integration of BTs. NAV2 includes cus-
tom nodes specifically designed for BT-based navigation, allowing seamless integration
with its underlying algorithms. Table 2.2 provides a brief overview of the custom nodes
implemented by NAV2 used in this work.
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State of the Art

(a) A high level BT carrying out a task consisting of first finding, then getting into frame and
finally taking a picture of a bird.

(b) The Action Put Bird in Frame from the BT in Fig. 2.1a is expanded into a sub-BT. The Bird
is approached until it is considered close, and then the Action AdjustFrame is executed until the
Bird is within frame.
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2.2 – BTs in Control Systems

Key Behavior Tree Nodes Used in This Work (continued)

Node
Type Node Name Description

Table 2.2: NAV2 Behavior Tree Nodes Used in This Work

Node
Type Node Name Description

Action

BackUp Commands the robot to reverse a specified dis-
tance at a given speed.

ClearEntireCostmap Calls a ROS service to clear the entire costmap
(global or local).

ComputePathThroughPoses Computes a path through multiple waypoints
using the selected planner.

ControllerSelector Selects the controller based on topic input and
outputs the chosen controller.

DriveOnHeading Commands the robot to drive along a specified
heading.

FollowPath Instructs the robot to follow a precomputed
path.

PlannerSelector Selects the planner based on topic input and
outputs the chosen planner.

RemovePassedGoals Filters out navigation goals that have already
been passed.

Spin Commands a spin maneuver as a recovery ac-
tion.

Wait Pauses execution for a specified duration.

Condition
GoalUpdated Checks whether the navigation goal has been up-

dated.

IsStuck Determines if the robot is not making progress.

Control

PipelineSequence Executes child nodes sequentially until one fails.

RecoveryNode Retries a set of recovery actions a specified num-
ber of times.

RoundRobin Cycles through its children, ticking each in turn.

Decorator RateController Regulates the tick rate of its child node by lim-
iting its frequency.
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State of the Art

Note: For a complete list of available NAV2 BT nodes and their details, please refer to
the NAV2 documentation.

2.2.3 The BehaviorTree.CPP Library and BTs

To implement behavior trees, the BehaviorTree.CPP (BTCpp) library was used. This li-
brary is a widely adopted C++ framework for creating, managing, and executing behavior
trees efficiently.

One of the key advantages of BTCpp is its visual design tool, Groot, which allows for
intuitive construction and debugging of behavior trees. This enables rapid prototyping
and real-time monitoring of tree execution. Additionally, BTCpp provides flexibility
in defining custom nodes, which can be integrated either statically at compile time or
dynamically as plugins. In this work, the plugin-based approach was adopted, allowing
custom nodes to be loaded at runtime without modifying the core application.

BTCpp also features a structured mechanism for data management within behavior
trees. Nodes can communicate using input and output ports, enabling the controlled
exchange of parameters. Additionally, a blackboard is available for storing and sharing
global variables across the tree, allowing information persistence between nodes. This
facilitates modular design while keeping nodes decoupled from each other, improving
reusability and maintainability.

Table 2.3: BehaviorTree.CPP Nodes Used in This Work

Node
Type Node Name Description

Control
PipelineSequence Executes child nodes sequentially until one fails.

ReactiveSequence Ticks all children continuously in order, pro-
ceeding only if each returns Success, ensuring
real-time reactivity.

ReactiveFallback Ticks all children continuously and selects the
first one that succeeds, enabling real-time failure
recovery.

Decorator Inverter Ticks its child and returns the opposite return
state.

Note: For a complete list of available BTCpp BT nodes and their details, please refer to
the BTCpp documentation.
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2.2 – BTs in Control Systems

2.2.4 Cross-Domain Application: AUV Use Case

BTs have proven highly effective in managing the complex and dynamic operations of
Autonomous Underwater Vehicles (AUVs), as demonstrated in [12]. Underwater envi-
ronments are characterized by unpredictable conditions, limited communication, and the
need for long-duration autonomous operation. BTs have enabled modular, reusable, and
robust control architectures capable of handling diverse mission phases.

Considering that AUVs operate in environments that are as, if not, more complex
than those encountered by AGVs, it stands to reason that these would derive considerable
benefit from the modularity, adaptability, and scalability inherent in BTs.
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Chapter 3

Algorithms for Complete Path
Coverage

3.1 Overview
This chapter details two algorithms designed for complete path coverage. Both share
a common foundation. Including a custom BT plugin library, navigation (using Nav2)
and goal computation. But differ fundamentally in the end of row detection mechanism.
Here, the shared components are outlined and then each algorithm is explained in detail,
highlighting the unique strategies employed to detect the end of a row.

3.2 Shared Implementation Components

3.2.1 Custom BT Nodes Plugin Library

In this section, the custom BT nodes implemented to support both algorithms are de-
tailed. Table 3.1 summarizes each node type and its function.

Table 3.1: Overview of custom BT nodes.

Node
Type Node Name Description

Action
ClusteringNodeAction Clusters LiDAR data and publishes rows line

equations

CustomGoalUpdaterAction Updates goals based on current navigation data

FixedFramePubNodeAction Publishes a static transform between two frames

Nav2ClientAction Implements a Nav2 client to call the Nav2 action
server

15



Algorithms for Complete Path Coverage

Overview of custom BT nodes (continued)

Node
Type Node Name Description

RowLinesNodeAction Publishes PointCloud2 data starting from re-
ceived row line equations

setBlackboardBoolAction Sets a Bool blackboard value

Condition BlackboardBoolCondition Returns as status the specified Bool blackboard
value

RosTopicCondition Returns as status the received Bool value from
a ROS topic subscription

3.2.2 Row Lines Detection

Vineyards typically feature straight, parallel rows defined by walls of plants. Detecting
these plant walls is essential for navigation and goal computation. However, the natural
gaps between plants cause these walls to appear discontinuous in raw LiDAR data. As
shown in Fig. 3.2a, the LiDAR sensor often captures multiple rows because of these gaps.

To address this challenge, a multi-step approach is adopted (see Fig. 3.1). First, the
LiDAR data is filtered to remove outliers caused by adjacent rows. Next, the filtered
data is segmented into two clusters representing the right and left walls. Finally, linear
regression is applied to each cluster to approximate the line equations of the walls. This
process enables the control system to extract critical navigation data, such as the distance
between the robot and the row lines, which is used for goal computation.

The following subsections describe this process in further detail.

Filter Clustering Linear
Regression

Average
Computation

LiDAR
data

Filtered
LiDAR data

PCL2
Data

Line
equations

Average
Line equations

Figure 3.1: Simple diagram of the Row Lines Detection pipeline

LiDAR Filtering

To filter the LiDAR data, the LaserFilters ROS package was employed. This package
provides a variety of filters that can be chained together to achieve a customized filtering
effect. To remove outliers corresponding to adjacent rows, the LaserScanBoxFilter was
used. This filter discards any LiDAR points that fall within a specified Cartesian box,
defined by minimum and maximum x, y, and z coordinates.

In this approach, four LaserScanBoxFilter filters were chained together to remove
points detected in front of, behind, to the right, and to the left of the robot. This process
effectively confines the LiDAR data to a rectangular region around the robot, as shown
in Fig. 3.2b.
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3.2 – Shared Implementation Components

(a) Unfiltered data in red

(b) Filtered data in green

Figure 3.2: Visualization in Rviz of Filtered and Unfiltered LiDAR data

Clustering

To segment the filtered LiDAR data into two clusters, the custom BT node Cluster-
ingNodeAction is used. First, the LiDAR scan is projected into the navigation reference
frame (either Map or Local), converting the data into a PointCloud2 (PCL2) format
with (x, y, z) coordinates. This transformation clarifies the spatial distribution of points,
making it easier to separate those corresponding to the two walls.

Clustering is then performed using Gaussian Mixture Models (GMMs) [1], imple-
mented via the C++ Armadillo library [9–11]. The GMM is trained on the PCL2 data
to identify two distinct Gaussian distributions, which correspond to the two plant walls.
Once the model is successfully trained, it is used to partition the PCL2 data into two
separate clusters. These clusters are then fed into the applyLinearRegression method of
the ClusteringNodeAction, as described in the next section.
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Algorithms for Complete Path Coverage

Row Lines Approximation via Linear Regression

To approximate the row walls, their line equations (expressed in the navigation frame)
are computed using Linear Regression. This computation is integrated into the Cluster-
ingNodeAction to reduce latency and prevent the use of stale data. The process leverages
the Boost C++ library to derive an approximate linear model that best fits the points
of each cluster. Once computed, the line equations are published on a ROS topic for
subsequent use. The line message contains along with the slope and intercept also the
maximum and minimum x coordinate from the cluster associated with the line.

Exponential Moving Average with Sliding Window

Using the newly computed line equations alone would not result in a robust and reliable
system, as clustering may fail to correctly identify the row walls. To mitigate this,
the RowLinesNodeAction custom BT node implements an Exponential Moving Average
(EMA) with a sliding window to smooth out variations and discard outliers. The EMA is
applied to all line parameters (m, q, xmax, xmin). As new data arrives, the oldest sample
is removed, and the weights are updated such that older samples have progressively less
influence. This approach ensures that the system favors recent data while maintaining
robustness against outliers. The weights are computed online, as follows:

Exponential Decay Function:
{︄

wi = e−λ(N−i), ∀i ∈ {0, . . . , N − 1}
N ∈ N, λ ∈ R+ (3.1)

Weighted Average Formula: xavg =
∑︁N

i=1 xiwi∑︁N
i=1 wi

(3.2)

Where λ is the exponential decay constant, controlling the rate at which the expo-
nential function falls. The exponent scales by (N − i), ensuring that the newest samples
in the sliding window receive the highest weights, as shown in Fig. 3.3. To preserve scale,
eliminate bias, and improve numerical stability the weights are normalized, ensuring their
sum equals one. The computed averages are then used to generate an artificial PCL2
obstacle consisting of N equidistant points along the two lines, within their xmax and
xmin bounds. This PCL2, along with the line equations, are published on ROS topics.
The PCL2 allows the Nav2 stack to recognize continuous row walls as obstacles (Fig. 3.4),
while the line equations are used for goal computation.

3.2.3 Navigation and Goal Computation Framework

This section explains the integration with Nav2 for navigation and outlines the goal com-
putation methods that are shared between the two algorithms.

The overarching control architecture is based on the use of two BTs, the MainBT and
the NavBT. The MainBT handles the high level control logic. It detects the end of the
mission, extrapolates navigation data from sensors (GPS and/or LiDAR), computes goals
and passes these to the NavBT. The NavBT is activated by the Nav2ClientAction node

18



3.2 – Shared Implementation Components

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

N − i

w
i

N = 5, λ = 2
N = 5, λ = 1

N = 5, λ = 0.5

Figure 3.3: Exponential Decay Function for different decay constants.

Figure 3.4: Visualization in Rviz of detected Row Lines PCL2 points in orange.

that communicates with the Nav2 action server. This node sends a navigation request
specifying the use of the NavigateThroughPoses controller, along with the computed goal
or goals. Additionally, it provides the XML of the NavBT, ensuring that the naviga-
tion and recovery procedures follow the designed behavior tree structure. This BT is
completely made of nodes available from the Nav2 BT plugin, as shown in Fig. 3.5.

Goal computation is performed in the MainBT, through the CustomGoalUpdaterAc-
tion node. Depending on the navigation state, i.e. inrow or endrow, the system employs
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two distinct goal computation strategies. The following subsections describe these ap-
proaches.

Figure 3.5: Illustration of the NavBT configuration for navigation with recovery.
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3.2 – Shared Implementation Components

Goal Computation In Row

While the robot is detected as inside of a row, the latest odometry of the robot is used
to compute the next goal as follows:

(x, y) = (xodom + ∆x, yodom + ∆ydrift) (3.3)

∆ydrift = d0 − d1
d0 + d1

,

{︄
∆x > 0, if positively aligned with the x axis
∆x < 0, otherwise

(3.4)

Where d0 and d1 are the distances between the robot and the two detected row lines,
as shown in Fig. 3.6.

Figure 3.6: Computation of goal along positive x axis for in-row navigation.

Goal Computation End Row

If the robot is detected to be at the end of a row, a more complex approach is used. This is
to ensure the robot enters the next row aligned while keeping clear of the vineyard plants.
Again the latest odometry and estimated robot-row lines distance are used, computing
N equidistant goals [G1, . . . , Gi, . . . , GN ] along a circumference centered on the top row
line. Assuming the example shown in Fig. 3.7, the goals will be computed as follows:

The equation of a circumference is γ : (x − a)2 + (y − b)2 = r2

Then set

⎧⎪⎪⎨⎪⎪⎩
a = xodom

b = yodom + d0

r = d0

to obtain the translated circumference of interest.

To follow the trajectory described by this circumference, consider a reference frame trans-
lated to the center of the circumference. Then apply a rotation around its z-axis by an
angle θ to the relative position of the robot w.r.t. the new reference frame:

21



Algorithms for Complete Path Coverage

R(k̂, θ) =
[︄
cos θ − sin θ
sin θ cos θ

]︄
,

(︄
xrel

yrel

)︄
=
(︄

xodom − a
yodom − b

)︄

⇒ Grel :
(︄

xGrel

yGrel

)︄
= R(k̂, θ) ·

(︄
xrel

yrel

)︄
=
(︄

xrel cos θ − yrel sin θ
xrel sin θ + yrel cos θ

)︄

Translate the Goal coordinates back to the navigation reference frame :

G = Grel +
(︄

a
b

)︄
=
(︄

xrel cos θ − yrel sin θ + a
xrel sin θ + yrel cos θ + b

)︄

Using the derived equations, defining the total angle of rotation, it is then possible to
compute N equidistant goals:

∆θ = θtot

N
, θi = θi−1 + ∆θ, ∀i = {1, . . . , N − 1}, N ∈ N with θ0 = ∆θ

⇒ Gi =
(︄

xrel cos θi − yrel sin θi + a
xrel sin θi + yrel cos θi + b

)︄

Finally to ensure smooth navigation, the orientation of each goal pose is set to the
following Roll-Pitch-Yaw configuration: R(k̂, θi) · R(ĵ,0) · R(î,0). No additional rotations
are needed since the navigation frame and the relative frame defined by the circumference
have parallel axes.

Figure 3.7: Visualization of equidistant goals along a translated circumference for end-
of-row navigation.
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3.3 Baseline Algorithm (GNSS-Dependent)

This algorithm leverages GPS data to guide navigation.

3.3.1 Main BT Structure (Fig. 3.8)

This section describes the high-level control actions performed by the Main BT and its
subtrees.

The control flow is divided into two parts. The first part contains actions that occur
at every tick, while the second part comprises actions that depend on the navigation
mode (inrow or endrow).
At the root of the Main BT is a Pipeline sequence, ensuring that the tree re-ticks starting
from its first child if any return Running. In the first part, the end-of-mission condi-
tion is checked, then through a Fallback control node it determines if the navigation
state should be detected from the current GPS position, and finally performs clustering.
These tasks are implemented by the RosTopicCondition, GPScheckerNodeAction, and
ClusteringNodeAction custom BT nodes, respectively.

The second part is managed by the Reactive Fallback Nav, which switches between
the two navigation subtrees depending on the detected navigation mode. The following
subsections provide a detailed explanation of these subtrees.

Figure 3.8: Illustration of the Position Agnostic Main BT.

In row Subtree (Fig. 3.9)

The control flow of this subtree is rather simple, with a Pipeline Sequence control node
at its root. First, it checks if the current navigation mode is set to inrow. If it is,
clustering is enabled by setting the Enable Clustering blackboard key to True. Next,
the RowLinesNodeAction is ticked to compute and publish the row lines and associated
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PCL2. Finally, the navigation goal is computed and stored on the blackboard for the
Nav2ClientAction node to access. This node sends the navigation request to the Nav2
action server and its return state reflects the navigation result: goal reached, running or
failed/aborted.

Figure 3.9: Illustration of In Row Subtree from the Baseline MainBT.

End row Subtree (Fig. 3.10)

The control flow in the End Row subtree is more complex, with a Pipeline Sequence
control node at its root. Upon entering the subtree, the system first verifies whether the
current navigation mode is set to end row. If it is, a Reactive Fallback control node is
ticked.

The Reactive Fallback Endrow node selects between two child branches based on the
goal navigation mode. If the goal has not been reached (or is unset), the Sequence Endrow
Nav control node is ticked. At this stage, clustering is disabled to prevent artifacts during
end-of-row navigation, and the GPS navigation state is turned off to avoid unexpected
navigation mode switches. Subsequently, the system computes new goal poses and sends
a navigation request using the CustomGoalUpdaterAction and the Nav2ClientAction cus-
tom BT nodes.

Once navigation is completed, by reaching the final goal in the computed path, the
Nav2ClientAction node sets the Goal reached endrow key to True. This triggers the
alternate branch of the Reactive Fallback in the next iteration, where clustering and
GPS checks are re-enabled through their respective blackboard keys.

3.3.2 Goal Computation and Navigation

The Baseline algorithm uses the Map frame, a world fixed frame, for navigation and
goal computation. Within its BT structure, the algorithm employs the goal computation
and navigation strategy described extensively in Section 3.2.2. Utilizing the detected
row lines to identify row walls as continuous obstacles (see Fig. 3.4), to keep the robot
centered during in row navigation, and to compute the of the end-of-row trajectory.
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Figure 3.10: Illustration of End Row Subtree from the Baseline MainBT.

3.3.3 End of Row Detection

The algorithm relies on GPS data to detect the end of a row, this is implemented in the
GPScheckerNodeAction. A set of GPS coordinates are loaded from a configuration file,
marking the start and end of each row. At each tick, the node checks if the distance
between the latest GPS position and the next waypoint falls below than a predefined
threshold. When this condition is met, the navigation state is switched and the reference
waypoint is updated. To compute the distance between the robot and the reference
waypoint, the Haversine formula is used. This formula allows the computation of the
great-circle distance (see Fig. 3.11) between two points on a sphere, given their latitudes
and longitudes.

Central angle: θ = d

r
,

{︄
d : great-circle distance
r : radius of the sphere

(3.5)

(3.6)

Haversine formula:

⎧⎪⎪⎨⎪⎪⎩
hav(θ) = hav(∆ϕ) + cos ϕ1 cos ϕ2hav(∆λ)
ϕ1, ϕ2 : latitude of point 1 and 2 ⇒ ∆ϕ = ϕ2 − ϕ1

λ1, λ2 : longitude of point 1 and 2 ⇒ ∆λ = λ2 − λ1

(3.7)

By definition the Haversine function is hav(θ) = sin2 θ
2 = 1−cos θ

2 , then solving for the
distance d:

d = r archav(hav(θ)) = 2r arcsin
√︂

hav(θ) = · · · =

= 2r arcsin

√︄
1 − cos(∆ϕ) + cos ϕ1 · cos ϕ2 · (1 − cos(∆λ))

2 (3.8)
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This formula is valid only when 0 ≤ hav(θ) ≤ 1, making it not viable for points at
the opposite sides of the sphere. However for our application this not a concern, as the
robot and waypoint are in the range of tens on meters at most.

A
O

N

S

P

Q
A’

B

N’

Figure 3.11: Visualization of the great-circle distance between two points (P and Q) in
blue.

3.4 Position Agnostic Algorithm
Focused on overcoming GNSS limitations, this approach relies on sensor data other than
GPS.

3.4.1 Main BT Structure (Fig. 3.12)

This section describes the high-level control actions performed by the Main BT and its
subtrees.

The control flow is divided into two parts. The first part contains actions that occur
at every tick, while the second part comprises actions that depend on the navigation
mode (inrow or endrow).

At the root of the Main BT is a Pipeline sequence, which ensures that the tree re-ticks
starting from its first child if any return Running. In the first part, the end-of-mission
condition is checked then a dynamic reference frame for navigation is published and com-
puted, and finally clustering isperformed. These tasks are implemented by the RosTopic-
Condition,FixedFramePubNodeAction and the ClusteringNodeAction custom BT nodes,
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respectively. Both nodes offer configurable functionalities through their input ports, such
as enabling the computation of a new frame transform or enabling clustering.

The second part involves two ReactiveFallbacks that, based on blackboard values,
activate or switch to specific control branches. For instance, the Reactive Fallback Settling
checks whether settling is enabled. If it is, the BT refrains from engaging in navigation
for a predefined time interval. This delay is managed by the Delay node, which returns
Running until the specified time has elapsed, at which point it returns Success. Combined
with the root Pipeline sequence, this behavior causes the BT to restart until the delay
period is over. This approach prevents the use of clusters derived from noisy LiDAR data
that may be gathered during the final section of the end-of-row trajectory, which often
includes data from adjacent rows.

The second Reactive Fallback, called Reactive Fallback Nav, is responsible for switch-
ing between the two navigation subtrees. The following subsections provide a detailed
explanation of these subtrees.

Figure 3.12: Illustration of the Position Agnostic Main BT.

In row Subtree (Fig. 3.13)

The control flow of this subtree is rather simple, with a Pipeline Sequence control node
at its root. First, it checks if the current navigation mode is set to inrow. If it is,
clustering is enabled by setting the Enable Clustering blackboard key to True. Next,
the RowLinesNodeAction is ticked to compute and publish the row lines and associated
PCL2. This node also checks wether the end of a row has been reached and updates the
blackboard key accordingly, ensuring that the correct navigation subtree is ticked in the
next iteration. Finally, the navigation goal is computed and stored on the blackboard for
the Nav2ClientAction node to access. This node sends the navigation request to the Nav2
action server and its return state reflects the navigation result: goal reached, running or
failed/aborted.

End row Subtree (Fig. 3.14)

The control flow in the Endrow subtree is more complex, as it must coordinate multiple
actions based on navigation progress. To manage this complexity, several control nodes
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Figure 3.13: Illustration of Inrow Subtree from the Position Agnostic MainBT.

are nested within the subtree.
Upon entering the subtree, it first checks if the current navigation mode is set to

endrow. If so, a Reactive Fallback control node is ticked. This node switches between two
branches whose root nodes are respectively Sequence Endrow Goal Reached and Sequence
Endrow Nav. In the Sequence Endrow Goal Reached, the node first checks wether the last
goal of the end-of-row trajectory has been reached through the Goal Reached blackboard
key. If so, the Local frame is updated and published, and both clustering and settling
are enabled by updating their blackboard keys. Finally, the navigation mode is switched
to inrow by setting its blackboard key. In the Sequence Endrow Nav, first clustering is
disabled to prevent artifacts during end of row navigation. Next, ticking its children the
new goal poses are computed and the navigation request sent. To determine wether the
last goal of the end-of-row trajectory has been reached, the Nav2ClientActionNode uses
its output port to set the blackboard key Goal Reached with the feedback received by the
Nav2 action server.

3.4.2 Extrapolating Navigation Data from LiDAR

Unlike the Baseline algorithm, the Position Agnostic approach primarily extrapolates
navigation data from LiDAR. As detailed in Section 3.2.2, row lines are detected directly
from raw LiDAR data. These detections allow for the computation of both the distances
between the robot and the row walls and the estimated endpoint of the row within the
navigation frame.

3.4.3 Goal Computation and Navigation

A key difference from the Baseline algorithm is the use of a dynamic navigation frame
called Local. This frame is updated every time the robot enters a new row. The dynamic
frame ensures that the robot is always positively aligned with the x-axis of the navigation
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Figure 3.14: Illustration of the Endrow Subtree from the Position Agnostic MainBT.

frame and addresses the issue that the fixed Map frame may not be aligned with the rows,
which could lead to drift during navigation.

The publishing and updating of the Local frame is handled by the FixedFramePubN-
odeAction custom BT node. This node copies the transform between two existing frames,
stores it in a blackboard key, and publishes it when ticked. For this application, it copies
the transform from the Map frame to the Base Link frame, with the latter representing
the robot’s current position and orientation.

The node is deployed in two parts of the system. At the top of the MasterBT (see
Fig. 3.12), it publishes the saved transform at each tick. Initially, it also computes the
transform at startup, this functionality is later disabled by the Fallback First TF so that
the node only publishes the transform. In the Endrow Subtree (see Fig. 3.14), the node
is placed as a child of the Sequence Endrow Goal Reached control node and is ticked only
when the final goal of the end row trajectory is reached. At that point, it updates and
publishes the transform.

Finally, two additional goals are appended to the computed circular trajectory to
ensure that the robot completely exits the current row and enters the next one. This
additional step is essential to guarantee that sufficient LiDAR data is available for effective
clustering when going into in row navigation.

3.4.4 End of Row Detection

The switch between the Inrow and Endrow Subtrees is based on the detection performed
by the RowLinesNodeAction. In addition to its other functionalities described in Section
3.2.2, this node also detects if the robot has reached the end of row. It does so through
two metrics: the deviation from the current slope averages and distance from the the
current xmax values. When the slopes of the incoming row lines deviate from the average
beyond a predetermined threshold, it indicates that the clustering was unable to properly
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segment the data. This situation typically arises when too few data points are given to
the clustering algorithm, which in turn tends to happen as the robot approaches the end
of a row. To enhance reliability, the current odometry is compared to the average xmax

values, checking if their distance falls between a certain threshold. This way, even if the
clustering does not completely degenerate, the algorithm can still reliably detect the end
of a row.
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Chapter 4

Simulation Evaluation of
Algorithms

4.1 Introduction

To evaluate the performance of the two developed control algorithms, simulation exper-
iments were conducted. Data were collected and specific metrics defined to assess the
algorithms’ robustness and reactivity.

4.2 Simulation Setup

4.2.1 Environment and Tools

The simulations were conducted in Gazebo Classic, an open-source software for robot
and environment simulation that is compatible with ROS Humble.

4.2.2 Experimental Configuration

The Clearpath Jackal Unmanned Ground Vehicle (UGV) was employed. Its available
GitHub repositories (Jackal and Jackal Simulator) provide an interface to launch Nav2
and run simulations in Gazebo. Additionally, also providing a highly configurable robot
description. Which was used to integrate the Jackal’s 3D model and multiple sensors
(e.g., cameras, IMUs, LiDARs, and GPS antennas) via its Universal Robot Description
File (URDF). For this application, the IMU, LiDAR (Hukyo st100), and GPS antenna
(Novatel Smart6) were enabled, as shown in Fig. 4.1. All these sensors were simulated
using their respective standard Gazebo libraries.

Experimental Set up

The simulations were conducted in a custom Gazebo world featuring multiple straight
vineyard rows (see Fig. 4.2). The AGV was tasked with navigating three consecutive
rows, detecting the row walls for navigation and the end of a row, switching accordingly
between in-row and end-of-row navigation. The AGV, is positioned at the start of the
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Figure 4.1: Clearpath Jackal model with enabled sensors in Gazebo.

right-most row. Running the Tree executor node the control BT, corresponding to one of
the two algorithms is chosen via a terminal interface, loaded and ticked at a rate of 10Hz.
The end mission condition, is triggered differently depending on the algorithm at hand.
With the Baseline, if the last waypoint is reached navigation is considered successful. On
the other hand the Position Agnostic algorithm, relies on a down counter which is called
each time a new end-of-row is detected. The starting value of the down counter is defined
before hand, and once it reaches zero the navigation is considered as completed. Which
then needs to be verified, as either a successful or failing total path coverage. Relevant
data were collected using the Rosbag2 ROS package and subsequently visualized with
PlotJuggler. More importantly the recorded ros bags, are then processed by the Metrics
node. This node is subscribed to the odometry, row lines and end mission topics. From
these then it computes the performance metrics described in the next section. These are
then visualized through plots via the Plot metrics node, levaraging the matplotlib Python
library.

4.2.3 Baseline Algorithm Simulation

Standard Conditions (Fig. 4.3)

The AGV is spawned in the center of the first row and no manipulation is performed to
inject errors.
The algorithm performs somewhat well, remaining centered with some margin and de-
tecting correctly end-of-row conditions with no false positives or negatives. However it
failed one of the attempts for full path navigation.

Misaligned Start Condition (Fig. 4.4)

The AGV is spawned with an offset, of -1 meters along y, w.r.t. the center of the first
row and no manipulation is performed to inject errors.
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(a) Perspective view

(b) Top view

(c) Front view

Figure 4.2: Multiple views of the utilized Gazebo world.
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(a) In-Row behavior

(b) End-Row behavior

Figure 4.3: Visualization in Rviz of the Baseline algorithm typical simulation behavior,
in green the GPS waypoints.

The algorithm performs sufficiently, it is able to somewhat correct the initial offset how-
ever it never truly reaches an acceptable distance from the center line. It detected cor-
rectly end-of-row conditions with no false positives or negatives. However it failed only
one of the attempts for full path navigation.

Navigation Error Injection Via Teleop (Fig. 4.5)

The AGV is spawned in the center of the first row and manipulation is performed to
inject errors during navigation, by overwriting the control action through teleoperation.
The algorithm performs sufficiently, it is able to somewhat correct the initial offset how-
ever it never truly reaches an acceptable distance from the center line. It detected cor-
rectly end-of-row conditions with no false positives or negatives. However it failed one of
the attempts for full path navigation.

4.2.4 Position Agnostic Algorithm Simulation

Standard Conditions (Fig. 4.6)

The AGV is spawned in the center of the first row and no manipulation is performed to
inject errors.
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(a) In-Row behavior

(b) End-Row behavior

Figure 4.4: Visualization in Rviz of the Baseline algorithm simulation behavior for a
misaligned start, in green the GPS waypoints.

The algorithm performs well, remaining centered and detecting correctly end-of-row con-
ditions with no false positives or negatives. Moreover all attempts resulted in successful
full path navigation.

Misaligned Start Condition (Fig. 4.7)

The AGV is spawned with an offset, of -1 meters along y, w.r.t. the center of the first
row and no manipulation is performed to inject errors.
The algorithm performs well, it is able to correct the initial offset while remaining centered
for all rows thanks to the dynamic navigation frame. It detected correctly end-of-row con-
ditions with no false positives or negatives. Moreover all attempts resulted in successful
full path navigation.

Navigation Error Injection Via Teleop (Fig. 4.8)

The AGV is spawned in the center of the first row and manipulation is performed to
inject errors during navigation, by overwriting the control action through teleoperation.
The algorithm performs well, it is able to correct the initial offset while remaining centered
for all rows thanks to the dynamic navigation frame. It detected correctly end-of-row con-
ditions with no false positives or negatives. Moreover all attempts resulted in successful
full path navigation.
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(a) In-Row behavior

(b) End-Row behavior

Figure 4.5: Visualization in Rviz of the Baseline algorithm simulation behavior for an
injected disturbance through teleop, in green the GPS waypoints.

4.3 Evaluation Metrics

This section describes the metrics computed from the simulation data. Some metrics are
evaluated in terms of both accuracy and precision. Accuracy quantifies how close the
measured values are to the true or accepted values, while precision assesses the repeata-
bility or consistency of the measurements, independent of their proximity to the true
value.

4.3.1 Deviation from Row Center

This metric is defined as the distance, in meters, between the robot’s odometry position
at time t and the ideal line representing the center of a row.

4.3.2 Average Time for Full Path Coverage

This metric represents the average time required for the robot to navigate the target
path, which consists of three vine rows.
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(a) In-Row behavior

(b) End-Row behavior

Figure 4.6: Visualization in Rviz of the Position Agnostic algorithm typical simulation
behavior, note the dynamic navigation frame Local.

4.3.3 Endrow Detection Accuracy and Precision

The metrics for endrow detection, at the end of a row, are defined as follows:

Accuracy (%) : Aendrow = Number of Correct Detections
Total Detections × 100, (4.1)

Precision (%) : Pendrow = Number of Correct Detections
Number of Correct Detections + Number of Incorrect Detections × 100.

(4.2)

4.3.4 Row Lines Detection Accuracy and Precision

For each row line parameter, p (where p represents parameters such as m and q), the
metrics are defined as:

Accuracy : A(p) = |pavg − ptrue|
ptrue

, (4.3)

Precision : P (p) =

√︄∑︁N
i=1 (pi − pavg)2

N
, (4.4)

where ptrue is the true parameter value, pavg is the average of the measured values, and
N is the number of measurements.
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(a) In-Row behavior

(b) End-Row behavior

Figure 4.7: Visualization in Rviz of the Position Agnostic algorithm simulation behavior
for a misaligned start, note the dynamic navigation frame Local.

4.3.5 Success Rate

The success rate is defined as the percentage of simulations in which the robot successfully
completed the full exploration of the target path (i.e., all three vine rows).

4.4 Results

4.4.1 Algorithm 1 Results

The Baseline algorithm performed well under the ideal simulation conditions. It achieved
a success rate of 75% across all test scenarios, with the only failures due to an artifact
of clustering which led to a failure of the navigation controller. The detection accuracy
and precision for the end-of-row identification were 100% for all test scenarios, thanks
to the high precision of the simulated GNSS signals. In standard conditions,the average
traveled path was of 70.94, m and completed, on average in approximately 254.91s (around
4 minutes and 25 seconds), as shown in Fig. 4.9. For the other two scenarios the travel
time and distances were higher due to the introduced disturbances.

Issues arose in the detection of row lines. Clustering artifacts near the row endings

38



4.4 – Results

(a) In-Row behavior

(b) End-Row behavior

Figure 4.8: Visualization in Rviz of the Position Agnostic algorithm simulation behavior
for an injected disturbance through teleop, note the dynamic navigation frame Local.

resulted in significant performance degradation, particularly affecting the q parameter
across all scenarios (see Fig.4.11, Fig.4.14 and Fig.4.17). In contrast, the metrics for the
m parameter remained robust, with accuracy maintained at or above 95% and precision
slightly below 80% (see Fig.4.10, Fig.4.13 and Fig.4.16). Being the Average Center De-
viation reliant on good estimation of both the line parameters, it is expected that this
metric will also suffer. Leading in the worst case, during the navigation of Row 3, to a
deviation of nearly one meter (see Fig.4.12, Fig.4.15 and Fig.4.18).

Figure 4.9: Baseline Algorithm Standard Conditions: Odometry data from simulation,
representing the trajectory of the AGV.
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Standard Conditions Results (Figs. 4.10, 4.11, 4.12)

(a) (b)

Figure 4.10: Baseline algorithm Standard Conditions: computed metrics in % for detected
line slope (m), from the simulated row walls of the three vineyard rows.

(a) (b)

Figure 4.11: Baseline algorithm Standard Conditions: computed metrics in % for detected
line intercept (q), from the simulated row walls of the three vineyard rows.
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Figure 4.12: Baseline algorithm Standard Conditions: Average deviation from row center.

Misaligned Start Results (Figs. 4.13, 4.14, 4.15)

(a) (b)

Figure 4.13: Baseline algorithm Misaligned Start: computed metrics in % for detected
line slope (m), from the simulated row walls of the three vineyard rows.
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(a) (b)

Figure 4.14: Baseline algorithm Misaligned Start: computed metrics in % for detected
line intercept (q), from the simulated row walls of the three vineyard rows.

Figure 4.15: Baseline algorithm Misaligned Start: Average deviation from row center.

Teleop Injected Error Results (Figs. 4.16 4.17, 4.18)
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(a) (b)

Figure 4.16: Baseline algorithm Teleop Injected Error: computed metrics in % for de-
tected line slope (m), from the simulated row walls of the three vineyard rows.

(a) (b)

Figure 4.17: Baseline algorithm Teleop Injected Error: computed metrics in % for de-
tected line intercept (q), from the simulated row walls of the three vineyard rows.

4.4.2 Algorithm 2 Results

The Position Agnostic algorithm performed quite well, relying primarily on LiDAR data.
It achieved a 100% success rate for all scenarios. Consequently, both the accuracy and
precision for end-of-row detection scored 100% for all. In standard conditions, the average
traveled path was of 74.5m, on average in approximately 264.14s (around 4 minutes and
35 seconds), as shown in Fig. 4.19.

Regarding the line row parameters, the algorithm generally performed well. However,
the worst performance was observed in the precision and accuracy of the q parameter,
which at times dropped below 80% (see Fig.4.21, Fig.4.24 and Fig.4.27). On the other
hand, the metrics for the m parameter remained very robust, with accuracy staying above
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Figure 4.18: Baseline algorithm Teleop Injected Error: Average deviation from row center.

93% and precision above 80% even in the worst cases (see Fig.4.20, Fig.4.23 and Fig.4.26).
Due to the general better performance of the line parameter identification, the Average
Center Deviation remained at most 0.25m across all scenarios.

Figure 4.19: Position Agnostic Algorithm Standard Condition: Odometry data from
simulation, representing the trajectory of the AGV.
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Standard Conditions Results (Fig. 4.20, 4.21, 4.22)

(a) (b)

Figure 4.20: Position Agnostic algorithm Standard Conditions: computed metrics in %
for detected line slope (m), from the simulated row walls of the three vineyard rows.

(a) (b)

Figure 4.21: Position Agnostic algorithm Standard Conditions: computed metrics in %
for detected line intercept (q), from the simulated row walls of the three vineyard rows.
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Figure 4.22: Position Agnostic algorithm Standard Conditions: Average deviation from
row center.

Misaligned Start Results (Fig. 4.23, 4.24, 4.25)

(a) (b)

Figure 4.23: Position Agnostic algorithm Misaligned Start: computed metrics in % for
detected line slope (m), from the simulated row walls of the three vineyard rows.
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(a) (b)

Figure 4.24: Position Agnostic algorithm Misaligned Start: computed metrics in % for
detected line intercept (q), from the simulated row walls of the three vineyard rows.

Figure 4.25: Position Agnostic algorithm Misaligned Start: Average deviation from row
center.

Teleop Injected Error Results (Fig. 4.26, 4.27, 4.28)
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(a) (b)

Figure 4.26: Position Agnostic algorithm Teleop Injected Error: computed metrics in %
for detected line slope (m), from the simulated row walls of the three vineyard rows.

(a) (b)

Figure 4.27: Position Agnostic algorithm Teleop Injected Error: computed metrics in %
for detected line intercept (q), from the simulated row walls of the three vineyard rows.

4.4.3 Comparative Analysis

The Baseline algorithm leverages GNSS data, which under ideal simulation conditions
yields high precision for end-of-row detection. However, this could become a vulnerability
in real-world applications where GNSS signals may be less reliable. On the other hand,
the Position Agnostic algorithm, primarily driven by LiDAR data, demonstrates superior
consistency in maintaining a centered path and in row line detection.

These observations suggest that while GNSS has exceptional accuracy under con-
trolled conditions, its performance might degrade in environments with signal interfer-
ence or obstructions, such as vineyards. On the other hand, the Position Agnostic method
shows promise for real-world scenarios by mitigating these issues.
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Figure 4.28: Position Agnostic algorithm Teleop Injected Error: Average deviation from
row center.
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Chapter 5

Conclusion

In summary, this thesis compared two distinct algorithms for row line detection in agricul-
tural navigation. The Baseline algorithm, leveraging GNSS data, achieved high precision
under ideal conditions but may face challenges in real-world applications. Particularly in
challenging environments such as orchards or vineyards, which due to dense vegetation
could weaken GNSS signals, rendering them unreliable. In contrast, the Position Agnos-
tic algorithm, primarily based on LiDAR, maintained a more centered path and showed
robust performance despite some metric fluctuations. For this reason a viable approach
would consider fusing the two, leveraging the modular structure of BTs, switching or
fusing the two for an even more robust end-of-row navigation. Leveraging GNSS where
conditions are favorable while defaulting to a LiDAR-based approach when challenging
environments are encountered. Such integration could potentially enhance overall sys-
tem reliability and performance. Additionally, further testing under varied environmental
conditions would help to refine the algorithms and validate their practical applicability
in a real world scenario.
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