
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Quantum-safe Remote Attestation

Supervisor

Prof. Antonio Lioy

Ing. Grazia D’Onghia

Candidate

Gabriele DERAJ

April 2025

To my family

Summary

In recent years, quantum computing has been rapidly developing and its impact on cybersecurity
is a major concern. Problems that were once considered impossible to solve using traditional
computational platforms have now become manageable for quantum computers. All encryption
methods based on RSA and other classical algorithms are at serious risk: RSA and elliptic curve
cryptography rely on mathematical problems such as integer factorization and discrete logarithms,
and quantum algorithms like Shor’s and Grover’s can crack them in a really fast way. This
work focuses on the impact of quantum computing on the field of remote attestation. Remote
attestation is a process used by an external entity to verify the integrity and trustworthiness of a
computational node. It ensures that a system has not been tampered with, and plays a key role in
protecting sensitive information. However, remote attestation mechanisms rely on cryptographic
primitives that are vulnerable to quantum attacks. Soon, adversaries equipped with quantum
computers could forge cryptographic proofs, compromise key exchange mechanisms, and fake the
very foundation of trust in remote attestation systems. This makes the transition to quantum-
resistant cryptographic algorithms a necessity to maintain the security of trusted computing
environments. The proposed solution implements the integration of post-quantum cryptographic
algorithms into the Keylime framework. Keylime is an open source platform that provides a
modular environment for remote attestation, using the Trusted Platform Module (TPM) for
cryptographic tasks. To ensure that the system remains secure against quantum threats, this
thesis proposes the SPHINCS+ signature scheme, a quantum-safe algorithm that is among the
most promising candidates in the post-quantum cryptography standardization process. The tests
also discuss the challenges of the transition to post-quantum cryptography, such as the larger
signature sizes of these algorithms and the computational load caused by these more complex
operations. Despite these challenges, the work provides valuable insight into the use of quantum-
safe techniques in a remote attestation environment.

4

Acknowledgements

Thanks.

5

Contents

1 Introduction 10

1.1 The impact of Quantum computing . 10

1.2 Quantum computing vs classical computing . 10

1.2.1 Qubits and their properties . 11

1.2.2 The EPR paradox and the non-locality principle 12

1.3 Major threats to actual cryptosystems . 12

1.3.1 Shor’s algorithm . 12

1.3.2 Grover’s algorithm . 13

1.4 Towards a Quantum-Safe architecture for a Remote Attestation environment . . . 13

2 Post-quantum cryptography and standardization of the algorithms 16

2.1 Post-quantum cryptography . 16

2.1.1 Quantum safety and the Mosca inequality 17

2.1.2 PQC transition timeline . 18

2.1.3 Timing the migration to PQC . 18

2.2 Technologies and Solutions for Post-Quantum Security 19

2.2.1 Quantum key distribution . 20

2.2.2 Mathematical solutions . 20

2.3 PQC standardisation . 24

2.3.1 Standardisation of stateful hash-based signatures 24

2.3.2 NIST standardisation . 24

2.3.3 First round . 24

2.3.4 Second round . 24

2.3.5 Third round . 25

2.3.6 Fourth round . 25

2.3.7 Analysis of the finalist candidates . 25

2.3.8 Research Status on PQC . 26

2.4 SPHINCS+ . 27

2.4.1 Difference Between SPHINCS and SPHINCS+ 27

2.4.2 SHAKE-256 . 27

2.5 Dilithium . 28

2.6 Mayo . 29

6

3 Trusted computing and remote attestation 30

3.1 Trusted computing . 30

3.1.1 Trusted Computing Base (TCB) . 31

3.1.2 Root of Trust . 31

3.1.3 Chain of trust . 31

3.2 TPM . 33

3.2.1 TPM overview . 33

3.2.2 TPM features . 34

3.2.3 TPM 1.2 . 35

3.2.4 TPM 2.0 . 35

3.2.5 TPM objects . 36

3.2.6 TPM Platform Configuration Register (PCR) 36

3.3 Remote attestation . 36

3.3.1 Remote attestation procedures . 37

3.3.2 Trust model . 38

3.3.3 Principles for attestation architectures . 39

3.3.4 Domain separation . 39

4 Keylime 40

4.1 Introduction . 40

4.2 Main components . 41

4.3 Main phases . 42

4.3.1 Node Registration Protocol . 42

4.3.2 Bootstrap Key Derivation Protocol . 42

4.3.3 Runtime Remote Attestation . 45

4.3.4 Revocation framework . 47

4.4 Integrity Measurement Architecture (IMA) in Keylime 48

4.4.1 Remote Attestation with IMA . 48

4.4.2 Keylime Policy . 48

4.4.3 IMA Template . 49

4.4.4 Integrity Validation Mechanism . 50

4.5 Other functionalities in Keylime . 50

5 Quantum-safe Remote Attestation in Keylime 52

5.1 Idea . 52

5.2 Configuration of runtime integrity monitoring . 52

5.2.1 Node Registration Protocol . 53

5.2.2 Starting the Keylime Verifier . 53

5.2.3 Initiating the Remote Attestation Process 53

5.3 Creation of the runtime policy . 54

7

5.3.1 Configuration of IMA . 54

5.4 Integration of Liboqs . 55

5.4.1 Creation of the keypair . 55

5.4.2 Generation of the signature . 56

5.4.3 Verification of the signature . 56

5.5 Changes in Keylime . 56

5.5.1 Agent . 56

5.5.2 Registrar . 59

5.5.3 Verifier . 61

5.5.4 Updating the Registrar Table to add the Post-Quantum key field 63

5.6 Remote Attestation Failure . 65

6 Testing 66

6.1 Testbed . 66

6.2 Functional tests . 66

6.2.1 Tests of Agent registration . 66

6.2.2 Tests of periodic attestation . 68

6.3 Performance tests . 69

6.3.1 Keypair generation time . 69

6.3.2 Signing Time . 70

6.3.3 Signature Verification Time . 70

6.3.4 Complete Attestation Cycle . 70

6.3.5 Signature Size . 71

6.3.6 Keypair Size . 72

6.3.7 Final analysis . 72

6.4 Resource Consumption (CPU/RAM) . 73

6.4.1 RAM Consumption Analysis . 73

6.4.2 CPU Consumption Analysis . 74

7 Conclusions and future work 75

7.1 Conclusions . 75

7.1.1 Future improvements and directions . 75

Bibliography 77

A User’s manual 79

A.1 Linux Installation . 79

A.1.1 Download the Ubuntu ISO image . 79

A.1.2 Configure the BIOS/UEFI and begin Installation 79

A.1.3 Configure the Disk . 79

A.2 Keylime Installation . 80

8

A.2.1 Keylime Agent Configuration . 81

A.2.2 Keylime Verifier and Registrar configuration 82

A.2.3 Registrar . 82

A.2.4 Verifier . 82

A.2.5 Tenant . 82

A.3 Rust implementation of Keylime Agent: installation 83

A.3.1 Prerequisites . 83

A.3.2 Installing Rust . 84

A.3.3 Cloning the Rust-Keylime Repository . 84

A.3.4 Configuring Logging . 84

A.3.5 Deploying the Agent as a systemd Service 84

A.3.6 Building a Debian Package with cargo-deb 84

A.4 How to use Keylime . 85

A.4.1 Basic commands . 85

A.4.2 Keylime runtime policies . 85

A.4.3 Keylime CLI . 87

A.5 Installing Liboqs . 88

A.5.1 Prerequisits . 88

A.5.2 Install required dependencies . 89

A.5.3 Clone the liboqs Repository . 89

A.5.4 Build the library . 89

A.5.5 Verify the Installation . 89

B Developer’s manual 90

B.1 Configuration of the IMA policy . 90

B.1.1 Configuring IMA Appraisal for File Integrity Verification 90

B.2 Keylime Agent modifications . 91

B.2.1 Main.rs . 91

B.2.2 Function for post-quantum keypair generation 93

B.2.3 Function for post-quantum signature generation 94

B.3 Keylime Registrar modifications . 95

B.3.1 Modification of the Registrar DB . 97

B.4 Keylime Verifier modifications . 98

B.4.1 Function for verification of the signature . 99

B.5 Keylime tenant modifications . 100

9

Chapter 1

Introduction

1.1 The impact of Quantum computing

Until recently, the Information and Communication Technology (ICT) industry considered trans-
actions involving information exchange across electronic networks secure when encrypted with
conventional cryptographic systems. However, recent advances in quantum computing research
have significantly threatened this assumption.
Problems considered difficult or impossible to solve using traditional computational platforms
become manageable for quantum computers. Consequently, any encrypted information is at risk
of eavesdropping and attacks by future adversaries equipped with quantum computing capabili-
ties. This implies that encrypted data stored in databases, even for 25 years, could eventually be
exposed to those with quantum computing access. This phenomenon is known as “Store Now,
Decrypt Later” (SNDL) [1]. SNDL is a cryptographic strategy that involves long-term encrypted
data storage to decrypt once quantum-resistant algorithms are developed.
This risk covers sensitive information such as bank account numbers, personal identity details,
military security data, and other confidential information. Without quantum-safe encryption, all
data that have been or will be transmitted over a network remain vulnerable to eavesdropping
and potential public disclosure[2].

Quantum computing theory was first introduced as a concept in 1982 by Richard Feynman
[3] and is considered the destructor of the present modern asymmetric cryptography. In addition,
specific quantum algorithms can also affect symmetric cryptography 1.3.2. It appears that even
elliptic curve cryptography, which is considered presently the most secure and efficient scheme, is
weak against quantum computers. Consequently, it is necessary to adopt cryptographic algorithms
resistant to quantum computations. A Quantum computer is no longer a hypothetical idea. It
is defined as a Cryptographically Relevant Quantum Computer (CRQC) and is considered one of
the world’s most important technologies.
There is a race among countries to obtain supremacy in quantum technology with a quantum
computer of a sufficient number of qubits and fault tolerance. In a nutshell, quantum computers
threaten the main goal of every secure and authenticated communication because they can do
computations that classical (conventional) computers cannot. Consequently, quantum computers
can break cryptographic keys quickly by calculating or exhaustively searching all secret keys,
allowing an eavesdropper to intercept the communication channel between authentic parties [4].

1.2 Quantum computing vs classical computing

The laws of physics observable and comprehensible through everyday experiences are known as
classical physics. However, all phenomena described by classical physics at the macroscopic level
can also be described by quantum physics at the nanoscale, governed by the principles of quantum
mechanics [5]. In recent decades, researchers have discovered that the unique behaviors allowed
by quantum mechanics at the microscopic scale can be harnessed to create computers from new

10

Introduction

materials. These quantum computers feature hardware that significantly differs in form and
function from the classical computers commonly used in homes and offices today. Operating
under the principles of quantum mechanics, quantum computers can perform calculations in ways
that go beyond the capabilities of conventional classical computing, presenting new paradigms for
processing information.

1.2.1 Qubits and their properties

In a traditional computer, the fundamental blocks are called bits and can be observed only in two
states: 0 and 1. Quantum computers instead use quantum bits, also generally referred to as qubits
[6]. Qubits are particles that can exist not only in the 0 and 1 state but in both simultaneously,
known as superposition ⟨0|1⟩, mathematically represented as

α |0⟩+ β |1⟩

where α and β are complex coefficients. A particle collapses into one of these states when in-
spected. Quantum computers take advantage of this to solve complex problems. An operation
on a qubit in superposition acts on both values at the same time. Another physical phenomenon
used in quantum computing is quantum entanglement. When two qubits are entangled, their
quantum state can no longer be described independently of each other but as a single object with
four different states. In addition, if one of the two qubits changes, the entangled qubit will change
too, regardless of the distance between them. This leads to true parallel processing power. When
the number of entangled qubits increases, the number of values that can be processed in a single
operation grows exponentially. This means that an n-qubit quantum computer can perform 2n

operations at the same time. We can say that quantum computing is based on the following three
features of quantum states:

• Superposition: quantum systems can exist in two states simultaneously. When measure-
ment is performed, the qubit collapses into one of the possible definite states. This means
that the qubit, which was in a superposition of states before measurement, now assumes
a concrete value (0 or 1). The probability of obtaining a particular measurement result is
determined by the coefficients α and β of the superposition. This phenomenon is known as
“collapse of the wave function”[7].

• Entanglement: as previously said, it is a phenomenon where the state of particles can
be described concerning each other. Measurement performed on one entangled particle will
immediately influence the other, irrespective of the distance between them.

• Interference: the fundamental idea in quantum computing is to control the probability of
qubits collapsing into a particular measurement state. Quantum interference, which comes
from superposition, allows controlling the measurement of a qubit toward a desired state or
group of states.

Quantum computers can show their superiority over classical computers only when using algo-
rithms that leverage quantum parallelism. For example, a quantum computer would not be any
faster than a traditional computer in multiplication. It is important to notice that quantum
computers are still at an experimental stage and are not yet widely available. There are many
challenges in quantum computing that many researchers are working on:

• quantum algorithms are mainly probabilistic: in one operation, a quantum computer returns
many solutions where only one is correct.

• qubits are importantly susceptible to noise and electromagnetic couplings, which can lead
to measurement errors.

• qubits can retain their quantum state for a short period. Researchers at the University of
New South Wales in Australia [4] have created two different types of qubits (Phosphorous
atom and an Artificial atom). Phosphorous atom has 99.99% accuracy (1 error every 10,000

11

Introduction

quantum operations). Their qubits can remain in superposition for a total of 35 seconds.
Moreover, to maintain long coherence, qubits need not only to be isolated from the ex-
ternal environment but also to be kept at temperatures close to absolute zero, as higher
temperatures contribute to increased noise.

1.2.2 The EPR paradox and the non-locality principle

The EPR (Einstein-Podolsky-Rosen) paradox is an experiment proposed in 1935 by Einstein,
Podolsky, and Rosen to highlight contradictions between quantum mechanics and local realism.
It is based on two particles in an entangled quantum state, where the state of each depends instan-
taneously on the other, regardless of distance. Einstein and colleagues considered entanglement
incompatible with special relativity and the principle of locality, arguing that quantum mechanics
was incomplete and that hidden local variables must exist. However, in 1964, John Bell intro-
duced inequalities that, if experimentally violated, would disprove the existence of such variables.
In 2022, Alain Aspect, John F. Clauser, and Anton Zeilinger were awarded the Nobel Prize for
experimentally violating Bell’s inequalities, proving that quantum mechanics is a complete theory
and that the non-locality of some of its phenomena is real.

1.3 Major threats to actual cryptosystems

In the world of keeping information safe, quantum computing brings both big chances and big
problems. Two special computer methods, known as Shor’s algorithm [8] and Grover’s algorithm
[9], are leading the way in this new era. In this part, we’re talking about Shor’s algorithm
and Grover’s algorithm in simple terms, looking at how they work and what they mean for
keeping secrets safe and solving problems quickly. Learning about these unique methods helps us
understand how quantum computing can transform the way we protect information and perform
complex calculations.

1.3.1 Shor’s algorithm

In the popular RSA public-key system, the public key is a product N = pq of two secret prime
numbers p and q. The security of RSA relies critically on the difficulty in finding the factors p
and q of N. Peter Shor introduced a fast quantum algorithm to find the prime factorization of
any positive integer N. In 1994, according to [4], Shor proved that factoring large integers would
change fundamentally with a quantum computer. Shor’s algorithm can make modern asymmetric
cryptography collapse since it is based on large prime integer factorization or the discrete logarithm
problem. How does it work? Suppose we want to find the prime factors of 15. To do so, we need
a 4-qubit register. Number 15 in binary is 1111, so a 4-qubit register is enough to calculate the
prime factorization of this number. The algorithm does the following :

• n = 15, is the number we want to factorize

• x is a random number such as 1 < x < n− 1

• x is raised to the power contained in the register (every possible state) and then divided by
n. The remainder from this operation is stored in a second 4-qubit register. The second
register now contains the superposition results. Let’s assume that x = 2 is larger than 1
and smaller than 14.

If we raise x to the powers of the 4-qubit register, which is a maximum of 15, and divide by 15,
what we observe in the results is a repeating sequence of 4 numbers (1,2,4,8). We can confidently
say then that f = 4, which is the sequence when x = 2 and n = 15. The value f can be used to
calculate a possible factor with the following equation: Possible factor: P = x(f/2)−1. If we get a
result that is not a prime number, we repeat the calculation with different f values. All public key
algorithms used today are based on two mathematical problems, the aforementioned factorization

12

Introduction

of large numbers (e.g., RSA) and the calculation of discrete logarithms (e.g., DSA signatures and
ElGamal encryption). Both have similar mathematical structures and can be broken with Shor’s
algorithm easily. Recent algorithms based on elliptic curves (such as ECDSA) use a modification
of the discrete logarithm problem that makes them equally weak against quantum computers.

1.3.2 Grover’s algorithm

Grover’s algorithm uses quantum computers to search unsorted databases. The algorithm can find
a specific entry in an unsorted database of N entries in

√
N searches. In comparison, a conventional

computer would need N/2 searches to find the same entry. Let’s consider the impact of a possible
application of Grover’s algorithm to crack Data Encryption Standard (DES), which relies on a
56-bit key. The algorithm needs only 185 searches to find the key. Currently, to prevent password
cracking we increase the number of key bits (larger key space); as a result, the number of searches
needed to crack a password increases exponentially. The National Institute of Standards and
Technology (NIST) points out that if the key sizes are sufficient, symmetric cryptographic schemes
(specifically the Advanced Encryption Standard-AES) are resistant to quantum computers. For
this reason, quantum computing is considered a minor threat to symmetric cryptography.

It is better to describe Grover’s algorithm as searching for roots of a function f: searching for
solutions x to the equation f(x) = 0. Grover’s speedup from N to

√
N is not as devastating as

Shor’s speedup. Furthermore, each of Grover’s N quantum evaluations must wait for the previous
one to finish. On the other hand, if qubit operations are small enough and fast enough, then
Grover’s algorithm will threaten many cryptographic systems that aim for 2128 security, such as
128-bit AES keys. Therefore, it is recommended to switch to 256-bit AES keys: the extra costs are
rarely noticeable. “Information-theoretic” MACs such as GMAC already protect against quantum
computers without any modifications: their security analysis already assumes an attacker with
unlimited computing power.

1.4 Towards a Quantum-Safe architecture for a Remote At-
testation environment

The disruptive potential of quantum computing also extends to the field of cybersecurity, where
many widely used cryptographic algorithms are built on mathematical problems that quantum
computers could efficiently solve. As detailed in the previous sections, Shor’s algorithm compro-
mises cryptographic schemes such as RSA and Elliptic Curve Cryptography (ECC). This growing
threat is pushing both researchers and companies to take a fresh look at how secure today’s
systems are, especially those meant to guarantee the safety and reliability of computing environ-
ments. Among these, remote attestation could be a critical security mechanism fundamentally
compromised in a post-quantum world.

Remote attestation is a security mechanism that allows an external trusted entity (the verifier)
to assess whether a computational node (the attester) is operating in a secure and uncompromised
state. This is particularly vital in distributed environments, cloud infrastructures, and edge com-
puting scenarios, where trust cannot be inherently assumed and must be established through
verifiable proof of integrity. To ensure the security and reliability of this process, modern systems
often rely on specialized hardware components such as Trusted Platform Modules (TPMs). The
TPM provides functionalities such as cryptographic key generation, secure storage, and remote
verification of system states. One of its main responsibilities is generating proof of system in-
tegrity. We have referred to this as “proof”, but in the context of remote attestation, this is
more precisely called a “quote”. The quote is a digitally signed statement that encapsulates
the integrity measurements of a system, allowing a remote verifier to assess its trustworthiness.
Within a TPM there are some special registers called platform configuration registers (PCR),
which store records of the system’s configuration over time. When performing a Remote Attes-
tation, the TPM signs the contents of these registers with a cryptographic key, proving that the
system is in a known and trusted state and ensuring that the evidence originates from a genuine

13

Introduction

and untampered TPM. However, the security of this entire mechanism hinges on the strength of
the cryptographic algorithms employed by the TPM.

Currently, TPMs rely on RSA or ECC keys, which are secure against classical attacks but
vulnerable to quantum ones. A powerful quantum computer running Shor’s algorithm could break
these cryptographic methods, allowing attackers to forge valid attestations and compromise the
integrity of the remote attestation process. As we said, the TPM is a hardware component, and
its cryptographic keys are injected during manufacturing. However, TPMs with hardware support
for post-quantum algorithms have not yet been produced, meaning that all existing TPMs are still
based on classical cryptography. Because of this, the first step toward a quantum-safe transition
must rely on software-based solutions to extend current remote attestation. This approach allows
systems to begin adapting to post-quantum security requirements while waiting for future TPMs
with built-in support for quantum-resistant algorithms.

The set of cryptographic algorithms that aim to protect systems from the potential threats
posed by quantum computers is called post-quantum cryptography. This work explores the in-
tegration of post-quantum cryptographic algorithms in the context of remote attestation, using
the Keylime framework as the foundation for the implementation. Keylime is an open-source
framework designed for trusted computing that facilitates this process by providing a modular
and scalable environment for remote attestation. Its design ensures compatibility with modern
trusted computing hardware, such as the Trusted Platform Module (TPM), and enables secure
attestation processes even in distributed systems.

Keylime operates as a collection of four primary components: the agent, the verifier, the
registrar, and the tenant. Each plays a distinct role in the attestation process.

• Agent: the agent is responsible for collecting integrity measurements and generating a TPM-
based quote that provides cryptographic evidence of the system’s state.

• Verifier: the verifier receives the quote from the agent and checks its validity by comparing it
to the expected values. If the integrity measurements align, the verifier confirms the agent’s
trustworthiness.

• Registrar: the registrar acts as a central database for managing TPM credentials and pro-
vides the verifier with the necessary information about registered agents.

• Tenant: the tenant represents the end-user or application that relies on the verifier to assess
the agent’s trustworthiness before deploying sensitive workloads.

Communication between the agent and the verifier is secured using a TLS channel to prevent
eavesdropping or tampering. The TLS implementation can also benefit from quantum-safe key
exchange algorithms for added protection.

To make this environment quantum-safe, two main solutions can be performed:

1. Extending the TPM driver to support key signing and management based on Post-
Quantum Cryptography algorithms. The TPM (Trusted Platform Module) is responsible for
generating and signing quotes during the attestation process. Nowadays, no TPM includes
hardware implementation of Post-Quantum Cryptography algorithms. Current TPMs are
designed to work with classical cryptographic standards such as RSA and ECC, which are
potentially vulnerable to future quantum computing attacks. To withstand future attacks,
the TPM driver must be updated to support cryptographic algorithms resistant to quantum
attacks, for example, enabling the generation of post-quantum keypairs and the usage of
post-quantum algorithms, and to have a post-quantum signature, at least at the kernel level.

2. Extending the attestation agent and trust manager to integrate and handle Post-
Quantum Cryptography. This second extension is the core of this work and will focus on
updating the attestation flow to manage quotes signed with PQ algorithms. The attestation
agent, running on the attester machine, must be able to communicate with the extended
TPM driver to gather and send signed quotes to the trust manager. The trust manager,
in turn, must verify the integrity of the received PQ signatures. These enhancements will

14

Introduction

provide a software-based mechanism to ensure that platforms can start transitioning towards
quantum-safe cryptographic operations, even before dedicated hardware becomes available.
This is a solution implemented at the user-space level.

While the ideal long-term solution would be integrating post-quantum cryptography directly
into the TPM, making the attestation process inherently quantum-safe at the hardware level, this
is not yet possible due to the current limitations of TPM technology. In the meantime, the most
practical approach is to extend the attestation agent and perform post-quantum signing at the
software level. Although this could introduce additional computational overhead and potential
attack surfaces, it provides an immediate layer of quantum resistance without requiring changes
to existing TPM hardware. This second extension is the core of this work and will focus on

Figure 1.1. PQ-enhanced remote attestation worflow

updating the attestation flow to include post-quantum signatures. The attestation process is thus
modified as shown in 1.1: the verifier requests the attester to prove the integrity. In response,
the attester queries the TPM, which generates a quote (a signed statement of the system’s state)
using its conventional cryptographic key. Before transmitting the quote, the attester adds an extra
layer of security by signing the quote with a new post-quantum key, ensuring resilience against
future threats posed by quantum computing. Once the verifier receives the attestation data, it
validates the system’s integrity by checking both the TPM-generated quote and the post-quantum
signature. By implementing this hybrid attestation approach, we maintain compatibility with the
existing TPM infrastructure while protecting the attestation process against quantum threats.
This guarantees security even if classical cryptographic methods become obsolete. The thesis
will explore the challenges and implementations needed to make attestation processes quantum-
safe, with particular emphasis on extending the attestation agent and trust manager to integrate
cryptographic mechanisms resistant to quantum attacks.

15

Chapter 2

Post-quantum cryptography and
standardization of the algorithms

This chapter explores post-quantum cryptography, looking at the basics and advances that en-
sure cryptographic systems stay secure against quantum computers. In particular, there are two
solutions against this threat: mathematical-based cryptographic solutions, which highlight their
strength against quantum attacks, and Quantum Key Distribution (QKD), which explains its
principles and practical uses as a key part of quantum-resistant security. The chapter also re-
views the efforts of the National Institute of Standards and Technology (NIST) to standardize
post-quantum cryptographic algorithms. It highlights the importance of a unified and secure
cryptographic framework for future digital infrastructure, providing a clear understanding of the
strategies and innovations shaping the evolution of cryptography in the quantum era. This dis-
cussion will highlight the integration of secure algorithms, particularly those used in this thesis.

2.1 Post-quantum cryptography

Post-quantum cryptography (PQC) refers to cryptographic methods that assume an attacker
has a large-scale quantum computer. Also known as quantum-safe cryptography, it includes
cryptographic algorithms considered quantum-safe, meaning they have not been proven vulnerable
to cryptanalytic attacks by a quantum computer. Additionally, these systems should be capable of
interoperating with existing communication protocols and networks. Post-quantum cryptography
is a highly active area of research and development: the primary goal is to develop algorithms
that can replace existing cryptographic protocols, ensuring the long-term security of sensitive
information. Although large-scale quantum computers are not yet a reality, it is essential to focus
on PQC now to prepare for future advancements. Some aspects should be considered:

1. longevity: PQC algorithms are designed to protect against classical and quantum-based
attacks. This ensures their security even as the power of classical computing increases.

2. preparation: the development of PQC algorithms enables us to prepare for the future threat
posed by quantum computers. Cryptographic systems are often used to protect data for
extended periods, making it crucial to start planning for the possibility of quantum-based
attacks now.

3. adoption: development, testing, and adoption of cryptographic systems require significant
time. By starting the transition to PQC algorithms now, we can ensure that appropriate
replacements for current cryptographic systems will be available when needed.

There is a risk that switching from pre-quantum cryptography to a post-quantum cryptosys-
tem will damage security, not only failing to protect against quantum computers but also losing

16

Post-quantum cryptography and standardization of the algorithms

protection against today’s computers. To address this risk, it could be reasonable to deploy post-
quantum cryptography as an extra layer with pre-quantum cryptography, rather than deploying
it as a replacement for pre-quantum cryptography. In this way, we can guarantee one of the most
important principles of Security, known as Security in depth [10]: if the enemy can defeat the
first line of defense, there must be a second line to stop the attacker. A developer (or a normal
user) does not have to rely on just one defense, as that defense may have a bug or problem. It is
better to have multiple levels of defense because as the attacker breaks through the defenses, it
will become increasingly difficult to continue penetrating.

Although double encryption and double signing sound straightforward, one must be careful
with the details, because even the best algorithms and security mechanisms can be compromised
by weak implementations. Coding errors, misconfigurations, or the use of insecure libraries can
introduce vulnerabilities.

• In case of double encryption [11], if an encryption algorithm is vulnerable to cryptographic
analysis attacks (such as a known-plaintext attack or brute-force attack), double encryption
does not necessarily provide additional security. For example, if both encryption layers use
the same algorithm with weak keys, an attacker might be able to break both encryptions
with a reasonable amount of computational resources.

• In case of double signature [12], if the two digital signatures are generated using the same
algorithm and key, compromising one key might compromise both signatures.

In a nutshell, it is dangerous to reuse keys across multiple systems or to assume that the presence
of one component will compensate for weaknesses in another component: each component should
be designed to be secure by itself.

The initial significant research on post-quantum cryptography started in the late 1990s. One
of the first proposed PQC algorithms was the McEliece cryptosystem [13], introduced by Robert
McEliece in 1978. This system is based on the theory of error-correcting codes and is known for
its resistance to quantum-based attacks. It is a public key encryption scheme and uses a linear
error-correcting code, typically a binary Goppa code[14], to encode messages, where the public
key consists of a generator matrix for the code, obscured by a random permutation, while the
private key is the original Goppa code and the permutation. Encryption involves adding a random
error vector to the code word, and decryption leverages the private key to correct these errors and
recover the plaintext. However, it has not seen widespread adoption due to its large key sizes.

2.1.1 Quantum safety and the Mosca inequality

For industries focused on protecting sensitive information from adversaries, it is crucial to be
proactive in their approach to information security. Specifically, as described by M. Mosca in [15],
it is necessary to consider:

• Shelf-Life Time (X Years): Number of years you need your cryptographic key to remain
secure and your data to be protected.

• Migration Time (Y Years): Number of years required to develop, deploy, and migrate to
the Quantum-Safe solution.

• Threat Timeline (Z Years): The number of years before large-scale quantum computers will
be built, which can break the current cryptography algorithms.

Named after Michele Mosca, the Mosca inequality outlines the pressing timeline for the transi-
tion to quantum-safe cryptographic systems. As shown in 2.1, if a large-scale quantum computer
(Z) is built before the infrastructure has been retooled to be quantum-safe and the required du-
ration of information security has passed (x + y), the encrypted information will not be secure,
leaving it vulnerable to adversarial attack. In other words, if X + Y > Z it becomes a serious
concern, as the organisations will not be able to protect their assets for the required years from

17

Post-quantum cryptography and standardization of the algorithms

Figure 2.1. Mosca inequality

quantum attack. The threat is not just a concern for the future, but also a real danger in the
present. Many hackers might be intercepting and obtaining the encrypted messages they will be
able to decrypt when quantum computing resources become available in the future.

While quantum computers do exist today, they remain highly rudimentary and imperfect. The
primary challenges in quantum computing are centered around creating high-precision hardware.
Even with qubits capable of performing basic operations with a 0.1% error rate, these errors
propagate and grow exponentially across the system, thereby limiting the practical size of a
useful quantum computer. Each additional qubit doubles the power of a quantum computer;
thus, when Google AI Quantum announced quantum supremacy in late 2019, their experiment
utilized a processor with only 53 qubits.

2.1.2 PQC transition timeline

This perspective makes a set of recommendations to organisations on the process and timeline
by which the PQC transition should take place [16]. Figure 2.2 presents a timeline of important
PQC-related events that are expected to occur. This timeline is composed of three parallel
sequences of events. The red timeline captures the two most important quantum threats and
when they become of critical importance. The first one has already been introduced in section 1.1
and is known as a store-now-decrypt-later attack. It is already an active threat, corresponding to
adversaries capturing valuable encrypted information now, storing it, and decrypting it later once
large and fault-tolerant (LFT) quantum computers are available. The second quantum threat
refers to the capability of breaking RSA and elliptic curve cryptography, the two most widespread
public key algorithms for encrypting information today that can be broken with Shor’s algorithm.

The gray timeline depicts the two actions required by organisations in transitioning to PQC.
The first regards the strategic planning and technological experimentation for this transition,
whereas the second regards the effective adoption of PQC in production systems. It is emphasized
that the strategic planning phase must be completed well before LFT quantum computers can
effectively attack RSA and ECC. Finally, the blue timeline concerns the standardisation processes
organized by relevant government and industrial bodies, with particular focus on the National
Institute of Standards and Technology PQC process to determine the fundamental security of
proposed PQC candidates.

2.1.3 Timing the migration to PQC

When discussing quantum attacks, it is natural to question when the transition to post-quantum
cryptography should begin. Although LFT quantum computers are not yet available, this section
provides arguments emphasizing the importance of starting the PQC transition now:

• store now decrypt later: this issue has already been discussed in general terms; crucial trade
secrets, medical records, national security documents, and other sensitive information have
multidecade shelf lives and must remain confidential for extended periods. Consequently,

18

Post-quantum cryptography and standardization of the algorithms

Figure 2.2. PQC transition Timeline

the SNDL attack is one of the most important reasons to avoid delaying the transition any
longer.

• far-horizon projects: another reason for the immediate importance of PQC involves projects
currently being designed and planned with long lifespans, often spanning multiple decades.
Vehicles are a prime example: many cars, planes, trains, and ships in production today
are expected to remain in service for up to 20 or even 30 years. This is especially relevant
when application-specific hardware is used to implement cryptography, as it typically re-
mains unchanged for the product’s entire lifespan. Critical national infrastructure projects
also exemplify this issue, where high availability is essential, and upgrading cryptographic
software or hardware would incur unacceptable costs.

• cryptography transition takes time: Elliptic Curve Cryptography was proposed in the 1980s
but, despite its greater efficiency in terms of space and speed compared to RSA (depend-
ing on parameterisation), it took over two decades to achieve widespread adoption. Hash
functions also illustrate this prolonged adoption process. For instance, the NIST SHA-3
competition was announced in 2007, the winner was declared in 2012, yet even by 2021,
SHA-3 had not seen widespread adoption. Therefore, cryptographic transitions, even sim-
pler ones than the PQC transition, typically take several years or even decades. The PQC
transition is particularly complex because many approaches are relatively new, and the
performance of many candidates is significantly worse than current algorithms.

2.2 Technologies and Solutions for Post-Quantum Security

The following sections describe some of the most promising approaches to counter quantum
threats. The first approach, quantum key distribution, relies on the laws of quantum physics
to create a secure and theoretically impenetrable key distribution method.

19

Post-quantum cryptography and standardization of the algorithms

On the other hand, mathematical solutions have been developed to provide robust security
against decryption attempts by quantum computers. These methods are characterized by mathe-
matical problems that are hard to solve, even for the most powerful quantum algorithms, making
them an essential component for ensuring long-term security in the post-quantum landscape.

2.2.1 Quantum key distribution

Quantum Key Distribution addresses the challenge of securely exchanging a cryptographic key
between two parties over an insecure channel. QKD relies on the fundamental principles of quan-
tum mechanics, which are immune to the increasing computational power of classical computers.
It can be carried out using the quantum properties of light, lasers, fiber optics, and even free-space
transmission technology. There are two QKD protocols: BB84 (1984) and E91 (1991).

On a practical level, it has a few setbacks though, the range of communication is limited. So
far, the best result on fiber optics was 12 km in December 2020 by the Indian Defence Research
and Development Organisation.
Research has led to the development of many new QKD protocols exploiting mainly two different
properties described right below.

• Prepare-and-measure (P&M) protocols use the Heisenberg uncertainty principle, which
states that the measuring act of a quantum state changes that state in some way. This
makes it difficult for an attacker to eavesdrop on a communication channel without leaving
any trace. In the case of eavesdropping, the legitimate parties involved in the exchange
can discard the compromised information and determine the amount of data that has been
intercepted. This property was used in the BB84 protocol [17].

• Entanglement-based (EB) protocols use pairs of entangled objects shared between two par-
ties. As explained in 1.2.1, entanglement is a quantum physical phenomenon that links two
or more objects together so they have to be considered as one object afterward. Addition-
ally, measuring one of the objects would affect the other as well. When an entangled pair
of objects is shared between two legitimate exchange parties, anyone intercepting either
object will alter the overall system. This would reveal the presence of an attacker along
with the amount of information the attacker retrieved. This property was exploited in the
E91 protocol.

BB84

The BB84 protocol [18] is a method for generating and distributing cryptographic keys using
principles of quantum mechanics. BB84 exploits the polarisation of light to create a random
sequence of qubits (keys) transmitted through a quantum channel.

BB84 uses two different bases: base 1 is polarized 0°(horizontal) or 90°(vertical), with 0°equal
to 0 and 90°equal to 1. Base 2 is polarized 45°or 135°with 45°equal to 1 and 135°equal to 0. Alice
(the sender) begins by sending a photon in one of the two bases, having a value of 0 or 1. Both
the base and the value should be chosen randomly. Next, Bob (the receiver) selects the base 1 or
2 and measures a value without knowing which base Alice has used. The key exchange process
continues until they have generated enough bits. Furthermore, Bob tells Alice the sequence of the
bases he used but not the values he measured, and Alice informs Bob whether the chosen bases
were right or wrong. If the base is right, Alice and Bob have equal bits, whereas if it is wrong the
bits are discarded. In addition, any bits that did not make it to the destination are discarded by
Alice. Now, Alice can use the key they just exchanged to encode the message and send it to Bob.

2.2.2 Mathematical solutions

There are many alternative mathematical problems to those used in RSA, DH, and ECDSA. The
most researched mathematical-based implementations are the following: Lattice-based cryptog-
raphy, Multivariate-based cryptography, Hash-based signatures, Code-based cryptography, and
Isogeny-based cryptography.

20

Post-quantum cryptography and standardization of the algorithms

Lattice-based Cryptography

Lattice-based encryption is the most popular algorithm for public key generation researched for
PQC. A lattice is a network of infinitely many points; each vector is a point, and the set of vectors
representing any point in the lattice is called a basis. In lattice-based encryption, messages are
presented under vectors, and the public key is a matrix in which the messages are multiplied to
generate the ciphertext. This is a form of public key cryptography that avoids the weaknesses
of RSA. Rather than multiplying primes, lattice-based encryption schemes involve multiplying
matrices. There are 3 lattice-based schemes:

• lattice-based encryption

• lattice-based signature schemes

• lattice-based key exchanges

Lattice-based cryptographic constructions are based on the hardness of lattice problems, and
the core problem among all lattice problems is named the Shortest Vector Problem (SVP): the
goal is to find the shortest non-zero vector within the lattice. This problem is NP-hard, and unlike
the factorisation problem or the discrete logarithm problem, there is no known quantum algorithm
to solve SVP with the help of a quantum computer. Lattice problems also benefit from something
called worst-case-to-average-case reduction, which means that all keys are as hard to break in
the easiest case as in the worst case when setting up any of the parameters of a lattice-based
cryptosystem.

One of the most important in this family is NTRU, which is used for both encryption (NTRU-
Encrypt) and digital signature (NTRUSign) schemes. NTRU relies on the difficulty of factoring
certain polynomials, making it resistant against Shor’s algorithm. To provide a 128-bit post-
quantum security level, NTRU demands 12881-bit keys. So far no known attacks have been
successful against NTRU. Among all the lattice-based candidates mentioned above, NTRU is the
most efficient and secure algorithm, making it a promising candidate for the post-quantum era.
Until now, lattice-based cryptography is believed to be secure against classical and quantum-based
attacks [4].

Multivariate-based Cryptography

Multivariate cryptography is another approach to PQC, based on the difficulty of solving systems
equations. Multivariate cryptography is known for its small key sizes but is vulnerable to certain
types of attacks. The security of this public key scheme relies on the difficulty of solving systems of
multivariate polynomials over finite fields. Solving the multivariable polynomial problem has been
proven to be nondeterministic polynomial-time (NP)-complete, making it well-suited for post-
quantum cryptography (PQC). Research [19] has shown that developing an encryption algorithm
based on multivariate equations is difficult. Multivariate cryptosystems can be used for both
encryption and digital signatures. They are known to produce the shortest digital signatures
among post-quantum cryptography (PQC) algorithms. The most promising signature schemes
include Unbalanced Oil and Vinegar (multivariate quadratic equations), and Rainbow. UOV and
Rainbow are SingleField schemes, meaning that all computations are performed over a single finite
field. Rainbow is more efficient by using smaller digital signatures and key sizes.

Hash-based Cryptography

Hash-based cryptography [20] is a type of PQC based on hash functions, which are non-reversible
functions that take a string of any length as input and produce a fixed-length output. Hash-based
cryptography has the advantage of being relatively easy to implement and does not require large
key sizes. However, there are concerns about the efficiency of hash-based schemes. Parameter b
defines the desired security level of the system. For the 128-bit b security level, a secure hash

21

Post-quantum cryptography and standardization of the algorithms

function is needed that takes an arbitrary length input and produces a 256-bit output. Therefore,
SHA-256 is considered an optimal solution that fits well with the message m.

The security of such one-time signature schemes is based on the collision resistance of the
chosen cryptographic hash function. Since hash function signatures cannot be used more than
once securely, they are combined with structures like binary trees (Merkle tree) so that instead of
using a signing key for a single one-time use signature, a key may be used for several signatures
bounded by the size of the binary tree. Each position in the tree is calculated to be the hash of
the concatenation of its children nodes. These nodes are computed successively, with the root of
the tree being the public key of the global signature scheme. The leaves of the tree are built from
one-time signature verification keys. In a nutshell, the hash-based signature (HBS) is a collection
of many one-time signature (OTS) schemes. This idea was introduced by Merkle in 1979 and
suffered some efficiency drawbacks, such as large signature sizes and slow signature generation. A
significant strength of hash-based signature schemes is their flexibility, as they can be used with
any secure hashing function, so if a flaw is discovered in a secure hashing function, a hash-based
signature scheme just needs to switch to a new and secure hash function to remain effective.
An important drawback of Merkle-related schemes is their statefulness: the signer must keep
track of which one-time signature keys have already been used. This can be tricky in large-scale
environments.

Currently, two hash-based signature schemes are under evaluation for standardisation. Specif-
ically, the eXtended Merkle Signature Scheme (XMSS) which is a stateful signature scheme, and
Stateless Practical Hash-based Incredibly Nice Collision-resilient Signatures (SPHINCS), which
is as the name indicates a stateless signature scheme.

Figure 2.3. Merkle tree construction

Figure 2.3 is a symbolic example of a Merkle tree. Hashes typically have a fixed size, regardless
of the amount of input data. This means that a Merkle Tree with a known number of leaf nodes
will have a known size, regardless of the actual size of the data being hashed. The construction
process of a Merkle Tree starts by splitting data into blocks. The leaf nodes of the tree are then
the hashes of these blocks. Then all the other nodes in the tree are calculated by combining their
immediate branches and generating a hash of them. In this example, there are four data blocks:
“A”, “B”, “C”, and “D”. The first thing to do is calculate into hashes “1”, “2”, “3”, and “4”.
Then, hash “12” is generated by combining hashes “1” and “2” and then hashing this result. It
is repeated until the reach of the root node.

22

Post-quantum cryptography and standardization of the algorithms

Code-based Cryptography

Code-based cryptography is another approach to PQC that relies on the security of error correcting
codes. The algorithms are based on the difficulty of decoding linear codes and are considered
robust to quantum attacks when the key sizes are increased by a factor of 4. In McEliece’s idea, the
sender adds a specific amount of random noise to encrypt the message. McEliece’s cryptosystem
features fast encryption and decryption processes with very low complexity, but makes use of
large public keys (100 kilobytes to several megabytes). This technique is computationally hard to
reverse using either a conventional or quantum computer, it is based on a mathematical problem
called syndrome decoding which is known to be an NP-complete problem if the number of errors
is unbounded.

An example of efficient error-correcting codes is the Goppa codes [14], which can be turned into
a secure coding scheme by keeping the encoding and decoding functions secret and only publicly
communicating a disguised encoding function that allows the mapping of a plaintext message to a
scrambled set of code words. The secret mapping can be removed only in possession of the secret
decoding function, to recover the plaintext [21].

A simple but slow attack strategy against McEliece’s system is “information-set decoding”(ISD).
An information set is a collection of codeword positions that determines the rest of the codeword.
ISD guesses an information set, hoping that the ciphertext is error-free in those positions. What
makes ISD slow is that, for large matrices, the ciphertext is extremely unlikely to be error-free.

The main practical challenge with these systems is their large key size. Many newer code-
based systems introduce additional structure into public keys to enable greater compression, but
some of these proposals have been successfully broken.

Isogeny-based Cryptography

Cryptosystems of this type rely on the property of congruent graphs of elliptic curves over finite
fields to create a secure system. The security of Isogeny cryptography is based on so-called
supersingular isogeny problems, or in other words, finding the isogeny mapping between two
supersingular elliptic curves with the same number of points. Several specific schemes are based
on this, such as the CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) key exchange
scheme [22], an alternative quantum attack candidate to the Diffie-Hellman key exchange scheme.
An isogeny-based public key encryption, SIKE, is a PKE/KEM selected after the third round of
NIST, and there are some studies on this scheme; however, this PKE/KEM was attacked and
removed from the list of fourth-round candidate algorithms.

Figure 2.4. Post-quantum algorithms

23

Post-quantum cryptography and standardization of the algorithms

2.3 PQC standardisation

Several standardisation bodies are working on the standardisation of PQC. These efforts are being
led by NIST (based in the US), the International Standards Organisation (ISO), the Internet En-
gineering Task Force (IETF), and the European Telecommunications Standards Institute (ETSI).
Each of these bodies is at a different stage in the process and is focusing on different PQC schemes.

2.3.1 Standardisation of stateful hash-based signatures

Stateful hash-based signatures (HBS) are digital signature schemes whose security relies solely on
the security of hash functions. This represents an advantage compared with other digital signature
schemes [16]. Furthermore, hash functions are among the most studied topics in cryptology,
meaning that their security properties are well understood, including their expected resistance
against quantum attacks. The statefulness property means that the signer must keep track of a
state between signature generations. The state is an increasing counter, and reusing the same
state would compromise the security of the system. There are stateless HBS schemes too, but
those are comparatively less efficient than their stateful counterparts. Given their optimal security
properties and acceptable performance metrics, stateful HBS have already been (or will soon be)
standardized by multiple standardisation bodies, being the first PQC standards available for
widespread adoption. NIST is running two standardisation efforts related to PQC, one of which
is discussed in section 2.3.2 below, whereas the other (completed) was focused specifically on
stateful HBS and has already finished: NIST standardized the same schemes for which the IETF
published RFCs, namely the XMSS [23] and LMS [24] schemes, and their multitree variants.

2.3.2 NIST standardisation

The advent of quantum computers and quantum cryptographic algorithms has threatened the
existence of ciphers based on mathematical difficulty. Therefore, in 2016, the US National Institute
of Standards and Technology launched a competition to find algorithms that resist the power
of quantum computing. Currently, the NIST standardisation process is in its fourth round [25].
NIST, with the involvement of the cryptographic community, has begun to develop a minimum set
of acceptance and evaluation criteria for potential candidates. Comparing such varied approaches
brings unique challenges, such as weighing up security, key sizes, latency, bandwidth, and ease
of secure implementation. The process considers three cryptographic functionalities: stateless
digital signature, asymmetric encryption, and key encapsulation mechanisms. Parameter sets for
five security levels, ranging from the equivalent of an exhaustive key search on AES 128 (level
I) to AES 256 (level V), are analyzed. This allows cryptosystems from different families to be
roughly compared with each other.

2.3.3 First round

The first round of NIST’s PQC standardisation process began in December 2016 and ended in
July 2019. During this period, NIST received 82 submissions, which were judged on their secu-
rity, performance, and implementation characteristics. NIST established criteria for evaluating
algorithms, including security for classical and quantum computers, flexibility, and ease of imple-
mentation. NIST also conducted several rounds of testing and analysis to ensure the algorithms
met these criteria. At the end of the first round, NIST selected 26 candidate algorithms for further
research and evaluation in the second round [25].

2.3.4 Second round

The second round of the PQC standardisation process began in January 2019 and ended in July
2020. During this period, the focus was on evaluating and analyzing the 26 candidate algorithms
selected from the first round. Submissions were evaluated based on their security against different

24

Post-quantum cryptography and standardization of the algorithms

types of attacks, their speed and memory consumption performance, and flexibility in terms
of key size and security level. The second round involved extensive testing and evaluation of
candidate algorithms, including software and hardware implementations. Based on the second
round assessment results, NIST selected 15 candidates who advanced to the third round of the
standardized process.

2.3.5 Third round

The third round started in July 2020 and ran for 18 months, with 15 candidates selected after the
end of the second round. In this round, NIST asked the candidates to analyze the proposals and
prove they achieved adequate security in experiments and theory. After 18 months of selection, 7
out of 15 candidate algorithms were selected and classified as “finalists” (4 asymmetric encryption
or key encapsulation mechanisms (KEMs) and 3 stateless signature schemes) and 8 were classified
as ’alternatives’ (5 asymmetric encryption or KEMs and 3 stateless signature schemes). The
selected candidate algorithms are suitable for most applications ready for standardisation, and
alternative candidate algorithms are potential candidates for the future. Finalists include:

• PKE/KEM algorithms: Classic McEliece, CRYSTALS-Kyber, NTRU, Saber;

• Digital signature schemes: CRYSTALS-Dilithium, Falcon, Rainbow.

Alternative candidate algorithms include:

• PKE/KEM algorithms: BIKE, FrodoKEM, HQC, NTRUPrime, SIKE;

• Digital Signature schemes: GeMSS, Picnic, SPHINCS+.

During this evaluation, the Rainbow digital signature algorithm was broken by Ward Beullens
[26] using a classical computer. After the selection process, NIST selected four algorithms to
standardize right after the third round, including:

• The PKE/KEM algorithm CRYSTALS-Kyber;

• Digital signatures are CRYSTALS-Dilithium, Falcon, and SPHINCS+.

The intention of keeping alternative candidates in the process is explained by several reasons,
including achieving diversity of primitives and suitability to special use cases.

2.3.6 Fourth round

In the fourth round, during the selection process, the SIKE candidate algorithm was broken.
After four rounds of selection, three rounds have been completed, and the final round is currently
underway. Three candidate algorithms remain for PKE/KEM standardisation. Out of 69 valid
candidates in the first round, only four PKE/KEM algorithms and three digital signature schemes
have been selected.

2.3.7 Analysis of the finalist candidates

It is important to underline that here are considered only some members of the corresponding
families, those having “5” as security level: taking Kyber as an example, the Kyber family
includes variants such as KYBER512, KYBER768, and KYBER1024, which primarily differ in
the following aspects:

• Security level

25

Post-quantum cryptography and standardization of the algorithms

Figure 2.5. Standardisation of PQC algorithms [25]

• Key sizes and other parameters

• Computational Efficiency

• Resource Usage

In conclusion, in the case of Kyber, the choice between KYBER512, KYBER768, and KY-
BER1024 will depend on the desired balance between security level and available computational
resources. Variants with higher security levels are suitable for scenarios where security is an
absolute priority, while those with lower security levels offer better performance in terms of com-
putational efficiency and resource usage.

2.3.8 Research Status on PQC

As indicated in [25], studies focus on candidate algorithms selected through the stages. The Venn
diagram in Figure 2.5 briefly describes the current state of research on PQC, in which the circles
with blue words are the basis of encryption, while the red words are the names of the algorithms
that are candidates. NIST last update was on August 13, 2024, by announcing the selection of
three finalist algorithms for post-quantum cryptographic standards:

• FIPS 203: The Module-Lattice-Based Key-Encapsulation Mechanism Standard, which is
based on the CRYSTALS-Kyber algorithm.

• FIPS 204: The Module-Lattice-Based Digital Signature Standard, derived from the CRYSTALS-
Dilithium algorithm.

• FIPS 205: The Stateless Hash-Based Digital Signature Standard, derived from SPHINCS+.

26

Post-quantum cryptography and standardization of the algorithms

2.4 SPHINCS+

SPHINCS+ is a stateless hash-based signature scheme submitted to the NIST post-quantum
crypto project. The parameters listed in table 2.1 can be modified to create instantiations of the
signature scheme with different levels of security, signature size, and computational complexity.
As an example, SPHINCS+ can be instantiated with three different hash functions:

• SPHINCS+-SHAKE256

• SPHINCS+-SHA-256

• SPHINCS+-Haraka

These signature schemes are obtained by instantiating the SPHINCS+ construction with SHAKE256,
SHA-256, and Haraka, respectively. The stateless nature of SPHINCS+ distinguishes it from
earlier hash-based schemes, which often required maintaining a state to track key usage. By
eliminating the need for state management, SPHINCS+ reduces implementation complexity and
minimizes the risk of key misuse, making it more suitable for real-world applications. In the
implementation phase of this thesis, SPHINCS+ will be utilized to demonstrate its practicality
and effectiveness in providing postquantum secure digital signatures.

Liboqs is an open-source C library that provides implementations of post-quantum crypto-
graphic algorithms. It has been developed under the Open Quantum Safe (OQS) project. In
liboqs, the SPHINCS+ algorithms are categorized with suffixes “s” and “f” to denote different
parameter sets:

• “s”: Represents the “small” parameter set, optimized for smaller signature sizes.

• “f”: Represents the “fast” parameter set, optimized for faster signing and verification times.

This classification is independent of the “simple” and “robust” variants related to tweakable
hash functions in SPHINCS+.

2.4.1 Difference Between SPHINCS and SPHINCS+

SPHINCS+ is an improved version of the original SPHINCS digital signature scheme, addressing
key limitations in its predecessor. The differences between SPHINCS and SPHINCS+ are as
follows:

• Improved Efficiency: SPHINCS+ incorporates several optimisations that reduce the com-
putational cost and improve the overall efficiency of the signing process. For example, it
reduces the number of hash-function calls required for generating and verifying signatures.

• Smaller Signature Sizes: One of the major criticisms of SPHINCS was its large signature
size. SPHINCS+ introduces improved techniques such as ForsTree and Haraka, which help
to achieve more compact signatures while maintaining security.

• Flexible Parameter Sets: SPHINCS+ provides multiple parameter sets, allowing users to
balance signature size, speed, and security requirements.

2.4.2 SHAKE-256

SHAKE-256 is a member of the SHA-3 family of cryptographic hash functions standardized by
NIST in FIPS 202. SHAKE stands for the Secure Hash Algorithm KECCAK, and the number
256 refers to its security strength and flexibility in output size. Unlike traditional hash functions
such as SHA-2, SHAKE-256 is an extendable output function (XOF), which means it can produce
an output of arbitrary length. The most important properties of this algorithm are:

27

Post-quantum cryptography and standardization of the algorithms

Parameter Value

Hash function Halg ∈ {SHA-256, Shake256, Haraka}

Security parameter n ∈ {128, 192, 256}

Height FORS trees t

Number of FORS trees k

Winternitz parameter w ∈ {4, 16, 256} bits

Height of the hypertree h

Number of subtrees d

Tweakable hash {robust, simple}

Table 2.1. SPHINCS+ instance parameters

• Extendable Output: SHAKE-256 differs from fixed-length hash functions because it allows
the output length to be specified based on application requirements.

• Security Strength: SHAKE-256 achieves a security level of 256 bits against collision resis-
tance and pre-image resistance for outputs of sufficient length. Specifically:

– Collision resistance: 2128

– Preimage resistance: 2256

This makes it suitable for cryptographic applications that require high security, such as
digital signatures, key derivation, and message authentication.

In the implementation of this work, both the SIG_sphincs_shake_256s_simple and SIG_sphincs_shake_256f_simple
variants, representing the simple and fast versions of the algorithm, have been compared during
the testing phase to evaluate performance differences in terms of signing time, verification time,
signature size, etc.

2.5 Dilithium

Dilithium is a post-quantum cryptographic algorithm based on the hardness of mathematical
problems related to lattices, such as the “Short Integer Solution (SIS) problem” and the “Learning
With Errors (LWE) problem”, which have proven to be resistant even against the most advanced
attacks.

The operation of Dilithium is structured into three main phases:

• key generation; specific polynomials and matrices are chosen to form the public and private
keys.

• message signing; when a user wants to sign a message, they perform a series of mathematical
operations on these polynomials to produce a signature

• signature verification

Unlike other post-quantum algorithms, it offers high performance in terms of key generation
and signature verification speed, while keeping the size of keys and signatures relatively small.
Compared to Falcon, which employs more complex mathematics to achieve smaller signatures,
Dilithium is easier to implement and more resistant to certain types of attacks. When compared
to SPHINCS+, which relies on hash functions rather than lattices, Dilithium is significantly
faster. Crystals-Dilithium has 6 variations :Dilithium2, Dilithium3, Dilithium5, Dilithum2 AES,

28

Post-quantum cryptography and standardization of the algorithms

Dilithium3 AES and Dilithium5 AES. Variations Dilithium2, Dilithium3, Dilithium5 are on the
size of the polynomial matrix, secret key range, and masking vector coefficient range. Dilithium AES
version uses AES-256 in counter mode instead of SHAKE-128 or 256 to expand the matrix and
the masking vectors and to sample the secret polynomials.

In the implementation of this work, the SIG_alg_dilithium_5 variant has been used during
the testing phase to evaluate performance differences in terms of signing time, verification time,
signature size, etc.

2.6 Mayo

The Oil and Vinegar signature scheme, proposed in 1997 by Patarin, is one of the oldest and best-
understood multivariate quadratic signature schemes. It has excellent performance and signature
sizes but suffers from large key sizes on the order of 50 KB, which makes it less practical as a
general-purpose signature scheme. To solve this problem, it has been proposed MAYO, a variant of
the UOV signature scheme whose public keys are two orders of magnitude smaller. MAYO makes
possible to represent the public key very compactly. The usual UOV signing algorithm fails if the
oil space is too small, but MAYO works around this problem by “whipping up” the base oil and
vinegar map into a larger map, that does have a sufficiently large oil space. In the context of the
post-quantum cryptography standardisation process promoted by NIST, MAYO was presented as
a candidate to become a security standard. However, during the evaluation phases, concerns arose
regarding the robustness of MAYO. In particular, some experts raised doubts about its long-term
security, suggesting that it might not provide the necessary protection against advanced attacks.
As a result, MAYO was not selected among the final algorithms standardized by NIST. Instead,
NIST chose other algorithms considered more reliable and secure for protecting information in the
era of quantum computers. Although MAYO was not selected as a final NIST standard, analyzing
its performance provides insights into potential optimisations for future MQ-based schemes. It
helps determine whether MQ cryptography can be further refined for practical use cases.

In the implementation of this work, the SIG_alg_mayo_5 variant has been used during the
testing phase to evaluate performance differences in terms of signing time, verification time,
signature size, etc.

29

Chapter 3

Trusted computing and remote
attestation

As technology advances and more devices connect to networks, ensuring their security becomes
increasingly important. In a world where systems are always communicating with each other,
it’s essential to keep data safe and ensure devices can be trusted. Trusted Computing is a key
solution to address these challenges. It focuses on creating secure environments to protect sensitive
information, even when dealing with systems that may not be fully trustworthy. One of its main
methods is remote attestation, where a host verifies its hardware and software configuration to a
remote host. Through Remote Attestation, a verifier can obtain guarantees about the integrity
of the system and the security operations of the attester. This chapter provides an overview
of Trusted Computing, focusing on remote attestation. This discussion will set the stage for
exploring the integration of liboqs to enhance the cryptographic mechanisms used in Keylime,
particularly in attestation workflows.

3.1 Trusted computing

Attackers often target systems at the lowest level, such as the operating system (OS). If the OS is
compromised, other security measures, like firewalls or anti-malware, become ineffective. Physical
access to the system can also allow attackers to boot an alternative OS, especially with network
boot options. To prevent such attacks, both the boot system and the OS must be protected. In
the past, systems used BIOS (Basic Input Output System), but today it has been replaced by
UEFI, which includes native firmware signature support. UEFI checks the firmware’s integrity
before allowing the bootloader to verify the OS. To further enhance security, an external hardware
root of trust can be used to validate the BIOS, ensuring the process is secure and unaltered. The
external crypto chip handles the BIOS validation, removing reliance on the CPU. Today, the goal
is to minimize the trust required in the system to make it easier to verify and audit.

A trusted component or platform behaves as expected, but that does not mean it is completely
secure. It simply means that no modifications have been made to what was originally programmed.
To achieve that, an attestation is performed, which is evidence of the current state of the platform
that can be verified by someone else. Attestation can be carried out in two ways: hardware
attestation and software attestation. Hardware attestation relies on a secure, tamper-resistant
module (a TPM or a secure element) to generate cryptographic evidence, providing a higher level
of security. Software attestation, on the other hand, verifies the system state through software
measurements, but is generally considered less secure because it lacks the physical protection of
hardware-based solutions.

30

Trusted computing and remote attestation

3.1.1 Trusted Computing Base (TCB)

There is significant experimental evidence showing that conventional computer systems are not
secure. Moreover, fixing security flaws as they are discovered has proven to be an insufficient
approach to achieving truly secure systems. The only sound approach to the provision of secure
computer systems is to design security into those systems right from the start. Generally speak-
ing, small, simple, and localized mechanisms are easier to correct than large and complex ones.
Therefore, the first task in designing a secure system is to find a way to structure it so that its
security mechanisms are as small and as simple as possible.

The Evaluation Criteria define the totality of security mechanisms within a secure system as
its Trusted Computing Base (TCB), which encompasses all the hardware, software, and firmware
components critical to the system’s security. These components are essential for enforcing and
maintaining the system’s overall security policy, ensuring the integrity and confidentiality of sen-
sitive operations. TCB is a collection of system resources (hardware and software) responsible
for maintaining the security policy of the system. An important feature is its ability to prevent
being compromised by any hardware or software that is not part of the TCB.

3.1.2 Root of Trust

A RoT is an essential security component that provides a set of functions that the rest of the device
or system can use to establish strong levels of security. Sitting outside the system software, a RoT
initiates a chain of trust by ensuring the computer only starts the boot process after confirming
no malicious code is present. It ensures any software running on the device is trustworthy.

The Root of Trust is a crucial component that must always behave as expected, as any mal-
function cannot be detected. It serves as the foundation for the establishment of trust in a
platform, being a hardware device with known behavior verified by a certificate cite rta. There
are different RoTs in a trusted computing environment:

• Root of Trust for Measurement (RTM): measurement means computing values that tell
whether a system is good. It is a trusted implementation of a hash algorithm, responsible
for the first measurement on the platform. Measures and sends its integrity measurements
to the RTS (another RoT). Usually, the CPU executes the CRTM (Core Root of Trust for
Measurement) software component.

• Root of Trust for Storage (RTS) : is a special portion of memory that is shielded/secured.
Shielded means that no other entities but the CRTM can modify the value.

• Root of Trust for Reporting (RTR): an entity that securely reports the content of RTS.

Essentially, there is the RTM that computes the measurement. This measurement is then
securely stored in the RTS. When needed, the RTR requests the stored measurement and provides
it to an external verifier. The TPM typically includes both the RTS and the RTR: it is a secure
storage and a trusted component for reporting. The Core Root of Trust for Measurement is still
required, which is why the TPM is used together with a secure boot. This ensures the system
correctly installs the CRTM, which continuously measures and sends results to the hardware
component.

3.1.3 Chain of trust

In general, there is a component A that measures component B, and once these measures have
been performed, A stores the result of them in the RTS 3.1.2. Then component B will do the
same tasks with another component C, storing the results. Then, with all those measures, it is
possible to ask RTR for the measurement stored by B and C from the RTS. If component A is
trustworthy, then the verifier knows if B and C are good because the expected hash value is known
(if it is equal is good, it fails otherwise). An important example is the SSL/TLS internet security

31

Trusted computing and remote attestation

Figure 3.1. Chain of trust

standard, which is based on a trust relationship model, also called the “certificate chain of trust.”
X.509 digital certificates validate the identity of a website, organization, or server and provide a
trusted platform for the user to connect and share information securely [27]. SSL/TLS internet-
based Public Key Infrastructure (PKI) allows users to exchange data using public and private
key pairs, obtained and exchanged by a trusted certificate authority (CA). This reputable entity
is responsible for issuing, retaining, and revoking public key certificates over insecure networks.

When visiting a website via a secure connection, the site sends a digital certificate to your
browser. Your internet browser compares the issuer with a list of trusted Certificate Authorities
(Root CA). If a match cannot be found, the client browser checks to see whether a trusted Root
CA signs the issuing CA certificate. The browser’s chaining engine continues verifying the issuer
of each certificate until it finds a trusted root or upon reaching the end of the trust chain, as
shown in figure 3.2.

Figure 3.2. Chain of trust certification

The chain of trust certification aims to prove that a particular certificate originates from a
trusted source. If the certificate is legitimate and links back to a Root CA in the client browser’s
Truststore, the user will know that the website is secure based on interface trust indicators.
Otherwise, if the chain of trust fails verification, a certificate can not prove its validity on its own,
and the browser will warn the user of a potential security risk.

32

Trusted computing and remote attestation

3.2 TPM

3.2.1 TPM overview

The Trusted Platform Module is a security module that delivers the basis of a safe computing
environment [28]. It is a cheap component, less than one dollar usually, and is available on most
servers, laptops, and PC. Processes that need to keep secrets, such as digital signing, can be made
more secure with a TPM. Mission-critical applications requiring greater security, such as secure
email or secure document management, can offer a greater level of protection when using a TPM.
With a TPM, it is easier to ensure that the artifacts needed to sign secure email messages have
not been tampered with by software attacks. Attestation or any other TPM functions do not
transmit personal information of the platform’s user.

TPM is tamper-resistant, but not tamper-proof. Tamper-proof means it cannot be attacked,
while tamper-resistant means it tries to resist various kinds of tampering. Although TPM contains
cryptographic modules, it is not a high-speed cryptographic engine. Unlike smart cards, the TPM
is bounded to a specific platform[28]. The TSG (Technical Skill Group) defines trusted computing
as the expectation that a device will behave in a particular manner for a specific purpose. The
purpose of the TPM is to provide this assurance to the client and the users interacting with
the client. It is certified Common Criteria EAL4+, which is quite a high level (The “+” sign
indicates that additional security requirements have been included beyond the standard ones
for EAL4, making the certification more rigorous and including further controls or tests against
specific threats). It is a passive component, meaning it does not take control of the computer but
must be managed by the CPU.

The main building blocks of TPM are specified by Trusted Computing Group as shown in
figure 3.3.

Figure 3.3. TPM generic building blocks

The I/O block acts as a bridge between internal and external components. It not only manages
information flow between components via the bus but also enforces access policies for various
components.

Trusted Computing Group and interoperability

The Trusted Computing Group (TCG) is an international de facto standards body of approxi-
mately 140 companies engaged in creating specifications that define PC TPMs, trusted modules
for other devices, trusted infrastructure requirements, and protocols necessary to operate into a
trusted environment. Without standard security procedures and shared specifications, it is not
possible for components of the trusted environment to interoperate, and trusted computing ap-
plications cannot be implemented to work on all platforms. From a cryptographic perspective,
trusted modules must be able to use the same algorithms. While standard algorithms may have

33

Trusted computing and remote attestation

weaknesses, they are thoroughly tested and gradually replaced or improved when vulnerabilities
are found [29].

3.2.2 TPM features

The TPM is a chip that authenticates the hardware itself. Since most attacks originate from
unknown hardware, being able to identify the device eliminates the possibility of someone stealing
a key and reusing it later on [28]. But this is not the only benefit of TPMs. TPMs provide an
entire cryptographic suite of tools:

• program code contains the firmware used to initialize the device.

• the execution engine executes the program code that performs initialization and measure-
ment taking.

• it contains a hardware random number generator (not a pseudo RNG). The random numbers
produced are used to generate cryptographic keys, nonces, and strengthen passwords.

• secure generation of cryptographic keys for limited uses (especially with the RSA algorithm).

• TPM can be used for remote attestation: it is used to store the hash summary of the
hardware and software configuration.

• TPM can perform binding (data encrypted using the TPM bind key, a specific key inside
the component, cannot be decrypted outside that specific TPM, because it is a unique RSA
key derived from a storage key). It is a good solution because even if the data is stolen,
there is no way to decrypt it. It is also a bad solution because if it is needed to export data
to move to another machine, a complex procedure is required.

• it is an additional level of security, in which not only is data encrypted with a key that is
internal to the TPM, but as part of the decryption operation, the operation requires the
TPM state to be the same as when the data was encrypted (known as sealing or bounding).
It is important to highlight that the state is the collection of all the applications running on
the platform, together with the configuration files.

• it is a non-volatile storage: it stores several long-term keys and authentication credentials
such as Endorsement Key (EK), Storage Root Key (SRK), owner’s password, and persistent
flags. The SRK naturally is the root of this secure storage and thus manages it. The EK
is a unique feature in TPM: for a TPM to operate, the EK pair must be embedded in
it; the private key is permanently embedded in it (i.e., unique to each TPM and thus the
platform). The public key is stored in a certificate, and it is only used in a limited number of
operations. EK is used to generate an alias, the Attestation Identity Keys (AIKs), used for
routine operations. The EK pair is generally provided by the manufacturers before shipping
[30].

Opt-In

As the name implies, the user has to opt-in to use the TPM, which means to take ownership and
configure the TPM. In the process of taking ownership, the TPM will transition through several
states as described below. Changing the state of these flags requires authorization. The opt-in
block ultimately provides mechanisms and protection to maintain the TPM state via the state of
these flags [28]. In short, the TPM can exist in a range of states from disabled (and deactivated)
to fully enabled and ready for ownership.

• disabled/enabled: all operations are restricted except reporting TPM capabilities and ac-
cepting updates to the PCRs 3.2.6.

• activated/deactivated: the subtle difference between this operational variable and the pre-
vious one is that when TPM is deactivated, it will respond to a change of state or owner.

34

Trusted computing and remote attestation

• owned/unowned: in an owned state, a key pair has been established, and the owner can
perform any operations on TPM, including state change.

Some BIOSes also provide a “Clear” option for the TPM. Clearing the TPM erases the Storage
Root Key and the owner, making all keys and data useless. This command is normally used before
transferring the machine to a new owner.

3.2.3 TPM 1.2

There are two important versions of the TPM, 1.2 and 2.0. The first one was the most widely
used until a few years ago, and it is rather inflexible because it contains:

• fixed set of algorithms.

• one root key, named Storage Root Key.

• one storage hierarchy for the platform user.

• sealing (having data being able to be decrypted only with a certain state) was tied to PCR
value 3.2.6, where PCR are special registers inside the TPM.

TPM 1.2 supports a single “owner” authorization, with an RSA2048 Endorsement Key for sign-
ing/attestation and a single RSA2048 Storage Root Key for encryption (used to protect other
keys and data). This means a single user or entity (“owner”) has control over both the signing/at-
testation and encryption functions of the TPM. In general, the SRK serves as the parent for any
keys created in TPM 1.2.

3.2.4 TPM 2.0

TPM 2.0 is a big improvement because it provides cryptographic agility. For backward compati-
bility, it continues to have SHA-1, but it also offers SHA-256. TPM 2.0 has the same functionality
that is represented by the EK for signing/attestation and SRK for encryption as in 1.2 3.2.3, but
the control is split into different hierarchies:

• Platform Hierarchy: for data coming from outside. Platform means the system, which is
hosting the TPM. It contains non-volatile storage, keys, and data related to the platform.
It is used for maintenance functions.

• Storage Hierarchy: for internal storage. It is used by the privacy administrator for storing
keys and data related to privacy.

• Endorsement Hierarchy: used for generating cryptographic evidence that can be trusted
by external entities. It is responsible for creating and managing keys used in attestation
and signature processes, ensuring that the system’s identity and integrity can be verified by
outside parties.

• Null Hierarchy, a stateless hierarchy with no persistent storage. It is mainly used for oper-
ations that do not require long-term key storage or when temporary keys are needed. This
hierarchy provides flexibility for tasks that don’t need to rely on permanent keys, such as
specific cryptographic tasks only valid for the current session.

In TPM 2.0, the new Platform Hierarchy is intended to be used by platform manufacturers.
The Storage and Endorsement hierarchies and the Null hierarchy will be used by the operating
systems and OS-present applications. Each hierarchy has a dedicated authorization (password as
a minimum) and a policy. Keys of the various hierarchies are unrelated. Each hierarchy has its
own unique “owner” for authorization. Because of this, TPM 2.0 supports four authorizations,
which would be analogous to the single TPM 1.2 “owner”.

35

Trusted computing and remote attestation

3.2.5 TPM objects

These are the objects that are managed by the TPM:

• Primary keys: in particular, endorsement keys and storage keys. They are derived from
one of the primary seeds. They can be recreated using the same parameters, assuming the
primary seed has not been changed.

• Keys and sealed data objects (SDO): they are protected by a Storage Parent Key (SPK).
Randomness for these keys come from the TPM RNG, which is internal to the TPM.

An object inside the TPM has two parts: the public and private areas. In contrast, the
sensitive area is external. While the public and private areas are mandatory, the sensitive area is
optional.

• Public area: used to uniquely identify an object.

• Private area: contains the object’s secrets and exists only inside the TPM.

• Sensitive area: encrypted private area used for storage outside the TPM. Not compulsory.

3.2.6 TPM Platform Configuration Register (PCR)

The TPM can report the current state of the system. To store and report it the TPM contains
a special set of registers named PCR. They are registers that keep the history of the platform
configuration. One strict requirement is that these registers must be reset at the system restart
or whenever there is a power loss (all the registers will start with 0)[28]. This reset ensures that
the PCRs start in a clean state and can accurately store fresh measurements of the system’s
integrity. The reason for this reset is to guarantee that, if the system is reconfigured or rebooted,
the PCRs will contain the most up-to-date integrity metrics, reflecting the current state of the
system and preventing old, potentially outdated data from influencing security decisions. These
registers support only two operations: reset and extend. The extend operation is:

PCRnew = hash(PCRold∥digest of new data)

The old value contained in the PCR, concatenated to the digest of some new data, is hashed.
The result becomes the new value of the PCR. The standards require TPMs to have at least
16 PCRs of size 20 bytes. Registers 0-7 are reserved for TPM use. Registers 8-15 are free for
any application’s use, including operating system [30]. In other words, the PCRs contain system
measurements: the TPM gives the possibility to read directly these values, but it is not considered
a trustworthy operation. What is done instead is an operation called quote: a quote is a signed
report from the TPM, that contains the current PCR values, and it also uses a nonce, to prove
that the quote is fresh (it is referred to the register values of the present, not of the past). Quotes
can be provided to other parties for PCR verification (remote attestation).

3.3 Remote attestation

Until now, there has been no comparison between the values in the PCRs and the expected values,
as this comparison would be performed locally. However, if the system has been manipulated,
the comparison could be inaccurate. This makes it challenging to use a TPM for self-monitoring.
Instead, the TPM must rely on an external party, which is the purpose of remote attestation.

36

Trusted computing and remote attestation

3.3.1 Remote attestation procedures

Remote attestation is the process of asserting the properties of a target by providing evidence
to an appraiser over a network[31]. Attestation is considered very important nowadays: systems
that have been attested and verified to be in a good state (for some value of “good”) can improve
overall system posture. Viceversa, systems that cannot be attested and verified to be in a good
state can be given reduced access or privileges, taken out of service, or flagged for repair. For
example:

• A bank backend system might refuse to transact with another system that is not known to
be in a good state.

• A healthcare system might refuse to transmit electronic healthcare records to a system that
is not known to be in a good state [32].

Figure 3.4. Environment with an Attester [32]

In remote attestation, an Attester consists of at least one Attesting Environment and at least
one Target Environment co-located in one entity. Other implementations might have multiple
Attesting and Target Environments. Claims are collected from Target Environments. Attesting

37

Trusted computing and remote attestation

Environments collect the values and information to be represented in claims by reading system
registers and variables, calling into subsystems, and taking measurements on code, memory, or
other relevant assets of the Target Environment. Attesting Environments then format the Claims
appropriately; typically, they use key material and cryptographic functions, such as signing or
cipher algorithms, to generate evidence[32]. The Attester signs the collected measurements using a
secure private key, usually stored in a hardware component like the TPM or the Trusted Execution
Environment. This ensures the integrity and authenticity of the measurements. In the case of a
TPM, it does not actively collect Claims itself. Instead, it requires another component to feed
various values to the TPM. Thus, in this case, an Attesting Environment would be the combination
of the TPM and the component providing it with the measurements.

It is important to consider that an entity can take on multiple Remote Attestation Procedures
(RATS) roles (e.g., Attester, Verifier, Relying Party, etc.) at the same time. Multiple entities can
cooperate to implement a single RATS role as well. In a nutshell, the combination of roles and
entities can be arbitrary.

The remote verifier performs validation in two steps:

1. First, it verifies the signature cryptographically: crypto + ID. There is also an ID, as a
table must exist linking each node identifier to its corresponding public key. For example,
if a challenge is sent to a device with ID1, the response will be signed with that key.

2. Then, the verifier uses the corresponding public key to verify the signature and ensure that
the measurements have not been tampered with. It will compare the measurements against
Reference Measurements, also known as golden values, which are the possible values that
are already known [32]. If the measurements match, the verifier concludes that the attester
is in a trustworthy state.

3.3.2 Trust model

This section analyzes one of the possible communication models between the key entities of a
trust model. It is called the Passport model and involves the attester, Verifier, and Relying Party.
The Passport Model is so named because of its resemblance to how nations issue passports to
their citizens. The nature of the evidence an individual needs to provide to its local authority
is specific to the country involved. Thus, in this immigration desk analogy, the citizen is the
Attester, the passport-issuing agency is a Verifier, and the passport application and identifying
information (e.g., birth certificate) is the Evidence [32]. Figure 3.5 shows a data flow diagram
for their communication. The Attester conveys its Evidence to the Verifier for appraisal and the
Relying Party receives the Attestation Result from the Verifier.

Figure 3.5. Passport model [32]

38

Trusted computing and remote attestation

• Relying party: a Relying Party trusts a Verifier that can appraise the trustworthiness of
information about an Attester. For a stronger level of security, the Relying Party might
require that the Verifier first provide information about itself that the Relying Party can use
to assess the trustworthiness of the Verifier before accepting its Attestation Results. Such
trust is expressed by storing one or more “trust anchors” in a secure location known as a
“trust anchor store”. A trust anchor represents an authoritative entity via a public key and
associated data.

• Attester: In some scenarios, evidence might contain sensitive information; an Attester must
trust the entities it shares evidence with to ensure sensitive data is not disclosed to unau-
thorized parties [32]. When evidence contains sensitive information, an Attester typically
requires that a Verifier authenticates itself (e.g., by establishing a TLS session).

• Verifier: the Verifier relies on the manufacturer or its hardware to assess the trustworthiness
of the manufacturer’s devices. Such trust is expressed by storing one or more trust anchors
in the Verifier’s trust anchor store.

3.3.3 Principles for attestation architectures

Five principles [31] are crucial for attestation architectures. While an ideal attestation architecture
would satisfy all five, in real systems, only an approximation of the ideals is possible.

1. Fresh information: Assertions about the target should reflect the running system, rather
than just disk images. Some measurement tools provide only start-up time information
about the target, assuming that its security-relevant properties remain intact.

2. Attestation mechanisms should provide detailed information about the target, ensuring its
full internal state is accessible to local measurement tools.

3. Constrained disclosure: a target should be able to enforce policies that determine which
measurements are sent to each appraiser.

4. Semantic explicitness: The semantic content of attestations should be explicitly presented
in logical form. The target’s identity should be defined by these semantics, allowing an
appraiser to collect attestations about it.

5. Trustworthy mechanism: Appraisers should receive evidence of the trustworthiness of the
attestation mechanisms on which they rely. In particular, the attestation architecture in
use should be identified to both the appraiser and the target.

3.3.4 Domain separation

Domain separation [31] is essential for establishing trust in attestations, particularly in ensuring
the integrity of measurement tools. A measurement tool must be capable of delivering accurate
results about a target of attestation, even if the target is compromised. This is an important
consequence of Principle 5. First, it must have access to the target’s state to distinguish whether
that target is corrupted or uncorrupted. Second, the measurement tool’s state must be inaccessible
to the target, so that even if the target is corrupted, it cannot interfere with the results of the
measurement. There are various ways to achieve this separation. One approach is to virtualize
the target, allowing the measurement tool to run in a separate virtual machine from the target
cite ravm.

39

Chapter 4

Keylime

Keylime is a TPM-based remote attestation and runtime integrity measurement solution that
allows cloud users to monitor remote nodes using a hardware-based cryptographic root of trust.
Originally developed by the security team at MIT’s Lincoln Laboratory, Keylime is now main-
tained by the Keylime community. In this thesis, Keylime was chosen for its reliable TPM-based
approach to remote attestation, ensuring the integrity of remote systems in untrusted environ-
ments. Keylime’s flexibility and open-source nature made it an ideal choice for integrating addi-
tional security features. This chapter will explain Keylime’s architecture, its key components, and
the crucial phases of remote attestation, setting the foundation for the improvements discussed
in the next sections.

4.1 Introduction

KeyLime is a technology used to centralize the remote attestation of distributed systems. In
particular, KeyLime was introduced as the first end-to-end IaaS trusted cloud key management
service that supports all the desirable features listed above:

• Secure Bootstrapping: the system should allow a tenant to securely provision an initial root
secret into each of their cloud nodes. This root secret can then serve as a foundation for
generating additional secrets, enabling advanced security services.

• Compatibility: the system should provide tenants with the capability to integrate hardware-
rooted cryptographic keys into the software, strengthening the security of their existing
services.

• Scalability: the system must scale efficiently to support provided features and services across
numerous cloud nodes, given the dynamic nature of creating and removing IaaS resources.

• System Integrity Monitoring: the system should enable the tenant to monitor the integrity
status of cloud nodes and detect any deviations, with a response time of less than one
second.

• Secure Layering (Virtualization Support): the system should enable a tenant to perform
secure bootstrapping and integrity monitoring within virtual machines using a TPM inte-
grated into the provider’s infrastructure. This process requires cooperation with the provider
but should be implemented with minimal privileges granted to them.

To enable these functions, they relied on the TPM chips. TPM chips have been used to secure
many different use cases, and one of their strengths is their ability to be a hardware root of trust
for systems; it is really where KeyLime is using it as the integrity management hardware root of
trust. Keylime’s mission is to make TPM Technology easily accessible to developers and users,
without the need for a deep understanding of the lower levels of a TPM’s operations. Keylime
contains four main components: the Verifier, the Registrar, and the Agent.

40

Keylime

• The Verifier continuously verifies the integrity state of the machine where the agent is
running on.

• The Registrar is a database of all agents registered with Keylime and hosts the public keys
of the TPM vendors.

• The Agent is deployed on the remote machine that needs to be measured or provisioned
with secrets, which are stored in an encrypted payload released once trust is established.

• The Tenant is a command-line management tool that allows the user/administrator to
control the agents.

Users typically perceive a system as trustworthy when interacting with cloud or iOS platforms,
assuming the service company has taken all necessary steps to ensure security. This trust is often
implicit, based on the belief that the provider has conducted thorough due diligence. However,
true trust in such systems must be built from the ground up, starting with the hardware and
extending through the entire software stack. Maintaining system integrity becomes a significant
challenge in large-scale environments such as data centers. When malware compromises the
system, administrators cannot manually check every machine for signs of malicious activity. The
issue becomes even more complicated when malware targets firmware, where detection is much
more difficult.

4.2 Main components

Figure 4.1 provides a high-level overview of the Keylime architecture. It shows an agent running on
each cloud node, communicating with the tenant system. Keylime supports multiple distribution
scenarios: single node (multi-user), multi-node (Datacenter, IoT), Multi-tenant(Cloud), VMs, etc.

Figure 4.1. Main Components of Keylime

Keylime mainly consists of an agent, two server components (Verifier and Registrar), and a
command line tool: the Tenant.

• Keylime Verifier: it continuously receives TPM reports from the agent. The verifier imple-
ments the actual attestation of an agent and sends revocation messages if an agent is not
in the trusted state. Once an agent is registered for attestation (using the tenant or the
API), the verifier continuously pulls the required attestation data from the agent. This can
include a quote over the PCRs, the PCR values, the NK public key, the IMA log, and the
UEFI event log. Afterward, the quote is validated, and additional data validation can be
configured.

41

Keylime

• Keylime Agent: it runs within the operating system being attested. Its primary role is
to interact with the TPM to register the Attestation Key, generate quotes, and gather
necessary data, such as UEFI and IMA event logs, to enable the system state attestation.
The agent can also be configured to listen for revocation notifications sent by the verifier
when a system’s attestation fails. In such cases, a revocation message can trigger changes
to the system’s local policies, preventing the compromised device from accessing shared
resources.

• Keylime Registrar: it is a centralized repository where each agent registers and reports its
TPM public keys. This centralized approach eliminates the need for individual components
to query each other for this information. Instead, the Registrar provides a single, well-
defined location from which all relevant entities can reliably access the necessary data. The
agent registers itself in the registrar. The registrar manages the agent enrollment process,
which includes getting a UUID for the agent, collecting the EKpub, EK certificate, and
AKpub from an agent, and verifying that the AK belongs to the EK. Once an agent has
been registered with the registrar, it is ready to be enrolled for attestation. The tenant can
use the EK certificate to verify the trustworthiness of the TPM.

• Keylime Tenant: the tenant is a command-line management tool shipped by Keylime to
manage agents. This includes adding or removing the agent from attestation, validating the
EK certificate against a certificate store, and retrieving the agent’s status. It also provides
the necessary tools for the payload mechanism and revocation actions.

4.3 Main phases

The Keylime framework can be subdivided into the following operational phases:

1. The Node Registration Protocol.

2. The Key Derivation Protocol.

3. The Continuous Remote attestation.

4. The Revocation Framework.

4.3.1 Node Registration Protocol

When the agent starts, it contacts the registrar to enroll the standard credentials of the TPM
installed on the system. As represented in 4.2, the cloud agent sends to the registrar its UUID,
along with the AIKpub, the EKpub and the EKcert of the TPM. The registrar stores this informa-
tion and challenges the cloud node to prove ownership of the EKpriv and AIKpriv corresponding
to the public keys it received. The registrar creates the challenge in this way: it generates an
ephemeral symmetric key Ke, it computes a hash of AIKpub (denoted H(AIKpub)) and it en-
crypts this two information with EKpub. When the cloud agent receives the registrar’s challenge,
it passes this encrypted blob to the ActivateIdentity TPM command. The TPM will correctly de-
cipher Ke only if it owns EKpriv corresponding to EKpub and AIKpriv corresponding to AIKpub.
The cloud agent proves it retrieved Ke by sending the HMAC of its UUID computed with Ke

to the registrar. Upon receiving the response, the registrar recomputes the HMACKe (UUID)
and, if the result is equal to the agent’s response, it marks the cloud agent UUID as active. It
starts sending the node’s TPM credentials when asked.

4.3.2 Bootstrap Key Derivation Protocol

The second step of the Keylime Framework involves the Three-Party Bootstrap Key Derivation
Protocol. This protocol ensures the secure delivery of the bootstrap key Kb to the cloud node
after verifying that it is in a trusted state. Initially, the tenant generates a symmetric encryption

42

Keylime

Figure 4.2. Agent Registration phase

key Kb and splits it into two parts U and V (random value) such that U = Kb ⊕ V . The tenant
sends U to the Cloud Node and shares V with the verifier, which will forward it to the cloud node
only after a successful integrity verification. Once the tenant obtains the cloud node’s UUID and
IP address, it notifies the verifier of the intent to initialize the node.

The Tenant connects to the Cloud Verifier over a secure channel, a mutually authenticated
TLS, and provides V, the cloud agent’s UUID, the IP , a TPM policy, and optionally it specifies
a whitelist of acceptable PCR values and the MB refstate. In particular:

• The TPM policy specifies both the PCRs that the TPM quotes have to contain and the
expected values associated with those PCRs;

• The whitelist is used for validating the IMA Measurement List and contains the list of
trusted digests for the configuration files and the programs running on the cloud node

• The MB refstate is the Measured Boot reference state and is used for validating the Measured
Boot ML.

At this point, both the tenant and Verifier can now attest the node in parallel. In the end, the
cloud agent will receive U from the tenant and V from the CV. Since the cloud agent does not have
a certified software identity key to establish secure communications, it generates an ephemeral
asymmetric key NK and sends the public part of this key, NKpub, to the CV and the tenant, so
that they can use it to cipher V and U respectively and transmit them securely over an untrusted
network. In particular, to prove the authenticity of NKpub, the cloud Agent uses the 16th PCR
value in the TPM quote to bind NK to the identity of the TPM. In this way, the identity of
NKpub is bound to the TPM identity and this allows the tenant and CV to authenticate NK by
validating the TPM quote. Now the interactions will be examined in detail.

Interaction between the Cloud Verifier and The Agent

In this phase, the CV sends a request for a TPM quote to the cloud agent, specifying a fresh nonce
and a mask that indicates the PCRs that the TPM quote has to contain. The node sends back
NKpub along with the quote QuoteAIK(nonceCV, 16 : H(NKpub), xi : yi), where 16 : H(NKpub)
represents the PCR 16 containing the hash of NKpub, while xi : yi represents the PCRs requested
by the CV with their respective values. Then, the CV asks the registrar for the node’s TPM
credentials (AIKpub,EKpub, and EKcert) over a server-authenticated TLS and uses AIKpub to

43

Keylime

verify the authenticity of the quote; if the quote is authentic, the CV verifies that the cloud node
has a trusted state by comparing the PCRs values contained in the quote with the trusted values
specified in the TPM policy and by validating the IMA ML with the whitelist. The CV also
verifies that the received NKpub is correct by computing the hash over NKpub and checking that
the result is equal to the content of PCR 16. If all the verification steps are passed, the CV sends
back to the cloud agent the V share, encrypted with NKpub, and then it starts the Continuous
Remote Attestation phase described in the following section. Otherwise, the CV does not send V
and sets the state associated with the cloud node as INV ALID QUOTE.

Interaction between the Tenant and the Agent

The interactions of this phase occur in parallel to the one described above, and they are similar
except for some small differences. The tenant requests a TPM quote to the cloud agent, specifying
a fresh nonce and an empty PCR mask. The empty PCR mask is because, differently from the
CV, the tenant does not use the quote to verify the trusted state of the node but only to verify
the identity of the TPM to authenticate NKpub. In this phase, the tenant verifies that:

1. The public key contained in EKcert is equal to EKpub.

2. The issuer of EKcert is a trusted TPM manufacturer whose certificate is contained in a
tenant’s local repository (called “tpm cert store”).

3. The signature of EKcert is authentic, verifying it with the public key contained in the TPM
manufacturer’s certificate.

If one of the previous checks is not passed, the tenant notifies the CV, which sets the state
of the cloud node to TENANT FAILED and stops the periodic attestation on the cloud node.
Instead, if the TPM of the cloud node is authentic, the tenant verifies the validity of the quote
with the AIKpub key, then it verifies the correctness of the received NKpub in the same way as the
CV does. If NKpub results authentic, the tenant sends to the cloud agent the U share encrypted
with NKpub, the HMAC over node’s UUID computed with Kb(HMAC Kb(UUID)) and the
encrypted payload EncKb(d).

When the cloud agent receives U from the tenant or V from the CV, it verifies whether it
has received both shares of Kb and, in this case, it computes U = Kb ⊕ V . Then it checks if the
derived Kb is the correct one by computing HMACKb

(UUID) and verifying that it is equal to
the value sent by the tenant; if so, the cloud agent uses Kb to decipher the encrypted payload and
proceeds with the startup of the tenant’s service. After decrypting the payload, the cloud agent
deletes Kb and V while it stores U in the TPM NVRAM to automatically support the node’s
reboot or migration without the need for the tenant to interact again with the cloud node. Every
time the cloud agent needs the V share after reboot or migration, it sends CV a new NKpub along
with the TPM quote; upon receiving a new NKpub, the CV provides the V share to the cloud
agent, so it can recombine Kb and decipher the encrypted payload again.

The TPM primitives used during the Three Party Bootstrap Key Derivation Protocol are:

• tpm2 pcrreset: Reset one or more PCR banks. More than one PCR index can be specified.
The reset value is manufacturer-dependent and is either a sequence of 00 or FF on the length
of the hash algorithm for each supported bank.

• tpm2 extend: Extends a PCR.

• tpm2 quote: Provide quote and signature for a given list of PCRs in given algorithm/banks.

• tpm2 checkquote: Uses the public portion of the provided key to validate a quote. generated
by a TPM. This will validate the signature against the quote message and, if provided, verify
that the qualifying data and PCR values match those in the quote.

• tpm2 nvdefine: Define an NV index with a given auth value.

• tpm2 nvwrite: Write data specified via FILE to a Non-Volatile (NV) index.

44

Keylime

Figure 4.3. Bootstrap Key Derivation Protocol

[33]

4.3.3 Runtime Remote Attestation

Keylime provides a mechanism to continuously monitor the integrity of remote systems and verify
their state during the boot process. After the Bootstrap Key Derivation Protocol is completed,
the Keylime framework transitions into the third stage: Continuous Remote Attestation. During
this phase, the framework ensures that the remote system has undergone a secure boot process,
creating a trusted environment for application deployment. To maintain this trustworthiness
over time, the CV routinely checks the integrity of the cloud node. This is achieved by leverag-
ing the integrity measurements collected by IMA (Integrity Measurement Architecture) for the
applications executed on the system.

As shown in Figure 4.4, the CV periodically sends requests to the cloud agent to retrieve
updated Integrity Reports (IRs). In particular, the Verifier sends the nonce and a PCR mask.
The agent uses the TPM to generate the quote. The quote includes:

• The nonce (to prove the quote is fresh).

• The requested PCR values.

• IMA Measurement List: Tracks hashes of loaded binaries and configuration files.

• Measured Boot Measurement List: captures the state of the system during the boot process.

The CV asks the registrar for the node’s AIKpub over a server-authenticated TLS and uses
it to verify the authenticity of the quote. It validates these reports to detect any unauthorized

45

Keylime

changes or integrity violations within the system. The validation process ensures that the system
remains trusted by carefully analyzing the information provided in the IR. The verifier performs
several checks in order to declare the quote as valid, it verifies that:

• the quote signature is valid, checking it with the AIKpub key provided by the registrar;

• the quote contains all PCRs specified in the TPM policy;

• the quote contains PCR 16 and its content is equal to the digest (computed with the hash
algorithm associated with the PCR 16) of the NKpub sent by the cloud agent during the
Bootstrap Key Derivation Protocol and stored in the local DB;

• the IMA ML matches the PCR 10 value;

• the measurement events contained in the IMA ML match the whitelist;

• the PCR values specified in the Measured Boot ML match the corresponding PCR values
contained in the quote;

• the Measured Boot ML matches the MB refstate provided by the tenant.

Figure 4.4. Runtime Integrity Monitoring

The time interval between consecutive attestation requests directly impacts the speed at which
potential compromises are detected. By default, this interval is set to two seconds but can be
adjusted in Keylime’s configuration file. However, the minimum possible latency is restricted to at
least 500 milliseconds, as the TPM quote operation typically requires more than 500 milliseconds.

46

Keylime

4.3.4 Revocation framework

When the CV detects that a cloud node is untrusted, it triggers the Revocation Framework. This
framework relies on the revocation notifier, a ZeroMQ server spawned by the CV at startup. This
server implements the publish/subscribe pattern: the CV publishes a new revocation event by
sending a signed message to the ZeroMQ server, which forwards it to all its subscribers. The
subscribers can be:

• the software CA, which, upon receiving a revocation message for an untrusted cloud node,
revokes the certificate of the identity key owned by that node and publishes an updated
CRL;

• the cloud agents which, upon receiving a new revocation message, execute the “local action”
scripts for ring-fencing the untrusted node;

• other tools that want to be notified about the events related to the trusted computing layer.

The presence of a file on the node is not sufficient to trigger any action. However, if the file
begins running, the Verifier proceeds to disconnect the node. A possible scenario is shown in
figure 4.5, where two cloud nodes establish an IPsec connection, each running a Keylime agent.

1. The Cloud Verifier performs the attestation loop on both nodes, checking that everything
is good.

2. At some point, malware infects the Cloud Node 1, so the attestation fails and the verifier
starts the revocation framework.

3. The Revocation Notifier sends a message signed with the revocation key to all subscribers(in
this case, the cloud node 2).

4. The CA revokes the certificate for Cloud Node 1 and publishes a new CRL.

5. The node 2 can cut off its own IPsec connection with the affected node.

Figure 4.5. Revocation framework

47

Keylime

4.4 Integrity Measurement Architecture (IMA) in Keylime

TCG’s specifications define the core concepts of Trusted Computing, specifying the RoTs that a
Trusted Platform must implement. IMA, the Linux implementation of the integrity measurement
system outlined by TCG, extends the chain of trust from BIOS to the application layer. It
measures all executables, configuration files, and kernel modules as they are loaded, storing these
measurements in the TPM. This allows an external entity to verify not only the system’s boot
but also which software has been loaded, whether it is trustworthy, and whether its configuration
is correct. Since, unlike the boot process, the order of software loading in an operating system
is unpredictable, IMA records measurement events in a Measurement Log (ML) file and uses a
PCR (typically PCR 10) to protect the integrity of the ML. An external entity can verify that the
ML has not been tampered with and analyze each event to determine whether the system state
change is trustworthy.

IMA enables a remote entity to confirm that an application running on a different system has
an adequate level of integrity to be trusted. For a proper integrity check, the measurement list
must be:

• Fresh: not vulnerable to replay attacks.

• Complete: containing all measurements taken up until the time of attestation.

• Unaltered: the measurements must remain intact without tampering.

4.4.1 Remote Attestation with IMA

The IMA measurement process begins when an IMA Hook in the attesting system receives a
Measurement Event (ME), such as loading a binary or opening a file for reading or writing. The
hook’s role is to measure the received event, specifically by calculating the hash value of the file
content using a secure hash function. The resulting file digest, along with other metadata, is
stored in an ordered list of MEs within the kernel. The corresponding digest is then extended into
a PCR in the TPM (typically PCR 10) using the extend operation. This measurement process
allows the Verifier to check the integrity state of the attesting system by initiating a Remote
Attestation. The challenge begins when the Verifier sends a request to the Agent, including a
nonce. Upon receiving the request, the Attestation Agent asks the TPM for a quote, which
includes the nonce from the challenger and the PCR values (these typically include the PCRs
related to the boot process and PCR 10), which contain the IMA measurements aggregate. The
TPM then returns the quote, signed with the AIKpriv. Next, the Attestation Agent retrieves
the IMA Measurement Log (ML), creates an Integrity Report (IR) containing both the quote and
the ML, and sends it to the challenger. Finally, the challenger verifies the IR, ensuring that the
quote is fresh and authentic, the ML has not been tampered with, and the measurements within
the ML reflect a trustworthy system.

4.4.2 Keylime Policy

To ensure the integrity of the system, it is necessary to establish a set of rules that define what is
considered trusted and compliant. While IMA provides the capability to measure files, binaries,
and configurations loaded into a system, it does not, by itself, define how these measurements
should be evaluated or what actions should be taken in case of an integrity violation. This is done
by Keylime policies. A policy is a structured set of rules that dictate how a system’s integrity is
assessed and enforced during remote attestation. These policies define the expected state of the
system by specifying valid configurations, expected hashes for measured files, and the conditions
under which a machine should be considered compromised.

At the core of a policy, there is the definition of reference values against which system mea-
surements are compared. These reference values typically include precomputed hashes of critical
system files, expected configurations, and known-good values for TPM PCRs. Since IMA logs

48

Keylime

and extends measurements into the PCR 10, Keylime retrieves these values and cross-checks them
with the policy’s expected state. If a measurement deviates from what is defined in the policy,
it indicates a potential integrity violation. Keylime policies also specify how to handle violations
and anomalies. When an unexpected measurement is detected, the policy can trigger various
responses depending on the severity of the deviation. In general, a runtime policy can contain
different rules, such as:

• Whitelist of File Hashes: Specifies acceptable cryptographic hashes for files or executables
on the system.

• IMA Rules: Integrates with Linux’s IMA to monitor file access and usage.

• Excludelist of files: filename containing a list of paths to be excluded from monitoring.

4.4.3 IMA Template

Each entry in an ML contains information representing a Measurement Entry(ME). An IMA
template defines what specific data about the ME should be recorded in the IMA measurement
list and displayed in the ML files. To allow ML entries to store several metadata, a template
management mechanism was introduced in Linux 3.13.0. This mechanism relies on two key data
structures:

• A template field, specifies a type of data stored within an ME.

• A template descriptor, which defines the template fields included in an ME.

PCR template-hash template-name filedata-hash filename-hint

10 5866yndmdz[...]5210pc57sc ima-ng sha1:a9e3c5[...]f4d2b1 /usr/bin/kmod

10 5349yjanpv[...]7691n8zdnp ima-ng sha1:73f1b2[...]ed7a6c /usr/libexec/lsd

10 4666wnoe2c[...]2498g1g1j9 ima-ng sha1:1a2b8d[...]f7c9e4 /bin/bash

10 2919sthazh[...]3936run4w2 ima-ng sha1:c3d2e9[...]ab4f7b /etc/network/interfaces

10 60882idkpv[...]9037njkk1n ima-ng sha1:9a4c7f5[...]b2f0a3 /var/cache/apt/archives

...

Table 4.1. IMA ML with the ima-ng template

Figure 4.1 illustrates an example of an ML created using the ima-ng template. The fields,
listed from left to right, include:

• The PCR index where the entry was extended (usually PCR 10).

• The template hash is computed over the template fields using SHA-1.

• The template name assigned to the entry.

• The event data hash is computed over the file’s contents or, in the case of boot aggregate,
over the boot-PCRs contents.

• The event name, typically the file’s pathname.

49

Keylime

4.4.4 Integrity Validation Mechanism

To assess the trustworthiness of the attesting system, the challenger verifies the measurement of
the files recorded in the ML against a predefined whitelist of trusted values. As represented in fig.
4.6, if a file path is missing from the whitelist, it indicates that an unrecognized program has been
executed. If the path is found, the challenger checks whether the recorded measurement matches
an entry in the whitelist. A match confirms the integrity of the file, while a mismatch suggests
either an updated version or potential tampering. In such cases, the system policy dictates the
necessary actions, often resulting in the system being marked as untrusted unless effective isolation
measures are in place.

The integrity of the system can be tracked over time through repeated Remote Attestation cy-
cles. However, for continuous trust to be ensured, measurements collected in different attestations
must belong to the same operational period or epoch. If the system is compromised and then
rebooted before the next attestation, it could falsely appear as trusted, as the reboot would mask
any previous compromise. To address this issue, a mechanism should be in place to detect epoch
transitions, such as leveraging TPM counters that can only increment. The BIOS can increase
a TPM counter upon each reboot. By incorporating this TPM-signed value into the attestation
data, the challenger can determine whether the system has restarted between two attestations. A
change in the counter indicates a reboot, while an unchanged value confirms that the ML provides
an unbroken record of the system’s history.

Figure 4.6. Integrity Validation mechanism

4.5 Other functionalities in Keylime

In this section, an overview of the remaining functionalities provided by Keylime is presented.
While previous sections covered its core components and roles, this section explores additional
features that enhance security, automation, and integration, highlighting Keylime’s ability to
adapt to various use cases.

50

Keylime

• Secure Payloads: secure payloads enable the provisioning of encrypted data to an enrolled
node. This encrypted data can be used to deliver secrets needed by the node, such as keys,
passwords, certificate roots of trust, etc. Secure payloads are for anything that requires
strong confidentiality and integrity to bootstrap the system. The payload is encrypted and
sent via the Keylime Tenant CLI (or REST API) to the Keylime Agent. As explained in
4.3.2, the agent also sends part of the key needed to decrypt the payload, a key share. The
other key share of the decryption key will be provided to the agent by the Keylime Verifier
to decrypt the payload, but only after the agent has met its enrollment criteria. Keylime
offers two modes for sending secure payloads: single file encryption and certificate package
mode.

– single file encryption: the user provides a file to the tenant application using the -f
option, the tenant encrypts the file using the bootstrap key and securely delivers it to
the Agent;

– package mode: the package mode simplifies various routine actions commonly per-
formed by tenants during Agent provisioning. Firstly, Keylime can automatically set
up an X.509 certificate authority and provide native support for certificate revocation.

• User Selected PCR Monitoring: by leveraging the tpm policy feature in Keylime, it is
possible to monitor a remote machine for changes in any selected PCR.

• Measured boot: currently, the UEFI firmware has made the event log accessible through an
ACPI table, and it is now using this table to expose the boot event log through securityfs.
This log is accessible at /sys/kernel/security/tpm0/binary/bios/measurements. By
combining this feature with secure boot, the designated PCR set can be fully populated,
incorporating measurements of all components, up to the kernel and initrd. The initrd,
or initial RAM disk, enables the boot loader to load a RAM disk. This RAM disk can
be the primary file system, allowing programs to run from it. Later, a new file system
can be mounted from a different device while the original root file system (from initrd) is
relocated to a directory and can be unmounted as needed. The primary purpose of initrd
is to facilitate a two-phase system startup. Initially, the kernel initializes with a basic set
of built-in drivers. Subsequently, additional modules are loaded from initrd. In addition
to the boot log data sources mentioned above, users can utilize tpm2-tools to consume the
contents of such logs and reconstruct the contents of PCRs [0-9] (and potentially PCRs
[11-14]).

Keylime can leverage this newfound capability with great flexibility. It allows the Keylime
operator to specify a “measured boot reference state” or mb refstate for brevity. This
operator-provided data is then utilized by the keylime verifier in a manner akin to the
“IMA policy”. The keylime verifier compares the information received from the keylime
agent against this reference state to ensure integrity and security.

51

Chapter 5

Quantum-safe Remote Attestation
in Keylime

5.1 Idea

The chapter describes the proposed implementation work to enhance the security of the remote
attestation process in Keylime by integrating post-quantum cryptography. Since no physical TPM
currently supports post-quantum cryptography, direct integration at the hardware level is not yet
feasible. Given this limitation, the idea is to extend the attestation Agent and the Verifier to
integrate post-quantum cryptography at the software level. This solution allows experimentation
with different post-quantum signature schemes while maintaining compatibility with current TPM
implementations, ensuring a smooth transition once hardware-based post-quantum TPMs become
available.

The idea is described as follows: the Verifier requests proof of integrity from the attester. In
response, the attester queries the TPM, which generates a quote (a signed statement of the state
of the system) using its conventional cryptographic key (the attestation identity key). Before
transmitting the quote, the attester further signs the quote with a new post-quantum key, adding
an extra layer of security. Once the Verifier receives the attestation data, it validates the system’s
integrity by checking both the TPM-generated quote and the post-quantum signature. Specifically,
four signature schemes have been selected to perform the signature of the quote:

• SPHINCS-SHAKE256-SIMPLE and SPHINCS-SHAKE256-FAST: SPHINCS+ SIM-
PLE prioritizes security with more hashing, making it slower but more robust. SPHINCS+
FAST optimizes speed by reducing computations.

• DILITHIUM 5: DILITHIUM offers a good balance between performance and efficiency,
with a very high level of security compared to other post-quantum schemes.

• MAYO 5: an algorithm designed to provide compact signatures and fast operations, which
makes it particularly suitable for resource-constrained environments.

5.2 Configuration of runtime integrity monitoring

This section provides a detailed explanation of how runtime integrity monitoring operates in the
standard Keylime implementation, focusing first on the remote attestation process before adding
any modifications introduced in this thesis. It will serve as the foundation for the following section,
which will outline the enhancements and additions implemented.

52

Quantum-safe Remote Attestation in Keylime

5.2.1 Node Registration Protocol

This phase establishes the initial communication and trust between the components involved in
the remote attestation workflow, specifically the registrar and the agent. To execute this protocol,
two services must be started, each in its terminal window: one for the registrar and one for the
agent. To start the registrar service, open a terminal and execute the following command:

$ keylime_registrar

This command launches the registrar process, which listens for registration requests from agents
on its designated network port. To start the agent service, open a second terminal and execute
the following command:

$ RUST_LOG=keylime_agent=trace cargo run --bin keylime_agent

This command starts the agent service in debug mode and generates detailed log output. This ver-
bosity is useful for troubleshooting and understanding the agent’s behavior during the registration
process. Once both services are running, the registration protocol proceeds as follows.

• The agent sends a registration request to the registrar, including the endorsement key, the
attestation identity key, the IP address, the port, the certificates, and other registration
parameters.

• The registrar validates the agent’s credentials and securely stores its keys.

• Upon successful completion of this exchange, the agent is officially registered and ready to
participate in the subsequent phases of the remote attestation process.

5.2.2 Starting the Keylime Verifier

After successfully starting the registrar and agent services, the next steps involve launching the
verifier. To start the verifier service, open a terminal and execute the following command:

$ keylime_verifier

This command initializes the verifier, which listens for requests from tenants and orchestrates
the verification of attestation data provided by the agent. The verifier maintains a database of
registered agents and their associated trust policies. It ensures the verifier is running and properly
connected to the registrar before proceeding to the next steps.

5.2.3 Initiating the Remote Attestation Process

The tenant is the component responsible for initiating and managing the remote attestation
process for a specific agent. To start the tenant to begin the attestation, execute the following
command:

$ keylime_tenant -c add --uuid d432fbb3-d2f1-4a97-9ef7-75bd81c00000

--runtime-policy /path/to/policy.json

Where:

• “-c” specifies the action to be performed.

• “–uuid” specifies the unique identifier (UUID) of the agent added. The UUID uniquely
identifies the agent in the Keylime infrastructure. The example shows the default UUID
used by Keylime.

• “–runtime-policy” specifies the path to a JSON file containing the runtime policy for the
agent.

53

Quantum-safe Remote Attestation in Keylime

Once the tenant command is executed:

• The tenant communicates with the registrar to retrieve the agent’s public keys and verify
its identity.

• The tenant shares the runtime policy with the verifier and requests the attestation of the
agent.

• The verifier periodically contacts the agent, retrieves its integrity measurements, and com-
pares them to the runtime policy.

• If the measurements match the expected values in the policy, the agent is considered trust-
worthy. Otherwise, the verifier flags a policy violation, stopping the remote attestation.

5.3 Creation of the runtime policy

A runtime policy is a collection of “golden” cryptographic hashes that represent the untampered
state of files or the keys authorized to be loaded into keyrings for IMA verification. The runtime
policy is uploaded to the Keylime Verifier, which then regularly polls TPM quotes for PCR 10
on the agent’s TPM. It compares the current state of the agent’s files to the expected hashes
defined in the policy. If the object has been tampered with or an unexpected key was loaded onto
a keyring, the hashes will not match and Keylime will place the agent into a failed state.

5.3.1 Configuration of IMA

Keylime’s runtime integrity monitoring requires the setup of Linux IMA. It is needed to deploy
an ima policy file. This file should be located in /etc/ima/ima − policy. Next, to configure the
IMA policy, create the file /etc/ima/ima− policy and populate it with the following script:

PROC_SUPER_MAGIC

dont_measure fsmagic=0x9fa0

SYSFS_MAGIC

dont_measure fsmagic=0x62656572

DEBUGFS_MAGIC

dont_measure fsmagic=0x64626720

TMPFS_MAGIC

dont_measure fsmagic=0x01021994

RAMFS_MAGIC

dont_measure fsmagic=0x858458f6

SECURITYFS_MAGIC

dont_measure fsmagic=0x73636673

SELINUX_MAGIC

dont_measure fsmagic=0xf97cff8c

CGROUP_SUPER_MAGIC

dont_measure fsmagic=0x27e0eb

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

This default policy measures all executables and all files mmapped as executable in file mmap
and module checks and skips several irrelevant files (logs, audit, tmp, etc). At this point, go to
file /etc/default/grub and set the value

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash ima_policy=tcb"

this line specifies kernel parameters passed to the Linux kernel at boot time via the GRUB
bootloader. In particular:

54

Quantum-safe Remote Attestation in Keylime

• “quiet” option suppresses most of the kernel’s boot messages during startup. Instead of
displaying detailed logs, the boot process will show minimal or no text on the screen. This
is often used to make the boot process look cleaner.

• “splash” option enables the display of a graphical splash screen during boot, replacing the
textual output of the kernel messages.

• “ima policy=tcb” is a kernel parameter related to the IMA. It sets the IMA policy to Trusted
Computing Base (TCB). Under this policy, the IMA subsystem measures and appraises the
integrity of files accessed by the kernel that are critical to the system’s security, such as
executables, shared libraries, and kernel modules. This feature is often used in environments
where system integrity and security are critical, such as servers or systems adhering to strict
security policies.

After modifying the grub file, the changes must be applied by running the command:

sudo update-grub

sudo reboot

This regenerates the GRUB configuration file (/boot/grub/grub.cfg) to include the updated
kernel parameters. It is possible to verify IMA is measuring your system by checking the content
of this file:

sudo nano /sys/kernel/security/integrity/ima/ascii_runtime_measurements

Then, create a basic policy by using an IMA measurement log from the system:

keylime_create_policy -m /path/to/ascii_runtime_measurements -o

runtime_policy.json

5.4 Integration of Liboqs

This section focuses on liboqs, an open-source library developed by the Open Quantum Safe (OQS)
project to support quantum-resistant cryptographic algorithms. In this work, liboqs was utilized
to implement the signature process for the quote generated during Keylime’s remote attestation
process. Specifically, the algorithms SPHINCS+-SHAKE-256s-simple, SPHINCS+-SHAKE-256f-simple,
Dilithium5, and MAYO-5 have been used. The implementation involved designing and developing
the key primitives of a digital signature process:

1. Key Generation: the process of creating a private and public key pair. The private key is
used to sign messages, while the public key is shared to verify those signatures.

2. Signature Generation: using the private key to compute the signature for a given message
M. This ensures the authenticity and integrity of the message.

3. Signature Verification: validating the signature’s authenticity and ensuring the message M
has not been tampered with, using the associated public key.

5.4.1 Creation of the keypair

The function generate_PQ_keypair is implemented to generate a pair of cryptographic keys using
the algorithms provided by the liboqs library.

• Initialization of the Keypair Result Structure: a custom data structure called KeypairResult
is defined to store the generated keys and their respective lengths.

55

Quantum-safe Remote Attestation in Keylime

• Creating the Signature Object: a new post-quantum signature object is created using the
OQS_SIG_new function, which initializes the internal structures required for the key gen-
eration process. If the signature object cannot be created, an error is reported, and the
function terminates.

• Keypair Generation: with the allocated memory in place, the actual keypair is generated
using the OQS_SIG_keypair function. This step represents the core operation of the function
and uses quantum-safe algorithms to produce secure keys.

5.4.2 Generation of the signature

The sign_with_PQ function generates a digital signature for the quote. The function returns a
SignatureResult structure containing the generated signature.

typedef struct {

uint8_t* signature;

size_t signature_len;

} SignatureResult;

This structure is initialized with default values (NULL for the signature pointer and zero for its
length). The first operational step is to verify whether the post-quantum algorithm is available
and supported by the liboqs library. Once the algorithm’s availability is confirmed, the func-
tion initializes a post-quantum signature object using the OQS_SIG_new function. The signing
operation is performed using the OQS_SIG_sign function:

if (OQS_SIG_sign(sig, result.signature, &sig->length_signature, quote,

quote_len, pq_priv_key) != OQS_SUCCESS) {

fprintf(stderr, "Error in the signature!\n");

free(result.signature);

OQS_SIG_free(sig);

return result;

}

5.4.3 Verification of the signature

The verify_signature function is responsible for verifying the validity of the digital signature
generated. The core of the function is the signature verification process, performed using the
OQS_SIG_verify function.

if (OQS_SIG_verify(sig, message, quote_len, signature,

sig->length_signature, public_key)!= OQS_SUCCESS) {

return -1;

}

5.5 Changes in Keylime

This section outlines the modifications made to the Keylime code to integrate support for the post-
quantum signature in the remote attestation process. The implementation requires modifications
to the Registrar, the Agent, the Verifier, and the Tenant.

5.5.1 Agent

The first change in the Keylime agent involves modifying the registration process. This phase is
critical as it establishes the initial communication between the agent and the registrar, where the
agent sends essential information to the registrar so it can be stored in the registrar’s database

56

Quantum-safe Remote Attestation in Keylime

for future interactions. This process has been described in detail in section 4.3.1. In this imple-
mentation, the agent generates a post-quantum keypair using the chosen algorithm and includes
the public key in the data sent to the registrar during registration. This additional step ensures
the agent’s identity and integrity can be verified using quantum-safe mechanisms.

let pq_result = unsafe {

generate_PQ_keypair(1)

};

Listing 5.1. Call to the function

The generate_PQ_keypair function returns a structure containing the two generated keys: the
public and the private key.

#[link(name = "gen_keypair")]

extern "C" {

fn generate_PQ_keypair(stampa: i32) -> KeypairResult;

}

#[repr(C)]

struct KeypairResult {

public_key: *const u8,

public_key_len: size_t,

private_key: *const u8,

private_key_len: size_t,

}

To facilitate storage and transmission, the public key generated by the agent is encoded in Base64
format before being included in the registration payload.

let public_key_vec = unsafe {

if !pq_result.public_key.is_null() {

Vec::from(std::slice::from_raw_parts(

pq_result.public_key,

pq_result.public_key_len,

))

} else {

Vec::new()

}

};

let pq_key_base64: String =

general_purpose::STANDARD.encode(&public_key_vec);

Listing 5.2. Base64 conversion

Encoding the key in Base64 offers several advantages: it ensures compatibility with text-based
protocols, avoids issues related to binary data handling, and simplifies integration with databases
and logging systems. This encoded key is then securely transmitted to the registrar. The enhanced
registration payload, now including the Base64-encoded post-quantum public key, is transmitted
securely to the registrar. The registrar is then responsible for storing this key in its database
along with the other details provided by the agent.

let data = Register {

ekcert,

ek_tpm,

aik_tpm,

iak_tpm,

idevid_tpm,

idevid_cert,

iak_cert,

iak_attest,

57

Quantum-safe Remote Attestation in Keylime

iak_sign,

mtls_cert,

ip,

port: Some(port),

pq_key: pq_key.clone(),

};

Listing 5.3. Structure of the registration payload

In particular, if we focus just on the keys, fig. 5.1 shows the updated node registration workflow,
where the cloud agent sends to the registrar:

• its UUID.

• the public Attestation Identity Key: the Attestation Identity Key is an asymmetric key pair
generated inside the TPM. It allows the TPM to prove its integrity without exposing the EK.
The AIK signs the integrity reports generated by the TPM. These reports demonstrate the
current state of the system, including measurements of the operating system and software.

• the public Endorsement Key: it is a unique, asymmetric key pair generated and embedded
in a TPM during its manufacturing process. It is used to establish trust in the TPM itself.
The EK is used to prove the authenticity of the TPM to external entities. This ensures that
the TPM is legitimate and has not been tampered with.

• the public Post-Quantum Key.

Then, the registrar generates a challenge using an ephemeral key, and if the Agent correctly solves
the challenge, it sends back the response signed with the private post-quantum key. The registrar
verifies the signature using the post-quantum public key, and if the response is correct, the keys
are stored in the registrar’s DB. After the registration process, in the remote attestation phase,
the agent generates and sends a PQquote (Post-Quantum Quote) to the verifier. This PQquote

represents an enhancement of the standard Keylime quote, incorporating additional fields required
for post-quantum security. Specifically, it includes:

• The post-quantum signature

• The length of the signature

• The post-quantum public key

• The length of the public key

• The hash algorithm used during the generation of the post-quantum signature

let pq_quote = PQquote {

sign_pq: signature_vec.clone(),

sign_pq_len: result.signature_len,

pq_key: data.pq_pub_key.clone(),

pq_key_len: data.pq_pub_key_len,

hash_alg_pq: "shake_256".to_string(),

quote_len: quote.quote.len(),

quote: quote.quote,

hash_alg: quote.hash_alg,

enc_alg: quote.enc_alg,

sign_alg: quote.sign_alg,

pubkey: quote.pubkey,

ima_measurement_list: quote.ima_measurement_list,

mb_measurement_list: quote.mb_measurement_list,

ima_measurement_list_entry: quote.ima_measurement_list_entry,

};

Listing 5.4. Structure of the Post-quantum quote

58

Quantum-safe Remote Attestation in Keylime

The generation of the post-quantum signature is performed by invoking a dedicated function. This
function handles the task of signing the data using the post-quantum algorithm. The integration
of this functionality within the agent relies on smooth interaction between the Rust and C source
bases, ensuring efficient execution of the signing process while maintaining system compatibility.

let result = unsafe {

sign_with_PQ(quote_ptr,

quote.quote.len(),pq_priv_key_cstring,data.pq_priv_key_len)

};

Once the PQquote is fully constructed, it is transmitted to the verifier.

let response = JsonWrapper::success(pq_quote);

HttpResponse::Ok().json(response)

5.5.2 Registrar

From the registrar’s perspective, the process begins when the agent sends its public keys to the
registrar. These keys include the post-quantum public key. The registrar in the registration phase,
receives the response of the agent signed with the private post-quantum key, as shown in fig. 5.1.
The correctness of this key is checked by verifying the signature with the public post-quantum
key sent in the first part of the registration by the agent. If the Verification of the signature is
performed correctly, the registrar has to store the public key. To accommodate this new key, it
is necessary to extend the registrar’s database schema by adding a new field that can store the
post-quantum public key.

The modified database structure, shown below, includes the new field pq_key, which is of type
String(500):

class RegistrarMain(Base):

__tablename__ = "registrarmain"

agent_id = Column(String(80), primary_key=True)

key = Column(String(45))

aik_tpm = Column(String(500))

ekcert = Column(String(2048))

ek_tpm = Column(String(500))

iak_tpm = Column(String(500))

iak_cert = Column(String(2048))

...

pq_key = Column(String(500))

After adding this new field to the database schema, modifications are also required in the reg-
istrar’s logic for processing the agent’s registration. Specifically, the registrar must extract the
pq_key from the agent’s registration payload and store it in the database. This involves extending
the registrar’s GET request logic to include the post-quantum public key in the received data.

The following line is added to the registrar’s data extraction logic:

"pq_key": agent.pq_key,

Once the public key is extracted, it is stored in the database by extending the dictionary of
values used for the database insertion. To achieve this, the POST request logic must be modified.
The updated dictionary is shown below:

d: Dict[str, Any] = {

"agent_id": agent_id,

"ek_tpm": ek_tpm,

"aik_tpm": aik_tpm,

"ekcert": ekcert,

"iak_tpm": iak_tpm,

59

Quantum-safe Remote Attestation in Keylime

Figure 5.1. Registration of the agent

"idevid_tpm": idevid_tpm,

"iak_cert": iak_cert,

"idevid_cert": idevid_cert,

"ip": contact_ip,

"mtls_cert": mtls_cert,

"port": contact_port,

"virtual": int(ekcert == "virtual"),

"active": int(False),

"key": key,

"provider_keys": {},

"regcount": regcount,

"pq_key": pq_key,

}

Listing 5.5. Insertion of values in the DB

To enhance the robustness and security of the RegistrarAgent class, a validation function is
introduced to validate the integrity of the pq_key field.

def _validate_pq_key(self, pq_key: str) -> None:

if not isinstance(pq_key, str):

raise ValueError("pq_key must be a string")

try:

decoded_key = base64.b64decode(pq_key)

except Exception:

raise ValueError("Invalid pq_key: not a valid Base64 string")

Listing 5.6. Validation function

The function is integrated directly into the update method to ensure all modifications to the
pq_key undergo these checks:

def update(self, data):

60

Quantum-safe Remote Attestation in Keylime

self.cast_changes(

data,

["agent_id", "ek_tpm", "ekcert", "aik_tpm", "iak_tpm", "iak_cert",

"idevid_tpm", "idevid_cert", "ip","pq_key"]

+ ["port", "mtls_cert"],

)

Verify EK as valid

self._check_ek()

Verify IAK/IDevID as valid and trusted

self._check_iak_idevid(data.get("iak_attest"), data.get("iak_sign"))

Ensure either an EK or IAK/IDevID is present, depending on

configuration

self._check_root_identity_presence()

Handle certificates which are not fully compliant with ASN.1 DER

self._check_all_cert_compliance(data)

...

Basic validation of pq_key

self._validate_pq_key(data.get("pq_key"))

5.5.3 Verifier

This section focuses on the modifications made to the verifier component of Keylime; specifically,
the changes were applied to the invoke_get_quote function. This function is responsible for
receiving the integrity quote from the Keylime agent through an HTTP GET request and verifying
its correctness by invoking another function, process_quote_response.

The new implementation extracts additional fields required for verifying the post-quantum
signature from the HTTP response sent by the agent. These fields include the post-quantum
signature, the corresponding public key, and their respective lengths. The extraction of these
fields was implemented as follows:

quote = json_response.get("results", {}).get("quote").encode(’utf-8’)

quote_len = json_response.get("results", {}).get("quote_len")

sign_pq = bytearray(json_response.get("results", {}).get("sign_pq"))

sign_pq_len = json_response.get("results", {}).get("sign_pq_len")

pq_key = bytearray(json_response.get("results", {}).get("pq_key"))

pq_key_len = json_response.get("results", {}).get("pq_key_len")

Here:

• quote: The integrity quote sent by the agent, extracted as a UTF-8 encoded byte string.

• quote len: The length of the quote field.

• sign pq: The Post-Quantum signature of the quote, extracted as a byte array.

• sign pq len: The length of the Post-Quantum signature.

• pq key: The public key corresponding to the Post-Quantum signature, extracted as a byte
array.

• pq key len: The length of the public key.

The verifier retrieves the Post-Quantum public key associated with the agent from the registrar,
but the Post-Quantum public key is not saved in its database to reduce the risk of exposure.
Instead, the key is temporarily stored in the exclude_db dictionary. The exclude_dbvalues are
excluded from the data persisted in the database, ensuring that the public key remains ephemeral.

61

Quantum-safe Remote Attestation in Keylime

exclude_db["pq_key"] = json_body["pq_key"]

Retrieve PQ public key from registrar

pq_key_registrar = bytearray(base64.b64decode(exclude_db["pq_key"]))

Compare the registrar’s key with the agent’s key

if pq_key == pq_key_registrar:

logger.info("PQ key received correctly \n")

result = lib.verify_signature(quote_ptr, c_size_t(quote_len),

signature_ptr, c_size_t(sign_pq_len), public_key_ptr)

....

else:

failure = Failure(Component.QUOTE_VALIDATION)

failure.add_event("invalid post-qaunutm signature",{"message":

"post-qauntum Public Key is not corresponding to the

correct one"},False)

....

A function called verify_signature verifies the post-quantum signature. The verification result
is returned as a Boolean value (result) indicating whether the verification is successful.

Figure 5.2. Remote attestation with post-quantum integration

The final result is shown in fig. 5.2: the first phase is the registration phase, where the Agent
stores his information, including the post-quantum public key, into the registrar DB; then, the
Tenant sends the policy/allowlist to the Verifier, created following the rules indicated in the “ima-
policy” file. At this point, the Verifier sends the request to the agent, including the nonce and the
pcr mask. The Agent sends to the TPM the request of the generation of the quote, so the TPM
signs with the private attestation identity key the PCR values and sends back the quote to the
Agent. The Agent signs the quote with the post-quantum private key, obtaining the post-quantum
signature. Finally, he retrieves the measurements collected by IMA and sends to the Verifier the

62

Quantum-safe Remote Attestation in Keylime

response, containing the post-quantum signature, the quote, and the IMA Measurement List. The
Verifier retrieves from the Registrar the needed keys (the post-quantum public key and the public
attestation identity key), and checks the correctness of the information received. If everything is
proved to be correct, the Verifier sends a new request of the quote, and the cycle restarts.

5.5.4 Updating the Registrar Table to add the Post-Quantum key field

To modify the registrarmain table in the SQLite database to include the pq_key field, several
steps must be performed.

Renaming the Existing Table

The original registrarmain table was renamed to registrarmain_old to preserve its structure
and data during the migration process:

ALTER TABLE registrarmain RENAME TO registrarmain_old;

Creating the Updated Table

A new table named registrarmain was created with the updated schema. The pq_key field is
defined as a BLOB type to properly store its binary data:

CREATE TABLE registrarmain (

agent_id VARCHAR(80) PRIMARY KEY,

key VARCHAR(45),

ekcert TEXT,

virtual BOOLEAN,

active BOOLEAN,

provider_keys TEXT,

regcount INTEGER,

aik_tpm VARCHAR(500),

ek_tpm VARCHAR(500),

ip VARCHAR(15),

port INTEGER,

mtls_cert TEXT,

iak_tpm VARCHAR(500),

idevid_tpm VARCHAR(500),

iak_cert VARCHAR(2048),

idevid_cert VARCHAR(2048),

pq_key BLOB

);

Migrating Data from the Old Table

Data from registrarmain_old are transferred to the new registrarmain table. This ensures that
all existing data, along with the pq_key field, are preserved during the migration:

INSERT INTO registrarmain (

agent_id, key, ekcert, virtual, active, provider_keys, regcount,

aik_tpm, ek_tpm, ip, port, mtls_cert, iak_tpm, idevid_tpm, iak_cert,

idevid_cert, pq_key

)

SELECT

agent_id, key, ekcert, virtual, active, provider_keys, regcount,

aik_tpm, ek_tpm, ip, port, mtls_cert, iak_tpm, idevid_tpm, iak_cert,

idevid_cert, pq_key

FROM registrarmain_old;

63

Quantum-safe Remote Attestation in Keylime

Dropping the Old Table

Once the data migration is confirmed to be successful, the old table is removed to free up space
and avoid redundancy:

DROP TABLE registrarmain_old;

Validating the Updated Table

To verify the new structure of the registrarmain table, the following SQLite command is used:

PRAGMA table_info(registrarmain);

Figure 5.3. Registrar Database

The output of the command is shown in fig. 5.3.

Viewing and Validating Data in the Database

To inspect the updated table and confirm the presence and integrity of the pq_key field, the
following commands are executed:

Open the SQLite database:

sqlite3 /var/lib/keylime/reg_data.sqlite

Query the registrarmain table to view specific fields, such as agent_id and pq_key:

SELECT agent_id, pq_key FROM registrarmain;

By following these steps, the database schema is successfully updated to include the pq_key field
while preserving all existing data.

64

Quantum-safe Remote Attestation in Keylime

5.6 Remote Attestation Failure

To test a failure scenario in Keylime Remote Attestation, it is necessary to create a script with
arbitrary content (e.g., echo “hello world”) that is not part of the pre-defined runtime policy.
Then, execute the script as the root user on the agent machine. The Verifier’s output will report
the agent’s status change to “failed”.

Figure 5.4. Attestation failure

What happens is that the Agent continuously measures the hash values of monitored files using
the Linux IMA. These hash values are sent to the Verifier for comparison against the allowlist
provided in the Runtime Policy. So when the Agent executes a script (evil script.sh) that is not
part of the allowlist, the Verifier detects a mismatch between the reported hash value and the
allowlist, updates the Agent’s attestation status to “failed” and stops the remote attestation.
There will be the following output on the verifier showing the agent status change to failed:

keylime.tpm - INFO - Checking IMA measurement list...

keylime.ima - WARNING - File not found in allowlist: /root/evil_script.sh

keylime.ima - ERROR - IMA ERRORS: template-hash 0 fnf 1 hash 0 good 781

keylime.cloudverifier - WARNING - agent

D432FBB3-D2F1-4A97-9EF7-75BD81C00000 failed, stopping polling

65

Chapter 6

Testing

This chapter presents the results of the tests conducted on the Keylime framework, which has
been modified to support quantum-safe remote attestation. The evaluation includes functional
tests to validate the correct operation of the attestation process and performance tests to measure
latency and resource consumption during the attestation process.

6.1 Testbed

The assessment of the operational efficiency and effectiveness of the suggested solutions involves
executing tests on a system equipped with an Intel i5-1035G1 processor clocked at 1.00 GHz and
capable of reaching a maximum frequency of 3.60 GHz, featuring 4 cores, 8 threads, 16 GB of
RAM, and a TPM2.0 chip. This system runs on Ubuntu 24.04 LTS and operates with a Linux
kernel version 6.8.0. The environment includes Liboqs version 0.11.0 and a customized version of
Keylime 7.11.0.

The attester and Verifier are on two different machines:

• One machine hosts the Keylime Tenant, Registrar, and Verifier components.

• Another machine runs the Keylime Agent.

For instructions on compiling and installing the testbed configuration, please refer to Appendix
A. You can find steps for installing and configuring Keylime in Appendix A.2 and instructions for
installing Liboqs in Appendix A.5.

6.2 Functional tests

The purpose of functional tests is to verify whether the software implementation of the proposed
solution meets the requirements. Specifically, these tests check that the Agent’s registration
with the Registrar and the remote attestation process function correctly. For these tests, the
SPHINCS+-SHAKE256-SIMPLE variant is used for signature generation and verification. Later,
in performance tests, comparisons will be made between the SIMPLE and the FAST versions of
SPHINCS+, and with Dilithium_5 and Mayo_5.

6.2.1 Tests of Agent registration

The first test focuses on the Agent’s registration process with the Registrar. This involves ensuring
that the Agent can successfully register and that the SPHINCS public key is correctly transferred
to the Registrar. To perform this test an Agent initiates the registration process.

66

Testing

Additionally, the time required to complete the registration is measured to ensure it falls within
an acceptable threshold, which should be defined based on the system’s expected use cases. To
test the Agent registration process, two terminals are used: one to start the Registrar and the
other to run the Agent. The Registrar is started using the keylime_registrar command. The
process logs several important steps:

INFO - Starting Keylime registrar...

INFO - Reading configuration from [’/etc/keylime/registrar.conf’]

INFO - database_url is set, using it to establish database connection

The Registrar starts by reading the configuration file (registrar.conf), which contains settings
such as database configurations, network parameters, etc. Then, it establishes a connection to
the database. This message confirms that it is configured to use a database (SQLite in this case)
to store Agent information and other relevant data.

POST

/v2.2/Agents/d432fbb3-d2f1-4a97-9ef7-75bd81c00000

INFO - EK received for Agent ’d432fbb3-d2f1-4a97-9ef7-75bd81c00000’

INFO - Sphincs public key registered correctly

Begin PQ Public KEY (Base64 encoded)-----

+mQUlXZKu7J4oMbj5x0ctse8Zshlvrm21ae1ldMGx3U3

+VrS5S4INC7/EPuyqjxERiV2GT11VzrypH3hM4GLYA==

-----End PQ Public KEY

The Registrar receives a POST request to register an Agent. The request is sent to the
/v2.2/Agents/UUID endpoint, where d432fbb3-d2f1-4a97-9ef7-75bd81c00000 is the unique
identifier (UUID) of the Agent. The Registrar successfully receives the Endorsement Key from
the Agent. The Registrar logs the base64-encoded post-quantum public key that it has received
from the Agent.

INFO - Sent 200 in 32ms

INFO - PUT

/v2.2/Agents/d432fbb3-d2f1-4a97-9ef7-75bd81c00000

INFO - Sent 200 in 31ms

The Registrar sends a HTTP response with status code 200 OK to indicate that the Agent’s
registration is successful. It took 32 milliseconds to process the request. The Registrar then
receives a PUT request to update the Agent’s information. This likely indicates that the Agent
is now being activated. On the Agent side:

keylime_Agent::registrar_agent > Send PQ public key to the registrar

Begin PQ Public KEY (Base64 encoded)-----

+mQUlXZKu7J4oMbj5x0ctse8Zshlvrm21ae1ldMGx3U3

+VrS5S4INC7/EPuyqjxERiV2GT11VzrypH3hM4GLYA==

-----End PQ Public KEY

keylime_agent > SUCCESS: Agent d432fbb3-d2f1-4a97-9ef7-75bd81c00000

registered

keylime_agent > SUCCESS: Agent d432fbb3-d2f1-4a97-9ef7-75bd81c00000

activated

The Agent sends its post-quantum public key encoded in base64 format and then logs that it has
successfully registered and activated with the Registrar. The logs from both the Registrar and
the Agent provide valuable information about the time taken for the registration process. By
analyzing the timestamps, it is possible to calculate the total duration for Agent registration and
activation:

67

Testing

Registration Step (POST): 32 ms

Activation Step (PUT): 31 ms

Total Time (POST + PUT):

$32 + 31 = 63ms$

The total time required for the Agent registration and activation process is approximately 63
milliseconds, demonstrating the system’s high efficiency.

6.2.2 Tests of periodic attestation

The second test evaluates the remote attestation process, ensuring the Agent and the Verifier work
correctly. A complete attestation session involves the Agent generating a quote, signing it using
SPHINCS+, and then verifying the signature on the Verifier side. The total time required for the
entire attestation cycle is calculated and analyzed. The Verifier is started using the command
keylime_verifier. It first registers the Agent successfully, as indicated by the message:

POST

returning 200 response for adding Agent id:

d432fbb3-d2f1-4a97-9ef7-75bd81c00000

Then, the Verifier sends an integrity quote request to the Agent along with the provided nonce.
The Agent responds with the requested quote.

INFO - Request of Integrity Quote, nonce = 9frP8sK4qEDEgE79tl2V

INFO - Integrity Quote received

The Verifier receives and successfully verifies the post-quantum public key and SPHINCS+
signature. Following this, the Verifier proceeds to check the IMA measurement list of the Agent
to ensure that no unauthorized changes have occurred in its system.

INFO - PQ key received correctly

Public key: 7476014B68234E68C55D94C7F1ED163E0246195CDE0EF40B1D47A8D964832609

7FB00768EEA0DA42E5D3D62C3DA3B19C397E2BEDFF5E180B7E785854FB071A50

INFO - Verification of Sphincs signature: Valid

INFO - Checking IMA measurement list on Agent:

d432fbb3-d2f1-4a97-9ef7-75bd81c00000

From the Agent’s perspective, the process involves handling a series of requests, starting with
responding to an Identity Quote request:

GET

invoked from "127.0.0.1"

with uri /v2.2/quotes/identity?nonce=jadq44bIgEpz2R3Jdp5y

Calling Identity Quote with nonce: jadq44bIgEpz2R3Jdp5y

GET

identity quote returning 200 response

This request specifies the nonce and the IP address of the Verifier server. After successfully
sending the identity quote, the Agent receives a request for an integrity quote from the Verifier:

GET

invoked from "127.0.0.1" with uri

/v2.2/quotes/integrity?nonce=9frP8sK4qEDEgE79tl2V&mask=0x400&partial=0&ima_ml_entry=0

Calling Integrity Quote with nonce: 9frP8sK4qEDEgE79tl2V, mask: 0x400

GET

integrity quote returning 200 response

With a specific nonce and a designated mask, which refers to the PCRs to be used. The Agent
processes the integrity quote request with the specified parameters and returns the response to
the Verifier.

68

Testing

6.3 Performance tests

This section focuses on measuring the execution times of critical operations while comparing
different configurations and algorithms. In particular, the point is to compare the performance of
SPHINCS-SHAKE256-SIMPLE, SPHINCS-SHAKE256-FAST, Dilithium_5 and Mayo_5.

1. SPHINCS-SHAKE256-SIMPLE and SPHINCS-SHAKE256-FAST: These algorithms are part of the
SPHINCS+ family, and are better explained in 2.4. The SIMPLE variant emphasizes sim-
plicity and general security, while the FAST variant focuses on faster signing times by
adjusting internal parameters.

2. Dilithium_5: This algorithm is based on lattice-based cryptography, specifically the CRYSTALS-
Dilithium scheme.

3. Mayo_5: Another lattice-based cryptographic algorithm that offers efficient signing and ver-
ification times. Unlike the previous ones, Mayo has not been included in the NIST stan-
dardization process.

To determine which algorithm offers better efficiency, these key metrics are analyzed:

• Keypair generation time.

• Signing Time: measures the time it takes for the Agent to sign a quote.

• Signature Verification Time: assesses the time the Verifier takes to validate the signature
received from the Agent.

• Complete Attestation Cycle.

Start: The attestation cycle begins when the Verifier sends a quote request to the Agent,
generating a unique nonce for the session and a PCR mask.

End: The cycle ends when the Verifier has successfully verified the signature and checked
the IMA measurement list. In a nutshell, this parameter measures the total time required
to complete an attestation interaction.

• Signature Size: the size of the signature affects the amount of data transmitted between the
Agent and the Verifier.

• Public Key Size: the size of the public key impacts communication efficiency and memory
consumption.

• Private Key Size.

50 measurements are taken, and the values presented represent the average time. By select-
ing algorithms at the same NIST security level 5, this comparison ensures that the trade-offs
between performance and security remain fair and meaningful. To accurately measure execu-
tion times, timestamps are used from both the Agent and the Verifier. In particular, to cap-
ture timestamps on the Agent side, it is necessary to modify the main.rs file by inserting the
pretty_env_logger::init_timed() logging mechanism, instead of the standard logger used in
the keylime_Agent.

6.3.1 Keypair generation time

Fig. 6.1 presents the keypair generation time taken from the algorithms. Among the analyzed
schemes, SPHINCS-F exhibits the fastest keypair generation time at 8 ms, significantly outper-
forming SPHINCS-S, which requires 48 ms, the highest value in the dataset. This difference can be
attributed to the design choices and optimizations within the SPHINCS variants. For structured
lattice-based algorithms, Dilithium 5 and Mayo 5 show comparable keypair generation times of
12.6 ms and 11.8 ms, respectively. These values suggest that both schemes offer efficient key
generation while maintaining strong security guarantees against quantum adversaries.

69

Testing

6.3.2 Signing Time

Algorithm Signing Time (ms) NIST security level

SPHINCS-SHAKE256S-SIMPLE 481 5

SPHINCS-SHAKE256F-SIMPLE 57 5

Dilithium 5 1 5

Mayo 5 1 5

Table 6.1. Signing time comparison

The analysis reveals a significant variation in signing times across the algorithms. As we can
see in 6.1, the SPHINCS+ variants focus on achieving higher security levels, but do so at the cost
of longer signing times. SPHINCS-SHAKE256S-SIMPLE has the longest signing time, averaging 481
milliseconds, followed by SPHINCS-SHAKE256F-SIMPLE with a signing time of 57 milliseconds. In
contrast, lattice-based algorithms Dilithium_5 and Mayo_5 provide near instant signing times.
This level of performance makes them ideal candidates for time-critical applications where rapid
signing is a priority.

6.3.3 Signature Verification Time

Fig. 6.1 shows that SPHINCS-SHAKE256S-SIMPLE and SPHINCS-SHAKE256F-SIMPLE both achieve
exceptional efficiency, with an average verification time of 2 ms, demonstrating consistent and
efficient performance for the verification process. Dilithium_5 remains highly efficient, registering
an average verification time of 3 milliseconds, so it still maintains a high level of performance.

Mayo_5, with an average time of 7 ms, is the slowest among the tested algorithms but still per-
forms well within acceptable limits. In general, data show that verification is relatively lightweight
compared to signing.

Figure 6.1. Execution Time of Key and Signature Processes

6.3.4 Complete Attestation Cycle

Table 6.2 reports the average time required to complete the attestation cycle for the evaluated
post-quantum algorithms. In Keylime, a standard attestation cycle without the post-quantum

70

Testing

signature takes 2,5 seconds, but this value can be set to a different value through the Keylime
configuration file (see file etc/keylime.conf). The results here demonstrate that introducing
post-quantum cryptography increases the total cycle time. SPHINCS-SHAKE256S-SIMPLE shows
the longest attestation cycle time at 2,993 ms, which is significantly impacted by its higher
signing time. SPHINCS-SHAKE256F-SIMPLE reduces the cycle time to 2,621 ms, demonstrating
the benefits of faster signing while still exceeding the baseline Keylime attestation time. Lattice-
based algorithms Dilithium_5 and Mayo_5, achieve the shortest attestation cycle times, measured
at 2,552 ms and 2,543 ms, respectively. These values show that lattice-based approaches introduce
minimal overhead while maintaining the required security guarantees.

Algorithm Complete Attestation Cycle (ms)

SPHINCS-SHAKE256S-SIMPLE 2993

SPHINCS-SHAKE256F-SIMPLE 2621

Dilithium 5 2552

Mayo 5 2543

Without PQ algorithms 2500

Table 6.2. Complete Attestation Cycle comparison

Figure 6.2. Complete Attestation Cycle comparison

6.3.5 Signature Size

Referring to fig. 6.3 SPHINCS-SHAKE256 variants produce significantly larger signatures com-
pared to lattice-based algorithms. SPHINCS-SHAKE256S-SIMPLE generates a signature size of
29,792 bytes, while SPHINCS-SHAKE256F-SIMPLE produces signatures at 49,856 bytes. This is
because the FAST variant enhances signing time at the expense of increased signature size. In con-
trast, the lattice-based algorithms demonstrate much smaller signature sizes. Dilithium_5 gen-
erates signatures of 4,595 bytes, which is already an order of magnitude smaller than SPHINCS+.
Mayo_5 performs exceptionally well in this aspect, producing the smallest signature size of just
838 bytes, making it the most efficient choice in terms of minimizing communication overhead.

71

Testing

Figure 6.3. Signature size comparison

Algorithm Public Key Size (bytes) Private Key Size (bytes)

SPHINCS-SHAKE256S-SIMPLE 64 128

SPHINCS-SHAKE256F-SIMPLE 64 128

Dilithium 5 2592 4864

Mayo 5 5008 40

Table 6.3. Public and Private Key Sizes

6.3.6 Keypair Size

Table 6.3 presents the public key sizes for the evaluated post-quantum algorithms. Unlike signa-
ture size, public key size plays a role in how efficiently keys can be distributed and managed in
constrained environments. The SPHINCS-SHAKE256 variants exhibit small public key sizes of
just 64 bytes. This minimal size ensures low overhead for public key distribution. In contrast,
lattice-based algorithms require significantly larger public keys:

• Dilithium_5 has a public key size of 2,592 bytes, which is moderate compared to other
lattice-based algorithms but considerably larger than SPHINCS+.

• Mayo_5, another lattice-based approach, requires a public key size of 5,008 bytes, making it
the largest among the tested algorithms.

Taking into consideration private keys, SPHINCS-SHAKE256S-SIMPLE and SPHINCS-SHAKE256F-
SIMPLE both have a relatively compact private key size of 128 bytes, benefiting from their hash-
based design. On the other hand, the lattice-based Dilithium 5 exhibits the largest private key,
requiring 4864 bytes, which is considerably higher than the other schemes. Mayo 5 has the small-
est private key size at only 40 bytes, making it the most storage-efficient among the analyzed
algorithms. The choice of algorithm will therefore depend on the specific requirements of the use
case, particularly if minimizing public key size is a priority.

6.3.7 Final analysis

The integration of post-quantum digital signatures into the remote attestation process revealed
notable differences among the tested algorithms. SPHINCS+ (both variants) offers strong secu-
rity and small key sizes, but it comes with significant performance trade-offs. The high signature

72

Testing

generation time, especially in SPHINCS-SIMPLE, makes it less suitable for environments with
tight real-time constraints, such as embedded systems. Although SPHINCS-FAST improves sign-
ing time, it still lags behind the lattice-based algorithms, making SPHINCS+ more appropriate
for security-sensitive environments rather than time-critical applications.

In contrast, Dilithium and Mayo strike a better balance between security and efficiency. Both
offer fast signing and verification times, making them well-suited for embedded systems and low-
latency environments. Mayo, in particular, stands out with the smallest signature size, minimizing
communication overhead, an essential factor in bandwidth-limited systems. While SPHINCS+
offers advantages in security and key size, its larger signatures and slower signing times, espe-
cially in the FAST variant, may be problematic in resource-constrained scenarios. On the other
hand, Dilithium and Mayo provide smaller signature sizes and better performance. In conclusion,
SPHINCS+ is suitable for applications with high-security requirements but is less optimal when
performance, particularly signing time, is critical. Dilithium and Mayo are better choices for sys-
tems requiring low latency and minimal overhead. The selection of the algorithm should depend
on the specific needs of the use case, balancing speed, security, and efficiency.

6.4 Resource Consumption (CPU/RAM)

This section focuses on evaluating the CPU and RAM consumption during the attestation process.
These measurements are performed exclusively for the SPHINCS-SHAKE256-SIMPLE algorithm.

The resource usage is continuously monitored for a duration of 60 seconds while multiple attes-
tation cycles are performed. This approach ensures that variations in CPU and RAM consumption
across different stages of the attestation process are captured and represented.

The measurement is conducted using a Python script that records the resource consumption
of both the Agent and the Verifier. This script runs alongside the attestation operations and uses
the psutil library to track real-time CPU and RAM usage. The data collected includes:

• CPU Usage: This represents the percentage of processing power utilized during the attes-
tation operations.

• RAM Usage: This measures the amount of memory consumed during the process, high-
lighting the memory requirements of the algorithm and the overhead introduced by the
implementation.

6.4.1 RAM Consumption Analysis

Figure 6.4 represents the RAM usage during a 60-second remote attestation period. Several
observations can be made:

• At the beginning of the monitoring period, the RAM consumption shows a clear increase.
This corresponds to the initialization phase of the attestation process, where components
such as the Verifier, Agent, or cryptographic libraries are loaded into memory.

• Then, RAM consumption stabilizes, minimally fluctuating between 36.4% and 36.8% for
most of the duration. This stable state indicates that the memory requirements do not
vary significantly once the attestation process starts. This behavior is expected, as the
cryptographic operations and data transfers during the attestation cycle typically use a
fixed memory footprint.

• Intermittent small increases in RAM consumption are observed. These could be attributed
to temporary operations, such as signing or verifying data, or handling the IMA logs.

73

Testing

Figure 6.4. RAM usage

Figure 6.5. CPU usage

6.4.2 CPU Consumption Analysis

The graph 6.5 illustrates CPU usage over the same 60-second period:

• The graph shows a periodic pattern, where CPU usage increases to around 8-10% and then
decreases back to near 0%. This oscillation reflects the cyclical nature of the attestation
process, including phases such as quote generation, quote signing, signature verification, and
IMA validation.

• The highest CPU usage values are associated with computationally intensive tasks such as
generating digital signatures or verifying signatures using cryptographic algorithms.

• The low points in the graph, where CPU usage drops close to 0%, suggest that the system
enters into less demanding states between attestation cycles. These intervals might represent
waiting periods for responses between the Verifier and the Agent or less intensive operations
like network communication.

74

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, the goal was to propose a quantum-safe solution to periodically monitor the in-
tegrity and state of nodes through remote attestation. The possibility of extending remote at-
testation, in particular by integrating the verification of a post-quantum digital signature, has
been explored. The proposed solution enhances the security of remote attestation by incorpo-
rating quantum-resistant signature schemes, ensuring that the integrity and authenticity of the
attestation process remain robust even in the face of future quantum computing advancements.
The approach used involves digitally signing the quote generated by the agent within the attester.
This signature is then transmitted to the verifier, which verifies both the attestation’s validity
and the digital signature’s correctness. This mechanism ensures that any tampering attempts on
the attestation data can be detected, thus strengthening the trustworthiness of the system. The
implementation was carried out using Keylime, an open-source framework that enables remote
attestation and supports TPM 2.0. The TPM 2.0 was leveraged as the hardware root of trust
for the attestation process. To achieve post-quantum digital signing, algorithms from the liboqs
library have been used, which provide foundational functions for various post-quantum cryp-
tographic schemes. Specifically, four post-quantum signature algorithms have been evaluated:
SPHINCS-FAST, SPHINCS-SIMPLE, DILITHIUM, and MAYO. These algorithms were chosen
based on their distinct cryptographic properties and potential suitability. Performance testing
revealed that DILITHIUM is the most efficient algorithm for the adopted solution, demonstrat-
ing superior computational performance and verification speed compared to the other evaluated
algorithms. These results align with existing research indicating that structured lattice-based
schemes, such as DILITHIUM, offer a good balance between security and efficiency, making them
strong candidates for post-quantum authentication in real-world applications. However, this can
be considered true in a software-based solution like the one adopted in this thesis. Meanwhile, in
a hardware-based environment that involves modifying the TPM to support post-quantum cryp-
tography, lattice-based algorithms are considered very difficult to manage and implement, with
respect to hash-based algorithms like SPHINCS+. Lattice-based post-quantum algorithms are
based on computationally intensive operations, which are not inherently optimized for execution
in a TPM’s constrained environment. The transition to post-quantum security is an inevitable
and critical step in the evolution of cryptographic systems, particularly for security-sensitive ap-
plications such as remote attestation. The work presented in this thesis provides a foundational
approach to integrating post-quantum cryptography into remote attestation and highlights key
performance and implementation considerations. Future research should focus on improving ef-
ficiency, ensuring interoperability with existing TPM infrastructures, and addressing practical
deployment challenges for real-world applications.

7.1.1 Future improvements and directions

One of the possible improvements in the proposed solution could be to further enhance Keylime’s
flexibility in supporting post-quantum cryptographic algorithms. A useful extension would be to

75

Conclusions and future work

provide users with the ability to select from a range of post-quantum algorithms and customize
parameters such as public and private keys, enabling greater adaptability to specific security and
performance requirements. The more ambitious long-term goal for achieving quantum-safe remote
attestation would be the integration of post-quantum cryptographic capabilities directly into the
TPM. This would allow the TPM itself to support post-quantum algorithms natively, generate
the key pair required for digital signing and verification at manufacturing time, and directly sign
the quote using a post-quantum private key. Such an enhancement would improve security by
minimizing external dependencies and ensuring that key management remains within a trusted
hardware boundary. However, achieving this goal requires significant advancements in TPM hard-
ware and firmware, as the TPM is a constrained environment with limited computational power,
memory, and specific hardware design constraints that make the adoption of certain cryptographic
primitives more challenging. The work contributes to the development of hybrid cryptographic
approaches that combine classical and post-quantum signatures to ensure a smooth and secure
transition to quantum-resistant attestation mechanisms. This approach could mitigate potential
vulnerabilities that may arise during the initial adoption phase of post-quantum cryptographic
schemes.

76

Bibliography

[1] K.Townsend, “Solving the Quantum Decryption ’Harvest Now, Decrypt Later’ Prob-
lem”, SecurityWeek, vol. 28, February 2022, p. 5. https://www.securityweek.com/

solving-quantum-decryption-harvest-now-decrypt-later-problem

[2] M.Kumar, “Post-quantum cryptography Algorithm’s standardization and performance anal-
ysis”, Array, August 2022, p. 27, DOI 10.1016/j.array.2022.100242

[3] R.Feynman, “Simulating physics with computers”, International Journal of Theoretical
Physics, vol. 21, June 1982, p. 21, DOI 10.1007/BF02650179

[4] V.Mavroiedis, K.Vishi, M.Zych, and A.Josang, “The Impact of Quantum Computing on
Present Cryptography”, International Journal of Advanced Computer Science and Applica-
tions, vol. 9, no. 3, 2018, p. 10, DOI 10.14569/IJACSA.2018.090354

[5] S.Yasmineh, “Foundations of Quantum Mechanics”, Encyclopedia, vol. 2, May 2022,
pp. 1082–1090, DOI 10.1109/MS.2010.160

[6] E.Chae, J.Choi, and J.Kim, “An elementary review on basic principles and developments
of qubits for quantum computing”, Nano Convergence, vol. 11, March 2024, p. 13, DOI
10.1186/s40580-024-00418-5

[7] Y.Yu, S.Zhu, G.Sun, X.Wen, N.Dong, J.Chen, P.Wu, and S.Han, “Quantum Jumps between
Macroscopic Quantum States of a Superconducting Qubit Coupled to a Microscopic Two-
Level System”, Physical Review Letters, vol. 101, October 2008, p. 4, DOI 10.1103/phys-
revlett.101.157001

[8] P.Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer”, SIAM Journal on Computing, vol. 26, October 1997, pp. 1484–1509,
DOI 10.1137/s0097539795293172

[9] L.Grover, “A fast quantum mechanical algorithm for database search”, 28th Annual ACM
Symposium on Theory of Computing (STOC), Philadelphia (Pennsylvania), May 29-30, 1996,
pp. 212–219, DOI 10.48550/arXiv.quant-ph/9605043

[10] R. J. Anderson, “Security engineering”, Wiley, 2008
[11] X.Liu, D.Xiao, and C.Liu, “Double Quantum Image Encryption Based on Arnold Trans-

form and Qubit Random Rotation”, Entropy, vol. 20, November 2018, p. 16, DOI
10.3390/e20110867

[12] Z.Liao, Q.Huang, and X.Chen, “A fully dynamic forward-secure group signature from lat-
tice”, Cybersecurity, vol. 5, October 2022, p. 14, DOI https://doi.org/10.1186/s42400-022-
00122-z

[13] B.Biswas and N.Sendrier, “Mceliece cryptosystem implementation: Theory and practice”,
Post-Quantum Cryptography, Berlin (Germany), 2008, pp. 47–62, DOI 10.1007/978-3-540-
88403-3 4

[14] A.Valentijn, “Goppa Codes and Their Use in the McEliece Cryptosystems”, Honors Capstone
Project, vol. 4, January 2015, p. 41. https://surface.syr.edu/honors_capstone/845

[15] M.Mosca, “Cybersecurity in an Era with Quantum Computers: Will We Be Ready?”, IEEE
Security & Privacy, vol. 16, September 2018, p. 14, DOI 10.1109/MSP.2018.3761723

[16] D.Joseph1, R.Misoczki, M.Manzano1, J.Tricot, F.Dominguez, S. O.Lacombe, J.Hidary,
P.Venables, and R.Hansen, “Transitioning organizations to post-quantum cryptography”,
Nature, vol. 605, May 2022, p. 5, DOI 10.1038/s41586-022-04623-2

[17] D.Mayers, “Unconditional security in Quantum Cryptography”, Journal of Applied and
Computational Mechanics, vol. 48, May 2001, pp. 351–406, DOI 10.48550/arXiv.quant-
ph/9802025

77

https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem
https://doi.org/10.1016/j.array.2022.100242
https://doi.org/10.1007/BF02650179
https://doi.org/10.14569/IJACSA.2018.090354
https://doi.org/10.1109/MS.2010.160
https://doi.org/10.1186/s40580-024-00418-5
https://doi.org/10.1103/physrevlett.101.157001
https://doi.org/10.1103/physrevlett.101.157001
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.3390/e20110867
https://doi.org/https://doi.org/10.1186/s42400-022-00122-z
https://doi.org/https://doi.org/10.1186/s42400-022-00122-z
https://doi.org/10.1007/978-3-540-88403-3_4
https://doi.org/10.1007/978-3-540-88403-3_4
https://surface.syr.edu/honors_capstone/845
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1038/s41586-022-04623-2
https://doi.org/10.48550/arXiv.quant-ph/9802025
https://doi.org/10.48550/arXiv.quant-ph/9802025

Bibliography

[18] C.Bennett and G.Brassard, “Quantum cryptography: Public key distribution and coin
tossing”, Theoretical Computer Science, vol. 560, December 2014, pp. 7–11, DOI
10.1016/j.tcs.2014.05.025

[19] W.Buchanan and A.Woodward, “Will quantum computers be the end of public key en-
cryption?”, Journal of Cyber Security Technology, vol. 1, September 2016, pp. 1–22, DOI
10.1080/23742917.2016.1226650

[20] R.Merkle, “A certified digital signature”, Advances in Cryptology — CRYPTO’ 89 Proceed-
ings (G.Brassard, ed.), pp. 218–238, Springer, 1990, DOI 10.1007/0-387-34805-0 21

[21] M.Campagna, L.Chen, O.Dagdelen, J.Ding, J.Fernick, N.Gisin, D.Hayford, T.Jennewein,
N.Lutkenhaus, M.Mosca, B.Neill, M.Pecen, R.Perlner, G.Ribordy, J.Schank, D.Stebila,
N.Walenta, W.Whyte, and Z.Zhang, “Quantum Safe Cryptography and Security”, ETSI,
vol. 15, Jube 2015, p. 64. https://www.etsi.org/images/files/etsiwhitepapers/

quantumsafewhitepaper.pdf

[22] T.Moriya, K.Takashima, and T.Takagi, “Group Key Exchange from CSIDH and Its Appli-
cation to Trusted Setup in Supersingular Isogeny Cryptosystems”, Information Security and
Cryptology, March 2020, pp. 86–98, DOI 10.1007/978-3-030-42921-8 5

[23] A.Huelsing, D.Butin, S.Gazdag, J.Rijneveld, and A.Mohaisen, “XMSS: eXtended Merkle
Signature Scheme.” RFC-8391, May 2018, DOI 10.17487/RFC8391

[24] D.McGrew, M.Curcio, and S.Fluhrer, “Leighton-Micali Hash-Based Signatures.” RFC-8554,
April 2019, DOI 10.17487/RFC8554

[25] D.Dam, T.Tran, V.Hoang, C.Pham, and T. Hoang, “A Survey of Post-Quantum Cryptogra-
phy: Start of a New Race”, Cryptography, vol. 7, July-August 2023, p. 18, DOI 10.3390/cryp-
tography7030040

[26] W.Beullens, “Breaking rainbow takes a weekend on a laptop”, ‘Advances in Cryptology -
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II (T. Y.Dodis, ed.), pp. 464–479,
Springer, 2022, DOI 10.1007/978-3-031-15979-4 16

[27] Keyfactor, https://www.keyfactor.com/blog/certificate-chain-of-trust/
[28] K.Ezirim, W.Khoo, G.Koumantaris, and R.Law, “Trusted Platform Module - A Survey”,

ResearchGate, November 2012, p. 14. https://www.researchgate.net/publication/

287984174_Trusted_Platform_Module_-_A_Survey

[29] Trusted Computing Group, https://trustedcomputinggroup.org/resource/

trusted-platform-module-tpm-summary/

[30] A.Tomlinson, “Smart cards, tokens, security and applications”, Springer, 2008
[31] G.Coker, J.Guttman, P.Loscocco, A.Herzog, J.Millen, B.O’Hanlon, J.Ramsdell, A.Segall,

J.Sheehy, and B.Sniffen, “Principles of remote attestation”, International Journal of Infor-
mation Security, vol. 10, April 2011, pp. 63–81, DOI 10.1007/s10207-011-0124-7

[32] T. Dierks and E. Rescorla, “H.Birkholz, D.Thaler, M.Richardson, N.Smith, W.Pan.” RFC-
9334, January 2023, DOI 10.17487/RFC9334

[33] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and
maintaining trust in the cloud”, Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, pp. 65–77, Association for Computing Machinery, 2016, DOI
10.1145/2991079.2991104

78

https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1080/23742917.2016.1226650
https://doi.org/10.1007/0-387-34805-0_21
https://www.etsi.org/images/files/etsiwhitepapers/quantumsafewhitepaper.pdf
https://www.etsi.org/images/files/etsiwhitepapers/quantumsafewhitepaper.pdf
https://doi.org/10.1007/978-3-030-42921-8_5
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8554
https://doi.org/10.3390/cryptography7030040
https://doi.org/10.3390/cryptography7030040
https://doi.org/10.1007/978-3-031-15979-4_16
https://www.keyfactor.com/blog/certificate-chain-of-trust/
https://www.researchgate.net/publication/287984174_Trusted_Platform_Module_-_A_Survey
https://www.researchgate.net/publication/287984174_Trusted_Platform_Module_-_A_Survey
https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.17487/RFC9334
https://doi.org/10.1145/2991079.2991104

Appendix A

User’s manual

A.1 Linux Installation

The first step is to install the Ubuntu Linux operating system by following the step-by-step
instructions provided below. This requires a USB drive (at least 8 GB) and a program to create
a bootable drive, such as Rufus.

A.1.1 Download the Ubuntu ISO image

Visit Ubuntu’s official website https://www.ubuntu-it.org/download and download the ISO
for Ubuntu 24.04.1 LTS. Insert a USB drive into your machine and launch Rufus, available from
the official website https://rufus.ie/it/, then:

• Select the downloaded ISO image.

• Choose the USB drive as the destination.

• Click Start to create the bootable USB.

A.1.2 Configure the BIOS/UEFI and begin Installation

Access the BIOS/UEFI settings by restarting the PC and pressing the appropriate key during
startup (e.g., F2, F12, DEL, or ESC). Set the USB drive as the boot device by adjusting the boot
order in the BIOS/UEFI settings to prioritize it. Insert the bootable USB drive into the computer
and restart it. The system will load the Ubuntu installer. Set “Try or install Ubuntu”. Choose
the preferred language (e.g., English) and click “install Ubuntu”. When prompted to select the
installation type, you can choose:

• Install Ubuntu alongside Windows Boot Manager.

• Something else for manual partitioning. This is the one to select if you want to configure
the PC in dual-boot.

A.1.3 Configure the Disk

This section applies only to cases where the system is configured for dual-boot, requiring a par-
titioning method selection. If you are not setting up a dual-boot system, you can skip this part.

If you selected “Something else”, the system’s actual partitions will be displayed. Select “Free
Space”, and then you can add the first partition, which will be dedicated to the new operating

79

https://www.ubuntu-it.org/download
https://rufus.ie/it/

User’s manual

system. Select the necessary size for your partition, specifically choosing the total available −
total of swap partition. in this case, the swap partition will be 4 GB. Then, you have to create
another partition dedicated to the swap, with a size of 4 GB.

Root Partition:

• Type: Ext4.

• Size: At least 25 GB.

Swap Partition:

• Type: Swap area.

• Size: 4 GB.

Confirm and write changes to the disk, allowing the machine to install the Bootloader. During
installation, ensure the bootloader (GRUB) is installed on the correct drive (e.g., /dev/sda for
the main disk). Then press “Restart now” to reboot the system. Upon reboot, GRUB will appear,
allowing you to choose between Windows and Ubuntu. Boot into each operating system to confirm
everything works correctly.

A.2 Keylime Installation

First of all, install the following dependencies:

$ sudo apt install libssl-dev swig python3-pip

The Keylime framework needs a version of libtss2 >= 2.4.0, and since Ubuntu 20.04 has by default
the version 2.3.2, you need first to uninstall it:

$ sudo apt remove libtss2-esys0

$ sudo apt autoclean \&\& sudo apt autoremove

Now you can manually build and install libtss2 version >= 2.4.0. However, first, install the
following dependencies:

$ sudo apt install autoconf autoconf-archive libglib2.0-dev libtool

pkg-config libjson-c-dev libcurl4-gnutls-dev

Now you can install all the tools required to manage the TPM 2.0 chip.

• Installation of libtss2

$ git clone https://github.com/tpm2-software/tpm2-tss.git

$ cd tpm2-tss

$./bootstrap

$./configure --prefix=/usr

$ make

$ sudo make install

• Installation of tpm2-tools

$ git clone https://github.com/tpm2-software/tpm2-tools.git

$ cd tpm2-tools

$./bootstrap

$./configure --prefix=/usr/local

$ make

$ sudo make install

80

User’s manual

• Installation of tpm2-abrmd

$ git clone https://github.com/tpm2-software/tpm2-abrmd.git

$ cd tpm2-abrmd

$./bootstrap

$./configure --with-dbuspolicydir=/etc/dbus-1/system.d \

--with-systemdsystemunitdir=/lib/systemd/system \

--with-systemdpresetdir=/lib/systemd/system-preset \

--datarootdir=/usr/share

$ make

$ sudo make install

$ sudo ldconfig

$ sudo pkill -HUP dbus-daemon

$ sudo systemctl daemon-reload

Configure TPM Command Transmission Interface (TCTI):

$ export TPM2TOOLS_TCTI="tabrmd:bus_name=com.intel.tss2.Tabrmd"

Start the Access Broker Resource Manager service:

$ sudo service tpm2-abrmd start

And check if it is working:

systemctl status tpm2-abrmd.service

You should read “active (running)”. To check if the tpm2 tools are working properly, you can
run the command:

$ tpm2_pcrread

This will display the content of the PCR banks. Now, you can proceed by installing the
framework. First, clone the Keylime repository, move into the “keylime” directory, install the
script, and copy the configuration file:

$ git clone https://github.com/keylime/keylime.git

$ cd keylime

$ sudo pip3 install . -r requirements.txt

$ sudo cp keylime.conf /etc/

A.2.1 Keylime Agent Configuration

This section describes how to configure the Keylime Agent on the attester machine. It is important
to underline that the Python Agent present in Keylime will be deprecated. However, the workflow
for setting it up and using it properly is still provided here. The configuration of the Rust-Agent,
which is the one used in this work, is presented in A.3.

To configure the Python Agent on the attester machine, open the configuration file:

sudo nano /etc/keylime.conf

The file is divided into sections, each containing several parameters. For the Agent configura-
tion, you need to modify only the sections [general] and the [cloud agent]. In the [general]
section, find the receive revocation ip parameter and put the IP address of the attester machine,
for example:

receive_revocation_ip = 192.168.0.100

In the [cloud agent] section set the cloud agent ip which is the IP address of the attester
machine, the registrar ip which is the IP address of the registrar, and the agent uuid, for example:

81

User’s manual

cloud_agent_ip = 192.168.0.100

registrar_ip = 192.168.0.114

agent_uuid = d432fbb3-d2f1-4a97-9ef7-75bd81c00000

Note that the agent uuid shown in the example is the default one. Then set the hash
algorithm:

tpm_hash_alg = sha256

A.2.2 Keylime Verifier and Registrar configuration

In this section, we will configure the Keylime Verifier, Keylime Registrar, and Keylime Tenant
components. The tests are performed by running these three components on the same machine,
although they may be installed and run on different machines. The machine has to be equipped
with a TPM 2.0 because these components use the tpm2-tools for performing some operations;
differently from the attester machine, which needs a hardware TPM, the TPM 2.0 installed on this
machine may also be an emulator as we only need the functionalities provided by the tpm2-tools.
If you have an attester machine containing the Rust Agent and a Verifier machine that includes
the Verifier, Registrar, and Tenant, install Keylime by following the instructions in section A.2,
then customize the Keylime configuration file as described in the sections below. Otherwise, if
your components are all on the same machine (as in this work) and you have already installed
Keylime, you can customize the configuration files directly.

A.2.3 Registrar

Open the configuration file:

$ sudo nano /etc/keylime.conf

Find the [registrar] tag. Then customize the registrar ip by putting the IP address of the
verifier machine, for example:

The tests are performed, leaving the default values for the other parameters.

registrar_ip = 192.168.0.114

A.2.4 Verifier

Open the configuration file:

$ sudo nano /etc/keylime.conf

and find the [cloud verifier] tag. Then customize the cloudverifier ip, the registrar ip, and
the revocation notifier ip, by putting the IP address of the verifier machine, for example:

cloudverifier_ip = 192.168.0.114

registrar_ip = 192.168.0.114

revocation_notifier_ip = 192.168.0.114

The tests are performed leaving the default values for the other parameters.

A.2.5 Tenant

Open the configuration file:

$ sudo nano /etc/keylime.conf

82

User’s manual

and find the [tenant] tag. Then customize the cloudverifier ip and the registrar IP by putting
the IP address of the verifier machine, for example:

cloudverifier_ip = 192.168.0.114

registrar_ip = 192.168.0.114

Then, from the attester machine retrieve the PCRs values with indexes 0-9 of the SHA256
bank, through the command:

$ sudo tpm2_pcrread

and copy them in the tpm policy parameter in one line, as a JSON object, like:

tpm_policy = {"0": ["47D..."], "1":["25C..."], ..., "9":["4C3..."]}

Finally, go into the Keylime directory and copy the content of the tpm_cert_store directory
in /var/lib/keylime/tpm_cert_store:

$ sudo mkdir /var/lib/keylime/tpm_cert_store

$ sudo cp -r ./tpm_cert_store /var/lib/keylime/tpm_cert_store

A.3 Rust implementation of Keylime Agent: installation

This section provides a comprehensive guide to installing the Rust implementation of the Keylime
agent. The rust-keylime agent is the official agent (starting with version 0.1.0) and replaces the
Python implementation.

A.3.1 Prerequisites

Before proceeding with the installation, ensure that your system meets the necessary prerequisites.
This includes installing required packages and setting up the Rust programming environment. The
required packages vary based on your operating system. Below are the instructions for Fedora,
Debian, and Ubuntu systems.

Fedora

For Fedora systems, the following packages are essential for building the Rust-Keylime agent:

$ sudo dnf install clang openssl-devel tpm2-tss-devel zeromq-devel

For runtime requirements, install the following packages:

$ sudo dnf install openssl tpm2-tss systemd util-linux-core zeromq

Debian and Ubuntu

For Debian-based systems, install the necessary development packages using:

$ sudo apt-get install libclang-dev libssl-dev libtss2-dev libzmq3-dev

pkg-config

For runtime dependencies, execute:

$ sudo apt-get install coreutils libssl1.1 libtss2-esys-0 systemd libzmq3

83

User’s manual

A.3.2 Installing Rust

Ensure that Rust is installed on your system before proceeding. You can install Rust by following
the instructions in the official Rust website. To verify the installation, run:

$ rustc --version

A.3.3 Cloning the Rust-Keylime Repository

Begin by cloning the official Rust-Keylime repository from GitHub:

$ git clone https://github.com/keylime/rust-keylime.git

$ cd rust-keylime

With all prerequisites in place, you can now build the Rust-Keylime agent.

$ cargo build --release

A.3.4 Configuring Logging

To enable detailed logging-in for troubleshooting and monitoring, set the RUST_LOG environment
variable before running the agent. For example, to activate trace-level logging:

$ export RUST_LOG=keylime_agent=trace

$ cargo run --bin keylime_agent

To ensure that the installation is successful and the agent works as expected, run the unit
tests provided in the repository:

$ cargo test

A.3.5 Deploying the Agent as a systemd Service

For seamless deployment and management, the Rust-Keylime agent can be run as a systemd-
managed service. Follow these steps to setup it:

$ make

$ sudo make install

$ sudo systemctl start keylime_agent

$ sudo systemctl enable keylime_agent

A.3.6 Building a Debian Package with cargo-deb

For Debian-based systems, you can create a Debian package using cargo-deb. This simplifies the
installation and distribution process. First, ensure that Rust is updated, then install cargo-deb:

$ rustup update

$ cargo install cargo-deb

Navigate to the Rust-Keylime project directory and execute:

$ cargo deb -p keylime_agent

This command generates a .deb package for the Keylime agent, which can be installed using
dpkg or apt.

After completing the installation and configuration, verify that the Rust-Keylime agent is
running correctly by checking its status:

$ sudo systemctl status keylime_agent

84

https://www.rust-lang.org/tools/install

User’s manual

A.4 How to use Keylime

A.4.1 Basic commands

After the setup, some commands become available for use from the command line:

• keylime verifier: start the verifier service;

• keylime tenant: start the tenant service;

• keylime userdata encrypt: encryption of a given file;

• keylime registrar: start the registrar service;

• keylime ca: handle the certification authority;

• keylime attest: verification of the state of all the agents registered in the persistence storage;

• keylime convert runtime policy: for the runtime policy conversion;

• keylime sign runtime policy: signs Keylime runtime policies using DSSE;

• keylime upgrade config: parses the content of a configuration file and uses the data to
replace the values in templates to generate new configuration files;

• keylime create policy: create a JSON allowlist/policy from given files as input;

• keylime agent: start the python agent service (deprecated).

A.4.2 Keylime runtime policies

A runtime policy is a collection of “golden” cryptographic hashes of files’ untampered state or
of keys that may be loaded onto keyrings for IMA verification. Keylime will load the runtime
policy into the Keylime Verifier. Keylime will then poll the tpm quotes with PCR 10 on the
agents’ TPM and validate the state of the agents’ file(s) against the policy. If the object has been
tampered with or an unexpected key was loaded onto a keyring, the hashes will not match and
Keylime will place the agent into a failed state. Likewise, if any files invoke the actions stated in
ima-policy that are not matched in the allowlist, keylime will set the agent into a failed state.

Generate a Runtime Policy

Runtime policies depend on the IMA configuration and used files by the operating system.
Keylime provides two helper scripts for getting started. The first script generates a runtime
policy from the initramfs, IMA log (just for the boot aggregate), and files located on the root
filesystem of a running system. The create_runtime_policy.sh script is available here.

Run the script as follows:

create_runtime_policy.sh -o runtime_policy_keylime.json

For more options, see the help page create_runtime_policy.sh:

Usage: $0 -o/--output_file FILENAME [-a/--algo ALGO]

[-x/--ramdisk-location PATH] [-y/--boot_aggregate-location PATH]

[-z/--rootfs-location PATH] [-e/--exclude_list FILENAME]

[-s/--skip-path PATH]"

optional arguments:

-a/--algo (checksum algorithmi to be used, default: sha1sum)

-x/--ramdisk-location (path to initramdisk, default: /boot/, set to

"none" to skip)

85

https://github.com/keylime/keylime/blob/master/scripts/create_runtime_policy.sh

User’s manual

-y/--boot_aggregate-location (path for IMA log, used for boot aggregate

extraction, default:

/sys/kernel/security/ima/ascii_runtime_measurements, set to "none" to

skip)

-z/--rootfs-location (path to root filesystem, default: /, cannot be

skipped)

-e/--exclude_list (filename containing a list of paths to be excluded

(i.e., verifier will not try to match checksums), default: none)

-s/--skip-path (comma-separated path list, files found there will not

have checksums calculated, default: none)

-h/--help show this message and exit

The resulting runtime_policy_keylime.json file can be directly used by the keylime_tenant
(option –runtime-policy)

Creating more Complex Policies

The second script allows users to build more complex policies by providing options to include
keyring verification, IMA verification keys, generate an allowlist from the IMA measurement
log, and extending existing policies. A basic policy can be easily created by using the IMA
measurement log from the system:

$ keylime_create_policy -m /path/to/ascii_runtime_measurements -o

runtime_policy.json

For more options, see the help page keylime_create_policy -h:

usage: keylime_create_policy [-h] [-B BASE_POLICY] [-k] [-b] [-a

ALLOWLIST] [-m IMA_MEASUREMENT_LIST] [-i IGNORED_KEYRINGS] [-o

OUTPUT] [--no-hashes] [-A IMA_SIGNATURE_KEYS]

options:

-h, --help show this help message and exit

-B BASE_POLICY, --base-policy BASE_POLICY

Merge new data into the given JSON runtime policy

-k, --keyrings Create keyrings policy entries

-b, --ima-buf Process ima-buf entries other than those related to

keyrings

-a ALLOWLIST, --allowlist ALLOWLIST

Use given plain-text allowlist

-m IMA_MEASUREMENT_LIST, --ima-measurement-list IMA_MEASUREMENT_LIST

Use given IMA measurement list for keyrings and

critical data extraction rather than

/sys/kernel/security/ima/ascii_runtime_measurements

-i IGNORED_KEYRINGS, --ignored-keyrings IGNORED_KEYRINGS

Ignored the given keyring; this option may be

passed multiple times

-o OUTPUT, --output OUTPUT

File to write JSON policy into; default is to print

to stdout

--no-hashes Do not add any hashes to the policy

-A IMA_SIGNATURE_KEYS, --add-ima-signature-verification-key

IMA_SIGNATURE_KEYS

Add the given IMA signature verification key to the

Keylime-internal ’tenant_keyring’; the key

should be an x509 certificate in DER or PEM

format but may also be a public or private key

file; this option may be passed multiple times

86

User’s manual

Remotely Provision Agents

Now that our runtime policy is available, we can send it to the verifier. Using the keylime_tenant
we can send the runtime policy as follows:

$ keylime_tenant -c add --uuid <agent-uuid> --runtime-policy

/path/to/policy.json

You can use “-c update” if your agent is already registered.

To test this, create a script that does anything (for example echo “hello world”) that is not
present in your runtime policy. Run the script as root on the agent. You will then see the following
output on the verifier showing the agent status change to failed:

keylime.tpm - INFO - Checking IMA measurement list...

keylime.ima - WARNING - File not found in allowlist: /root/evil_script.sh

keylime.ima - ERROR - IMA ERRORS: template-hash 0 fnf 1 hash 0 good 781

keylime.cloudverifier - WARNING - agent

D432FBB3-D2F1-4A97-9EF7-75BD81C00000 failed, stopping polling

A.4.3 Keylime CLI

In this section are the main commands offered by the Keylime Command-Line Interface to interact
with the framework. Each command respects the format:

$ keylime_tenant -c [command]

where the -c option can take one of the following keywords.

Add

The Add command is used to register an agent with the Verifier. It enables periodic remote
attestation and can take the following parameters:

• -u [UUID]

Where [UUID] is the agent UUID to be added. If not specified, the default UUID is used,
which corresponds to d432fbb3− d2f1− 4a97− 9ef7− 75bd81c00000.

• -v [Verifier IP]

Where [Verifier IP] is the IP address of the Verifier where the agent has to be registered. If
not specified, is used the IP address inserted into:

/etc/keylime.conf.

• -t [Agent IP]

Where [Agent IP] is the IP address of the agent to be added.

• -f [payload]

Where [payload] is a file to be encrypted with the bootstrap key.

• -exclude [exclude list]

Where [exlude list] is the file containing a regular expression with the files to be excluded in
the validation process of the Measurement List.

• -allowlist [whitelist]

Where [whitelist] is the file containing the golden values used to validate ML entries.

87

User’s manual

Update

The Update command updates an already registered agent. The parameters are the same of the
Add command. An example of this command is:

$ sudo keylime_tenant -c update -u d432fbb3-d2f1-4a97-9ef7-75bd81c00000

-t 192.168.0.100 -f payload --exclude exclude_host --allowlist

whitelist --pods_list pods_list

Delete

The Delete command removes a registered Agent from the Verifier. It can take parameters:

• -u [UUID]

Where [UUID] is the agent UUID to be removed. If not specified, the default UUID is used,
which corresponds to d432fbb3− d2f1− 4a97− 9ef7− 75bd81c00000.

• -v [Verifier IP]

Where [Verifier IP] is the IP address of the Verifier machine where the agent has to be deleted.
If not specified, is used the IP address inserted into:

/etc/keylime.conf.

An example of this command is:

$ sudo keylime_tenant -c delete -u d432fbb3-d2f1-4a97-9ef7-75bd81c00000

Status

The Status command allows the user to retrieve the status of a registered agent. An example of
this command is:

$ sudo keylime_tenant -c status -u [UUID]

where the placeholder [UUID] represents the agent UUID. If not specified, the default UUID
is used, which corresponds to d432fbb3−d2f1− 4a97− 9ef7− 75bd81c00000. Optionally, if more
than one Verifier is used, the specific verifier IP address can be specified through the option:

$ sudo keylime_tenant -c status -u [UUID] -v [Verifier_IP]

A.5 Installing Liboqs

This section explains how to install and configure liboqs, a C library for post-quantum cryptog-
raphy. Liboqs is developed by the Open Quantum Safe (OQS) project to provide a collection of
post-quantum cryptographic algorithms.

A.5.1 Prerequisits

Before starting, ensure your system meets the following prerequisites:

• a C compiler (e.g., GCC, Clang, or MSVC).

• Git (for cloning the repository).

• CMake (version 3.14 or later).

88

User’s manual

A.5.2 Install required dependencies

For Ubuntu/Debian:

$ sudo apt-get update

$ sudo apt-get install cmake gcc libssl-dev

For Fedora:

$ sudo dnf install cmake gcc openssl-devel

For macOS: Install the required tools using Homebrew:

$ brew install cmake openssl

For Windows:

• Install CMake and Visual Studio (Community Edition is sufficient).

• Ensure openssl is installed or build it from source if needed.

A.5.3 Clone the liboqs Repository

Download the latest version of the liboqs source code from the official GitHub repository:

$ git clone --recursive https://github.com/open-quantum-safe/liboqs.git

The --recursive option ensures that submodules are initialized and cloned along with the main
repository.

A.5.4 Build the library

Navigate to the liboqs directory, create a build directory, and navigate into it. Then, run CMake

to configure the build, and finally build and install the library:

$ cd liboqs

$ mkdir build && cd build

$ cmake -DCMAKE_INSTALL_PREFIX=<install_path> ..

$ make -j$(nproc)
$ sudo make install

A.5.5 Verify the Installation

To ensure the library is correctly installed, check if the shared library is present in the specified
install directory (e.g., /usr/local/lib). Test the library by running the example programs included
in the repository:

$./tests/test_kem

$./tests/test_sig

89

https://brew.sh/

Appendix B

Developer’s manual

This section details the modifications made to Keylime to add post-quantum cryptographic sup-
port. Specifically, it explains the integration of post-quantum signature verification into the
remote attestation process.

B.1 Configuration of the IMA policy

Keylime’s runtime integrity monitoring requires the setup of Linux IMA. Create a file /etc/ima/ima-policy
with the following content:

PROC_SUPER_MAGIC

dont_measure fsmagic=0x9fa0

SYSFS_MAGIC

dont_measure fsmagic=0x62656572

DEBUGFS_MAGIC

dont_measure fsmagic=0x64626720

TMPFS_MAGIC

dont_measure fsmagic=0x01021994

RAMFS_MAGIC

dont_measure fsmagic=0x858458f6

SECURITYFS_MAGIC

dont_measure fsmagic=0x73636673

SELINUX_MAGIC

dont_measure fsmagic=0xf97cff8c

CGROUP_SUPER_MAGIC

dont_measure fsmagic=0x27e0eb

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

B.1.1 Configuring IMA Appraisal for File Integrity Verification

Enable IMA Appraisal in Linux. To do it, go to /etc/default/grub and append the following
parameters to the GRUB_CMDLINE_LINUX_DEFAULT:

quiet splash ima_policy=tcb

Then, exit, update changes, and reboot the system.

sudo update-grub

reboot

90

Developer’s manual

Now, the correct policy can be created with the command:

keylime_create_policy -m /path/to/ascii_runtime_measurements -o

runtime_policy.json

B.2 Keylime Agent modifications

B.2.1 Main.rs

In file main.rs add the declaration of the function in charge of generating the post-quantum keys:

use libc::size_t;

#[link(name = "gen_keypair")]

extern "C" {

fn generate_PQ_keypair(stampa: i32) -> KeypairResult;

}

And the prototype of the function’s return value:

#[repr(C)]

struct KeypairResult {

public_key: *const u8,

public_key_len: size_t,

private_key: *const u8,

private_key_len: size_t,

}

Modify the struct QuoteData by adding the highlighted fields related to the created keys:

pub struct QuoteData {

tpmcontext: Mutex<tpm::Context>,

priv_key: PKey<Private>,

pub_key: PKey<Public>,

ak_handle: KeyHandle,

payload_tx: mpsc::Sender<payloads::PayloadMessage>,

revocation_tx: mpsc::Sender<revocation::RevocationMessage>,

keys_tx: mpsc::Sender<(

keys_handler::KeyMessage,

Option<oneshot::Sender<keys_handler::SymmKeyMessage>>,

)>,

hash_alg: keylime::algorithms::HashAlgorithm,

enc_alg: keylime::algorithms::EncryptionAlgorithm,

sign_alg: keylime::algorithms::SignAlgorithm,

agent_uuid: String,

allow_payload_revocation_actions: bool,

secure_size: String,

work_dir: PathBuf,

ima_ml_file: Option<Mutex<fs::File>>,

measuredboot_ml_file: Option<Mutex<fs::File>>,

ima_ml: Mutex<MeasurementList>,

secure_mount: PathBuf,

pq_pub_key: Vec<u8>,

pq_pub_key_len: usize,

pq_priv_key: Vec<u8>,

pq_priv_key_len: usize,

}

91

Developer’s manual

In function main.rs, add the code needed for calling the function of keypair generation and
for the conversion of key types:

let mut pq_key_base64 = String::new();

let pq_result = unsafe {

generate_PQ_keypair(1)

};

let public_key_vec = unsafe {

if !pq_result.public_key.is_null() {

Vec::from(std::slice::from_raw_parts(

pq_result.public_key,

pq_result.public_key_len,

))

} else {

Vec::new() // Restituisce un vettore vuoto se il puntatore ~A¨

nullo

}

};

let private_key_vec = unsafe {

if !pq_result.private_key.is_null() {

Vec::from(std::slice::from_raw_parts(

pq_result.private_key,

pq_result.private_key_len,

))

} else {

Vec::new()

}

};

let pq_key_base64: String =

general_purpose::STANDARD.encode(&public_key_vec);

unsafe {

libc::free(pq_result.public_key as *mut _);

}

creation of the struct Quotedata:

let quotedata = web::Data::new(QuoteData {

tpmcontext: Mutex::new(ctx),

priv_key: nk_priv,

pub_key: nk_pub,

...

...

pq_pub_key: public_key_vec,

pq_pub_key_len: pq_result.public_key_len,

pq_priv_key: private_key_vec,

pq_priv_key_len: pq_result.private_key_len,

});

and insert the code to perform the signature of the response sent in the registration phase:

// Conversione del campo auth_tag in CString

let auth_tag_ptr: *const u8 = auth_tag.as_ptr() as *const u8;

//conversione chiave privata in puntatore

let pq_priv_key_cstring: *const u8 = private_key_vec.as_ptr();

92

Developer’s manual

// Chiamata alla funzione C

let signed_response = unsafe {

sign_with_PQ(auth_tag_ptr, auth_tag.len(),pq_priv_key_cstring,

pq_result.private_key_len)

};

let signature_slice = unsafe {

std::slice::from_raw_parts(signed_response.signature,

signed_response.signature_len as usize) };

let signature_vec = signature_slice.to_vec();

To add the verification of the post-quantum public key, extend the struct Activate in file
registrar_agent.rs:

struct Activate<’a> {

auth_tag: &’a str,

auth_tag_len: usize,

sign_pq: Vec<u8>,

sign_pq_len: c_ulong,

pq_key: Vec<u8>,

pq_key_len: usize,

}

B.2.2 Function for post-quantum keypair generation

Content of the file gen_keypair.c:

#include <oqs/oqs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

typedef struct {

uint8_t* public_key;

size_t public_key_len;

uint8_t* private_key;

size_t private_key_len;

} KeypairResult;

KeypairResult generate_PQ_keypair(int stampa) {

KeypairResult result = {NULL, 0,NULL,0};

if (!OQS_SIG_alg_is_enabled(OQS_SIG_alg_sphincs_shake_256s_simple)) {

fprintf(stderr, "SPHINCS+ Algorithm not available!\n");

return result;

}

OQS_SIG* sig = OQS_SIG_new(OQS_SIG_alg_sphincs_shake_256s_simple);

if (sig == NULL) {

fprintf(stderr, "Error in the creation of the signature

structure!\n");

return result;

}

result.public_key_len = sig->length_public_key;

result.private_key_len = sig->length_secret_key;

93

Developer’s manual

result.public_key = malloc(result.public_key_len);

result.private_key = malloc(result.private_key_len);

if (result.public_key == NULL || result.private_key == NULL) {

fprintf(stderr, "Error in the allocation of the keys!\n");

OQS_SIG_free(sig);

free(result.public_key);

free(result.private_key);

return result;

}

if (OQS_SIG_keypair(sig, result.public_key, result.private_key) !=

OQS_SUCCESS) {

fprintf(stderr, "Error in the generation of the keys!\n");

OQS_SIG_free(sig);

free(result.public_key);

free(result.private_key);

return result;

}

if (stampa == 1){

fprintf(stderr, "Public key: ");

for (size_t i = 0; i < result.public_key_len; i++) {

fprintf(stderr, "%02X", result.public_key[i]);

}

fprintf(stderr, "\n");

fprintf(stderr, "Private key: ");

for (size_t i = 0; i < result.private_key_len; i++) {

fprintf(stderr, "%02X", result.private_key[i]);

}

fprintf(stderr, "\n");

}

OQS_SIG_free(sig);

return result;

To use this file, we must build a shared library from the C file, install it in /usr/local/lib/,
and register it with the system linker. It is possible by executing the following commands:

gcc -shared -fPIC gen_keypair.c -o libgen_keypair.so -I/usr/local/include

-L/usr/local/lib -lcrypto -lssl -loqs

sudo cp libgen_keypair.so /usr/local/lib/

sudo ldconfig

B.2.3 Function for post-quantum signature generation

Content of the file sign_with_PQ.c:

#include <oqs/oqs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

typedef struct {

94

Developer’s manual

uint8_t* signature;

size_t signature_len;

} SignatureResult;

SignatureResult sign_with_PQ(const uint8_t * quote, size_t quote_len, const

uint8_t * pq_priv_key, size_t pq_priv_key_len){

SignatureResult result = {NULL, 0};

if (!OQS_SIG_alg_is_enabled(OQS_SIG_alg_sphincs_shake_256s_simple)) {

fprintf(stderr, "SPHINCS+ algorithm not available!\n");

return result;

}

OQS_SIG *sig = OQS_SIG_new(OQS_SIG_alg_sphincs_shake_256s_simple);

if (sig == NULL) {

fprintf(stderr, "Error in the creation of the structure!\n");

return result;

}

result.signature = malloc(sig->length_signature);

if (result.signature == NULL) {

fprintf(stderr, "Error in the allocation of the signature!\n");

OQS_SIG_free(sig);

return result;

}

result.signature_len = sig->length_signature;

if (OQS_SIG_sign(sig, result.signature, &sig->length_signature, quote,

quote_len, pq_priv_key) != OQS_SUCCESS) {

fprintf(stderr, "Error in the signature!\n");

free(result.signature);

OQS_SIG_free(sig);

return result;

}

OQS_SIG_free(sig);

return result;

}

After the creation of the file, run the following commands:

gcc -shared -fPIC sign_with_PQ.c -o libsign_with_PQ.so -I/usr/local/include

-L/usr/local/lib -lcrypto -lssl -loqs

sudo cp libsign_with_PQ.so /usr/local/lib/

sudo ldconfig

B.3 Keylime Registrar modifications

In the file registrar_common.pyadd the verification of the signature received from the Agent
during the challenge-response phase, needed to validate the correctness of the public post-quantum
key:

95

Developer’s manual

auth_tag = json_body["auth_tag"]

auth_tag_len = json_body["auth_tag_len"]

sign_pq = json_body["sign_pq"]

sign_pq_len = json_body["sign_pq_len"]

pq_key = json_body["pq_key"]

pq_key_len = json_body["pq_key_len"]

Crea i puntatori ctypes per signature e public_key

signature_ptr = (c_ubyte * sign_pq_len)(*sign_pq) # Crea un array

di uint8_t per la firma

public_key_ptr = (c_ubyte * pq_key_len)(*pq_key)

auth_ptr = (c_ubyte * auth_tag_len)(*auth_tag)

result = lib.verify_signature(auth_ptr, c_size_t(auth_tag_len),

signature_ptr, c_size_t(sign_pq_len), public_key_ptr)

if result == 0:

logger.info("Verification of PQK: Valid")

else:

raise Exception(

f"Auth tag {auth_tag} for agent {agent_id} does not match

expected value. The agent has been deleted from

database, and a restart of it will be required"

)

Then, add the post-quantum key field in the response body of the do_GET function:

response = {

"aik_tpm": agent.aik_tpm,

"ek_tpm": agent.ek_tpm,

...

"pq_key": agent.pq_key,

}

and add the value in the database within the do_POST function:

pq_key = json_body["pq_key"]

Add values to database

d: Dict[str, Any] = {

"agent_id": agent_id,

"ek_tpm": ek_tpm,

"aik_tpm": aik_tpm,

"ekcert": ekcert,

...

"pq_key": pq_key,

}

Extend the structure in the file registrar_db.py:

class RegistrarMain(Base):

__tablename__ = "registrarmain"

agent_id = Column(String(80), primary_key=True)

key = Column(String(45))

aik_tpm = Column(String(500))

...

pq_key = Column(String(500))

96

Developer’s manual

In file registrar_agent.py add the function _validate_pq_key:

def _validate_pq_key(self, pq_key: str) -> None:

if not isinstance(pq_key, str):

raise ValueError("pq_key must be a string")

try:

Prova a decodificare Base64 per verificare il formato

decoded_key = base64.b64decode(pq_key)

except Exception:

raise ValueError("Invalid pq_key: not a valid Base64 string")

In file registrar_client.py modify the getData function by adding the check on the Post-
Quantum key:

if "pq_key" not in response_body["results"]:

logger.critical("Error: did not receive Post-Quantum key from

Registrar Server.")

return None

and the insertion in the RegistrarData class:

res: RegistrarData = {

"aik_tpm": r["aik_tpm"],

"regcount": r["regcount"],

...

"pq_key" : r["pq_key"],

}

B.3.1 Modification of the Registrar DB

To modify the registrarmain table in the SQLite database to include the Post-Quantum key
field, the following steps were performed: the original table is renamed to preserve its structure
and data during the migration

ALTER TABLE registrarmain RENAME TO registrarmain_old;

A new table with the updated schema is created, adding pq_key as a BLOB to accommodate
its binary nature:

CREATE TABLE registrarmain (

agent_id VARCHAR(80) PRIMARY KEY,

key VARCHAR(45),

ekcert TEXT,

virtual BOOLEAN,

active BOOLEAN,

provider_keys TEXT,

regcount INTEGER,

aik_tpm VARCHAR(500),

ek_tpm VARCHAR(500),

ip VARCHAR(15),

port INTEGER,

mtls_cert TEXT,

iak_tpm VARCHAR(500),

idevid_tpm VARCHAR(500),

iak_cert VARCHAR(2048),

idevid_cert VARCHAR(2048),

pq_key BLOB

);

Data from the old table are transferred to the new table, ensuring existing data to be preserved:

97

Developer’s manual

INSERT INTO registrarmain (

agent_id, key, ekcert, virtual, active, provider_keys, regcount,

aik_tpm, ek_tpm, ip, port, mtls_cert, iak_tpm, idevid_tpm, iak_cert,

idevid_cert, pq_key

)

SELECT

agent_id, key, ekcert, virtual, active, provider_keys, regcount,

aik_tpm, ek_tpm, ip, port, mtls_cert, iak_tpm, idevid_tpm, iak_cert,

idevid_cert, pq_key

FROM registrarmain_old;

Finally, the old table is deleted to remove redundancy:

DROP TABLE registrarmain_old;

B.4 Keylime Verifier modifications

In the file cloud_verifier_tornado.py add the declaration of the signature verification function:

lib.verify_signature.argtypes = [

POINTER(c_ubyte), # uint8_t* message

c_size_t,

POINTER(c_ubyte), # uint8_t* signature

c_size_t, # size_t signature_len

POINTER(c_ubyte) # uint8_t* public_key

]

lib.verify_signature.restype = ctypes.c_int

In the struct exclude_db add the field related to the post-quantum key:

exclude_db: Dict[str, Any] = {

"registrar_data": "",

"nonce": "",

"b64_encrypted_V": "",

...

"pq_key" : "",

}

In function invoke_get_quote add the code needed to call the handle the Post-quantum
signature, specifically extracting the fields:

quote = json_response.get("results", {}).get("quote").encode(’utf-8’)

quote_len= json_response.get("results", {}).get("quote_len")

sign_PQ = bytearray(json_response.get("results", {}).get("sign_PQ"))

sign_PQ_len = json_response.get("results", {}).get("sign_PQ_len")

pq_key = bytearray(json_response.get("results", {}).get("pq_key"))

pq_key_len= json_response.get("results", {}).get("pq_key_len")

The conversion of the quote, the signature and the public key into python pointers:

signature_ptr = (c_ubyte * sign_PQ_len)(*sign_PQ) # Crea un array di uint8_t

per la firma

public_key_ptr = (c_ubyte * pq_key_len)(*pq_key)

quote_ptr = (c_ubyte * quote_len)(*quote)

98

Developer’s manual

and then the part that handles the verification of the signature:

if sign_PQ is None or sign_PQ_len is None or pq_key is None:

logger.warning("missing_fields", "One or more required fields not

found in Agent’s response.")

Gestisci l’errore come preferisci

failure.add_event("missing_fields", "One or more required fields

not found in Agent’s response", False)

asyncio.ensure_future(process_agent(agent, states.FAILED, failure))

return

if pq_key == pq_key_registrar:

logger.info("PQ key received correctly \n")

result = lib.verify_signature(quote_ptr, c_size_t(quote_len),

signature_ptr, c_size_t(sign_PQ_len), public_key_ptr)

if result == 0:

logger.info("Verification of Sphincs signature: Valid")

global counter

counter = 0

else:

logger.error("Verification of Sphincs signature: Not valid")

counter +=1

if counter == 2 :

failure = Failure(Component.QUOTE_VALIDATION)

failure.add_event("invalid Sphincs signature",{"message":

"Sphincs Public Key is not corresponding to the correct

one"},False)

asyncio.ensure_future(process_agent(agent,

states.INVALID_QUOTE, failure))

else:

failure = Failure(Component.QUOTE_VALIDATION)

failure.add_event("invalid Sphincs signature",{"message": "Sphincs

Public Key is not corresponding to the correct one"},False)

asyncio.ensure_future(process_agent(agent, states.INVALID_QUOTE,

failure))

logger.error("Sphincs Public Key is not corresponding to the

correct one")

B.4.1 Function for verification of the signature

Content of the file verifysign.c:

#include <oqs/oqs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int verify_signature(const uint8_t* message, size_t quote_len, const uint8_t*

signature, size_t signature_len, const uint8_t* public_key) {

if (!OQS_SIG_alg_is_enabled(OQS_SIG_alg_sphincs_shake_256s_simple)) {

fprintf(stderr, "SPHINCS+ algorithm not available!\n");

return -1;

99

Developer’s manual

}

OQS_SIG *sig = OQS_SIG_new(OQS_SIG_alg_sphincs_shake_256s_simple);

if (sig == NULL) {

fprintf(stderr, "Error in the creation of the SPHINCS structure!\n");

return -1;

}

if (OQS_SIG_verify(sig, message, quote_len, signature,

sig->length_signature, public_key)!= OQS_SUCCESS) {

return -1;

}

return 0;

}

After the creation of the file, run the following commands:

gcc -shared -o verifysign.so -fPIC verifysign.c -loqs -lcrypto -lssl

sudo cp verifysign.so /usr/local/lib

sudo ldconfig

B.5 Keylime tenant modifications

In the tenant.py file, add the field related to the post-quantum key in the do_cvadd function:

data = {

"v": b64_v,

"cloudagent_ip": self.cv_cloudagent_ip,

"cloudagent_port": self.agent_port,

"verifier_ip": self.verifier_ip,

"verifier_port": self.verifier_port,

"tpm_policy": json.dumps(self.tpm_policy),

"runtime_policy": self.runtime_policy,

...

"pq_key": self.registrar_data["pq_key"],

}

100

	Introduction
	The impact of Quantum computing
	Quantum computing vs classical computing
	Qubits and their properties
	The EPR paradox and the non-locality principle

	Major threats to actual cryptosystems
	Shor's algorithm
	Grover's algorithm

	Towards a Quantum-Safe architecture for a Remote Attestation environment

	Post-quantum cryptography and standardization of the algorithms
	Post-quantum cryptography
	Quantum safety and the Mosca inequality
	PQC transition timeline
	Timing the migration to PQC

	Technologies and Solutions for Post-Quantum Security
	Quantum key distribution
	Mathematical solutions

	PQC standardisation
	Standardisation of stateful hash-based signatures
	NIST standardisation
	First round
	Second round
	Third round
	Fourth round
	Analysis of the finalist candidates
	Research Status on PQC

	SPHINCS+
	Difference Between SPHINCS and SPHINCS+
	SHAKE-256

	Dilithium
	Mayo

	Trusted computing and remote attestation
	Trusted computing
	Trusted Computing Base (TCB)
	Root of Trust
	Chain of trust

	TPM
	TPM overview
	TPM features
	TPM 1.2
	TPM 2.0
	TPM objects
	TPM Platform Configuration Register (PCR)

	Remote attestation
	Remote attestation procedures
	Trust model
	Principles for attestation architectures
	Domain separation

	Keylime
	Introduction
	Main components
	Main phases
	Node Registration Protocol
	Bootstrap Key Derivation Protocol
	Runtime Remote Attestation
	Revocation framework

	Integrity Measurement Architecture (IMA) in Keylime
	Remote Attestation with IMA
	Keylime Policy
	IMA Template
	Integrity Validation Mechanism

	Other functionalities in Keylime

	Quantum-safe Remote Attestation in Keylime
	Idea
	Configuration of runtime integrity monitoring
	Node Registration Protocol
	Starting the Keylime Verifier
	Initiating the Remote Attestation Process

	Creation of the runtime policy
	Configuration of IMA

	Integration of Liboqs
	Creation of the keypair
	Generation of the signature
	Verification of the signature

	Changes in Keylime
	Agent
	Registrar
	Verifier
	Updating the Registrar Table to add the Post-Quantum key field

	Remote Attestation Failure

	Testing
	Testbed
	Functional tests
	Tests of Agent registration
	Tests of periodic attestation

	Performance tests
	Keypair generation time
	Signing Time
	Signature Verification Time
	Complete Attestation Cycle
	Signature Size
	Keypair Size
	Final analysis

	Resource Consumption (CPU/RAM)
	RAM Consumption Analysis
	CPU Consumption Analysis

	Conclusions and future work
	Conclusions
	Future improvements and directions

	Bibliography
	User's manual
	Linux Installation
	Download the Ubuntu ISO image
	Configure the BIOS/UEFI and begin Installation
	Configure the Disk

	Keylime Installation
	Keylime Agent Configuration
	Keylime Verifier and Registrar configuration
	Registrar
	Verifier
	Tenant

	Rust implementation of Keylime Agent: installation
	Prerequisites
	Installing Rust
	Cloning the Rust-Keylime Repository
	Configuring Logging
	Deploying the Agent as a systemd Service
	Building a Debian Package with cargo-deb

	How to use Keylime
	Basic commands
	Keylime runtime policies
	Keylime CLI

	Installing Liboqs
	Prerequisits
	Install required dependencies
	Clone the liboqs Repository
	Build the library
	Verify the Installation

	Developer's manual
	Configuration of the IMA policy
	Configuring IMA Appraisal for File Integrity Verification

	Keylime Agent modifications
	Main.rs
	Function for post-quantum keypair generation
	Function for post-quantum signature generation

	Keylime Registrar modifications
	Modification of the Registrar DB

	Keylime Verifier modifications
	Function for verification of the signature

	Keylime tenant modifications

