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Abstract

High-Level Synthesis (HLS) enables rapid prototyping of application-specific hardware,
allowing designers to develop hardware using C/C++ instead of hardware description lan-
guages (HDL). HLS directives (pragmas) provide optimization mechanisms for balancing
performance and resource utilization. However, as the number of applied optimizations
increases, the number of possible design configurations grows exponentially. Evaluating
each design with HLS tools incurs significant computational and time costs, leading to
slow and inefficient design space exploration. To accelerate this process, machine learn-
ing models, particularly graph neural networks (GNN), have been used to predict the
quality of results (QoR) from pre-synthesis representations. However, existing methods
still require improvements due to issues such as significant prediction errors caused by
information loss during graph convolution and pooling.

To address these challenges, we propose a novel GNN-based framework incorporating
differentiable pooling (DiffPool) to learn hierarchical representations of HLS designs. By
capturing multi-level structural information, our method effectively reduces information
loss while improving the accuracy of QoR predictions. Experimental results demonstrate
that our model significantly reduces prediction errors in FPGA resource utilization com-
pared to both conventional HLS estimation methods and existing learning-based models.
Additionally, we conducted ablation studies to assess the impact of different components
on model performance. The results indicate that, in addition to DiffPool, GATv2 and
Global Attention further enhance the model’s performance.
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Chapter 1

Introduction

1.1 Background and Motivation
High-Level Synthesis (HLS) lets designers use high-level programming languages such
as C, C++ or SystemC to make faster hardware design prototyping by automatically
transforming them into hardware designs. Traditional hardware design process requires
low-level coding like Verilog or VHDL and this process is time-consuming and not cost-
effective. HLS helps designers cut this time by focusing on algorithmic optimizations and
not on low-level hardware details[12].

HLS tools have pragmas, which are essentially synthesis directives. Pragma choices
define the performance and use of hardware resources like LUTs, FFs, DSPs and BRAMs
of an arbitrary algorithm. By coupling high-level languages and pragmas, HLS tools allow
designers to do faster design space exploration, i.e. trade-offs between performance and
hardware cost. Current HLS tools do not provide dependable quality-of-results (QoR)
estimations, and thus designers are unable to take advantage of faster design space ex-
ploration as the actual implementation results are different from the estimated QoR from
the tools. Hence, designers need a way to better estimate QoR from HLS tools.

With rise of use of Machine learning (ML) to solve problems in various domains, it
has also been adapted in the field of electronic design automation (EDA). Particularly,
graph-based approaches like graph neural networks (GNNs) have been applied successfully
to different steps of electronic design automation flow [13], [14], [24]. GNNs have also
been used to improve the quality of the estimate of results in HLS [20] [9]. The models
learns from past designs to predict better QoR. This makes design space exploration
faster adhering to the HLS concept of faster design prototyping. However, existing GNN
models provide better QoR results than commercial HLS tool but not as accurate as post-
implementation results. This work proposes a hierarchichal GNN model using Differential
Pooling (DiffPool) to process both structurual and hierarchical input graph information
to estimate post-implementation results given an arbitrary design.

1.2 Non-Graph-Based Machine Learning Methods
Early approaches for QoR prediction used non-graphical machine learning models. These
methods extracted features from HLS synthesis reports. These features included resource
counts, timing, and pipeline details. They used these features in regression models or
multi-layer perceptrons. For example, Dai et al. (2018) [5] extracted features from
HLS reports and trained models like linear regression, gradient boosting, and simple
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neural networks to predict resource usage and timing.[15] use various models like Linear
Regression, Random forest, Support Vector Machines (SVM), Artificial Neural Network
(ANN) and an ensemble of the four models. However, these approach use time-consuming
scheduling and binding steps as they require inputs extracted from HLS reports.

1.3 Graph-Based Machine Learning Methods
Recently, graph neural networks (GNNs) have been used to model hardware designs.
These methods treat circuits or netlists as graphs. Graph aids in representing this com-
plex information by establishing relationships between different objects explicitly. GNNs
learn from these input graph structure and contextual information. GNNs pass informa-
tion through connections (edges) in a graph. Hardware performance depends not only
on the number of operations but also on how they are connected. Graphs capture this
information. Early research represented C/C++ code as graphs. Nodes represented op-
erations or basic blocks. Edges showed data/control dependencies. Researchers trained
GNNs to predict QoR, including area, power and latency. GNNs are used to generate
graph-level embeddings which summarizes an input graph and then these embeddings
are feed to non-graph based models like MLPs to predict final objectives. For example,
Jamal et al. (2023)[9] introduced a GNN model that takes a design as an input which
is represented as a graph and predicts post-implementation quality-of-results. [20] pro-
posed a GNN-based model to estimate quality of a design to enable faster design space
exploration. Deng et al. [6] introduced an hop-wise attention based GNN model for scal-
able and generalizable circuit representation learning. Their hop-wise graph attention
network (HOGA) reduced QoR prediction error by 47% compared to a standard GNN
while training faster.

1.4 Thesis Structure
The thesis is composed of 8 chapters. Chapter 1 presents the background and motivation
behind this work. Chapter 2 discusses typical HLS flow and common HLS pragmas.
Chapter 3 and 4 describes Machine Learning and Graph Neural Network respectively.
Chapter 5 details the dataset used in this work. Chapter 6 proposes different GNN
based model to target HLS QoR prediction problem. Chapter 7 provides the experiments
performed and comparison with other GNN-based approaches and Chapter 8 summarizes
the achievements in this thesis.

8



Chapter 2

High Level Synthesis

2.1 Introduction to High-Level Synthesis (HLS)
High-Level Synthesis (HLS) is an automated design process that generates register-
transfer level (RTL) hardware designs from a high-level behavioral description. In HLS,
designers describe the desired functionality in a high-level language (such as C/C++ or
SystemC) instead of writing low-level HDL code. The HLS tool then handles the detailed
hardware implementation, creating cycle-accurate RTL circuits that realize the given be-
havior. This raises the design abstraction level and lets engineers focus on algorithmic
functionality rather than hand-coding clock-cycle operations. HLS is sometimes called
behavioral or C-based synthesis, reflecting its use of high-level programming constructs
to describe hardware [16].

2.1.1 Significance and HLS Tools
HLS has grown popular because it can greatly shorten development time and time-to-
market for complex digital systems. By working at a higher level of abstraction, designers
can more easily explore different architectures and make changes without dealing with
low-level details. This is especially useful for today’s heterogeneous systems and FPGA
designs, which demand fast design iterations and high performance. In recent years, many
HLS tools have emerged. Examples include AMD Vitis HLS (before Vivado HLS), Intel
HLS Compiler and Cadence Stratus. Each tool may support different input languages and
apply various optimizations, but all share the goal of automatically producing hardware
from high-level code. HLS tools allow hardware acceleration of algorithms by leveraging
software-oriented design entry, making hardware design more accessible to engineers with
a software background.[26]

2.1.2 HLS vs. RTL Design
Compared to traditional RTL design, HLS offers significantly higher design productivity.
In a RTL-based flow, the designer manually defines the exact clock-cycle behavior and dat-
apaths using HDLs, which is time-consuming. HLS automates this process by automati-
cally transforming an input source code and generates the RTL. This productivity gain
comes from HLS handling the scheduling, concurrency, and hardware mapping automati-
cally. However, one trade-off is that the quality of results (QoR) – in terms of performance
and resource usage – from HLS might not always match a post-implementation design.
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Historically, the RTL approach could yield better optimized circuits (e.g. higher clock
speeds or lower area), but the gap is continually narrowing as HLS tools improve. HLS
is now considered a viable option for fast prototyping and designs with tight deadlines,
where development speed is more critical than squeezing out every last bit of performance.

2.2 Principles and Workflow of HLS
The HLS design flow starts with a high-level functional specification (in C, C++, Sys-
temC, etc.) and ends with a cycle-accurate hardware description (RTL). The process
involves several key steps to bridge the gap between the high-level code and the hardware
implementation.Figure 2.1 shows the general workflow. This process generally includes
several key steps:

Figure 2.1. Illustration of the Vitis HLS flow. [2]

2.2.1 Control and Data Path Extraction
First, the HLS tool analyzes the input program to identify its control flow and data
operations. It extracts the program’s control structure (e.g., loops, conditionals) and
builds a control-flow graph, which will become the finite state machine (FSM) that con-
trols the hardware[11]. In parallel, the tool identifies the data path – the arithmetic
and logic operations and data transfers needed to implement the algorithm. Essentially,
HLS separates what computations happen from when they happen. The control flow
(decision points, loop structure) is mapped into a hardware controller (FSM), while the
computations (like additions, multiplications, memory accesses) form the datapath that
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the FSM orchestrates. This separation of control and datapath is a fundamental step
before scheduling the operations in time.

2.2.2 Scheduling and Binding
Next, the HLS tool schedules the operations into clock cycles and binds those operations
to specific hardware resources. Scheduling determines when each operation will execute
(in which clock cycle or state). The scheduler aims to meet timing constraints (like
a target clock period) and maximize parallel execution where possible. For example,
independent operations might be scheduled in the same cycle to execute concurrently
if resources allow. Binding (and the related step of resource allocation) assigns each
operation to a hardware resource (such as an adder, multiplier, or memory port). This
means deciding which functional unit will perform each operation and whether certain
units are time-multiplexed (shared) or duplicated. Allocation decides how many instances
of each resource type to use, and binding maps the operations and variables to those
instances.

2.2.3 RTL Generation
After scheduling and binding, the HLS tool generates the RTL code (usually in Verilog
or VHDL) that corresponds to the decided micro-architecture. This RTL description
includes a finite-state machine for the control flow and the datapath components (ALUs,
multiplexers, registers, etc.) connected to perform the operations in the scheduled order.
Essentially, the high-level algorithm is now realized as a cycle-by-cycle HDL design. For
example, if the input was a C function, the tool produces an equivalent hardware module
that implements that function, complete with handshaking or clock enable signals as
needed.

2.3 Common HLS Pragmas
High-Level Synthesis (HLS) tools often allow the use of pragmas or directives, which are
special instructions that guide the compiler’s optimization decisions. Pragmas act as
hints added as comments or attributes in the source code. They do not change the algo-
rithm’s functionality but influence how the hardware is generated. They help designers
specify micro-architectural choices that the compiler might not automatically infer. For
example, a pragma can direct the HLS tool to pipeline a loop or partition a memory
array, modifying the performance and resource usage of the generated hardware. In gen-
eral, HLS pragmas help control loop optimizations, concurrency, memory structures, and
interface behaviors without modifying the core algorithm [11].

2.3.1 Loop Pragmas (Unrolling and Pipelining)
Loop pragmas determine how loops are implemented in hardware. Loop unrolling repli-
cates the loop body to create multiple parallel iterations. For instance, unrolling a loop
by a factor of 2 means the hardware will execute two iterations simultaneously, doubling
throughput at the cost of increased resource usage. This exposes more parallelism across
loop iterations and significantly speeds up computations, though it generally increases
area since more hardware is active concurrently.
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Loop pipelining allows a new loop iteration to begin before the previous one finishes.
The HLS tool automatically inserts pipeline registers and schedules operations so that
successive iterations overlap in time. This can achieve an initiation interval (II) of 1
cycle, meaning a new iteration starts every clock cycle, greatly improving throughput for
larger loops. However, pipelining often requires resolving data dependencies (ensuring
that later iterations do not read data too early) and may increase the number of registers
(flip-flops) used for pipeline stages.

Together, unrolling and pipelining are powerful optimizations. Unrolling increases
parallel hardware utilization per cycle, while pipelining keeps hardware busy every cycle
by overlapping execution [18]. Designers often use both pragmas to achieve performance
goals.

2.3.2 Array Partition Pragmas
Array partition pragmas control how arrays (or memories) are implemented. In high-level
code, an array is usually stored as a single block of memory. In hardware, if multiple
accesses to the array are needed in the same cycle (such as in an unrolled loop), this
single memory block can become a bottleneck. An array partition pragma tells the HLS
tool to split an array into multiple smaller memories or distribute it across several banks.

By partitioning an array, the design can perform multiple simultaneous accesses (one
per memory partition) without conflicts. For example, partitioning an array of size 16 into
two banks of size 8 allows two independent read/write operations per cycle, effectively
doubling the memory bandwidth. This optimization is crucial for increasing parallelism
when the algorithm frequently accesses arrays. The trade-off is that duplicating or bank-
ing memory may use more block RAMs (BRAMs) or registers. Pragmas can specify
different partitioning methods, such as complete, block, or cyclic partitioning, based on
the access pattern of the data.

2.3.3 Function and Module Pragmas
Function and module pragmas influence how functions or code blocks are implemented
in hardware. One common directive is function inlining. By default, a function call in
C/C++ can be compiled into a separate hardware module with its own internal logic,
which the top-level hardware calls.

However, inlining a function expands its code in place at the call site. This exposes
more optimization opportunities to the HLS tool, similar to how instruction-level par-
allelism can improve software performance. Inlining may allow operations inside the
function to be scheduled in parallel with the caller. On the other hand, keeping functions
as separate modules enables reuse when a function is called multiple times, reducing area
usage by sharing one hardware implementation.

Pragmas allow users to force a function to inline or remain separate based on the design
requirements. Additionally, module pragmas control interface protocols and resource
allocation. For instance, a pragma can specify that a function should follow a specific
interface protocol, such as AXI4-Stream or AXI4-Lite, for seamless integration with other
IP cores.

Other pragmas can set limits on how many instances of a specific operation are used
(e.g., limiting multipliers to a certain number, thereby enforcing resource sharing). Ad-
ditionally, a pragma can bind an operation to a specific hardware implementation, such
as using a DSP block for multiplication instead of lookup tables (LUTs).
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In summary, function and module pragmas help structure the hardware design at a
higher level. They control hierarchy, interfaces, and resource allocation, giving designers
a way to guide the HLS tool’s decisions. These pragmas help ensure that the generated
RTL aligns with the desired architecture and integrates efficiently into the larger system.

2.4 Quality of Results (QoR) in HLS
In High-Level Synthesis (HLS), Quality of Results (QoR) is a key metric used to evaluate
and optimize hardware designs. QoR generally encompasses various factors such as re-
source usage, timing, power consumption, and area. Below are some of the key resources
and QoR parameters involved in HLS:

• LUT (Look-Up Table): LUTs are fundamental components used to implement
Boolean functions in digital circuits. In FPGA designs, LUTs are widely used for
constructing logic gates and arithmetic units. The number and size of LUTs directly
affect resource usage and performance. A higher LUT usage indicates more complex
logic, but may lead to increased resource consumption and slower timing.

• FF (Flip-Flop): FFs are the basic building blocks of sequential logic, used to store
data and maintain state. The number and arrangement of FFs are crucial for timing
control. More FFs typically lead to higher area and power consumption.

• DSP (Digital Signal Processor): DSP units are specialized hardware compo-
nents designed to efficiently perform arithmetic operations such as multiplication
and accumulation. DSP usage accelerates computation-intensive tasks, but may
increase resource consumption.

• BRAM (Block RAM): BRAM provides on-chip memory for storing data. It is
used to store intermediate results, caches, and FIFOs. Excessive BRAM usage may
increase resource consumption, but its efficient use can significantly improve memory
access speed.

• Latency: latency refers to the total number of clock cycles required for a hardware
design to complete.

By understanding and optimizing these QoR parameters, designers can ensure that the
HLS-generated design meets performance, resource, and power requirements. Optimizing
for one QoR metric (such as performance) may often affect others (such as area and
power), so careful trade-offs must be made during the design process.

2.5 Vitis HLS Workflow
Vitis HLS follows a structured workflow to ensure that the high-level design is functionally
correct and that the generated RTL meets the required specifications. The workflow
consists of two primary phases: C-level validation (before synthesis) and RTL verification
(after synthesis).
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2.5.1 Pre-synthesis C Validation
In this step, the original C/C++ code is validated to ensure the algorithm functions as
expected. Designers write a test bench in C/C++ to exercise the high-level function with
various inputs and verify the outputs. This step effectively simulates the algorithm in
software.

Vitis HLS provides a complete C simulation environment, including support for bit-
accurate data types such as arbitrary precision integers and fixed-point types. These
allow designers to model hardware-specific behaviors precisely in C. The C simulation
runs quickly and enables efficient debugging of functional issues. The primary goal is to
detect and fix errors in the algorithm before committing to hardware generation.

For instance, if the design is an image filter, an engineer can run the C model on sam-
ple images to verify the correctness of the filtering process. This step does not involve
any hardware yet; it is purely a check to confirm that the C code (which will later be syn-
thesized) behaves correctly. Debugging at this stage is much easier than troubleshooting
errors after RTL generation.

2.5.2 Post-synthesis RTL Verification
Once the C model is verified, the Vitis HLS tool synthesizes the C/C++ code into
RTL. After synthesis, Vitis HLS generates Verilog/VHDL output along with reports on
estimated performance and resource usage. The next step is to verify that the synthesized
RTL design is functionally equivalent to the original C model.

Vitis HLS supports C/RTL co-simulation to facilitate this verification. In co-simulation,
the same C test bench (or an automatically generated test bench) is used to apply input
stimuli to the synthesized RTL model. The simulation runs the RTL design (often using
a built-in simulator) and compares its outputs against the expected results obtained from
the C simulation.

Essentially, the tool uses the C model’s outputs as a reference and checks whether
the RTL produces identical results, either cycle-accurately or at least frame-accurately
in streaming applications.

If the RTL output does not match the expected results, the designer must debug the
discrepancies. Possible issues include undefined behaviors in the original C code that
manifest differently in hardware or pragmas that modify latency in a way that was not
accounted for in the test bench.

Co-simulation ensures confidence in the final design by verifying that “what you sim-
ulated in C is what you get in hardware.” Once the RTL passes co-simulation, Vitis HLS
allows exporting the design as an IP core with standard interfaces, such as AXI4-Stream
or AXI4-Lite, enabling integration into a larger FPGA system.

At this point, the typical FPGA design flow—place-and-route and bitstream gener-
ation—takes over. However, from an HLS perspective, the workflow has validated the
design at both the algorithmic level and the RTL level.
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Chapter 3

Machine Learning

Machine Learning (ML) is an important branch of artificial intelligence (AI). It analyzes
data, learns from experience, and makes predictions based on existing data without the
need for humans to write specific rules [1]. Traditional programming requires engineers
to manually write code to define how each task is performed, while machine learning
allows computers to automatically discover patterns in data and gradually optimize their
performance. Today, machine learning has been widely used in various aspects, such as
computer vision, natural language processing, audio processing, and even wider fields.

3.1 Definition of Machine Learning
Machine Learning (ML) is a technology that allows computers to discover patterns or
regularities in large amounts of data without completing prediction tasks through spe-
cific programmatic instructions. The key elements of machine learning include data,
features, models, training, evaluation, and optimization. Data quality directly affects
model performance, while feature engineering and optimization methods can improve
learning results. According to the learning method, machine learning is mainly divided
into supervised learning (such as classification and regression, which rely on labeled data),
unsupervised learning (such as clustering and dimensionality reduction, which are used
to discover data structures), and reinforcement learning (intelligent agents learn opti-
mal strategies through trial and error and reward mechanisms, which are applied to
autonomous driving, robot control, etc.). It is widely used in computer vision, natural
language processing, recommendation systems, financial analysis and other fields, and is
an important foundation of artificial intelligence.

3.2 Categories of Machine Learning
The types of machine learning can be divided according to whether label information is
required and the different training methods. The following will introduce three typical
types:

• Supervised Learning: Supervised learning must be trained with corresponding
labeled data. The purpose is to find the mapping relationship between input and
output, and make predictions on new data based on this relationship. Supervised
learning mainly includes: Classification: used to predict discrete category labels,
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such as spam detection (determining whether an email is spam or normal), handwrit-
ten digit recognition (MNIST data set), and disease diagnosis (determining whether
a tumor is benign or malignant). Regression: used to predict specific values, such as
house price prediction, weather forecast, and stock market trend prediction. Com-
mon algorithms for supervised learning include tree models, logistic regression, deci-
sion trees, random forests, support vector machines, and neural networks. Today’s
popular deep learning networks such as convolutional neural networks, recurrent
neural networks, and graph neural networks also belong to the supervised learning
part. The task of this article is the regression task in supervised learning.

• Unsupervised Learning: Unsupervised learning does not require manual annota-
tion of data for learning. This learning method will automatically discover hidden
patterns in the data and complete the required tasks. Common tasks include clus-
tering and dimensionality reduction. Clustering methods are used to group data
according to similarities. For example, in market analysis, e-commerce platforms
can divide customers into different groups based on user purchasing behavior in or-
der to personalize product recommendations; in the medical field, researchers can use
genetic data to classify symptoms and help discover new disease categories (new cat-
egory discovery). Dimensionality reduction can reduce the dimension of data and
retain useful information as much as possible. For example, principal component
analysis (PCA) can convert high-dimensional data into low-dimensional represen-
tations or improve computational efficiency. In addition, if you want to visualize
or understand, dimensionality reduction is also a very intuitive way. Unsupervised
learning is also commonly used for anomaly detection. For example, banking sys-
tems use unsupervised learning models to analyze transaction patterns and discover
possible credit card fraud. In addition, unsupervised learning is also widely used in
feature learning, natural language processing (NLP), and image generation, such as
stable diffusion, and has become a hot research direction in the field of AI. Although
the results of unsupervised learning are usually not as intuitive and explainable as
those of supervised learning, its feature of not requiring manual labeling greatly
reduces the cost of training and has become the mainstream of research today.

• Reinforcement Learning: Unlike supervised learning, reinforcement learning does
not rely on training data. It learns the optimal decision-making strategy through
trial and error and reward mechanisms by continuously taking actions in the envi-
ronment and observing the feedback from the environment to maximize long-term
returns. Reinforcement learning has become a hot field in AI today because the
concept of intelligent agents and their learning methods are closer to biological or-
ganisms. For example, in robot control, Boston Dynamics’ robots learn how to move
in different complex environments through reinforcement learning, such as going up
and down stairs and gaining balance by jumping in ruins; in the field of autonomous
driving, reinforcement learning algorithms can learn response strategies under simu-
lated traffic conditions, allowing autonomous driving systems to make autonomous
decisions in complex traffic environments. In sports events, AlphaGo developed
by DeepMind defeated the world champion in the Go game through reinforcement
learning. It learned the optimal strategy by playing against the intelligent agent
itself and improved its Go game ability. In the financial field, reinforcement learning
can continuously learn more favorable strategies through feedback such as return
on investment to maximize returns. The core methods of reinforcement learning
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include value-based algorithms (such as Q-learning), policy-based methods (such as
REINFORCE), and model-based methods (such as AlphaZero). Different applica-
tion scenarios correspond to different reinforcement learning methods. Although
reinforcement learning has a high computational cost and the training process may
be slow, it has great potential in scenarios that require long-term planning and com-
plex decision-making, and has become one of the hot research directions in artificial
intelligence.

3.3 Basic Steps of Machine Learning
The typical workflow for a machine learning project involves several key stages:

• Data Collection and Preprocessing: Data collection is the cornerstone and
even the most important step of supervised learning. When doing computer vision
or natural language processing related tasks, our data sources often come from the
Internet or some databases and libraries. Engineers often use crawlers and other
technologies to build databases that meet the task requirements. In our task, we
selected the open source data set on the machine learning competition website kag-
gle. This data set is generated through three versions of Vitis HLS and is authentic
and professional. The data preprocessing process is also an important part of deter-
mining data quality. Specific operations include cleaning data, removing noise, and
normalizing data.

• Feature Engineering: In the training of traditional machine learning and graph
neural networks (GNNs), feature engineering is a key link. Feature engineering will
extract features that reflect the characteristics of the data from the original raw
data, which will enable the model to learn better and make predictions. Therefore,
selecting so-called good features is very important for the process of machine learn-
ing. For other deep learning methods (such as CNNs, RNNs, Transformer, etc.),
feature engineering will be automatically generated through convolutional layers or
encoders. For the graph neural network (GNNs) used in this article, we need to man-
ually extract the initial features, and then the graph convolution layer automatically
extracts deeper features through the graph structure and edge attributes.

• Model Selection and Training: After the data processing is completed, we need
to build the corresponding training model. For the deep learning process, this process
is similar to building blocks. It is necessary to select appropriate components (such
as convolutional layer, pooling layer) according to the characteristics of the task and
data. In addition, we also need to specify the corresponding optimizer, loss function,
and training strategy. We often have multiple candidate models with different model
structures and hyperparameters. We can select models and hyperparameters through
verification methods. K-fold cross-validation is a good way. This method divides the
data set into K parts, uses K-1 parts to train the model each time, and the remaining
part is used as a test set. This process is repeated K times, using different parts as
test sets each time, and finally taking the average result. This can reduce the risk
of overfitting and ensure that the performance of the model does not depend on a
specific data partition. After multiple verifications, we can select the model with
the best performance through loss and use it as the final model.
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• Model testing and deployment: After selecting the model, we will use a com-
pletely independent test set to test the model and compare it with other baseline
models on the test set. After proving the superiority of the model, we will deploy the
model to the actual environment. In actual applications, the model needs to process
new data and make predictions. The deployment method can be local operation,
cloud computing, or integrated into the application for real-time reasoning.

Figure 3.1. The workflow of cross-validation.[3]

3.4 Introduction to Deep Learning
• What is deep learning? Deep learning is a part of machine learning. It helps

computers learn patterns from data. It builds multi-layer neural networks to do
classification or prediction. Traditional machine learning needs human-designed fea-
tures. Deep learning does not need this. It can extract features automatically.
Because of this, deep learning works well in image recognition, speech recognition,
and natural language processing.

• How neural networks work The key to deep learning is artificial neural networks
(ANNs). These networks have many neurons. Each neuron gets input, does calcu-
lations, and sends the result to the next layer. The process has two parts: forward
propagation and backpropagation. Forward propagation finds the output from the
input. Backpropagation reduces errors by adjusting neuron weights. This makes the
model more accurate. The model keeps learning from data.

• Main deep learning models Deep learning has different types of neural networks.
Each type is used for different tasks. Convolutional Neural Networks (CNNs) are
common for image processing. CNNs find edges and shapes in images. They help
computers recognize objects and detect faces. Recurrent Neural Networks (RNNs)
work with time series data. They are used in speech recognition and text analysis.
RNNs remember past data, so they predict the next step well. This is useful in nat-
ural language tasks. Generative Adversarial Networks (GANs) are used for making
images and style changes. A GAN has two parts: a generator and a discriminator.
The generator creates new images. The discriminator checks if they are real. They
compete and improve. This makes high-quality images. Variational Autoencoders
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(VAEs) are another type of deep learning model. They help with data generation
and noise reduction.

• Application of deep learning Deep learning is used in many areas. In medical
diagnosis, it helps analyze CT scans and X-rays. It helps doctors find diseases
and improve accuracy. In autonomous driving, it detects roads, people, and traffic
signals. It helps cars make decisions. In recommendation systems, it studies user
behavior. It suggests movies, music, and products. In finance, it predicts stock
trends, scores credit, and finds fraud. This helps manage risk. Deep learning is also
used in robot control, language translation, and voice assistants.

3.5 Introduction to PyTorch
PyTorch is an open-source deep learning framework developed by Facebook’s AI Research
Lab. It is designed for both research and production environments, providing a flexible
and efficient platform for building deep learning models. PyTorch is known for its dynamic
computation graph, making it highly flexible and intuitive for experimentation. Key

Figure 3.2. How pytorch works.[17]

features of PyTorch include:

• Dynamic Computational Graphs: PyTorch builds computational graphs dy-
namically during execution, allowing the model structure to change as the compu-
tation progresses. This is particularly useful for complex models and research.

• Automatic Differentiation: PyTorch provides an automatic differentiation li-
brary called autograd, which computes gradients for backpropagation, simplifying
the training process.

• GPU Acceleration: PyTorch supports seamless integration with GPUs, which al-
lows for faster computation, especially when dealing with large datasets and complex
models.

• TorchScript: PyTorch allows models to be exported using TorchScript, which
makes it possible to run the model in non-Python environments, such as production
systems.

PyTorch has become one of the most popular frameworks for deep learning due to
its flexibility, user-friendly interface, and strong support for research and production
workflows.
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It is also worth mentioning that PyTorch Geometric (PyG) is a deep learning library
that specializes in processing graph structure data. It is built on PyTorch and can effi-
ciently implement various graph neural network (GNN) models. PyG provides a wealth
of graph data processing tools, model libraries (such as GCN, GAT, GIN, etc.) and flexi-
ble module combinations [7]. It can be easily applied to tasks such as node classification,
link prediction, and graph classification. It is widely used in molecular structure predic-
tion, recommendation systems, and electronic design automation. This project mainly
processes graph data, so it mainly uses this deep learning library.
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Chapter 4

Graph Neural Networks for
High-Level Synthesis

4.1 Fundamentals of Graph Theory
A graph is a data structure consisting of a set of nodes (vertices) and edges that connect
certain pairs of nodes [14]. Edges can be directed (with a source and target) or undirected,
and can optionally carry weights or labels. In many use cases, each node and edge can
have associated feature vectors describing their properties (e.g. an operation type for a
node, or a dependency type for an edge). This means a graph can be represented not just
by its topology but also by matrices of node features and edge features. Graphs provide
a flexible way to model relationships in structured data, which is especially useful in
representing circuits and programs in hardware design contexts.

4.2 Graph Representation in HLS Designs
In an HLS, an input program (in C/C++ or similar) is often converted into an intermedi-
ate representation (IR) that can be modeled as a graph. A common choice is the Control
and Data Flow Graph (CDFG), which combines the control flow graph (CFG) of the
program (representing basic blocks and their execution order) with the data flow graph
(DFG) (representing operations and data dependencies). The merged CDFG captures
both control and data dependencies in one structure. This has several advantages: for
example, a CDFG derived from the program’s IR (e.g. LLVM IR) naturally reflects loop
hierarchies and can be annotated to show which loops or operations are parallelizable or
share resources. In addition to control/data edges, HLS-specific pragmas (compiler direc-
tives for optimizations like pipelining or unrolling) can be represented in the graph. For
instance, one approach constructs a graph where nodes represent operations (and possibly
functions or loops) and edges encode control flow, data flow, function calls, and pragma
relationships, so that the effect of HLS directives is included in the graph structure

4.3 Message Passing and Aggregation for GNNs
Graph Neural Networks (GNNs) are neural models that operate on graph-structured
data, updating node representations by exchanging information along the graph’s edges.
The fundamental mechanism in most GNNs is message passing: at each layer, every node
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gathers “messages” from its immediate neighbors, aggregates these incoming messages,
and uses the result to update its own embedding (feature vector). For example, a simple
GNN layer might sum or average the feature vectors of all neighbor nodes (and sometimes
include the node’s own previous features) to compute the new feature for the node. More
advanced GNNs use learnable aggregation functions – such as attentional weighting of
neighbors or learned combination via neural networks – but the core idea is similar: the
node’s new state is a function of its neighbors’ states from the previous iteration. After
stacking multiple such layers, each node’s final embedding captures information from its
k-hop neighborhood (if k layers are used). In summary, GNNs perform iterative neighbor-
based feature aggregation, preserving both the features and the connectivity of the graph
in the learned representations.

4.4 Variants of GNNs (GCN, GAT, GATv2, GIN,
DiffPool)

There are many variants of GNNs. I will introduce several relevant to this article in
detail.

4.4.1 Graph Convolutional Networks (GCN)
GCNs apply a convolution-like operation on graphs by having each node aggregate fea-
tures from its neighbors, typically using a weighted sum or average [14]. In the classic
GCN model, the neighbor features are averaged (with normalization by node degrees)
and passed through a linear transform and nonlinearity to produce new node features.
GCNs are simple and efficient, often achieving good performance with just 2–3 layers of
propagation, as 4.1 shows. A known limitation of the original GCN formulation is that it
is transductive, meaning the model is trained assuming a fixed graph – it cannot naturally
generalize to completely new nodes unseen in training. Additionally, if one stacks many
GCN layers, the risk of over-smoothing arises (node embeddings becoming indistinguish-
ably similar), so GCNs typically work best with shallow depths. Overall, GCNs provide
a strong baseline that emphasizes localized neighbor information averaging.

Here is the mathematical explanation:
Graph Representation: A graph is defined as:

G = (V, E) (4.1)

where:

• V : The set of nodes (vertices).

• E: The set of edges.

The structure of the graph is represented using an adjacency matrix A of size N × N ,
where:

Aij =

1, if an edge exists between nodes i and j,

0, otherwise.
(4.2)

This matrix captures the connectivity between nodes.
Each node vi has a feature vector xi, and the feature matrix for all nodes is:

X ∈ RN×F (4.3)
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Figure 4.1. Graph data structure, adjacent matrix and general process of GCNs[8].

where:

• F is the number of input features per node.

• X stores node attributes and is updated at each layer of the GCN.

Forward Propagation in a Single-Layer GCN: GCN updates node features by
aggregating information from neighboring nodes. The propagation rule for a single-layer
GCN is:

H(l+1) = σ
1
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

2
(4.4)

where:

• H(l): The node feature matrix at layer l, with H(0) = X.

• W (l): The trainable weight matrix at layer l, responsible for feature transformation.

• σ(·): The non-linear activation function, typically ReLU:

σ(x) = max(0, x) (4.5)

• Ã: The adjacency matrix with self-loops, where Ã = A + I, and I is the identity
matrix. Adding self-loops ensures each node incorporates its own features during
aggregation.

• D̃: The degree matrix, defined as:

D̃ii =
Ø

j

Ãij (4.6)

The degree matrix normalizes the adjacency matrix to balance feature aggregation.
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The term D̃− 1
2 ÃD̃− 1

2 ensures that feature propagation is normalized across nodes,
preventing dominant nodes from overshadowing others.

Multi-Layer GCN: A deeper GCN is formed by stacking multiple layers of the above
propagation rule:

H(L) = softmax
1
D̃− 1

2 ÃD̃− 1
2 H(L−1)W (L−1)

2
(4.7)

where:

• L is the total number of layers.

• The softmax function is used for classification tasks, ensuring output probabilities
sum to 1.

4.4.2 Graph Attention Networks (GAT)
GAT introduces a learnable attention mechanism to the aggregation process. Instead
of treating all neighbor contributions equally or just by degree, a GAT layer computes
an attention weight α(u,v) for each edge (neighbor v to node u) based on the feature
content, and uses these weights to form a weighted sum of neighbor features. In effect,
each node can attend to different neighbors with different importance. The benefit is
an increase in model expressiveness: the network can focus on the most relevant parts
of a node’s neighborhood for a given task [23]. Empirically, GATs often outperform
GCNs on tasks where not all neighbors are equally informative. One weakness identified
in the original GAT is that its attention mechanism was somewhat limited (static) –
the ranking of neighbor importance did not depend on which node was querying (it was
largely the same ordering for all) [4]. This can hinder GAT’s ability to distinguish certain
graph structures and was addressed by later improvements. The calculation mechanism
of GAT is shown in the figure 4.2

Figure 4.2. Application of attention mechanism on graph convolution [21].

Feature Transformation: Each node u has an initial feature vector hu. All nodes
undergo a linear transformation:

h′
u = Whu (4.8)
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where W is a trainable weight matrix.
Attention Score Computation: For each edge (u, v), the model computes an at-

tention score euv based on node features:

euv = LeakyReLU
1
aT [h′

u ∥ h′
v]
2

(4.9)

where a is a trainable attention vector and ∥ denotes concatenation.
Softmax Normalization: To ensure attention scores sum to 1 across neighbors:

αuv = exp(euv)q
v′∈N (u) exp(euv′) (4.10)

Feature Aggregation: The final node feature update is computed as:

h(l+1)
u = σ

 Ø
v∈N (u)

αuvh′
v

 (4.11)

where σ is a non-linear activation (e.g., ReLU).
Multi-Head Attention: To improve stability, GAT applies K independent attention

heads:

h(l+1)
u = σ

 1
K

KØ
k=1

Ø
v∈N (u)

α(k)
uv h′(k)

v

 (4.12)

GAT enhances model flexibility by allowing nodes to prioritize important neighbors,
unlike GCN which treats all neighbors equally.

4.4.3 GATv2
GATv2 is a revised version of the Graph Attention Network that fixes the static attention
limitation. It modifies the internal computations of GAT to enable a more expressive,
dynamic attention where the importance of an edge can truly depend on both the source
and target nodes’ features. The result is a model that is strictly more powerful in terms of
attention expressiveness, while retaining the same order of computational complexity as
the original GAT. In the paper that introduced GATv2, it was shown that this variant can
fit patterns that vanilla GAT could not, and GATv2 achieved better accuracy than GAT
on a variety of graph benchmarks without increasing the parameter count or runtime [4].
In summary, GATv2 strengthens the attention mechanism, making GNNs more capable
of capturing complex relationships between connected nodes.

4.4.4 Differentiable Pooling (DiffPool)
Differentiable Pooling (DiffPool): Most GNNs propagate on the original graph structure
(“flat” graphs), but DiffPool is a technique to introduce hierarchical graph represen-
tation learning Ying et al. (2018) proposed DiffPool as a differentiable graph pooling
module that can be inserted into a GNN to gradually coarsen the graph [25]. DiffPool
learns a soft assignment of nodes to a smaller set of clusters at certain layers, effectively
compressing the graph in a learned way. This allows the network to create higher-level
“summary” nodes (clusters) and build a hierarchy similar to pooling in CNNs, which is
especially useful for graph-level tasks like classification of entire graphs. The advantage is
improved capacity to capture long-range interactions and abstract patterns (it achieved

25



Graph Neural Networks for High-Level Synthesis

about 5–10% accuracy improvements on graph classification benchmarks by adding this
hierarchy). However, DiffPool and similar pooling approaches come with challenges. They
add extra parameters and computation for learning cluster assignments, and if the as-
signments are not perfect, the pooling can cause a loss of information – some fine-grained
details of the original graph may be “averaged out” or lost in the coarser representation.
In practice, DiffPool’s soft clustering was observed to produce some noisy aggregations
(indicating information loss in the coarsened graph) [22]. Thus, while DiffPool increases
the modeling power for graph-level inference, it must be used carefully to balance gran-
ularity and scalability.
Here is the mathematical process:
Assignment Matrix Computation: Each node is softly assigned to a cluster using an
assignment matrix Sl:

Sl = softmax(GNN1, pool(Al, X l)) (4.13)

where:

• Sl ∈ Rnl×nl+1 contains cluster assignments.

• Al is the adjacency matrix.

• X l is the node feature matrix.

• GNN1 extracts features for clustering.

• softmax ensures that assignments sum to 1.

Graph Coarsening: New coarsened node features X l+1 are computed as:

X l+1 = SlT Z l (4.14)

where:
Z l = GNN1, embed(Al, X l) (4.15)

The new coarsened adjacency matrix is:

Al+1 = SlT AlSl (4.16)

This updates the graph structure to match the compressed node set.And the following
figure 4.3 shows the data flow of diff-pooling.

4.5 Applications of GNNs in EDA and HLS
GNNs have been increasingly applied in Electronic Design Automation (EDA) and HLS
workflows, where many problems naturally involve graph-structured data (netlists, data
flow graphs, etc.). Below are some key application areas along with research findings.

Graph Neural Networks (GNNs) have been increasingly applied in Electronic Design
Automation (EDA) and High-Level Synthesis (HLS) workflows. Many problems in these
domains involve graph-structured data, such as netlists and data flow graphs. Below are
key applications of GNNs in these fields.
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Figure 4.3. Work flow of Diff-pooling [19]

• HLS Performance Prediction and Design Space Exploration HLS Perfor-
mance Prediction and DSE: GNN models are used to predict the quality-of-results of
HLS designs (e.g. latency, area, power) given a particular code and pragma config-
uration. For example, a framework called GNN-DSE takes an HLS C/C++ kernel,
explores possible pragma optimizations, represents each design variant as a graph
(including control/data flow and pragmas), and predicts the FPGA performance
(cycle count, resource usage) for each variant. This helps prune the design space
by quickly identifying promising optimization combos without exhaustive synthesis
runs. In one study, such a GNN-driven DSE could find near-optimal pragma settings
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while avoiding dozens of slow HLS compilations. Similarly, GNNs have been used
to estimate individual operation delays after HLS: Ustün et al. (2020) proposed D-
SAGE, a GraphSAGE-based model on the HLS dataflow graph, which outperformed
the HLS tool’s own estimates for operation mapping and timing across all test cases
[14]. These predictors enable faster design iterations by providing early feedback on
performance and resource utilization.

• Logic Synthesis and Resource Mapping Graph-based learning has been applied
to logic synthesis optimizations. The HLS or RTL netlist can be modeled as a graph
(nodes as operations or gates, edges as connections), and GNNs can learn to predict
outcomes of mapping or optimization. For instance, D-SAGE (above) not only pre-
dicted delays but also learned to classify which functional units map to which FPGA
resource (LUT vs DSP, etc.), improving accuracy of resource mapping predictions.
This kind of capability can guide synthesis tools to make better decisions. Another
work called GRANNITE used a GNN (a sequential GCN) to predict average toggle
rates (switching activity) for power estimation from an RTL netlist, achieving higher
accuracy than conventional methods while running in seconds [14]. These examples
show GNNs aiding different stages of logic synthesis and verification by leveraging
the circuit graph structure.

• Placement and Physical Design Several EDA studies have employed GNNs in
placement, routing, and floorplanning tasks. A notable example is Net2, a graph
attention model used to predict wirelength (net lengths) during placement planning
[24]. By modeling the pre-placement netlist as a graph and using a GAT to estimate
connection lengths, Net2 could identify long critical interconnects with about 15%
higher accuracy than prior heuristic approaches, and did so much faster (orders of
magnitude speedup, e.g. 1000× faster in some cases). This helps designers estimate
routing congestion and timing early on.

• Analog Circuit Design and Optimization Beyond digital circuits, GNNs have
shown promise in analog and mixed-signal design where graph representations are
natural (e.g., circuits as component graphs). CircuitGNN used a GCN to predict
properties of circuit components (like predicting magnetic coupling effects in inte-
grated inductors) by modeling the circuit schematic as a graph of components and
connections. Another work combined GCN embeddings with an RL agent to perform
transistor sizing (choosing device parameters in an analog circuit), where the GNN
helped evaluate the design state for the agent[13]. These applications demonstrate
that GNNs can learn complex device interactions and constraints in analog circuits,
a realm traditionally governed by expert heuristics.

Across these applications, researchers are continuously improving GNN approaches.
One trend is using hierarchical or multi-level GNN models to cope with large designs
and to capture different levels of abstraction. For example, a recent hierarchical GNN
model for HLS learned to aggregate information from inner-loop graphs to outer loops,
achieving post-route QoR predictions with under 10% error on average and shrinking
design-space exploration time to minutes. Another direction is combining GNNs with
other AI techniques like reinforcement learning or evolutionary search to handle sequential
decision problems in EDA. In floorplanning, as noted, GNNs embedded in RL have shown
state-of-the-art results, and more generally, an “ML-assisted design flow” is envisioned
where GNNs rapidly evaluate design choices so that search algorithms can find optimal
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solutions faster. As these techniques mature, we expect GNNs to play an even larger role
in accelerating EDA tasks, from high-level synthesis down to physical design.
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Chapter 5

Dataset and data
preprocessing

In this study, we try to explore the possibility and superiority of differentiable pooling
(DiffPool) in resource utilization and latency prediction of HLS QoR in graph neural
networks, and we evaluate and test our method on the open source dataset of Kaggle. Our
research has the following highlights: 1. Pragma information will be directly embedded
in the control data flow graph (CDFG) through vertex edges. 2. Explore the gains of the
new components Graph Attention Network v2 (GATv2), Global attention pooling and
Differentiable Pooling (Diffpool) for the model. We first use the k-fold cross-validation
method and an ablation study idea to select the best model, which is the combined
model architecture of Graph Attention Network v2 Convolutional Layer (GAT2) + Global
attention pooling + Differentiable Pooling (Diffpool).

5.1 Dataset overview
The dataset used in this study comes from the "Machine Learning Contest for High-Level
Synthesis" competition on the Kaggle platform [10]. The dataset contains 42 different
programs or kernels, representing different computing modes. The target objectives are
LUTs, FFs, DSPs, BRAMs and Latency. In addition, three key optimization instructions
(pragmas) are involved in the dataset:

• TILE: Divide the loop into smaller blocks to optimize memory access and improve
the efficiency of parallel execution.

• PIPELINE: Enhance instruction-level parallelism through loop pipelining.

• PARALLEL: Unroll the loop to increase parallelism, but may result in increased
resource usage.

Each design point consists of a specific pragma configuration. There are a total of 14,135
different design points in the dataset. The labels of the designs in the training set are
mainly obtained using AMD/Xilinx’s Vivado HLS tool (versions are Vitis 2020.2 and
Vivado HLS 2018). The labels of the designs in the test set are obtained using the latest
version of the Vivado HLS tool (Vitis 2021.1). In addition, the dataset also provides a
limited number of fine-tuning sets, whose labels are also obtained using Vitis 2021.1. The
dataset includes the following files:
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• train_designs: Contains all design data for training.

• test.csv: Provides the design configuration of the test set for model testing.

• Graphs: Stores the graph representation of each kernel.

• Sources: Source code files corresponding to each kernel.

5.2 Data Preprocessing
Our data preprocessing starts with the raw data on Kaggle which contains 42 different
kernels and their various design configurations by using different set os synthesis direc-
tives. First, we filter out some design points through the filtering step, that is, we remove
the design points with which don’t have valid implementation. After that, we split into
two set. i.e. train set and test set covering 35 kernels and 7 kernels respectively. In this
case, the test set is all unseen kernels, which ensures the generalization and robustness
of the model. The final size of training dataset is 12866, and the size of test dataset is
1269.

In the next step, we need to extract features for the training set and test set. Feature
extraction includes node features and edge features. Node features include node type,
block id, function id, bit width, opcode, etc. These features describe the node attributes of
the data flow (CDFG). Edge features can represent the connection relationship between
each node, including flow features and position features. The pragma information is
embedded into input graph as done by [20]. After completing feature extraction, we
one-hot compile all string features. In the compilation step, our test set and training
set remain independent to prevent information leakage. The exact information about
features is in table 5.1 and table 5.2.

Node Feature Range Description

Type 0-3 0: instruction, 1: variable, 2: constant, 3: pragma
Block ID 0-55 Unique identifier for each basic block in CDFGs
Function ID 0-7 Unique function identifier in control/data flow graphs
Bitwidth 8, 16, 32, 64 Extracted from ‘text‘ or ‘full text‘
In/Out Degree Constant Computed from graph structure
Pragma Type PIPE,

TILE,
PARA

For pragma nodes (type 3), extracted from ‘text‘,
needs encoding

Opcode 35 types For instruction nodes (type 1), extracted from ‘text‘,
needs encoding

Opcode Category 9 types For instruction nodes (type 1), extracted from library,
needs encoding

Pragma Numeric Constant For pragma nodes (type 3), extracted from ‘full text‘,
e.g., __TILE__L2=2

Table 5.1. Node Features Description
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Dataset and data preprocessing

Edge Feature Range Description

Flow 0-3 0: control, 1: data, 2: call, 3: pragma
Position 0-2 0: tile, 1: pipeline, 2: parallel (denotes edge ordering)

Table 5.2. Edge Features Description

After data processing, we convert the graph into a format suitable for PyTorch Geo-
metric, pass it into the model, train and verify it on the training set, and when the model
selection is completed, test and compare it on the unseen test set. The overall data pre-
processing process follows the structure shown in Figure 1, which intuitively represents
filtering, feature extraction, encoding, and model training.

The overall data preprocessing pipeline follows the structure illustrated in Figure 5.1,
which visually represents the filtering, feature extraction, encoding, and model training
steps.

Figure 5.1. Overall data preprocessing pipeline
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Chapter 6

Model Framework

6.1 Basic Model
Our basic model consists of two parts, namely the GNN encoder at the top of the model
and the MLP regressor at the bottom. The GNN encoder is responsible for encoding the
input graph data into a vector and reading it out as a graph representation. The MLP
regressor decodes the graph representation vector and outputs the predicted value. The
GNN encoder consists of two convolutional layers + activation function (ReLU) and a
pooling layer, while the MLP regressor consists of two fully connected layers.Figure 6.1
shows the specific architecture of the basic model

We will innovate on the basic model, specifically replacing the convolutional layer and
pooling layer of the GNN encoder. This process conforms to the logic of ablation and
mainly includes the following combinations:

• GCN + Mean pooling

• GATv2 + Mean pooling

• GATv2 + Global attention pooling

• GATv2 + Global attention pooling + Diffpool

6.2 Proposed Model
After k-fold cross validation, we confirmed the superiority of the GATv2 + Global atten-
tion pooling + Diffpool model, and we use it as our proposed model. Figure 6.2 and 6.3
shows in detail the specific architecture and visual data flow of the proposed model.

The key components are:

• GATv2: Improved Graph Attention We have discussed the mathematical prop-
erties of GATv2 and its advantages in Chapter 4. In our case GATv2 refines the
original Graph Attention Network by making the attention mechanism more flexi-
ble and permutation-invariant. It dynamically assigns different importance scores to
each neighboring node, allowing the model to focus more on informative connections
while reducing noise.
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Model Framework

Figure 6.1. Architecture of basic model

Figure 6.2. The architecture of the proposed model
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Model Framework

Figure 6.3. Visual data flow diagram of the proposed modell
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Model Framework

• Differentiable Pooling (DiffPool) The model uses GATv2 and GCN as its core
graph convolutional layers: GATv2 captures the importance of neighboring nodes
through an attention mechanism, updating node features; meanwhile, GCN is used
to generate the assignment matrix s assigning nodes to different clusters to sim-
plify the graph structure. Based on this, the model applies hierarchical pooling
using DenseDiffPool, which groups nodes through the learned assignment matrix s
resulting in aggregated node features z and a simplified adjacency matrix adj. Each
DenseDiffPool layer outputs updated z and adj and calculates link loss and entropy
loss to ensure effective clustering while preserving the graph structure. Formally,
clustering can be represented as:

z = sT x, adj = sT As (6.1)

Next, we combine the information from the two layers together, allowing the model
to better handle multi-layer information.
According to our formula, we know that in the process of DiffPool, nodes are always
aggregated. When we visualized the adjacent matrix of the graph during the experi-
ment, we found that the dimension of the matrix was constantly decreasing, and the
distribution of the matrix also changed from scattered to concentrated, which shows
that DiffPool is aggregating different nodes. At each layer of pooling, the graph will
display different information. Figure 6.4 shows the details of this process.

Figure 6.4. Differentiable pooling nodes aggregation processl

• Global Attention Pooling Computation: Global Attention Pooling is a pooling
method that uses the attention mechanism. In this task, we also call it a read out
operation. Similar to Max Pooling and Mean Pooling, its function is to combine
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Model Framework

and synthesize the information of each node to obtain a representation of the entire
graph.
Unlike the simple read out operation, Global Attention Pooling can automatically
train the different importance of each node information, thereby assigning attention
weights, and finally obtaining the sum of the products of all nodes and their weights
as a graph representation. In this way, the model can capture the key information
that is really useful.
The method has two main steps. The graph G has N nodes, and each node has a
feature vector xi ∈ Rd. Each node is assigned an attention weight ai:

ai = σ (xiW1 + b) (6.2)

where:

• xi is the feature vector of node i.
• W1 ∈ Rd×1 is a weight matrix learned by the model.
• b is a bias term.
• σ(·) is an activation function, like sigmoid or tanh, used to control the range of

the weights.

Then, the final graph-level feature vector hG is computed by combining node features
and attention weights:

hG =
NØ

i=1
ai · (xiW2) (6.3)

where:

• W2 ∈ Rd×d′ is another weight matrix used to adjust the size of node features.
• ai is the attention weight computed in the previous step.
• N is the total number of nodes in the graph.

• MLP Regressor The MLP regressor is like a decoder, which inputs the graph rep-
resentation vector, passes through two fully connected layers and the corresponding
nonlinear activation function layer, and outputs the QoR prediction of high-level
synthesis (HLS), including resource utilization prediction of DSP, LUT, FF and
BRAM, as well as latency prediction. It can capture the relationship between graph
representation and target label.
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Chapter 7

Experimental process and
results

Our experiments are mainly divided into two parts. One is to verify and select the
proposed model and the ablation model through 3-fold cross validation. The second
experiment is to compare the performance of the proposed model with the baseline model.
We also compare the best performing model with two baseline models.

7.1 Verification and selection of ablation models
Following are the candidate models:

• Model 1: GCN + Mean pooling

• Model 2: GATv2 + Mean pooling

• Model 3: GATv2 + Global attention pooling

• Model 4: GATv2 + Global attention pooling + Diffpool

For the four candidate models, we use 3-fold cross validation to evaluate the model.
In our case, the training set will be divided into 3 parts, two of which are used for
real training, and the remaining one is used for validation of each iteration. During the
training process, we use RMSE as the loss function.

During training, we use the Adam optimizer with a learning rate of 0.001 for 100
epochs. For models using the attention mechanism, the number of heads is uniformly set
to 4 to capture different aspects of the node representations. In addition, when we use
diff-pool, there are 2 inner losses named ent-loss and link-loss, to limit the process for
nodes aggregation.

We recorded the RMSE loss of each model for each fold in detail for further analysis
and model selection, as the following table 7.1.And figure 7.1 shows the results more
intuitively.

Based on the results, we can perform the following ablation analysis:

Impact of GATv2 Over GCN (Model 1 vs. Model 2)

• Model 1 (GCN + Mean Pooling) has the highest mean validation loss (0.1116),
indicating that its ability to capture structural information is weaker.
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Experimental process and results

Figure 7.1. Visual data flow diagram of the proposed modell
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Experimental process and results

Model 1st Fold 2nd Fold 3rd Fold Mean ± Std

GCN + Mean Pooling (Model 1) 0.1173 0.1050 0.1125 0.1116 ± 0.0060
GATv2 + Mean Pooling (Model 2) 0.1014 0.0976 0.0970 0.0987 ± 0.0018
GATv2 + Global Attention Pooling (Model 3) 0.0960 0.0992 0.0897 0.0950 ± 0.0040
GATv2 + Global Attention Pooling + Diff-Pooling (Model 4) 0.0975 0.0928 0.0885 0.0929 ± 0.0045

Table 7.1. Validation loss comparison for different models.

• Model 2 (GATv2 + Mean Pooling) significantly improves performance (0.0987),
showing that GATv2’s attention mechanism enhances feature extraction, leading to
better resource utilization prediction.

Effect of Global Attention Pooling (Model 2 vs. Model 3)

• Model 3 (GATv2 + Global Attention Pooling) further reduces the validation
loss to 0.0950, demonstrating that global attention pooling improves the represen-
tation of the entire graph by learning node importance adaptively.

• This suggests that a learned attention-based aggregation is more effective than sim-
ple mean pooling, which treats all nodes equally.

Effect of Differentiable Pooling (Model 3 vs. Model 4)

• Model 4 (GATv2 + Global Attention Pooling + Diff-Pooling) achieves the
best performance with the lowest mean validation loss (0.0929).

• The introduction of diff-pooling enables the model to capture hierarchical structures,
leading to improved generalization.

Thus, the best model for resource utilization prediction in this study is GATv2 +
Global Attention Pooling + Diff-Pooling, which will be used for further evaluation.
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Experimental process and results

7.2 Comparative experiments with baseline
7.2.1 Resource Utilization Comparison
We first compare the performance of our model with a GNN-based QoR estimation model
proposed in [9]. We call this model as Baseline 1. We mainly compare resource utilization
i.e. LUTs, FFs, DSPs, and BRAMs, with this model.

Model LUT RMSE FF RMSE DSP RMSE BRAM RMSE

Baseline 1 0.164 0.141 0.203 0.205
Ours 0.132 0.094 0.123 0.173

Table 7.2. Comparison of RMSE values (DSP, LUT, FF, BRAM) between Base-
line 1 and our proposed model.

Figure 7.2 shows the performance improvement more intuitively.

Figure 7.2. The comparison of baseline 1 model and our proposed model

For baseline 1, the model’s pragma is not directly embedded in the control data flow
graph (CDFG), but the pragma information is concatenated to the generated graph
embeddings. In addition, the model does not use the DiffPool mechanism. It can be seen
that the changes in our model have improved the overall model’s performance in resource
utilization QoR prediction.

7.2.2 Expanding to the overall comparison of latency
In order to make our model more accurate in predicting latency, we train another model
that focuses on latency prediction with the same structure and hyperparameters in addi-
tion to the resource utilization prediction model. This model only has a single regression
task.
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Experimental process and results

Like resource utilization, we also need to normalize latency data as in [20]. We use
the following formula latency normalization:

Tlatency = log2

A
NormalizationFactor

latency

B
(7.1)

Finally, we restricted the range of the latency data to (0, 12.06).
The work in [20] propose two GNN-based predictive models. One for estimation of

LUTs, FFs, DSPs and Latency, and the other for BRAMs. This work is closest to ours
as we also target exactly same predictive objectives in this work. We take the predictive
models in [20] and train them to the best of our ability according to how they are proposed
in the work. We call these models as Baseline 2 for quantitative comparison.

Model LUT RMSE FF RMSE DSP RMSE BRAM
RMSE

Latency
RMSE

Baseline 2 0.189 0.126 0.172 0.209 0.857
Ours 0.132 0.094 0.123 0.173 0.8255

Table 7.3. Comparison of resource utilization (DSP, LUT, FF, BRAM) and latency
(RMSE) between Baseline 2 and our proposed model.

Figure 7.3 shows a radar chart comparing the resource utilization prediction RMSE of
Baseline 2 and our proposed model. Figure 7.4 shows a bar chart comparing the latency
prediction RMSE.

Figure 7.3. The comparison of resource utilization for Baseline 2 model and
our proposed model
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Experimental process and results

Figure 7.4. The comparison of latency for Baseline 2 model and our proposed model

These qualitative comparison clearly shows that our model outperforms both baselines
in predicting resource utilization, and also latency. The inclusion of GATv2, differentiable
pooling, and global attention pooling significantly improves the accuracy. These findings
suggest that more advanced GNN architectures are critical for accurate QoR estimation
in high-level synthesis, and the idea of hierarchical pooling holds promise for this task.
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Chapter 8

Conclusion

High-level synthesis (HLS) helps designers create specialized hardware quickly. Design-
ers can use C/C++ instead of hardware description language (HDL). HLS directives
(pragma) let them balance performance and resource usage. However, when more op-
timizations are added, the number of design configurations increases rapidly. Checking
each design with an HLS tool takes a lot of time and makes design space exploration slow.
To speed up, machine learning models such as graph neural networks (GNNs) predict the
quality of results (QoR) before running full synthesis. However, due to information loss in
graph convolution and pooling, existing methods still have prediction errors with respect
to the final implementations.

We propose a new GNN-based framework with differentiable pooling (DiffPool). We
capture multi-level structures to reduce information loss and improve QoR prediction.
Experiments show that our model reduces the prediction error of FPGA resources and
latency compared to other graph neural network learning-based methods.
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